

Beginning XIVIL
4th Edition

David Hunter,
Jeff Rafter,

Joe Fawcett,
Eric van der Vlist,
Danny Ayers,
Jon Duckett,
Andrew Watt, and
Linda McKinnon

1807
| WILEY |;
‘2007

...........

Wiley Publishing, Inc.

Beginning XIVIL
4th Edition

Beginning XIVIL
4th Edition

David Hunter,
Jeff Rafter,

Joe Fawcett,
Eric van der Vlist,
Danny Ayers,
Jon Duckett,
Andrew Watt, and
Linda McKinnon

1807
| WILEY |;
‘2007

...........

Wiley Publishing, Inc.

Beginning XML, 4t Edition
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-11487-2

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data:

Beginning XML / David Hunter ... [et al.]. -- 4th ed.
p.cm.
ISBN 978-0-470-11487-2 (paper / website)
1. XML (Document markup language) 1. Hunter, David, 1974 May 7-
QA76.76.H94B439 2007

006.7"4--dc22
2007006580

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION
AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOM-
MENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

www.wiley.com

Twould like to thank God, for continuing to give me opportunities to do
what I love; my church family, for giving me more support than I deserve;
and Andrea, for giving me more support than anyone deserves.

I would also like to thank the editors, for their constant help.

Their dedication to the quality of this book was a major factor in its success.
—David

To Ali and Jude, for their loving patience.
—Jeff

To my two brothers, Peter and Stephen, who have both helped me in my life
and career in their own ways, many thanks.
—Joe

To my wife, Catherine, and children, Deborah, David, Samuel, and Sarah,
for their patience and support while I am busy writing books.
—Eric

To my late grandmother, Mona Cartledge, who once gave me a
Commodore Pet.
—Danny

About the Authors

David Hunter is a Senior Technical Consultant for CGI, a full-service IT and business process services
partner. Providing technical leadership and guidance for solving his clients” business problems, he is a
jack-of-all-trades and master of some. With a career that has included design, development, support,
training, writing, and other roles, he has had extensive experience building scalable, reliable, enterprise-
class applications. David loves to peek under the hood at any new technology that comes his way, and
when one catches his fancy, he really gets his hands dirty. He loves nothing more than sharing these
technologies with others.

Jeff Rafter is an independent consultant based in Redlands, California. His focus is on emerging tech-
nology and web standards, including XML and validation. He currently works with Baobab Health
Partnership with a focus on improving world health.

Joe Fawcett (http://joe. fawcett.name) started programming in the 1970s and worked briefly in IT
when leaving full-time education. He then pursued a more checkered career before returning to software
development in 1994. In 2003 he was awarded the title of Microsoft Most Valuable Professional in XML
for community contributions and technical expertise; he has subsequently been re-awarded every year
since. Joe currently works in London and is head of software development for FTC Kaplan Ltd., a lead-
ing international provider of accountancy and business training.

Eric van der Vlist is an independent consultant and trainer. His domains of expertise include web devel-
opment and XML technologies. He is the creator and main editor of XMLfr.org, the main site dedicated
to XML technologies in French, the lead author of Professional Web 2.0 Programming, the author of the
O'Reilly animal books XML Schema and RELAX NG and a member or the ISO DSDL (http: //dsdl.org)
working group focused on XML schema languages. He is based in Paris and can be reached at
vdv@dyomedea . com, or meet him at one of the many conferences where he presents his projects.

Danny Ayers is a freelance developer and consultant specializing in cutting-edge web technologies.
His blog (http://dannyayers.com) tends to feature material relating to the Semantic Web and/or
cat photos.

Linda McKinnon has more than 10 years of experience as a successful trainer and network engineer,

assisting both private and public enterprises in network architecture design, implementation, system
administration, and RFP procurement. She is a renowned mentor and has published numerous Linux
study guides for Wiley Press and Gearhead Press.

Credits

Senior Acquisitions Editor
Jim Minatel

Development Editors
Sara Shlaer
Lisa Thibault

Technical Editor
Phred Menyhert

Production Editor
William A. Barton

Copy Editor
Luann Rouff

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Brooke Graczyk

Denny Hager

Joyce Haughey

Jennifer Mayberry

Barbara Moore

Alicia B. South

Quality Control Technician
John Greenough

Project Coordinator
Lynsey Osborn

Media Development Specialists
Angie Denny

Kit Malone

Kate Jenkins

Steve Kudirkan

Proofreading
Aptara

Indexing
Broccoli Information Management

Anniversary Logo Design
Richard Pacifico

Acknowledgments

This book would not have been possible without the work of the many developers dedicated to improv-
ing the Web through standards. We would also like to thank the countless contributors to mailing lists,
IRC channels, forums, and friends that have helped us through the difficult corners of the specifications
and technologies presented in this book.

Thanks to Nicholas C. Zakas for his ideas and assistance in implementing the AutoSuggest Control. Many
thanks to Phillip Pearson, who runs TopicExchange.com. He provided much-needed technical support
that otherwise would have meant rewriting most of Chapter 14. We would also like to thank Jim Ley and
Doug Schepers for their assistance on the case study and Chapter 19. Special thanks to our lead editor,
Sara Shlaer, for her gentle and not so gentle persuasive powers and attention to detail; to editor Lisa
Thibault, for her thoughtful assistance; and to Phred Menyhert, for a rigorous technical edit. Many thanks
to our acquisitions editor, Jim Minatel, who has shepherded this book through many incarnations.

Contents

Acknowledgments ix
Introduction XXvii
Part I: Introduction 1
Chapter 1: What Is XML? 3
Of Data, Files, and Text 3
Binary Files 4

Text Files 5

A Brief History of Markup 6

So What Is XML? 7
What Does XML Buy Us? 10
HTML and XML: Apples and Red Delicious Apples 13
Hierarchies of Information 14
What’s a Document Type? 17

No, Really — What’s a Document Type? 18
Origin of the XML Standards 18
What Is the World Wide Web Consortium? 18
Components of XML 19
Where XML Can Be Used, and What You Can Use It For 20
Reducing Server Load 20
Website Content 20
Distributed Computing 21
e-Commerce 21
Summary 22
Exercise Questions 22
Question 1 22
Question 2 22
Chapter 2: Well-Formed XML 23
Parsing XML 24
Tags and Text and Elements, Oh My! 24

Rules for Elements

31

Contents

Chapter 3: XML Namespaces

Xii

Attributes
When to Use Attributes
Comments
Empty Elements
XML Declarations
Version
Encoding
Standalone
Processing Instructions
lllegal PCDATA Characters
Escaping Characters
CDATA Sections
Errors in XML
Summary
Exercise Questions
Question 1
Question 2

Why We Need Namespaces
Using Prefixes

Why Doesn’t XML Just Use These Prefixes?
How XML Namespaces Work

Default Namespaces

Do Different Notations Make Any Difference?

Namespaces and Attributes
Understanding URIs

URLs

URNs

Why Use URLs for Namespaces, Not URNs?
What Do Namespace URIs Really Mean?

RDDL
When to Use Namespaces
Summary
Exercise Questions
Question 1
Question 2
Question 3

39
43
45
49
50
51
51
53
56
59
60
61
64
64
65
65
65

67

67
69
70
72
75
81
83
86
86
87
87
88
89
89
20
21
91
91
91

Contents

Part 1I: Validation 93
Chapter 4: Document Type Definitions 95
Running the Samples 96
Preparing the Ground 96
The Document Type Declaration 100
Sharing Vocabularies 104
Anatomy of a DTD 105
Element Declarations 105
Attribute Declarations 120
Entities 131
Developing DTDs 141
DTD Limitations 142
DTD Syntax 142
XML Namespaces 143
Data Typing 143
Limited Content Model Descriptions 143
Summary 143
Exercise Questions 144
Question 1 144
Question 2 144
Question 3 144
Chapter 5: XML Schemas 145
Benefits of XML Schemas 146
XML Schemas Use XML Syntax 146
XML Schema Namespace Support 146
XML Schema Data Types 147
XML Schema Content Models 147
Do We Still Need DTDs? 147
XML Schemas 148
The XML Schema Document 148
Running the Samples 148
<schema> Declarations 152
<element> Declarations 155
<complexType> Declarations 165
<group> Declarations 167
Content Models 168
<attribute> Declarations 177
<attributeGroup> Declarations 183

Xiii

Contents

Creating Elements with Simple Content and Attributes 185
Datatypes 186
<simpleType> Declarations 193
Creating a Schema from Multiple Documents 200
<import> Declarations 200
<include> Declarations 204
Documenting XML Schemas 206
Comments 206
Attributes from Other Namespaces 207
Annotations 208
Summary 209
Exercise Questions 210
Question 1 210
Question 2 210
Question 3 210
Chapter 6: RELAX NG 211
XML and Compact Syntaxes 212
Running the Samples 212
RELAX NG Patterns 213
Element, Attribute, and Text Patterns 213
Combining and Reusing Patterns and Grammars 227
Named Patterns 227
Combining Named Pattern Definitions 230
Schema Modularization Using the include Directive 231
Redefining Included Named Patterns 232
Removing Patterns with the notAllowed Pattern 233
Extensions and Restrictions 234
Nested Grammars 235
Additional RELAX NG Features 236
Namespaces 236
Name-Classes 237
Datatypes 241
List Patterns 243
Comments and Divisions 244
Useful Resources 245
Summary 245
Exercise Questions 245
Question 1 246
Question 2 246

Xiv

Contents

Part IlI: Processing 247
Chapter 7: XPath 249
Ways of Looking at an XML Document 250
Modeling XML Documents 250
Visualizing XPath 251
Understanding Context 252
What Is a Node? 254
XPath 1.0 Types 257
Abbreviated and Unabbreviated Syntax 259
XPath 1.0 Axes 260
Child Axis 260
attribute Axis 262
ancestor Axis 264
ancestor-or-self Axis 265
descendant Axis 265
descendant-or-self Axis 266
following Axis 266
following-sibling Axis 268
namespace Axis 268
parent Axis 271
preceding Axis 271
preceding-sibling Axis 272
self Axis 273
XPath 1.0 Functions 274
Boolean Functions 274
Node-Set Functions 275
Numeric Functions 275
String Functions 276
Predicates 278
Structure of XPath Expressions 278
XPath 2.0 281
Revised XPath Data Model 281
W3C XML Schema Data Types 281
Additional XPath 2.0 Functions 282
XPath 2.0 Features 282
Summary 285
Exercise Questions 285
Question 1 286
Question 2 286

XV

Contents

Chapter 8: XSLT 287
What Is XSLT? 287
Restructuring XML 288
Presenting XML Content 288
How an XSLT Processor Works 288
Running the Examples 289
Introducing the Saxon XSLT Processor 289
Installing the Saxon XSLT Processor 290
Procedural versus Declarative Programming 292
Procedural Programming 292
Declarative Programming 292
Foundational XSLT Elements 293
The <xsl:stylesheet> Element 295
The <xsl:template> Element 296
The <xsl:apply-templates> Element 296
Getting Information from the Source Tree 297
The <xsl:value-of> Element 297
The <xsl:copy> Element 299
The <xsl:copy-of> Element 303
Influencing the Output with the <xsl:output> Element 306
Conditional Processing 306
The <xsl:if> Element 306
The <xsl:choose> Element 308
The <xsl:for-each> Element 311
The <xsl:sort> Element 312
XSLT Modes 314
XSLT Variables and Parameters 320
Named Templates and the <xsl:call-template> Element 322
XSLT Functions 323
XSLT 2.0 323
Grouping in Version 2.0 324
Non-XML Input and String Handling 327
Multiple Outputs 330
User-Defined Functions 332
xsl:value-of changes 334
Summary 335
Exercise Questions 335
Question 1 335
Question 2 335

XVi

Contents

Part IV: Databases 337
Chapter 9: XQuery, the XML Query Language 339
Why XQuery? 340
Historical Factors 340
Technical Factors 340
Current Status 341
XQuery Tools 343
Saxon 343
X-Hive.com Online 345
X-Hive Database 346
Tamino Database 346
Microsoft SQL Server 2005 346
Oracle 346
Some XQuery Examples 346
Input Functions 346
Retrieving Nodes 348
Element Constructors 351
The XQuery Prolog 355
Computed Constructors 358
Syntax 359
The XQuery Data Model 360
Shared Data Model with XPath 2.0 and XSLT 2.0 360
Node Kinds 361
Sequences of Node-Sets 361
Document Order 361
Comparing Items and Nodes 361
Types in XQuery 361
Axes in XQuery 361
XQuery Expressions 362
FLWOR Expressions 362
XQuery Functions 368
The concat() Function 369
The count() Function 369
Using Parameters with XQuery 370
User-Defined Functions 371
Looking Ahead 372
Update Functionality 372
Full-Text Search 372
Summary 372

XVii

Contents

Exercise Questions 373
Question 1 373
Question 2 373

Chapter 10: XML and Databases 375

The Need for Efficient XML Data Stores 375
The Increasing Amount of XML 376
Comparing XML-Based Data and Relational Data 377

Approaches to Storing XML 378
Storing XML on File Systems 378
Using XML With Conventional Databases 379
Native XML Databases 381

Using Native XML Databases 382
Obtaining and Installing eXist 382
Interacting with eXist 384

XML in Commercial RDBMSs 395
XML Functionality in SQL Server 2000 395
Web Service Support 426

XML in Open Source RDBMS 426
Installing MySQL 426
Adding Information in MySQL 427
Querying MySQL 430
Updating XML in MySQL 435
Usability of XML in MySQL 436
Client-Side XML Support 437

Choosing a Database to Store XML 438

Looking Ahead 438

Summary 438

Exercise Questions 438
Question 1 439
Question 2 439
Question 3 439

Part V: Programming 441
Chapter 11: The XML Document Object Model (DOM) 443

Purpose of the XML DOM 443
Interfaces and Objects 445

The Document Object Model at the W3C 446
XML DOM Implementations 447

xviii

Contents

Two Ways to View DOM Nodes 448
Overview of the XML DOM 448
Tools to Run the Examples 450
Browser Differences 450
The Node Object 458
Properties of the Node Object 458
Methods of the Node Object 461
Loading an XML Document 462
The Effect of Text Nodes 468
The NamedNodeMap Object 471
The NodelList Object 475
The DOMException Object 476
The Document Interface 478
How the XML DOM Is Used in InfoPath 2007 481
Summary 482
Exercise Questions 482
Question 1 482
Question 2 482
Chapter 12: Simple API for XML (SAX) 483
What Is SAX and Why Was It Invented? 483
A Brief History of SAX 484
Where to Get SAX 485
Setting Up SAX 486
Receiving SAX Events 486
ContentHandler Interface 487
ErrorHandler Interface 504
DTDHandler Interface 509
EntityResolver Interface 510
Features and Properties 510
Extension Interfaces 514
Good SAX and Bad SAX 515
Consumers, Producers, and Filters 516
Other Languages 516
Summary 517
Exercise Questions 518
Question 1 518
Question 2 518

Xix

Contents

Part VI: Communication 519
Chapter 13: RSS, Atom, and Content Syndication 521
Syndication and Meta Data 521
Syndication Systems 522
The Origin of RSS Species 525
RSS-DEV and RSS 1.0 529
UserLand and RSS 2.0 531
Atom 533
Working with News Feeds 536
Newsreaders 536
Data Quality 536

A Simple Aggregator 537
Modeling Feeds 537
Program Flow 540
Implementation 540
Transforming RSS with XSLT 557
Useful Resources 567
Summary 568
Exercise Questions 568
Question 1 569
Question 2 569
Chapter 14: Web Services 571
What Is an RPC? 571
RPC Protocols 573
DCOM 573
IIOP 574
Java RMI 575
The New RPC Protocol: Web Services 575
XML-RPC 576
The Network Transport 579
Taking a REST 596
The Web Services Stack 600
SOAP 600
WSDL 601
uDDI 602
Surrounding Specifications 602
Summary 604

XX

Contents

Exercise Questions 605
Question 1 605
Question 2 605

Chapter 15: SOAP and WSDL 607

Laying the Groundwork 608

Running Examples in Windows 2003, XP, and 2000 608

The New RPC Protocol: SOAP 608
Just RESTing 612
Basic SOAP Messages 613
More Complex SOAP Interactions 620

Defining Web Services: WSDL 632
<definitions> 633
<types> 633
<messages> 634
<portTypes> 635
<binding> 635
<soap:body> 637
<service> 638
Other Bindings 641

Summary 644

Exercise Questions 644
Question 1 644
Question 2 644

Chapter 16: Ajax 645

Early Attempts at Asynchronous Updates 645
Microsoft versus Mozilla 647
Cross-Browser Solutions 647

Basic Posting Techniques 649

Transport and Processing on the Server 652
JSON 652
Payment Card Validator 653
The AutoSuggest Box 658

Server-Side Proxies 681
The Currency Converter Proxy 682

Summary 686

Exercise Questions 687
Question 1 687
Question 2 687
Question 3 687

XXi

Contents

Part VII: Display 689
Chapter 17: Cascading Style Sheets (CSS) 691
Why Stylesheets? 692
Introducing CSS 693
CSS Properties 694
Inheritance 695
Attaching the Stylesheet to an XML Document 699
Selectors 700
Using CSS for Layout of XML Documents 701
Understanding the Box Model 702
Positioning in CSS 706
Laying Out Tabular Data 719
Links in XML Documents 721
XLink Support in Firefox 721
Forcing Links Using the XHTML Namespace 725
Images in XML Documents 725
Using CSS to Add Content to Documents 726
Attribute Content 729
Attribute Selectors 729
Using Attribute Values in Documents 729
Summary 732
Exercise Questions 732
Question 1 732
Question 2 733
Question 3 733
Question 4 733
Chapter 18: XHTML 735
Separating Style from Content 736
Learning XHTML 1.x 738
Document Type Definitions for XHTML 738
Basic Changes in Writing XHTML 740
Styling XHTML Documents 751
Stricter Documents Make Faster and Lighter Processors 753
XHTML Tools 753
Validating XHTML Documents 754
Validation Pitfalls 756
Mime Types Pitfalls 757

xxii

Contents

Modularized XHTML 759
Module Implementations 761
XHTML 1.1 761
XHTML Basic 762

What’s Next for XHTML 763

Summary 765

Exercise Questions 766
Question 1 766
Question 2 766

Chapter 19: Scalable Vector Graphics (SVG) 767

What Is SVG? 767
Scalable, Vector, Graphics 768
Putting SVG to Work 769
An SVG Toolkit 769

Getting Started 771
Views and Units 774
The Painter’s Model 774
Grouping 776
Transformations 776
Paths 777
Images 780
Text 781
Comments, Annotation, and Metadata 782
Scripting 784
SVG on Your Website 785

Tangram: A Simple Application 786
XHTML Wrapper 787
SVG Shapes 788
Tangram Script 792

Useful Resources 799

Summary 800

Exercise Questions 800
Question 1 800
Question 2 801

Chapter 20: XForms 803

How XForms Improves on HTML Forms 804

XForms Tools 804

An lllustrative XForms Example 810

XXiii

Contents

XForms Form Controls 817
The xforms:input Element 817
The xforms:secret Element 818
The xforms:textarea Element 818
The xforms:output Element 818
The xforms:upload Element 819
The xforms:range Element 819
The xforms:trigger Element 820
The xforms:submit Element 820
The xforms:select Element 821
The xforms:selectl Element 822

Constraining XForms Instances 828
The xforms:bind Element 828
W3C XML Schema in XForms 833
Schema or Bind Elements: Which One to Choose? 834

XForms Events 834

The XForms Action Module 835
Developing and Debugging XForms 836

Alternatives to XForms 836
Microsoft InfoPath 836
Adobe LiveCycle 837
HTML Forms 838

Summary 838

Exercise Questions 838
Question 1 838
Question 2 838

Part VIII: Case Study 839
Chapter 21: Case Study: Payment Calculator 841

Mortgage Calculations 841

What You’ll Need 842

Online Loan Calculator 842
Integrating the Calculation Web Service 849
Enhancing the Display with SVG 865
Adding the Frame to the Main Page 868

Summary 872

Chapter 22: Case Study: Payment Calculator— Ruby on Rails Online

XXiv

Contents

Appendix A: Exercise Solutions 873
Appendix B: XPath Reference 923
Appendix C: XSLT Reference 939
Appendix D: The XML Document Obect Model Online
Appendix E: XML Schema Element and Attribute Reference Online
Appendix F: XML Schema Datatypes Reference Online
Appendix G: SAX 2.0.2 Reference Online

Index 971

XXV

Introduction

Welcome to Beginning XML, Fourth Edition, the book I wish I'd had when I was first learning the language!

When we wrote the first edition of this book, XML was a relatively new language but already gaining
ground fast and becoming more and more widely used in a vast range of applications. By the time we
started the second edition, XML had already proven itself to be more than a passing fad, and was in fact
being used throughout the industry for an incredibly wide range of uses. As we began the third edition,
it was clear that XML was a mature technology, but more important, it became evident that the XML
landscape was dividing into several areas of expertise. In this edition, we needed to categorize the
increasing number of specifications surrounding XML, which either use XML or provide functionality in
addition to the XML core specification.

So what is XML? It’s a markup language, used to describe the structure of data in meaningful ways.
Anywhere that data is input/output, stored, or transmitted from one place to another, is a potential fit
for XML's capabilities. Perhaps the most well-known applications are web-related (especially with the
latest developments in handheld web access—for which some of the technology is XML-based).
However, there are many other non-web-based applications for which XML is useful—for example, as a
replacement for (or to complement) traditional databases, or for the transfer of financial information
between businesses. News organizations, along with individuals, have also been using XML to dis-
tribute syndicated news stories and blog entries.

This book aims to teach you all you need to know about XML—what it is, how it works, what technolo-
gies surround it, and how it can best be used in a variety of situations, from simple data transfer to using
XML in your web pages. It answers the fundamental questions:

What is XML?
How do you use XML?

How does it work?

0O 0 0 O

What can you use it for, anyway?

Who Is This Book For?

This book is for people who know that it would be a pretty good idea to learn XML but aren’t 100 per-
cent sure why. You've heard the hype but haven’t seen enough substance to figure out what XML is and
what it can do. You may be using development tools that try to hide the XML behind user interfaces and
scripts, but you want to know what is really happening behind the scenes. You may already be somehow
involved in web development and probably even know the basics of HTML, although neither of these
qualifications is absolutely necessary for this book.

Introduction

What you don’t need is knowledge of markup languages in general. This book assumes that you're new
to the concept of markup languages, and we have structured it in a way that should make sense to the
beginner and yet quickly bring you to XML expert status.

The word “Beginning” in the title refers to the style of the book, rather than the reader’s experience
level. There are two types of beginner for whom this book is ideal:

Q Programmers who are already familiar with some web programming or data exchange tech-
niques. Programmers in this category will already understand some of the concepts discussed
here, but you will learn how you can incorporate XML technologies to enhance those solutions
you currently develop.

Q Those working in a programming environment but with no substantial knowledge or experi-
ence of web development or data exchange applications. In addition to learning how XML tech-
nologies can be applied to such applications, you will be introduced to some new concepts to
help you understand how such systems work.

How This Book Is Organized

We’ve arranged the subjects covered in this book to take you from novice to expert in as logical a man-
ner as we could. In this Fourth Edition, we have structured the book in sections that are based on vari-
ous areas of XML expertise. Unless you are already using XML, you should start by reading the
introduction to XML in Part I. From there, you can quickly jump into specific areas of expertise, or, if you
prefer, you can read through the book in order. Keep in mind that there is quite a lot of overlap in XML,
and that some of the sections make use of techniques described elsewhere in the book.

QO We begin by explaining what exactly XML is and why the industry felt that a language like this
was needed.

Q After covering the why, the next logical step is the how, so we show you how to create well-
formed XML.

Q Once you understand the whys and hows of XML, you’ll go on to some more advanced things
you can do when creating your XML documents, to make them not only well formed, but valid.
(And you’ll learn what “valid” really means.)

Q After you're comfortable with XML and have seen it in action, we unleash the programmer
within and look at an XML-based programming language that you can use to transform XML
documents from one format to another.

Q Eventually, you will need to store and retrieve XML information from databases. At this point,
you will learn not only the state of the art for XML and databases, but also how to query XML
information using an SQL-like syntax called XQuery.

QO XML wouldn't really be useful unless you could write programs to read the data in XML docu-
ments and create new XML documents, so we'll get back to programming and look at a couple
of ways that you can do that.

Q Understanding how to program and use XML within your own business is one thing, but send-
ing that information to a business partner or publishing it to the Internet is another. You'll learn
about technologies that use XML that enable you to send messages across the Internet, publish
information, and discover services that provide information.

XXViii

Introduction

O Since you have all of this data in XML format, it would be great if you could easily display it to
people, and it turns out you can. We'll show you an XML version of HTML called XHTML.
You'll also look at a technology you may already be using in conjunction with HTML docu-
ments called CSS. CSS enables you to add visual styles to your XML documents. In addition,
you'll learn how to design stunning graphics and make interactive forms using XML.

Q Finally, we end with a case study, which should help to give you ideas about how XML can be
used in real-life situations, and which could be used in your own applications.

What’s Covered in This Book

This book builds on the strengths of the earlier editions, and provides new material to reflect the
changes in the XML landscape—notably XQuery, RSS and Atom, and AJAX. Updates have been made to
reflect the most recent versions of specifications and best practices throughout the book. In addition to
the many changes, each chapter has a set of exercise questions to test your understanding of the mate-
rial. Possible solutions to these questions appear in Appendix A.

Part I: Introduction

The introduction is where most readers should begin. The first three chapters introduce some of the
goals of XML as well as the specific rules for constructing XML. Once you have read this part you should
be able to read and create your own XML documents.

Chapter 1: What Is XML?

Here we cover some basic concepts, introducing the fact that XML is a markup language (a bit like
HTML) whereby you can define your own elements, tags, and attributes (known as a vocabulary). You'll
see that tags have no presentation meaning—theyre just a way to describe the structure of the data.

Chapter 2: Well-Formed XML

In addition to explaining what well-formed XML is, we offer a look at the rules that exist (the XML 1.0
and 1.1 Recommendations) for naming and structuring elements—you need to comply with these rules
in order to produce well-formed XML.

Chapter 3: XML Namespaces

Because tags can be made up, you need to avoid name conflicts when sharing documents. Namespaces
provide a way to uniquely identify a group of tags, using a URIL This chapter explains how to use
namespaces.

Part Il: Validation

In addition to the well-formedness rules you learn in Part I, you will most likely want to learn how to
create and use different XML vocabularies. This Part introduces you to DTDs, XML Schemas, and
RELAX NG: three languages that define custom XML vocabularies. We also show you how to utilize
these definitions to validate your XML documents.

XXiX

Introduction

Chapter 4: Document Type Definitions

You can specify how an XML document should be structured, and even provide default values, using
Document Type Definitions (DTDs). If XML conforms to the associated DTD, it is known as valid XML.
This chapter covers the basics of using DTDs.

Chapter 5: XML Schemas

XML Schemas, like DTDs, enable you to define how a document should be structured. In addition to
defining document structure, they enable you to specify the individual datatypes of attribute values and
element content. They are a more powerful alternative to DTDs.

Chapter 6: RELAX NG

RELAX NG is a third technology used to define the structure of documents. In addition to a new syntax
and new features, it takes the best from XML Schemas and DTDs, and is therefore very simple and very
powerful. RELAX NG has two syntaxes; both the full syntax and compact syntax are discussed.

Part Ill: Processing

In addition to defining and creating XML documents, you need to know how to work with documents
to extract information and convert it to other formats. In fact, easily extracting information and convert-
ing it to other formats is what makes XML so powerful.

Chapter 7: XPath

The XPath language is used to locate sections and data in the XML document, and it’s important in
many other XML technologies.

Chapter 8: XSLT

XML can be transformed into other XML documents, HTML, and other formats using XSLT stylesheets,
which are introduced in this chapter.

Part IV: Databases

Creating and processing XML documents is good, but eventually you will want to store those docu-
ments. This section describes strategies for storing and retrieving XML documents and document frag-
ments from different databases.

Chapter 9: XQuery, the XML Query Language

Very often, you will need to retrieve information from within a database. XQuery, which is built on
XPath and XPath2, enables you to do this in an elegant way.

Chapter 10: XML and Databases

XML is perfect for structuring data, and some traditional databases are beginning to offer support
for XML. This chapter discusses these, and provides a general overview of how XML can be used in
an n-tier architecture. In addition, new databases based on XML are introduced.

XXX

Introduction

Part V: Programming

At some point in your XML career, you will need to work with an XML document from within a custom
application. The two most popular methodologies, the Document Object Model (DOM) and the Simple
API for XML (SAX), are explained in this part.

Chapter 11: The Document Object Model (DOM)

Programmers can use a variety of programming languages to manipulate XML using the Document
Object Model’s objects, interfaces, methods, and properties, which are described in this chapter.

Chapter 12: Simple API for XML (SAX)

An alternative to the DOM for programmatically manipulating XML data is to use the Simple API for
XML (SAX) as an interface. This chapter shows how to use SAX and utilizes examples from the Java SAX
APL

Part VI: Communication

Sending and receiving data from one computer to another is often difficult, but several technologies have
been created to make communication with XML much easier. In this part we discuss RSS and content syn-
dication, as well as web services and SOAP. This edition includes a new chapter on Ajax techniques.

Chapter 13: RSS, Atom, and Content Syndication

RSS is an actively evolving technology that is used to publish syndicated news stories and website sum-
maries on the Internet. This chapter not only discusses how to use the different versions of RSS and
Atom, it also covers the future direction of the technology. In addition, we demonstrate how to create a
simple newsreader application that works with any of the currently published versions.

Chapter 14: Web Services

Web services enable you to perform cross-computer communications. This chapter describes web ser-
vices and introduces you to using remote procedure calls in XML (using XML-RPC and REST), as well as
giving you a brief look at major topics such as SOAP. Finally, it breaks down the assortment of specifica-
tions designed to work in conjunction with web services.

Chapter 15: SOAP and WSDL

Fundamental to XML web services, the Simple Object Access Protocol (SOAP) is one of the most popular
specifications for allowing cross-computer communications. Using SOAP, you can package up XML doc-
uments and send them across the Internet to be processed. This chapter explains SOAP and the Web
Services Description Language (WSDL) that is used to publish your service.

Chapter 16: Ajax

Ajax enables you to utilize JavaScript with web services and SOAP, or REST communications.
Additionally, Ajax patterns can be used within web pages to communicate with the web server without
refreshing. This chapter is new to the Fourth Edition.

XXXi

Introduction

Part VII: Display

Several XML technologies are devoted to displaying the data stored inside of an XML document. Some
of these technologies are web-based, and some are designed for applications and mobile devices. In this
part we discuss the primary display strategies and formats used today.

Chapter 17: Cascading Style Sheets (CSS)

Website designers have long been using Cascading Style Sheets (CSS) with their HTML to easily make
changes to a website’s presentation without having to touch the underlying HTML documents. This
power is also available for XML, enabling you to display XML documents right in the browser. Or, if you
need a bit more flexibility with your presentation, you can use XSLT to transform your XML to HTML or
XHTML and then use CSS to style these documents.

Chapter 18: XHTML

XHTML is a new version of HTML that follows the rules of XML. In this chapter we discuss the differ-
ences between HTML and XHTML, and show you how XHTML can help make your sites available to a
wider variety of browsers, from legacy browsers to the latest browsers on mobile phones.

Chapter 19: Scalable Vector Graphics (SVG)

Do you want to produce a custom graphic using XML? SVG enables you to describe a graphic using
XML-based vector commands. In this chapter we teach you the basics of SVG and then dive into a more
complex SVG-based application that can be published to the Internet.

Chapter 20: XForms

XForms are XML-based forms that can be used to design desktop applications, paper-based forms, and
of course XHTML-based forms. In this chapter we demonstrate both the basics and some of the more
interesting uses of XForms.

Part VIlI: Case Study

Throughout the book you'll gain an understanding of how XML is used in web, business-to-business (B2B),
data storage, and many other applications. The case study covers an example application and shows how
the theory can be put into practice in real-life situations. The case study is new to this edition.

Chapter 21: Case Study: Payment Calculator

This case study explores some of the possibilities and strategies for using XML in your website. It
includes an example that demonstrates a loan payment calculator by creating a web page using XHTML
and CSS, communicating with a local web service using AJAX, utilizing an XML Schema to build data
structures in .NET, and ultimately using the Document Object Model to display the results in SVG. An
online version of this case study on the book’s website covers the same material using Ruby on Rails
instead of .NET.

Appendixes

Appendix A provides answers to the exercise questions that appear throughout the book. The remaining
appendixes provide reference material that you may find useful as you begin to apply the knowledge
gained throughout the book in your own applications.

XXXii

Introduction

The appendixes consist of the following:

O Appendix A: Exercise Solutions

Appendix B: XPath Reference

Appendix C: XSLT Reference

Appendix D: The XML Document Object Model

Appendix E: XML Schema Element and Attribute Reference
Appendix F: XML Schema Datatypes Reference

Appendix G: SAX 2.0.2 Reference

0O 0000 0o

Appendixes A, B, and C are included within the book; Appendixes D-G are available on the book’s
website.

What You Need to Use This Book

Because XML is a text-based technology, all you really need to create XML documents is Notepad or an
equivalent text editor. However, to truly appreciate some of these samples in action, you might want to
have a current Internet browser that can natively read XML documents, and even provide error mes-
sages if something is wrong. In any case, screenshots are provided throughout the book so that you can
see what things should look like. Additionally, note the following:

Q If you do have Internet Explorer, you also have an implementation of the DOM, which you may
find useful in the chapters on that subject.

0 Some of the examples and the case studies require access to a web server, such as Microsoft’s IIS
(or PWS) or Apache.

Q Throughout the book, other (freely available) XML tools are used, and we give instructions for
obtaining these.

Within the validation section of the book we provide instructions on how to use Codeplot (http: //
codeplot . com). Codeplot is an online collaborative code editor with support for a wide assortment of
XML technologies. Because many validation tools require programming experience or large downloads,
the examples in this section instead use Codeplot. Codeplot can also be used to check the well-formed-
ness of your XML documents, to transform XML documents using XSLT, and to assist you in coding
XHTML, CSS, and SVG. The editor is free and was built using many of the techniques described in this
book.

Programming Languages

We have tried to demonstrate the ubiquity of XML throughout the book. Some of the examples are spe-
cific to Windows, but most of the examples include information on working with other platforms, such
as Linux. Many of the samples were rewritten in this edition to enable you to use any operating system
or web browser.

xxxiii

Introduction

Additionally, we have attempted to show the use of XML in a variety of programming languages,
including Java, JavaScript, PHP, Python, Visual Basic, ASP, C#, and Ruby on Rails. Therefore, while there
is a good chance that you will see an example written in your favorite programming language, there is
also a good chance you will encounter an example in a language you have never used. Whenever a new
language is introduced, we include information on downloading and installing the necessary tools to
use it. Because our focus is XML, regardless of which programming language is used in an example, the
core XML concept is explained in detail.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used several conven-
tions throughout the book.

Try It Out
The Try It Out is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.
2. Each step has a number.
3. Follow the steps with your copy of the database.

How It Works

After each Try It Out, the code is explained in detail.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight new terms and important words when we introduce them.
0 We show filenames, URLs, and code within the text like so: persistence.properties.
Q We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

XXXiV

Introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox. com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
SB 978-0-470-11487-2

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www . wrox. com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or a
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration, and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox . com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list, includ-
ing links to each book’s errata, is also available at www . wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox. com and click the Register link.

2. Read the terms of use and click Agree.

XXXV

Introduction

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

XXXVi

Part |
Introduction

Chapter 1: What Is XML?
Chapter 2: Well-Formed XML

Chapter 3: XML Namespaces

What Is XML?

XML (Extensible Markup Language) is a buzzword you will see everywhere on the Internet, but it’s
also a rapidly maturing technology with powerful real-world applications, particularly for the
management, display, and organization of data. Together with its many related technologies,
which are covered in later chapters, XML is an essential technology for anyone working with data,
whether publicly on the web or privately within your own organization. This chapter introduces
you to some XML basics and begins to show you why learning about it is so important.

This chapter covers the following:

O The two major categories of computer file types —binary files and text files—and the
advantages and disadvantages of each

Q The history behind XML, including other markup languages such as SGML and HTML

O

How XML documents are structured as hierarchies of information

Q Abrief introduction to some of the other technologies surrounding XML, which you will
work with throughout the book

Q A quick look at some areas where XML is useful

While there are some short examples of XML in this chapter, you aren’t expected to understand
what’s going on just yet. The idea is simply to introduce the important concepts behind the lan-
guage so that throughout the book you can see not only how to use XML, but also why it works
the way it does.

Of Data, Files, and Text

XML is a technology concerned with the description and structuring of data, so before you can
really delve into the concepts behind XML, you need to understand how computers store and
access data. For our purposes, computers understand two kinds of data files: binary files and
text files.

Part I: Introduction

Binary Files

A binary file, at its simplest, is just a stream of bits (1s and 0s). It’s up to the application that created a
binary file to understand what all of the bits mean. That’s why binary files can only be read and pro-
duced by certain computer programs, which have been specifically written to understand them.

For instance, when a document is created with Microsoft Word, the program creates a binary file with an
extension of “doc,” in its own proprietary format. The programmers who wrote Word decided to insert
certain binary codes into the document to denote bold text, codes to denote page breaks, and other codes
for all of the information that needs to go into a “doc” file. When you open a document in Word, it inter-
prets those codes and displays the properly formatted text or prints it to the printer.

The codes inserted into the document are meta data, or information about information. Examples could
be “this word should be in bold,” “that paragraph should be centered,” and so on. This meta data is
really what differentiates one file type from another; the different types of files use different kinds of
meta data. For example, a word processing document has different meta data than a spreadsheet docu-
ment, because they are describing different things. Not so obviously, documents from different word
processing applications, such as Microsoft Word and WordPerfect, also have different meta data, because
the applications were written differently (see Figure 1-1).

A 4

Microsoft
Word

WordPerfect

Figure 1-1

You can’t assume that a document created with one word processor will be readable by another, because
the companies who write word processors all have their own proprietary formats for their data files.
Word documents open in Microsoft Word, and WordPerfect documents open in WordPerfect.

Luckily, most word processors come with translators or import utilities, which can translate documents
from other word processors into formats that can be understood natively. If I have Microsoft Word
installed on my computer and someone gives me a WordPerfect document, I might be able to import it
into Word so that I can read the document. Of course, many of us have seen the garbage that sometimes
occurs as a result of this translation; sometimes applications are not as good as we’d like them to be at
converting the information.

Binary file formats are advantageous because it is easy for computers to understand these binary codes —
meaning that they can be processed much faster than nonbinary formats —and they are very efficient for
storing this meta data. There is also a disadvantage, as you've seen, in that binary files are proprietary.
You might not be able to open binary files created by one application in another application, or even in the
same application running on another platform.

Chapter 1: What Is XML?

Text Files

Like binary files, fext files are also streams of bits. However, in a text file these bits are grouped together
in standardized ways, so that they always form numbers. These numbers are then further mapped to
characters. For example, a text file might contain the following bits:

1100001

This group of bits would be translated as the number 97, which could then be further translated into the
letter a.

This example makes a number of assumptions. A better description of how numbers are represented in
text files is given in the “Encoding” section in Chapter 2.

Because of these standards, text files can be read by many applications, and can even be read by
humans, using a simple text editor. If I create a text document, anyone in the world can read it (as long
as they understand English, of course) in any text editor they wish. Some issues still exist, such as the
fact that different operating systems treat line-ending characters differently, but it is much easier to share
information when it’s contained in a text file than when the information is in a binary format.

Figure 1-2 shows some of the applications on my machine that are capable of opening text files. Some of
these programs only allow me to view the text, while others will let me edit it as well.

Microsoft
Word Notepad WordPad FrontPage
Netscape Visual Internet
Navigator Studio Explorer
Figure 1-2

In its early days, the Internet was almost completely text-based, which enabled people to communicate
with relative ease. This contributed to the explosive rate at which the Internet was adopted, and to the
ubiquity of applications such as e-mail, the World Wide Web, newsgroups, and so on.

The disadvantage of text files is that adding other information — our meta data, in other words —is
more difficult and bulky. For example, most word processors enable you to save documents in text form,
but if you do, you can’t mark a section of text as bold or insert a binary picture file. You will simply get
the words with none of the formatting.

Part I: Introduction

A Brief History of Markup

You can see that there are advantages to binary file formats (easy to understand by a computer, compact,
the ability to add meta data), as well as advantages to text files (universally interchangeable). Wouldn't it
be ideal if there were a format that combined the universality of text files with the efficiency and rich
information storage capabilities of binary files?

This idea of a universal data format is not new. In fact, for as long as computers have been around, pro-
grammers have been trying to find ways to exchange information between different computer programs.
An early attempt to combine a universally interchangeable data format with rich information storage
capabilities was Standard Generalized Markup Language (SGML). SGML is a text-based language that can
be used to mark up data— that is, add meta data—in a way that is self-describing. (You'll see in a
moment what self-describing means.)

SGML was designed to be a standard way of marking up data for any purpose, and took off mostly in
large document management systems. When it comes to huge amounts of complex data, a lot of consid-
erations must be taken into account, so SGML is a very complicated language. However, with that com-
plexity comes power.

A very well-known language based on the SGML work is the HyperText Markup Language (HTML).
HTML uses many of SGML’s concepts to provide a universal markup language for the display of infor-
mation, and the linking of different pieces of information. The idea was that any HTML document (or
web page) would be presentable in any application that was capable of understanding HTML (termed a
web browser). A number of examples are given in Figure 1-3.

Microsoft Internet

Explorer Firefox

a0
Cello (%?%Vz/ > Mozilla

HotJava Lynx

Figure 1-3
Not only would that browser be able to display the document, but if the page contained links (termed
hyperlinks) to other documents, the browser would also be able to seamlessly retrieve them as well.

Furthermore, because HTML is text-based, anyone can create an HTML page using a simple text editor,
or any number of web page editors, some of which are shown in Figure 1-4.

Chapter 1: What Is XML?

Eclipse FrontPage

Notepad > ‘ %@@ < Word

Visual Studio WordPerfect

Figure 1-4

Even many word processors, such as WordPerfect and Word, allow you to save documents as HTML.
Think about the ramifications of Figures 1-3 and 1-4: Any HTML editor, including a simple text editor,
can create an HTML file, and that HTML file can then be viewed in any web browser on the Internet!

So What Is XML?

Unfortunately, SGML is such a complicated language that it’s not well suited for data interchange over
the web. In addition, although HTML has been incredibly successful, it’s limited in scope: It is only
intended for displaying documents in a browser. The tags it makes available do not provide any infor-
mation about the content they encompass, only instructions about how to display that content. This
means that you could create an HTML document that displays information about a person, but that’s
about all you could do with the document. You couldn’t write a program to figure out from that docu-
ment which piece of information relates to the person’s first name, for example, because HTML doesn’t
have any facilities to describe this kind of specialized information. In fact, HTML wouldn’t even know
that the document was about a person at all. Extensible Markup Language (XML) was created to address
these issues.

Note that despite the acronym, it’s spelled “Extensible,” not “eXtensible.” Mixing these up is a com-
mon mistake.

XML is a subset of SGML, with the same goals (markup of any type of data), but with as much of the
complexity eliminated as possible. XML was designed to be fully compatible with SGML, meaning any
document that follows XML's syntax rules is by definition also following SGML’s syntax rules, and can
therefore be read by existing SGML tools. It doesn’t go both ways, however, so an SGML document is
not necessarily an XML document.

It is important to realize that XML is not really a “language” at all, but a standard for creating languages
that meet the XML criteria (we go into these rules for creating XML documents in Chapter 2). In other
words, XML describes a syntax that you use to create your own languages. For example, suppose you
have data about a name, and you want to be able to share that information with others as well as use
that information in a computer program. Instead of just creating a text file like this:

Part I: Introduction

John Doe

or an HTML file like this

<html>
<head><title>Name</title></head>
<body>

<p>John Doe</p>

</body>

</html>

you might create an XML file like the following:

<name>
<first>John</first>
<last>Doe</last>
</name>

Even from this simple example, you can see why markup languages such as SGML and XML are called
“self-describing.” Looking at the data, you can easily tell that this is information about a <name>, and
you can see that there is data called <first> and more data called <last>. You can give the tags any
names you like, but if you're going to use XML, you might as well use it right and give things meaningful
names.

You can also see that the XML version of this information is much larger than the plain-text version.
Using XML to mark up data adds to its size, sometimes enormously, but achieving small file sizes isn’t
one of the goals of XML; it’s only about making it easier to write software that accesses the information,
by giving structure to the data.

This larger file size should not deter you from using XML. The advantages of easier-
to-write code far outweigh the disadvantages of larger bandwidth issues.

If bandwidth is a critical issue for your applications, you can always compress your XML documents
before sending them across the network — compressing text files yields very good results.

If you're running Internet Explorer 5 or later, you can view the preceding XML in your browser, as
shown in the following Try It Out. (You can also use other web browsers, such as Firefox, to display the
XML examples in this chapter. All of the screenshots shown, however, are of Internet Explorer 6.)

Try It Out Opening an XML File in Internet Explorer
1. Open Notepad and type in the following XML:

<name>
<first>John</first>
<last>Doe</last>
</name>

Chapter 1: What Is XML?

3.

Save the document to your hard drive as name . xml. If you're using Windows XP, be sure to
change the Save as Type drop-down option to All Files. (Otherwise, Notepad will save the docu-
ment with a . txt extension, causing your file to be named name .xml . txt.) You might also
want to change the Encoding drop-down to Unicode, as shown in Figure 1-5. (Find more infor-
mation on encodings in Chapter 2.)

Figure 1-5

You can then open the file in Internet Explorer (for example, by double-clicking on the file in
Windows Explorer), where it will look something like Figure 1-6.

Figure 1-6

Part I: Introduction

How It Works

Although your XML file has no information concerning display, the browser formats it nicely for you,
with your information in bold and your markup displayed in different colors. In addition, <name> is col-
lapsible, like your file folders in Windows Explorer. Try clicking on the minus sign (-) next to <name> in
the browser window. It should then look like Figure 1-7.

Figure 1-7

For large XML documents, where you only need to concentrate on a smaller subset of the data, this fea-
ture can be quite handy. This is one reason why Internet Explorer can be so helpful when authoring
XML: It has a default stylesheet built in, which applies this default formatting to any XML document.

XML styling is accomplished through another document dedicated to the task, called a stylesheet. In a
stylesheet, the designer specifies rules that determine the presentation of the data. The same stylesheet
can then be used with multiple documents to create a similar appearance among them. A variety of lan-
guages can be used to create stylesheets. Chapter 8 explains a transformation stylesheet language called
Extensible Stylesheet Language Transformations (XSLT), and Chapter 17 looks at a stylesheet language
called Cascading Style Sheets (CSS).

As you'll see in later chapters, you can also create your own stylesheets for displaying XML documents.
This way, the same data that your applications use can also be viewed in a browser. In effect, by combin-
ing XML data with stylesheets, you can separate your data from your presentation. That makes it easier
to use the data for multiple purposes (as opposed to HTML, which doesn’t provide any separation of
data from presentation —in HTML, everything is presentation).

What Does XML Buy Us?

10

I can hear what some of you are thinking. Why go to the trouble of creating an XML document? Wouldn't
it be easier to just make up some rules for a file about names, such as “The first name starts at the begin-
ning of the file, and the last name comes after the first space?” That way, your application could still read
the data, but the file size would be much smaller.

As a partial answer, suppose that we want to add a middle name to our example:

John Fitzgerald Doe

Chapter 1: What Is XML?

Okay, no problem. We'll just modify our rules to say that everything after the first space and up to the
second space is the middle name, and everything after the second space is the last name. However, if
there is no second space, we have to assume that there is no middle name, and the first rule still applies.
We're still fine, unless a person happens to have a name like the following:

John Fitzgerald Johansen Doe

Whoops! There are two middle names in there. The rules get more complex. While a human might be able
to tell immediately that the two middle words compose the middle name, it is more difficult to program
this logic into a computer program. We won’t even discuss “John Fitzgerald Johansen Doe the 3rd”!

Unfortunately, when it comes to problems like this, many software developers simply define more
restrictive rules, instead of dealing with the complexities of the data. In this example, a software devel-
oper might decide that a person can only have one middle name, and the application won’t accept any-
thing more than that.

This is pretty realistic, | might add. My full name is David John Bartlett Hunter, but because of the way
in which many computer systems are set up, a lot of the bills I receive are simply addressed to David
John Hunter or David J. Hunter. Maybe I can find some legal ground to stop paying my bills, but in the
meantime, my vanity takes a blow every time I open my mail.

This example is probably not all that hard to solve, but it highlights one of the major focuses behind
XML. Programmers have been structuring their data in an infinite variety of ways, and every new way
of structuring data brings a new methodology for pulling out the information we need. With those new
methodologies comes a lot of experimentation and testing to get it just right. If the data changes, the
methodologies also have to change, and testing and tweaking has to begin again. XML offers a standard-
ized way to get the information we need, no matter how we structure it.

In addition, remember how trivial this example is. The more complex the data you have to work with,
the more complex the logic you'll need to do that work. You'll appreciate XML the most in larger
applications.

XML Parsers

If we just follow the rules specified by XML, we can be sure that getting at our information will be easy.
This is because there are programs called parsers that can read XML syntax and extract the information
for us. We can use these parsers within our own programs, meaning our applications will never have to
look at the XML directly; a large part of the workload will be done for us.

Parsers are also available for parsing SGML documents, but they are much more complex than XML
parsers. Because XML is a subset of SGML, it’s easier to write an XML parser than an SGML parser.

In the past, before these parsers were around, a lot of work would have gone into the many rules we
were looking at (such as the rule that the middle name starts after the first space, and so on), but with
our data in XML format, we can just give an XML parser a file like this:

<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

11

Part I: Introduction

The parser can tell us that there is a piece of data called <middle>, and that the information stored there
is Fitzgerald Johansen. The parser writer didn’t have to know any rules about where the first name
ends and where the middle name begins, because the parser simply uses the <middle> and </middle>
tags to determine where the data begins and ends. The parser didn’t have to know anything about my
application at all, nor about the types of XML documents the application works with. The same parser
could be used in my application, or in a completely different application. The language my XML is writ-
ten in doesn’t matter to the parser either; XML written in English, Chinese, Hebrew, or any other lan-
guage could all be read by the same parser, even if the person who wrote it didn’t understand any of
these languages.

Just as any HTML document can be displayed by any web browser, any XML docu-
ment can be read by any XML parser, regardless of what application was used to cre-
ate it, or even what platform it was created on. This goes a long way toward making
your data universally accessible.

There’s another added benefit here: If I had previously written a program to deal with the first XML for-
mat, which had only a first and last name, that application could also accept the new XML format, with-
out me having to change the code. Because the parser takes care of the work of getting data out of the
document for us, you can add to your XML format without breaking existing code, and new applications
can take advantage of the new information if they wish. If we were using our previous text-only format,
any time we changed the data at all, every application using that data would have to be modified,
retested, and redeployed.

As long as an existing application were simply looking for information called “first” and information
called “last,” it would continue to work, even if we added to the document. Of course, if we subtracted
information from our <name> example, or changed the names we used for the data, we would still have
to modify our applications to deal with the changes.

Because it’s so flexible, XML is targeted to be the basis for defining data exchange languages, especially
for communication over the Internet. The language facilitates working with data within applications,
such as an application that needs to access the previously listed <name> information, but it also facili-
tates sharing information with others. We can pass our <name> information around the Internet and,
even without our particular program, the data can still be read. People can pull the file up in a regular
text editor and look at the raw XML if they like, or open it in a viewer such as Internet Explorer.

Why “Extensible?”

12

Because we have full control over the creation of our XML document, we can shape the data in any way
we wish, so that it makes sense for our particular application. If we don’t need the flexibility of our
<name> example, and don’t need to know which part of the “name” is the “first name,” and which is the
“last name,” we could decide to describe a person’s name in XML like this:

<designation>John Fitzgerald Johansen Doe</designation>

If we want to create data in a way that only one particular computer program will ever use, we can do
so; and if we decide that we want to share our data with other programs, or even other companies across
the Internet, XML gives us the flexibility to do that as well. We are free to structure the same data in dif-
ferent ways that suit the requirements of an application or category of applications.

Chapter 1: What Is XML?

This is where the extensible in Extensible Markup Language comes from: Anyone is free to mark up
data in any way using the language, even if others are doing it in completely different ways.

HTML, on the other hand, is not extensible, because you can’t add to the language; you have to use the
tags that are part of the HTML specification. For example, web browsers can understand the following:

<p>This is a paragraph.</p>

The <p> tag is a predefined HTML tag. However, web browsers can’t understand the following;:
<paragraph>This is a paragraph.</paragraph>

The <paragraph> tag is not a predefined HTML tag.

The benefits of XML become even more apparent when people use the same format to do common
things, because this allows us to interchange information much more easily. There have already been
numerous projects to produce industry-standard vocabularies to describe various types of data. For
example, Scalable Vector Graphics (SVG) is an XML vocabulary for describing two-dimensional graphics
(we'll look at SVG in Chapter 19); MathML is an XML vocabulary for describing mathematics as a basis
for machine-to-machine communication; Chemical Markup Language (CML) is an XML vocabulary for the
management of chemical information. The list goes on and on. Of course, you could write your own
XML vocabularies to describe this type of information if you so wished, but if you use a common format,
there is a better chance that you will be able to produce software that is immediately compatible with
other software. Better yet, you can reuse code already written to work with these formats.

Because XML is so easy to read and write in your programs, it is also easy to convert between different
vocabularies when required. For example, if you want to represent mathematical equations in your par-
ticular application in a certain way, but MathML doesn’t quite suit your needs, you can create your own
vocabulary. If you want to export your data for use by other applications, you might convert the data in
your vocabulary to MathML for the other applications to read. In fact, Chapter 8 covers a technology
called XSLT, which was created for transforming XML documents from one format to another, and
which could potentially make these kinds of transformations very simple.

HTML and XML: Apples and Red Delicious Apples

What HTML does for display, XML is designed to do for data exchange. Sometimes XML isn’t up to a
certain task, just as HTML is sometimes not up to the task of displaying certain information. How many
of us have Adobe Acrobat readers installed on our machines for those documents on the web that HTML
just can’t display properly? When it comes to display, HTML does a good job most of the time, and those
who work with XML believe that, most of the time, XML will do a good job of communicating informa-
tion. Just as HTML authors sometimes sacrifice precise layout and presentation for the sake of making
their information accessible to all web browsers, XML developers sacrifice the small file sizes of propri-
etary formats for the flexibility of universal data access.

Of course, a fundamental difference exists between HTML and XML: HTML is designed for a specific

application, to convey information to humans (usually visually, through a web browser), whereas XML
has no specific application; it is designed for whatever use you need it for.

13

Part I: Introduction

This is an important concept. Because HTML has its specific application, it also has a finite set of specific
markup constructs (<p>, , <h2>, and so on), which are used to create a correct HTML document. In
theory, we can be confident that any web browser will understand an HTML document because all it has
to do is understand this finite set of tags. In practice, of course, I'm sure you've come across web pages
that displayed properly in one web browser and not in another, but this is usually a result of nonstan-
dard HTML tags, which were created by browser vendors instead of being part of the HTML specifica-
tion itself.

On the other hand, if you create an XML document, you can be sure that any XML parser will be able to
retrieve information from that document, even though you can’t guarantee that any application will be
able to understand what that information means. That is, just because a parser can tell you that there is a
piece of data called <middle> and that the information contained therein is Fitzgerald Johansen, it
doesn’t mean that there is any software in the world that knows what a <middle> is, what it is used for,
or what it means.

In other words, you can create XML documents to describe any information you want, but before XML
can be considered useful, applications must be written that understand it. Furthermore, in addition to
the capabilities provided by the base XML specification, there are a number of related technologies,
some of which are covered in later chapters. These technologies provide more capabilities for us, making
XML even more powerful than we’ve seen so far.

Some of these technologies exist only in draft form, so exactly how powerful these tools will be, or in
what ways they’ll be powerful, is yet to be seen. Other technologies, however, have been in use for a
number of years, and are already proving useful in real-world applications.

Hierarchies of Information

The syntactical constructs that make up XML are discussed in the next chapter, but first it might be use-
ful to examine how data is structured in an XML document.

When it comes to large, or even moderate, amounts of information, it’s usually better to group it into

related subtopics, rather than to have all of the information presented in one large blob. For example,

this chapter is divided into subtopics, and further subdivided into paragraphs. Similarly, a tax form is
divided into subsections, across multiple pages. This makes the information easier to comprehend, as
well as making it more accessible.

Software developers have been using this paradigm for years, using a structure called an object model. In
an object model, all of the information being modeled is divided into various objects, and the objects
themselves are then grouped into a hierarchy.

Hierarchies in HTML

For example, when working with Dynamic HTML (DHTML), an object model is available for working
with HTML documents, called the Document Object Model (DOM). This enables us to write code in an
HTML document, such as the following JavaScript:

alert (document.title) ;

14

Chapter 1: What Is XML?

Here we are using the alert () function to pop up a message box indicating the title of an HTML docu-
ment. That’s achieved by accessing an object called document, which contains all of the information
needed about the HTML document. The document object includes a property called title, which
returns the title of the current HTML document.

The information that the object provides appears in the form of properties, and the functionality avail-
able appears in the form of methods.

Hierarchies in XML

XML also groups information in hierarchies. The items in our documents relate to each other in
parent/child and sibling/sibling relationships.

These “items” are called elements. Chapter 2 provides a more precise definition of
what exactly an element is. For now, just think of them as the individual pieces of
information in the data.

Consider our <name> example, shown hierarchically in Figure 1-8.

<name>

<first>

I
wol
i
i
)

{"Fitzgerald Johansen

Figure 1-8

<name> is a parent of <first>. <first>, <middle>, and <last> are all siblings to each other (they are
all children of <name>). Note also that the text is a child of the element. For example, the text John is a
child of <first>.

This structure is also called a tree, and any parts of the tree that contain children are called branches,
while parts that have no children are called leaves.

15

Part I: Introduction

These are fairly loose terms, rather than formal definitions, which simply facilitate discussing the tree-
like structure of XML documents. You might have seen the term “twig” in use, although it is much less
common than “branch” or “leaf.”

Because the <name> element has only other elements for children, and not text, it is said to have element
content. Conversely, because <first>, <middle>, and <last> have only text as children, they are said
to have simple content.

Elements can contain both text and other elements, in which case they are said to have mixed content, as
shown in the following example:

<doc>
<parent>this is some text in my element</parent>
</doc>

Here, <parent> has three children:

O Atext child containing the text this is some
O An child

O Another text child containing the text in my element

The structure is shown in Figure 1-9.

<doc>
<parent>
—E "This is some" E
—
L "text"
—E "in my element" JE
Figure 1-9

Relationships can also be defined by making the family tree analogy work a little bit harder: <doc> is an
ancestor of ; is a descendant of <doc>.

16

Chapter 1: What Is XML?

Once you understand the hierarchical relationships between your items (and the text they contain),
you’ll have a better understanding of the nature of XML. You'll also be better prepared to work with
some of the other technologies surrounding XML, which make extensive use of this paradigm.

Chapter 11 gives you an opportunity to work with the document object model (DOM) mentioned ear-
lier, which enables you to programmatically access the information in an XML document using this tree
structure.

What’s a Document Type?

XML’s beauty comes from its ability to create a document to describe any information we want. It’s
completely flexible in terms of how we structure our data, but eventually we’re going to want to settle
on a particular design for our information, and specify “to adhere to our XML format, structure the data
like this.”

For example, when we created our <name> XML above, we created structured data. Not only did we
include all of the information about a name, but our hierarchy also contains implicit information about
how some pieces of data relate to other pieces (our <name> contains a <first>, for example).

More important, we also created a specific set of elements, which is called a vocabulary. That is, we
defined a number of XML elements that all work together to form a name: <name>, <first>, <middle>,
and <last>.

But wait; it’s even more than that! The most important thing we created was a document type. We created
a specific type of document, which must be structured in a specific way, to describe a specific type of
information. Although we haven’t explicitly defined them yet, there are certain rules to which the ele-
ments in our vocabulary must adhere in order for our <name> document to conform to our document
type. For example:

Q The top-most element must be the <name> element.

Q The<first>, <middle>, and <last> elements must be children of that element.
O The <first>, <middle>, and <last> elements must be in that order.
a

There must be information in the <first> element and in the <last> element, but there does-
n’t have to be any information in the <middle> element.

Unfortunately, there is nothing in our XML document itself which indicates what these rules are; we
would have to write any applications that use this data to know the rules, and make sure that they're
obeyed. In later chapters, you'll see different syntaxes that you can use to formally define an XML docu-
ment type. Some XML parsers know how to read these syntaxes, and can use them to determine whether
your XML document really adheres to the rules in the document type or not. This is good, because the
more work the parser does, the less work your application has to do!

However, all of the syntaxes used to define document types so far are lacking; they can provide some
type checking, but not enough for many applications. Furthermore, they can’t express the human mean-
ing of terms in a vocabulary. For this reason, when creating XML document types, human-readable doc-
umentation should also be provided. For our <name> example, if we want others to be able to use the
same format to describe names in their XML, we should provide them with documentation to describe
how it works.

17

Part I: Introduction

In real life, this human-readable documentation is often used in conjunction with one or more of the syn-
taxes available. Ironically, the self-describing nature of XML can sometimes make this human-readable
documentation even more important. Often, because the data is already labeled within the document
structure, it is assumed that people working with the data will be able to infer its meaning, which can be
dangerous if the inferences are incorrect, or even just different from the original author’s intent.

No, Really— What’s a Document Type?

0

Well, okay, maybe I was a little bit hasty in labeling our <name> example a “document type.” The truth is
that others who work with XML may call it something different.

One of the problems people encounter when they communicate is that they sometimes use different
terms to describe the same thing, or, even worse, use the same term to describe different things. For
example, I might call the thing that I drive a car, whereas someone else might call it an auto, and some-
one else again might call it a G-class vehicle. Furthermore, when I say car I usually mean a vehicle that
has four wheels, is made for transporting passengers, and is smaller than a truck. (Notice how fuzzy this
definition is, and that it depends further on the definition of a truck.) When someone else uses the word
car, or if I use the word car in certain circumstances, it may instead just mean a land-based motorized
vehicle, as opposed to a boat or a plane.

The same thing is true in XML. When you're using XML to create document types, you don’t really have
to think (or care) about the fact that you're creating document types; you just design your XML in a way

that makes sense for your application, and then use it. If you ever did think about exactly what you were
creating, you might have called it something other than a document type.

We picked the terms “document type” and “vocabulary” for this book because they
do a good job of describing what we need to describe, but they are not universal
terms used throughout the XML community. Regardless of the terms you use, the
concepts are very important.

rigin of the XML Standards

One of the reasons why HTML and XML are so successful is that they’re standards. That means anyone
can follow the specification and the solutions they develop will be able to interoperate. So who creates
these standards?

What Is the World Wide Web Consortium?

18

The World Wide Web Consortium (W3C) was started in 1994, according to its website (www.w3 . org),
“to lead the World Wide Web to its full potential by developing common protocols that promote its
evolution and ensure its interoperability.” Recognizing this need for standards, the W3C produces
Recommendations, or specifications, that describe the basic building blocks of the web. They call them
“recommendations” instead of “standards” because it is up to others to follow the recommendations
to provide the interoperability.

Chapter 1: What Is XML?

Their most famous contribution to the web is the HTML Recommendation; when web browser produc-
ers claims that their product follows version 3.2 or 4.01 of the HTML Recommendation, they’re talking
about the recommendation developed under the authority of the W3C.

Recommendations from the W3C are so widely implemented because the creation of these standards is a
somewhat open process: Any company or individual can join the W3C’s membership, and membership
allows these companies or individuals to take part in the standards process. This means that web
browsers such as Mozilla Firefox and Microsoft Internet Explorer are more likely to implement the same
version of the HTML Recommendation, because developers of both applications were involved in the
evolution of that recommendation.

Because of the interoperability goals of XML, the W3C is a good place to develop standards around the
technology. Most of the technologies covered in this book are based on standards from the W3C: the
XML 1.0 Recommendation, the XSLT Recommendation, the XPath Recommendation, and so on.

Components of XML

Structuring information is a pretty broad topic, and it would be futile to try to define a specification to
cover it fully. For this reason, a number of interrelated specifications and recommendations all work
together to form the XML family of technologies, with each specification covering different aspects of
communicating information. Here are some of the more important ones:

Q XML 1.0 is the base recommendation upon which the XML family is built. It describes the syn-
tax that XML documents have to follow, the rules that XML parsers have to follow, and anything
else you need to know to read or write an XML document. It also defines document type defini-
tions (DTDs), although they sometimes are treated as a separate technology.

0 Because we can make up our own structures and element names for our documents, DTDs and
schemas provide ways to define our document types. We can check to ensure that other docu-
ments adhere to these templates, and other developers can produce compatible documents.
DTDs and schemas are discussed in Chapters 4 and 5, respectively.

Q Namespaces provide a means to distinguish one XML vocabulary from another, which enables
us to create richer documents by combining multiple vocabularies into one document type.
Namespaces are discussed in detail in Chapter 3.

Q XPath describes a querying language for addressing parts of an XML document. This enables
applications to ask for a specific piece of an XML document, instead of having to always deal
with one large chunk of information. For example, XPath could be used to get “all the last
names” from a document. We discuss XPath in Chapter 7.

0O Asmentioned earlier, sometimes we may want to display our XML documents. For simpler
cases, we can use Cascading Style Sheets (CSS) to define the presentation of our documents. For
more complex cases, we can use Extensible Stylesheet Language (XSL); this consists of XSLT,
which can transform our documents from one type to another, and formatting objects, which deal
with display. XSLT is covered in Chapter 8, and CSS is covered in Chapter 17.

Q Although the syntax for HTML and the syntax for XML look very similar, they are actually not
the same —XML’s syntax is much more rigid than that of HTML. This means that an XML
parser cannot necessarily read an HTML document. This is one of the reasons why XHTML was
created —an XML version of HTML. XHTML is very similar to HTML, so HTML developers

19

Part I: Introduction

will have no problem working with XHTML, but the syntax used is more rigid and is readable
by XML parsers (since XHTML is XML). XHTML is discussed in Chapter 18.

Q The XQuery Recommendation is designed to provide a means of querying data directly from
XML documents on the web. It is discussed in Chapter 9.

Q To provide a means for more traditional applications to interface with XML documents, there is
a document object model (DOM), discussed in Chapter 11. An alternative way for programmers
to interface with XML documents from their code is to use the Simple API for XML (SAX),
which is the subject of Chapter 12.

O Inaddition to the specifications and recommendations for the various XML technologies, some
specifications also exist for specific XML document types:

Q The RDF Site Summary (RSS) specification is used by websites that want to syndicate
news stories (or similar content that can be treated similarly to news stories), for use by
other websites or applications. RSS is discussed in Chapter 13.

Q The Scalable Vector Graphics (SVG) specification is used to describe two-dimensional
graphics, and is discussed in Chapter 19.

Where XML Can Be Used, and
What You Can Use It For

XML can be used anywhere. It is platform- and language-independent, which means it doesn’t matter that
one computer may be using, for example, a Visual Basic application on a Microsoft operating system, and
another computer might be a UNIX machine running Java code. Anytime one computer program needs to
communicate with another program, XML is a potential fit for the exchange format. The following are just
a few examples, and such applications are discussed in more detail throughout the book.

Reducing Server Load

Web-based applications can use XML to reduce the load on the web servers by keeping all information
on the client for as long as possible, and then sending the information to those servers in one big XML
document.

For example, a consulting company may write a timesheet application whereby employees can enter
how much time they’ve spent on different tasks; the time entered would be used to bill their clients
appropriately. Although employees would often have more than one task to fill, the application could
cache all of that data in the browser until the user was finished, meaning that the browser wouldn’t have
to send or receive any data from the web server. Then, when the user is completely finished, an XML
document could be sent to the server, with all of the user’s data.

Website Content

It was mentioned earlier that there are technologies —such as CSS and XSLT — that can be used to trans-
form XML from one format to another, or to “style” XML for viewing in a browser. This allows for some
very powerful applications of your data.

20

Chapter 1: What Is XML?

For example, the W3C uses XML to publish its recommendations. These XML documents can then be
transformed into HTML for display (by XSLT), or transformed into a number of other presentation for-
mats. Because all of the presentation formats come from the same XML data file, this solution is faster
and less error-prone than having someone re-enter the data in different formats.

Some websites also use XML entirely for their content, where traditionally HTML would have been
used. This XML can then be transformed into HTML via XSLT, or displayed directly in browsers via CSS.
In fact, the web servers can even determine dynamically what kind of browser is retrieving the informa-
tion, and then decide what to do — for example, transform the XML into HTML for older browsers, and
just send the XML straight to the client for newer browsers, reducing the load on the server.

As an author, I could also use this concept for my writing. After writing a chapter for a book I'm work-
ing on, saving it as XML could give me a lot of flexibility:

QO Icould use a technology such as CSS to make the chapter available on my website.

Q Icould use a technology such as XSLT to create a “stripped down” version of the chapter if I
wanted to publish the content in a magazine article. For example, I might ignore certain aspects
of the chapter in the magazine article that I would want to show up in the book. To give myself
the most flexibility, I would probably alter the markup in the content in such a way that I could
indicate to myself where it should appear: book, magazine article, web, or all of the above.

QO Icould even transform the XML to a different XML format, which could be understood by a
word processor, so that I could further edit it. Most modern word processors —such as
Microsoft Word and OpenOffice.org Writer — understand XML formats.

In fact, this can be generalized to any content. If your data is in XML, you can use it for any purpose.
Presentation on the web is just one possibility.

Distributed Computing

XML can also be used as a means for sending data for distributed computing, where objects on one com-
puter call objects on another computer to do work. There have been numerous standards for distributed
computing, such as DCOM, CORBA, and RMI/IIOP, but as Chapters 14 and 15 show, using XML and
HTTP with technologies like web services and/or SOAP enables this to occur even through a firewall,
which would normally block such calls, providing greater opportunities for distributed computing.

e-Commerce

e-commerce is another one of those buzzwords that you hear everywhere now. Companies are discover-
ing that by communicating via the Internet, instead of by more traditional methods (such as faxing,
human-to-human communication, and so on), they can streamline their processes, decreasing costs and
increasing response times. Whenever one company needs to send data to another, XML is the perfect for-
mat for the exchange.

When the companies involved in the exchange have some kind of ongoing relationship, this is known as
business-to-business (B2B) e-commerce. Business-to-consumer (B2C) transactions also take place —a system
you may have used if you bought this book on the Internet. Both types of e-commerce have their poten-
tial uses for XML.

21

Part I: Introduction

XML is also a good fit for many other applications. After reading this book, you should be able to decide
when XML will work in your applications and when it won’t.

Summary

This chapter provided an overview of what XML is and why it’s so useful. You've seen the advantages of
text and binary files, and the way that XML combines the advantages of both, while eliminating most of the
disadvantages. You have also seen the flexibility you can enjoy in creating data in any format you wish.

Because XML is a subset of a proven technology, SGML, there are many years of experience behind the
standard. In addition, because other technologies are built around XML, you can create applications that
are as complex or simple as your situation warrants.

Much of the power that we get from XML comes from the standard way in which documents must be
written. Chapter 2 takes a closer look at the rules for creating well-formed XML.

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

Question 1

Modify the <name> XML document you’ve been working with to include the person’s title (e.g., Mr.,
Ms., Dr., and so on).

Question 2

The <name> example we’ve been using so far has been in English, but XML is language-agnostic, so you
can create XML documents in any language you wish. Therefore, create a new French document type to
represent a name. You can use the following table for the names of the XML elements.

English French

name identité

first prénom

last nom

middle deuxieme-prénom

22

Well-Formed XML

Chapter 1 discussed some of the reasons why XML makes sense for communicating data, so now
it’s time to get your hands dirty and learn how to create your own XML documents. This chapter
covers all you need to know to create well-formed XML. Well-formed XML is XML that meets cer-
tain syntactical rules outlined in the XML 1.0 recommendation.

This chapter includes the following;:

O How to create XML elements using start-tags and end-tags

0 How to further describe elements with attributes

QO How to declare your document as being XML

0O How to send instructions to applications that are processing the XML document
Q

Which characters aren’t allowed in XML —and how to use them in your documents
anyway!

Because the syntax rules for XML and HTML are so similar, and because you may already be
familiar with HTML, we’ll be making comparisons between the two languages in this chapter.
However, if you don’t have any knowledge of HTML, you shouldn’t find it hard to follow along.

If you have Microsoft Internet Explorer 5 or later, you may find it useful to save some of the exam-
ples in this chapter on your hard drive and view the results in the browser. If you don’t have IE5
or later, some of the examples include screenshots to show what the results look like. One nice
advantage of doing this is that the browser will indicate whether you make a syntax mistake. I do
this quite often, to ensure I haven’t mistyped anything.

The examples given in this chapter are also available for download from the Wrox website, at
www . wrox . com; just find the entry for this title and click the Download Code link. If you wish to
save yourself some typing, you can download the code from there, but typing these examples
manually —and occasionally making mistakes! —will help you to learn and understand things
better.

Part I: Introduction

Parsing XML

The main reason for creating all these rules about writing well-formed XML documents is so that you
can create a computer program to read in the data, and easily tell markup from information.

According to the XML recommendation (www.w3 .org/TR/REC-xml#sec-intro), “A software
module called an XML processor is used to read XML documents and provide access to their content
and structure. It is assumed that an XML processor is doing its work on behalf of another module,
called the application.”

An XML processor is more commonly called a parser, as it simply parses XML and provides the applica-
tion with any information it needs. That is, it reads through the characters in the document, determines
which characters are part of the document’s markup and which are part of the document’s data, and
does all of the other processing of an XML document that happens before an application can make use
of it. Several XML parsers are available, many of them free. Some of the better-known ones include the
following:

0 Microsoft Internet Explorer Parser —Microsoft’s XML parser, MSXML, first shipped with
Internet Explorer 4, and implemented an early draft of the XML recommendation. With the
release of IE5, the XML implementation was upgraded to reflect the XML version 1 recommen-
dation. The latest version of the parser is available for download from Microsoft’s MSDN site, at
http://msdn.microsoft.com, and it comes built-in with the Internet Explorer browser.

O Apache Xerces — The Apache Software Foundation’s Xerces subproject of the Apache XML
Project (http://xml.apache.org/) has resulted in XML parsers in Java and C++, plus a Perl
wrapper for the C++ parser. These tools are free, and the distribution of the code is controlled
by the GNU Public License (GPL).

Q Expat—Expatis an XML 1.0 parser toolkit written in C. You can find more information at
http://expat.sourceforge.net. It is free for both private and commercial use.

Tags and Text and Elements, Oh My!

24

It’s time to stop calling things just “items” and “text”; we need some names for the pieces that make up
an XML document. To get cracking, let’s break down the simple name . xm1 document we created in
Chapter 1:

<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

The text starting with a < character and ending with a > character is an XML tag. The information in our
document (our data) is contained within the various tags that constitute the markup of the document.
This makes it easy to distinguish the information in the document from the markup.

As you can see, the tags are paired, so that any opening tag (for example, <name>) must have a closing
tag (</name>). In XML parlance, these are called start-tags and end-tags. The end-tags are the same as the
start-tags except that they have a / right after the opening < character.

Chapter 2: Well-Formed XML

In this regard, XML tags work the same as start-tags and end-tags in HTML. For example, you would
mark a section of HTML to appear bold like this:

This is bold.
As you can see, there is a start-tag, and a end-tag, just like we use for XML.

All of the information from the beginning of a start-tag to the end of an end-tag, and including every-
thing in between, is called an element. For example:

U <first>isa start-tag
QO </first>isanend-tag

Q <first>John</first> isan element
The text between the start-tag and end-tag of an element is called the element content. The content
between tags will often just be data (as opposed to other elements). In this case, the element content is
referred to as parsed character data, which is almost always referred to using its acronym, PCDATA, or

with a more general term such as “text content” or even “text node.”

Whenever you come across a strange-looking term like PCDATA, it’s usually a good bet the term is
inherited from SGML. Because XML is a subset of SGML, there are a lot of these inherited terms.

The whole document, starting at <name> and ending at </name>, is also an element, which happens to
include other elements (and, in this case, because it contains the entire XML document, the element is

called the root element, which we’ll talk about later).

If you wish, you can include a space before the closing > of a tag. For example, you could create markup
like the following, with a space between the first <first and the closing tag:

<first >John</first>

or the following, with a space between both <first and </first and their closing tags:
<first >John</first >

or even

<first
>John</first>

Later you'll see where this might come in handy. You cannot, however, put a space after the opening <
character in a tag, or the / character in an end-tag; the XML parser expects your element’s name to come
right after that < or / character. Therefore, the following is not proper XML syntax:

< first >John< /first >

Neither is this:

< first >John< / first >

25

Pa

rt I: Introduction

To put this newfound knowledge into action, the following Try It Out shows you how to create an exam-
ple that contains more information than just a name.

Try It Out Creating a Distribution Process

26

The examples in this chapter refer to a fictional company, Serna Inc., which has developed a new
portable music device. Serna provides a subscription service called sernaDirect that works with the
devices so that the subscribers can regularly update the musical selection on their devices by download-
ing songs from Serna. Because Serna Inc. wishes to focus on developing its product line and building the
subscription service, it has contracted another company, Ferna Distribution, to handle distribution of the
products to customers. The distribution process works like this:

1. The customer calls a Ferna Distribution customer service representative (CSR) or visits the
Ferna website to place an order. The customer can also change or cancel an order.

2. Theorderis captured into Ferna Distribution’s back-end systems, and once a day a file is sent to
Serna Inc., with all of the day’s orders (including canceled and updated orders).

3. Once Serna Inc., has received a file, its systems are updated with the new, canceled, and
updated orders. Based on this, the music for the sernaDirect subscription service can be sent to
the appropriate subscribers (based on the ID of their device).

This process is illustrated in Figure 2-1.

Figure 2-1

Chapter 2: Well-Formed XML

For this Try It Out, you're concerned with the file that Ferna Distribution sends to Serna each day, with
the new, canceled, and updated orders. This is exactly the place where XML shines, and you'll use XML
to create the daily file to Serna Inc., but before you break out Notepad and start typing, you need to
know what information you're capturing.

In Chapter 1, you learned that XML is hierarchical in nature; information is structured like a tree, with
parent-child relationships. This means that the order information has to be arranged in a tree structure
as well:

1.

Because this XML layout will contain information about orders, you need to capture informa-
tion such as the customer’s name and address, the type of hardware that has been purchased,
information about the subscription to sernaDirect, and so on.

Figure 2-2 shows the hierarchy you’ll be creating.

Notice that for the sake of brevity, we haven’t included all of the layers of information. For
example, the address will be further broken down for the address information, and the credit
card element will contain child elements for the credit card information.

Some of these elements, such as <Date>, will only appear once; others, such as <Product> or
<Order>, might appear multiple times in the document. In addition, some will have PCDATA
only, while some will include their information as child elements instead. For example, the
<Date> element will contain PCDATA (no child elements) only: the date the order was placed.
Conversely, the <Address> element won’t contain any PCDATA of its own, but will contain
child elements that further break down the information, such as <State> and <City>.

With this in mind, it’s time to start entering XML. If you have Internet Explorer 5 or later
installed on your machine, type the following into Notepad and save it to your hard drive as
order .xml:

<Orders>

<Order>
<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Addressl1>123 Somewhere Ave.</Addressl>
<Address2></Address2>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>
</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>

27

Part I: Introduction

</Customer>
<ID>0000000001</ID>
<Number>x582n9</Number>
<Products>
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>
</Product>
</Products>
</Order>
<Order>
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Addressl1>89 Subscriber's Street</Addressl>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>
</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>
</Customer>
<ID>0000000002</ID>
<Number>a98f78d</Number>
<Products>
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>
</Product>
</Products>
</Order>
</Orders>

For the sake of brevity, we’ll only enter two orders.

3. Open the file in IE. (Navigate to the file in Explorer and double-click on it, or open the browser
and enter the path in the URL bar.) If you're running on Windows XP Service Pack 2 or later,
Internet Explorer will pop up a security warning just below the address bar because it doesn’t

28

Chapter 2: Well-Formed XML

like opening XML files from the local file system. You can ignore this warning, or click the infor-
mation bar and tell Internet Explorer to allow the blocked content. If you have typed in the tags
exactly as shown, the order.xml file will look something like what is shown in Figure 2-3.

Orders

Order

|

Type

Date

Customer o

Mumber

Products

Figure 2-2

I

— Sema Direct

Subscription Type

Subscription Length

— Phone

— Emil

Praduct

— Model

29

Part I: Introduction

Figure 2-3
If you get IE’s security warning, you’'ll have to click on the warning and tell IE to allow the blocked
content before you'll be able to use this expand/collapse functionality.

We’ve made use of IE’s handy collapse feature to collapse some of the elements, so that more of the doc-
ument would fit on the screen.

How It Works

In this example, you created a hierarchy of information about a series of orders that have been placed
through Ferna Distribution, so you name the root element accordingly: <orders>.

Each <Order> element has children for the type of order, the date the order was placed, and the ID and
number of the order (these types of systems often have multiple IDs attached to an order, as there are

30

Chapter 2: Well-Formed XML

multiple systems dealing with it, so we added two separate numbers for realism — the <ID> and
<Number> elements). There are also child elements for handling information about the customer and
the products purchased by that customer.

You may have noticed that the browser changed <Address2></Address2> in our first order to
<Address2/> when it displayed the information. We'll talk about this shorthand syntax a little later,
but don’t worry: This is called a self-closing tag and it’s perfectly legal.

Rules for Elements

Obviously, if you could just create elements in any old way you wanted, you wouldn’t be any further
along than the text file examples from the previous chapter. There must be some rules for elements,
which are fundamental to the understanding of XML.

XML documents must adhere to certain rules to be well formed.

Here’s a brief list of the rules, before getting into the details:

Q Every start-tag must have a matching end-tag, or be a self-closing tag.
Tags can’t overlap; elements must be properly nested.

XML documents can have only one root element.

Element names must obey XML naming conventions.

XML is case sensitive.

XML will keep whitespace in your PCDATA.

O 00 0o o

It is these rules that make XML such a universal format for interchanging data. As long as your XML
documents follow all of the rules in the XML specification, any available XML parser will be able to read
the information they contain.

Every Start-Tag Must Have an End-Tag

One of the problems with parsing HTML documents is that not every element requires a start-tag and an
end-tag. Take the following example:

<html>

<body>

<p>Here is some text in an HTML paragraph.

Here is some more text in the same paragraph.

<P>And here is some text in another HTML paragraph.</p>
</body>

</html>

Notice that the first <p> tag has no closing </p> tag. This is allowed in HTML, because most web

browsers can figure out where the end of the paragraph should be. (In fact, years ago, this type of prac-
tice was even encouraged in some circles to reduce file size.) In this case, when the browser comes across

31

Part I: Introduction

the second <P> tag, it knows to end the first paragraph and begin a new paragraph. Then there’s the

 tag (line break), which by definition has no closing tag.

In addition, notice that the second, uppercase <p> start-tag is matched by a </p> end-tag, in lowercase.
This is not a problem for HTML browsers, because HTML is not case sensitive; but as you'll soon see,
this would cause a problem for an XML parser.

The problem is that this makes HTML parsers harder to write. Developers must add code to take into
account all of these factors, which often makes the parsers larger and much harder to debug. What'’s
more, the way in which files are parsed is not standardized — different browsers do it differently, lead-
ing to incompatibilities (perhaps not in this simple example, but when it comes to HTML tables, browser
inconsistencies are a nightmare, and badly created HTML markup makes things much worse!).

For now, just remember that in XML the end-tag is required, and its name has to exactly match the start-
tag’s name.

Elements Must Be Properly Nested

32

Because XML is strictly hierarchical, you must be careful to close the child elements before you close
their parents. (This is called properly nesting your tags.) Take a look at another HTML example to demon-
strate this:

<p>Some formatted text, but no grammar no good!</p>

This would produce the output shown in Figure 2-4 on a web browser.

Figure 2-4

As you can see in Figure 2-4, the tags cover the text formatted text, while the tags
cover the text text, but. Therefore, the word text has both types of markup.

Is a child of , or is a child of ? Or are they both siblings, and children of
<p>? According to our stricter XML rules, the answer is none of the above. As written, the HTML code
can’t be arranged as a proper hierarchy, and therefore could not be well-formed XML.

Actually, in later versions of the HTML specification, the HTML example here isn’t really proper
HTML either; according to the HTML 4 specification, tags should not overlap like this, but web
browsers will do their best to render the content anyway.

Chapter 2: Well-Formed XML

If ever you're in doubt as to whether your XML tags are overlapping, try to rearrange them visually to
be hierarchical. If the tree makes sense, then you're okay. Otherwise, you'll have to rework your markup.

For example, you could get the same effect as above with the following:

<p>Some formatted text, but no grammar no
good!</p>

The preceding example can be properly formatted in a tree like this:

<p>
Some

formatted

text

, but

no grammar no good!
</p>

This example now makes it clear which elements are parents of which other elements, and to what ele-
ment each piece of text belongs, which makes it properly nested. Not only is this a better way to write
HTML, but it also makes the example well formed to an XML parser.

An XML Document Can Have Only One Root Element

In our <name> document from Chapter 1, the <name> element is called the root element. This is the top-
level element in the document, and all the other elements are its children, or descendants. An XML docu-
ment must have one and only one root element: In fact, it must have a root element even if it has no
content.

For example, the following XML is not well formed, because it has two root elements:

<name>John</name>
<name>Jane</name>

To make this well formed, you would need to add a top-level element, like this:

<names>
<name>John</name>
<name>Jane</name>
</names>

Even the following is a well-formed document, because it includes one —and only one —root element:

<name></name>

33

Part I: Introduction

While it may seem a bit of an inconvenience, it turns out that it’s incredibly easy to follow this rule. If
you have a document structure with multiple rootlike elements, simply create a higher-level element to
contain them.

Elements Must Obey XML Naming Conventions

If you're going to be creating elements you're going to have to give them names, and XML is very gener-
ous in the names you're allowed to use. For example, there aren’t any reserved words to avoid in XML,
as there are in most programming languages, so you have a lot of flexibility in this regard.

34

However, you do need to follow some rules:

Q

Names can start with letters (including non-Latin characters) or the dash (-) character, but not
numbers or other punctuation characters.

After the first character, numbers, hyphens, and periods are allowed.
Names can’t contain spaces.

Names can’t contain the colon (:) character. Strictly speaking, this character is allowed, but the
XML specification says that it’s “reserved.” You should avoid using it in your documents, unless
you are working with namespaces (which we’ll be looking at in the next chapter).

Names can’t start with the letters xm1, in uppercase, lowercase, or mixed —you can’t start a
name with xml, XML, XmL, or any other combination.

Unfortunately, the XML parser shipped with Internet Explorer doesn’t enforce this rule. However, even
if you are using IE’s XML parser, you should never name elements starting with the characters xm1,
because your documents would not be considered well formed by other parsers.

a

There can’t be a space after the opening < character; the name of the element must come imme-
diately after it. However, there can be space before the closing > character, if you desire.

Here are some examples of valid names:

<first.name>
<résumé>

Following are some examples of invalid names:

<xml-tag>

which starts with xm1,

<123>

which starts with a number,

<fun=xml>

because the equals sign (=) sign is illegal, and

Chapter 2: Well-Formed XML

<my tag>

which contains a space.

Remember these rules for element names — they also apply to naming other things
in XML.

Case Sensitivity

Another important point to keep in mind is that the tags in XML are case sensitive. (This is a big differ-
ence from HTML, which is case insensitive.) This means that <first> is different from <FIRST>, which
is different from <First>.

This sometimes seems odd to English-speaking users of XML, as English words can easily be converted
to uppercase or lowercase with no loss of meaning. In many other languages, the concept of case either is
not applicable (e.g., the German “8”) or is extremely important (and the answer may differ depending
on the context). Putting intelligent rules into the XML specification for converting between uppercase
and lowercase (sometimes called case folding) would probably have doubled or tripled its size, and only
benefited certain sections of the population. Luckily, it doesn’t take long to get used to having case-
sensitive names.

Our previous <pP></p> HTML example would not work in XML. Because XML is case sensitive, an XML
parser would not be able to match the </p> end-tag with any start-tags, and neither would it be able to
match the <p> start-tag with any end-tags.

Warning! Because XML is case sensitive, you could legally create an XML document
that has both <first> and <First> elements, which have different meanings, but
this is a bad idea and will cause nothing but confusion! You should always try to
give your elements distinct names, for your sanity, and for the sanity of those who
use your code.

To help combat these kinds of problems, it’s a good idea to pick a naming style and stick to it. Some
examples of common styles are as follows:

a

a
a
a

<first_name>
<firstName>
<first-name>

<FirstName>

Which style you choose isn’t important; what is important is that you stick to it. A naming convention
only helps when it’s used consistently. For this book, we usually use the <FirstName> convention.

35

Part I: Introduction

Whitespace in PCDATA

There is a special category of characters called whitespace that includes things such as the space character,
new lines (what you get when you press the Enter key), and tabs. Whitespace is used to separate words,
as well as to make text more readable.

Those familiar with HTML are probably quite aware of the practice of whitespace stripping. In HTML, any
whitespace considered insignificant is stripped out of the document when it is processed. For example,
take the following HTML:

<p>This 1s a paragraph. It has a whole bunch
of space.</p>

As far as HTML is concerned, anything more than a single space between the words in a <p> is insignifi-
cant, so all of the spaces between the first period and the word 1t would be stripped, except for one. In

addition, the line feed after the word bunch and the spaces before of would be stripped down to one
space. As a result, the previous HTML would be rendered in a browser as shown in Figure 2-5.

Figure 2-5
In order to get results to appear spaced as in the HTML code, you’d have to add special HTML markup
to the source, like the following:

<p>This i1s a paragraph. It has a whole
bunch
 of space.</p>

Here, signifies that we should insert a space (nbsp stands for nonbreaking space), and the

tag specifies that there should be a line feed. This would format the output as it appears in Figure 2-6.

Figure 2-6

36

Chapter 2: Well-Formed XML

Alternatively, if you wanted to have the text displayed exactly as it appears in the source file, you could
use the <pre> tag. This specifically tells the HTML parser not to strip the whitespace, but to display the
text exactly as it appears in the HTML document, so you could write the following and get the desired
results:

<pre>This is a paragraph. It has a whole bunch
of space.</pre>

This would produce output like that shown in Figure 2-7.

Figure 2-7

However, in most web browsers, the <pre> tag also has the added effect that the text is rendered in a
fixed-width font, like the Courier font used for code in this book (which is why Figure 2-7 looks slightly
different from Figure 2-6).

Whitespace stripping is very advantageous for a language like HTML, which is primarily a means for
displaying information. It allows the source for an HTML document to be formatted in a readable way
for the person writing the HTML, while displaying it formatted in a readable, and possibly quite differ-
ent, way for the user who views the document in a browser.

In XML, however, no whitespace stripping takes place for PCDATA. This means that for the XML tag

<Tag>This is a paragraph. It has a whole bunch
of space.</Tag>

the PCDATA is

This is a paragraph. It has a whole bunch
of space.

Just like the second HTML example, none of the whitespace has been stripped out. As far as whitespace
stripping goes, all XML elements are treated just as they are for the HTML <pre> tag. This makes the
rules much easier to understand for XML than they are for HTML.

In XML, the whitespace stays.

37

Pa

rt I: Introduction

Unfortunately, if you view the preceding XML example in Internet Explorer, the whitespace will be
stripped out — or will seem to be. This is because IE is not actually showing you the XML directly; it
uses a technology called XSL to transform the XML to HTML, and it displays the HTML. Then,
because IE is an HTML browser, it strips out the whitespace from that HTML!

End-of-Line Whitespace

There is one form of whitespace stripping that XML does perform on PCDATA, which is the handling of
newline characters. The problem is that two characters are used for new lines — the linefeed character and
the carriage return character —and Windows, UNIX, and Macintosh computers all use these characters
differently.

For example, to get a new line in Windows, an application would use both the line feed and the carriage
return character together, whereas on UNIX only the line feed would be used. This could prove to be
very troublesome when creating XML documents, because UNIX machines would treat the new lines

in a document differently from the Windows boxes, which would treat them differently from the
Macintosh boxes, and our XML interoperability would be lost.

For this reason, it was decided that XML parsers would change all new lines to a single linefeed charac-
ter before processing. This means that any XML application will know, no matter which operating sys-
tem it’s running under, that a new line will be represented by a single linefeed character. This makes
data exchange among multiple computers running different operating systems that much easier, as pro-
grammers don’t have to deal with the (sometimes annoying) end-of-line logic.

Whitespace in Markup

38

As well as the whitespace in your data, there could also be whitespace within an XML document that’s
not actually part of the data, as shown here:

<Tag>
<AnotherTag>This is some XML</AnotherTag>
</Tag>

While any whitespace contained within <AnotherTag>"s PCDATA is part of the data, there is also a
newline after <Tag>, and some spaces before <AnotherTag>. These spaces could be there just to make
the document easier to read, while not actually being part of its data. This “readability” whitespace is
called extraneous whitespace.

While an XML parser must pass all whitespace through to the application, it can also indicate to the
application which whitespace is not actually part of an element’s PCDATA but is just extraneous
whitespace.

How does the parser decide whether this is extraneous whitespace or not? That depends on what kind
of data you specify <Tag> should contain. If <Tag> can only contain other elements (and no PCDATA),
then the whitespace will be considered extraneous. However, if <Tag> is allowed to contain PCDATA or
mixed content, then the whitespace will be considered to be part of that PCDATA, so it will be retained.

Unfortunately, from this document alone an XML parser would have no way to tell whether <Tag> is
supposed to contain PCDATA or not, which means that it has to assume none of the whitespace is extra-
neous. You'll see how to get the parser to recognize this as extraneous whitespace in Chapter 5, when we
discuss content models.

Chapter 2: Well-Formed XML

In many cases, your applications won't care whether the space is there or not; the application will sim-
ply ask the parser for the data contained in the <AnotherTag> element, and won’t bother to query for
any PCDATA in the <Tag> element.

Attributes

In addition to tags and elements, XML documents can also include attributes. Attributes are simple
name/value pairs associated with an element. They are attached to the start-tag, but not to the end-tag,
as shown in the following code:
<name nickname="Shiny John">
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

Attributes must have values —even if that value is just an empty string (such as “”) —and those values
must be in quotes. The following example, which is part of a common HTML tag, is not legal in XML:

<input checked>
Nor is the following legal:
<input checked=true>

Either single quotes or double quotes are fine, but they have to match. For example, to make this into
well-formed XML, you can use

<input checked='true'>
or
<input checked="true">
but you can’t use
<input checked="true'>
Because either single or double quotes are allowed, it’s easy to include quote characters in your attribute

values, such as “John’s nickname” or ‘I said “hi” to him’. You just have to be careful not to accidentally
close your attribute, like ‘John’s nickname’; if an XML parser sees an attribute value like this, it will

“_

think you're closing the value at the second single quote, and will raise an error when it sees the “s
that follows right after it.

The same rules apply to naming attributes as apply to naming elements: Names are case sensitive, can’t
start with xm1, and so on. In addition, you can’t have more than one attribute with the same name on an
element. For example, if you create an XML document like the following line of code, then you will get
the IE5 error shown in Figure 2-8:

39

Part I: Introduction

40

<bad att="1" att="2"></bad>

Figure 2-8

You should also be aware that the XML parser will “normalize” the data in an attribute before it passes it
on to the application. In other words, it does a bit of pre-processing of the text. The most important thing
done by the parser is to strip out newline characters and replace them with a single space. For example,
you can write XML markup like this, with a newline in the attribute value:

<test myAttr='some data
goes
here'>some other data</test>

However, when the XML parser passes the data from the myAttr attribute back to an application, it will
simply pass the data as

some data goes here

Finally, the order in which attributes are included on an element is not considered relevant. In other
words, if an XML parser encounters an element like

<name first="John" middle="Fitzgerald Johansen" last="Doe"></name>

it doesn’t necessarily have to give us the attributes in that order, but can do so in any order it wishes.
Therefore, if information in an XML document must appear in a certain order, you should put that infor-
mation into elements, rather than attributes — parsers always report elements in the order in which they
appear in the document.

Chapter 2: Well-Formed XML

Try It

Out Adding Attributes to Our Orders

In the previous Try It Out, you entered a lot of information about the various orders captured through-

out

the day. However, notice that the <Orders> element can contain multiple <Order> elements, and

the <Products> element can contain multiple <Product> elements. Often, programmers find it handy
to include an attribute on these types of “container” elements to indicate how many items are in the list.

You

could get the same value by counting the child elements, but it’s sometimes useful to have this as a

separate piece of information, for a sanity check. In addition, both <Order> and <Product> have child
elements for ID — this is often the type of information that’s captured in an attribute, instead of a child
element.

1. Open your order.xml file created earlier, and resave it to your hard drive as order2.xm1.

2.

With your newfound attributes knowledge, add count attributes to <Orders> and
<Products>, and change any <ID> elements to an ID attribute on the parent instead. The result
should look like the following (the changed lines are highlighted):

<Orders Count="2">
<Order ID="0000000001">
<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Addressl1>123 Somewhere Ave.</Addressl>
<Address2></Address2>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>
</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>
</Customer>
<Number>x582n9</Number>
<Products Count="1">
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>
</Product>

41

Part I: Introduction

</Products>
</Order>
<Order ID="0000000002">
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>

<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Address1>89 Subscriber's Street</Addressl>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>
</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>
</Customer>
<Number>a98£f78d</Number>
<Products Count="1">
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>
</Product>
</Products>
</Order>
</Orders>

3. Save the file and view it in IE. It will look something like Figure 2-9.

How It Works

Using attributes, you added some extra information about the number of items contained in any “lists.”
Again, this is information that could easily be inferred from the content of the document, but if a list
showed that it was supposed to have two elements and only one was in the document, then you’d know
that you had a problem.

42

Chapter 2: Well-Formed XML

Figure 2-9

When to Use Attributes

There have been many debates in the XML community about whether attributes are really necessary,
and, if so, where they should be used. The following subsections address some of the main points in
that debate.

Using Attributes to Separate Different Types of Information

In the previous example, the number of <Order> elements under <Orders> isn’t really part of the data
you're sending, so it may make sense to make that information an attribute. This logically separates the
data most applications will need from the data that most applications won’t need.

In reality, there is no such thing as pure meta data— all information is data to some application. Consider
HTML; you could break the information in HTML into two types of data: the data to be shown to a

43

Part I: Introduction

human and the data to be used by the web browser to format the human-readable data. From one stand-
point, the data used to format the data would be meta data, but to the browser or the person writing the
HTML, the meta data is the data. Therefore, attributes make sense when you're separating one type of
information from another.

What Attributes Offer That Elements Don’t

Can’t elements do anything attributes can do? In other words, on the face of it, there’s really no differ-
ence between

<name nickname='Shiny John'></name>
and

<name>
<nickname>Shiny John</nickname>
</name>

In both cases, we have a child of the <name> element, named “nickname,” with the content “Shiny
John.” Why bother to pollute the language with two ways of doing the same thing?

The main reason why XML was invented was because SGML could do some great things but it was too
massively difficult to use without a full-fledged SGML expert on hand, so one driving concept behind
XML is a kinder, gentler, simpler SGML. For this reason, many people don’t like attributes, because
attributes add a complexity to the language that they feel is unnecessary.

Conversely, some people find attributes easier to use — for example, they don’t require nesting and you
don’t have to worry about crossed tags.

Why Use Elements If Attributes Use So Much Less Space?

Wouldn't it save bandwidth to use attributes instead? For example, if you were to rewrite the <name>
document to use only attributes, it might look like the following, which takes up much less space than
our earlier code using elements:

<name nickname='Shiny John' first='John'
middle="'Fitzgerald Johansen' last='Doe'></name>

However, in systems where size is really an issue, it turns out that simple compression techniques would
work much better than trying to optimize the XML. Moreover, because of the way compression works,
you end up with files of almost the same size regardless of whether attributes or elements are used.
Besides, when you try to optimize XML this way, you lose many of the benefits XML offers, such as
readability and descriptive tag names.

Elements Can Be More Complex Than Attributes

44

When you use attributes, you are limited to simple text as a value. However, when you use elements,
your content can be as simple or as complex as you need. That is, when your data is in an element, you
have room for expansion, by adding other child elements to further break down the information.

Chapter 2: Well-Formed XML

Similarly, if line endings will be important in your data, you will have to put the data into an element,
rather than an attribute, because these line endings are stripped out of attribute values.

Sometimes Elements Can Get in the Way

Imagine a case where you have a <note> element, which contains annotations about the text in your
XML document. Sometimes the note will be informational, and sometimes a warning. You could include
the type of note using an element such as the following:

<note>
<type>Information</type>
This is a note.
</note>
or

<note><Information>This is a note.</Information></note>

However, it would probably be much less intrusive to include the information in an attribute, as shown
here:

<note type="Information">This is a note.</note>

Attributes Are Unordered

As noted earlier, the order of attributes is considered irrelevant. Hence, sometimes you may need to use
elements, rather than attributes, for information that must appear in the document in a certain order.

Visual Preferences

Many people have different opinions as to whether attributes or child elements “look better.” The
answer comes down to a matter of personal preference and style.

In fact, much of the attributes versus elements debate hinges on personal preference. Many, but not all,
of the arguments boil down to “I like the one better than the other,” but because XML has both elements
and attributes, and neither one is going to go away, you're free to use both. Choose whichever works
best for your application, whichever looks better to you, or whichever you're most comfortable with.

Comments

Using comments, you can insert into an XML document text that isn’t really part of the document, but
rather is intended for people who are reading the XML markup itself.

Anyone who has used a programming language will be familiar with the idea of comments: You want to
be able to annotate your code (or your XML), so that those coming after you will be able to figure out
what you were doing. (And remember: The one who comes after you may be you! Code you wrote six
months ago might be as foreign to you as code someone else wrote.)

45

Part I: Introduction

Of course, comments may not be as relevant to XML as they are to programming languages; after all,
this is just data, and it’s self-describing to boot. Still, you never know when they’re going to come in
handy, and there are cases where comments can be very useful, even in data.

Comments start with the string <! --and end with the string -->, as shown here:

<name nickname='Shiny John'>
<first>John</first>

<!--John lost his middle name in a fire-->
<middle></middle>
<last>Doe</last>

</name>

Note a couple of points about comments. First, you can’t have a comment inside a tag, so the following
is illegal:

<middle></middle <!--John lost his middle name in a fire--> >

Second, you can’t use the double-dash string (--) inside a comment, so the following is also illegal:
<!--John lost his middle name -- in a fire-->

The XML specification states that an XML parser doesn’t need to pass these comments on to the applica-

tion, meaning that you should never count on being able to use the information inside a comment from
your application. Comments are only there for the benefit of someone reading your XML markup.

HTML programmers have often used the trick of inserting scripting code in com-
ments, to protect users with older browsers that didn’t support the <script> tag.
That kind of trick can’t be used in XML, as comments won’t necessarily be available
to the application. Therefore, if you have data that you need to get at later from your
applications, put it in an element or an attribute!

Try It Out Some Comments on Our Orders

46

The type of distribution system we’re working with can be very complicated. In this example, you'll add
some comments to your order XML to clarify how and why you’ve structured some of the data the way
you have:

1. Open your order2.xml file, make the following changes, and save the modified XML file as
order3.xml:

<Orders Count="2">
<Order ID="0000000001">
<Type>N</Type>
<!--Indicates the type of order: N(ew), C(ancel), or U(pdate)-->
<Date>Jan 1, 2004, 14:29</Date>
<!--we're only capturing order date, but often systems will capture
a separate shipment date as well-->
<Customer>

Chapter 2: Well-Formed XML

<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<!--Type of subscription: B(asic) or D(eluxe)-->
<SubscriptionLength>12</SubscriptionLength>
<!--length of subscription in months-->
</SernaDirect>
<Address>
<!--systems often require separate Home, Billing, and Delivery
addresses, but for the sake of simplicity we're only capturing one-->
<Addressl1>123 Somewhere Ave.</Addressl>
<Address2></Address2>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>
</CreditCard>
<Phone>5555555555</Phone>
<!--systems often require separate home and business #'s, but we're
only capturing the one-->
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>
</Customer>
<Number>x582n9</Number>
<!--in this type of distributed system, there are often multiple
ID's/numbers associated with an order, because of the multiple
back-end systems involved-->
<Products Count="1">
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>
</Product>
</Products>
</Order>
<Order ID="0000000002">
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Addressl>89 Subscriber's Street</Addressl>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>

47

Part I: Introduction

<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>
</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>
</Customer>
<Number>a98f78d</Number>
<Products Count="1">
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>
</Product>
</Products>
</Order>
</Orders>

2. Figure 2-10 shows the new document in TE.

Figure 2-10

How It Works

With the new comments, anyone who reads the source for your XML document will be able to learn a bit
more about how to create their own order file. This particular XML document might be used as a sample
document that can be sent to new distributors as they begin working with Serna Inc.

In this example, the XML parser included with IE does pass comments up to the application, so the
browser has displayed your comments; but remember that for all intents and purposes, this information
is only available to people reading the source file. The information in comments may or may not be
passed up to your application, depending on which parser you're using. You can’t count on it, unless
you specifically choose a parser that does pass them through.

48

Chapter 2: Well-Formed XML

If a developer uses this XML document as a sample and forgets to delete the comments before sending it
to Serna it won’t matter. They’ll be in the document, but they won’t actually be part of the document’s
data, so they won’t do any harm.

Empty Elements

Sometimes an element has no PCDATA. Recall our earlier example in which the <middle> element con-
tained no name:
<name nickname='Shiny John'>
<first>John</first>
<!--John lost his middle name in a fire-->
<middle></middle>

<last>Doe</last>
</name>

In this case, you also have the option of writing this element using the special empty element syntax (this
syntax is also called a self-closing tag):

<middle/>

This is the one case where a start-tag doesn’t need a separate end-tag, because they are combined into
this one tag. In all other cases, you must have both tags.

Recall from our discussion of elements that the only place you can have a space within the tag is before
the closing >. This rule is slightly different when it comes to empty elements. The / and > characters
always have to be together, so you can create an empty element like this

<middle />
or this

<middle/>
but not like this

<middle/ >
or this

<middle / >
Empty elements really don’t buy you anything —except that they take less typing —so you can use them
or not at your discretion. Keep in mind, however, that as far as XML is concerned, <middle></middle> is
exactly the same as <middle/>; for this reason, XML parsers will sometimes change your XML from one
form to the other. You should never count on your empty elements being in one form or the other, but

since they’re syntactically exactly the same, it doesn’t matter. (This is why Internet Explorer felt free to
change our earlier <Address2></Address2> syntax to just <Address2/>.)

49

Part I: Introduction

Interestingly, the XML community doesn’t seem to mind the empty element syntax, even though it
doesn’t add anything to the language. This is especially interesting considering the passionate debates
that have taken place regarding whether attributes are really necessary.

One place where empty elements are very often used is for elements that have no (or optional) PCDATA,
but instead have all of their data contained in attributes. For example, if we rewrote our <name> example
without child elements, instead of a start-tag and end-tag we would probably use an empty element,
like this:

<name first="John" middle="Fitzgerald Johansen" last="Doe"/>
Or, for readability, XML authors will often write the XML like this:

<name first="John"
middle="Fitzgerald Johansen"
last="Doe"
/>

Another common example is the case where just the element name is enough; for instance, the HTML

 tag would be converted to an XML empty element, such as the XHTML
 tag. (XHTML is the
latest XML-compliant version of HTML and is discussed in Chapter 18.)

XML Declarations

50

It is often very handy to be able to identify a document as being of a certain type. On computers running
Windows, giving a file an extension of . xm1 identifies the file as an XML file to Windows, but on other
operating systems this will not work. In addition, you might want the flexibility of creating XML files
with other extensions.

XML provides the XML declaration to label documents as being XML, along with giving the parsers a few
other pieces of information. You don’t need to have an XML declaration —a parser can usually tell a
document is XML without it—but it’s considered good practice to include it. A typical XML declaration
looks like this:

<?xml version='1l.0' encoding='UTF-16' standalone='yes'?>
<name nickname='Shiny John'>

<first>John</first>

<!--John lost his middle name in a fire-->

<middle/>

<last>Doe</last>
</name>

Note the following about the XML declaration:

d The XML declaration starts with the characters <?xm1 and ends with the characters ?>.

Q If youinclude a declaration, you must include the version, but the encoding and standalone
attributes are optional.

d The version, encoding, and standalone attributes must be in that order.

Chapter 2: Well-Formed XML

O The version should be 1.0 or 1.1, as outlined below.

QO The XML declaration must be right at the beginning of the file. That is, the first character in the
file should be that <; no line breaks or spaces. Some parsers are more forgiving about this than
others.

For example, an XML declaration can be as full as the previous one or as simple as the following;:
<?xml version='1.0'?>

The next two sections describe more fully the encoding and standalone attributes of the XML
declaration.

Version

The version attribute specifies which version of the XML specification the document adheres to. There
are two versions of the XML specification, 1.0 and 1.1, so when you're using this attribute, it must be set
to either 1.0 or 1.1:

<?xml version="1.0"?>
or
<?xml version="1.1"?>

If a browser comes across a document with a version it doesn’t recognize, it will simply reject the docu-
ment and stop processing it.

These versions of the XML specification are virtually the same, except regarding how certain Unicode
characters are treated for the purpose of naming elements, and how end-of-line characters are treated on
certain mainframe systems.

The Unicode character code is discussed in the next section.

At the time this edition of the book was printed, the 1.1 version of XML was very new, and most parsers
didn’t yet support it. Therefore, unless you're working with some Unicode data that just won't work
under the 1.0 specification, you should always specify 1.0 for the version.

If you really need the changes in the XML 1.1 specification, make sure that your XML parser supports it.
In addition, if you'll be exchanging XML documents with others, then you need to make sure that their
XML parsers support XML 1.1 too, or you'll have interoperability issues.

Encoding

It should come as no surprise that text is stored in computers using numbers, since 1s and Os are all that
computers really understand. A character code is a one-to-one mapping between a set of characters and
the corresponding numbers to represent those characters. Character encoding is the method used to repre-
sent the numbers in a character code digitally (in other words, how many bytes should be used for each
number, and so on).

51

Part I: Introduction

One character code that you might have come across is the American Standard Code for Information
Interchange (ASCII). In ASCII, for example, the lowercase character “a” is represented by the number 97,
and the uppercase character “A” is represented by the number 65.

There are 7-bit and 8-bit ASCII encoding schemes. 7-bit ASCII uses 7 bits for each character, which limits
it to 128 different values, while 8-bit ASCII uses one full byte (8 bits) for each character, which limits it to
256 different values. 7-bit ASCII is a much more universal standard for text, while there are a number of
8-bit ASCII character codes —which were created to add additional characters not covered by ASCII—
such as ISO-8859-1. Each 8-bit ASCII encoding scheme might have slightly different sets of characters
represented, and those characters might map to different numbers. However, the first 128 characters are
always the same as the 7-bit ASCII character code.

ASCII can easily handle all of the characters needed for English, which is why it was the predominant
character encoding used on personal computers in the English-speaking world for many years. Of
course, there are many more than 256 characters in all of the world’s languages, so obviously ASCII (or
any other 8-bit encoding limited to 256 characters) can only handle a small subset of these. This is why
Unicode was invented.

When it comes to the ASCII character set, the question of encoding is very simple: Characters each
require exactly one byte of storage. For 7-bit ASCII, the eighth bit in the byte is not used.

Unicode

Unicode is a character code designed from the ground up with internationalization in mind, aiming to
include enough possible characters to cover all of the characters in any human language. There are two
major character encodings for Unicode: UTF-16 and UTF-8. UTF-16 takes the easy way, simply using two
bytes for every character (2 bytes = 16 bits = 65,356 possible values).

UTE-8 is more clever: It uses one byte for the characters covered by 7-bit ASCII and then uses some
tricks so that any other characters may be represented by two or more bytes. This means that 7-bit ASCII
text can actually be considered a subset of UTF-8, and processed as such. For text written in English, for
which most or all of the characters would fit into the ASCII 7-bit character encoding, UTF-8 will result in
smaller file sizes (because each character requires only one byte), but for text in other languages, UTF-16
can be smaller (because UTF-8 can require three or more bytes for some characters, whereas UTF-16
would only require two).

Because of the work done with Unicode to make it international, the XML specification states that all
XML processors must use Unicode internally. Unfortunately, very few of the documents in the world are
encoded in Unicode. Most are encoded in ISO-8859-1, or Windows-1252, or EBCDIC (used very com-
monly in mainframe computers), or one of a large number of other character codes. (Many of these char-
acter codes, such as ISO-8859-1 and Windows-1252, are actually 8-bit ASCII character codes. They are
not, however, subsets of UTF-8 in the same way that “pure” 7-bit ASCII is.)

Specifying a Character Encoding for XML

This is where the encoding attribute in an XML declaration comes in. It allows you to specify to the
XML parser what character encoding your text is in. The XML parser can then read the document in the
proper encoding and translate it into Unicode characters internally. If no encoding is specified, UTF-8 or
UTE-16 is assumed (parsers must support at least UTF-8 and UTE-16). If no encoding is specified and the
document is not UTF-8 or UTF-16, the parser raises an error.

52

Chapter 2: Well-Formed XML

That said, sometimes an XML processor is allowed to ignore the encoding specified in the XML declara-
tion. If the document is being sent via a network protocol such as HTTP, protocol-specific headers may
specify a different encoding than the one specified in the document. In such a case, the HTTP header
would take precedence over the encoding specified in the XML declaration. However, if there are no
external sources for the encoding, and the encoding specified is different from the actual encoding of the
document, an error results.

If you're running Windows XP, Notepad gives you the option of saving your text files in Unicode, in
which case you can omit the encoding attribute in your XML declarations (see Figure 2-11).

Figure 2-11

In this case, your best bet is to save the document using the UTF-8 encoding and specify it as such in the
XML declaration.

Standalone

If the standalone attribute is included in the XML declaration, it must be set to either yes or no:

0 yes specifies that the document exists entirely on its own, without depending on any other files.

O noindicates that the document may depend on an external DTD (DTDs are covered in
Chapter 4).

53

Part I: Introduction

This little attribute actually has its own name: the Standalone Document Declaration, or SDD. The XML
Recommendation doesn’t actually require a parser to do anything with the SDD. It is considered more of
a hint to the parser than anything else.

It’s time to take a look at how the XML declaration works in practice.

Try It Out Declaring Our Orders to the World

In this example, you declare your XML document so that any parsers can immediately determine what it
is. In addition, while you're at it, you should take care of any elements that don’t have any content, and
change them to use the empty element syntax, just to get familiar with it.

1. Open the file order2.xml (we'll ignore the version with all of our comments, to reduce clutter),
and make the following changes. When you save the document (from Notepad) make sure you
set the encoding to UTF-8.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Orders Count="2">
<Order ID="0000000001">
<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Addressl1>123 Somewhere Ave.</Addressl>
<Address2/>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>
</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>
</Customer>
<Number>x582n9</Number>
<Products Count="1">

<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>
</Product>
</Products>
</Order>
<Order ID="0000000002">
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>

54

Chapter 2: Well-Formed XML

<SernaDirect>
<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Addressl1>89 Subscriber's Street</Addressl>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>
</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>
</Customer>
<Number>a98£f78d</Number>
<Products Count="1">
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>
</Product>
</Products>
</Order>
</Orders>

2. Save the file as order4 . xml and view it in IE, shown in Figure 2-12.

Figure 2-12
55

Part I: Introduction

How It Works

With your new XML declaration, any XML parser can tell right away that it is indeed dealing with an
XML document, and that the document is claiming to conform to version 1.0 of the XML
Recommendation.

Furthermore, the document indicates that it is encoded using UTF-8 character encoding. In addition,
because the Standalone Document Declaration declares that this is a standalone document, the parser
knows that this one file is all that it needs to fully process the information.

Finally, because the address for the first order has no information in the <Address2> element, the syntax
has been changed to the empty element syntax. Remember, though, that to the parser <address2/> is
exactly the same as <Address2></Address2>, which is why this part of your document looks the same
in the browser as it did in the earlier screenshots.

Processing Instructions

56

Although it isn’t all that common, sometimes you need to embed application-specific instructions into
your information to affect how it will be processed. XML provides a mechanism to allow this, called pro-
cessing instructions or Pls. These PIs enable you to enter instructions into your XML that are not part of
the data of the document, but which are passed up to the application, as shown in the following code:

<?xml version='1.0'?>

<name nickname='Shiny John'>
<first>John</first>
<!--John lost his middle name in a fire-->
<middle/>
<?nameprocessor PRINT nickname?>
<last>Doe</last>

</name>

There aren’t really a lot of rules regarding PIs. They're basically just a <2 followed by the name of the appli-
cation that is supposed to receive the PI (the PITarget). The rest, up until the ending »>, is whatever you
want the instruction to be. The PITarget is bound by the same naming rules as elements and attributes, so
in this example the PITarget is nameprocessor, and the actual text of the PI (the instructions) is PRINT
nickname.

PIs are pretty rare, and are often frowned upon in the XML community, especially when used frivolously.
Nonetheless, if you have a valid reason to use them, then go for it. For example, PIs can be an excellent
place to put the kind of information (such as scripting code) that in HTML is put in comments. While you
can’t assume that comments will be passed on to the application, PIs always are.

This may leave you wondering whether the XML declaration is a processing instruction. At first glance,
you might think that the XML declaration is a PI that starts with xm1. It uses the same <? 2> notation,
and provides instructions to the parser (but not the application). Is it a PI?

Actually, no: The XML declaration isn’t a PI, but in most cases it really doesn’t make any difference
whether it is or not. The only places where you'll get into trouble are the following;:

Chapter 2: Well-Formed XML

Q Trying to get the text of the XML declaration from an XML parser — Some parsers erroneously
treat the XML declaration as a PI and will pass it on as if it were, but most will not. In most
cases, your application will never need the information in the XML declaration; that information
is only for the parser. (Even the character encoding shouldn’t matter to your application, because
by the time the parser passes on the text, it will be Unicode, regardless of what encoding was
originally used in the document.) One notable exception might be an application that wants to
display an XML document to a user, in the way that we’re using Internet Explorer to display the
documents in this book.

U Including an XML declaration somewhere other than at the beginning of an XML document—
Although you can put a PI anywhere you want, an XML declaration must appear at the begin-
ning of a file.

Try It Out An Order to Be Processed

Just to see what it looks like, try adding a processing instruction to your order XML:

1. Make the following changes to order4.xnl, and save the new file as order5 . xml:

<?xml version="1.0"?>
<Orders Count="2">
<Order ID="0000000001">
<?SernaProcessor ManualIntervention reason:Insufficient Funds?>
<Type>N</Type>
<Date>Jan 1, 2004, 14:29</Date>
<Customer>
<SernaDirect>
<SubscriptionType>B</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Addressl1>123 Somewhere Ave.</Addressl>
<Address2/>
<City>Some Town</City>
<State>TA</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4111111111111111</Number>
<CardHolderName>John Q Public</CardHolderName>
<Expiry>11/09</Expiry>
</CreditCard>
<Phone>5555555555</Phone>
<Name>John Public</Name>
<Email>jpublic@someprovider.com</Email>
</Customer>
<Number>x582n9</Number>
<Products Count="1">
<Product>
<Model>X9</Model>
<Price>129.95</Price>
<ID>x9000059</ID>
</Product>

57

Part I: Introduction

</Products>
</Order>
<Order ID="0000000002">
<Type>N</Type>
<Date>Jan 1, 2004, 16:00</Date>
<Customer>
<SernaDirect>

<SubscriptionType>D</SubscriptionType>
<SubscriptionLength>12</SubscriptionLength>
</SernaDirect>
<Address>
<Address1>89 Subscriber's Street</Addressl>
<Address2>Box 882</Address2>
<City>Smallville</City>
<State>XQ</State>
<Zip>000000000</Zip>
</Address>
<CreditCard>
<Number>4512451245124512</Number>
<CardHolderName>Helen P Someperson</CardHolderName>
<Expiry>01/08</Expiry>
</CreditCard>
<Phone>5554443333</Phone>
<Name>Helen Someperson</Name>
<Email>helens@isp.net</Email>
</Customer>
<Number>a98f78d</Number>
<Products Count="1">
<Product>
<Model>Y9</Model>
<Price>229.95</Price>
<ID>y9000065</ID>
</Product>
</Products>
</Order>
</Orders>

2. InTE, the result looks like Figure 2-13.
How It Works

For this example, you are targeting a fictional application called SernaProcessor, and giving it the
instruction ManualIntervention reason:Insufficient Funds. The instruction has no meaning in
the context of the XML itself, only to the SernaProcessor application, so it’s up to the
SernaProcessor to do something meaningful with it.

In addition, because your document is UTF-8 (which the parser can infer), and because the SDD isn’t
doing too much, you shortened the XML declaration to the shorter syntax.

58

Chapter 2: Well-Formed XML

Figure 2-13

lllegal PCDATA Characters

There are some reserved characters that you can’t include in your PCDATA because they are used in
XML syntax: the < and & characters:

<!--This is not well-formed XML!-->
<comparison>6 is < 7 & 7 > 6</comparison>

Viewing the preceding XML in Internet Explorer results in the error shown in Figure 2-14.

Figure 2-14

59

Pa

rt I: Introduction

Even if the parser had gotten past this, the same error would have occurred at the & character.
This error may seem confusing, but it could be worse. Consider the following XML:

<blah>Some <text in an element</blah>

In this case, an error would still be raised, but the error message would read “Missing equals sign
between attribute and attribute value.”

The reason for this strange error message is that the XML parser comes across the < character and
expects a tag name. In the first document it found a space, which is not allowed, and in the second
example it thought that text was the tag name, but then assumed that in was an attribute and expected
to find an equals sign for the attribute’s value.

All of this means that you can’t put raw < or & characters into PCDATA. (Why & characters can’t be
included will become evident when the syntax for escaping characters is covered in the next section.)
There are two ways you can get around this: escaping characters, or enclosing text in a CDATA section.

Escaping Characters

60

To escape the < or & characters, you simply replace any < character with &1t; and any & character with
& . (In addition, you can also escape the > character with > ;. It isn’t necessary, but it does make
things more consistent, as you need to escape all of the < characters.) The previous XML example could
be made well formed by doing the following:

<comparison>6 is < 7 & 7 > 6 </comparison>

This displays properly in the browser, as shown in Figure 2-15.

Figure 2-15

Notice that IE’s XML parser is showing the un-escaped characters when it displays the document; in
other words, it replaces the &1t ;, &, and > ; strings with <, &, and > characters. This is because
the content of the <comparison> element really is 6 is < 7 & 7 > 6 —we had to escape the < and & char-
acters so as not to confuse the parser, but once the parser has read in the markup, it knows the real con-
tent of the PCDATA.

&1lt; and & are known as entity references. The following entities are defined in XML:

d samp; —the & character

d < —the < character

Chapter 2: Well-Formed XML

Q > —the > character
0 s' —the ‘ character

O " —the “ character

Other characters can also be escaped by using character references. These are strings such as &#nnn;,
where nnn would be replaced by the Unicode number of the character you want to insert. (Or &#x nnn;
with an x preceding the number, where nnn is a hexadecimal representation of the Unicode character
you want to insert. All of the characters in the Unicode specification are specified using hexadecimal, so
allowing the hexadecimal numbers in XML means that XML authors don’t have to convert back and
forth between hexadecimal and decimal.)

Escaping characters in this way can be quite handy if you are authoring documents in XML that use
characters your XML editor doesn’t understand, or can’t output, because the characters escaped are
always Unicode characters, regardless of the encoding being used for the document. As an example, you
could include the copyright symbol ((c)) in an XML document by inserting © or ©.

CDATA Sections

If you have a lot of < and & characters that need escaping, you may find that your document quickly
becomes very ugly and unreadable with all of those entity references. Luckily, there are also CDATA
sections. Recall that CDATA is another inherited term from SGML; it stands for character data. Using
CDATA sections, you can tell the XML parser not to parse the text, but to let it all go by until it gets to
the end of the section. CDATA sections look like this:

<comparison><![CDATA[6 is < 7 & 7 > 6]]></comparison>

Everything starting after the <! [CDATA[and ending at the 11> is ignored by the parser, and passed
through to the application as is.

Unfortunately, the CDATA syntax introduces another complexity to XML markup: The character
sequence] 1> is not allowed, either in a CDATA section or out. If you really needed to have those three
characters together, you’d have to use this:

11>

In these trivial cases, CDATA sections may look more confusing than the escaping did, but in other cases
it can turn out to be more readable. For example, consider the following example, which uses a CDATA
section to keep an XML parser from parsing a section of JavaScript:

<script language='JavaScript'><! [CDATA [
function myFunc ()
{
if(0 <1 && 1 < 2)
alert ("Hello");
}

]1></script>

61

Part I: Introduction

Figure 2-16 shows how this displays in IE5 or later browsers.

Figure 2-16

Notice the vertical line at the left-hand side of the CDATA section. This indicates that although the
CDATA section is indented for readability, the actual data itself starts at that vertical line. You can visu-
ally see exactly what whitespace is included in the CDATA section.

If you're familiar with JavaScript, you'll probably find the if statement much easier to read than the
following:

1f(0 < 1 && 1 < 2)

Try It Out Talking about HTML in XML

Suppose you want to create XML documentation to describe some of the various HTML tags in exis-
tence. You might develop a simple document type such as the following:

<HTML-Doc>
<tag>
<tag-name></tag-name>
<description></description>
<example></example>
</tag>
</HTML-Doc>

In this case, you know that your <example> element will need to include HTML syntax, meaning that a
lot of < characters are included. This makes <example> the perfect place to use a CDATA section, so that
you don’t have to search through all of your HTML code looking for illegal characters. This way you can
include text like <html> and have the parser simply treat that as six characters, rather than as a tag. To
demonstrate, let’s document a couple of HTML tags:

62

Chapter 2: Well-Formed XML

1. Create a new file (or just open Notepad) and type this code:

<HTML-Doc>
<tag>
<tag-name>p</tag-name>
<description>Paragraph</description>
<example><! [CDATA [
<p>Paragraphs can contain other tags.</p>
]11></example>
</tag>
<tag>
<tag-name>html</tag-name>
<description>HTML root element</description>
<example><! [CDATA [
<html>
<head><title>Sample HTML</title></head>
<body>
<p>Stuff goes here</p
</body>/html>
]1></example>
</tag>
<!--more tags to follow...-->
</HTML-Doc>

2. Save this document as html-doc . xml and view it in IE5 or later (see Figure 2-17).

Figure 2-17
63

Pa

rt I: Introduction

How It Works

Because of your CDATA sections, you can put whatever you want into the <example> elements, and not
have to worry about the text being mixed up with the actual XML markup of the document. This means
that even though there are typos in the second <example> element (the </p is missing the > and /html>
is missing a <), your XML is not affected.

Errors in XML

In addition to specifying how a parser should get the information from an XML document, the XML
Recommendation also specifies how a parser should deal with errors in XML. Two types of errors are
defined: errors and fatal errors.

Q Anerror is simply a violation of the rules in the recommendation, where the results are unde-
fined; the XML processor is allowed to recover from the error and continue processing.

Q Fatal errors are more serious: According to the recommendation, a parser is not allowed to con-
tinue as normal when it encounters a fatal error. (It may, however, keep processing the XML doc-
ument to search for further errors.) This is called draconian error handling. Any error that causes
an XML document to cease being well formed is a fatal error.

The reason for this drastic handling of non-well-formed XML is simple: It would be hard for parser writ-
ers to try to handle “well-formedness” errors, and it is extremely simple to make XML well formed.
(Web browsers don’t force documents to be as strict as XML does, but this is one of the reasons why web
browsers are so incompatible; they must deal with all the errors they may encounter, and try to figure
out what the person who wrote the document was really trying to code.)

Draconian error handling doesn’t just benefit the parser writers; it also benefits us when we're creating
XML documents. If you write an XML document that doesn’t properly follow XML's syntax, you can
find your mistake right away and fix it. Conversely, if the XML parser tried to recover from these errors,
it might misinterpret what you were trying to do, but you wouldn’t know about it because no error
would be raised. In this case, bugs in your software would be much harder to track down, instead of
being caught right at the beginning when you were creating your data. Even worse, if you sent your
XML document to someone else, his or her parser might interpret the mistake differently.

Summary

64

This chapter has provided you with the basic syntax for writing well-formed XML documents.
Highlighted in the chapter were the following;:

0 Elements and empty elements

How to deal with whitespace in XML

Q

Q Attributes
Q How to include comments
a

XML declarations and encodings

Chapter 2: Well-Formed XML

O Processing instructions

O Entity references, character references, and CDATA sections

You've also learned why the strict rules of XML grammar actually benefit you in the long run, as they
force you to catch your errors sooner rather than later, and how some of the rules for authoring HTML
are different from the rules for authoring well-formed XML.

In the next chapter you'll learn about a very important part of XML: namespaces.

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

Question 1

For the addresses in our Order XML, we used a common format of “Address Line 1, Address Line 2,
City, State, and Zip Code.” Other applications need to be stricter with their addresses, and have separate
elements for street number, street name, and so on. Rewrite the last version of the Order XML using the
following information, instead of the Address Line 1/Address Line 2 format:

0 Street number
Street name
Apt. number
City
State

Zip code

0O 0000 o

Additional Information

Question 2

Sometimes the syntax used by XML can be a little troublesome to figure out. The following XML docu-
ment contains a few syntactical errors, preventing it from being well formed. Correct them so that the
document can be read by IE.

Hint: When I'm trying to correct a file like this, I often open it in the browser and fix errors as the browser
reports them to me. Be warned —some of the errors are a bit more difficult to figure out than others.

<?xml version="1"?>
<document>
<--There are a couple of problems with this document.-->
<Information>This document
contains some < bold>information</bold>. Once
it's corrected, it can be read by a parser.</Information>
</Document>

65

XML Namespaces

You have seen why XML provides some benefits over binary formats and can now create well-
formed XML documents. At some point, however, your applications will become more complex,
and you will need to combine elements from various document types into one XML document.

Unfortunately, two document types often have elements with the same name, but with different
meanings and semantics. This chapter introduces XML namespaces, the means by which you can
differentiate elements and attributes of different XML document types from each other when com-
bining them into other documents, or even when processing multiple documents simultaneously.

In this chapter, you will learn the following:

QO Why you need namespaces

0O What namespaces are, conceptually, and how they solve the problem of naming clashes
Q The syntax for using namespaces in XML documents
a

What is a URI, a URL, and a URN

Why We Need Namespaces

Because of the nature of XML, it is possible for any company or individual to create XML docu-
ment types that describe the world in their own terms. If your company feels that an <order>
should contain a certain set of information, while another company feels that it should contain a
different set of information, both companies can go ahead and create different document types to
describe that information. Both companies can even use the name <order> for entirely different
uses if desired.

However, if everyone is creating personalized XML vocabularies, you'll soon run into a problem:
Only so many words are available in human languages, and a lot of them are going to be snapped
up by people defining document types. How can you define a <title> element to be used to

Part I: Introduction

denote the title in a person’s name (such as Dr. or Mrs.) when XHTML already has a <title> element
used to describe the title of an HTML document? How can you then further distinguish those two
<title> elements from the title of a book?

If all of these documents were to be kept separate, this still would not be a problem. If you saw a
<title> element in an XHTML document, you’d know what kind of title it referred to, and if you saw
one in your own proprietary XML document type, you’d know what that meant too. Unfortunately, life
isn’t always that simple, and eventually you'll need to combine various XML elements from different
document types into one XML document. For example, you might create an XML document type con-
taining information about a person, including that person’s title, but also containing the person’s
résumé, in XHTML form. Such a document may look similar to this:

<?xml version="1.0"?>
<person>
<name>
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>
</name>
<position>Vice President of Marketing</position>
<résumé>
<html>
<head><title>Resume of John Doe</title></head>
<body>
<hl>John Doe</hl>
<p>John's a great guy, you know?</p>
</body>
</html>
</résumé>
</person>

If you want to type this XML into Notepad and view the results in IE, remember to save the document
using an appropriate encoding, such as Unicode or UTF-8. The “é” characters in the <résumé> ele-
ment are not part of the basic ASCII character set, so they’ll cause problems for the XML parser when it
tries to read the document if it doesn’t have an appropriate character set to work with. However, if the
document is saved as one of the Unicode encodings, then the parser won’t have any problems with it.

To an XML parser, there isn’t any difference between the two <title> elements in this document. If you
do a simple search of the document to find John Doe’s title by looking for <title> elements, you might
accidentally get Resume of John Doe instead of “sir”. Even in your application, you can’t know which
elements are XHTML elements and which aren’t without knowing in advance the structure of the docu-
ment. That is, you'd have to know that there is a <résumé> element, which is a direct child of <person>,
and that all of the descendents of <résumé> are a separate type of element from the others in your docu-
ment. If your structure ever changed, all of your assumptions would be lost. In the preceding document
it looks like anything inside the <résumé> element is XHTML, but in other documents it might not be so
obvious, and to an XML parser it isn’t obvious at all.

68

Chapter 3: XML Namespaces

Using Prefixes

The best way to solve this problem is for every element in a document to have a completely distinct
name. For example, you might come up with a naming convention whereby every element for your pro-
prietary XML document type gets your own prefix, and every XHTML element gets another prefix.

You could rewrite the previous XML document to something like this:

<?xml version="1.0"?>
<pers:person>
<pers:name>
<pers:title>Sir</pers:title>
<pers:first>John</pers:first>
<pers:middle>Fitzgerald Johansen</pers:middle>
<pers:last>Doe</pers:last>
</pers:name>
<pers:position>Vice President of Marketing</pers:position>
<pers:résumé>
<xhtml :html>
<xhtml :head><xhtml:title>Resume of John Doe</xhtml:title></xhtml:head>
<xhtml : body>
<xhtml :hl>John Doe</xhtml:hl>
<xhtml :p>John's a great guy, you know?</xhtml:p>
</xhtml :body>
</xhtml:html>
</pers:résumé>
</pers:person>

This is just an example to illustrate the theory: If you try to view this document in Internet Explorer, IE
will give you an error about an “undeclared namespace.” You'll see why as we investigate the name-
space syntax in more detail.

This is a bit uglier, but at least you—and your XML parser — can immediately tell what kind of title
you're talking about: a <pers:title> or an <xhtml:title>. Doing a search for <pers:title> will
always return Sir. You can always immediately tell which elements are XHTML elements, without hav-
ing to know in advance the structure of your document.

The drawback to doing this is that you're no longer using proper XHTML elements. Browsers that are
able to display XHTML understand the <p> element, but they don’t understand the <xhtml : p> ele-
ment, so if you wrote an application to read this XML document and it wanted to display the XHTML
portions in a browser, it would have to rename all of the elements first, to get rid of the xhtml prefix.

By separating these elements using a prefix, you have effectively created two kinds of elements in your
document: pers types of elements and xhtml types of elements. Any elements with the pers prefix
belong to the same “category” as each other, just as any elements with the xhtml prefix belong to

another “category.” These “categories” are called namespaces.

These two namespaces are illustrated in Figure 3-1.

69

Part I: Introduction

pers

xhtml: p

xhtml

xhtml: head
xhtml: html

Figure 3-1

Note that namespaces are concerned with a vocabulary, not a document type. That is, the namespace dis-
tinguishes which names are in the namespace, but not what they mean or how they fit together. It is sim-
ply a “bag of names.”

A namespace is a purely abstract entity; it’s nothing more than a group of names that
belong with each other conceptually.

The concept of namespaces also exists in certain programming languages, such as Java, where the same
problem exists. How can you name your Java variables whatever you want and not have those names
conflict with names already defined by others, or even by the Java library itself? The answer is that Java
code is broken up into packages, whereby the names within a package must be unique, but the same
name can be used in any package.

For example, one class defined in Java is named java.applet .Applet. The actual name of the class
is just Applet; java.applet is the package that contains that class. This means that you can create
your own package, and in that package you can define a class of your own, named Applet. You can even
use java.applet.Applet from within your package, as long as you specify the package in which it
resides, so that Java always knows which “Applet” you're referring to.

Why Doesn’t XML Just Use These Prefixes?

70

Unfortunately, there is a drawback to the prefix approach to namespaces used in the previous XML:
Who will monitor the prefixes? The whole reason for using them is to distinguish names from different
document types, but if it is going to work, then the prefixes themselves also have to be unique. If one
company chose the prefix pers and another company also chose that same prefix, the original problem
still exists.

Chapter 3: XML Namespaces

In fact, this prefix administration would have to work a lot like it works now for domain names on the
Internet. A company or individual would go to the “prefix administrators” with the prefix they would
like to use. If that prefix weren’t already being used, they could use it; otherwise, they would have to
pick another one.

To solve this problem, you could take advantage of the already unambiguous Internet domain names in
existence and specify that URIs must be used for the prefix names.

A URI (Uniform Resource Identifier) is a string of characters that identifies a
resource. It can be in one of two flavors: URL (Uniform Resource Locator) or URN
(Universal Resource Name). The differences between URLs and URNS’s are discussed
later in this chapter.

For example, because I'm writing this book for Wiley, which owns the domain name www.wiley. com, I
could incorporate that into the prefix. Perhaps the document might end up looking like this:

<?xml version="1.0"7?>

<{http://www.wiley.com/pers}person>
<{http://www.wiley.com/pers }name>
<{http://www.wiley.com/pers}title>

Sir
</{http://www.wiley.com/pers}title>
<l--ete...——>

Voila! We have solved our problem of uniqueness. Because Wiley owns the www.wiley.com domain
name, I know that nobody else will be using that http: //www.wiley.com/pers prefix in their XML doc-
uments, and if I want to create any additional document types, I can just keep using our domain name,
and add the new namespace name to the end, such as http: //www.wiley.com/other-namespace.

If you visit http: / /www.wiley.com/pers, you'll notice that there is no document at that location. The
Wiley website will give you an error message instead. Does this mean that our namespace is broken?
Actually, not at all. The URL we're using is simply used as a name, for the namespace; the XML parser
won't try to pull back any resources from that location, or use it for any purpose other than naming

the namespaces in the document. We'll talk about this more in a bit, but for now you can remember the
following:

Even though it looks like a URL, a namespace name is only used as a name, not a
location.

It’s important to note that we need more than just the www.wiley. com part of the URL; we need the
whole thing. Otherwise, there would be a further problem: Different people could have control of differ-
ent sections on that domain, and they might all want to create namespaces. For example, the company’s
HR department could be in charge of http: //www.wiley.com/hr and might need to create a name
space for names (of employees), and the sales department could be in charge of http: //www.wiley
.com/sales, and also need to create a namespace for names (of customers). As long as we're using the

71

Part I: Introduction

whole URI, we're fine—we can create both namespaces (in this case, http: //www.wiley
.com/hr/names and http://www.wiley.com/sales/names, respectively). We also need the protocol
(http) in there because there could be yet another department — for example, ftp: //www.wiley
.com/hr and ftp://www.wiley.com/sales.

The only drawback to this solution is that our XML is no longer well formed. Our names can now
include a myriad of characters that are allowed in URIs but not in XML names: / characters, for exam-
ple. In addition, for the sake of this example, we used {} characters to separate the URL from the name,
neither of which is allowed in an XML element or attribute name.

What we really need to solve all of our namespace-related problems is a way to create three-part names
in XML: One part would be the name we are giving this element, the second part would be a URI associ-
ated with the name, for the element’s namespace, and the third part would be an arbitrarily chosen pre-
fix that refers to a URI, which specifies the namespace to which this element belongs. In fact, this is what
XML namespaces provide.

How XML Namespaces Work

72

The XML Namespaces Recommendation introduces a standard syntax for declaring namespaces and
identifying the namespace for a given element or attribute in an XML document.

The XML namespaces specification is located at http: / /www.w3 .org/TR/REC-xml-names/.

To use XML namespaces in your documents, elements are given qualified names. (In most W3C specifica-
tions, qualified name is abbreviated to QName.) These qualified names consist of two parts: the local part,
which is the same as the names we have been giving elements all along, and the namespace prefix, which
specifies to which namespace this name belongs.

For example, to declare a namespace called http://www.wiley.com/pers and associate a <person>
element with that namespace, you would do something like the following:

<pers:person xmlns:pers="http://www.wiley.com/pers" />

The key is the xmlns :pers attribute (xmlns stands for XML Namespace). Here you are declaring the
pers namespace prefix and the URI of the namespace that it represents (http: //www.wiley.com/
pers). We can then use the namespace prefix with our elements, as in pers: person. As opposed to our
previous prefixed version, the prefix itself (pers) doesn’t have any meaning —its only purpose is to
point to the namespace name. For this reason, we could replace our prefix (pers) with any other prefix,
and this document would have exactly the same meaning. (The prefix does, however, have to follow the
same naming conventions as element names.)

This prefix can be used for any descendants of the <pers:person> element, to denote that they also
belong to the http: //www.wiley.com/pers namespace, as shown in the following example:

<pers:person xmlns:pers="http://www.wiley.com/pers">
<pers:name>
<pers:title>Sir</pers:title>
</pers:name>
</pers:person>

Chapter 3: XML Namespaces

Notice that the prefix is needed on both the start-tags and end-tags of the elements. They are no longer
simply being identified by their names, but by their QNames.

Only elements that are specifically prefixed are part of a namespace. For example, consider this
document:

<pers:person xmlns:pers="http://www.wiley.com/pers">
<first/>
</pers:person>

The <first> element is not part of the same namespace as the <person> element because it doesn’t
have a namespace prefix. In fact, in this case, the <first> element is not in a namespace at all.

By now you have probably realized why colons in element names are so strongly discouraged in the
XML 1.0 specification (and in this book). If you were to use a name that happened to have a colon in it
with a namespace-aware XML parser, the parser would get confused, thinking that you were specifying
a namespace prefix.

Internally, when this document is parsed, the parser simply replaces any namespace prefixes with the
namespace itself, creating a name much like the names we used earlier in the chapter. That is, internally
a parser might consider <pers:person> to be similar to < {http://www.wiley.com/pers\person>.
For this reason, the {http://www.wiley.com/pers\person} notation is often used in namespace dis-
cussions to talk about fully qualified names. Just remember that this is only for the benefit of easily dis-
cussing namespace issues; it is not valid XML syntax.

Try It Out Adding XML Namespaces to Your Document

In this example, you see what the document would look like with proper XML namespaces. Luckily,
there is already a namespace defined for XHTML, which is http: //www.w3 .0org/1999/xhtml. You can
use this namespace for the HTML you're embedding in your document.

1. Open Notepad and type in the following XML:

<?xml version="1.0"?>
<pers:person xmlns:pers="http://www.wiley.com/pers"
xmlns:html="http://www.w3.0rg/1999/xhtml">
<pers:name>
<pers:title>Sir</pers:title>
<pers:first>John</pers:first>
<pers:middle>Fitzgerald Johansen</pers:middle>
<pers:last>Doe</pers:last>
</pers:name>
<pers:position>Vice President of Marketing</pers:position>
<pers:résumé>
<html:html>
<html :head><html:title>Resume of John Doe</html:title></html:head>
<html :body>
<html:hl1>John Doe</html:hl>
<html:p>John's a great guy, you know?</html:p>
</html :body>
</html:html>
</pers:résumé>
</pers:person>

73

Part I: Introduction

2. Save this document to your hard drive as namespace.xml.

3. Opennamespace.xmnl in IE. You should get the normal color-coded view of your XML docu-
ment, similar to what is shown in Figure 3-2. (If you don’t, go back and make sure you haven’t
made any mistakes!)

How It Works

74

You now have a document with elements from two separate namespaces, which you defined in the high-
lighted code; and any namespace-aware XML parser will be able to tell them apart. (The fact that the file
opens fine in Internet Explorer indicates that the parser bundled with this browser understands name-
spaces properly; if it didn’t, the document might raise errors instead.) The two namespaces now look
more like Figure 3-3.

The xmlns attributes specify the namespace prefixes you are using to point to your two namespaces:

<pers:person xmlns:pers="http://www.wiley.com/pers"
xmlns:html="http://www.w3.0rg/1999/xhtml">

That is, you declare the pers prefix, which is used to specify elements that belong to the “pers” names-
pace, and the html prefix, which is used to specify elements that belong to the XHTML namespace.
However, remember that the prefixes themselves mean nothing to the XML parser; they are replaced
with the URI internally. You could have used pers or myprefix or blah or any other legal string of
characters for the prefix; it’s only the URI to which they point that the parser cares about —although
using descriptive prefixes is good practice!

Figure 3-2

Chapter 3: XML Namespaces

person

title

p

http://www.w3.0rg/1999/xhtml

http://wiley.com/pers

head

name

résumé

Figure 3-3

Because you have a way of identifying which namespace each element belongs to, you don’t have to
give them special, unique names. You have two vocabularies, each containing a <title> element, and
you can mix both of these <title> elements in the same document. If you ever need a person’s title,
you can easily find any {http://www.wiley.com/pers\title} elements you need and ignore the
{http://www.w3 .org/1999/xhtml}\title elements.

However, even though your <title> element is prefixed with a namespace prefix, the name of the ele-
ment is still <title>. It's just that you have now declared what namespace that <title> belongs to so
that it won’t be confused with other <title> elements that belong to other namespaces.

Default Namespaces

Although the previous document solves all of our namespace-related problems, it’s just a little bit ugly.
You have to give every element in the document a prefix to specify the namespace to which it belongs,
which makes the document look very similar to the first prefixed version. Luckily, you have the option
to create default namespaces.

A default namespace is just like a regular namespace except that you don’t have to
specify a prefix for all of the elements that use it.

Using default namespaces, our document might look more like this:

<person xmlns="http://www.wiley.com/pers">
<name>
<title>Sir</title>
</name>
</person>

75

Part I: Introduction

Notice that the xm1ns attribute no longer specifies a prefix name to use for this namespace. As this is a
default namespace, this element and any elements descended from it belong to this namespace, unless
they explicitly specify another namespace. Therefore, the <name> and <title> elements both belong to
this namespace.

Note that these elements, because they don’t use a prefix, are no longer called QNames, even though
they are still universally unique. Many people use the generic term universal name, or UName, to describe
any name that’s in a namespace, whether it is a prefixed QName or a name in a default namespace.

You can declare more than one namespace for an element, but only one can be the default. This allows
you to write XML like this:

<person xmlns="http://www.wiley.com/pers"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<name/>
<xhtml:p>This is XHTML</xhtml:p>
</person>

In the preceding example, all of the elements belong to the http: //www.wiley.com/pers namespace,
except for the <p> element, which is part of the XHTML namespace. (You declared the namespaces and
their prefixes, if applicable, in the root element so that all elements in the document can use these pre-
fixes.) However, you can’t write XML like this:

<person xmlns="http://www.wiley.com/pers"
xmlns="http://www.w3.0rg/1999/xhtml">

This tries to declare two default namespaces. In this case, the XML parser wouldn’t be able to figure out
to what namespace the <person> element belongs (not to mention that this is a duplicate attribute,
which, as you saw in Chapter 2, is not allowed in XML).

Try It Out Default Namespaces in Action

76

In this Try It Out you rewrite your previous document, but use a default namespace to make it cleaner:

1. Make the following changes to namespace.xml and save it as namespace2 . xml:

<?xml version="1.0"7?>
<person xmlns="http://www.wiley.com/pers"
xmlns:html="http://www.w3.0rg/1999/xhtml">
<name>
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>
<position>Vice President of Marketing</position>
<résumé>
<html:html>
<html :head><html:title>Resume of John Doe</html:title></html:head>

Chapter 3: XML Namespaces

<html : body>
<html:hl>John Doe</html:hl>

<html:p>John's a great guy, you know?</html:p>
</html :body>
</html:html>
</résumé>
</person>

2. When you view the file in Explorer, it should look like Figure 3-4.
How It Works

In the <person> start-tag, the first xmlns attribute doesn’t specify a prefix to associate with this name-
space, so this becomes the default namespace for the element, along with any of its descendents, which

is why you don’t need any namespace prefixes in many of the elements, such as <name>, <title>, and
so0 on.

However, because the XHTML elements are in a different namespace, you do need to specify the prefix
for them, such as the following;:

<html:head><html:title>Resume of John Doe</html:title></html:head>

Figure 3-4

77

Part I: Introduction

Declaring Namespaces on Descendants

So far, when we have had multiple namespaces in a document, we’ve been declaring them all in the root
element, so that the prefixes are available throughout the document. For example, in the previous Try It
Out, we declared a default namespace, as well as a namespace prefix for our HTML elements, all on the
<person> element.

This means that when you have a default namespace mixed with other namespaces, you would create a
document like this:

<person xmlns="http://www.wiley.com/pers"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<name/>
<xhtml:p>This is XHTML</xhtml:p>
</person>

However, you don’t have to declare all of your namespace prefixes on the root element; in fact, a name-
space prefix can be declared on any element in the document. You could also have written the previous
XML like this:

<person xmlns="http://www.wiley.com/pers">
<name/>
<xhtml:p xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
This is XHTML</xhtml:p>

</person>

In some cases this might make your documents more readable because you're declaring the namespaces
closer to where they’ll actually be used. The downside to writing documents like this is that the xhtml
prefix is available only on the <p> element and its descendants; you couldn’t use it on your <name> ele-
ment, for example, or any other element that wasn’t a descendant of <p>.

You can take things even further and declare the XHTML namespace to be the default namespace for the
<p> element and its descendents, like this:

<person xmlns="http://www.wiley.com/pers">

<name/>

<p xmlns="http://www.w3.0rg/1999/xhtml">This is XHTML</p>
</person>

Although http://www.wiley.com/pers is the default namespace for the document as a whole,
http://www.w3.0rg/1999/xhtml is the default namespace for the <p> element, and any of its descen-
dants. In other words, the http: //www.w3 .0org/1999/xhtml namespace overrides the http: //www
.wiley.com/pers namespace, so that it doesn’t apply to the <p> element. Again, in some cases this can
make your documents more readable because you are declaring the namespaces closer to where they
are used.

Try It Out Default Namespaces for Children

In the interest of readability, in this example you will write the XML from the previous Try It Out again,
to declare the default namespace for the <html> tag and its descendants:

78

Chapter 3: XML Namespaces

1. Make the highlighted changes to namespace2 . xml:

<?xml version="1.0"?>
<person xmlns="http://www.wiley.com/pers">
<name>
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>
</name>
<position>Vice President of Marketing</position>
<résumé>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head><title>Resume of John Doe</title></head>
<body>
<hl>John Doe</hl>
<p>John's a great guy, you know?</p>
</body>
</html>
</résumé>
</person>

2. Save this as namespace3 . xm1. This looks a lot tidier than the previous version and represents
the same thing.

3. View the file in Explorer. Your screen should look like the one shown in Figure 3-5.

Figure 3-5

79

Part I: Introduction

How It Works

Because you have completely eliminated the prefixes from your document, the element names become
“cleaner.” The document is no longer cluttered with the pers: and html: prefixes everywhere, which
can make it easier to read for a human reader.

Canceling Default Namespaces

80

Sometimes you might be working with XML documents in which not all of the elements belong to a
namespace. For example, you might be creating XML documents to describe employees in your organi-
zation, and those documents might include occasional XHTML comments about the employees, such as
in the following short fragment:

<employee>
<name>Jane Doe</name>
<notes>
<p xmlns="http://www.w3.0rg/1999/xhtml">I've worked
with <name>Jane Doe</name> for over a year
now.</p>
</notes>
</employee>

In this case, you have decided that anywhere the employee’s name is included in the document it should
be in a <name> element, in case the employee changes his or her name in the future, such as if Jane Doe
gets married and becomes Jane Smith. (In this case, changing the document would then be a matter of
looking for all <name> elements that aren’t in a namespace and changing the values.) In addition,
because these XML documents will be used only by your own application, you don’t have to create a
namespace for it.

However, as shown in the preceding code, one of the <name> elements occurs under the <p> element,
which declares a default namespace, meaning that the <name> element also falls under that namespace.
Therefore, if you searched for <name> elements that had no associated namespace, you wouldn’t pick
this one up. The way to get around this is to use the xmlns attribute to cancel the default namespace by
setting the value to an empty string, as shown in the following example:

<employee>
<name>Jane Doe</name>
<notes>
<p xmlns="http://www.w3.o0rg/1999/xhtml">I've worked
with <name xmlns="">Jane Doe</name> for over a year
now.</p>
</notes>
</employee>

Now the second <name> element is not in any namespace. Of course, if you had a namespace specifically
for your <employee> document, this would become a non-issue, because you could just use the meth-
ods you've already learned to declare that an element is part of that namespace (using a namespace pre-
fix or a default namespace). In this case, you're not declaring that the element is part of a namespace —
you're trying to declare that it’s not part of any namespace, which is the opposite of what you’ve been
doing so far.

Chapter 3: XML Namespaces

Normally, if you're doing this type of processing of XML, and looking for elements or attributes in a spe-
cific namespace, you would be using some type of XML-aware tool: a SAX parser, a DOM implementa-
tion, or some type of XPath-related tool. You'll take a look at all of these technologies — and more! —in
later chapters of the book.

Typically, if you're going to be working with XML documents that mix and match elements from differ-
ent namespaces, you would create namespaces for all of the elements. You wouldn’t usually use ele-
ments that aren’t in a namespace in the same document with UNames. However, if you ever need to,
the flexibility exists.

Do Different Notations Make Any Difference?

You've now seen three different ways to combine elements from different namespaces. You can fully
qualify every name, like this:

<pers:person xmlns:pers="http://www.wiley.com/pers"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<pers:name/>
<xhtml :p>This is XHTML</xhtml:p>
</pers:person>

Alternatively, you can use one namespace as the default, and just qualify any names from other name-
spaces, like this:

<person xmlns="http://www.wiley.com/pers"
xmlns:xhtml="http://www.w3.0rg/1999/xhtml">
<name/>
<xhtml:p>This is XHTML</xhtml:p>
</person>

You can also just use defaults everywhere, like this:

<person xmlns="http://www.wiley.com/pers">

<name/>

<p xmlns="http://www.w3.0rg/1999/xhtml">This is XHTML</p>
</person>

This raises the question whether these three fragments of XML really mean exactly the same thing.

From the pure namespaces point of view, yes — these documents mean exactly the same thing. All three
documents have the same three elements; and in each instance, each element still belongs to the same
namespace as it does in the other two instances.

From the point of view of most applications, these fragments also mean the same thing. When you're
doing work with an XML document, you usually only care about what elements you're dealing with;
you don’t care whether the element’s namespace was declared using a default declaration or an explicit
prefix, any more than you care whether an element with no data was written as a start-tag and end-tag
pair or as an empty element.

81

Part I: Introduction

However, some applications actually do differentiate between the preceding three examples, such as an
application that reads in XML and displays the source code to a user. As you may have noticed if you
used IE5 or later to view the XML from the previous Try It Out exercises, each one is displayed differ-
ently. Take a look at each of the three preceding code examples in Figures 3-6, 3-7, and 3-8, respectively.

Figure 3-6

Figure 3-7

Figure 3-8

82

Chapter 3: XML Namespaces

As you can see, the browser displays the documents exactly as they were written, so if you declare your
namespaces using defaults, the browser displays them using defaults; if you declare them with prefixes,
the browser displays them with prefixes.

The two dominant technologies to programmatically get information out of XML documents, the
Document Object Model (DOM) and Simple API for XML (SAX), covered in Chapters 11 and 12, respec-
tively, provide methods that enable you to get not only the namespace URI for a QName, but also the
prefix, for those applications that need it. This means that not only can you find the fully qualified
namespace names for these elements; you can also see how the XML author wrote those names. In real
life, however, you hardly ever need the namespace prefix, unless you are writing applications to display
the XML as entered to a user. Internet Explorer’s default XSL stylesheet can differentiate between the
preceding cases because it pulls this information from the DOM implementation shipped with the
browser.

Namespaces and Attributes

So far, all of our discussions have been centered on elements, and we’ve been pretty much ignoring
attributes. Do namespaces work the same for attributes as they do for elements?

The answer is no, they don’t. In fact, attributes usually don’t have namespaces the way elements do.
They are just “associated” with the elements to which they belong. Consider the following fragment:

<person xmlns="http://www.wiley.com/pers">
<name id="25">
<title>Sir</title>
</name>
</person>

You know that the <person>, <name>, and <title> elements all belong to the same namespace, which
is declared in the <person> start-tag. The 14 attribute, however, is not part of this namespace; it’s sim-

ply associated with the <name> element, which itself is part of that default namespace. You could use a

notation like the following to identify it for discussion:

"{http://www.wiley.com/pers}\name:id"

That is, the id attribute is attached to the <name> element, which is in the http: //www.wiley
.com/pers namespace.

However, if you used prefixes, you could specify that id is in a namespace like so:

<a:person xmlns:a="http://www.wiley.com/pers">
<a:name a:id="25">
<a:title>Sir</a:title>
</a:name>
</a:person>

There is now an attribute called id, in the http: //www.wiley.com/pers namespace, attached to the
<name> element, which is also in the http: / /www.wiley.com/pers namespace.

83

Part I: Introduction

Unfortunately, the namespaces specification contains a bit of a gray area concerning attributes. For
example, consider the following two fragments:

<a:name id="25">
<a:name a:id="25">

Are these two fragments identical or different? Well, actually, programmers can make up their own
minds whether an application should treat these two cases as the same or different. (In XSLT, for exam-
ple, the two cases would be considered to be different.) For this reason, if you need ensure that an appli-
cation specifically recognizes an attribute as being part of a namespace, instead of just being attached to
an element, you should design the application such that the attributes include a prefix. This also means
that you would have to declare a prefix for your namespace, even if you're using default namespaces for
your elements. On the other hand, most applications treat the two situations identically.

Consider the case in which you want to perform some processing on every attribute in the http: / /www
.wiley.com/pers namespace. If an application considers both of the preceding cases to be the same,
then in both cases the id attribute is processed. Conversely, if the application doesn’t consider both of
the preceding fragments to be the same, then you get only the second id attribute because it is specifi-
cally declared to be in the namespace you're looking for, whereas the first one isn't.

Is this purely theoretical? In most cases, yes. Applications don’t usually look for attributes on their own;
they look for particular elements, and then process the attributes on those elements.

However, attributes from a particular namespace can also be attached to elements from a different
namespace. Attributes that are specifically declared to be in a namespace are called global attributes. A
common example of a global attribute is the XHTML class attribute, which might be used on any XML
element, XHTML or not. This would make things easier when using Cascading Style Sheets (CSS) to dis-
play an XML document.

Try It Out Adding Attributes

84

To see this in action, you will add an id attribute to your <name> element and add a style attribute to
the HTML paragraph portion of your résumé:

1. Change namespace2 .xml to the following, and save it as namespace4 . xml:

<?xml version="1.0"?>
<person xmlns="http://www.wiley.com/pers">
<name id="1">
<title>Sir</title>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>
</name>
<position>Vice President of Marketing</position>
<résumé>
<html:html xmlns:html="http://www.w3.0rg/1999/xhtml">
<html :head><html:title>Resume of John Doe</html:title></html:head>
<html :body>
<html:hl>John Doe</html:hl>
<html:p html:style="FONT-FAMILY: Arial">

Chapter 3: XML Namespaces

John's a great guy, you know?
</html:p>
</html :body>
</html:html>
</résumé>
</person>

Because you want the style attribute to be specifically in the XHTML namespace, you have
gone back to using prefixes on your XHTML elements instead of a default namespace. Another
alternative would be to declare the XHTML namespace twice: once as the default, for <html>
and all of its descendents, and once with a prefix, which could be attached to the style
attribute.

2. Open the document in IE to view the results. It should look like Figure 3-9.

How It Works

The id attribute that you added is associated with the <name> element, but it doesn’t actually have a
namespace.

Similarly, the style attribute is associated with the <p> element, but in this case the attribute is specifi-
cally in the XHTML namespace.

Figure 3-9

85

Pa

rt I: Introduction

Again, applications may or may not treat both of these the same and consider them to be in the same
namespace as the elements to which they are attached. All applications will treat the style attribute as
being in the XHTML namespace, because you have specifically said so, but some will think id is in the
same namespace as <name>, and some won't.

Understanding URIs

We have mentioned that namespaces are specified using URIs, and most of the examples shown so far
have been URLs. To really understand namespaces, we have to look at this concept a little further.

Because so much of the work done on the Internet somehow involves finding and retrieving resources,
much thought has been put into this process. What is a resource? Well, simply put, a resource is any-
thing that has identity. It could be a tangible item, such as a . gif file or a book, or it could be a concep-
tual item, like the current state of the traffic in Toronto. It could be an item that is retrievable over the
Internet, such as an HTML document, or an item that is not retrievable over the Internet, such as the per-
son who wrote that HTML document.

Recall our earlier definition of a URI:

A URI (Uniform Resource Identifier) is a string of characters that identifies a
resource. It can occur in one of two flavors: URL (Uniform Resource Locator), or
URN (Universal Resource Name).

URLs and URNSs are discussed in the following sections.

There is a document that formally describes the syntax for URIs at the IETF (Internet Engineering Task
Force) website, located at http: / /www.ietf.org/rfc/rfc2396. txt ; one that describes the syn-
tax for URNS, located at http: //www.ietf.org/rfc/rfc2141. txt ; and one that describes the
syntax for URLs, located at http: //www.ietf.org/rfc/rfcl738.txt.

URLs

86

If you have been on the Internet for any length of time, you are probably already familiar with URLs,
and most Internet-savvy people understand how URLs work. The first part of the URL specifies the pro-
tocol, http being the most common, with mailto and ftp also used frequently, and others (such as
gopher, news, telnet, file, and so on) used on occasion. (Officially, the protocol part of the URL is
called a scheme.)

The protocol is followed by a colon, and after the colon is a path to the resource being identified.
For example, here’s a URL to a web page on the Internet:

http://www.google.com/intl/en/about.html

Chapter 3: XML Namespaces

This URL contains information that can be used to retrieve a file named about . html from a server on
the Internet named www.google. ca. It specifies that the file is in the /int1/en directory (or virtual
directory) and that the file should be retrieved via the HTTP protocol.

You can also create a URL to an e-mail account, like so:
mailto:someone@somewhere.com

Of course, there is a limitation on the resources that can be retrieved via URLs: Obviously, they must be
resources of a type that is retrievable from a computer! (The resource identified in the mailto: URLis
a bit of an exception, as it isn’t actually retrieved; instead, a mail client is usually triggered, and a new
e-mail is created to the given address.)

URNs

URN s are not as commonly seen as URLs. In fact, most people, even those who have been using the
Internet their whole lives, have never seen a URN. They exist to provide a persistent, location-indepen-
dent name for a resource.

For example, a person’s name is similar to a URN, because the person has the same name, no matter
where they are. Even after a person dies, the name still refers to the person who used to have it when
they were alive. A name is different from a URN, though, because more than one person can have the
same name, whereas URNs are designed to be unique across time and space.

A URN looks something like this:
urn:foo:al23,456

First is the string urn, uppercase or lowercase, and a colon. After the first colon is the Namespace
Identifier, or NID (foo in this case), followed by another colon. Last is the Namespace Specific String, or
NSS (a123, 456, for example). As you can see from the terminology, URNs were designed with name-
spaces already in mind. (Not necessarily XML namespaces, but namespaces in general.)

The NID portion of the URN declares what type of URN this is. For example, to create URNs for
Canadian citizens, we might declare an NID of Canadian-Citizen.

The NSS portion of the URN is the part that must be unique and persistent. In Canada, all citizens are
assigned unique Social Insurance Numbers, so a URN for a Canadian citizen with a Social Insurance
Number of 000-000-000 might look like this:

urn:Canadian-Citizen:000-000-000

Why Use URLs for Namespaces, Not URNs?

The XML namespace specification states that namespaces are identified with URIs, which leaves the pos-
sibility of using either URLs or URNSs. It seems that URNSs are better suited for naming namespaces than
URLs —after all, a namespace is a conceptual resource, not one that can be retrieved via the Internet.
Why then are most namespaces named using URLs instead?

87

Pa

rt I: Introduction

Some people find it easier to create unique namespace names using URLSs, as they are already guaran-
teed to be unique. If Wiley owns the www.wiley.com domain name, they can incorporate them into their
namespace names and know that they will be unique.

Of course, this is still by convention; nothing stops someone at another company — say, Malicious
Names, Inc., — from stealing Wiley’s domain name and maliciously using it as the name for a name-
space. However, if everyone follows the convention, we can be sure that there won't be accidental colli-
sions, which is good enough for our purposes. You could still construct a URN like urn:wileyHR:name,
but many people feel that things are just simpler if you use URLs.

There can also be side benefits of using URLs as namespace names. If you wanted to, you could put a
document at the end of the URL that describes the elements in that namespace. For example, we have
been using http://www.wiley.com/pers as a fictional namespace. If Wiley wanted to make the pers
namespace public, for use in public document types, they could put a document at that location that
describes the various XML elements and attributes in that namespace.

But regardless of what people are doing, the possibility of using a URN as a namespace identifier still
exists, so if you have a system of URNSs that you feel is unique, it is perfectly legal. URNs provide no
benefits over URLs, except for the conceptual idea that they’'re a closer fit to what namespace names are
trying to do— that is, name something, not point to something.

What Do Namespace URIs Really Mean?

88

Now that you know how to use namespaces to keep your element names unique, what exactly do those
namespace URIs mean? In other words, what does http: //www.wiley.com/pers really represent?

The answer, according to the XML namespaces specification, is that it doesn’t mean anything. The URI is
simply used to give the namespace a name, but it doesn’t mean anything on its own, just as the words
John Doe don’t mean anything on their own — they are just used to identify a particular person. As you
saw earlier, the namespace name, although it looks like a URL, is just a name; the XML parser will never
try to go to the URL you've used and try to retrieve anything.

Many people feel that this isn’t enough for XML. In addition to keeping element names distinct, they
would also like to give those elements meaning — that is, not just distinguish <my: element> from
<your:element>, but also define what <my: element> means. What is it used for? What are the legal
values for it? If we could create some kind of “schema” that would define our document type, the
namespace URI might be the logical place to declare this document as adhering to that schema.

The XML Namespaces specification (http: //www.w3.org/TR/REC-xml-names/) states “it is not a goal
that [the namespace URI] be directly useable for retrieval of a schema (if any exists).” (A schema is a doc-
ument that formally describes an XML document type. Several languages are available for creating
schemas, such as DTDs and the XML Schema language from the W3C, which are covered in Chapters 4
and 5.) In other words, as we’ve been saying, the URI is just a name or identifier; it doesn’t have any
inherent meaning. However, it is not strictly forbidden for it to have a meaning. For this reason, some-
one creating an application could legally decide that the URI used in a namespace actually does indicate
some type of documentation, whether that is a prose document describing this particular document type
or a technical schema document of some sort. Nonetheless, in this case, the URI still wouldn’t mean any-
thing to the XML parser; it would be up to the higher-level application to read the URI and do something
with it.

Chapter 3: XML Namespaces

In other words, if I'm writing an application that will process a particular kind of XML file, using name-
spaces, and I want to put something at the end of the URL that I'm using for my namespace name, I'm
free to do that. I just have to remember that the XML parser won't care. It will give me the information
from my XML document, including what namespace each element belongs to, but it would be up to my
application to then go to that URL and retrieve something from it.

As an example of where this might be useful, consider a corporate information processing system
whereby users enter information to be stored in XML format. If different namespaces are defined for dif-
ferent types of documents, and those namespaces are named with URLs, then you could put a help file
at the end of each URL. If users are viewing a particular type of XML document in the special applica-
tion you have written for them, all they have to do is press F1 to get help and find out about this particu-
lar type of document. All your application has to do is open a web browser and point it to the URL that
defines the namespace.

You may also have noticed in the namespace for XHTML that the W3C decided to include the date of the
recommendation in the string (http: //www.w3 .0org/1999/xhtml). This means that documents using
this namespace are also implicitly stating what version of the XHTML Recommendation they’re adher-
ing to; if/when the W3C comes out with a new XHTML Recommendation, they can change the URL, to
distinguish the new XHTML namespace from the old one.

That’s true only if the W3C wants to distinguish the two versions of XHTML that way. Because a
namespace is just a name, they could just as easily decide that they want to continue using the same
string, http://www.w3.org/1999/xhtml, for the namespace, even if the new XHTML
Recommendation is published after 1999.

RDDL

Therefore, in addition to providing human-readable documentation for your namespace, the options of
providing schemas also exist. However, there are a number of these languages available (a few of which
are covered in this book). How do we decide what to put at the end of a URL we use for a namespace
name? Do we put human-readable documentation that describes the namespace? Or do we put a docu-
ment in one of these machine-readable formats? One answer is to use the Resource Directory Description
Language, or RDDL (the RDDL specification can be found at http: //www.openhealth.org/RDDL/).

RDDL was created to combine the benefits of human-readable documentation with the benefits of pro-
viding machine-readable documentation for an XML namespace. An RDDL document is actually an
XHTML document, which makes it human-readable. However, because XHTML is XML, other machine-
readable resources can be included in the document, using a technology called XLink to link the various
documents together. In this way, human-readable documentation can be provided on an XML name-
space, while at the same time providing links to as many other resources as needed, such as machine-
readable documents on the namespace, executable code, and so on.

When to Use Namespaces

By this point, this chapter has covered everything that you need to know about namespaces from a tech-
nical standpoint. You know what they mean, how to use them, and how to combine them. Sit back for a
while now, put your feet up, and let’s talk philosophy. When should you create a new namespace, and
when should you add new elements to an existing one?

89

Part I: Introduction

In the course of this chapter, we have created the http: //www.wiley.com/pers namespace for use in
our documents. We decided to use one namespace, to cover all of the elements that are used to create an
XML document about a person. We could have instead split our namespace up, and created separate
namespaces for each element, or we could have created one namespace for the overall document and
another for the résumé. Why did we choose to do it this way?

Remember that a namespace is just a “bag of names” —that is, it’s a group of element names that belong
together, and that are distinct from element names in other namespaces. The key is the phrase belong
together. You might think of the elements in a namespace as being the vocabulary for a language, the
same way that English words are in the English vocabulary. Any words that belong to that language
would go in that namespace, and words from other languages would go into other namespaces. It's up
to you to decide which elements belong in the same vocabulary, and which ones should go in different
vocabularies.

The W3C went through this process when creating XHTML, the HTML language “redone” in XML. The
problem is that XHTML is based on HTML 4, which has three flavors: frameset (which includes support
for HTML frames), strict (which is designed for clean structural markup, free from all layout tags), and
transitional (which allows formatting markup for older browsers, such as a bgcolor attribute on the
<body> tag). Some HTML elements, such as <p>, appear in all three flavors, while others, such as
<frameset>, may only appear in certain flavors.

This led the W3C, in the initial specifications for XHTML, to indicate that three different namespaces
would be used, one for each flavor. However, the web community strongly disagreed with this
approach. Most people consider HTML (or XHTML) to be one language —even though there may be
more than one “flavor” or “dialect” of that language —so they argued that XHTML should have only
one namespace associated with it. In the end, the W3C decided to go with the one-namespace approach
(the namespace they chose is http: //www.w3.0rg/1999/xhtml , which is why we’ve been using it for
our XHTML examples).

Summary

20

This chapter introduced the concept of namespaces, along with their implementation in XML.
Highlights of this chapter include the following;:

0 What benefit namespaces can potentially give you in your documents
QO How to declare and use namespaces

QO How to effectively use a URI as the name of a namespace

The idea behind namespaces may not seem all that relevant, unless you're combining elements from var-
ious vocabularies into one XML document. You may be thinking, “If I'm just going to create XML docu-
ments to describe my data, why mess around with all of this namespace stuff?” However, when you
remember that you will be using other XML vocabularies, such as XSLT, to transform your documents,
or XHTML to display your data, namespaces become much more relevant. Learning the concepts behind
namespaces will help you combine your documents with these other document types, in addition to any
further document types you may create yourself.

Chapter 3: XML Namespaces

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

Question 1

In this chapter you saw the following XML document, in which you had to cancel the default namespace:

<employee>
<name>Jane Doe</name>
<notes>
<p xmlns="http://www.w3.0rg/1999/xhtml">I've worked
with <name xmlns="">Jane Doe</name> for over a year
now.</p>
</notes>
</employee>

Assuming that this document is for Wiley’s HR department, create a namespace for employees, and use
it in this document. Be sure to keep the XHTML elements in their namespace.

Question 2

Imagine that Wiley has been going through the employee records and realized that they don’t have a
good, unique way to identify each employee. Create a global id attribute that can be attached to any
XML element in the employee namespace you created earlier.

Put this attribute into effect by modifying the XML you created in Question 1, and mark the Jane Doe
employee as employee number x125.

Question 3

Create a new XML file for an employee named Alfred Neuman, with employee number x393. In the
notes for Alfred, mention that he has worked closely with Jane Doe, being sure to use the <name> ele-
ment to refer to her.

91

Part I
Validation

Chapter 4: Document Type Definitions
Chapter 5: XML Schemas

Chapter 6: RELAX NG

Document Type Definitions

As you've seen in the first few chapters, the rules for XML are straightforward. It doesn’t take
much to create well-formed XML documents to describe any information that you want. When
you create XML documents, you can categorize them into groups of similar document types based
on the elements and attributes they contain. You learned that the elements and attributes that
make up a document type are known as the document’s vocabulary. In Chapter 3, you learned how
to use multiple vocabularies within a single document using namespaces. By this time, you may
be wondering how to define your own types of documents and check whether certain documents
follow the rules of your vocabulary.

Suppose you are developing an application that uses the <name> sample from Chapter 1. In the
<name> sample, you created a simple XML document that allowed you to enter the first, middle,
and last name of a person. In the sample, you used the name John Fitzgerald Johansen Doe. Now
suppose that users of your application input information that does not match the vocabulary you
developed. How could you verify that the content within the XML document is valid? You could
write some code within your web application to check whether each of the elements is correct and
in the correct order, but what if you want to modify the type of documents you can accept? You
would have to update your application code, possibly in many places. This isn’t much of an
improvement from the text documents discussed in Chapter 1.

The need to validate documents against a vocabulary is common in markup languages. In fact,

it is so common that the creators of XML included a method for checking validity in the XML
Recommendation. An XML document is valid if its content matches its definition of allowable ele-
ments, attributes, and other document pieces. By using special Document Type Definitions, or DTDs,
you can check the content of a document type with special parsers. The XML Recommendation
separates parsers into two categories: validating and nonvalidating. Validating parsers, according
to the recommendation, must implement validity checking using DTDs. Using a validating parser,
you can remove the content-checking code from the application and depend on the parser to ver-
ify the content of the XML document against the DTD.

Part II: Validation

Although you will learn everything you need to know about DTDs in this chapter, you might like to see
the XML Recommendation and its discussion of DTDs for yourself. If so, you can look it up at
http://www.w3.org/TR/REC-xml#dt-doctype.

In this chapter, you will learn how to do the following:

Q Create DTDs
0 Validate an XML document against a DTD

U Use DTDs to create XML documents from multiple files

Running the Samples

You've already learned about some of the benefits of DTDs, but it will probably help if you look at an
example DTD before moving on. To see how a DTD works, you will create one for the <name> example
from Chapter 1.

Preparing the Ground

You need a program that can validate an XML document against a DTD. Throughout this chapter and
the next two, the examples utilize the Codeplot editor at http: //codeplot.com. The Codeplot editor
enables you to create XML documents, DTDs, and other files in a virtual folder. It also enables you to
check a document’s well-formedness and validity. Simply sign up on the Codeplot home page and you
can begin creating XML documents and DTDs. Of course, you can also use a text editor or XML-specific
editor to work through the examples. If you do so, simply use the built-in functionality of the tool you
choose, or use a validating parser to check the validity of your documents.

How do you use a validating parser? This chapter only covers building and verifying DTD documents.
Apart from using a specialized editor to work with your documents, you can write a program that vali-
dates your XML documents against a DTD. For more information on utilizing parsers in your own
programs, see Chapters 11 and 12.

After you sign up you are ready to validate an XML documents against a DTD —all you need now
isa DTD.

Try It Out What'’s in a Name?

In this example, you embed a DTD that defines the <name> vocabulary directly within an XML docu-
ment. Later, you will see how separating the definition from the XML document can be useful in dis-
tributed environments.

1. Open the Codeplot website, click the Create link to create a new document, and name it
name2 .xml. Type in the following document, making sure you include the spaces as shown.
You may notice that this file looks like the name . xm1 sample from Chapter 1; much of the con-
tent is the same:

96

Chapter 4: Document Type Definitions

<?xml version="1.0"?>

<!DOCTYPE name [
<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

1>

<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

2. Click Save to save the file.

3. You are ready to validate the document. Simply click the Validate button. You should see the
output shown in Figure 4-1.

4. If the output suggests that the validation completed but that there was an error in the docu-
ment, correct the error (the parser reports the line number and column number of the error) and
try again. When editing XML manually, it is common to make errors when you first begin. Soon
you will be able to see an error and correct it preemptively.

Figure 4-1

97

Part II: Validation

5. Create a new document called name3 . xml by clicking the Create link again. Change the name of
the <first> element to <given> within the name2 .xml document:

<?xml version="1.0"?>

<!DOCTYPE name [
<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

1>

<name>
<given>John</given>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

6. Save the file and try validating again. This time the program should indicate errors, as shown in
Figure 4-2.

The program reported that the element <given> was undeclared and that the content of the XML docu-
ment didn’t match what was specified in the DTD.

Figure 4-2

98

Chapter 4: Document Type Definitions

How It Works

This Try It Out used the DTD to check whether the content within the XML document matched the
vocabulary. Internally, parsers handle these checks in different ways. At the most basic level, the parser
reads the DTD declarations and stores them in memory. Then, as it reads the document, it validates each
element that it encounters against the matching declaration. If it finds an element or attribute that does
not appear within the declarations or appears in the wrong position, or if it finds a declaration that has
no matching XML content, it raises a validity error.

Let’s break the DTD down into smaller pieces so that you can get a preview of what you will learn later:
<?xml version="1.0"?>

As you have seen in all of the XML documents, you begin with the XML declaration. Again, this is
optional, but it is highly recommended that you include it to avoid XML version conflicts later.

<!DOCTYPE name [

Immediately following the XML header is the Document Type Declaration, commonly referred to as the
DOCTYPE. This informs the parser that a DTD is associated with this XML document. When using a DTD,
the Document Type Declaration must appear at the start of the document (preceded only by the XML
header) —it is not permitted anywhere else within the document. The DOCTYPE declaration has an excla-
mation mark (!) at the start of the element name. The XML Recommendation indicates that declaration
elements must begin with an exclamation mark. Declaration elements may appear only as part of the
DTD. They may not appear within the main XML content.

At this point, you may have noticed that the syntax for DTDs is very different from
the rules for basic XML documents. DTDs were originally used with the Standard
Generalized Markup Language (SGML). To maintain compatibility with SGML, the
designers of XML decided to keep the declaration language similar. In fact, the DTD
syntax in XML is a simpler form of its SGML counterpart, so you need to learn many
new syntax rules in order to construct DTDs.

In the previous example, you created a relatively simple DocTYPE declaration; later you will look at
some more advanced DOCTYPE declaration features. Directly following the DOCTYPE declaration is the
body of the DTD. This is where you declare elements, attributes, entities, and notations.

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>

<!ELEMENT middle (#PCDATA)>

<!ELEMENT last (#PCDATA)>

In the preceding DTD, you have declared several elements that make up the vocabulary of the <name>
document. Like the DocTYPE declaration, the element declarations must start with an exclamation mark.

99

Part II: Validation

1>

Finally, the declaration section of the DTD is closed using a closing bracket and a closing angle bracket.
This effectively ended the definition, and the XML document immediately follows.

Now that you have seen a DTD and a validating parser in action, you may feel ready to create DTDs
for all of your XML documents. Remember, however, that validation uses more processing power, even
for a small document, so in many circumstances you may not want to use a DTD. For example, when
using XML documents that are created by your company, or that are machine-generated (not hand-
typed), you can be relatively sure that they follow the rules of your vocabulary. In such cases, checking
validity may be unnecessary. In fact, it may negatively affect your overall application performance.

The Document Type Declaration

The Document Type Declaration, or DOCTYPE, informs the parser that your document should conform
to a DTD. It also indicates where the parser can find the rest of the definition. In the first example, the
DOCTYPE was simple:

<!DOCTYPE name []>

The Document Type Declaration always begins in the same way, with <! DOCTYPE, and there must be
some whitespace following the word DOCTYPE, just as there is after element names. In addition, white-
space is not allowed to appear in between DOCTYPE and the opening “<!”.

After the whitespace, the name of the XML document’s root element must appear. It must appear exactly
as it will in the document, including any namespace prefix. Because the document’s root element is
<name>, the word name follows the opening <!DOCTYPE in the declaration.

Remember that XML is case sensitive. Therefore, anytime you see a name in XML, it is case sensitive.
When the recommendation says the name must appear exactly as it will in the document, this includes
character case. You will see this throughout the DTD; any reference to XML names implies case
sensitivity.

Following the name of the root element, you have several options for specifying the rest of the
Document Type Declaration. In the <name> example, the element declarations appeared between the [
and] of the DTD. When declarations appear between the [and], as in the sample, they are called inter-
nal subset declarations. It is also possible to have some or all of your declarations in a separate document.
DTD declarations that appear in external documents are external subset declarations. You can refer to an
external DTD in one of the following two ways:

Q System identifiers
Q Public identifiers

System ldentifiers

A system identifier allows you to specify the location of an external file containing DTD declarations. It is
comprised of two parts: the keyword sYsTEM and a URI reference pointing to the document’s location. A
URI can be a file on your local hard drive, a file on your intranet or network, or even a file available on
the Internet:

<!DOCTYPE name SYSTEM "name.dtd" [...]>

100

Chapter 4: Document Type Definitions

You must type the word SYSTEM after the name of the root element in your declaration. Following the
SYSTEM keyword is the URI reference to the location of the file, in quotation marks. The following exam-
ples use system identifiers:

<!DOCTYPE name SYSTEM "file:///c:/name.dtd" [1>
<!DOCTYPE name SYSTEM "http://wiley.com/hr/name.dtd" []>
<!DOCTYPE name SYSTEM "name.dtd">

Notice that the last example has no [and]characters. This is perfectly normal. Specifying an internal
subset is optional. An XML document might conform to a DTD that uses only an internal subset, only an
external subset, or both. If you do specify an internal subset, it appears between the [and 1, immedi-
ately following the system identifier.

You will see how to use an external DTD in the next Try It Out, but before you do, let’s look at public
identifiers.

Public Identifiers

Public identifiers provide a second mechanism to locate DTD resources:
<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Name Example//EN">

Much like the system identifier, the public identifier begins with a keyword PUBLIC, followed by a spe-
cialized identifier. However, instead of a reference to a file, public identifiers are used to identify an
entry in a catalog. According to the XML specification, public identifiers can follow any format; however,
a commonly used format is called Formal Public Identifiers, or FPIs.

The syntax for an FPI is defined in the document ISO 9070. ISO 9070 also defines the process for regis-
tration and recording of formal public identifiers. The International Organization for Standardization,
or ISO, is a group that designs government-approved standards. You can learn more about the ISO by
going to its website at http: //www.iso.ch/.

The syntax for FPIs matches the following basic structure:

-//Owner//Class Description//Language//Version
At the most basic level, public identifiers function similarly to namespace names, but public identifiers
cannot be used to combine two different vocabularies in the same document. This makes namespaces
much more powerful than public identifiers.
Following the identifier string, you may include an optional system identifier as well. This enables the
processor to find a copy of the document if it cannot resolve the public identifier (most processors can-
not resolve public identifiers). When including the optional system identifier, the SYSTEM keyword
shown earlier isn’t required. A valid document type declaration that uses a public identifier might look

like the following:

<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Name Example//EN" "name.dtd">

101

Part II: Validation

The preceding declaration assumes you are defining a document type for a document whose root ele-
ment is <name>. The definition has the following public identifier:

-//Beginning XML//DTD Name Example//EN

In case this cannot be resolved, there is an URI to a file called name . dtd. In the preceding example, no
internal subset is included.

So far, you've learned about catalogs and registered and unregistered public identi-
fiers, but are these concepts commonly used in XML development? Yes. In fact,
many web browsers, when identifying the versions of an XHTML document, use the
public identifier mechanism. For example, many XHTML web pages will use the
public identifier -/ /W3C//DTD XHTML 1.0 Strict//EN to identify the DTD associ-
ated with the document. When the web browser reads the file, it may use a built-in
DTD that corresponds to the public identifier instead of downloading a copy from
the Web. This enables web browsers to cache the DTD locally, reducing processing
time. When you are developing your applications, you can use the same strategy.
Using public identifiers simply gives you a way to identify a vocabulary, just as
namespaces do.

Now that you have learned how to use public and system identifiers, let’s try to create an external DTD
file and associate it with the XML document. Remember that you can have an internal subset, an exter-
nal subset, or both. When using an internal subset, the DTD declarations will appear within the XML
document. When using an external subset, the DTD declarations will appear in a separate file.

Try It Out The External DTD

By using an external DTD, you can easily share your vocabulary with others in your company, or even
your own industry. Likewise, you can use vocabularies that others have already developed, by referring
to external files they have created. This exercise reconfigures the <name> example so that the DTD is
defined separately from the XML document:

1. Create a new document to form the external DTD. In Codeplot, click the Create link and name
the document name4 . dtd. In the editor, type in the following:

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>

<!ELEMENT middle (#PCDATA)>

<!ELEMENT last (#PCDATA)>

2. Click Save to save the document.

3. Create another new document called name4 . xm1. This document will be similar to the
name3.xml document from the last example:

<?xml version="1.0"?>
<!DOCTYPE name PUBLIC "-//Beginning XML//DTD Name Example//EN" "name4.dtd">
<name>

102

Chapter 4: Document Type Definitions

<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

4, 1t you copied and pasted the contents of the document from the name3 . xml document, make
sure you have also changed the element <given> back to <first> after the last Try It Out. Save
the name4 . xm1 document.

5. You are ready to validate the document again. Click the Validate button.
You should see the output shown in Figure 4-3, which indicates that the validation was successful.

If you received any errors, check whether you have typed everything correctly and try again.

How It Works

In this Try It Out, you used an external DTD to check the XML content. As you may have guessed, the
syntax for the DTD changed very little. The main difference between the internal DTD and external DTD
was the absence of a DOCTYPE declaration within the external DTD. The DOCTYPE declaration is always
located within the main XML document. In addition, within the name4 . xm1 document, there was no
internal subset. Instead, you used a public identifier and system identifier to indicate which DTD the
validation program should use.

Figure 4-3

103

Part II: Validation

In this case, the validation program had no way to resolve public identifiers. The processor instead used
the optional URI reference that you included to find the correct DTD for validation. In this example, the
XML parser had to find the file name4 . dtd. Because this is a relative URL reference (it does not contain a
website address or drive letter), the parser began looking in the current directory — where the XML doc-
ument it was parsing was located. The XML Recommendation does not specify how parsers should han-
dle relative URL references, but most XML parsers will treat the path of the XML document as the base
path, just as this example did. Be sure to check your XML parser’s documentation before you use rela-
tive URL references.

Using external DTDs can be very beneficial in many situations. For example, because the DTD appears
in a single separate document, it is easier to make changes. If the same DTD is repeated in each XML
file, upgrading can be much more difficult. Later in the chapter, you will look at XML documents and
DTDs that consist of many files using entities. You must remember, however, that looking up the DTD
file takes extra processing time. In addition, if the DTD file is located on the Internet, you have to wait
for it to download. Often, it is better to keep a local copy of the DTD for validation purposes. If you are
maintaining a local copy, you should check for changes to the DTD at the original location.

Sharing Vocabularies

In reality, most DTDs will be much more complex than the first example, so it is often better to share
vocabularies and use DTDs that are widely accepted. Before you start creating your own DTDs, it is
good to know where you can find existing ones. Sharing DTDs not only removes the burden of having
to create the declarations, it also enables you to more easily integrate with other companies and XML
developers who use the shared vocabularies.

Many individuals and industries have developed DTDs that are de facto standards. Scientists use the
Chemical Markup Language (CML) DTD to validate documents they share. In the mortgage industry,
many businesses use the Mortgage Industry Standards Maintenance Organization’s (MISMO) DTD
when exchanging information. XHTML, the XML version of HTML 4.01, maintains three DTDs:
Transitional, Strict, and Frameset. These three DTDs specify the allowed vocabulary for XHTML. Using
these, browser developers can ensure that XHTML content is valid before attempting to display it.

You can check many places when trying to find a DTD for a specific industry. The first place to look, of
course, is your favorite search engine. Most often, this will turn up good results. Another great place to
check is the Cover Pages. Cover Pages is a priceless resource of XML information maintained by Robin
Cover; it can be found at http: //xml.coverpages.org/. In addition, you might also want to check
the Dublin Core Metadata Initiative, which is an online resource dedicated to creating interoperable
standards. The address is http: //www.dublincore. org.

You may also want to look for an XML Schema or RELAX NG document for your vocabulary. In fact, it
is likely that the most up-to-date software will use one of these formats instead of a DTD. If you can’t
find a DTD or schema for your application, create one. If you think it may be useful to others in your
industry, release it on the Internet.

104

Chapter 4: Document Type Definitions

Anatomy of a DTD

Now that you have seen a DTD, let’s look at each of the DTD declarations in more detail. Generally,
DTDs consist of three basic parts:

O Element declarations

Q Attribute declarations

Q Entity declarations
The current name example needs to be expanded to explore the more complex aspects of DTDs. In this
section, you will create an XML vocabulary for listing contacts —all of your friends and family. Note,

however, that there are many existing vocabularies for contacts on the Internet. Using a simplified for-
mat will enable you to quickly create your own vocabulary.

Element Declarations

The beginning of this chapter demonstrated element declarations in use, but you have not yet looked at
an element declaration in detail. When using a DTD to define the content of an XML document, you
must declare each element that appears within the document. As you will soon see, DTDs can also
include declarations for optional elements, elements that may or may not appear in the XML document.

<!ELEMENT name (first, middle, last)>
Element declarations consist of three basic parts:

QO The ELEMENT declaration
Q The element name

A The element content model

As you have seen with the DOCTYPE declaration, the ELEMENT declaration is used to indicate to the
parser that you are about to define an element. Much like the DOCTYPE declaration, the ELEMENT declara-
tion begins with an exclamation mark. The declaration can appear only within the context of the DTD.

Following the ELEMENT keyword is the name of the element that you are defining. Just as you saw in the
DOCTYPE, the element name must appear exactly as it will within the XML document, including any
namespace prefix.

The fact that you must specify the namespace prefix within DTDs is a major limitation. Essentially this
means that users are not able to choose their own namespace prefix but must use the prefix defined
within the DTD. This limitation exists because the W3C completed the XML Recommendation before
finalizing how namespaces would work. As you will see in the next two chapters, XML Schemas and
RELAX NG documents are not limited in this way.

The content model of the element appears after the element name. An element’s content model defines the
allowable content within the element. An element may contain element children, text, a combination of

105

Part II: Validation

children and text, or the element may be empty. This is essentially the crux of the DTD, where the entire
document’s structure is defined. As far as the XML Recommendation is concerned, four kinds of content
models exist:

QO Element
Q Mixed
O Empty
O Any

Let’s look at each of these content models in more detail.

Element Content

Many elements in XML contain other elements. In fact, this is one of the primary reasons for creating
XML. When defining a content model with element content, you simply include the allowable elements
within parentheses. For example, if you had a <contact> element that was allowed to contain only a
<name> element, the declaration would read as follows:

<!ELEMENT contact (name)>

In the contact list, however, the <contact> element needs to include more than just the name. For now,
you will include as its children a <name>, <location>, <phone>, <knows>, and <description> element:

<!ELEMENT contact (name, location, phone, knows, description)>

Each element that you specify within this element’s content model must also have its own definition
within the DTD. Therefore, in the preceding example, you would include ELEMENT declarations for the
<name>, <location>, <phone>, <knows>, and <description> elements to complete the DTD.

Even when an element is used in multiple content models, you should only declare it once. In fact, the
XML Recommendation does not allow you to declare two elements with the same name inside a DTD.

The processor needs this information so that it knows how to handle each element when it is encoun-
tered. You may put the ELEMENT declarations in any order you like. As you may have guessed, the ele-
ment name in the content model must appear exactly as it will in the document, including a namespace
prefix, if any.

Of course, even in this small example at the start of the chapter the element had more than one child.
This will often be the case. There are two fundamental ways of specifying the element children:
O Sequences

d Choices

Sequences

Often the elements within these documents must appear in a distinct order. If this is the case, you define
the content model using a sequence. When specifying a sequence of elements, you simply list the element
names separated by commas. Again, this will be within the parentheses that immediately follow the

106

Chapter 4: Document Type Definitions

name of the element you are declaring. All of the examples that had more than one element have used a
sequence when declaring the content model:

<!ELEMENT name (first, middle, last)>

In the preceding example, the declaration indicates that the <name> element must have exactly three
children: <first>, <middle>, and <last> and that they must appear in this order. Likewise, the
<contact> element must have exactly five children in the order specified:

<!ELEMENT contact (name, location, phone, knows, description)>

If your XML document were missing one of the elements within the sequence, or if your document con-
tained more elements, the parser would raise an error. If all of the specified elements were included
within the XML document but appeared in another order such as <last>, <middle>, <first>, the
processor would raise an error.

Note that in an element-only content model (as you have here), whitespace doesn’t matter. Therefore,
using the preceding declaration, the allowable content for the <name> element might appear as follows:

<name>
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

Because the whitespace within the element’s content doesn’t matter, you could also have the content
appear as shown here:

<name><first>John</first><middle>Fitzgerald
Johansen</middle><last>Doe</last></name>

The spacing of the elements in an element-only content model is only for readability. It has no signifi-
cance to the validation program.

Choices

Although you have used sequences throughout this chapter, in many circumstances a sequence doesn’t
allow you to model the element content. Suppose you needed to allow one element or another, but not
both. Obviously, you would need a choice mechanism of some sort. Consider the <location> element,
which specifies where each contact lives:

<!ELEMENT location (address)>

Instead of requiring one element, you could require a choice between two elements:
<!ELEMENT location (address | GPS)>
This declaration would allow the <location> element to contain one <address> or one <GPS> element.

If the <location> element were empty, or if it contained more than one of these elements, the parser
would raise an error.

107

Part II: Validation

Constructing a choice content model is very similar to constructing a sequence content model. Instead of
separating the elements by commas, however, you must use the vertical bar (|) character. The vertical
bar functions as an exclusive OR. An exclusive OR allows one and only one element of the possible
options.

Combining Sequences and Choices Using Groups

Many XML documents need to leverage much more complex rules, beyond simple sequences and choices.
Suppose you wanted to declare <latitude> and <longitude> elements within the <location> content
model instead of the single <GPS> element.

When creating the <location> declaration, you would need to specify that the content can include
either an <address> element or the <latitude> and <longitude> sequence of elements, but not both.
The XML Recommendation allows you to mix sequences and choices. Knowing this, you can declare the
model as follows:

<!ELEMENT location (address | (latitude, longitude))>

As in the earlier examples, you have enclosed the entire content model within parentheses. In this exam-
ple, however, you have a second set of parentheses within the content model. It is good to think of this
as a content model within a content model. The inner content model, in the preceding example, is a
sequence specifying the elements <latitude> and <longitude>. The XML Recommendation allows
content models within content models within content models, and so on, infinitely.

The processor handles each inner content model much like a simple mathematical equation. Because the
processor handles each model individually, it can treat each model as a separate entity. This enables you
to use models in sequences and choices. In the preceding example, you had a choice between an element
and a sequence content model. You could easily create a sequence of sequences, or a sequence of choices,
or a choice of sequences —almost any combination you can think of.

Mixed Content

The XML Recommendation specifies that any element with text in its content is a mixed content model ele-
ment. Within mixed content models, text can appear by itself or it can be interspersed between elements.

In everyday usage, people refer to elements that can contain only text as text-only elements or text-
only content.

The rules for mixed content models are similar to the element content model rules that you learned in
the last section. You have already seen some examples of the simplest mixed content model — text only:

<!ELEMENT first (#PCDATA)>
The preceding declaration specifies the keyword #PCDATA within the parentheses of the content model.
You may remember from Chapter 2 that PCDATA is an abbreviation for Parsed Character DATA. This
keyword simply indicates that the character data within the content model should be parsed by the

parser. An example element that adheres to this declaration might look like the following:

<first>John</first>

108

Chapter 4: Document Type Definitions

Mixed content models can also contain elements interspersed within the text. Suppose you wanted to
include a description of each contact in your XML document. You could create a new <description>
element that enables you to specify where line breaks should occur, and indicate when the text should be
emphasized (italic) or strong (bold):

<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>

In this sample, you have a <description> element. Within the <description> element, you have
interspersed the text with elements such as the (indicating italic text) and the (indicating
a bold section of text) and the
 element (indicating a line break).

If you are familiar with HTML or XHTML you may recognize the , , and
 ele-
ments. HTML frequently uses mixed content models to specify parts of the document.

There is only one way to declare a mixed content model within DTDs. In the mixed content model, you
must use the choice mechanism when adding elements. This means that each element within the content
model must be separated by the vertical bar (|) character:

<!ELEMENT description (#PCDATA | em | strong | br)*>

The preceding sample declares the new <description> element. Notice that you use the choice mecha-
nism to describe the content model; a vertical bar separates each element. You cannot use commas to
separate the choices.

When including elements in the mixed content model, the #PCDATA keyword must always appear first
in the list of choices. This allows validating parsers to immediately recognize that it is processing a
mixed content model, rather than an element content model. Unlike with element-only content models,
you cannot have inner content models in a mixed declaration.

You should also notice the * outside of the parentheses of the content model. When you are including
elements within the mixed content model, you are required to include the * at the end of the content
model, which tells the parser to repeat the content model. The * character is known as a cardinality indi-
cator. You will learn more about cardinality indicators later in this chapter.

Because you are using a repeated choice mechanism (the * cardinality indicator), you have no control
over the order or number of elements within the mixed content. You can have an unlimited number of
 elements, an unlimited number of elements, and any amount of text. All of this can
appear in any order within the <description> element. This simple text validation is considered a
major limitation of DTDs. In the next chapter, you will learn how XML Schema has improved validation
of mixed content models.

In summary, every time you declare elements within a mixed content model, they must follow four rules:

Q They must use the choice mechanism (the vertical bar | character) to separate elements.
Q The #PCDATA keyword must appear first in the list of elements.

QO There must be no inner content models.
a

If there are child elements, the * cardinality indicator must appear at the end of the model.

109

Part II: Validation

Empty Content

Recall from Chapter 2 that some elements may or may not have content:

<middle></middle>
<middle/>

In Chapter 2, the <middle> element sometimes had content and sometimes was empty. Some elements
within your XML documents might never need to contain content. In fact, in many cases it wouldn’t
make sense for an element to contain text or elements. Using the
 element you can insert a line
break into the <description> elements. It would not make much sense to include text within the

 element. Moreover, no elements would logically fit into a
 tag. This is a perfect candidate
for an empty content model.

To define an element with an empty content model, simply include the word EMPTY following the ele-
ment name in the declaration:

<!ELEMENT br EMPTY>

Remember that this requires the element to be empty within the XML document. Using the EMPTY key-
word, you shouldn’t declare elements that may contain content. For example, the <middle> element
may or may not contain other elements. As you will see, even though an element is not declared with an
empty content model, it may still be empty. Because the <middle> element may contain elements, you
have to declare the element by using a mixed content model, rather than the EMPTY keyword.

Any Content

Finally, you can declare an element using the ANY keyword. The ANY keyword allows you to be even less
restrictive about the content model. If you wanted, you could declare the <description> element using
the aNY keyword:

<!ELEMENT description ANY>

In the preceding example, the ANY keyword indicates that any elements declared within the DTD can be
used within the content of the <description> element and that they can be used in any order any
number of times. The ANY keyword does not allow you to include elements that are not declared within
the DTD. In addition to elements, any character data can appear within the <description> element.

Because DTDs are used to restrict content, the ANY keyword is not very popular, as it does very little to
restrict the allowed content of the element you are declaring.

Try It Out “Making Contact”

You are likely ready to build a much more complex DTD with all of this newfound knowledge —you are
also probably eager to see the more complete contacts example. In this Try It Out, you start with the
basics and add more features in following examples:

1. Open Codeplot or another text editor and create a new document called contacts1.xml. Input
the following XML document:

110

Chapter 4: Document Type Definitions

2

4

5.

6.

<?xml version="1.0"7?>
<!DOCTYPE contacts PUBLIC "-//Beginning XML//DTD Contact Example//EN"
"contactsl.dtd">
<contacts>
<contact>
<name>
<first>Jeff</first>
<middle>Craig</middle>
<last>Rafter</last>
</name>
<location>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone>001-909-555-1212</phone>
<knows>David Hunter, Danny Ayers</knows>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>
</contact>
</contacts>

. Save the document.

Notice that you have added a document type declaration that refers to an external system file
called contactsl.dtd. In addition, the root element in this document and the element name
within the DOCTYPE declaration are the same.

. Create a new document called contacts1.dtd. This file will be where you define your DTD.

Because you have a sample XML document, you can base most of your declarations on the text
that you have. You were probably taught that when programming, you should plan and design
first, and then implement. Building a DTD based on an existing sample, however, is by far the
easiest method available. When designing a DTD, it is much easier to create a sample and let the
document evolve before the vocabulary is set in stone. Of course, you must remember that some
elements might not appear in your sample (such as some elements in choice content models).

. Inthe XML document, <contacts> is the root element. This is the easiest place to start, so
begin by declaring it in the DTD:

<!ELEMENT contacts ()>

You haven'’t specified a content model. Looking at the sample document, you can see that the
<contacts> element contains a <contact> element. There is only one child element, so this
content model should be easy to define:

<!ELEMENT contacts (contact)>
Allowing for only one contact as you have done is a little clumsy, but you'll improve this con-
tent model a little later in the chapter.

Of course, because you have specified a contact element in the content model, you know that
you must declare it in the DTD:

<!ELEMENT contact (name, location, phone, knows, description)>

111

Part II: Validation

7. Again, you need to declare each element that is used within the content model. Declare the
<name> element and each of its children:

<!ELEMENT name (first, middle, last)>
<!ELEMENT first (#PCDATA)>

<!ELEMENT middle (#PCDATA)>

<!ELEMENT last (#PCDATA)>

The <first>, <middle>, and <last> elements represent each part of the contact’s name. They
are all text-only elements, so you have declared that they can contain only #PCDATA. Remember
that this qualifies as a mixed content model even though there are no element children.

8. The contacts list won’t be very useful if you don’t include information about where to find the
contact or how to call them, so you should include an element to describe their location and
their phone number. You can use a complex content model for the <location> element, as
shown earlier in the chapter:

<!ELEMENT location (address | (latitude, longitude))>

This declaration allows each location to include either an address or the latitude and longitude
coordinates. Even though you didn’t include the <latitude> or <longitude> elements in the
<location> element in the sample, you should still include them in the content model declara-
tion so that they can be used in other documents.

9. The <address>, <latitude>, and <longitude> elements are text-only elements:

<!ELEMENT address (#PCDATA)>
<!ELEMENT latitude (#PCDATA)>
<!ELEMENT longitude (#PCDATA)>

10. The <phone> element must also be declared in your DTD and will be text-only:

<!ELEMENT phone (#PCDATA)>

11. Thereis a <knows> element in the sample document. For now, you can declare it as text-only:

<!ELEMENT knows (#PCDATA)>

12. You can use a truly mixed content model for the description. This enables your XML document
to contain a mix of text and elements but still allows the DTD to be restrictive about which child
elements can be used:

<!ELEMENT description (#PCDATA | em | strong | br)*>

13. Finally, you must include declarations for the , , and
 elements:

<!ELEMENT em (#PCDATA)>
<!ELEMENT strong (#PCDATA)>
<!ELEMENT br EMPTY>

At this point you have completed the DTD. All of the children that were listed in content mod-
els now have their own element declarations. The final DTD should look like the following;:

<!ELEMENT contacts (contact)>
<!ELEMENT contact (name, location, phone, knows, description)>

<!ELEMENT name (first, middle, last)>

112

Chapter 4: Document Type Definitions

14.
15.

<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

first (#PCDATA)>
middle (#PCDATA)>
last (#PCDATA)>

location (address | (latitude, longitude))>
address (#PCDATA) >

latitude (#PCDATA)>

longitude (#PCDATA)>

phone (#PCDATA)>
knows (#PCDATA) >

description (#PCDATA | em | strong | br)*>
em (#PCDATA)>

strong (#PCDATA)>

br EMPTY>

Save the file.

You are ready to validate the document again. Open the contactsl.xml document again and

click Validate. If you typed everything correctly, you should see the results shown in Figure 4-4. If
you received any errors, confirm that you input the documents correctly and click Validate again.

Figure 4-4

113

Part II: Validation

How It Works

Just as you saw with the original <name> example, the validator processed your XML document, check-
ing that each element it encountered was declared in the DTD. The DTD for your contacts list was much
more complex than the original example. It used all choice and sequence content models, text-only con-

tent models, and mixed content models. You even declared an empty element.

Unfortunately, the contacts DTD is severely limited. It only allows one contact. How can you fix the
problem? You can’t yet. You need a way to tell the processor that the (contact) sequence may appear
many times or not at all. You must learn how to tell the processor how many times the elements will

appear.

Cardinality

An element’s cardinality defines how many times it will appear within a content model. Each element
within a content model can have an indicator following the element name that tells the parser how many
times it will appear. DTDs allow four indicators for cardinality, as shown in the following table:

Indicator Description

[none] As you have seen in all of the content models thus far, when no car-
dinality indicator is used, it indicates that the element must appear
once and only once. This is the default behavior for elements used in
content models.

? Indicates that the element may appear either once or not at all
+ Indicates that the element may appear one or more times
& Indicates that the element may appear zero or more times

Let’s look at these indicators in action.

In many cultures it is common to have several first names. Let’s examine what you want to accomplish
in that case. You know that every contact you create will have at least one first name. You also know that
each contact might have more than one first name. You don’t know how many first names each contact
will have. You need to use a cardinality indicator specifying that the <first> element can appear one or
more times within the <name> element. The + indicator does just that:

<!ELEMENT name (first+, middle?, last)>

By including a + when specifying the first element, you inform the processor that one or more first
names can be included within the content model. It is also common to have no middle name. To allow
for this, you can use a ? when specifying the middle element within the content model. This indicates
that the <name> may or may not contain a <middle> element.

If you were to validate the document again, the parser would not raise validity errors if there were mul-

tiple <first> elements and the <middle> element was missing. With this new declaration, all of the fol-
lowing <name> elements are allowable:

114

Chapter 4: Document Type Definitions

<name>
<first>John</first>
<last>Doe</last>
</name>

<name>
<first>John</first>
<first>Fitzgerald</first>
<last>Doe</last>

</name>

<name>
<first>John</first>
<first>Fitzgerald</first>
<first>Simon</first>
<middle>Johansen</middle>
<last>Doe</last>

</name>

<name>
<first>John</first>
<middle>Johansen</middle>
<last>Doe</last>

</name>

In each of the preceding cases, you can see that the <middle> element may or may not appear. In addi-
tion, the <first> element may appear one or several times. Remember that because you didn’t explic-
itly use a cardinality indicator for the <last> element, it must appear once and only once. In addition,
even though you have used cardinality indicators, when elements do appear, they must be in the order
that you defined within your sequence.

Remember that the cardinality indicator affects only the content model where it
appears. Even though you specify that the <middle> element within the <name>
content model can appear once or not at all, this does not affect the declaration of
the <middle> element, or any other use of the <middle> element in the DTD.

Perhaps the largest deficiency remaining in the contacts DTD is that you can only have one contact.
Currently your DTD allows only one <contact> element to appear as a child of the <contacts> root
element. This won't let you get very far in documenting all of your friends and family. You need to indi-
cate that the element can appear zero, one, or many times. Fortunately, the * cardinality indicator does
just that. You could improve the DTD by changing the earlier <contacts> declaration:

<!ELEMENT contacts (contact*)>
Though it is unlikely that you would ever have an empty contacts list, it is possible. Therefore, utilizing
the * cardinality indicator gives you the flexibility you need. This solves the problem completely, as it

represents the desired content model perfectly. Before you go back to the example, though, let’s look at
some other ways you could spruce up your contacts DTD.

115

Part II: Validation

It might also be helpful to support multiple addresses for each contact. To enable this, you could modify
the <location> declaration:

<!ELEMENT location (address* | (latitude, longitude))>

By using the * cardinality indicator for address, you specify that the <location> element may contain
zero or more <address> elements or a single instance of <latitude> and <longitude> elements.

Adding the * to address allows for multiple addresses, but what if a contact has multiple GPS locations
instead? Luckily, the XML Recommendation allows you to apply cardinality indicators to content mod-

els as well. Remember that the content model is everything that appears within parentheses, and content
models can contain inner content models. Therefore, you can change the <location> declaration again:

<!ELEMENT location (address* | (latitude, longitude)*)>

The * indicator is functioning exactly as it did earlier. This time, however, you are indicating that the
entire sequence (latitude, longitude) may appear zero or more times. Remember that this is still
part of a choice. The new declaration indicates that each location may contain zero or more <address>
elements or it may contain zero or more sequences of <latitude> and <longitude> elements. It could
not contain both <address> elements and <latitude> and <longitude> elements. Moreover, the
<location> element could never contain a <latitude> element without the subsequent <longitude>
element. This might be good enough but it would be nice to have some more options, such as changing
the order and allowing for both addresses and latitude/longitude pairs.

<!ELEMENT location (address | (latitude, longitude))*>

In this example, the * is outside of the parentheses. This indicates that you want the entire content
model to appear zero or more times. In this case, the entire content model consists of a choice between
addresses or the sequence of latitude and longitude. Repeating a choice means that you can choose one
option the first time and another the second. For example, the following <location> element would
be valid:

<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
<latitude>-13.955059</latitude>
<longitude>33.800125</longitude>
</location>

In the first example, you have an <address> element followed by two sets of <latitude> and
<longitude> elements. From the validator’s perspective, you chose the <address> element, then you
chose the <latitude> and <longitude> sequence, and finally you chose another <latitude> and
<longitude> element. These choices could repeat infinitely. You could even choose to have the
<latitude> and <longitude> before you chose to have an <address> element:

<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>

116

Chapter 4: Document Type Definitions

You could choose to have an <address> element in between two <latitude> and <longitude>

sequences:

<location>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
<address>Redlands, CA, USA</address>
<latitude>-13.955059</1latitude>
<longitude>33.800125</1longitude>
</location>

By placing the

* outside of the parentheses, you have constructed an extremely flexible content model

for the <location> element, which should satisfy all of the possible contacts you encounter.

Try It Out

“Making Contact” — Part 2

Now that you have learned how to correct and improve the DTD, let’s get down to business and inte-
grate the changes you have read about so far:

1. Create a new document called contacts2.dtd. To make this easier, copy the content from the
file contactsl.dtd and modify the highlighted sections:

<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

contacts (contact*)>
contact (name, location, phone, knows, description)>

name (first+, middle?, last)>
first (#PCDATA)>

middle (#PCDATA)>

last (#PCDATA)>

location (address | (latitude, longitude))*>
address (#PCDATA)>

latitude (#PCDATA)>

longitude (#PCDATA)>

phone (#PCDATA) >
knows (#PCDATA)>

description (#PCDATA | em | strong | br)*>
em (#PCDATA)>

strong (#PCDATA)>

br EMPTY>

2. Save the file.

3. Of course, now that you have created a new DTD file, you need to update your XML document
to refer to it. Create a new document called contacts2.xml. Again, you can copy the contents
of contactsl.xml and modify the DOCTYPE declaration so that it refers to the new DTD. You
will also change the <middle> element for the first contact to a <first> element and add an
<address>. In order to see the flexibility in the DTD, you can add two more contacts:

<?xml version="1.0"?>

<!DOCTYPE

contacts PUBLIC "-//Beginning XML//DTD Contact Example//EN"

"contacts2.dtd">

117

Part II: Validation

<contacts>
<contact>
<name>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>
</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone>001-909-555-1212</phone>
<knows>David Hunter, Danny Ayers</knows>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>
</contact>
<contact>
<name>
<first>David</first>
<last>Hunter</last>
</name>
<location>
<address>Address is not known</address>
</location>
<phone>416 555 1212</phone>
<knows>Jeff Rafter, Danny Ayers</knows>
<description>Senior Technical Consultant for CGI.</description>
</contact>
<contact>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>
</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>
</location>
<phone>+39-0555-11-22-33-</phone>
<knows>Jeff Rafter, David Hunter</knows>
<description>A Semantic Web developer and technical author specializing in
cutting-edge technologies.</description>
</contact>
</contacts>

4. Save the file.
5. Youare ready to validate the document again. Click the Validate button.

Your output should show a complete validation without errors, as shown in Figure 4-5. If you received
any errors this time, check whether you have typed everything correctly and try again.

118

Chapter 4: Document Type Definitions

Figure 4-5

How It Works

This Try It Out implements much of what you learned throughout this section. To sum it up, you set out
to design a DTD that could be used to describe a complete list of contacts. You used an assortment of
complex content models so that your DTD would reflect various XML documents. Of course, when you
first began designing your DTD, you didn’t include many options (in fact, there were some severe limi-
tations). After you had the basic structure designed, you modified the DTD to correct some problems
and add some features. The design strategy is very common among XML developers.

Some XML designers have taken this design strategy a step further. Instead of rely-
ing only on an example XML document, they use complex Unified Modeling
Language (UML) diagrams or other types of visual aid. As shown in the next chap-
ter, new syntaxes have evolved based on this strategy of using an example document
to describe the vocabulary. For instance, Examplotron uses a syntax in which the
example essentially is the declaration. More information on Examplotron can be
found at http://examplotron.org/.

Now that you have a firm grasp on how to declare elements within the DTD, let’s turn our attention to
attributes.

119

Part II: Validation

Attribute Declarations

Attribute declarations are similar to element declarations in many ways. Instead of declaring allowable
content models for elements, you declare a list of allowable attributes for each element. These lists are
called ATTLIST declarations:

<!ELEMENT contacts (contact*)>
<!ATTLIST contacts source CDATA #IMPLIED>

The preceding example has the element declaration for your <contacts> element from the contacts list
example. Following the element declaration is an ATTLIST declaration, which declares the allowable
attributes of your <contacts> element. This particular ATTLIST declares only one attribute, source, for
the <contacts> element.

An ATTLIST declaration consists of three basic parts:

Q The ATTLIST keyword

d The associated element’s name

Q The list of declared attributes
Just as you have seen in all of the other declarations, the ATTLIST begins with an exclamation mark to
indicate that it is part of the DTD. Following the ATTLIST keyword is the name of the associated ele-

ment. In this example, the name of the associated element is contacts. By specifying this, you indicate
that you are building a list of attributes only for a <contacts> element.

Following the ATTLIST name, you declare each attribute in the list. An ATTLIST declaration can include
any number of attributes. Each attribute in the list consists of three parts:

Q The attribute name

Q The attribute type

d The attribute value declaration
Let’s look at each section of the source attribute declaration:
source CDATA #IMPLIED

In the preceding declaration, the name of the attribute is source. The example declares that this source
attribute can contain character data by using the CDATA keyword — this is the attribute’s type. Lastly, the
declaration indicates that the attribute has no default value, and that this attribute does not need to
appear within the element using the #IMPLIED keyword. This third part of the attribute declaration is
known as the value declaration; it controls how the XML parser handles the attribute’s value. You will
look at value declaration options in more detail a little later in this chapter.

Attribute Names

You learned in Chapter 2 that attribute names are very similar to element names. You must follow the
basic XML naming rules when declaring an attribute. In addition to the basic naming rules, you must
also ensure that you don’t have duplicate names within the attribute list. Remember, duplicate attribute

120

Chapter 4: Document Type Definitions

names are not allowed within a single element. To declare an attribute name, simply type the name
exactly as it will appear in the XML document, including any namespace prefix.

As far as DTDs are concerned, namespace declarations, such as xmlns:contacts=
"http://wiley.com/contacts", are also treated as attributes. Although the
Namespace Recommendation insists that xm1ns statements are declarations and not
attributes, DTDs must declare them in an ATTLIST declaration if they are used.
Again, this is because the W3C finalized the syntax for DTDs before the Namespace
Recommendation was completed.

Attribute Types

When declaring attributes, you can specify how the processor should handle the character data that
appears in the value. So far, you haven’t seen anything like this in DTDs. Within the element declarations,
you could specify that an element contained text, but you couldn’t specify how the processor should treat
the text value. To solve this problem, several new features are available for attribute declaration.

Let’s look at the different attribute types:

Type

CDATA

ID

IDREF

IDREFS

ENTITY

ENTITIES

NMTOKEN

NMTOKENS

Enumerated List

Description

Indicates that the attribute value is character data. Notice
that this is slightly different from the PCDATA keyword in
ELEMENT declarations. Unlike PCDATA, within CDATA, the
parser can ignore certain reserved characters.

Indicates that the attribute value uniquely identifies the
containing element

Indicates that the attribute value is a reference, by ID, to a
uniquely identifiable element

Indicates that the attribute value is a whitespace-separated
list of IDREF values

Indicates that the attribute value is a reference to an external
unparsed entity (you will learn more about entities later).
The unparsed entity might be an image file or some other
external resource such as an MP3 or some other binary file.

Indicates that the attribute value is a whitespace-separated
list of ENTITY values

Indicates that the attribute value is a name token. An
NMTOKEN is a string of character data consisting of standard
name characters.

Indicates that the attribute value is a whitespace-separated
list of NMTOKEN values

Apart from using the default types, you can also declare an
enumerated list of possible values for the attribute.

121

Part II: Validation

As you saw in the previous example, the attribute type immediately follows the attribute name. Let’s
look at each of these types in more detail.

CDATA

CDATA is the default attribute type. It specifies that the attribute value is character data. A processor
won’t do any additional type checking on a CDATA attribute because it is the most basic of the data types.
Of course, the XML well-formedness rules still apply, but as long as the content is well formed, a validat-
ing parser will accept any text as CDATA.

ID, IDREF, and IDREFS

Attributes of type ID can be used to uniquely identify an element within an XML document. Once you
have uniquely identified the element, you can later use an IDREF to refer to that element. Identifying
elements is paramount in many XML technologies, as covered in Chapter 7, “XPath,” and Chapter 8,
“XSLT.” Many of you may have already seen an ID mechanism in action. Within HTML, many elements
can be identified with an ID attribute. Often JavaScript code accesses elements by their ID.

Remember several rules when using ID attributes:

Q The value of an 1D attribute must follow the rules for XML names.
Q The value of an 1D attribute must be unique within the entire XML document.
Q Only one attribute of type ID may be declared per element.
Q The attribute value declaration for an ID attribute must be # IMPLIED or #REQUIRED.
Suppose you added an 1D attribute to the <contact> element:
<!ATTLIST contact person ID #REQUIRED>
In the document you could add the unique ID:
<contact person="Jeff Rafter">
Is the value for the person attribute valid? You have declared it as an ID attribute. The first thing to
notice about your ID value is the underscore (=) between "Jeff" and "Rafter". Remember that XML
names cannot have spaces. If you simply used the contact name (with spaces in between each part of
the name), it would be an invalid ID. Replacing each space in the value with an underscore makes the
value legal.
Using the contact name as the basis for the person attribute helps ensure that each one is different.
Remember that any attribute value of type ID must be unique — it must even be different from the 1D

attributes in different elements.

You haven’t declared more than one ID attribute type in a single element. When you declared the kind
attribute, you chose to include the #REQUIRED keyword.

122

Chapter 4: Document Type Definitions

When you declare IDREF attributes the rules are similar:

O The value of an IDREF attribute must follow the rules for XML names.
QO The value of an IDREF attribute must match the value of some 1D within the XML document.
Often you need to refer to a list of elements. For example, within the <knows> element, you may want to

refer to multiple contacts. You could use an IDREFS attribute store with a list of whitespace-separated
IDREF values that refer to the person ID attributes defined for each of your contacts:

<knows contacts="David_Hunter Danny Ayers"/>

ENTITY and ENTITIES

Attributes can also include references to unparsed entities. An unparsed entity is an entity reference to an
external file that the processor cannot parse. For example, external images are unparsed entities; instead
of actually including the image inside the document, you use special attributes to refer to the external
resource. In XML you can declare reusable references inside your DTD using an ENTITY declaration. You
haven’t seen ENTITY declarations yet, which are covered in more detail later in this chapter.

For now, let’s cover the rules for ENTITY attribute types. In ENTITY attributes, you must refer to an

ENTITY that has been declared somewhere in the DTD. In addition, because you are referring to an

ENTITY, the value must follow the rules for XML names. Consider the following attribute declaration:
<!ATTLIST contact portrait ENTITY #IMPLIED>

After declaring a portrait attribute, you can then refer to an ENTITY within your XML document:
<contact portrait="PictureOfJeffRafter">

The image attribute refers to an ENTITY that is named PictureofJeffRafter. This assumes that you

have declared the ENTITY somewhere in your DTD. In addition, notice that the value follows the rules

for XML names: It begins with a letter and contains valid name characters.

The ENTITIES attribute type is simply a whitespace-separated list of ENTITY values. Therefore, you
could declare the following:

<!ATTLIST contact pictures ENTITIES #IMPLIED>
A valid use of the preceding declaration might look like the following:

<contact pictures="PictureOfJeffRafter-Small
PictureOfJeffRafter-Large">

The ENTITY names are still valid (recall that it is legal to use a dash in an XML name) and they are sepa-
rated by whitespace. In fact, a linefeed and several spaces appear between the two values. This is legal —
the XML processor doesn’t care how much whitespace separates two values. The processor considers any
number of spaces, tabs, linefeeds, and carriage return characters as whitespace.

123

Part II: Validation

NMTOKEN and NMTOKENS

You will often need to have attributes that refer to a concept or single word. This might be an element
name, an entity name, an attribute name, or some other concept. In fact, the value that an NMTOKEN
attribute uses doesn’t even have to be declared. The NMTOKEN type enables you to create an attribute
value that, as long as the value follows the rules for an XML name, the processor will treat as valid.

Suppose you added a tag attribute to the <contact> element that allowed you to specify an interesting
keyword for the contact:

<!ATTLIST contact tag NMTOKEN #IMPLIED>
The following value would be allowable:
<contact tag="author">

When you learned the rules for XML names, you learned that names are not allowed to begin with a
numerical digit. NMTOKEN values are not required to adhere to this rule. An N¥TOKEN value may begin
with any name character, including numbers.

As shown with other attribute types, the NMTOKENS type is simply a whitespace-separated list of
NMTOKEN values. You could declare the tag attribute to allow multiple habitat values as follows:

<!ATTLIST contact tags NMTOKENS #IMPLIED>
The following value would be allowable:
<contact tags="author programmer poetry">

You haven’t declared any of these values within the DTD; they simply follow the rules for NMTOKEN
values.

Enumerated Attribute Types

Clearly, the ability to check types within attribute values is indispensable. Suppose you want to allow
only a certain set of values in the attribute. You could use the existing types to restrict your attribute
value, but it might not give you enough control. Suppose you want to add a kind attribute to the
<phone> element. You could use this attribute to specify what kind of phone number is represented in
each element. You might expect to see the values Home, Work, Cell, and Fax. All of these values are
character data, so you could use the CDATA type. Of course, if you did this, someone could input the
value 42, because it is character data. This isn’t what you want at all. Instead, you could use the
NMTOKEN attribute type because all of your choices are valid NMTOKEN values. Of course, this would also
allow values like Blog. You need to limit the values that are allowed for the attribute with even greater
control.

An enumerated list allows you to do just that. When you declare your attribute, you can specify a list of
allowable values. Again, the whitespace within the declaration does not matter. You can use as much or
as little whitespace before and after each enumerated value as you want. Each value must be a valid
XML name (although it can start with any name character, including numeric digits). Therefore, the
value itself cannot contain spaces. Let’s see what a declaration for the kind attribute would look like
using an enumerated list:

124

Chapter 4: Document Type Definitions

<!ATTLIST phone kind (Home | Work | Cell | Fax) #IMPLIED>

Here, all the possible values are listed within parentheses. Each value is separated by the vertical bar
character (|). This declaration indicates that the value of the kind attribute must match one (and only
one) of the listed values. Each item in the list must be a valid NMTOKEN value. Remember that the
NMTOKEN type functions much like an XML name, but NMTOKEN values can begin with numerical digits.

Some wvalid uses of the new kind attribute would include
<phone kind="Cell">
or
<phone kind="Home">
Some invalid values would include
<phone kind="Dad's Phone">
or
<phone kind="HOME">
The first value is invalid because it attempts to use a value that is not in the list. In fact, it isn’t even a
valid NMTOKEN. The second value is not valid because although Home appears in the list of allowed val-

ues, HOME does not. Remember that because XML is case sensitive, the values in your list will be case
sensitive as well.

Attribute Value Declarations

Within each attribute declaration you must specify how the value will appear in the document. Often,
you will want to provide a default value for the attribute declaration. At times, you might simply require
that the attribute be specified in the document. At other times, you might require that the value of the
attribute be fixed at a given value. Each attribute can be declared with these properties.

The XML Recommendation allows you to specify that the attribute

QO Has a default value
QO Has a fixed value

Q Isrequired
ud

Is implied (or is optional)

Default Values

Sometimes you need to provide a value for an attribute even if it hasn’t been included in the XML docu-
ment. By specifying a default value for the attribute, you can be sure that it is included in the final output.
As the document is being processed, a validating parser automatically inserts the attribute with the
default value if the attribute has been omitted. If the attribute has a default value but a value has also

125

Part II: Validation

been included in the document, the parser uses the attribute included in the document, rather than the
default. Remember that only validating parsers make use of the information within the DTD, so the
default value is used only by a validating parser. The ability to specify default values for attributes is one
of the most valuable features within DTDs.

Specifying a default attribute is easy; simply include the value in quotation marks after the attribute
type:

<!ATTLIST phone kind (Home | Work | Cell | Fax) "Home">

Here, the kind attribute declaration has been modified so that it uses a default value. The default value
is Home. When a validating parser is reading the <phone> element, if the kind attribute has been omit-
ted, the parser will automatically insert the attribute kind with the value Home. If the parser encounters
a kind attribute within the <phone> element, it will use the value that has been specified within the
document.

When specifying a default value for your attribute declarations, you must ensure that the value you
specify follows the rules for the attribute type you have declared. For example, if your attribute type is
NMTOKEN, then your default value must be a valid NMTOKEN. If your attribute type is CDATA, then your
default value can be any well-formed XML character data.

You are not permitted to specify a default value for attributes of type ID. This might seem strange at
first, but it actually makes a good deal of sense. If a validating parser inserted the default value into
more than one element, the 1D would no longer be unique throughout the document. Remember that an
1D value must be unique —if two elements have an ID attribute with the same value, the document is
not valid.

Fixed Values

In some circumstances, an attribute’s value must always be fixed. When an attribute’s value can never
change, you use the #FIXED keyword followed by the fixed value. Fixed values operate much like default
values. As the parser is validating the file, if the fixed attribute is encountered, then the parser checks
whether the fixed value and attribute value match. If they do not match, the parser raises a validity
error. If the parser does not encounter the attribute within the element, it inserts the attribute with the
fixed value.

A common use of fixed attributes is specifying version numbers. Often, DTD authors fix the version
number for a specific DTD:

<!ATTLIST contacts version CDATA #FIXED "1.0">

As with default values, when specifying values in fixed attribute declarations, you must ensure that the
value you specify follows the rules for the attribute type you have declared. As shown with default
value declarations, you cannot specify a fixed value for an attribute of type 1D.

Required Values

When you specify that an attribute is required, it must be included within the XML document. A docu-
ment often must have the attribute to function properly; at other times, it is simply a matter of exercising
control over the document content. Suppose you require the kind attribute:

126

Chapter 4: Document Type Definitions

<!ATTLIST phone kind (Home | Work | Cell | Fax) #REQUIRED>

In the preceding example, the declaration indicates that the kind attribute must appear within every
<phone> element in the document. If the parser encounters a <phone> element without a kind attribute
as it is processing the document, it raises an error.

To declare that an attribute is required, simply add the keyword #REQUIRED immediately after the
attribute type. When declaring that an attribute is required, you are not permitted to specify a default
value.

Implied Values

In most cases the attribute you are declaring won’t be required and often won’t even have a default or
fixed value. In these circumstances, the attribute might or might not occur within the element. These
attributes are called implied attributes, because sometimes no explicit value is available. When the
attributes do occur within the element, a validating parser simply checks whether the value specified
within the XML document follows the rules for the declared attribute type. If the value does not follow
the rules, the parser raises a validity error.

When declaring an attribute, you must always specify a value declaration. If the attribute you are declar-
ing has no default value, has no fixed value, and is not required, then you must declare that the attribute
is implied. You can declare that an attribute is implied by simply adding the keyword #IMPLIED after the
attribute’s type declaration:

<!ATTLIST knows contacts IDREFS #IMPLIED>

Specifying Multiple Attributes

So far, the ATTLIST declarations in our examples have been limited. In each of the preceding examples,
there is only a single attribute. This is fine, but many elements need more than one attribute. No problem —
the ATTLIST declaration allows you to declare more than one attribute, as shown in the following example:

<!ATTLIST contacts version CDATA #FIXED "1.0"
source CDATA #IMPLIED>

In the preceding ATTLIST declaration for the <contacts> element, there is both a version and a
source attribute. The version attribute is a fixed character data attribute; the source attribute is also a
character data attribute but is optional. When declaring multiple attributes, as in this example, simply
use whitespace to separate the two declarations. This example includes a linefeed, and the attribute dec-
larations have been aligned with some extra spaces. This type of formatting is common when declaring
multiple attributes. In addition to being able to declare more than one attribute within an ATTLIST dec-
laration, you are also permitted to declare more than one ATTLIST for each ELEMENT declaration:

<!ATTLIST contacts version CDATA #FIXED "1.0">
<!ATTLIST contacts source CDATA #IMPLIED>

Either style for declaring multiple attributes is legal.

127

Part II: Validation

Try It Out “Making Contact”—Part 3

Now that you have seen some common attribute declarations, let’s revisit the contact list example and
add some improvements. As you can now declare attributes, you will add a version attribute, a source
attribute, a person attribute, and a kind attribute, and you will modify the <knows> element to use the
IDREF mechanism built into DTDs:

1. Create a new document called contacts3.xml. Begin by copying the contacts2.xml content.
Modify the DOCTYPE declaration, add the new attributes, and then save the file:

<?xml version="1.0"?>
<!DOCTYPE contacts PUBLIC "-//Beginning XML//DTD Contact Example//EN"
"contacts3.dtd">
<contacts source="Beginning XML 4E" version="1.0">
<contact person="Jeff Rafter" tags="author xml poetry">
<name>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>
</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone kind="Home">001-909-555-1212</phone>
<knows contacts="David_Hunter Danny_Ayers"/>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>
</contact>
<contact person="David_Hunter" tags="author consultant CGI">
<name>
<first>David</first>
<last>Hunter</last>
</name>
<location>
<address>Address is not known</address>
</location>
<phone kind="Work">416 555 1212</phone>
<knows contacts="Jeff_Rafter Danny Ayers"/>
<description>Senior Technical Consultant for CGI.</description>
</contact>
<contact person="Danny_Ayers" tags="author semantics animals">
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>
</name>
<location>

128

Chapter 4: Document Type Definitions

<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>
</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts="Jeff Rafter David_Hunter"/>
<description>A Semantic Web developer and technical author specializing in
cutting-edge technologies.</description>
</contact>
</contacts>

2. Now that you have modified the XML document, you must declare these new attributes within
the DTD. Create a new file named contacts3.dtd. Again, you can base this document on
contacts2.dtd. Make the following modifications and save the file:

<!ELEMENT
<!ATTLIST
<!ATTLIST

<!ELEMENT
<!ATTLIST
<!ATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

contacts (contact*)>
contacts version CDATA #FIXED "1.0">
contacts source CDATA #IMPLIED>

contact (name, location, phone, knows, description)>
contact person ID #REQUIRED>
contact tags NMTOKENS #IMPLIED>

name (first+, middle?, last)>
first (#PCDATA)>

middle (#PCDATA)>

last (#PCDATA)>

location (address | (latitude, longitude))*>
address (#PCDATA)>

latitude (#PCDATA)>

longitude (#PCDATA)>

phone (#PCDATA) >
phone kind (Home | Work | Cell | Fax) "Home">

knows EMPTY>
knows contacts IDREFS #IMPLIED>

description (#PCDATA | em | strong | br)*>
em (#PCDATA)>

strong (#PCDATA)>

br EMPTY>

3. You are ready to validate your document again. Open contacts3.xm1 and click the Validate

button.

Your output should show a complete validation without errors, as shown in Figure 4-6. If you received
any errors this time, check whether you have typed everything correctly and try again.

129

Part II: Validation

Figure 4-6

How It Works

In this Try It Out example, you added several ATTLIST declarations to your DTD. You added the
attributes version and source to your <contacts> element. The version attribute could be used to
indicate to an application what version of the DTD this contact list matches. Using the source attribute,
you can provide a friendly description of who provided the information. If you had omitted the
version attribute the XML parser would have inserted it for you because you declared that it had a
fixed value of 1. 0.

You also added attributes to identify the contact uniquely in the document, and included some informa-
tion keywords. The unique identifiers were created by simply using the contact’s name and replacing
all the whitespace with underscores (so that it was a valid XML name). The tags attribute included
names that weren’t declared anywhere in the DTD but which still followed the rules for the NMTOKEN
attribute type.

You also added a kind attribute that provided a list of possible phone number entries for the contact.
Because there were only four choices for the value of the kind attribute, you decided to use an enumer-
ated list. You also set the default value to Home because many of the contacts you listed included home
phone numbers and you didn’t want to type it repeatedly. Note that there was no kind attribute on the
phone number in the contact for Danny Ayers. Because the kind attribute was omitted, a processor, as it
is parsing the document, will automatically insert the attribute with the default value. The description
for David Hunter, however, needed to include the kind attribute because the phone number was not

a home phone number, and the default value was Home. Notice too that even when an attribute is
defaulted to a specific value in the DTD, it is still allowable to have that same value appear in the XML
document. You can see this in the contact phone number of Jeff Rafter.

130

Chapter 4: Document Type Definitions

Finally, the <knows> element was modified, specifying that it would be EMPTY and contain a single
IDREFS attribute. This allowed you to connect contacts together through the 1D/ IDREF mechanism built
into DTDs. This can be a very powerful feature. Unfortunately, though, the names you refer to must be
present within your contacts list. Therefore, you couldn’t say that Jeff knows Andrew_watt because
there is no Andrew_watt ID within the contacts list.

Entities

In Chapter 2, you learned that you could escape characters or use entity references to include special
characters within the XML document. You learned that five entities built into XML enable you to include
characters that have special meaning in XML documents. In addition to these built-in entities, you also
learned that you can use character references to include characters that are difficult to type, such as the
(c) character:

<contacts source="Beginning XML 4E's Contact List" version="1.0">
<description>Jeff is a developer & author for Beginning XML 4th
edition © 2006 Wiley Publishing.
Jeff loves
XML!</description>

In the first example, there is an ' entity reference within the attribute content. This allows you to
include a ' character without the XML parser treating it as the end of the attribute value. In the second
example, there is an © character reference within the element content. This allows you to include
the (c) character by specifying the character’s Unicode value.

In fact, entities are not limited to simple character references within XML documents. Entities can be
used throughout the XML document to refer to sections of replacement text, other XML markup, and
even external files. You can separate entities into four primary types, each of which may be used within
an XML document:

Built-in entities
Character entities

a
a
O General entities
O Parameter entities
Let’s look at each of these in more detail.

In fact, technically, each part of an XML document is an entity. For example, the root element within an

XML document is called the document entity, the DTD is another entity, and so on. Of course, you
cannot use these entities as you can use the four main entity type types, so their usefulness is limited.

Built-in Entities
You have already seen that five entities can be used within an XML document by default:

O & —The & character
0 < —The < character

O > —The > character

131

Part II: Validation

Q s' —The ' character

d " —The " character

These five entities are often called built-in entities because according to the XML Recommendation, all
XML parsers must support their use by default. You are not required to create declarations for them in
the DTD, and you will soon see that other kinds of entities must be declared first within the DTD, before
they are used within the document.

References to Built-in Entities

To use an entity, you must include an entity reference within the document. An entity reference, as the
name implies, refers to an entity that represents a character, some text, or even an external file. A refer-
ence to a built-in entity takes the following form:

'

The reference begins with the ampersand (&) character. Immediately following the ampersand is the
name of the entity, in this case apos. At the end of the reference is a semicolon (;). Whitespace is not
allowed anywhere within the reference.

In general, you can use entity references anywhere you can use normal text within the XML document.
For example, you can include entity references within element contents and attribute values. You can
also use entity references within your DTD within default and fixed attribute value declarations, as well
as entity declarations (as shown later). Although the built-in entities allow you to refer to markup char-
acters, they cannot be used in place of XML markup. For example, the following is legal:

<description>Author & programmer</description>

Here, the & built-in entity allows you to include an ampersand (&) in the content of the
<description> element. This is allowed because it is within the element’s text content. Conversely,
the following would be illegal:

<contacts version="1l.0">

In this example, the " ; entity is used in place of actual quotation marks. As an XML parser pro-
cesses the element, it would encounter the & after the = and immediately raise a well-formedness error.
The XML within the document is first checked for well-formedness errors; only then are entity references
resolved. Many XML parsers will check the well-formedness of a specific section of an XML document
and then begin replacing entities within that section. This can be very useful in large documents.
Consult your XML parser’s documentation for more information. In addition, note that you cannot use
entities within the names of elements or attributes.

Character Entities

Character entities, much like the five built-in entities, are not declared within the DTD. Instead, they can
be used in the document within element and attribute content without any declaration. References to
character entities are often used for characters that are difficult to type, or for non-ASCII characters.

132

Chapter 4: Document Type Definitions

References to Character Entities

Again, to use a character entity within your document, you must include an entity reference. The syntax
for character entity references is very similar to syntaxes for the five built-in entities:

©

As you can see from the example, the primary difference in character entity references is that there is no
entity name. The reference begins with the ampersand (&) character, but instead of an entity name, there
is a hash mark (#) followed by a number, in this case 169, which is the Unicode value for the (c) charac-
ter. At the end of the reference is a semicolon (;). As shown in the references to built-in entities, white-
space is not allowed anywhere within the character entity reference.

You can also refer to a character entity by using the hexadecimal Unicode value for the character:
©

Here, the hexadecimal value 0049 is used in place of the decimal value 169. When the value you are
specifying is hexadecimal, you must include a lowercase x before the value, so that the XML parser
knows how it should handle the reference. In fact, it is much more common to use the hexadecimal form
because the Unicode specification lists characters using hexadecimal values.

The best place to find the hexadecimal values for characters is in the Unicode technical reports found at
http://www.unicode.org/charts. For example, the character o that you used in your document
can be found in the document http: //www.unicode.org/charts/PDF/U0080.pdf.

Just as you saw with built-in entity references, character entity references can be used anywhere you can
use normal text, such as element content and attribute values. You can also use them within your DTD.
Like the built-in entities, you cannot use character entities in place of actual XML markup or as part of
the names of elements or attributes.

Does this mean that by using character references you can include any Unicode char-
acter in your XML document? Not exactly. Actually, you are permitted to include
only those characters that are specified within the XML Recommendation, which
was based on Unicode 3.0. As the Unicode specification has evolved, the need to use
more characters in XML has also grown. In XML version 1.1 you can use any
Unicode character that has not been explicitly forbidden, including characters from
the more recent Unicode 5.0. This is why it is important that you include the XML
version in the header at the start of your documents — to ensure that they are back-
wardly compatible. The current list of allowable XML 1.0 characters can be found in
the XML Recommendation at http: //www.w3 .org/TR/REC-xml /#NT-Char and
http://www.w3.org/TR/REC-xml/#CharClasses. If an XML parser encounters a
character (or character entity reference) that is not allowed, the parser should imme-
diately raise a fatal error. Illegal characters are considered well-formedness errors.

133

Part II: Validation

General Entities

General entities function very similarly to the five built-in entities, but general entities must be declared
within the DTD before they can be used within the XML document. Most commonly, XML developers
use general entities to create reusable sections of replacement text. Instead of representing only a single
character, general entities can represent characters, paragraphs, and even entire documents. This section
describes many uses of general entities.

You can declare general entities within the DTD in two ways. You can specify the value of the entity
directly in the declaration or you can refer to an external file. Let’s begin by looking at an internal entity
declaration:

<!ENTITY source-text "Beginning XML 4E's Contact List">

Just as you have seen with the earlier ELEMENT and ATTLIST declarations, the ENTITY declaration
begins with an exclamation mark. Following the ENTITY keyword is the name of the entity, in this case
source-text. You can use this name when referring to the entity elsewhere in the XML document. The
name must follow the rules for XML names, just as you have seen throughout this chapter. After the
entity name in the preceding declaration is a line of replacement text. Whenever an XML parser encoun-
ters a reference to this entity, it substitutes the replacement text at the point of the reference. This exam-
ple is an internal entity declaration because the replacement text appears directly within the declaration
in the DTD.

In the preceding example, the replacement text value is The source of this contact list is
Beginning XML 4E. General entity values are not limited to simple characters or text values, however.
Within a general entity, the replacement text can consist of any well-formed XML content. The only
exception to this rule is that you are not required to have one root element within the replacement text.
For example, the following are legal general entity values:

<!ENTITY address-unknown "The address for this location is "Unknown" ">
<!ENTITY empty-gps "<latitude></latitude><longitude></longitude>">

Notice that entity references are included within the replacement text. Entity references can be used
within your DTDs in place of normal text (default attribute values and entity replacement text values).
In addition, notice that values might or might not have a root element, or might have no elements at all.
Although you can include entity references within replacement text, an entity is not permitted to contain
a reference to itself, either directly or indirectly. The following declaration is not legal:

<!ENTITY address-unknown "The address for this location is &address-unknown; ">

This entity contains a reference to itself within its replacement text. When an entity refers to itself, it is
known as a recursive entity reference. The replacement text for an entity must be well-formed:

<!ENTITY address-start "<address>">
<!ENTITY address-end "</address>">

These two examples are not legal because they are not well formed. In the first declaration, the start of
an <address> element is specified but no closing tag is included. The second declaration contains only
the closing tag of an <address> element. You are not permitted to begin an element in one entity and
end it in another — each entity must be well formed on its own.

134

Chapter 4: Document Type Definitions

Because there are no limits on the length of replacement text, your DTD can quickly become cluttered by
sections of replacement text, making it more difficult to read. You might want to store your replacement
text in an external file instead of including it within the DTD. This can be very useful when you have a
large section of replacement text. When declaring your entities, instead of declaring the replacement text
internally you can refer to external files. When the replacement text for an entity is stored externally, the
entity is declared using an external entity declaration. For example, you could declare your entities as

<!ENTITY jeff-description SYSTEM "jeff.txt">
or

<!ENTITY jeff-description PUBLIC
"-//Beginning XML//Jeff Description//EN" "jeff.txt">

Just as you saw with the Document Type Declaration, when referring to external files, you can use a
system identifier or a public identifier. When you use a public identifier, you can also include an
optional URI reference, as this example does. Each of these declarations refers to an external file named
jeff.txt. As an XML parser is processing the DTD, if it encounters an external entity declaration, then
it might open the external file and parse it. If the XML parser is a validating parser, then it must open the
external file, parse it, and be able to use the content when it is referenced. If the XML parser is not a vali-
dating parser, then it might or might not attempt to parse the external file.

The XML Recommendation makes the distinction between validating and nonvalidating parsers primar-
ily to make it easier to create XML parsers that conform to the XML specification. Many XML parsers
don’t include the capability to validate a document against a DTD because of the additional processing
or programming time it requires. Many of these same parsers have the capability to use external entities,
however, because of the added functionality. If you are using a nonvalidating parser, check the docu-
mentation to see whether it can parse external entities.

Remember that just as you saw with the internal entity declaration, the replacement text must be well-
formed XML (with the exception of requiring a single root element). When the parser encounters a well-
formedness error within the external file, it raises an error and discontinues parsing.

References to General Entities

Now that you know how to declare entities within your DTD, let’s look at how to refer to them within
the document:

&jeff-description;

This entity reference looks very similar to the built-in entity references you learned about earlier. Again,
the reference begins with the ampersand (&) character. Immediately following the ampersand is the
name of the entity to which you are referring, in this case jeff-description. At the end of the refer-
ence is a semicolon (;). Whitespace is not allowed anywhere within the reference, but hyphens (-) and
underscores (_) are. You can refer to any general entity that you have declared within your DTD, as the
preceding example did. When the parser encounters the reference, it includes the replacement text
declared within the DTD or the external file to which the entity declaration refers.

Now that you have seen the basics of how to declare and refer to general entities, let’s look at an exam-
ple that uses them.

135

Part II: Validation

Try It Out “Making Contact” — Part 4

In this example, you'll rework the contacts example so that each of your contact descriptions can be
stored in external files. For this exercise, you create text files for the descriptions. If you are using an
XML editor, save the files in the same folder as the XML document.

1. Begin by creating an external file for David Hunter. Create a new document called david. txt
and type in the following:

Senior Technical Consultant for CGI.

2. Create a description file for Jeff Rafter. Instead of using plain text, you'll mix in some XML ele-
ments. Create a new document called jeff. txt and type in the following;:

Jeff is a developer & author for Beginning XML 4th edition © 2006
Wiley Publishing.
Jeff loves XML!

3. Createa description file for Danny Ayers. This time, you'll create a complete XML file, including
the <description> element. Create a file called danny .xml and type in the following:

<description>A Semantic Web developer and technical author specializing in cutting-
edge technologies.</description>

4. Declare the new entities within your DTD. Create a new document called contacts4.dtd.
Copy the contents of contacts3.dtd, add the following declarations to the end of the file, and
save the file:

<!ENTITY source-text "The source of this contacts list is Beginning XML 4E">
<!ENTITY address-unknown "The address for this location is "Unknown" ">
<!ENTITY empty-gps "<latitude></latitude><longitude></longitude>">

<!ENTITY jeff-description PUBLIC
"-//Beginning XML//Jeff Description//EN" "jeff.txt">

<!ENTITY david-description PUBLIC
"-//Beginning XML//David Description//EN" "david.txt">

<!ENTITY danny-description PUBLIC
"-//Beginning XML//Danny Description//EN" "danny.xml">

Notice the new general entities that can be used when the address or GPS information, as in David’s
contact, is not known.

5. Create a new document called contacts4.xml based on contacts3.xml from the last exam-
ple. You will use the references to the newly defined entities. You also need to change the DOC-
TYPE declaration to refer to the new DTD. After you have completed these modifications, save
the contacts4 .xml file:

<?xml version="1.0"?>
<!DOCTYPE contacts PUBLIC "-//Beginning XML//DTD Contact Example//EN"
"contacts4.dtd">
<contacts source="&source-text;" version="1.0">
<contact person="Jeff_ Rafter" tags="author xml poetry">
<name>

136

Chapter 4: Document Type Definitions

<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>
</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone kind="Home">001-909-555-1212</phone>
<knows contacts="David_Hunter Danny_ Ayers"/>
<description>&jeff-description;</description>
</contact>
<contact person="David_Hunter" tags="author consultant CGI">
<name>
<first>David</first>
<last>Hunter</last>
</name>
<location>
<address>&address-unknown; </address>
&empty-gps;
</location>
<phone kind="Work">416 555 1212</phone>
<knows contacts="Jeff_Rafter Danny Ayers"/>
<description>&david-description;</description>
</contact>
<contact person="Danny_ Ayers" tags="author semantics animals">
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>
</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>
</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts="Jeff_ Rafter David_Hunter"/>
&danny-description;
</contact>
</contacts>

6. You are ready to validate the document again. Open contacts4.xml and click the Validate
button.

Your output should show a complete validation without errors. If you received any errors this time, con-
firm that you typed everything correctly and try again.

To prove that the text has been retrieved from the external files and inserted into the XML document,

download the files and open contacts4 .xml in Internet Explorer. Figure 4-7 shows a section of what
you should see.

137

Part II: Validation

Figure 4-7

How It Works

In this Try It Out, you replaced the textual description of each contact with a general entity reference.
As the XML parser processed the file, it encountered the entity declarations, read the system identifier,
and attempted to retrieve the files. Once it retrieved the files, it parsed the content and stored a copy in
memory so that it could replace any references to the entities in the document with the correct replace-
ment text.

The address-unknown entity and each of the three descriptions were different, so you could experiment
with some of the various features of entities. In the address-unknown entity, you created a simple text
replacement. Within the replacement, you used references to the built-in quot entity.

Though the david-description entity was simply text, you created an external text file that you could
refer to from the DTD. You used a public ID and a system ID to refer to the external file. The public ID
was not used by the processor and, in fact, was not necessary. The simple text you used qualified as
well-formed XML content even though there was no root element (in fact, there were no elements at all).
The text was a valid replacement because the <description> element could legally contain simple text,
or #PCDATA.

The jeff-description entity value was a mix of elements and text. Again, this qualified as well-
formed XML content even though there was no root element. Additionally, the replacement text was
valid because the element and the element were declared within the DTD and allowable
in the <description> element where the entity reference was used.

138

Chapter 4: Document Type Definitions

The danny-description entity value was an actual XML document. By itself, the document was well-
formed XML content. Instead of using the entity reference inside of the <description> element, the ref-
erence completely replaced the <description> element. Looking at the contacts4.xml document in
Internet Explorer (which processes the file before displaying it), you could see that the entire danny-
description entity value was placed where you had the entity reference. Once all the entity references
were replaced with their entity values by the processor, the document was still valid.

Note that you could also have used files stored on the Internet or HTML web pages. However, just as
you saw with the local text files, the parser must parse each external document and check it for well-
formedness. Most HTML files on the web are not well-formed XML; make sure that external files do not
create a well-formedness error when parsed. Additionally, validating parsers will still check the external
replacement values for validity. The ELEMENT declaration for the description element specifies that it
contains #PCDATA or elements or elements. If the XML parser encounters an <html> ele-
ment within the <description> element, even as the result of an entity’s replacement text, it raises a
validity error because you haven’t declared an <html> element within your DTD.

Earlier you learned that validation uses more processing power and that this might be a drawback to
using DTDs. Likewise, using external entities can also decrease your application’s performance. You
might have noticed a significant performance decrease in the last example. Because external files must
be opened and read, and often downloaded from the Internet, consider the pros and cons of using exter-
nal entities before dividing your DTD into separate modules. You must also consider the trade-offs of
performance and ease of maintenance. Splitting your XML and DTDs into separate modules can enable
different departments or developers to focus on specific parts of the document.

Parameter Entities

Parameter entities, much like general entities, enable you to create reusable sections of replacement text.
So far, you have seen that you can refer to entities within element and attribute content, within specific
places inside the DTD, such as default attribute values, and within entity replacement text. Parameter
entities, however, cannot be used in general content; you can refer to parameter entities only within the
DTD. Unlike other kinds of entities, the replacement text within a parameter entity can be made up of
DTD declarations or pieces of declarations.

Parameter entities can also be used to build DTDs from multiple files. This is often helpful when differ-
ent groups work on DTDs. In addition, this enables you to reuse DTDs and portions of DTDs in your
own XML documents. When XML documents or DTDs are divided into multiple files, they are said to
be modular.

Parameter entity declarations are very similar to general entity declarations:
<!ENTITY % DefaultPhoneKind "Home">

This example contains a declaration for an internal parameter entity named Defaul tPhoneKind. You
know that this is a parameter entity because of the percent sign (%) before the name of the entity. This is
the primary difference between the format of parameter entity declarations and general entity declara-
tions. Notice the space between the ENTITY keyword and the percent sign, and between the percent sign
and the name of the entity. This whitespace is required.

139

Part II: Validation

Like general entities, parameter entities can also refer to external files using a system or public identifier:
<!ENTITY % NameDeclarations SYSTEM "name4.dtd">
or

<!ENTITY % NameDeclarations
PUBLIC "-//Beginning XML 4E//DTD External module//EN" "name4.dtd">

Instead of redeclaring the <name>, <first>, <middle>, and <last> elements in the DTD for the con-
tacts list, you could refer to the name4 . dtd from earlier in the chapter. Reusing existing declarations in
your DTD through external parameter entities is a good way to modularize your vocabulary.

References to Parameter Entities

When referring to a parameter entity within a DTD, the syntax changes slightly. Instead of using an
ampersand (&) you must use a percent sign (%), as shown in the following example:

%NameDeclarations;

The reference consists of a percent sign (%), followed by the entity name, followed by a semicolon (;).
References to parameter entities are permitted only within the DTD. Suppose you wanted to make use of
the DefaultPhoneKind parameter entity within the ATTLIST declaration for the phone element. You
could change the declaration as follows:

<!ENTITY % DefaultPhoneKind ""Home"">
<!ATTLIST phone kind (Home | Work | Cell | Fax) %DefaultPhoneKind;>

In this example, the parameter entity called Defaul tPhoneKind is used in place of the attribute value
declaration. Parameter entity references can be used in place of DTD declarations or parts of DTD decla-
rations. Unfortunately, you can’t use the built-in entity " because general entities and built-in enti-
ties that appear in parameter entity values are not expanded as they are elsewhere. Therefore, you
instead use character entities for the quotation marks. The following is perfectly legal:

<!ATTLIST phone kind (Home | Work | Cell | Fax) "%DefaultPhoneKind;">

In the previous example you referred to the parameter entity to build the ATTLIST
declaration. In fact, this is permitted only because you are using an external DTD.
Parameter entity references cannot be used within declarations inside of the internal
subset.

Try It Out “Making Contact” — Part 5

Let’s take what you just learned and use it within your contacts DTD. This will enable you to parameter-
ize the phone attribute declaration within your DTD.

1. Begin by making the appropriate modifications to the DTD file. Create a new document called
contacts5.dtd. You can copy the content from contacts4.dtd, adding the new

140

Chapter 4: Document Type Definitions

DefaultPhoneKind parameter entity and modifying the ATTLIST declaration for the <phone>
element. When you have made the changes, save the contacts5.dtd file:

<!ENTITY % DefaultPhoneKind '"Home"'>
<!ATTLIST phone kind (Home | Work | Cell | Fax) %DefaultPhoneKind;>

2. Change the XML file to refer to the new DTD. This is the only change you need to make
within your XML document. Create a new document based on contacts4.xml from the last
example. Change the Document Type Declaration to refer to your new DTD, and save the file
as contacts5.xml:

<!DOCTYPE contacts PUBLIC "-//Beginning XML//DTD Contact Example//EN"
"contacts5.dtd">

3. Youare ready to validate the document again. Open contacts5.xml and click the Validate
button.

Your output should show a complete validation without errors. If you received any errors this time, con-
firm that you have typed everything correctly and try again.

How It Works

In this last Try It Out, you were able to change ATTLIST declarations by using a parameter entity for the
content model and a parameter entity for the attribute declarations. Just as you have seen throughout
this section, parameter entities enable you to reuse DTD declarations or pieces of declarations. As the
parser attempts to process the content model for the <contact> declaration, it encounters the parameter
entity reference. It replaces the entity reference with the replacement text specified in the ENTITY
declaration.

Actually, when a parser builds the replacement value for a parameter entity, it adds a single space char-
acter before and after the value you specify. This can create all kinds of confusion if you are not careful
in defining your parameter entities. In fact, this is why you need to include the quotation marks as part
of the parameter entity — so that there won’t be extra spaces in the value.

Note that the declaration of a parameter entity must occur in the DTD before any references to that
entity.

Developing DTDs

Most of the DTDs you developed within this chapter were relatively simple. As you begin developing
DTDs for your XML documents, you might find it difficult to present the DTDs in a linear order. Most

of the declarations flowed in order, but often you won’t be sure in what order your DTD declarations
should occur. Don’t worry; apart from entities that are used within the DTDs, declarations can appear in
any order. It is common to keep associated declarations near one another. For example, in most DTDs, an
ATTLIST declaration immediately follows the corresponding ELEMENT declaration.

As the flow of the DTDs becomes difficult to follow, it is important to document your declarations. You
can use XML comments and processing instructions within a DTD, following rules similar to usage in
XML content. Comments and processing instructions can appear in the internal or external subsets, but
they cannot appear within markup declarations.

141

Part II: Validation

For example, the following is valid:

<!-- source : allows you to describe the source of the contacts list -->
<!ATTLIST contacts source CDATA #IMPLIED>

The following is not valid:

<!ATTLIST contacts
<!-- source : allows you to describe the source of the contacts list -->
source CDATA #IMPLIED>

When developing DTDs, it is not necessary to declare comments and processing instructions that are
used within your XML document. In fact, there is no way to declare that they will be present at all.

As you have already seen, developing a DTD is easiest when you have an example XML document.
What should you do if you have a very long example file with many elements? A good strategy is to
divide the DTD into pieces, or modules. The best way to do this is by using external parameter entities.
Instead of designing the whole DTD at once, try to create DTDs for subsections of your vocabulary and
then use parameter entity references when testing. By dividing your DTD in this way, you can quickly
identify and fix errors. Once you have your DTD working, you can combine the modules to increase per-
formance.

DTD Limitations

This chapter has described some of the many benefits of using DTDs. They enable you to validate con-
tent without application-specific code, supply default values for attributes, and even create modular
XML documents. Throughout your XML career, you will use existing DTDs and often design your

own. Because of XML’s strong SGML foundation, much of the early XML development focused on the
markup of technical documents. Since that time, XML has been used in areas no one expected. While this
was a great achievement for the XML community, it began to reveal some limitations of DTDs:

Q Differences between DTD syntax and XML syntax
Q Poor support for XML namespaces

Q Poor data typing
Q

Limited content model descriptions

Before looking at these limitations in more detail, it is important to reiterate that even with their limita-
tions, DTDs are a fundamental part of the XML Recommendation. DTDs will continue to be used in
many diverse situations, even as other methods of describing documents emerge.

DTD Syntax

The syntax for expressing DTD declarations is different from the generic XML syntax you learned in the
first few chapters. Why is the syntax so different? Early on, you learned that XML is based on SGML.
Because many of the developers turning to XML used SGML, the creators of XML chose to adopt the
DTD syntax that was originally developed for SGML.

142

Chapter 4: Document Type Definitions

This proved to be both a benefit and a limitation within XML. Initially, this made migration from SGML
to XML easier. Many users had already developed DTDs for their SGML documents. Instead of having
to completely redesign their vocabularies, they could reuse what they had already done, with minimal
changes. As support for XML grew, new XML tools and standards were developed that enabled users to
manipulate their XML data. Unfortunately, these tools were meant for generic XML, not for DTDs.

XML Namespaces

Whenever element or attribute names are declared within a DTD, the namespace prefix and colon must
be included in the declaration. In addition to this limitation, DTDs must treat namespace declarations as
attributes. This is because the XML Recommendation was completed before the syntax for XML name-
spaces was finalized. Forcing users to declare namespace prefixes in advance defeats the purpose of
namespace prefixes altogether. Merging documents from multiple namespaces when the prefixes are
predefined can be problematic and confusing.

Data Typing

As XML developers began using DTDs to model more complex data (such as databases and program-
ming objects), the need for stronger datatypes emerged. The only available datatypes within DTDs

are limited to use in attribute declarations, and even then the datatypes provide only a fraction of the
needed functionality. No method exists for constraining the data within a text-only element to a specific
type. For example, if you were modeling a database and wanted to specify that data within a specific
element needed to be numeric, you couldn’t do so using DTDs.

Limited Content Model Descriptions

In addition to needing more advanced datatypes, limitations in content model descriptions became
apparent soon after the XML Recommendation was published. Developers wanted the capability to
mimic object inheritance in their XML content models. Developers also found the cardinality operators
limiting. For example, because DTDs lack strict control over the number of times an element occurs, it is
difficult to require that a specific element can have more than one but less than ten occurrences.

Summary

By using DTDs, you can easily validate your XML documents against a defined vocabulary of elements
and attributes. This reduces the amount of code needed within your application. An XML parser can be
used to check whether the contents of an XML document are valid according to the declarations within a
DTD. DTDs enable you to exercise much more control over your document content than simple well-
formedness checks do.

In this chapter, you learned how to do the following;:

0 Validate a document against a DTD
O Create element declarations

QO Create attribute declarations

143

Part II: Validation

Q Create entity declarations

Q Specify an XML document and DTD using external files

You also learned that DTDs have several limitations. The next two chapters illustrate how these limita-
tions have been addressed in newer standards, such as XML Schemas and RELAX NG.

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

Question 1

Build a contact for yourself in the list based on the declarations in the contacts DTD. Once you have
added the new contact, validate your document to ensure that it is correct.

Question 2

Add a gender attribute declaration for the <contact> elements. The attribute should allow two possi-
ble values: male and female. Make sure the attribute is required.

Question 3

Currently, each contact can have only one phone number. Modify the contact declaration so that each
contact can have zero or more phone numbers. In addition, add declarations for website and email
elements.

144

XML Schemas

In the last chapter, you learned that you can use Document Type Definitions (DTDs) to validate
your XML documents. This avoids the need to write application-specific code to check whether
your documents are valid. You also saw some of the limitations of DTDs. Since the inception of
XML, several new formats have been developed that enable you to define the content of your
vocabulary.

In 1999, the W3C began to develop XML Schemas in response to the growing need for a more
advanced format for describing XML documents. Work had already begun previously on several
efforts that were intended to better model the types of document being created by XML develop-
ers. The W3C’s effort took the best of these early technologies and added more features. During
development, several members of the W3C designed simpler schema languages with fewer fea-
tures outside of the W3C. Perhaps the most important effort is RELAX NG, covered in depth in
Chapter 6.

Today, XML Schemas are a mature technology used in a variety of XML applications. Apart from
their use in validation, XML Schemas are used in XQuery, covered in Chapter 9. XML Schemas
can also be used in conjunction with web services and SOAP, as shown in Chapters 14 and 15,
respectively.

A schema is any type of model document that defines the structure of something,
such as database structures or documents. In this case, the something is an XML docu-
ment. In fact, DTDs are a type of schema. Throughout this book, we have been using
the term vocabulary where we could have used the word schema. So, what is an XML
Schema? This is where it gets confusing. The term XML Schema is used to refer to the
specific W3C XML Schema technology. W3C XML Schemas, much like DTDs,
enable you to describe the structure of an XML document. When referring to W3C
XML Schemas, the “S” in “Schema” should be capitalized. XML Schema definitions
are also commonly referred to as XSDs.

Part II: Validation

This chapter covers the following:

d The benefits of XML Schemas
O How to create and use XML Schemas

QO How to document your XML Schemas

Benefits of XML Schemas

At this point you have already invested time in learning DTDs. You know the syntax and can create
complex, even modular, definitions for your vocabulary. Although XML Schemas are the next great
thing, it is helpful to understand some of the benefits of XML Schemas before jumping in:

Q XML Schemas are created using basic XML, while DTDs utilize a separate syntax.
Q XML Schemas fully support the Namespace Recommendation.

QO XML Schemas enable you to validate text element content based on built-in and user-defined
datatypes.

QO XML Schemas enable you to more easily create complex and reusable content models.

QO XML Schemas enable the modeling of programming concepts such as object inheritance and
type substitution.

Let’s look at some of these benefits in more detail.

XML Schemas Use XML Syntax

In the last chapter, you spent most of your time learning the DTD syntax. The syntax, as you learned,
adds a lot to the basic rules for XML well-formedness. When defining an XML Schema, the syntax is
entirely in XML; although you still have to learn the rules regarding which elements and attributes are
required in given declarations, you can use generic XML tools —even those that have no understanding
of the rules specific to XML Schema documents. As you learn new XML technologies throughout this
book, you will see how to apply them to any XML document. For example, Extensible Stylesheet
Language Transformations (XSLT) can be used to work with XML Schemas, but cannot be used on
DTDs. The next chapter describes RELAX NG, another schema language, which has two syntaxes.

XML Schema Namespace Support

Because XML Schemas were finalized after the Namespace Recommendation, the XML Schema specifi-
cation was designed to support namespaces (for a refresher on namespaces, review Chapter 3). Unlike
DTDs, which do not support the full functionality of namespaces, XML Schemas enable you to define
vocabularies that utilize namespace declarations. More important, XML Schemas allow you to mix
namespaces in XML documents with less rigidity. For example, when designing an XML Schema, it is
not necessary to specify namespace prefixes as you must in DTDs. Instead, the XML Schema leaves this
decision to the end-user.

146

Chapter 5: XML Schemas

XML Schema Data Types

When you were developing your DTDs, you could specify that an element had mixed content, element
content, or empty content. Unfortunately, when your elements contained only text, you couldn’t add any
constraints on the format of the text. Attribute declarations gave you some control, but even then the
types you could use in attribute declarations were very limited.

XML Schemas divide datatypes into two broad categories: simple and complex.
Elements that may contain attributes or other elements are declared using complex
types. Attribute values and text content within elements are declared using

simple types.

XML Schemas enable you to declare the type of textual data allowed within attributes and elements,
using simple type declarations. For example, by utilizing these types you could specify that an element
may contain only date values, only positive numbers, or numbers within a certain range. Many com-
monly used simple types are built into XML Schemas. This is, perhaps, the single most important feature
within XML Schemas. By enabling you to specify the allowable type of data within an element or
attribute, you can exercise more rigid control over documents. This enables you to easily create docu-
ments that are intended to represent databases, programming languages, and objects within program-
ming languages. Simple types and complex types are shown later in this chapter.

XML Schema Content Models

To reuse a content model within a DTD, you had to utilize parameter entities. Using multiple parameter
entities can lead to complex declarations within the DTD. XML Schemas provide several mechanisms for
reusing content models. In addition to the simple models that you created in DTDs, XML Schema declara-
tions can use object inheritance and content model inheritance. The advanced features of XML Schemas
enable you to build content models upon content models, modifying the definition in each step.

Do We Still Need DTDs?

Wait a second. Why did you spend all of Chapter 4 learning about DTDs if we were just going to turn
around and teach you a better way to validate documents? Don’t worry — DTDs are extremely useful
even with the advent of XML Schemas. Although XML Schemas provide better features for describing
documents —as well as a more common syntax — they provide no ENTITY functionality. In many XML
documents and applications, the ENTITY declaration is of paramount importance. On the merits of this
feature alone, DTDs will live a long and happy life.

DTDs also have a special prominence because they are the only definition and validation mechanism
embedded within the XML Recommendation. This enables DTDs to be embedded directly in the XML
documents they are describing. All other syntaxes require a separate file. Parsers that support DTDs are
trained to use the embedded declarations, while nonvalidating parsers can ignore the declarations. XML
programming tools, such as the Document Object Model (DOM) and Simple API for XML (SAX) —
covered in Chapters 11 and 12, respectively —have special features for DTD types.

147

Part II: Validation

Because DTDs inherit most of their behavior from Standard Generalized Markup Language (SGML),
they are still widely used in legacy applications.

XML Schemas

As you progress through this chapter, you should begin to realize the benefits of XML Schemas. This
chapter focuses on the basic parts of XML Schemas that are similar to DTDs and explains some of the
datatype mechanisms.

Unfortunately, XML Schemas cannot be covered completely in one chapter. The advanced features of
XML Schemas add significant confusion and complexity. Often these features are not supported correctly
within different validators, and many experts recommend against their usage. This chapter covers the
basic features —those that everyone agrees upon and recommends.

Although you will learn how to design and use XML Schemas in this chapter, you might like to see the
XML Schema Recommendation for yourself. It is divided into three parts: an introduction to XML
Schema concepts at www .w3 .org/TR/xmlschema-0/; a document that defines all of the structures
used in XML Schemas at www . w3 .org/TR/xmlschema-1/; and a document that describes XML
Schema datatypes at www .w3 . org/TR/xmlschema-2/.

The XML Schema Document

Most XML Schemas are stored within a separate XML document. In this respect, XML Schemas function

very similarly to external DTDs; an XML document contains a reference to the XML Schema that defines

its vocabulary. An XML document that adheres to a particular XML Schema vocabulary is called an XML
Schema instance document.

As shown in the last chapter, validating a document against its vocabulary requires
the use of a special parser. The XML Schema Recommendation calls these parsers
schema validators. Not only do schema validators render a verdict on the document’s
schema validity, but many also provide type information to the application. This set
of type information is called the Post Schema Validation Infoset (PSVI). The PSVI con-
tains all of the information in the XML document and a basic summary of every-
thing declared in the schema. For example, PSVI output is used by XQuery and
XPath2.

Running the Samples

You have learned some of the benefits of XML Schemas, but it helps if you see an entire XML Schema
before you look at each part in detail. To illustrate how the XML Schema works, we will modify the
name example from the previous chapter. Throughout this chapter, the examples assume you are using
the Codeplot editor (http://codeplot.com). This is the same editor used in Chapter 4. In addition to
being able to work with DTDs, Codeplot is capable of checking an XML Schema instance document

148

Chapter 5: XML Schemas

against its XML Schema. If you need more information on using Codeplot, please refer to Chapter 4. You
can also use a different XML editor that supports XML Schema validation if you prefer. Additionally, it is
possible to create a program that validates your XML against an XML Schema using a validating parser
library. More information on using parsers in your own programs is available in Chapters 11 and 12.

At the time of this writing, support for XML Schemas is almost as widespread as
support for DTDs. A list of XML Schema tools can be found on the XML Schema
lunnepageatwww.w3.org/XML/Schema#Tools.

Try It Out What's in a Name?

This example creates an XML Schema that defines the name vocabulary. It shows how to refer to the
XML Schema from the instance document:

1. Begin by creating the XML Schema. In Codeplot, create a new document and name it
name5 . xsd. Copy the following and save the file when you are finished:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
targetNamespace="http://www.example.com/name" elementFormDefault="qualified">
<element name="name">
<complexType>
<sequence>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>
</sequence>
<attribute name="title" type="string"/>
</complexType>
</element>
</schema>

2. Create the instance document. This document is very similar to the name4 . xm1 example from
the previous chapter. Instead of referring to a DTD, refer to the newly created XML Schema.
Create a new document called name5 . xm1 and copy the following; when you are finished, save
the file:

<?xml version="1.0"?>
<name
xmlns="http://www.example.com/name"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://www.example.com/name name5.xsd"
title="Mr.">
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>
</name>

149

Part II: Validation

3. You are ready to validate your XML instance document against the XML Schema. Because you
refer to your XML Schema within name5 . xm1, you don’t need to select it within the validator.
Simply click the Validate button in the Codeplot editor and observe the output results, shown in
Figure 5-1. If the output suggests that the validation completed but there is an error in the docu-
ment, correct the error and try again.

4. If you would like to see what happens when there is an error, then simply modify your
name5 .xml document and try validating again.

How It Works

This Try It Out created an XML Schema for the name vocabulary. Let’s look at each part of the schema
briefly, to get an idea of what to expect throughout the chapter.

You used the XML Schema to determine whether your instance document was schema valid. To connect
the two documents, you included a reference to the XML Schema within your instance document. The
internal process by which schema validators compare the document structure against the vocabulary
varies greatly. At the most basic level, the schema validator reads the declarations within the XML
Schema. As it is parsing the instance document, it validates each element that it encounters against the
matching declaration. If it finds an element or attribute that does not appear within the declarations, or
if it finds a declaration that has no matching XML content, then it raises a schema validity error.

<?xml version="1.0"7?>

Figure 5-1

150

Chapter 5: XML Schemas

As shown in all of the XML documents, you begin with the XML declaration. Again, this is optional, but
it is highly recommended that you include it to avoid XML version conflicts later:

<schema xmlns="http://www.w3.0rg/2001/XMLSchema" xmlns:target="http://www
.example.com/name" targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">

The root element within your XML Schema is the <schema> element. Within the <schema> element,

you have the namespace declaration. The namespace of the <schema> elementis http: //www.w3
.org/2001/XMLSchema. Within the <schema> element, you also include a targetNamespace attribute
indicating that you are developing a vocabulary for the namespace http: //www.example.com/name.
Remember that this is just a unique name; the URL does not necessarily point to anything. You also
declared a namespace that matches your targetNamespace with the prefix target. If you need to refer
to any declarations within your XML Schema, you need this declaration, so you include it just in case. As
with all namespace declarations, you are not required to use target as your prefix; you could choose
any prefix you like.

You also included the attribute elementFormDefault with the value qualified. Essentially, this con-
trols the way namespaces are used within your corresponding XML document. For now, it is best to get
into the habit of adding this attribute with the value qualified, as it will simplify your instance docu-
ments. You will see what this means a little later in the chapter.

<element name="name">

Within the <schema> element is an <element> declaration. Within this <element> declaration, you
specified that the name of the element is name. In this example, the content model is specified by includ-
ing a <complexType> definition within the <element> declaration:

<complexType>
<sequence>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>
</sequence>
<attribute name="title" type="string"/>
</complexType>

Because the <name> element contains the elements <first>, <middle>, and <last>, it must be
declared as a complex type. A <complexType> definition enables you to specify the allowable elements
and their order as well as any attribute declarations.

Just as in your DTD, you must declare your content using a content model. In DTDs you could use
sequences and choices when specifying your content model. In this example, you have indicated that
you are using a sequence by including a <sequence> element. The <sequence> declaration contains
three <element> declarations. Within these declarations, you have specified that their type is string.
This indicates that the elements must adhere to the XML Schema simple type string, which allows any
textual content.

In addition, within the <complexType> definition is an <attribute> declaration. This <attribute>
declaration appears at the end of the <complexType> definition, after any content model information.

151

Part II: Validation

By declaring a title attribute, you can easily specify how you should address the individual described
by your XML document. Because the title attribute is declared in the <complexType> declaration for the
<name> element, the attribute is allowed to appear in the <name> element in the instance document.

Before we move on, take a quick look at the instance document:

<name
xmlns="http://www.example.com/name"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.example.com/name name5.xsd"
title="Mr.">

Within the root element of the instance document are two namespace declarations. The first indicates
that the default namespace is http: //www. example.com/name. This namespace matches the
targetNamespace that you declared within your XML Schema. You also declare the namespace
http://www.w3.0rg/2001/XMLSchema-instance. Several attributes from this namespace can be
used within your instance document.

The instance document includes the attribute schemaLocation. This attribute tells the schema validator
where to find the XML Schema document for validation. The schemaLocation attribute is declared
within the namespace http: //www.w3.0rg/2001/XMLSchema-instance, so the attribute has the pre-
fix xsi. The value of the schemaLocation attribute is http: //www.example.com/name name5 . xsd.
This is known as a namespace-location pair; it is the namespace of your XML document and the URL

of the XML Schema that describes your namespace. This example used a very simple relative URL,
name5 . xsd. The XML Schema Recommendation allows you to declare several namespace-location pairs
within a single schemaLocation attribute —simply separate the values with whitespace. This is useful
when your XML document uses multiple namespaces.

The schemaLocation attribute is only a hint for the processor to use — the processor may not use the
provided location at all. For example, the validator may have a local copy of the XML Schema that it
uses instead of loading the file specified, to decrease processor usage. If your XML Schema has no
targetNamespace, you cannot use a namespace-location pair. Instead, you must refer to the XML
Schema using the noNamespaceSchemaLocation attribute within your instance document.

This has been an extremely brief overview of some difficult concepts in XML Schemas. Don’t worry; this
Try It Out is intended to give you an overall context for what you will be learning throughout the chap-
ter. Each of these concepts is covered in much greater detail.

This chapter doesn't list all of the elements available with XML Schemas, but introduces the more com-
mon ones that you're likely to encounter. Furthermore, not all of the attributes are listed for some of the
elements. For in-depth coverage of all of the XML Schema features and their use, see Professional
XML Schemas by Jon Duckett et al. (Wrox Press, 2001).

<schema> Declarations

As you have already seen, the <schema> element is the root element within an XML Schema. The
<schema> element enables you to declare namespace information as well as defaults for declarations
throughout the document. You can also include a version attribute that helps to identify the XML
Schema and the version of your vocabulary:

152

Chapter 5: XML Schemas

<schema targetNamespace="URI"
attributeFormDefault="qualified or unqualified"
elementFormDefault="qualified or unqualified"
version="version number">

The XML Schema Namespace

In the first example, the namespace http: //www.w3.org/2001/XMLSchema was declared within the

<schema> element. This enables you to indicate that the <schema> element is part of the XML Schema
vocabulary. Remember that because XML is case sensitive, namespaces are case sensitive. If the name-
space does not match http://www.w3.0org/2001/XMLSchema, the schema validator should reject the
document. For example, you could use any of the following <schema>:

<schema xmlns="http://www.w3.0rg/2001/XMLSchema">
or

<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema">
or

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

As shown in Chapter 3, the namespace prefix is insignificant — it is only a shortcut to the namespace
declaration. You will usually see one of these three variations. The XML Schema Recommendation itself
uses the prefix xs, and this is by far the most common usage. Using no prefix, as shown in the first of the
preceding examples, is also very common. Because of its relative simplicity, this form is used in the
examples throughout the chapter. Which prefix you use is a matter of personal preference.

Target Namespaces

The primary purpose of XML Schemas is to declare vocabularies. These vocabularies can be identified
by a namespace that is specified in the targetNamespace attribute. Not all XML Schemas will have a
targetNamespace. Many XML Schemas define vocabularies that are reused in another XML Schema, or
vocabularies that are used in documents where the namespace is not necessary.

When declaring a targetNamespace, it is important to include a matching namespace declaration. You
can choose any prefix you like, or you can use a default namespace declaration. The namespace declara-
tion is used when you are referring to declarations within the XML Schema. You will see what this
means in more detail later in the section “Referring to an Existing Global Element.”

Some possible targetNamespace declarations include the following:
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.example.com/name"
xmlns:target="http://www.example.com/name">
or
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

targetNamespace="http://www.example.com/name"
xmlns="http://www.example.com/name">

153

Part II: Validation

Notice that in the first declaration the <schema> element uses the default namespace. Because of this the
target namespace http: //www.example.com/name requires the use of a prefix. However, in the second
declaration you see the exact opposite; the <schema> element requires the use of a prefix because the
target namespace http: //www.example.com/name is using a default namespace declaration. Again,
user preference is the only difference.

Element and Attribute Qualification

Within the instance document, elements and attributes may be qualified or unqualified. An element or
attribute is qualified if it has an associated namespace. For example, the following elements are qualified:

<name xmlns="http://www.example.com/name">
<first>John</first>
<middle>Fitzgerald</middle>
<last>Doe</last>

</name>

Even though the elements in this example don’t have namespace prefixes, they still have an associated
namespace http: //www. example.com/name, making them qualified but not prefixed. Each of the chil-
dren elements is also qualified because of the default namespace declaration in the <name> element.
Again, these elements have no prefixes.

It is also possible to qualify elements using namespace prefixes. In the following example, all of the ele-
ments are qualified and prefixed:

<n:name xmlns:n="http://www.example.com/name">
<n:first>John</n:first>
<n:middle>Fitzgerald</n:middle>
<n:last>Doe</n:last>

</n:name>

Unqualified elements have no associated namespace:

<n:name xmlns:n="http://www.example.com/name">
<first>John</first>
<middle>Fitzgerald</middle>
<last>Doe</last>

</n:name>

The <name> element is qualified, but the <first>, <middle>, and <last> elements are not. The
<first>, <middle>, and <last> elements have no associated namespace declaration (default or other-
wise); therefore, they are unqualified. This mix of qualified and unqualified elements may seem strange;
nevertheless, it is the default behavior in XML Schemas.

Within the <schema> element you can modify the defaults specifying how elements should be qualified
by including the following attributes:

a elementFormDefault

0 attributeFormDefault

154

Chapter 5: XML Schemas

The elementFormbDefault and attributeFormDefault attributes enable you to control the default
qualification form for elements and attributes in the instance documents. The default value for both
elementFormDefault and attributeFormDefault is unqualified

Even though the value of the elementFormDefault attribute is unqualified, some elements must be
qualified regardless. For example, global element declarations must always be qualified in instance doc-
uments (we will look at global and local declarations in detail in the next section). In the preceding
example, this is exactly what we have done. We have qualified the <name> element with a namespace,
but not the <first>, <middle>, and <last> elements.

Though the mix of qualified and unqualified elements may seem confusing, you may want to create a
document that uses both qualified and unqualified elements. For example, XSLT and SOAP documents
may contain both qualified and unqualified elements. However, most of your documents should qualify
all of their elements. Otherwise, someone who is creating an XML document based on your vocabulary
will need in-depth knowledge of your XML Schema to determine which elements should be qualified and
which elements should be unqualified. Therefore, unless you have a very specific need to mix qualified
and unqualified elements, always include the elementFormbDefault attribute with the value qualified.

The default value for the attributeFormbefault is also unqualified. You should never have to
change this value, as most attributes in XML documents are unqualified. Like global elements, globally
declared attributes must be qualified in instance documents, so it is best not to declare attributes globally
unless you want them to be qualified.

<element> Declarations

When declaring an element, you are actually performing two primary tasks: specifying the element
name and defining the allowable content:

<element
name="name of the element"
type="global type"
ref="global element declaration"
form="qualified or unqgualified"
minOccurs="non negative number"
maxOccurs="non negative number or 'unbounded'"
default="default value"
fixed="fixed value">

An element’s allowable content is determined by its type. As you have already seen, element types are
divided into simple types and complex types. XML Schemas allow you to specify an element’s type in
one of two ways:

QO Creating a local type
0 Using a global type
In addition to these two methods, you may also reuse existing element declarations instead of creating

new ones. You do this by referring to a global element declaration. You do not need to specify a type in
your reference; the type of the element is included in the global element declaration.

155

Part II: Validation

Global versus Local

Before you can understand these different methods for declaring elements, you must understand the dif-
ference between global and local declarations. XML Schema declarations can be divided into two broad
categories: global declarations and local declarations.

Q Global declarations are declarations that appear as direct children of the <schema> element.
Global element declarations can be reused throughout the XML Schema.

Q Local declarations do not have the <schema> element as their direct parent and can be used only
in their specific context.

Let’s look at the first example again:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<element name="name">
<complexType>
<sequence>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>
</sequence>
<attribute name="title" type="string"/>
</complexType>
</element>
</schema>

This XML Schema has four element declarations. The first declaration, the<name> element, is a global
declaration because it is a direct child of the <schema> element. The declarations for the <first>,
<middle>, and <last> elements are considered local because the declarations are not direct children of
the <schema> element. The declarations for the <first>, <middle>, and <last> elements are valid
only within the <sequence> declaration — they cannot be reused elsewhere in the XML Schema.

Creating a Local Type

Of the two methods of element declaration, creating a local type should seem the most familiar. We used
this model when we declared the <name> element in the example. To create a local type, you simply
include the type declaration as a child of the element declaration:

<element name="name">
<complexType>
<sequence>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>
</sequence>
<attribute name="title" type="string"/>
</complexType>
</element>

156

Chapter 5: XML Schemas

or

<element name="name">
<simpleType>
<restriction base="string">
<enumeration value="Home"/>
<enumeration value="Work"/>
<enumeration value="Cell"/>
<enumeration value="Fax"/>
</restriction>
</simpleType>
</element>

These examples show that an element declaration may contain a <complexType> definition or a
<simpleType> definition, but it cannot contain both at the same time.

Using a Global Type

Often, many of your elements will have the same content. Instead of declaring duplicate local types
throughout your schema, you can create a global type. Within your element declarations, you can refer
to a global type by name. In fact, you have already seen this:

<element name="first" type="string"/>

Here, the type attribute refers to the built-in datatype string. XML Schemas have many built-in
datatypes, described later in the chapter. You can also create your own global declarations and refer to
them. For example, suppose we had created a global type for the content of the <name> element:

<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<complexType name="NameType">
<sequence>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>

</sequence>
<attribute name="title" type="string"/>
</complexType>
<element name="name" type="target:NameType"/>
</schema>

Even though the type is global, it is still part of the target namespace. Therefore, when referring to the
type, you must include the target namespace prefix (if any). This example used the prefix target to
refer to the target namespace, but it is equally correct to do the following:

<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
xmlns="http://www.example.com/name"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<xs:complexType name="NameType">
<XS:sequence>

157

Part II: Validation

<xs:element name="first" type="xs:string"/>
<xs:element name="middle" type="xs:string"/>
<xs:element name="last" type="xs:string"/>
</Xs:sequence>
<xs:attribute name="title" type="xs:string"/>
</xs:complexType>
<xs:element name="name" type="NameType"/>
</xs:schema>

Here the XML Schema namespace is declared using the prefix xs, and the target namespace has no pre-
fix. Therefore, to refer to the global type NameType, you do not need to include any prefix.

Try It Out Creating Reusable Global Types

Creating global types within an XML Schema is straightforward. In this example you convert the
<name> example to use a named global type, rather than a local type:

1. Begin by making the necessary changes to your XML Schema. In Codeplot, create a new docu-
ment called name6 . xsd. You can copy the content from name5 . xsd and make the following
changes:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<complexType name="NameType">
<sequence>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>

</sequence>
<attribute name="title" type="string"/>
</complexType>
<element name="name" type="target:NameType"/>
</schema>
2. Before you can validate your document, you must modify it so that it refers to your new XML

Schema. Create a new document called name6 . xm1. Again, you can copy the content from
name5 .xml and change the xsi: schemaLocation attribute, as follows:

xsi:schemalocation="http://www.example.com/name nameb.xsd"

3. You are ready to validate your XML instance document against your XML Schema. Click the
Validate button in the Codeplot editor. This should validate with no errors, as before.

How It Works

You had to make minor modifications to your schema in order to create a reusable complex type. First,
you moved the <complexType> definition from within your <element> declaration to your <schema>
element. Remember that a declaration is global if it is a direct child of the <schema> element. Once you
made the <complexType> definition global, you needed to add a name attribute so that you could refer
to it later. You named the <complexType> definition NameType so it would be easy to identify.

158

Chapter 5: XML Schemas

After you declared the NameType <complexType>, you modified your <name> element declaration to
refer to it. You added a type attribute to your element declaration with the value target : NameType.

Keep in mind that you have to include the namespace prefix target when referring to the type so the
validator knows which namespace it should look in.

Referring to an Existing Global Element

As shown in the last example, referring to global types enables you to reuse content model definitions
within your XML Schema. Often, you may want to reuse entire element declarations instead of just the
type. To refer to a global element declaration, simply include a ref attribute and specify the name of the
global element as the value:

<element ref="target:first"/>

Again, the name of the element must be qualified with the namespace. The preceding example is an ele-
ment reference to a global element named first that was declared in the target namespace. Notice that
when you refer to a global element declaration, you have no type attribute and no local type declara-
tion. Your element declaration uses the type of the <element> declaration in the reference.

Try It Out Referring to Global Element Declarations

This Try It Out modifies the last example to demonstrate how to create and refer to global element decla-
rations:

1. Begin by making the necessary changes to the XML Schema. Create a new document called
name7 .xsd. You can copy the content from name6 . xsd and make the following changes:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>
<complexType name="NameType">
<sequence>
<element ref="target:first"/>
<element ref="target:middle"/>
<element ref="target:last"/>

</sequence>
<attribute name="title" type="string"/>
</complexType>
<element name="name" type="target:NameType"/>
</schema>
2. Before you can schema validate your XML document, you must modify it so that it refers to

your new XML Schema. Create a new document called name7 . xm1. Copy the contents from
name6 .xml and change the xsi:schemaLocation attribute as follows:

xsi:schemalocation="http://www.example.com/name name7.xsd"

159

Part II: Validation

3. You are ready to validate your XML instance document against your XML Schema. Open
y y g y P
name7 .xml and click Validate in the Codeplot editor. This should validate with no errors, just as
you saw in the last Try It Out.

How It Works

This Try It Out utilized references to global element declarations within your content model. First

you moved the declarations for the <first>, <middle>, and <last> elements from within your
<complexType> definition to your <schema> element, making them global. After you created your
global declarations, you inserted references to the elements within your <complexType>. In each refer-
ence, you prefixed the global element name with the prefix target.

At this point, it might help to examine what the schema validator is doing in more detail. As the schema
validator processes your instance document, it first encounters the root element, in this case <name>.
When it encounters the <name> element, it looks it up in the XML Schema. When attempting to find

the declaration for the root element, the schema validator looks through only the global element
declarations.

In this case, you have four global element declarations: <first>, <middle>, <last>,
and <name>. Any one of these could be used as the root element within an instance
document; the example uses the <name> element as the instance document root ele-
ment. Although the XML Schema Recommendation allows you to have multiple
global <element> declarations, you are still limited to only one root element in your
instance document.

Once the schema validator finds the matching declaration, it finds the associated type (in this case it is

a global <complexType> definition NameType). It then validates the content of the <name> element
within the instance against the content model defined in the associated type. When the schema validator
encounters the <element> reference declarations, it imports the global <element> declarations into the
<complexType> definition, as if they had been included directly.

Now that you have learned some of the basics of how elements are declared, let’s look briefly at some of
the features element declarations offer. Later in the chapter, you will look at complex type definitions
and content models in more depth.

Naming Elements

Specifying a name in your element declaration is very straightforward. Simply include the name
attribute and specify the desired name as the value. The name must follow the rules for XML names that
you have already learned. In the last chapter, when creating names in DTDs, you had to include any
namespace prefix in the element declaration. Because XML Schemas are namespace aware, this is unnec-
essary. Simply specify the name of the element; the schema validator can understand any prefix used
within the instance document. The following are examples of valid element names:

<element name="first" type="string"/>
<element name="description" type="string"/>

160

Chapter 5: XML Schemas

The following are examples of invalid element names:

<element name="2ndElement" type="string"/>
<element name="target:middle" type="string"/>

The first of these examples is invalid because it begins with a number. XML names may include numeri-
cal digits, periods (.), hyphens (-), and underscores (_), but they must begin with a letter or an under-
score (_). The second of these examples is invalid because it contains a colon (:). Since the inception of
namespaces, the colon may be used only to indicate a namespace prefix. Recall that the prefix must not
be included as part of the name in the element declaration.

Element Qualified Form

The form attribute allows you to override the default for element qualification. As shown earlier, if an
element is qualified, then it must have an associated namespace when it is used in the instance docu-
ment. You can specify whether the element must be qualified by setting the value of the form attribute
to qualified or unqualified. If you do not include a form attribute, the schema validator uses the
value of the elementFormbefault attribute declared in the <schema> element. Remember that ele-
ments declared globally must always be qualified, regardless of values in the elementFormbDefault or
form attributes.

Cardinality

In the last chapter you learned that when you are specifying elements in your content models, you can
modify their cardinality. Cardinality represents the number of occurrences of a specific element within a
content model. In XML Schemas, you can modify an element’s cardinality by specifying the minoccurs
and maxOccurs attributes within the element declaration.

Note that the minOccurs and maxOccurs attributes are not permitted within global
element declarations. Instead, use these attributes within the element references in
your content models.

Within DTDs, you have very limited options when specifying cardinality. Using cardinality indicators,
you can declare that an element would appear once and only once, once or not at all, one or more times,
or zero or more times. This seems to cover the basics, but many times you need more control. XML
Schemas do not have this limitation. Instead, you can specify the minimum and maximum separately.

Some possible uses of the minOccurs and maxOccurs attributes include the following:
<element name="first" type="string" minOccurs="2" maxOccurs="2"/>
<element ref="target:first" maxOccurs="10"/>
<element name="location" ""minOccurs="0" maxOccurs="unbounded"/>

The first of the preceding examples declares that the element <first> must appear within the instance
document a minimum of two times and a maximum of two times. The second example declares our ele-
ment using a reference to the global <first> declaration. Even though it is declared using the ref
attribute, you are permitted to use the minOccurs and maxOccurs attributes to specify the element’s

161

Part II: Validation

cardinality. In this case, we have included a maxOccurs attribute with the value 10. We have not included
aminOccurs attribute, so a schema validator would use the default value, 1. The final example specifies
that <location> may or may not appear within our instance document because the minOccurs attribute
has the value 0. It also indicates that it may appear an infinite number of times because the value of
maxOccurs is unbounded

The default value for the minOccurs attribute and the maxOccurs attribute is 1. This means that, by
default, an element must appear only once. You can use the two attributes separately or in conjunction.
The maxOccurs attribute allows you to enter the value unbounded, which indicates there is no limit to
the number of occurrences. The only additional rule you must adhere to when specifying minoccurs
and maxOccurs is that the value of maxOccurs must be greater than or equal to the value for
minOccurs

Default and Fixed Values

When designing the DTD for our contacts list in the last chapter, we made use of attribute default and
fixed values. In XML Schemas, you can declare default and fixed values for elements as well as
attributes. When declaring default values for elements, you can specify only a text value. You are not
permitted to specify a default value for an element whose content model will contain other elements,
unless the content model is mixed. By specifying a default value for your element, you ensure that the
schema validator will treat the value as if it were included in the XML document — even if it is omitted.

To specify a default value, simply include the default attribute with the desired value. Suppose our
<name> elements were being used to design the Doe family tree. We might want to make "Doe" the
default for the last name element:

<element name="last" type="string" default="Doe"/>
This example declared that the element <1ast> has the default value "Doe", so when a schema valida-
tor encounters the <last> element in the instance document, it will insert the default value if there is no
content. For example, if the schema validator encounters

<last></last>
or

<last/>
then it would treat the element as follows:

<last>Doe</last>

Note that if the element does not appear within the document or if the element already has content, then
the default value is not used.

In the last chapter you learned that attributes may have fixed values. In XML Schemas, both elements
and attributes may have fixed values. In some circumstances, you may want to ensure that an element’s
value does not change, such as an element whose value is used to indicate a version number. When an
element’s value can never change, simply include a fixed attribute with the fixed value. As the schema
validator processes an element declared to have a fixed value, it checks whether the element’s content

162

Chapter 5: XML Schemas

and fixed attribute value match. If they do not match, then the validator raises a schema validity error. If
the element is empty, then the parser inserts the fixed value.

To specify a fixed value, simply include the fixed attribute with the desired value:
<element name="version" type="string" fixed="1.0"/>

The preceding example specifies that the <version> element, if it appears, must contain the value 1.0.
The fixed value is a valid string value (the type of the <version> element is string). Therefore, the
following elements would be legal:

<version>1.0</version>
<version></version>

<version/>

As the schema validator processes the file, it accepts elements with the value 1.0 or empty elements.
When it encounters empty elements, it treats them as though the value 1.0 had been included. The fol-
lowing value is not legal:

<version>2.0</version>

When specifying fixed or default values in element declarations, you must ensure that the value you
specify is allowable content for the type you have declared. For example, if you specify that an element
has the type positiveInteger, you cannot use Doe as a default value because it is not a positive inte-
ger. Default and fixed values are not permitted to contain element content, so your element must have a
simple type or a mixed content declaration. You are not permitted to use default and fixed values at the
same time within a single element declaration.

Element Wildcards

You'll often want to include elements in your XML Schema without explicitly declaring which elements
should be allowed. Suppose you want to specify that your element can contain any of the elements
declared in your namespace, or any elements from another namespace. This is common when designing
XML Schemas. Declarations that allow you to include any element from a namespace are called element
wildcards.

To declare an element wildcard, use the <any> declaration:

<any
minOccurs="non negative number"
maxOccurs="non negative number or unbounded"
namespace="allowable namespaces"
processContents="lax or skip or strict">

The <any> declaration can appear only within a content model. You are not allowed to create global
<any> declarations. When specifying an <any> declaration, you can specify the cardinality just as you
would within an <element> declaration. By specifying the minOccurs or the maxOccurs attributes, you
can control the number of wildcard occurrences allowed within your instance document.

163

Part II: Validation

The <any> declaration also enables you to control which namespace or namespaces the elements are
allowed to come from. You do this by including the namespace attribute. The namespace attribute
allows several values, shown in the following table:

Value

##any

##other

##targetNamespace

##local

Whitespace-separated
list of allowable
namespace URIs

Description

Allows elements from all namespaces to be included as part of the
wildcard

Allows elements from namespaces other than the targetNamespace
to be included as part of the wildcard

Allows elements from only the targetNamespace to be included as
part of the wildcard

Allows any well-formed elements that are not qualified by a name
space to be included as part of the wildcard

Allows elements from any listed namespaces to be included as part of
the wildcard. Possible list values also include ##targetNamespace
and ##local.

For example, suppose you wanted to allow any well-formed XML content from any namespace within
the <name> element. Within the content model for your NameType complex type, you could include an

element wildcard:

<complexType name="NameType">

<sequence>

<element ref="target:first"/>
<element ref="target:middle"/>
<element ref="target:last"/>
<!-- allow any element from any namespace -->
<any namespace="##any"
processContents="lax"

minOccurs="0"

maxOccurs="unbounded" />

</sequence>

<attribute name="title" type="string"/>

</complexType>

By setting the namespace attribute to ##any, you have specified that elements from all namespaces can
be included as part of the wildcard. You have also included cardinality attributes to indicate the number
of allowed wildcard elements. This case specifies any number of elements because the value of the
minOccurs attribute is set to 0 and the value of maxOccurs is set to unbounded. Therefore, the content
model must contain a <first>, <middle>, and <last> element in sequence, followed by any number
of elements from any namespace.

When the schema validator is processing an element that contains a wildcard declaration, it validates the
instance documents in one of three ways:

Q If the value of the processContents attribute is set to skip, then the processor skips any wild-
card elements in the instance document.

164

Chapter 5: XML Schemas

Q If the value of processContents attribute is set to 1ax, then the processor attempts to validate
the wildcard elements if it has access to a global XML Schema definition for them.

O If the value of the processContents attribute is set to strict (the default) or there is no
processContents attribute, then the processor attempts to validate the wildcard elements.
However, in contrast to using the 1ax setting, the schema validator raises a validity error if a
global XML Schema definition for the wildcard elements cannot be found.

<complexType> Declarations

So far you have seen the basics of declaring elements. Each of the examples utilized a <complexType>
definition. Let’s look at type definitions in more detail. Elements that have element content are con-
trolled by <complexType> definitions. Within <complexType> definitions, you can specify the allow-
able element content for the declaration:

<complexType
mixed="true or false"
name="Name of complexType">

All of the examples so far have used either a local or a global <complexType> to specify the content
model for the <name> element declaration:

<element name="name">
<complexType>
<sequence>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>
</sequence>
<attribute name="title" type="string"/>
</complexType>
</element>

When we created a local declaration, we did not include a name attribute in our <complexType> defini-
tion. Local <complexType> definitions are never named; in fact, they are called anonymous complex types.
As you have already seen, however, global <complexType> definitions are always named, so that they
can be identified later.

Apart from the content models you have seen, <complexType> definitions can also be used to create
mixed and empty content models. Mixed content models allow you to include both text and element
content within a single content model. To create a mixed content model in XML Schemas, simply include
the mixed attribute with the value true in your <complexType> definition:

<element name="description">
<complexType mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="em" type="string"/>
<element name="strong" type="string"/>
<element name="br" type="string"/>

165

Part II: Validation

</choice>
</complexType>
</element>

The preceding example declared a <description> element, which can contain an infinite number of
, , and
 elements. Because the complex type is declared as mixed, text can be inter-
spersed throughout these elements. An allowable <description> element might look like the following;:

<description>Jeff is a developer & author for Beginning XML 4th
edition © 2006 Wiley Publishing.
Jeff loves
XML! </description>

In this <description> element, textual content is interspersed throughout the elements declared within
the content model. As the schema validator is processing the preceding example, it ignores the textual
content and entities and instead performs standard validation on the elements. The schema validator
will not perform any validation on the text. Because the elements , , and
 may
appear repeatedly, the example is valid.

To declare an empty content model in a <complexType> definition, you simply create the
<complexType> definition without any <element> or content model declarations. Consider the follow-
ing declarations:

<element name="knows">
<complexType>
</complexType>
</element>

<element name="knows">
<complexType/>
</element>

Each of these declares an element named knows. In both cases, the <complexType> definition is empty,
indicating that knows will not contain text or element children. When used in our instance document,
<knows> must be empty. For example, the following elements would be valid:

<knows/>

<knows></knows>

Although you haven’t looked at attribute declarations in XML Schemas, note that <complexType> defi-
nitions can also contain <attribute> declarations:

<element name="knows">
<complexType>
<attribute name="contacts" type="IDREFS"/>
</complexType>
</element>

Even when you are declaring an empty element, attribute declarations may still appear within the
<complexType>. You will examine this in more detail later in this chapter.

166

Chapter 5: XML Schemas

<group> Declarations

In addition to <complexType> definitions, XML Schemas also allow you to define reusable groups of
elements. By creating a global <group> declaration, you can easily reuse and combine entire content
models:

<group
name="name of global group">

Just as you have seen with global <complexType> definitions, all global <group> declarations must be
named. Simply specify the name attribute with the desired name. Again, the name that you specify must
follow the rules for XML names and should not include a prefix. The basic structure of a global <group>
declaration follows:

<group name="NameGroup">
<!-- content model goes here -->
</group>

Try It Out Using a Global Group

This example redesigns the schema so that you can create a reusable global <group> declaration:

1. Begin by making the necessary changes to our XML Schema. Create a new document called
name8 . xsd. Copy the contents from name7.xsd and make the following changes:

<?xml version="1.0"?>
<gschema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<group name="NameGroup">
<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded" />
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>
</sequence>
</group>
<complexType name="NameType">
<group ref="target:NameGroup" />
<attribute name="title" type="string"/>
</complexType>
<element name="name" type="target:NameType"/>
</schema>

2. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called name8 . xm1. Copy the contents from
name7 .xml and change the xs1i: schemaLocation attribute as follows:.

xsi:schemalocation="http://www.example.com/name name8.xsd"

167

Part II: Validation

3. You are ready to validate your XML instance document against the XML Schema. Open the
name8 .xml document and click Validate. This should validate with no errors, as shown in the
last Try It Out.

How It Works

This Try It Out modified your XML Schema to use a global <group> declaration. Within the global
<group> declaration named NameGroup, you declared the allowable elements for your content model.
Instead of including element declarations in the <complexType> definition for your <name> element,
you created a <group> reference declaration. When referring to the global <group> declaration, you
included a ref attribute with the value target : NameGroup.

You also updated the <element> declarations to make use of the minOccurs and maxOccurs attributes.
The values used in the minOccurs and maxOccurs attributes enabled you to mimic the various cardinal-
ity indicators used in the original DTD.

Notice that the <attribute> declaration still appeared within the <complexType> definition and not
within the <group> declaration. This should give you some indication of the difference between a
<group> and a <complexType> definition. A <complexType> declaration defines the allowable content
for a specific element or type of element. A <group> declaration simply allows you to create a reusable
content model that can replace other content model declarations in your XML Schema.

As the schema validator is processing the instance document, it processes the <name> element, similarly
to the earlier examples. When it encounters the <name> element, it looks it up in the XML Schema. Once
it finds the declaration, it finds the associated type (in this case it is a local <complexType> definition).
When the schema validator encounters the <group> reference declaration, it treats the items within the
group as if they had been included directly within the <complexType> definition. Even though the
<group> declaration is global, the <element> declarations within the <group> are not.

Content Models

You have already seen that you can use <complexType> and <group> declarations to specify an ele-
ment’s allowable content. What you haven’t seen is how to build more advanced content models.
Luckily, XML Schemas provide greater flexibility than DTDs when specifying an element’s content
model. In XML Schemas you can specify an element’s content model using the following:

Q A <sequence> declaration

0 A <choice> declaration

Q Areference to a global <group> declaration

d An<all> declaration
By using these four primary declarations, you can specify the content model of your type in a variety of
ways. Each of these declarations may contain the following;:

Q Inner content models

d Element declarations

d Element wildcards

168

Chapter 5: XML Schemas

<sequence> Declarations

As shown with DTD content models, specifying your content model using a sequence of elements is
very simple. In fact, the first example used a <sequence> declaration when defining the allowable chil-
dren of the <name> element:

<sequence
minOccurs="non negative number"
maxOccurs="non negative number or unbounded">

The <sequence> declaration allows you to specify minOccurs and maxOccurs attributes that apply to
the overall sequence. You can modify the cardinality (how many times this sequence of elements occurs)
by changing the values of these attributes. The minOccurs and maxOccurs attributes function exactly as
they did within the element declarations.

You have already seen that the <sequence> declaration may contain <element> declarations within
it. In addition to <element> declarations, it may contain element wildcards or inner <sequence>,
<choice>, or <group> references. You may have sequences within sequences within sequences, or you
may have choices within sequences that are in turn within groups —almost any combination you can
imagine.

A sample sequence might appear as follows:

<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded" />
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>

</sequence>

By utilizing a <sequence> to specify your content model, you indicate that the elements must appear
within your instance document in the sequernce, or order, specified. For example, the following would
be legal:

<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

The following, however, would be illegal:
<last>Doe</last>
<middle>Fitzgerald</middle>

<first>John</first>

This example isn’t allowable because the elements do not appear in the order specified within the
<sequence>.

<choice> Declarations
The basic structure of the <choice> declaration looks very much like the <sequence> declaration:
<choice

minOccurs="non negative number"
maxOccurs="non negative number or unbounded">

169

Part II: Validation

Again, you can specify minOccurs and maxOccurs attributes to modify the cardinality of a <choice>
declaration. The <choice> declaration is also similar to its DTD counterpart. You can specify multiple
child declarations within a <choice> declaration. In an instance document, however, only one of the
declarations may be used. For example, suppose you declared the content model of the <name> element
using a <choice> declaration:

<choice>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded"/>
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>

</choice>

If you declare your content model as shown in the preceding example, then within your instance docu-
ment you could include only <first> elements, only a <middle> element, or only the <last> element.
You could not include both a <first> and a <last> element within the instance. As shown in the
<sequence> declaration, the <choice> declaration may contain <element> declarations, element wild-
cards, and inner <sequence>, <choice>, or <group> references.

<group> References

The <group> reference declaration allows you to refer to global element groups within your content
model. You can define content models that can be grouped together and reused within other content
models. Within a content model, the <group> reference declaration is used by creating a reference to one
of these already declared groups:

<group
ref="global group definition"
minOccurs="non negative number"
maxOccurs="non negative number or unbounded">

This can be done by including a ref attribute and specifying the name of the global <group> declaration:

<group name="NameGroup">
<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded" />
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>
</sequence>
</group>
<element name="name">
<complexType>
<group ref="target:NameGroup"/>
<attribute name="title" type="string"/>
</complexType>
</element>

Here the group reference within the <complexType> definition has a ref attribute with the value
target :NameGroup. This refers to the global group declaration named NameGroup. You must prefix
the name with a namespace prefix —in this case, target —so that you can identify the namespace in
which the NameGroup declaration appears.

170

Chapter 5: XML Schemas

Again, you can specify minOccurs and maxOccurs attributes to modify the cardinality of your <group>
reference. However, the <group> reference may not contain element children. Instead, the global
<group> declaration to which it refers contains the content model and element children that define the
content model.

<all> Declarations

The <all> declaration enables you to declare that the elements within your content model may appear
in any order:

<all
minOccurs="0 or 1"
maxOccurs="1">

To use the <all> mechanism, however, you must adhere to several rules:

QO The <all> declaration must be the only content model declaration that appears as a child of a
<complexType> definition.

Q The <all> declaration may contain only <element> declarations as its children. It is not per-
mitted to contain <sequence>, <choice>, or <group> declarations.

QO The <all> declaration’s children may appear once each in the instance document. This
means that within the <al1> declaration, the values for minOccurs for maxOccurs are limited
tooor 1.

Even with the additional restrictions, the <all> declaration can be very useful. It is commonly used
when the expected content is known, but not the order.

Why are there additional restrictions for the <all> declaration? These restrictions ensure that schema
validators can easily understand and process instance documents. Without these restrictions, it would be
very difficult to write software to validate XML Schemas that contained <all> declarations. Chapter 6
describes the interleave pattern, which was introduced in RELAX NG and has fewer limitations.

Suppose you declared the <name> content model using the <all> mechanism:

<element name="name">
<complexType>
<all>
<element name="first" type="string"/>
<element name="middle" type="string"/>
<element name="last" type="string"/>
</all>
<attribute name="title" type="string"/>
</complexType>
</element>

Notice that the <all> element is the only content model declaration within the <complexType>
(<attribute> declarations do not count as content model declarations). In addition, note that the
<all> declaration contains only <element> declarations as its children. Because the default value for
minOccurs and maxOccurs is 1, each element can appear in the instance document once and only once.

171

Part II: Validation

By declaring the content model as shown in the preceding example, you can validate your element con-
tent but still allow your elements to appear in any order. The allowable content for a <name> element
declared using an <all> declaration might include

<first>John</first>
<middle>Fitzgerald</middle>
<last>Doe</last>

or

<first>John</first>
<last>Doe</last>
<middle>Fitzgerald</middle>

As long as all of the elements you have specified appear, they can appear in any order. In the second
example, the <middle> element was added last. Because the content model is declared using <all>, this
is still allowable.

Try It Out Making Contact

In order to use all of the XML Schema features that you have learned, it’s time to turn to a more complex
subject. This example creates an XML Schema for your contacts listing. Not only does this provide ample
opportunity to use the functionality you have learned thus far, but it also enables you to compare a DTD
and its XML Schema counterpart.

1. Begin by creating the XML Schema. In Codeplot, create a new document named contactsé
.xsd. Enter the following and when you are finished, save the file (the example is long, so you
may want to download the code from www.wrox. com):

<?xml version="1.0"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:contacts="http://www.example.com/contacts"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">

<element name="contacts">
<complexType>
<sequence>
<element name="contact" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="name" type="contacts:NameType"/>
<element name="location" type="contacts:LocationType"/>
<element name="phone" type="string"/>
<element name="knows" type="contacts:KnowsType"/>
<element name="description" type="contacts:DescriptionType"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>

<complexType name="NameType">

172

Chapter 5: XML Schemas

<group ref="contacts:NameGroup"/>
</complexType>

<group name="NameGroup">
<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded"/>
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>
</sequence>
</group>

<complexType name="LocationType">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="address" type="string"/>
<sequence>
<element name="latitude" type="string"/>
<element name="longitude" type="string"/>
</sequence>
</choice>
</complexType>

<complexType name="KnowsType">
</complexType>

<complexType name="DescriptionType" mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="em" type="string"/>
<element name="strong" type="string"/>
<element name="br" type="string"/>
</choice>
</complexType>
</schema>

2. Create the instance document. This document is very similar to the contacts sample from
Chapter 4. Instead of referring to a DTD, you refer to your newly created XML Schema. To
begin, you won't include any attributes; you will add them in later examples in this chapter.
Create a new document called contactsé6.xml and copy the following, saving the file when
you are finished:

<?xml version="1.0"?>
<contacts
xmlns="http://www.example.com/contacts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.example.com/contacts contacts6.xsd">
<contact>
<name>
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>
</name>
<location>
<address>Redlands, CA, USA</address>

173

Part II: Validation

<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone>001-909-555-1212</phone>
<knows/>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>
</contact>
<contact>
<name>
<first>David</first>
<last>Hunter</last>
</name>
<location>
<address>Address is not known</address>
</location>
<phone>416 555 1212</phone>
<knows/>
<description>Senior Technical Consultant for CGI.</description>
</contact>
<contact>
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>
</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>
</location>
<phone>+39-0555-11-22-33-</phone>
<knows/>
<description>A Semantic Web developer and technical author specializing
in cutting-edge technologies.</description>
</contact>
</contacts>

3. You are ready to validate your XML instance document against your XML Schema. Open
contacts6.xml and click Validate in the Codeplot editor. This should validate with no warn-
ings and no errors, as shown in the last Try It Out. If there is a validation error, then correct it
and try validating again.

How It Works
Let’s break down each section of the <schema> to figure out what is going on:
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:contacts="http://www.example.com/contacts"

targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">

174

Chapter 5: XML Schemas

As shown in earlier examples, the XML Schema begins with the <schema> element. Again, you must
specify the correct namespace for XML Schemas. You have also included a targetNamespace attribute
to indicate the namespace for your vocabulary. You added a namespace declaration so that you can refer
to items in your targetNamespace later. This time, instead of using the prefix target you used the prefix
contacts. Finally, you included the attribute elementFormDefault with the value qualified:

<element name="contacts">
<complexType>
<sequence>
<element name="contact" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="name" type="contacts:NameType"/>
<element name="location" type="contacts:LocationType"/>
<element name="phone" type="string"/>
<element name="knows" type="contacts:KnowsType"/>
<element name="description" type="contacts:DescriptionType"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>

Next, you created a global <element> declaration for your contacts element. Recall that the contacts
element must be declared globally because you are using it as your root element within your instance doc-
ument. As your schema validator processes your instance document, it encounters the contacts element.
The schema validator will then open your XML Schema document based on the xsi : schemaLocation
attribute hint and find the global declaration for the contacts element.

You specified the type of your contacts element by declaring a local <complexType> within your
<element> declaration. Within the <complexType> definition, you used a <sequence> content model
containing only one element. Even if you only have one element inside of a complex type, you still
need to declare it as part of a <sequence>. You specified that the <contact> element could occur an
unbounded number of times or not occur at all.

You used another local <complexType> to define the content model for the contact element. It is possi-
ble to use local <complexType> declarations inside of other <complexType> declarations. In fact, you
could define an entire schema in this manner. In general, it is better to use global type definitions when-
ever possible. Therefore, you referred to global <complexType> definitions for the name, location,
knows, and description elements. You declared the phone element using the type string. By doing
so, you specified that the instance document can only contain simple text and nothing else. You will
need to change this later in the chapter when you learn about attributes.

<complexType name="NameType">
<group ref="contacts:NameGroup"/>
</complexType>

The content model for the global NameType is defined using a reference to a <group>. To refer to the
global <group> declaration, you needed to prefix the group name with the namespace prefix for your

175

Part II: Validation

targetNamespace. In reality, you didn’t need to use a global group to specify the content of the <name>
element, but the name elements are fairly common, and global groups can be more easily combined and
reused. Global complex types are more useful when using type-aware tools such as XPath2 and XQuery.
When designing your own schemas it is really a matter of personal preference and which tools you plan

on using with your XML Schemas.

<group name="NameGroup">

<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded" />

<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>
</sequence>
</group>

The <group> declaration for the NameGroup was very straightforward. It listed the allowable elements
for the content model within a <sequence> declaration. This should look very similar to the <name>

examples you have already seen.

<complexType name="LocationType">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="address" type="string"/>
<sequence>
<element name="latitude" type="string"/>
<element name="longitude" type="string"/>
</sequence>
</choice>
</complexType>

In the LocationType <complexType> definition you used a choice declaration to allow either the ele-
ment address or the sequence of elements, including latitude and longitude. You specified that the
choice may or may not appear and that it could appear an unbounded number of times.

The global declaration for KnowsType didn’t contain any content model. Because of this, the <knows>
element in the instance document must be empty:

<complexType name="KnowsType">
</complexType>

<complexType name="DescriptionType" mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="em" type="string"/>
<element name="strong" type="string"/>
<element name="br" type="string"/>
</choice>
</complexType>

The DescriptionType <complexType> definition was a mixed declaration. To specify this, you added

a mixed attribute with the value true. Within the mixed content model, to allow an unbounded number
of , and
 elements to be interspersed within the text, you used a <choice> declara-
tion. Again, minOccurs is sets to 0 and maxOccurs is set to unbounded so that the choice would be

repeated.

</schema>

176

Chapter 5: XML Schemas

This completed the XML Schema for the contacts listing. You will continue to add features to this XML
Schema throughout the rest of the chapter.

<attribute> Declarations

So far, you have spent most of this chapter learning how to create element declarations. Of course, this is
only the very first step when creating an XML Schema. Within XML Schemas, attribute declarations are
similar to element declarations. In the examples for the <name> element, you have already seen an
attribute declaration for the title attribute. Attribute declarations have the following format:

<attribute
name="name of the attribute"
type="global type"
ref="global attribute declaration"
form="qualified or unqgualified"
use="optional or prohibited or required"
default="default value"
fixed="fixed value">

As shown with element declarations, there are two primary methods for declaring attributes:

Q Creating a local type
Q Using a global type

Unlike elements, which are divided into simple types and complex types, attribute declarations are
restricted to simple types. Remember that complex types are used to define types that contain attributes
or elements; simple types are used to restrict text-only content. Because an attribute can contain text
only, you can use simple types only to define their allowable content.

You can also reuse attributes by referring to global attribute declarations. You do not need to specify a
type in your attribute reference; the type of the attribute is included in the global attribute declaration.

Creating a Local Type

Creating a local type for an <attribute> declaration is similar to creating a local type for an
<element> declaration. To create a local type, simply include the type declaration as a child of the
<attribute> element:

<attribute name="title">
<simpleType>
<!-- type information -->
</simpleType>
</element>

Notice that an attribute declaration may contain only a <simpleType> definition.

Using a Global Type

Just as you saw with the <element> declarations, many of the attributes have the same type of value.
Instead of declaring duplicate local types throughout your schema, you can create a global

177

Part II: Validation

<simpleType> definition. Within your attribute declarations, you can refer to a global type by name.
This type can be one of the built-in XML Schema datatypes:

<attribute name="title" type="string"/>

You can also create your own global declarations and refer to them. For example, suppose you created a
global type for the content of the kind attribute:

<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
xmlns:contacts="http://www.example.com/contacts"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">
<simpleType name="KindType">

<!-- type information -->
</simpleType>
<element name="phone">
<complexType>
<!-- content model information -->
<attribute name="kind" type="contacts:KindType"/>
</complexType>
</element>
</schema>

When referring to the type, you must include the target namespace prefix (if any). In the preceding
example, the prefix contacts is used to refer to the target namespace. However, the following is equally
correct:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.example.com/contacts"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">
<xs:simpleType name="KindType">
<!-- type information -->
</xs:simpleType>
<xs:element name="phone">
<xs:complexType>
<!-- content model information -->
<xs:attribute name="kind" type="KindType"/>
</xs:complexType>
</xs:element>
</xs:schema>

In this example, the XML Schema namespace is declared using the prefix xs, and the target namespace
has no prefix. Therefore, to refer to the global type KindType, you do not need to include any prefix.

Referring to an Existing Global Attribute

Referring to global <simpleType> definitions enables you to reuse attribute types within your XML
Schema. You'll often want to reuse entire attribute declarations, instead of just the type. XML Schemas
enable you to reuse global attribute declarations within your <complexType> definition. To refer to a
global attribute declaration, include a ref attribute in your declaration and specify the name of the
global attribute as the value:

178

Chapter 5: XML Schemas

<attribute ref="contacts:kind"/>

Again, the name of the attribute must be qualified with the namespace. Notice that when you refer to a
global attribute declaration, there is no type attribute and no local type declaration. The attribute uses
the type of the <attribute> declaration to which you are referring.

Unfortunately, reusing global attribute declarations can create problems in your instance documents
because of namespaces. Each attribute that you declare globally must be qualified by a namespace in
your instance document. Because default namespace declarations do not apply to attributes, the only
way to qualify them is by using a namespace prefix. This can make your instance documents complex
and confusing. Instead of dealing with these issues, most XML Schema authors utilize global
<attributeGroup> declarations when they need to reuse attributes. We will look at
<attributeGroup> declarations a little later in this chapter.

Naming Attributes

As shown with element declarations, attribute names must follow the rules for XML names that you
have already learned. In the last chapter, when creating names in DTDs, you learned that you have to
include a namespace prefix if one is going to be used in the instance document. Because XML Schemas
are namespace aware, this is unnecessary. Simply specify the name of the attribute; the schema validator
can understand any prefix that is used within the instance document.

Attribute Qualified Form

The form attribute enables you to override the default for attribute qualification. Attribute qualification
functions very similarly to element qualification. If an attribute is qualified, then it must have an associ-
ated namespace when it is used in the instance document. Remember that default namespaces don’t
apply to attributes in your instance document, so you can only qualify an attribute by using a name-
space prefix.

You can specify whether the attribute must be qualified by setting the value of the form attribute to
qualified or unqualified. If you don’t include a form attribute, the schema validator uses the value
of the attributeFormDefault attribute declared in the <schema> element. Any attribute declared
globally must be qualified, regardless of the form and attributeFormDefault values.

Unlike elements, it is very common to have unqualified attributes within an instance document.
Therefore, the £orm attribute is rarely used.

Attribute Use

When declaring an attribute, you can specify that it is required, optional, or prohibited in the
instance document. To control how an attribute is used, simply include the use attribute within the
<attribute> declaration and specify the appropriate value. You cannot include a use attribute in a
global <attribute> declaration.

By setting the value of the use attribute to prohibited, you can ensure that an attribute won’t appear
within your instance document. Developers commonly use prohibited attribute declarations in con-
junction with attribute wildcards. Using this model, you can specify that you want to allow a large
group of attributes and subsequently disallow specific attributes within the group.

179

Part II: Validation

If you specify that an attribute is required, then it must appear within the instance document. If the
attribute is omitted, then the schema validator raises a validity error.

Most attributes are optional, so the default value for use is optional. By declaring that an attribute is
optional, you indicate that it may or may not appear in the instance document. If you specify a default
value for your attribute declaration, then the value of use cannot be required or prohibited.

Default and Fixed Values

You have already seen that XML Schemas allow you to declare default and fixed values for elements.
You can declare default and fixed values for attributes in exactly the same way. To specify a default
value, simply include the default attribute with the desired value:

<attribute name="kind" type="contacts:KindType" default="Home"/>

In the preceding declaration, the default value for the kind attribute is Home. If the schema validator
finds that the kind attribute has been omitted, it inserts the attribute and sets the value to Home.

Fixed values operate much like default values. As the schema validator is processing the file, if it
encounters a £ixed attribute, then the parser checks whether the attribute value and fixed value
match. If they do not match, the parser raises a schema validity error. If the attribute is omitted, then
the parser inserts the attribute with the fixed value.

To specify a fixed value, simply include the fixed attribute with the desired value:
<attribute name="version" type="string" fixed="1.0"/>

When specifying fixed or default values, you must ensure that the value you specify is allowable content
for the type declared for your attribute declaration. For example, if you specify that an attribute has the
type decimal, then you cannot use 1.0 Beta as a default value because it is not a decimal value.
Moreover, you can’t use default and fixed values at the same time within a single attribute declaration.

Attribute Wildcards

Earlier in the chapter, you learned about element wildcards — declarations that allow you to include any
elements from a specific namespace or list of namespaces within your content model. You'll often want
to declare similar behavior for attributes. Declarations that allow you to include any attribute from a
namespace are called attribute wildcards.

To declare an attribute wildcard, use the <anyAttribute> declaration:

<anyAttribute
namespace="allowable namespaces"
processContents="lax or skip or strict">

The <anyAttribute> declaration can appear only within a <complexType> or <attributeGroup>
declaration. You are not allowed to create global <anyaAttribute> declarations. The <anyAttribute>
declaration allows you to control which namespaces may be used, by including the namespace
attribute. The namespace attribute allows several values:

180

Chapter 5: XML Schemas

Value Description

##any Allows attributes from all namespaces to be included as part
of the wildcard

##other Allows attributes from namespaces other than the target-

Namespace to be included as part of the wildcard

##targetNamespace Allows attributes from only the targetNamespace to be
included as part of the wildcard

##local Allows attributes that are not qualified by a namespace to be
included as part of the wildcard

Whitespace-separated list of Allows attributes from any listed namespaces to be included
allowable namespace URIs as part of the wildcard. Possible list values also include
##targetNamespace and ##local.

Suppose you want to allow any unqualified attributes, as well as any attributes from the http: //www
.w3.org/XML/1998/namespace namespace. You can achieve this by including an attribute wildcard:

<complexType>
<anyAttribute namespace="##local http://www.w3.org/XML/1998/namespace"
processContents="lax"/>
</complexType>

Notice that the value of the namespace attribute is a whitespace-separated list with the values ##local
and http://www.w3.org/XML/1998/ namespace.

The namespace http: //www.w3 .org/XML/1998/namespace contains the xml : lang and
xml : space attributes. These attributes are commonly used to add information about the language or
spacing of an XML document.

When the schema validator processes an element that contains an attribute wildcard declaration, it vali-
dates the instance documents in one of three ways:

Q If the value of the processContents attribute is set to skip, then the processor skips any wild-
card attributes in the element.

Q If the value of processContents attribute is set to 1ax, then the processor attempts to validate
the wildcard attributes if it has access to an XML Schema that defines them.

O If the value of the processContents attribute is set to strict (the default) or there is no
processContents attribute, then the processor attempts to validate the wildcard attributes.
However, in contrast to using the 1ax setting, the schema validator raises a validity error if a
global XML Schema definition for the wildcard elements cannot be found.

Try It Out Making Contact — Adding Attributes

Now that you have seen all of the various options for attribute declarations, you can update your con-
tacts schema. This example adds two attributes to your <contacts> root element:

181

Part II: Validation

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contacts7.xsd. You can copy the contents of the file contacts6 .xsd and make the following
changes. Because you need to change only the declaration for the <contacts> element, that is
all we have shown. You add two attribute declarations after the content model. The rest of the
XML Schema remains the same.

<element name="contacts">
<complexType>
<sequence>
<element name="contact" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="name" type="contacts:NameType"/>
<element name="location" type="contacts:LocationType"/>
<element name="phone" type="string"/>
<element name="knows" type="contacts:KnowsType"/>
<element name="description" type="contacts:DescriptionType"/>
</sequence>
</complexType>
</element>
</sequence>
<attribute name="version" type="string" fixed="1.0" />
<attribute name="source" type="string"/>
</complexType>
</element>

2. Before you can validate your instance document, you must modify it so that it refers to your
new XML Schema. You also need to add attributes to your <contacts> element. Create a
new document called contacts7.xml. As before, you can copy the contents of the file
contactsé6.xml and make the following changes to the <contacts> element — the rest of
the file remains the same:

<contacts
xmlns="http://www.example.com/contacts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.com/contacts contacts7.xsd"
source="Beginning XML 4E"
version="1.0">

3. You are ready to validate your XML instance document against the XML Schema. Open
contacts7.xml and click Validate in the Codeplot editor. This should validate with no
warnings and no errors. If there is a validation error, then correct it and try validating again.

How It Works

This Try It Out added two attributes to the <contacts> element. You did this by adding the attribute
declarations after the content model of the local <complexType> definition. Let’s look at each of these
attribute declarations in more detail. Your first attribute declaration defined the version attribute:

<attribute name="version" type="string" fixed="1.0"/>

This indicated that its value must be type string—meaning that any text value is allowed. In your
DTD you used the type CDATA. No CDATA type exists for XML Schemas, so wherever you would have

182

Chapter 5: XML Schemas

used CDATA, you should instead use string. When you declared the attribute, you included a fixed
attribute with the value 1. 0. This means that if the version attribute appears within your document,
then it must have the value 1. 0. If the version attribute is omitted, then the schema validator will
insert the attribute with the value 1. 0.

The second attribute declaration defined the source attribute:

<attribute name="source" type="string"/>

Again, you have indicated that the attribute value must be type string.

Remember that within the instance document, attributes may appear in any order. In
addition, no attribute may appear more than once in a single element.

<attributeGroup> Declarations

You have seen that by creating a global <group> declaration you can define reusable groups of elements.
In addition to element groups, the XML Schema also allows you to define attribute groups:

<attributeGroup
name="name of global attribute group">

Often, you will need to use the same set of attributes for many elements. In such cases, it is easier to cre-
ate a global attribute group that can be reused in your <complexType> definitions. In DTDs, this was
not possible without using parameter entities.

The <attributeGroup> declaration is very similar to the <group> declaration. Global
<attributeGroup> declarations must be named. Simply specify the name attribute with the desired
name. The name that you specify must follow the rules for XML names, and it should not include a pre-
fix. The basic structure of a global <attributeGroup> declaration follows:

<attributeGroup name="ContactsAttributes">
<!-- attribute declarations go here -->
</attributeGroup>

Instead of allowing content model declarations such as the <group> declarations shown earlier in the
chapter, the <attributeGroup> declaration allows <attribute> declarations as children. It also
allows attribute wildcards and references to global <attribute> and <attributeGroup> declarations.

Although <attributeGroup> declarations may include references to other global <attributeGroup>
declarations as part of the content model, they may not recursively refer to themselves. For example, the
following is an illegal <attributeGroup> declaration:

<attributeGroup name="AttGroupl">

<attributeGroup ref="target:AttGroupl"/>
</attributeGroup >

183

Part II: Validation

This is illegal as well:

<attributeGroup name="AttGroupl">
<attributeGroup ref="target:AttGroup2"/>

</attributeGroup >

<attributeGroup name="AttGroup2">
<attributeGroup ref="target:AttGroupl"/>

</attributeGroup >

This second declaration is illegal because the declaration indirectly refers to itself.

To use an <attributeGroup>, simply include an <attributeGroup> reference within a
<complexType> or global <attributeGroup> declaration. To specify which <attributeGroup> you
are referring to, include the ref attribute with the name of the global <attributeGroup> as the value.
As shown with other references, you need to specify the namespace when referring to the global declara-
tion. To do this, include the namespace prefix in the value.

Try It Out Making Contact — Using a Global Attribute Group

This Try It Out redesign the schema so that you can create a reusable global <attributeGroup> decla-
ration. You add your new attribute declarations to an attribute group.

1. Begin by making the necessary changes to your XML Schema. Create a new file called
contacts8.xsd. Copy the contents from the file contacts?7.xsd and make the following
changes:

<attributeGroup name="ContactAttributes">
<attribute name="version" type="string" fixed="1.0" />
<attribute name="source" type="string"/>
</attributeGroup>

<element name="contacts">
<complexType>
<sequence>
<element name="contact" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="name" type="contacts:NameType"/>
<element name="location" type="contacts:LocationType"/>
<element name="phone" type="string"/>
<element name="knows" type="contacts:KnowsType"/>
<element name="description" type="contacts:DescriptionType"/>
</sequence>
</complexType>
</element>
</sequence>
<attributeGroup ref="contacts:ContactAttributes"/>
</complexType>
</element>

184

Chapter 5: XML Schemas

2. Before you can validate your XML document against your schema, you must modify it so that it
refers to your new XML Schema. Create a new document called contacts8.xml. Copy the con-
tents from the file contacts7.xml and change the xs1i: schemaLocation attribute as follows:

xsi:schemalocation="http://www.example.com/contacts contacts8.xsd"

3. Youare ready to validate your XML instance document against your XML Schema. Open
contacts8.xml and click Validate. This should validate with no warnings and no errors. If
not, correct any errors and try validating again.

How It Works

This Try It Out has modified your XML Schema to use a global <attributeGroup> declaration. You cre-
ated a global <attributeGroup> declaration named ContactAttributes. Within the declaration you
included the declarations for the source and the version attributes. Within the <complexType> defini-
tion for the <contacts> element, you added an <attributeGroup> reference declaration. When refer-
ring to the global <attributeGroup> declaration, you included a ref attribute with the value
contacts:ContactAttributes.

As the schema validator processes the instance document, it processes the <contacts> element, as
shown in earlier examples. When it encounters the <contacts> element, it looks it up in the XML
Schema. Once it finds the declaration, it finds the associated type (in this case it is a local <complexType>
definition). When the schema validator encounters the <attributeGroup> reference declaration, it treats
the source <attribute> declaration within the group as if it had been included directly within the
<complexType> definition. It does this for each attribute declaration in the group.

The fixed declaration for the source attribute still applies even though you are using a group. Because
the version of your contacts list is 1. 0, it matches the fixed value. You could have omitted the version
attribute altogether. As the document is being processed, the schema validator adds the fixed value from
the XML Schema if no value is specified in the XML document.

Creating Elements with Simple Content and Attributes

At this point you have learned two ways to specify the allowable content for an element. You learned
how to construct complex element declarations, which can contain both elements and attributes using
the <complexType> declaration. You also learned how to specify an <element> declaration’s type using
the type attribute and the value string. What if your element contains simple content and attributes?
Unfortunately, this requires a little more work.

When declaring an element that has simple content, you start with a basic element declaration:

<element name="phone">
<!-- Specify type here -->
</element>

Within the element declaration, you include a <complexType> declaration in which you specify that

you want your element to have simple content. You do this by creating a <complexType> declaration
that contains a <simpleContent> element. The <simpleContent> element indicates that the

185

Part II: Validation

<complexType> cannot contain child elements. It may contain attributes, but otherwise the content will
be defined by a simple type:

<element name="phone">
<complexType>
<simpleContent>
<!-- Specify type here -->
</simpleContent>
</complexType>
</element>

You also need to specify what kind of datatype should be used to validate your simple content.
Within the <simpleContent> element, you can create an <extension> declaration. You must use
an <extension> declaration because you will be extending an existing datatype by adding attribute
declarations. Consider the following, for example:

<element name="phone">
<complexType>
<simpleContent>
<extension base="string">
<attribute name="kind" type="string" default="Home" />
</extension>
</simpleContent>
</complexType>
</element>

In the <extension> declaration, you can add a base attribute whereby you specify the datatype
string to use as the basis for your element’s content. In the preceding example, the built-in string
type is the base type, but you are not limited to using built-in datatypes. You can also refer to any global
<simpleType> in your XML Schema.

After specifying the base type, you declared the attributes. As shown in the <complexType> declara-
tions earlier in the chapter, you can include <attribute> and <attributeGroup> declarations inside
the <extension> element.

Any of the following examples are allowable <phone> elements based on the previous declaration:

<phone kind="Home">001-909-555-1212</phone>
<phone>001-909-555-1212</phone>
<phone />

In the first of the preceding examples, the <phone> element contains a phone number string and a kind
attribute. In the second example, the kind attribute is omitted. If a schema validator encountered this
element, it would use the default value Home specified in the attribute declaration. The first two exam-
ples include a phone number string in the element content. In the final example, the kind attribute is
omitted and the element doesn’t include a phone number.

Datatypes

You have seen how to declare allowable elements and attributes using <complexType> definitions. At
the start of the chapter, however, we promised that you would learn how to define the allowable content
for text-only elements and attribute values. It’s time that we made good on that promise.

186

Chapter 5: XML Schemas

The XML Schema Recommendation allows you to use the following:

O Built-in datatypes
Q User-defined datatypes

Built-in Datatypes

The examples throughout this chapter have used the string type for our text-only content. The string
type is a primitive datatype that allows any textual content. XML Schemas provide a number of built-in
simple types that allow you to exercise greater control over textual content in your XML document. The
following table lists all of the simple types built into XML Schemas:

Type Description

string Any character data

normalizedString A whitespace-normalized string in which all spaces, tabs, car-
riage returns, and linefeed characters are converted to single
spaces

token A string that does not contain sequences of two or more spaces,
tabs, carriage returns, or linefeed characters

byte A numeric value from -128 to 127

unsignedByte A numeric value from 0 to 255

base64Binary Base64 encoded binary information

hexBinary Hexadecimal encoded binary information

integer A numeric value representing a whole number

positivelInteger An integer whose value is greater than 0

negativeInteger An integer whose value is less than 0

nonNegativeInteger

nonPositiveInteger

An integer whose value is 0 or greater

An integer whose value is less than or equal to 0

int A numeric value from -2147483648 to 2147483647

unsignedInt A numeric value from 0 to 4294967295

long A numeric value from -9223372036854775808 to
9223372036854775807

unsignedLong A numeric value from 0 to 18446744073709551615

short A numeric value from -32768 to 32767

unsignedShort A numeric value from 0 to 65535

decimal A numeric value that may or may not include a fractional part

Table continued on following page

187

Part II: Validation

Type

float

double

boolean

time

dateTime

duration

date

gMonth

gYear

gYearMonth

gDay

gMonthDay

name

QOName

NCName

Description

A numeric value that corresponds to the IEEE single-precision
32-bit floating-point type defined in the standard IEEE
754-1985.-0, INF, -INF, and NaN are also valid values.

A numeric value that corresponds to the IEEE double-precision
64-bit floating-point type defined in the standard IEEE 754-1985.
-0, INF, -INF, and NaN are also valid values.

Alogical value, including true, false, 0, and 1

An instant of time that occurs daily as defined in Section 5.3 of
ISO 8601. For example, 15:45:00.000 is a valid time value.

An instant of time, including both a date and a time value, as
defined in Section 5.4 of ISO 8601. For example,
1998-07-12T16:30:00.000 is a valid dateTime value.

A span of time as defined in Section 5.5.3.2 of ISO 8601. For
example, P30D is a valid duration value indicating a duration
of 30 days.

A date according to the Gregorian calendar as defined in Section
5.2.1 of ISO 8601. For example, 1995-05-25 is a valid date value.

A month in the Gregorian calendar as defined in Section 3 of ISO
8601. For example, --07 is a valid gMonth value.

A year in the Gregorian calendar as defined in Section 5.2.1 of
ISO 8601. For example, 1998 is a valid gYear value.

A specific month and year in the Gregorian calendar as defined
in Section 5.2.1 of ISO 8601. For example, 1998-07 is a valid
gYearMonth value.

A recurring day of the month as defined in Section 3 of ISO 8601,
such as the 12th day of the month. For example, ---12 is a valid
gDay value.

A recurring day of a specific month as defined in Section 3 of
ISO 8601, such as the 12th day of July. For example, --07-12 is a
valid gMonthDay value.

An XML name according to the Namespace Recommendation.
XML names must begin with a letter or an underscore. Though

this type can allow for “:” characters, it is best to avoid them for
compatibility.

A qualified XML name as defined in the Namespaces Recom-
mendation. QNames may or may not contain a namespace pre-
fix and colon.

A noncolonized XML name that does not include a namespace
prefix or colon as defined in the Namespaces Recommendation

Chapter 5: XML Schemas

Type Description
anyURI A valid Uniform Resource Identifier (URT)
language A language constant as defined in RFC 1766, such as en-Us (RFC

1766 can be found at www.ietf.org/rfc/rfcl766.txt)

In addition to the types listed, the XML Schema Recommendation also allows the types defined within
the XML Recommendation. These types include ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION,
NMTOKEN, and NMTOKENS. These types are covered in the last chapter.

Although we have used the string type throughout most of our examples, any of the preceding types
can be used to restrict the allowable content within your elements and attributes. Suppose you want to
modify the declarations of the <latitude> and <longitude> elements within your contacts XML
Schema. By specifying a more restrictive type, you could ensure that users of your XML Schema enter
valid values. You could modify your declarations as follows:

<element name="latitude" type="float"/>
<element name="longitude" type="float"/>

Now, instead of allowing any textual content, you require that users specify a floating-point number. For
a more in-depth look at these types, see Appendix F or the XML Schema Recommendation at
www.w3.0org/TR/xmlschema-2/.

Try It Out Making Contact — Built-in XML Schema Datatypes

This Try It Out modifies the contacts example so that you can take advantage of the built-in XML
Schema datatypes. You will also include some additional attributes that utilize the built-in types:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contacts?.xsd. Copy the contents from the file contacts8.xsd and make the following
changes:

<?xml version="1.0"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:contacts="http://www.example.com/contacts"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">

<attributeGroup name="ContactAttributes">
<attribute name="version" type="decimal" fixed="1.0" />
<attribute name="source" type="string"/>
</attributeGroup>

<element name="contacts">
<complexType>
<sequence>
<element name="contact" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element name="name" type="contacts:NameType"/>
<element name="location" type="contacts:LocationType"/>

189

Part II: Validation

<element name="phone" type="contacts:PhoneType"/>
<element name="knows" type="contacts:KnowsType"/>
<element name="description" type="contacts:DescriptionType"/>
</sequence>
<attribute name="tags" type="token"/>
<attribute name="person" type="ID"/>
</complexType>
</element>
</sequence>
<attributeGroup ref="contacts:ContactAttributes"/>
</complexType>
</element>

<complexType name="NameType">
<group ref="contacts:NameGroup"/>
<attribute name="title" type="string"/>
</complexType>

<group name="NameGroup">
<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded"/>
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>
</sequence>
</group>

<complexType name="LocationType">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="address" type="string"/>
<sequence>
<element name="latitude" type="float"/>
<element name="longitude" type="float"/>
</sequence>
</choice>
</complexType>

<complexType name="PhoneType">
<simpleContent>
<extension base="string">
<attribute name="kind" type="string" default="Home" />
</extension>
</simpleContent>
</complexType>
<complexType name="KnowsType">
<attribute name="contacts" type="IDREFS"/>
</complexType>

<complexType name="DescriptionType" mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="em" type="string"/>
<element name="strong" type="string"/>
<element name="br" type="string"/>
</choice>
</complexType>

</schema>

190

Chapter 5: XML Schemas

Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. You should also add some attributes. Create a new document called
contacts9.xml. Copy the contents of the file contacts8.xml and change the
xsi:schemaLocation attribute. Add the highlighted attributes:

<?xml version="1.0"?>
<contacts
xmlns="http://www.example.com/contacts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.com/contacts contacts9.xsd"
source="Beginning XML 4E"
version="1.0">
<contact person="Jeff Rafter" tags="author xml poetry">
<name title="Mr.">
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>
</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone kind="Home">001-909-555-1212</phone>
<knows contacts="David_Hunter Danny_ Ayers"/>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>
</contact>
<contact person="David_ Hunter" tags="author consultant CGI">
<name>
<first>David</first>
<last>Hunter</last>
</name>
<location>
<address>Address is not known</address>
</location>
<phone kind="Work">416 555 1212</phone>
<knows contacts="Jeff_ Rafter Danny_ Ayers"/>
<description>Senior Technical Consultant for CGI.</description>
</contact>
<contact person="Danny_ Ayers" tags="author semantics animals">
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>
</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>
</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts="Jeff Rafter David_Hunter"/>
<description>A Semantic Web developer and technical author specializing in
cutting-edge technologies.</description>
</contact>
</contacts>

191

Part II: Validation

3. You are ready to validate your XML instance document against your XML Schema. Open
contacts9.xml and click Validate in the Codeplot editor. This should validate with no warn-
ings and no errors, but if you do get a validation error, correct it and try validating again.

How It Works

As shown in the previous chapter, DTDs are not capable of advanced data typing. This Try It Out used
some of the XML Schema built-in datatypes. These datatypes enable you to exercise more control over
the textual content within your instance documents. Let’s look at some of the types in a little more detail.
You began by changing the type of your version attribute from string to decimal:

<attribute name="version" type="decimal" fixed="1.0" />

This is a perfect fit because your version number must always be a valid decimal number. (If you ever
needed a complex version number such as 1.0.1, however, this datatype would be insufficient.) Next,
you added a tags attribute to the <complexType> declaration for the contact element:

<attribute name="tags" type="token"/>

You specified that the type should be token, which allows you to use a whitespace-separated list as the
value. You added a person attribute as well, specifying the type as ID:

<attribute name="person" type="ID"/>
To complement this attribute, you modified the KnowsType <complexType> declaration:

<complexType name="KnowsType">
<attribute name="contacts" type="IDREFS"/>
</complexType>

Here you used the built-in types 1D and IDREFS. Remember that these types were added to XML
Schema for compatibility with DTDs and other XML tools. XML Schema actually allows you to build
complex keys and key-references using its own built-in mechanism. Unfortunately, until recently these
features were not widely supported, so it is usually better to use ID and IDREFS whenever possible. The
phone <element> declaration was modified to refer to a new global type PhoneType:

<element name="phone" type="contacts:PhoneType"/>
And the PhoneType was added to the XML Schema:

<complexType name="PhoneType">
<simpleContent>
<extension base="string">
<attribute name="kind" type="string" default="Home" />
</extension>
</simpleContent>
</complexType>

The PhoneType <complexType> declaration allowed you to specify that the <phone> element could
contain simple string content as well as a kind attribute.

192

Chapter 5: XML Schemas

Instead of using the built-in string type for the 1atitude and longitude <element> declarations,
you modified these to use the built-in type f1oat. The float type is similar to the decimal type in that
it allows you to have decimal numbers, but it offers even more control and compatibility. Because the
float type is based on existing standards, it is useful across various computer languages. For example,
some XML applications such as XQuery and XPath2 can natively understand floating-point arithmetic.

As the schema validator processes the document, not only is it checking whether the element content
models you have specified are correct, it is also checking whether the textual data you included in your
elements and attributes is valid based on the type you specified.

User-Defined Datatypes

Although the XML Schema Recommendation includes a wealth of built-in datatypes, it doesn’t include
everything. As you are developing your XML Schemas, you will run into many elements and attribute
values that require a type not defined in the XML Schema Recommendation. Consider the kind attribute
for the <phone> element. Because you restricted its value to the string type, it still accepts unwanted
values such as the following:

kind="Walkie-Talkie"

According to the declaration for the kind attribute, the value Walkie-Talkie is valid. What you need is
to create a list of allowable values as you did in your DTD. No such built-in type exists within the XML
Schema Recommendation, so you must create a new type using a <simpleType> definition.

<simpleType> Declarations

When designing your XML Schemas, you may need to design your own datatypes. You can create cus-
tom user-defined datatypes using the <simpleType> definition:

<simpleType
name="name of the simpleType"
final="#all or list or union or restriction">

When you declare a <simpleType>, you must always base your declaration on an existing datatype.
The existing datatype may be a built-in XML Schema datatype, or it may be another custom datatype.
Because you must derive every <simpleType> definition from another datatype, <simpleType> defini-
tions are often called derived types. There are three primary derived types:

O Restriction types

QO Listtypes

O Union types
This section describes the basics of <simpleType> declarations and user-defined types. In addition,

Appendix F covers datatypes in detail. If you are looking for an in-depth treatment of all of the features
and options, see Professional XML Schemas by Jon Duckett et al. (Wrox Press, 2001).

193

Part II: Validation

<restriction> Declarations

The most common <simpleType> derivation is the restriction type. Restriction types are declared using
the <restriction> declaration:

<restriction
base="name of the simpleType you are deriving from">

A derived type declared using the <restriction> declaration is a subset of its base type. Facets control
all simple types within XML Schemas. A facet is a single property or trait of a <simpleType>. For exam-
ple, the built-in numeric type nonNegativeInteger was created by deriving from the built-in Integer
type and setting the facet minInclusive to zero. This specifies that the minimum value allowed for the
type is zero. By constraining the facets of existing types, you can create your own more restrictive types.

There are 12 constraining facets, described in the following table:

Facet Description

minExclusive Allows you to specify the minimum value for your type that excludes the
value you specify

minInclusive Allows you to specify the minimum value for your type that includes the
value you specify

maxExclusive Allows you to specify the maximum value for your type that excludes the
value you specify

maxInclusive Allows you to specify the maximum value for your type that includes the
value you specify

totalDigits Allows you to specify the total number of digits in a numeric type

fractionDigits Allows you to specify the number of fractional digits in a numeric type

(e.g., the number of digits to the right of the decimal point)

length Allows you to specify the number of items in a list type or the number of
characters in a string type

minLength Allows you to specify the minimum number of items in a list type or the
minimum number of characters in a string type

maxLength Allows you to specify the maximum number of items in a list type or the
maximum number of characters in a string type

enumeration Allows you to specify an allowable value in an enumerated list
whiteSpace Allows you to specify how whitespace should be treated within the type
pattern Allows you to restrict string types using regular expressions

Not all types use every facet. In fact, most types can be constrained only by a couple of facets. For a com-
plete list of what constraining facets can be used when restricting the built-in XML Schema types, see
Appendix F.

194

Chapter 5: XML Schemas

Within a <restriction> declaration, you must specify the type you are restricting using the base
attribute. The value of the base attribute is a reference to a global <simpleType> definition or built-in
XML Schema datatype. As you have seen with all references in our XML Schema, the reference is a
namespace-qualified value and, therefore, may need to be prefixed.

Suppose you want to create a restriction type that uses enumeration facets to restrict the allowable val-
ues for the kind attribute in your <phone> element:

<attribute name="kind">
<simpleType>
<restriction base="string">
<enumeration value="Home"/>
<enumeration value="Work"/>
<enumeration value="Cell"/>
<enumeration value="Fax"/>
</restriction>
</simpleType>
</attribute>

This declaration contains a <restriction> declaration with the base type string. Within the restric-
tion are multiple enumeration facets to create a list of all of the allowable values for your type.

Try It Out Making Contact— Creating a Restriction Simple Type

As shown in the section “User-Defined Datatypes” earlier in the chapter, the kind attribute should be
more restrictive. Now that you know how to create your own <simpleType> definitions, in this Try It
Out you create a <restriction> type for the kind attribute:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contactsl10.xsd. Copy the contents from the file contacts9.xsd and make the following
changes. You need to modify only the <attribute> declaration for the kind attribute. The rest
of the XML Schema remains the same:

<complexType name="PhoneType">
<simpleContent>
<extension base="string">
<attribute name="kind" default="Home">
<simpleType>
<restriction base="string">
<enumeration value="Home"/>
<enumeration value="Work"/>
<enumeration value="Cell"/>
<enumeration value="Fax"/>
</restriction>
</simpleType>
</attribute>
</extension>
</simpleContent>
</complexType>

195

Part II: Validation

2. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called contacts10.xml. Copy the contents of
the file contacts9.xml and change the xsi: schemaLocation attribute as follows:

xsi:schemalLocation="http://www.example.com/contacts contactsl0.xsd

3. You are ready to validate your XML instance document against your XML Schema. Open
contacts10.xml and click Validate in the Codeplot editor. This should validate without
warnings or errors. If you do get a validation error, correct it and try validating again.

How It Works

In this Try It Out, you modified the kind attribute declaration. You created a local <simpleType> defini-
tion that is a restriction derived from the built-in type string. This allowed you to limit which string
values could be used within the kind attribute in your instance document. Each possible string was
defined with a separate <enumeration> facet:

<attribute name="kind" default="Home">
<simpleType>
<restriction base="string">
<enumeration value="Home"/>
<enumeration value="Work"/>
<enumeration value="Cell"/>
<enumeration value="Fax"/>
</restriction>
</simpleType>
</attribute>

Because you changed your attribute’s type to a local <simpleType>, you had to remove the original
type by removing the type attribute.

<list> Declarations

You'll often need to create a list of items. Using a <1ist> declaration, you can base your list items on a
specific <simpleType>

<list
itemType="name of simpleType used for validating items in the list">

When creating your <1ist> declaration, you could specify the type of items in your list by including the
itemType attribute. The value of the itemType attribute should be a reference to a global <simpleType>
definition or built-in XML Schema datatype. The reference is a namespace-qualified value, so it may
need to be prefixed. The <1ist> declaration also allows you to specify your itemType by creating a
local <simpleType> definition.

When choosing the itemType, remember that you are creating a whitespace-separated list, so your items
cannot contain whitespace. Therefore, types that include whitespace cannot be used as itemTypes. A side

effect of this limitation is that you cannot create a list whose itemType is itself a list.

Suppose you created a global <simpleType> called ContactTagsType whereby you enumerated all of
the allowable tags for a contact:

196

Chapter 5: XML Schemas

<simpleType name="ContactTagsType">
<restriction base="string">
<enumeration value="author"/>
<enumeration value="xml"/>
<enumeration value="poetry"/>
<enumeration value="consultant"/>
<enumeration value="CGI"/>
<enumeration value="semantics"/>
<enumeration value="animals"/>
</restriction>
</simpleType>

This simple type only allows for one of the enumerated values to be used. If you want to allow for multi-
ple items, you could make a type called ContactTagsListType, which allows for a list of tags using the
<list> declaration:

<simpleType name="ContactTagsListType">
<list itemType="contacts:ContactTagsType"/>
</simpleType>

If you use this within your contacts XML Schema, it would allow you to specify multiple tags within
your instance document but still require that they adhere to the enumerations you provide. Of course,
you would probably want to expand your list of possible tags to include all kinds of values, but for now
this ensures that each tag is validated.

<union> Declarations

Finally, when creating your derived types, you may need to combine two or more types. By declaring a
<union>, you can validate the values in your instance document against multiple types at once:

<union
memberTypes="whitespace separated list of types">

When creating a <union> declaration, you specify the types you are combining by including the
memberTypes attribute. The value of the memberTypes attribute should be a whitespace-separated list
of references to global <simpleType> definitions or built-in XML Schema datatypes. Again, these refer-
ences are namespace-qualified values, so they may need to be prefixed. The <union> declaration also
allows you to specify your memberTypes by creating local <simpleType> definitions.

Suppose that you wanted to allow the value Unknown in the <latitude> and <longitude> elements.
To do this you could use a union of the built-in float type and a custom type that allows only the string
Unknown, as shown in the following example:

<simpleType name="UnknownString">
<restriction base="string">
<enumeration value="Unknown"/>
</restriction>
</simpleType>

<simpleType name="UnknownOrFloatType">

<union memberTypes="float contacts:UnknownString"/>
</simpleType>

197

Part II: Validation

In this declaration, you have created the custom UnknownString type and a union of the two simple
types float and UnknownString. Note that when you refer to the names of the <simpleType> defini-
tions, you must make sure they are qualified with a namespace. In this case, the reference to £1oat has
no prefix because the default namespace for this document is the XML Schema namespace. The prefix
contacts is used when referring to the type UnknownString, however, because it was declared in the
target namespace. By referring to your newly created type, you can specify that your <latitude> and
<longitude> elements must contain either £1oat values or the string Unknown:

<element name="latitude" type="contacts:UnknownStringOrFloatType"/>
<element name="longitude" type="contacts:UnknownStringOrFloatType"/>

Some valid elements include the following;:

<latitude>43.847156</latitude>
<longitude>Unknown</longitude>

Some invalid elements include these:

<latitude>unknown</latitude>
<longitude>43.847156 Unknown</longitude>

The first two elements both contain valid values. The third element is invalid because the value unknown
is not listed in either of the unioned types —the values are case sensitive. The fourth element is invalid
because the schema validator treats this as a single value. Although Unknown and 43.847156 are allow-
able by themselves, the value 43.847156 Unknown is not listed in either of the unioned types.

Try It Out Making Contact — More Simple Types

In this Try It Out, you add some new types to your contacts listing:

1. Begin by making the necessary changes to your XML Schema. Create a new document called
contactsll.xsd. Copy the contents of the file contacts10.xsd and make the following
changes (you first need to add the new <simpleType> declarations):

<simpleType name="ContactTagsType">
<restriction base="string">
<enumeration value="author"/>
<enumeration value="xml"/>
<enumeration value="poetry"/>
<enumeration value="consultant"/>
<enumeration value="CGI"/>
<enumeration value="semantics"/>
<enumeration value="animals"/>
</restriction>
</simpleType>

<simpleType name="ContactTagsListType">
<list itemType="contacts:ContactTagsType"/>
</simpleType>

<simpleType name="UnknownString">
<restriction base="string">

198

Chapter 5: XML Schemas

<enumeration value="Unknown"/>
</restriction>
</simpleType>

<simpleType name="UnknownStringOrFloatType">
<union memberTypes="float contacts:UnknownString"/>
</simpleType>

2. Modify the <latitude> and <longitude> element declarations. The rest of the XML Schema
remains the same:

<element name="latitude" type="contacts:UnknownStringOrFloatType"/>
<element name="longitude" type="contacts:UnknownStringOrFloatType"/>

3. Before you can schema validate your XML document, you must modify it so that it refers to
your new XML Schema. Create a new document called contacts11.xml. Copy the contents of
the file contacts10.xml and change the xsi: schemaLocation attribute as follows:

xsi:schemal.ocation="http://www.example.com/contacts contactsll.xsd"

4. You should also update the latitude and longitude for David Hunter using the newly created
Unknown string:

<contact person="David_Hunter" tags="author consultant CGI">
<name>
<first>David</first>
<last>Hunter</last>
</name>
<location>
<address>Address is not known</address>
<latitude>Unknown</latitude>
<longitude>Unknown</longitude>
</location>
<phone kind="Work">416 555 1212</phone>
<knows contacts="Jeff_Rafter Danny Ayers"/>
<description>Senior Technical Consultant for CGI.</description>
</contact>

5. You are ready to validate your XML instance document against your XML Schema. Open
contactsll.xml and click the validate button in the Codeplot editor. This should validate
with no warnings or errors. If you do get a validation error, then correct it and try validating
again.

How It Works

This Try It Out added some more complex <simpleType> declarations to your schema. You first created
a new type that enables you to control which tags can be used for each contact. Then you created two
global <simpleType> declarations that enabled you to utilize floating-point numbers or use the string
"Unknown." You then modified the <latitude> and <longitude> element declarations to use your
new types.

199

Part II: Validation

Creating a Schema from
Multiple Documents

So far, the XML Schemas in this chapter have used a single schema document to keep things simple. The
XML Schema Recommendation introduces mechanisms for combining XML Schemas and reusing defini-
tions. As mentioned in Chapter 4, reusing existing definitions is good practice —it saves you time when
creating the documents and increases your document’s interoperability.

The XML Schema Recommendation provides two primary declarations for use with multiple XML
Schema documents:

d <import>

a <include>

<import> Declarations

The <import> declaration, as the name implies, allows you to import global declarations from other
XML Schemas. The <import> declaration is used primarily for combining XML Schemas that have dif-
ferent targetNamespaces. By importing the declarations, the two XML Schemas can be used in con-
junction within an instance document. Note that the <import> declaration allows you to refer to
declarations only within other XML Schemas. The next section covers the <include> declaration, which
includes the declarations directly into the XML Schema as if they had been declared. The <include> dec-
laration can be used only for XML Schemas with the same targetNamespace:

<import
namespace=""
schemaLocation="">

The <import> declaration is always declared globally within an XML Schema (it must be a direct child
of the <schema> element). This means that the <import> declaration applies to the entire XML Schema.
When importing declarations from other namespaces, the schema validator attempts to look up the doc-
ument based on the schemaLocation attribute specified within the corresponding <import> declara-
tion. Of course, as shown earlier, the schemaLocation attribute serves only as a hint to the processor.
The processor may elect to use another copy of the XML Schema. If the schema validator cannot locate
the XML Schema for any reason, it may raise an error or proceed with lax validation.

To get a better idea of how this works, you need a sample XML Schema that uses the <import> declara-
tion. Let’s combine the examples that you have been working with throughout this chapter. Within the
XML Schema for your contacts listing, you will import the declarations from your <name> vocabulary.
You will use the imported <name> declarations in place of the existing declarations. Though it means
you need to remove some declarations in this case, it is better to reuse XML Schemas whenever possible.

Try It Out Making Contact — Importing XML Schema Declarations

This example modifies your contact listing to introduce an <import> declaration. You import the name
vocabulary that you developed earlier in the chapter. You need to remove some existing declarations
and modify your instance document to reflect the changes in your XML Schemas:

200

Chapter 5: XML Schemas

1. Begin by modifying your contacts vocabulary. You need to import the name vocabulary and use
the imported types. Create a new document called contacts12.xsd. Copy the contents of the
file contacts11.xsd and make the following changes:

<gchema xmlns="http://www.w3.o0rg/2001/XMLSchema"
xmlns:contacts="http://www.example.com/contacts"
xmlns:name="http://www.example.com/name"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">

<import namespace="http://www.example.com/name" schemalLocation="name8.xsd"/>

2. Youalso need to modify the declaration of the <contact> element to refer to the global <name>
element declared in name8.xsd:

<element name="contacts">
<complexType>
<sequence>
<element name="contact" minOccurs="0" maxOccurs="unbounded">
<complexType>
<sequence>
<element ref="name:name"/>
<element name="location" type="contacts:LocationType"/>
<element name="phone" type="contacts:PhoneType"/>
<element name="knows" type="contacts:KnowsType"/>
<element name="description" type="contacts:DescriptionType"/>
</sequence>
<attribute name="person" type="ID"/>
<attribute name="tags" type="token"/>
</complexType>
</element>
</sequence>
<attributeGroup ref="contacts:ContactAttributes"/>
</complexType>
</element>

3. Remove the NameType <complexType> declaration and the NameGroup <group> declaration
from your schema.

4. Now that you have modified your XML Schema document, you can create an instance docu-
ment that reflects the changes. This document is very similar to the contacts11.xml docu-
ment. Only the <name> elements will change. Create a new document called contacts12.xml.
Copy the contents of the file contacts11.xml and make the following changes:

<?xml version="1.0"?>

<contacts
xmlns="http://www.example.com/contacts"
xmlns:name="http://www.example.com/name"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.example.com/contacts contactsl2.xsd"
source="Beginning XML 4E"
version="1.0">
<contact person="Jeff_ Rafter" tags="author xml poetry">

201

Part II: Validation

<name:name title="Mr.">
<name: first>Jeff</name: first>
<name: first>Craig</name:first>
<name:last>Rafter</name:last>
</name:name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone kind="Home">001-909-555-1212</phone>
<knows contacts="David_Hunter Danny_Ayers"/>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>
</contact>
<contact person="David_Hunter" tags="author consultant CGI">
<name :name>
<name: first>David</name: first>
<name:last>Hunter</name:last>
</name:name>
<location>
<address>Address is not known</address>
<latitude>Unknown</latitude>
<longitude>Unknown</longitude>
</location>
<phone kind="Work">416 555 1212</phone>
<knows contacts="Jeff_Rafter Danny Ayers"/>
<description>Senior Technical Consultant for CGI.</description>
</contact>
<contact person="Danny_ Ayers" tags="author semantics animals">
<name :name>
<name: first>Daniel</name:first>
<name:middle>John</name:middle>
<name: last>Ayers</name:last>
</name:name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca Italy</address>
</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts="Jeff_Rafter David_Hunter"/>
<description>A Semantic Web developer and technical author specializing in
cutting-edge technologies.</description>
</contact>
</contacts>

5. You are ready to validate your XML instance document against your XML Schema. Open

contactsl2.xml and click Validate in the Codeplot editor. As before, this should validate
with no warnings and no errors. If not, then correct any errors and try validating again.

202

Chapter 5: XML Schemas

How It Works

In this Try It Out, you imported one XML Schema into another. You used the <import> declaration
because the two XML Schemas were designed for different targetNamespaces. Within your first XML
Schema, you had already declared a single global element that could be used to describe names. In your
second XML Schema, you were forced to do some more work:

<?xml version="1.0"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:contacts="http://www.example.com/contacts"
xmlns:name="http://www.example.com/name"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">

The first addition you had to make was an XML namespace declaration in the root element. You added
a namespace declaration for the namespace http: //www.example.com/name. You needed to add this
declaration so that you could refer to items declared within the namespace later in your XML Schema.

Next, you added an <import> declaration:

<import namespace="http://www.example.com/name"
schemaLocation="name8.xsd" />

This <import> declaration is straightforward. You are importing the declarations from the http: //www
.example. com/name namespace, which is located in the file name8 . xsd. This declaration enables you
to reuse the declarations from your name8 .xsd XML Schema within your contacts12.xsd XML
Schema. (If you are using another schema validator, you should check the documentation for special
rules when referring to external files. For example, the Xerces parser handles relative URL references dif-
ferently in older versions.)

Finally, you modified the name element declaration within your <contact> declaration:
<element ref="name:name" />

Notice that you use the namespace prefix declared within the root element when referring to the name
element declaration from your name8 . xsd file. Instead of using an element reference, you could have
referred to the global type NameType.

Once you made these changes, you had to create a new, compliant instance document. The major differ-
ence (apart from the namespace declaration in the root element) was the modified content of your
<contact> elements:

<contact person="Jeff_Rafter" tags="author xml poetry">
<name:name title="Mr.">
<name: first>Jeff</name: first>
<name: first>Craig</name:first>
<name: last>Rafter</name:last>
</name:name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>

203

Part II: Validation

<longitude>-117.207642</longitude>
</location>
<phone kind="Home">001-909-555-1212</phone>
<knows contacts="David_Hunter Danny_Ayers"/>
<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>
</contact>

This might seem a little more confusing than you would expect. Because you declared that the
elementFormDefault of both XML Schemas was qualified, you are required to qualify all your
elements with namespace prefixes (or a default namespace declaration).

In your instance document you were already using the default namespace to refer to elements from the
namespace http: //www.example.com/contacts. Therefore, you had to use a namespace prefix, in
this case name, when referring to the elements from the namespace http: / /www.example.com/name.
The <first>, <middle>, and <last> elements are all declared within the http: //www.example

. com/name namespace; therefore, you must qualify them with the name prefix you declared in the root
element of your instance document.

The title attribute doesn’t need to be qualified, because you didn’t modify the attribute
FormDefault within your XML Schemas — so it uses the default value unqualified.

<include> Declarations

The <include> declaration is very similar to the <import> declaration. Unlike the <import> declara-
tion, however, the <include> declaration allows you to combine XML Schemas that are designed for the
same targetNamespace (Or no targetNamespace) much more effectively. When a schema validator
encounters an <include> declaration, it treats the global declarations from the included XML Schema as
if they had been declared in the XML Schema that contains the <include> declaration. This subtle dis-
tinction makes quite a difference when you are using many modules to define a single vocabulary.

<include
schemaLocation="">

Notice that within the <include> declaration there is no namespace attribute. Again, unlike the
<import> declaration, the <include> declaration can be used only on documents with the same
targetNamespace, Or N0 targetNamespace. Because of this, a namespace attribute would be redun-
dant. Just as you saw before, the schemaLocation attribute allows you to specify the location of the
XML Schema you are including. The schemaLocation value functions as a validator hint. If the schema
validator cannot locate a copy of the XML Schema for any reason, then it may raise an error or proceed
with lax validation.

To demonstrate the <include> declaration, you need an example that utilizes two XML Schema docu-
ments with the same targetNamespace. To do this, you can break your contacts XML Schema into two
parts —moving the type declarations for the ContactTagsType to a new XML Schema that can be
included in your main document.

204

Chapter 5: XML Schemas

Try It Out Making Contact — Including XML Schema Declarations

This Try It Out divides your XML Schema into two parts and includes one in the other. This is known as
dividing an XML Schema into modules — separate files that make up the overall XML Schema:

1.

4,

Create a new XML Schema called contact_tags.xsd that declares all of the allowable tags
in your contact listing. To create the declarations, you can simply copy the declarations from
contactsl2.xsd

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"

xmlns:contacts="http://www.example.com/contacts"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">
<simpleType name="ContactTagsType">
<restriction base="string">
<enumeration value="author"/>
<enumeration value="xml"/>
<enumeration value="poetry"/>
<enumeration value="consultant"/>
<enumeration value="CGI"/>
<enumeration value="semantics"/>
<enumeration value="animals"/>
</restriction>
</simpleType>

</schema>

2.

Now that you have created the contact_tags.xsd XML Schema, create a new document
called contacts13.xsd. Copy the contents of the file contacts12.xsd. You need to insert an
<include> declaration, and be sure to remove the ContactTagsType declaration:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"

xmlns:contacts="http://www.example.com/contacts"
xmlns:name="http://www.example.com/name"
targetNamespace="http://www.example.com/contacts"
elementFormDefault="qualified">

<include schemalocation="contact_tags.xsd"/>

<import namespace="http://www.example.com/name" schemalLocation="name8.xsd"/>

For clarity, insert a comment in your XML Schema where the ContactTagsType used to be:
<!-- ContactTagsType moved to contact_tags.xsd -->
Before you can schema validate your instance document, you must modify it so that it refers to

your new XML Schema. Create a new document called contacts13.xml. Copy the contents of
the file contacts12.xml and change the xsi: schemaLocation attribute as follows:

xsi:schemal.ocation="http://www.example.com/contacts contactsl3.xsd"

5.

You are ready to validate your XML instance document against your XML Schema. Open
contactsl13.xml and click Validate in the Codeplot editor. This should validate with no
warnings or errors. If not, correct any errors and try validating again.

205

Part II: Validation

How It Works

Dividing complex XML Schemas into modules can be an excellent design technique. In this Try It Out,
you divided your contacts vocabulary into two modules. You declared these modules in separate XML
Schema documents, each with http: //www.example.com/contacts as the targetNamespace.
Because the two documents utilized the same targetNamespace, you simply used an <include> decla-
ration to combine them.

<include schemalocation="contact_tags.xsd" />

As the schema validator processes contacts13.xsd, it includes the declarations from contact_tags
.xsd with the declarations for contacts13.xsd as if they had been declared in one document.
Therefore, you were able to use all of the types as if they were declared within contacts13.xsd.
Because you

didn’t introduce any namespace complexities, there was no need to change the instance document to
support the new modular design.

What happens when the XML Schema you are including has no targetNamespace? Declarations
within XML Schemas that have no targetNamespace are treated differently. These declarations are
known as Chameleon components. Chameleon components take on the targetNamespace of the XML
Schema that includes them. Therefore, even though they were declared with no targetNamespace,
when they are included they take the targetNamespace of the XML Schema that is including them.

Documenting XML Schemas

Throughout your programming career, and even in this book, you have heard that documenting your
code is one of the best habits you can develop. The XML Schema Recommendation provides several
mechanisms for documenting your code:

0 Comments
Q Attributes from other namespaces

a Annotations

Comments

In Chapter 2, you learned that XML allows you to introduce comments in your XML documents.
Because the XML Schema is an XML document, you can freely intersperse XML comments throughout
the declarations, as long as you follow the rules for XML well-formedness:

<!-- This complexType allows you to describe a person's name broken down
by first, middle and last parts of the name. You can also specify a
greeting by including the title attribute. -->

<complexType name="NameType">
<!-- The NameGroup is a global group defined in this XML Schema. -->
<group ref="target:NameGroup" />
<attribute name="title" type="string"/>

</complexType>

206

Chapter 5: XML Schemas

The preceding XML Schema fragment includes two comments. The first comment simply introduces the
complex type and when it should be used. If someone were reading this XML Schema, this would surely
give the user some guidance when creating his or her instance documents. The second comment informs
the user that the referenced group is declared in this XML Schema.

While these comments are useful for someone reading this XML Schema, many processors will not
report XML comments. Therefore, the document must be read by a human for the comments to be useful
in all cases.

Attributes from Other Namespaces

The XML Schema Recommendation provides a second mechanism for documenting your XML Schemas.
All of the elements defined within the XML Schema vocabulary allow you to include any attribute from
another namespace. You can use the alternative attributes to introduce descriptive data that is included
with your element.

Suppose you declared an attribute for comments within the namespace http: //www. example. com/
documentation. You could use this attribute throughout your XML Schema to include comments that
are embedded within your elements:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
xmlns:doc="http://www.w3.org/documentation"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<group name="NameGroup">
<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded"/>
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>
</sequence>
</group>
<complexType name="NameType" doc:comments="This complexType allows you to
describe a person's name broken down by first, middle and last parts of the
name. You can also specify a greeting by including the title attribute.">
<group ref="target:NameGroup" doc:comments="The NameGroup is a global
group defined in this XML Schema."/>
<attribute name="title" type="string"/>
</complexType>
<element name="name" type="target:NameType"/>
</schema>

In this example, there is a namespace declaration for a fictitious vocabulary for documentation. Suppose
that your fictitious namespace contained a declaration for the comments attribute. Throughout the XML
Schema document, you could include descriptions of the items you were declaring by including the
comments attribute from the documentation vocabulary.

As a schema validator processes the document, it ignores all of the comments attributes because they are

declared in another namespace. The attributes can still be used to pass information on to other applica-
tions. In addition, the comments provide extra information for those reading your XML Schema.

207

Part II: Validation

Annotations

The primary documenting features introduced in the XML Schema Recommendation are called annota-
tions. Annotations enable you to provide documentation information, as well as additional application
information:

<annotation
id="unique identifier">

The <annotation> declaration can appear as a child of most XML Schema declarations. The
<annotation> declaration allows you to add two forms of information to your declarations:

Q Application information

a Documentation information

Each <annotation> declaration may contain the elements <appinfo> and <documentation>. These
elements may contain any XML content from any namespace. Each of these elements may also contain a
source attribute. The source attribute is used to refer to an external file that may be used for applica-
tion information or documentation information. Typically, <appinfo> declarations are used to pass
information such as example files, associated images, or additional information for validation.
Annotations usually include <documentation> declarations to describe the features, or uses, of a partic-
ular declaration within the XML Schema.

Consider the following example:

<?xml version="1.0"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:target="http://www.example.com/name"
xmlns:doc="http://www.w3.org/documentation"
targetNamespace="http://www.example.com/name"
elementFormDefault="qualified">
<annotation>
<appinfo source="name8.xml"/>
<documentation xmlns:html="http://www.w3.0rg/1999/xhtml">
<html:p>
The name vocabulary was created for a Chapter 2 sample. We have
upgraded it to an <html:strong>XML Schema</html:strong>. The
appinfo of this <html:pre><annotation></html:pre> element
points to a sample XML file. The sample should be used <html:em>
only as an example</html:em>.
</html :p>
</documentation>
</annotation>

<group name="NameGroup">
<sequence>
<element name="first" type="string" minOccurs="1" maxOccurs="unbounded"/>
<element name="middle" type="string" minOccurs="0" maxOccurs="1"/>
<element name="last" type="string"/>
</sequence>
</group>
<complexType name="NameType" doc:comments="This complexType allows you to

208

Chapter 5: XML Schemas

describe a person's name broken down by first, middle and last parts of the
name. You can also specify a greeting by including the title attribute.">
<group ref="target:NameGroup" doc:comments="The NameGroup is a global group
defined in this XML Schema."/>
<attribute name="title" type="string"/>
</complexType>
<element name="name" type="target:NameType">
<annotation>
<documentation source="name.html"/>
</annotation>
</element>
</schema>

This example XML Schema contains two <annotation> declarations. The first <annotation> declara-
tion is contained within the <schema> element. It is used to add information that is applicable to the
entire XML Schema document.

Within the first <annotation> declaration are both the <appinfo> and <documentation> elements.
We didn’t include any content within our <appinfo> element. Instead, we included a source attribute
that pointed to an example XML instance document. Of course, schema validators must be programmed
to utilize the <appinfo> declaration. Many programs define different behavior for the <appinfo> dec-
laration. Often, the <appinfo> declaration contains additional validation information, such as other
schema languages.

Schematron is another language for defining your vocabulary. Schematron definitions, because they offer
additional features, are often embedded directly within the <appinfo> declaration. Several processors
that can use Schematron in conjunction with XML Schemas have been written. The Topologi Schematron
Validator that we have been using throughout our examples is written specifically for this purpose. It is
covered in detail within Professional XML Schemas by Jon Duckett et al. (Wrox Press, 2001).

The <documentation> declaration within our first annotation contains an HTML fragment that could
be used when generating a user’s manual for our XML Schema. Our second annotation included only a
<documentation> declaration. Unlike the first <documentation> declaration, the second declaration
was empty and instead used the source attribute to refer to an external file called name . html.

Summary

In this chapter, you learned how to create XML Schemas that can be used to schema validate your XML
documents. You again started with the simple name examples and then progressed to the more complex
contact examples. Highlights of this chapter included the following:

Q The advantages of XML Schemas over Document Type Definitions
Q0 How to associate an XML Schema with an XML document
O How to declare element and attribute types

0O How to declare groups and attribute groups

a

How to specify allowable XML content using simple types and complex types

209

Part II: Validation

0O How to create an XML Schema using multiple documents and namespaces

0O How to document your XML Schema

While we have not discussed all of the options available within XML Schemas, we have established a
foundation upon which you can build many XML Schemas.

Now that you understand the basics of XML Schemas, you are ready to create your own vocabularies.
Even with the basics, however, you have many styles and options when designing your XML Schemas.
Roger Costello, with the help of many volunteers, has created an XML Schemas Best Practices docu-
ment that gives advice on what the best choice or style is for many different situations. See

www .xfront.com/BestPracticesHomepage.html.

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

Question 1

Add a gender attribute declaration for the <contact> elements. The attribute should allow two possi-
ble values: male and female. Make sure the attribute is required.

Question 2

Currently, each contact can have only one phone number. Modify the contact declaration so that each
contact can have zero or more phone numbers, and add declarations for website and email elements.

Question 3

Modify the <description> declaration to include an element wildcard. Within the wildcard, specify
that the description element can accept any elements from the namespace http: //www.w3.org/
1999/xhtml. Set the processContents attribute to 1ax.

210

RELAX NG

RELAX NG is a very powerful, yet easy to understand schema technology that can be used to vali-
date XML instance documents. Like W3C XML Schemas, covered in the previous chapter, RELAX
NG is grammar-based. It is possible for many XML instance documents to be valid according to a
single RELAX NG schema document. Alternatively, it is possible for a single XML instance docu-
ment to be valid with respect to multiple RELAX NG schema documents.

Here are some of the key features of RELAX NG:

Q It's simple and easy to learn.
It uses pattern-based grammar with a strong mathematical foundation.

It has two different syntaxes: XML syntax and compact syntax.

It supports user-defined datatypes.

a
a
Q It supports XML Schema datatypes.
Q
O It supports XML namespaces.

a

It’s highly composable.

QO Elements and attributes are treated the same.

RELAX NG is a normalized grammar based on James Clark’s Tree Regular Expression for XML
(TREX), and Makoto Murata’s Regular Language description for XML (RELAX). Because RELAX
NG was created after DTDs and XML Schemas, the authors were able to address many of the
problems in the earlier schema languages. They were able to remove the complexity associated
with W3C XML Schemas while embracing some of its features. Additionally, the authors based
RELAX NG on strong mathematical models. Having such models simplifies validator develop-
ment and enables schema authors to make mathematical assertions about their schemas. XML
Schema is the most widely supported validation technology, but RELAX NG is considered to be
the simplest technology, and it is often favored when support is available. RELAX NG takes a dif-
ferent approach to validating XML documents, when compared to XML Schemas. RELAX NG
schemas are based on patterns, whereas XML Schemas are based on types. In fact, the power of
RELAX NG centers on its use of patterns. RELAX NG schemas can use pattern composition and
named patterns to create reusable sections of schema documents.

Part II: Validation

Though RELAX NG does not have the type hierarchy of XML Schemas and does not support type inher-
itance, datatyping is supported. RELAX NG supports the datatypes provided by the W3C XML Schema
Part II, Datatypes Recommendation. For example, RELAX NG schemas have full use of XML Schema
datatypes, such as xs: int, xs: double, and xs :decimal, as well as the XML Schema facets previously
discussed. In fact, RELAX NG was designed with pluggable datatypes in mind. That is, users can invent
their own type system, and RELAX NG schemas can be built using user-defined types, instead of, or in
addition to, using the XML Schema datatypes.

In this chapter, you will learn the following:

0 RELAXNG syntaxes
QO RELAXNG patterns, which are the building blocks of RELAX NG schemas

QO Composing and combining patterns into higher-level components for reuse, as well as full
schema grammars

Q The remaining features of RELAX NG, including namespaces, name-classes, datatyping, and
common design patterns

XML and Compact Syntaxes

In the last chapter, you learned that XML Schemas use an XML syntax. Because the syntax is entirely in
XML, you can use generic XML tools —even those that have no understanding of the rules specific to
XML Schema documents. RELAX NG also uses XML syntax, enabling you to work with schemas using
eXtensible Stylesheet Language Transformations (XSLT) or other XML tools.

As shown in the last chapter, XML Schemas can be very long. In some cases, the DTDs for your docu-
ments were much simpler to read than the corresponding XML Schemas. Because of this, RELAX NG
allows you to construct schemas using a compact syntax. The RELAX NG compact (RNC) syntax is,
well, compact, and tailored for users who are creating and modifying RELAX NG schemas.

Most RELAX NG validators today need the XML syntax in order to validate the document, but some are
becoming available that can validate directly using documents written in the compact syntax.

Trang is a Java program that can convert the compact syntax to the XML syntax and
back. Trang can also convert RELAX NG schemas into DTDs or XML Schemas.
Because the compact syntax of RELAX NG is easier for humans to read and write,
you’ll use that syntax in this book to describe RELAX NG. Every compact syntax
schema shown can be converted to the XML syntax using Trang. Trang can be down-
loaded from http: //thaiopensource.com/relaxng/trang.html.

Running the Samples

Because the examples use the compact syntax, you need an editor and validator that support the
compact syntax. A full list of RELAX NG tools can be found on the RELAX NG website at www
.relaxng.org. As in the previous two chapters, you can use any validator or editor you like. The

212

Chapter 6: Relax NG

examples use the Codeplot editor (http://codeplot.com). In addition to XML Schemas and DTDs, the
Codeplot editor supports both the RELAX NG XML syntax and the compact syntax. It also enables you
to specify which RELAX NG schemas should be used for validation by allowing you to add validation
resources to your XML document.

RELAX NG Patterns

RELAX NG schemas are made up of patterns. Within a RELAX NG schema, you can describe patterns of
XML elements and attributes, including sequences and choices. As you will see, patterns of simple data
enumerations can also be described. Patterns can be nested, enabling the schema author to describe the
entire XML structure from top to bottom starting from a single top-level pattern. This section covers pat-
terns that are common to all RELAX NG schemas. In the next section, you’ll see how patterns can be
given names and be reused.

Element, Attribute, and Text Patterns

You can use many different kinds of patterns, and patterns can be combined in various ways. The most
basic patterns in RELAX NG are the element, attribute and text patterns:

Pattern Name Pattern

element pattern element name {pattern}
attribute pattern attribute name {pattern}
text pattern text

Note that patterns are recursive in nature. That is, the element and attribute patterns are defined by plac-
ing another pattern inside the curly braces ({) and (}). This recursive ability is very powerful, although it
takes some getting used to.

The patterns listed here show three RELAX NG (compact syntax) keywords: element, attribute, and
text. The element and attribute patterns are followed by a name. For now, you can think of this as
simply being the element or attribute name. In fact, though, it is a name class. Name classes are a nice
feature of RELAX NG described later in this chapter.

Try It Out What's in a Name?

Let’s take a look at a simple XML instance document and work our way into a RELAX NG schema. We’ll
continue to use the name vocabulary from Chapters 4 and 5 so that you can quickly compare RELAX
NG schemas with XML Schemas and DTDs.

1. Begin by creating the XML document. In the Codeplot editor, create a new document called
name9 . xml. Copy the following and when you are finished save the file:

213

Part II: Validation

214

<?xml version="1.0"?>

<name title="Mr.">
<first>John</first>
<middle>Fitzgerald Johansen</middle>
<last>Doe</last>

</name>

Notice that there is no reference to a RELAX NG document in the XML. Unlike DTD or XML Schema,
RELAX NG does not define a technique for an XML instance document to reference the schema docu-
ment. It is up to the user (via editing tools, command-line arguments, or processing code) to select the
schema at runtime. A conscious decision was made by the RELAX NG committee to not provide such a
mechanism. One reason is security issues. In addition, it is entirely possible that a particular instance
document may need to be validated against different schemas, at different times, for different reasons.

2. Create the RELAX NG schema. As mentioned previously, these examples use the compact syn-
tax. In the Codeplot editor, create a new document called name9 . rnc. Copy the following;
when you are finished, save the file:

element name {
attribute title { text },
element first { text },
element middle { text },
element last { text }

3. You are ready to validate the XML instance document against the RELAX NG schema. Codeplot
allows you to add name9 . rnc as a validation resource to name9 . xml. Simply open name9 . xml
and click the Resources button. You will see the resource listing for name9 . xm1. Click New to
add a new resource. You can give the resource a title such as “RELAX NG.” Choose the RELAX
NG Compact Syntax option as the resource kind and Validation for the purpose. The path of the
resource is name9 . rnc (see Figure 6-1).

4. When you have entered the resource information, click Save. In the resource listing, click the
Document button to return to name9 . xm1. Click Validate to validate the XML document using
the associated name9 . rnc resource (see Figure 6-2).

The validation should have completed with no errors and with name9 . rnc read. If the output
suggests that the validation completed but there was an error in the document, correct the error
and try again.

5. Tosee what happens when an error occurs, simply modify your name9 . xm1 document and try
validating again.

Chapter 6: Relax NG

Figure 6-1

Figure 6-2

215

Part II: Validation

How It Works

In this Try It Out, you created a RELAX NG schema for your name vocabulary. Note that it is not XML
syntax; it is a compact syntax. This small snippet is a complete RELAX NG schema. A name element
must contain a title attribute, and must have one first element, followed by one middle element,
and one last element. The first, middle, and last elements can contain text.

Unlike in earlier examples, you had to specify which schema to use for validation in the editor instead of
the in XML document. Once selected, the validator began reading the XML document and checking its
contents against specified schema. In this schema, there isn’t any real difference between how you
declare the title attribute and the other elements. In general, RELAX NG treats patterns equally.

Elements and Attributes

Although RELAX NG treats elements and attributes as equals, there are a few differences between ele-
ment and attribute patterns. One difference is that the order of the attribute patterns does not matter. As
in XML, attributes can appear in any order. This means that the following RNC schema, with the title
attribute at the end, is identical to the previous example:

element name {
element first { text },
element middle { text },
element last { text },
attribute title { text }
}

However, if you switched the first and last element patterns, the schema would be different because
element order is significant in a sequence.

Another difference is that the elements and attributes may contain different patterns. For example, an
element pattern may contain text patterns, attribute patterns, or other element patterns. An attribute pat-
tern cannot contain other attributes and cannot contain elements.

The concept of “similar syntax” for elements and attributes is very nice in that you don’t need to carry
around the “heavier syntax” used in XML Schemas. Namely, in RNC, there is no need to specify
<simpleType> declarations or <complexType> declarations, <group> declarations versus
<attributeGroup> declarations, or any other special-case syntax needed in XML Schemas or DTDs
for declaring attributes versus elements.

Cardinality

Within RELAX NG, you can control how many times a pattern must occur, or the pattern’s cardinality. By
specifying a pattern’s cardinality, you can make it optional, required, or repeatable. If not specified, then
the cardinality of a pattern is 1. In the previous example, because no cardinality indicator is specified,
one first element, one middle element, and one last element are expected to occur.

216

Chapter 6: Relax NG

Cardinality Indicator Meaning
? Pattern may or may not appear
+ Pattern can appear one or more times

ki Pattern can appear zero or more times

No indicator (default) Pattern must occur once and only once

Refer to Chapter 4 on DTDs for more discussion of cardinality.

Again, attribute and element patterns are treated similarly. Because you didn’t specify a cardinality indi-
cator for your title attribute pattern, the default was applied. That meant that the title attribute had
to appear in your instance document. If you wanted it to be optional you could use the ? indicator:

element name {
element first { text },
element middle { text },
element last { text 1},
attribute title { text }?

Attributes can be optional, but they cannot appear more than once on an individual element. Therefore,
you would not find cardinality indicators of one or more + or zero or more * on attribute patterns.

Connector Patterns and Grouping

The previous two chapters described how to build complex content models using XML Schemas and
DTDs. RELAX NG uses connector patterns to build content models. RELAX NG has three connector pat-
terns: sequence, choice, and interleave.

Pattern Name Pattern

sequence pattern pattern, pattern
choice pattern pattern | pattern
interleave pattern pattern & pattern
group pattern (pattern)

As shown with other patterns in this chapter, these patterns are recursive, so although only two items
are shown in each example, the sequence, choice, and interleave patterns can repeat indefinitely.

Sequences and Choices

Elements, attributes, or other patterns can be combined with sequence or choice connectors. Therefore, you
can have multiple patterns connected:

element date { element year{text}, element month{text}, element day{text} }

217

Part II: Validation

In the preceding example, the comma connector represents sequence, so the order of the elements in the
instance document must be <year> first, then <month>, and then <day>, as shown in the following;:
<date>
<year>1959</year>
<month>08</month>
<day>14</day>
</date>

Note that as a result of the way the connector patterns are described, you cannot combine sequence and
choice in the same group. That is, you are allowed to have a sequence in a group, like this:

element a{text} , element b{text} , element c{text}
Or, you can have a choice used in a group:

element a{text} | element b{text} | element c{text}
However, you cannot have a mixture of choice and sequence:

element a{text} , element b{text} | element c{text}
This last example tries to mix sequence and choice in a single group, which is not allowed. If you want
to use more than one kind of connector, you must group your content model using the parentheses in
the group pattern. The following example shows how sequence and choice could be used together to
describe a content model:

element a { text } , (element b { text } | element c { text })

As long as the same connector is used inside the parentheses, all is well. You can also nest parentheses to
any level, as in the following:

(element a {text}, (element b{text} | (element ¢ {text} , element d {text})))

Remember also that grouping patterns supports cardinality, allowing you to add *, ? and + symbols to
the pattern as follows:

(element a{text}, (element b{text} | (element c{text},element d{text}) *) 2) +

Moreover, because RELAX NG is based on patterns and tree automata, you can specify more complex
and flexible validation concepts in RELAX NG compared to XML Schemas. For example, in RELAX NG,
you can specify that an element <payment> has element <amount> and attribute currency, or put in
another way: element <credit> and attribute card. The complete schema for this combination would
be as follows:

element payment {
(attribute currency { text }, element cash { text }) |
(attribute cardtype { text }, element creditcard { text })

218

Chapter 6: Relax NG

Here is one XML instance document that would be valid using the previous schema (combining cur-
rency and cash is OK):

<payment currency="USD">
<cash>5.75</cash>
</payment>

Here is another (combining cardtype and creditcard is OK):

<payment cardtype="Visa">
<creditcard>4111 1111 1111 1111</creditcard>
</payment>

However, the following XML instance would be invalid, because element cardtype is combined with
attribute cash:

<payment cardtype="MasterCard">
<cash>5.75</cash>
</payment>

Interleave

The third connector pattern available is the interleave pattern, which is quite powerful. As you've seen,
the sequence connector requires that elements be ordered. The choice connector allows a choice between,
say, two or more elements or other patterns. At a high level, interleave allows child elements (or other
patterns) to occur in any order. For example, suppose you had to create an element that contained a per-
son’s name and phone number, as in the following XML instance:

<person>
<name>Julie Gaven</name>
<phone>555-1234</phone>
</person>

You could use the sequence connector if you wanted to force <name> to come before <phone>, but sup-
pose that you really don’t care about the order of the child elements <name> and <phone>. Instead, you
want to require that both <name> and <phone> are present. The choice connector would not work in this
case because you require both to be there; it’s not an either/or situation. Hence, the interleave connector
(&) is used, as shown in the following:

element person { element name { text } & element phone { text } }

The most common use of the interleave connector is to allow single-element patterns to occur in any
order. However, because two patterns can appear on either side of the interleave connector, and not just
a single-element pattern, you could make other types of content models possible. For example, suppose
you had three elements —<a/>, , and <c/>—that had to occur in that order underneath a parent
element. In addition, suppose you wanted to allow another element (say, an <id/> element) to be
included anywhere underneath that parent element, but you didn’t care where it occurred. The follow-
ing would be a valid instance:

219

Part II: Validation

<root>
<a/>
<id>54643</id>

<c/>

</root>

You can use two separate patterns, connected via the interleave connector, as follows:

element root {
element id { text } &
(element a { text }, element b { text}, element c { text })

Here, the sequence: a, b, c is interleaved with id. You could add one or more cardinality indicators (+) to
id to allow multiple id elements to be interleaved with the a, b, c sequence.

Enumerated Values

In the name vocabulary, you had an title attribute that allowed you to enter the formal title for the
person you were describing. In the example, you used the value Mr. In the schema you used the text
pattern, which allows any string. Like XML Schema validation (and even DTD validation), RELAX NG
allows a list of enumerated values to be defined in the schema. This list of values can be used to verify
that the instance documents do not contain abnormal values.

If you wanted to specify enumerated values in a RELAX NG, you would use the enumeration pattern
that appears as follows:

Pattern Name Pattern

Enumeration Pattern datatype value

The datatype value is a quoted string value that can use single or double quotes. When multiple values
are permitted, you can use the choice connector (|) to separate the values. With the addition of this new
pattern, you can modify the earlier schema:

element name {
attribute title { "Mr." | "Mrs." "Ms." "Miss" | "Sir" | "Rev" "Dr." }?,
element first { text },
element middle { text },
element last { text }

The following document would be valid:

<?xml version="1.0"7?>
<name title="Mr.">
<first>Joe</first>
<middle></middle>
<last>Hughes</last>
</name>

220

Chapter 6: Relax NG

However, this document would not be valid:

<?xml version="1.0"?>
<name title="">
<first>Maria</first>
<middle></middle>
<last>Knapik</last>
</name>

It isn’t valid because you left the title attribute empty, which wasn’t one of your enumerated options.

Instead of using the RNC keyword text, you used a choice of literal values. Validating against enumer-
ated values is a very common and useful technique. Enumerated value validation is also possible for use
in element content. For example, if you only wanted to allow people with first names of Joe or Maria,
you could define your first element this way:

element first { 'Joe' | 'Maria' }

As shown later, RELAX NG supports datatype validation, such as validating against numeric values, date,
time, or even regular expressions.

Co-Occurrence Constraints

Because RELAX NG is built on patterns and allows flexible pattern combinations, you can construct
schemas that support what are called co-occurrence constraints. Co-occurrence constraints allow you to
change the way an element or attribute is validated based on the content of another element or attribute.
Co-occurrence constraints are not legal in XML Schemas or DTDs.

Here is a sample XML instance to illustrate this concept:

<transportation>
<vehicle type="Automobile" >
<make>Ford</make>
</vehicle>
<vehicle type="Trolley">
<fare>2.50</fare>
<tax>1.00</tax>
</vehicle>
</transportation>

The content allowed for the <vehicle> element depends on the value of the type attribute. If the value
Automobile is found, a <make> element is allowed; if the value Trolley is found, then <fare> and
<tax> must be present. Here is the RNC schema:

element transportation {
element vehicle {
(attribute type { 'Automobile' }, element make { text }) |
(attribute type { 'Trolley' }, element fare { text }, element tax { text })
}*

221

Part II: Validation

Mixed Content Pattern

DTD and XML Schema syntax both contain special constructs to handle mixed content. Mixed content
allows you to mix text and other child elements freely when declaring the content model of a particular
element. In RELAX NG, the mixed pattern handles mixed content:

Pattern Name Pattern

mixed pattern mixed {pattern}

Consider the <description> element from the previous two chapters. You wanted to allow the
element, element, and
 element to be interspersed within the textual description:

<description>Jeff is a developer and author for Beginning XML 4th
edition.
Jeff loves XML!</description>

As you can see, text is scattered in and around the and child elements. The following
RNC schema handles the previous document:

element description {
mixed { element em { text } | element strong { text } \ element br { empty } }*

}

By using the mixed keyword and a repeated choice (using the | and * symbols), the previous schema
allows zero or more occurrences of , , and
 to be used as children of the
<description> element, mixed in with text. This is a common design pattern for mixed content mod-
els. Note that DTD and XML Schemas are limited to this particular use of mixed content, but RELAX NG
is not. You can use other patterns with mixed content, as any pattern can go inside the two curly braces
of the mixed pattern. For example, you could have a mixed pattern for descriptions that require one
 tag, followed by an optional tag, followed by zero or more
 tags, and in that order.
The RNC Schema for this new content model would be as follows:

element description {
mixed { element em { text }, element strong { text }?, element br { empty }* }

}

Note that in the new content model, the
 tag can occur multiple times, but and
cannot.

The Empty Pattern

XML has the concept of an empty element — that is, an element that contains no content, no child ele-
ments, and no text content. Empty elements may contain attributes, however. To provide for empty ele-
ments, RELAX NG has an empty pattern:

Pattern Name Pattern

empty pattern empty

222

Chapter 6: Relax NG

If fact, the empty pattern was used in the previous example. We declared an element pattern for the ele-
ment
, which has no attributes or child elements. That is, the
 element is completely empty.
The XML for the
 element looked like this:

Here is the schema:
element br { empty }

In your contacts vocabulary, the <knows> element was empty but it allowed a contacts attribute to be
present. For example:

<knows contacts="David_Hunter Danny_Ayers"/>

The schema would be as follows:
element knows { attribute contacts { text }, empty }

Just as you saw in earlier examples, the order of attribute patterns is not important. The following would
also be correct:

element knows { empty, attribute contacts { text } }

Try It Out Making Contact

This example creates a RELAX NG compact syntax schema for the example XML document used in the
last two chapters: the contacts listing. Because the examples are long, you may want to download the
content from the book’s website at www . wrox . com.

1. Begin by creating the XML instance document. Modify the example from the last chapter to
remove some of the XML Schema-specific items. Open Codeplot and create a new document
called contacts14.xml. Copy the following and when you are finished, save the file:

<?xml version="1.0"?>
<contacts source="Beginning XML 4E" version="1.0">
<contact person="Jeff_Rafter" tags="author xml poetry">
<name title="Mr.">
<first>Jeff</first>
<first>Craig</first>
<last>Rafter</last>
</name>
<location>
<address>Redlands, CA, USA</address>
<latitude>34.031892</latitude>
<longitude>-117.207642</longitude>
</location>
<phone kind="Home">001-909-555-1212</phone>
<knows contacts="David_Hunter Danny_Ayers"/>
<description>Jeff is a developer and author for Beginning
XML 4th edition.
Jeff loves
XML ! </description>

223

Part II: Validation

</contact>
<contact person="David_Hunter" tags="author consultant CGI">
<name>
<first>David</first>
<last>Hunter</last>
</name>
<location>
<address>Address is not known</address>
<latitude>Unknown</latitude>
<longitude>Unknown</longitude>
</location>
<phone kind="Work">416 555 1212</phone>
<knows contacts="Jeff_Rafter Danny Ayers"/>
<description>Senior Technical Consultant for CGI.</description>
</contact>
<contact person="Danny_ Ayers" tags="author semantics animals">
<name>
<first>Daniel</first>
<middle>John</middle>
<last>Ayers</last>
</name>
<location>
<latitude>43.847156</latitude>
<longitude>10.50808</longitude>
<address>Mozzanella, 7 Castiglione di Garfagnana, 55033 Lucca
Italy</address>
</location>
<phone>+39-0555-11-22-33-</phone>
<knows contacts="Jeff Rafter David_Hunter"/>
<description>A Semantic Web developer and technical author specializing
in cutting-edge technologies.</description>
</contact>
</contacts>

2. Create the RNC schema document. Using only the basic patterns you have already learned, you
will build a schema that can validate the document. Create a new document in Codeplot, name
the document contactsl4.rnc, copy the following, and when you are finished save the file:

element contacts {
attribute version { "1.0" },
attribute source { text }?,
element contact {
attribute person { text }?,
attribute tags { text }?,
element name {
attribute title { "Mr." | "Mrs." "Ms." "Miss" | "Sir" | "Rev" "Dr." }?,
element first { text }+,
element middle { text }?,
element last { text }
}
element location {
(element address { text } |
(element latitude { text }, element longitude { text }))*
}

224

Chapter 6: Relax NG

element phone { attribute kind {"Home" | "Work" | "Cell" | "Fax"}?, text },
element knows {
attribute contacts { text },
empty
Vg
element description {
mixed {
element em { text } | element strong { text } \ element br { empty }
}*
}
}*
}

You are ready to validate the XML instance document against the RELAX NG schema. Within
Codeplot, open contactsl4.xml and click the Resources button. You will see the resource list-
ing for contacts14.xml. Click New to add a new resource. You can give the resource a title
such as “RELAX NG.” Choose the RELAX NG Compact Syntax option as the resource kind, and
Validation for the purpose. The path of the resource is contacts14.rnc. Save the resource and
return to the document. Click the Validate button. The Codeplot editor should indicate that the
schema loaded and that there were no validation errors (see Figure 6-3).

Figure 6-3

225

Part II: Validation

How It Works

In this Try It Out example, you created an XML instance document for the contacts vocabulary you used
in the previous two chapters, and then you created an RNC schema. The contacts XML has a root ele-
ment, called <contacts>, which contains only one child element and two attributes, so you begin the
schema this way:

element contacts {
attribute version { "1.0" },
attribute source { text }?,
element contact {
}*

The <contact> element also had two attributes and five children elements:

element contact {
attribute person { text }?,
attribute tags { text }?,
element name {
}
element location {
}
element phone ({
}
element knows {
}
element description {
}
}*

Finally, you filled in each of the element patterns with the appropriate content models. The name ele-
ment pattern looked very similar to the earlier examples. You simply added some cardinality indicators
to allow for multiple first names and an optional middle name, and enumerated the choices for the
title attribute:

element name {
attribute title { "Mr." | "Mrs." | "Ms." | "Miss" | "Sir" | "Rev" | "Dr." }?,
element first { text }+,
element middle { text }?,
element last { text }

The location pattern was a little more complex:

element location {
(element address { text } |
(element latitude { text }, element longitude { text }))*

Here you wanted to allow for a repeating choice between an <address> element and a <latitude> ele-
ment followed by a <longitude> element. To do this, you created a group for all of the contents and a
subgroup for the latitude and longitude patterns. Recall that this is required because you can’t mix
sequences and choices in a single group.

226

Chapter 6: Relax NG

The remaining patterns, phone, knows, and description, used the patterns shown earlier in the chap-
ter. These included the empty pattern and the mixed pattern. When the validator began to read your
document, it built an in-memory tree and began attempting to match the patterns you declared against
the document.

Combining and Reusing Patterns
and Grammars

This section describes building patterns and entire grammars for reuse. You'll see how to break down
patterns so that they can be reused and recombined in various ways. In addition, you’ll take a look at
breaking down the RELAX NG grammars into multiple physical files and learn how to redefine
included patterns.

Named Patterns

All the RNC schemas shown thus far have been valid and complete RNC schemas. It is perfectly legal to
create RNC schemas with one top-level, or root, element and add nested patterns, to any level, as needed.
However, instead of creating one huge nested pattern, RELAX NG also allows you to construct complex
schemas out of smaller pieces called named pattern definitions, which appear as follows:

Pattern Name Pattern

named pattern definition Pattern Name = pattern

Breaking one large pattern into multiple pieces (or named pattern definitions) makes it easier to manage
complex schemas, and enables reuse. It can also make your schema smaller, more flexible, and easier to
understand. For example, it is possible to create a named pattern definition for elements:

FirstNameDef = element first { text }
You can also create named pattern definitions for group patterns:

locationContents = element address { text } |
(element latitude { text }, element longitude { text })

Recursive and re-entrant patterns are allowed. A pattern reference can reference the current pattern
name, either directly (recursive) or indirectly (re-entrant).

You can create a named pattern definition for any pattern you can create in RELAX NG. In the previous
example, FirstNameDef and locationContents are named pattern identifiers. You can choose almost
any name you like. The names do not have to start with an uppercase letter or follow any specific for-
mat. If you use one of the RNC keywords as your pattern name, however, you must precede it with a \,
asin \text = element textElement { text }.

227

Part II: Validation

Once you have defined a named pattern definition, you can reference it from inside other patterns:
element location = { locationContents* }

Pattern reuse could not be any easier! You can simply use the named pattern identifier anywhere a pat-
tern is allowed. The locationContents on the right-hand side of the equals sign (=) references the
original locationContents definition defined earlier. Again, recall that locationContents and
FirstNameDef are named pattern names; they are not element or attribute names.

Try It Out Utilizing Named Patterns

This example revises the RELAX NG compact syntax schema from the previous examples. You convert
most of the patterns within your schema to named pattern definitions. You don’t need to modify your
XML instance document for this example.

1. Create a new document in Codeplot called contacts15.rnc. The order in which you list the
schema definitions is your choice, but for this example begin by declaring the start pattern:

start = contacts

This start pattern name is special in that it uses RNC’s start keyword, which calls out the
root element of the XML instance.

2. Create the named pattern definition for contacts:

contacts = element contacts { contactsContent }
contactsContent = (
version,
source?,
contact*
)
version = attribute version { "1.0" }
source = attribute source { text }

Splitting every declaration to a separate named pattern as this example does isn’t required but it
makes your schema much more versatile. Here, there are separate named pattern definitions for
the contacts element declaration and its content model. There are two named patterns for the
version and source attributes. Within the contactsContent pattern, there are references to
the attributes and the contact element pattern. Notice that the cardinality indicator for zero or
more (*) has been added to the reference. This is perfectly legal.

3. Divide the contact pattern definition into separate parts, just as you did with the contacts
pattern. Again, this is not necessary; it only makes the schema more readable and reusable:

contact = element contact { contactContents }
contactContents = (

person?,

tags?,

name,

location,

phone,

knows,

description
)
person = attribute person { text }
tags = attribute tags { text }

228

Chapter 6: Relax NG

4. Define each of the patterns you referenced in your contactElements declaration. When you
declare the name pattern, you will continue to split the declaration and content model into sepa-
rate patterns. The only difference here is the title attribute declaration. Move all the enumer-
ated choices to a separate named pattern definition called titles:

name = element name { nameContents }
nameContents = (

title?,

first+,

middle?,

last
)
titles = ("Mr." | "Mrs." | "Ms." | "Miss" | "Sir" | "Rev" | "Dr.")
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

Remember that any pattern can be used as part of a named pattern definition. This includes
enumeration groups.

5. Declare the rest of the patterns in your schema using the same practices:

location = element location { locationContents* }
locationContents = (
address | (latitude, longitude)
)
address = element address { text }
latitude = element latitude { text }
longitude = element longitude { text }

phone = element phone { phoneContents }

phoneContents = (
kind?,
text
)
kinds = ("Home" | "Work" | "Cell" | "Fax")

kind = attribute kind { kinds }

knows = element knows { knowsContents }
knowsContents = (

attribute contacts { text },

empty

description = element description ({
mixed { descriptionContents }*
}
descriptionContents = (em | strong | br)
em = element em { text }
strong = element strong { text }
br = element br { empty }

229

Part II: Validation

Notice that in the knowsContents declaration, the contacts attribute declaration is embedded
(you don’t create a separate named pattern definition). Again, this is completely legal. You can
choose to use named patterns for any number of declarations in your schema.

6. You are ready to validate the XML instance document against the RELAX NG schema. Within
Codeplot, open contactsl4.xml and click the Resources button. You will see the resource
listing for contacts14.xml. Modify your existing RELAX NG resource to point to the new
contactsl5.rnc. Save the resource and return to the document. Click the Validate button.

How It Works

In this Try It Out example, you modified the contacts RELAX NG schema so that it made use of named
pattern definitions. Named patterns are quite useful and important for schema designers, making
RELAX NG schemas easy to create, maintain, understand, and reuse. It is common to create named pat-
terns for reusable components, or groups of attributes and/or elements. It's completely up to you how
you want to expand your patterns into one or more pattern definitions, by employing the group pattern
discussed earlier.

One additional feature about pattern names is very important to understand. RNC grammar syntax was
designed so that you don’t have to worry about name collisions between pattern names and element (or
attribute) names. For that reason, many RNC schema designers use the same name for both the element
(or attribute) and the pattern that defines that element. Why bother creating new unique names when you
don’t need to? It really depends on how you want to break down the reuse of your patterns and how
much granularity and flexibility you need when combining and redefining multiple named patterns.

Combining Named Pattern Definitions

Up until this point, you have been using the = assign method for your named patterns. That is, you
assign a name to a pattern using the equals sign. This technique works fine as long as your pattern
names are unique. Creating two named patterns with the same name, however, is illegal. For example,
the following schema is invalid:

start = name
name = element name { attribute title { text }? }
name = element name {

element first { text }+,

element middle { text }?,

element last { text }

}

This has defined the name pattern twice, making the schema invalid, as you can’t have two identically
named patterns (name in this case) that use the = assignment method. RELAX NG allows two identically
named patterns, but you must choose another technique when combining the named patterns. Two com-
binations are possible: choice or interleave:

Pattern Name Pattern
named pattern choice Pattern Name |=pattern
named pattern interleave Pattern Name &= pattern

230

Chapter 6: Relax NG

Using additional assign methods, RELAX NG gives you complete control over how identically named
patterns combine. For example, you can make the previous schema valid by using the interleave assign-
ment method (&=):

start = name
name &= element name { attribute title { text }? }
name &= element name {
element first { text }+,
element middle { text }?,
element last { text }
}

This basically says that element <name> may contain the sequence of elements <first>, <middle>, and
<last>, and that the title attribute can be interleaved anywhere within the pattern. If you used the
choice assignment method (| =), you would declare that the <name> element may contain the sequence
of elements <first>, <middle>, and <last>, or the title attribute, which is not what you wanted.

When combining patterns of elements, using the choice operator is common. Interleave is often used
when combining patterns of attributes because ordering does not matter. You can also place the various
assignment method symbols on the special start pattern. This enables you to combine multiple gram-
mars that have different root elements.

You are not allowed to mix |= and &= on identically named patterns, but the following is legal:

start = name
name = element name { attribute title { text }? }
name &= element name {
element first { text }+,
element middle { text }?,
element last { text }
}

This used = on the first name definition, and &= on the second. This has the same meaning as if they both
used &=.

While using identically named patterns in a single schema file is rare, it is common
for one schema file to include another, and in this case you might have to pay extra
attention to the assignment method you employ on your named patterns. For exam-
ple, in the previous schema, the first name pattern may come from schemal . rnc.
The start pattern and second name pattern shown here may be found in

schema2 . rnc, which includes schemal . rnc.

Schema Modularization Using the include Directive

RELAX NG is extremely flexible when it comes to schema modularization. You are free to break down
large schema files into smaller, reusable chunks. You can then combine these smaller files in various
ways to develop your complete vocabulary. Schema files can include other schema files and at various
levels. For example, instead of redeclaring the <name> element in the contacts vocabulary, you could
simply include it. Consider the following file called name10 . rnc:

231

Part II: Validation

name = element name { nameContents }
nameContents = (

title?,

first+,

middle?,

last
)
titles = ("Mr." | "Mrs." | "Ms." | "Miss" | "Sir" | "Rev" "Dr.")
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

Suppose you wanted to include this in your contacts vocabulary. You could simply remove the existing
name patterns and add an include directive:

include "namelO.rnc"

The include directive enables you to merge multiple physical schemas into one. A filename or URL
may be specified. Some validators require the use of an absolute URL instead of a relative URL, as
shown here. When you merge two or more schemas using the include directive, the named patterns in
these schemas are combined into one schema. The assignment method discussed earlier becomes more
important when identically named patterns are in the included schemas.

Recursive includes are not allowed. It is up to you to ensure that a single schema is only included once,
either directly or indirectly.

Redefining Included Named Patterns

When multiple grammars are merged into one, all of the named patterns are combined. When you
merge grammars like this, the including grammar has the ability to redefine one or more of the named
patterns in the included grammar(s). For example, let’s say you wanted to create an alternate version
of the name vocabulary, replacing the <first> element with <given>, the <last> element with
<family>, and completely removing the <middle> element.

Using the same name10. rnc file shown previously, you could modify the include statement to redefine
the name pattern as it is included. The old include pattern was simply as follows:

include "namelO.rnc"
You could insert a redefinition:

include "namelO.rnc" {
nameContents = (
title?,
element given { text }+,
element family { text }
)

232

Chapter 6: Relax NG

The curly braces that follow the include directive contain a list of named patterns that replace the origi-
nals found in the name10. rnc file. You do not need to worry about the assignment method on the rede-
fined patterns. There is no combination of patterns taking place; it is a total replacement. You can also
replace the start pattern, if one exists, in the included grammar.

This granular redefining capability was only possible because the original name schema was created
using separate named patterns for each piece of the name vocabulary. By using named patterns, you can
enable other schemas to use your vocabulary and redefine patterns as needed.

Note that the contacts schema could have replaced the name pattern with any RELAX NG pattern.
For example, it was not required that the replacement had to be one element for another or one content
model for another. Remember that you are replacing patterns, not elements. You could have replaced the
name pattern with an attribute pattern, or a pattern with three attributes, or a pattern with a choice of
two elements and an attribute— omitting the <name> element altogether.

Removing Patterns with the notAllowed Pattern

Sometimes, instead of combining included named pattern definitions, you want to remove them com-
pletely. This is especially useful when one schema includes another and there are name collisions. To
specify that an included named pattern isn’t allowed, RELAX NG has a notAllowed pattern.

For example, suppose the name vocabulary had declared a start pattern:

start = name
name = element name { nameContents }
nameContents = (

title?,

first+,

middle?,

last
)
titles = ("Mr." | "Mrs." | "Ms." | "Miss" | "Sir" | "Rev" "Dr.")
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

Within your contacts vocabulary, you also defined a start pattern:
start = contacts

Clearly, you don’t want to combine the two patterns, and having two patterns with the same name is not
valid, so you need to use the notallowed pattern in your include statement:

include "namelO.rnc" {
start = notAllowed

}
start |= contacts

233

Part II: Validation

Notice that you also had to modify your start pattern to use a named pattern choice (| =). Essentially,
you are removing the included pattern using the notAllowed declaration and then combining that with
the new definition in the contacts vocabulary. Effectively, this is the same as declaring the start pat-
tern as follows:

start = notAllowed | contacts

This makes contacts the only reasonable choice for your start pattern —achieving what you set out
to accomplish. Of course, removing named patterns using notAllowed is not limited to the start pat-
tern. You can use the notAllowed declaration to remove any included named pattern.

Extensions and Restrictions

In the previous chapter on XML Schemas, you saw how XML Schemas support object-oriented inheri-
tance features as a means for schema reuse. Using simple and complex types, XML Schemas can be
extended and/or restricted. RELAX NG is quite a bit different from XML Schemas in this regard because
it doesn’t have the concept of types and is instead based on patterns. While RELAX NG does not sup-
port inheritance, this does not mean that reuse and extensibility are impossible.

RELAX NG makes it easy to reference other named patterns within definitions. Combining various
named patterns is called composition. As you saw earlier, using many named pattern definitions allows
for much more flexibility than one large pattern. By splitting the name vocabulary into more named pat-
tern definitions, it is easier to extend or restrict.

When including the name10 . rnc schema in another schema, you can redefine any of these named pat-
terns to extend or restrict your definitions. Suppose you wanted to add a <generation> element after
the <last> element in your schema. You could do this in a number of ways. You could redefine the
nameContents pattern itself, or you could use the nameContents pattern to create a new extended pat-
tern and then modify the name pattern to refer to the extension:

include "name.rnc" {
name = element name { nameContentsExt }

}
nameContentsExt = (nameContents, generation?)
generation = element generation { text }

Here, the name pattern uses the new extended content model, nameContentsExt. In the extended
content model, you can use composition to join the original nameContents pattern and the new
generation named pattern definition. By following this practice in your RELAX NG schema, you can
create much more versatile grammars.

As shown with extensions, using named pattern definitions simplifies restrictions. Suppose that you
wanted to modify allowable enumerations for the title attribute to include only male titles:

include "name.rnc" {
title = attribute title { maleTitles }
}

maleTitles = titles - ("Mrs." | "Ms." | "Miss")

Again, restricting and extending schemas is much easier in RELAX NG than it is using XML Schemas.

234

Chapter 6: Relax NG

Nested Grammars

Oftentimes, you want to reuse names when working with various vocabularies. In these cases, you may
not want to redefine or combine the various named patterns; you simply want to keep them separate.
In order to do this, you need to keep the grammars separate using the RELAX NG grammar pattern.
Suppose you wanted to add a title attribute to the <contacts> element in the contacts vocabulary.
The title of a contacts listing might be “Business Contacts” or “Family and Friends.”

version = attribute version { "1.0" }
source = attribute source { text }
title = attribute title { text }
contacts = element contacts {

version,

source?,

title?,

contact*

Clearly, the title attribute for the <contacts> element would be different from the title attribute
that already exists for the <name> element. When including the name vocabulary in the contacts vocabu-
lary, you would see an error because of the name collision. To fix the error, you could change the pattern
names so that they were different, or you could use a nested grammar:

name = grammar {
include "namelO.rnc"

}

Here, the include directive is inside of a grammar declaration. When you have nested grammars, you
have a nested set of named pattern declarations. The named patterns in the outer grammar (contacts,
contactsContent, title, etc.) do not combine with the named patterns (start, name, nameContents,
title, etc.) in the nested grammar. This means that you don’t have to be concerned about how the two
title patterns will combine. The title attribute in the included vocabulary and the title attribute in
the contacts vocabulary won't collide.

Nested grammars aren’t limited to include directives, though. They can be used within standalone
schemas as well. For example, you could have just as easily declared all of the name vocabulary patterns
inside of the grammar directive instead of using an include directive:

name = grammar {

start = name
name = element name { nameContents }
nameContents = (

title?,

first+,

middle?,

last
)
titles = ("Mr." | "Mrs." | "Ms." | "Miss" | "Sir" | "Rev" "Dr.")
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }

235

Part II: Validation

It is possible to allow patterns in nested grammars to refer to named patterns in their parent grammar by
using the parent pattern. For example, if you wanted to add a source attribute to the <name> element,
you could simply reuse the source pattern in your contacts vocabulary, as shown here:

name = grammar {
start = name
name = element name { nameContents }
nameContents = (
title?,
parent source?,
first+,
middle?,
last
)
titles = ("Mr." | "Mrs." | "Ms." | "Miss" | "Sir" | "Rev" | "Dr.")
title = attribute title { titles }
first = element first { text }
middle = element middle { text }
last = element last { text }
}

Here, you have referred to the named pattern definition for the source attribute just as you had before.
The only difference is the addition of the parent directive, indicating to the RELAX NG validator that it
should look in the parent grammar for the definition.

Additional RELAX NG Features

Let’s now look at some additional RELAX NG features. These include namespaces, name-classes and
wildcards, datatypes, list patterns, comments, and divisions.

Namespaces

XML allows instance documents to contain elements and attributes that belong to one or more
namespaces. In Chapter 5, the contacts listing was part of the namespace http: //www.example
.com/contacts. In RELAX NG, you can do the same thing by adding a default namespace declaration
to the schema:

default namespace = "http://www.example.com/contacts"

This specifies that any unprefixed element names (for example, contacts, contact, name) belong to the
namespace http: //www.example.com/contacts. Because none of the element names in your schema
are prefixed, the default namespace declaration applies to all of them.

There are many differences in the way XML Schemas and RELAX NG handle namespaces. RELAX NG
doesn’t have the concept of a single targetNamespace. In RELAX NG, one schema document can
describe many elements and attributes from many different namespaces.

Suppose you wanted to declare that the , , and
 elements that are part of the

<description> actually belonged to the XHTML namespace. You could do this very easily by adding
another namespace declaration after the default namespace declaration:

236

Chapter 6: Relax NG

namespace xhtml = "http://www.w3.org/1999/xhtml"
Declare the element patterns using the newly declared prefix:

description = element description {
mixed { descriptionContents }*
}
descriptionContents = (em | strong | br)
em = element xhtml:em { text }
strong = element xhtml:strong { text }
br = element xhtml:br { empty }

Here, you have declared a namespace and prefix and then used that prefix in the element declarations.
Note that element or attribute names can be assigned namespaces, but not pattern names.

It is not necessary for the schema document to use the same prefix strings as the instance document.
Prefixes defined in your schema (xhtml in this case) are only used to reference items inside the schema.
XML instances are not required to use the same prefix. For example, inside the instance document you
could have the following:

<contacts:description xmlns:html="http://www.w3.0rg/1999/xhtml">Jeff is a developer
and author for Beginning XML <html:em>4th edition</html:em>.<html:br/>Jeff
<html:strong>loves</html:strong> XML!</contacts:description>

Here, the prefix contacts is used for the contacts namespace http: //www.example.com/contacts,
and the prefix html is used instead of xhtml to refer to the elements from the namespace http: //www
.w3.0rg/1999/xhtml.

Refer to Chapter 3, XML Namespaces,” as there are many ways to construct this document, using dif-
ferent combinations of default namespace declarations and prefixes.

You can add as many namespace declarations as you want to your schema, enabling a single schema

to support as many namespaces as you wish. Alternatively, you may elect to have a different default
namespace for each schema document you create, and then combine the schemas via the include direc-
tive, producing a final logical schema that allows multiple namespaces. Either way, RELAX NG makes
using namespaces quite easy and flexible.

Name-Classes

RELAX NG uses name-classes to describe the legal names that you can use for elements and attributes.
Throughout the chapter, element and attribute names have been fairly basic. Now let’s look at the fea-
tures of element and attribute name declarations. Here are the element and attribute patterns shown at
the beginning of this chapter:

Pattern Name Pattern
element pattern element name {pattern}
attribute pattern attribute name {pattern}

237

Part II: Validation

The name part in each of these patterns is actually a name-class declaration. RELAX NG has four kinds
of name-classes you can use when establishing a name for your element and attribute patterns:

0 Basic names (including namespaces)
Q Name-class choices and groups

QO Namespaces with wildcard

0 AnyName

Name-classes are available for both element and attribute patterns; however, the examples that follow
use only element patterns.

Basic Names (Including Namespaces)

The first kind of name-class, Name, includes simple element and attribute names —with or without
namespace prefixes. Every schema example presented so far in this chapter used this kind of name-class.
Here is an element that uses the Name name-class, without a prefix:

element first { text }
This example includes a prefix:

element xhtml:em { text }

Most of the element (and attribute) patterns you develop for your RELAX NG schemas will use this kind
of name-class.

Name-Class Choices and Groups

This second form of name-class allows you to provide a choice of names to use for your elements and
attributes. Here is an example using a choice:

first = element first | given { text }
Modifying your schema this way would allow you to do either of the following:
<name>
<first>Tom</first>
<last>Gaven</last>
</name>
or:
<name>
<given>Tom</given>
<last>Gaven</last>
</name>

Optionally, you can add parentheses around the choice list:

first = element (first | given) { text }

238

Chapter 6: Relax NG

Of course, you can add names with namespaces to the list of names, assuming you had the appropriate
namespace declarations, as in the following;:

descriptionContents = element (xhtml:em | xhtml:strong | xhtml:br) { text }

Keep in mind that this is a choice between which names to use for the element. This differs from the ear-
lier choice patterns you saw whereby you could choose between various content model patterns. Using
this choice feature of name-classes can make your schemas easier to read, but it only works if all the ele-
ment names in the list have the same content model. In this case, you needed to use text for all of the
elements; you couldn’t use empty for the xhtml : br element. In general, when any of the element names
listed require different content models, you need to create separate element patterns for each one.

Namespaces with Wildcards

This third name-class feature allows you to use wildcards for the names of elements (or attributes),
which are attached to a particular namespace. For example, the <description> element allowed for the
elements , , and
 from the XHTML namespace. Each of these elements was declared
within your schema. Using a wildcard, you could instead allow for any element from the XHTML
namespace regardless of whether or not it was declared:

description = element description {
mixed { anyXHTML }*

}

anyXHTML = element xhtml:* { text }

The last line in this schema declares anyXHTML a pattern that matches any child element, containing text,
as long as that child element is from the http: //www.w3.0org/1999/xhtml namespace. Notice that you
do not have to add additional named patterns to describe the or elements, or any other
elements that might suddenly appear under <description>.

In addition to using namespace wildcards, you can optionally add name exceptions, which allow you to
remove one or more names from the wildcard. For example, suppose you wanted to allow any XHTML
element except <xhtml:script>. You use a minus sign to designate which names are disallowed. Here
is the syntax:

anyXHTML = element xhtml:* - xhtml:script { text }
You could disallow both <xhtml:script> and <xhtml:object> with this syntax as follows:

anyXHTML = element xhtml:* - (xhtml:script | xhtml:object) { text }
You can also use the choice and group pattern from the previous section to allow for content from sev-
eral namespaces at once. If you declared the namespace prefix for SVG, for example, you could do the
following:

anyXHTMLorSVG = element (xhtml:* | svg:*) { text }
While namespace wildcards are a nice feature, you may have noticed one severe limitation with these
schemas: All the xhtml elements — , ,
, and so on— must have text content. This is
a big limitation! What if you wanted to really open up the content model to allow any XHTML element

with any element (or attribute) content? You will see how to accomplish that using the last name-class
feature, AnyName.

239

Part II: Validation

Using AnyName

The AnyName name-class feature opens up many different kinds of patterns involving wildcards. The *
symbol for the name-class enables this feature, as the following illustrates:

description = element description ({
mixed { anyElementWithText }*

}

anyElementWithText = element * { text }
The last line allows any element, from any namespace, as long as it has text content. This might include
elements from the XHTML namespace, the SVG namespace, or some unknown namespace the user
decides to use.
Using the AnyName name-class pattern, and mixing in some pattern recursion, you can finally get rid
of the text content limitation. The following pattern allows any element, with any child elements, to
any depth:

anyElement = element * { anyElement | text }*
This single pattern can be used to validate any XML document, as long as there are no attributes. It
states that each element may contain zero or more patterns of text or anyElement children (which could
therefore contain zero or more recursive element or text patterns, and so on). If you want to add any

attributes to the mix, then you can use the following pattern:

anyElement = element * { anyAttribute | anyElement | text }*
anyAttribute = attribute * { text }

This pattern can be compressed into the following:
any = element * { attribute * {text} | any | text }*

Unlike XML Schemas, any, anyElement, and anyAttribute are not RELAX NG keywords; feel
free to use any identifier you wish.

The AnyName name-class also allows exceptions. You can disallow certain names from the AnyName
wildcard, as shown earlier. You can also combine the four different name-class features to create flexible
patterns. Following are some example patterns that employ exceptions.
Any element from any namespace, except elements with the local name of script:

anyExamplel = element * - *:script { text }
Any element from any namespace, except elements with the local names script or object:

anyExample2 = element * - (*:script | *:object) { text }

Any element from any namespace, except elements with the local name script from the xhtml
namespace:

anyExample3 = element * - xhtml:script { text }

240

Chapter 6: Relax NG

Any element from any namespace, except any element from the xhtml namespace:
anyExampled = element * - xhtml:* { text }
Any element from any namespace, except elements from the null namespace:

namespace local = ""
anyExampleb5 = element * - local:* { text }

Finally, any element from the xhtml namespace or any element from any namespace with the local
name link, except elements with local name script or elements from the contacts namespace:

anyExample6 = element (xhtml:* | *:link) - (*:script | contacts:*) { text }

All the samples here are shown with text content, but you can open up the content models as needed.

Datatypes

RELAX NG supports datatype validation through external datatypes. RELAX NG has a mechanism
defined by which users can add custom datatype library systems. Of course, to use a datatype library,
you need to have a RELAX NG validator that implements that library system. Most available RELAX
NG validators ship with support for the XML Schema datatypes, including XML Schema facets. The
datatype prefix xsd is used to reference the XML Schema datatypes, and is predefined in RELAX NG.
All the RELAX NG validators listed at the end of the chapter support the XML Schema datatypes.

For example, here is a complete schema that uses the XML Schema integer datatype:

start = number
number = element number { xsd:integer }

This schema would validate the following instance document:
<number>1234</number>

The following would not be valid because the data is not of type integer:
<number>John Fitzgerald Johansen Doe</number>

You can also create custom XML Schema datatypes using the XML Schema facets. Suppose that you
wanted to restrict the content of the <phone> element to a specific regular expression. You could do
the following:

phone = element phone { phoneContents }
phoneContents = (
kind?,
PhonePattern
)
PhonePattern = (UsPhonePattern | IntlPhonePattern)
UsPhonePattern = xsd:string { pattern="\d{3}-\d{3}-\d{3}-\d{4}" }
IntlPhonePattern = xsd:string { pattern="\+\d{2}-\d{4}-\d{2}-\d{2}-\d{2}-" }
kinds = ("Home" | "Work" | "Cell" | "Fax")
kind = attribute kind { kinds }

241

Part II: Validation

Here you have created three new types: PhonePattern, UsPhonePattern, and Int1PhonePattern.
Within the phoneContents declaration you have specified that you want to use the PhonePattern
type to validate the content. You are free to use any XML Schema facets except for whitespace and
enumeration.

If you are employing a custom user-defined datatype library, then your schema would use the
datatypes declaration:

datatypes color = "http://www.example.com/colors"
start = house
house = element house { color:beige }

Again, in this case, you would need to rely on a RELAX NG validator that understands the datatypes
URI, as well as the beige type.

Let’s revisit the contacts schema, where you can see datatypes and facets in use. In the earlier schema,
many elements were defined using RELAX NG’s text patterns, as in the following:

first = element first { text }
Let’s modify the schema to use the same datatypes from the last chapter:

namespace xhtml = "http://www.w3.0rg/1999/xhtml"
start = contacts

version = attribute version { xsd:decimal }
source = attribute source { text }
title = attribute title { text }
contacts = element contacts {
version,
source?,
title?,
contact*

contact = element contact { contactContents }
contactContents = (

person?,

tags?,

name,

location,

phone,

knows,

description
)
person = attribute person { xsd:ID }
tags = attribute tags { xsd:token }

name = grammar {
start = name
name = element name { nameContents }
nameContents = (
title?,

242

Chapter 6: Relax NG

first+,

middle?,

last
)
titles = ("Mr." | "Mrs." | "Ms." | "Miss" | "Sir" | "Rev" "Dr.")
title = attribute title { titles }

first = element first { text }
middle = element middle { text }
last = element last { text }

}
location = element location { locationContents* }
locationContents = (

address | (latitude, longitude)

)

address = element address { text }

unknownString = xsd:string { pattern="Unknown" }
unknownStringOrFloat = (xsd:float | unknownString)
latitude = element latitude { unknownStringOrFloat }
longitude = element longitude { unknownStringOrFloat }

phone = element phone { phoneContents }
phoneContents = (

kind?,

PhonePattern

)
PhonePattern = (UsPhonePattern | IntlPhonePattern)
UsPhonePattern = xsd:string ({

pattern=" (\d{3}-\d{3}-\d{3}-\d{4}) | (\d{3}\s\d{3}\s\da{4})" }
IntlPhonePattern = xsd:string { pattern="\+\d{2}-\d{4}-\d{2}-\d{2}-\d{2}-" }
kinds = ("Home" | "Work" | "Cell" | "Fax")
kind = attribute kind { kinds }

knows = element knows { knowsContents }
knowsContents = (
attribute contacts { xsd:IDREFS },
empty
)

description = element description ({
mixed { anyXHTML }*

}
anyXHTML = element * { text }

In this schema, you employ the new PhonePattern type as well as the xsd:decimal and xsd: float

types.

List Patterns

List patterns enable you to validate a whitespace-separated list of tokens. As shown in the last chapter,
you can make a whitespace-separated list of almost any datatype. For example, you could build a new
datatype for your contact tags attribute:

243

Part II: Validation

tagNames = (
"author" |
"xml" |
"poetry" |
"consultant" |
"CGI" |
"semantics" |
"animals"

)
tagList = list { tagNames }
tags = attribute tags { tagNames }

You created the tagList datatype by using the 1ist keyword and placing the datatype for your list in
brackets, ({) and (}). In the XML instance, the individual items must be separated by whitespace:

<contact person="Jeff_ Rafter" tags="author xml poetry">

You aren’t limited to enumeration datatypes; you can use any datatype or combination of datatypes as
the basis of your list.

Comments and Divisions

You can add comments to your schemas, and you can break an individual schema into parts (called divi-
sions). The following schema was divided into three divisions: one for includes, one for header informa-
tion, and one for detail information. Comments start with a # symbol and continue to the end of the line.
Here is an example of using both comments and divisions:

div {
top-level includes
include "extensions.rnc"

}

div {
header-level patterns
start = root
root = element root { header, detail }
header = element header { text }

}

div {
detail-level patterns
detail = element detail { text }

}

You can quickly create subgroups to help organize your schema. Keep in mind, however, that divisions
are different from nested grammars. They do not create separate scopes for named pattern definitions.
This organization technique is very helpful when using the XML syntax, as it simplifies the processing
of groups of declarations using tools such as XSLT. Adding comments throughout your schema is
always a best practice, as it can greatly improve its readability.

244

Chapter 6: Relax NG

Useful Resources
Here is a list of some RELAX NG-related URLs that you might find helpful:

QO Main specifications —www . relaxng . org
0 Validating parsers/processors
0 Jing—www. thaiopensource.com/relaxng/jing.html
a Trang—http ://thaiopensource.com/relaxng/trang.html
d MSV—wwws.sun.com/software/xml/developers/multischema
QO Topologi—www.topologi.com
0 RNV -—www.davidashen.net/rnv.html
Q Editors
Q Xmlde—www.xmldistilled.com
Topologi —www . topologi.com/products/tme/index.html

Q

0 Oxygen —www.oxygenxml.com

O Nxml mode for GNU Emacs —www . thaiopensource.com/download
Q

Codeplot Online Collaborative Editor —http://codeplot.com

Summary

In this chapter, you learned how to create RELAX NG compact schemas that can be used to validate
XML instance documents. You've learned the basic RELAX NG patterns, including element, attribute,
and enumerations, as well as pattern grouping and connectors (sequence, choice, and interleave). Then
you found out how to create named patterns for reuse and how to modularize schemas into multiple
files using the include directive. Next, you learned how to use nested grammars to avoid named pat-
tern collisions, as well as how to create RNC schemas with extensibility in mind. Lastly, you learned
how to use namespaces and name-classes in RNC schemas, and how to employ datatype validation,
lists, comments, and divisions.

While this chapter doesn’t cover every single option available with RELAX NG schemas, it certainly cov-

ered the vast majority of features. It is hoped that you have as much fun as we do using this fabulous
technology!

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

245

Part II: Validation

Question 1

Break the contacts15. rnc schema file into two schemas. In contacts-main. rnc, place the main
schema elements. In contacts-names. rnc, place the name pattern definitions. At the top level, place an
include directive in contacts-main.rnc to include contacts-names.rnc.

Question 2

Add a wildcard extension to the descriptionContents pattern so that the users can extend the con-
tacts schema by adding any elements they desire to the <description>.

246

Part IlI
Processing

Chapter 7: XPath

Chapter 8: XSLT

XPath

When writing code to process XML, you often want to select specific parts of an XML document to
process in a particular way. For example, you might want to select some invoices that fit a date
range of interest. Similarly, you may want to specifically exclude some part(s) of an XML docu-
ment from processing. For example, if you make basic human resources data available on your
corporate intranet, you probably want to be sure not to display confidential information such as
salary for an employee. To achieve those basic needs, it is essential to have an understanding of a
technology that allows you to select a part or parts of an XML document to process. The XML Path
Language, XPath, is designed to allow the developer to select specific parts of an XML document.

The latest incarnation of XPath to be given candidate recommendation status by the W3C is ver-
sion 2.0. The specification can be viewed at www.w3 . org/TR/xpath20/. Because the version is
still not a recommendation and only appeared in June 2006, and is vastly larger than version 1.0,
there are still only a few processors supporting it. The current champion is Saxon, which provides
a Java and a .NET version and is available in free or paid for versions, the latter implementing
some of the more advanced, and optional, features. You can read how to install and configure
Saxon in Chapter 8, which is devoted to XSLT. XPath was designed specifically for use with
Extensible Stylesheet Language Transformations (XSLT), and with XML Pointer (XPointer), which
is not discussed in detail in this book. More recently, XForms 1.0 makes use of XPath 1.0, too. The
use of XForms, which includes XPath expressions that bind a form control to the instance data of
an XForms document, is discussed in Chapter 20. XPath is also used in XQuery, covered in
Chapter 9, and most XML DOM parsers support using it to locate nodes (for more on the XML
DOM, see Chapter 11).

This chapter concentrates on version 1.0 features but also notes where things have changed. Later
in the chapter we will look at some of the newer functions and syntax of version 2.0.

XPointer was intended for use with the XML Link Language, XLink. XLink, which became a
W3C recommendation in 2001, has seen limited adoption to date. As a result, XPointer is cur-
rently also not widely used. Therefore, XPath in this chapter is described primarily in the context
of how it is used with XSLT, and the code examples in the chapter use XSLT. To run XSLT code
using the Saxon XSLT processot, see the information provided in Chapter 8.

Part Ill: Processing

This chapter covers the following:

Q Ways of looking at an XML document, including the XPath data model

QO How to visualize XPath and how the component parts of XPath syntax fit together to enable you
to navigate around the XPath data model

Q The XPath axes — the “directions” that are available to navigate around the XPath data model
Q XPath 1.0 functions

d XPath 2.0 new functions and features

To understand what XPath is and how it is used, we will first consider ways in which an XML document
can be represented.

Ways of Looking at an XML Document

In the early chapters of this book you saw how an XML document can be written as a nested structure of
start-tags and end-tags, possibly together with processing instructions, comments, attributes, namespace
declarations, and text content of elements. An XML document written in that way is simply a sequence
of Unicode characters. When XML is expressed in that way, it is said to be serialized.

However, although serialized XML is convenient for the human reader, a serialized document is not the
only way an XML document can be represented. It is often more useful to model the logical structure of
an XML document in a way that describes the logical components that make up the XML document and
exposes those components for programmatic manipulation. For example, consider the following XML
markup:

<Paragraph>Some text.</Paragraph>

You probably think of it logically as a Paragraph element with some text content, rather than as a left-
angled bracket followed by an uppercase P, and so on. Similarly, to process XML, you need some formal
model of the logical content of the document.

The W3C has developed three specifications — XPath, the XML Document Object Model (DOM), and
the XML Information Set— each of which represents a logical model of an XML document in similar but
distinct ways.

This chapter focuses on the XPath 1.0 data model because it underlies how XPath is used. Representing
an XML document using the XML DOM is discussed briefly here and in more detail in Chapter 11. A
fourth way in which an XML document can be represented, the XML Information Set, often abbreviated
as the XML infoset, is also described briefly.

Modeling XML Documents

In a serialized XML document, you write start-tags and end-tags, and, except in XML documents of triv-
ial length, there is a nested structure of elements, such as in the following simple document:

250

Chapter 7: XPath

<?xml version="1.0" encoding="UTF-8"?>

<!-- This is a comment. -->

<Book>

<Chapter>Some content</Chapter>
<Appendix>Some appendix content.</Appendix>
</Book>

By now, you should be familiar with such XML documents and how to write well-formed XML. How
are these documents represented in the XPath data model and other models? Three ways to model XML
documents are as follows:

QO The XPath data model — The XPath data model represents most parts of a serialized XML doc-
ument as a tree of nodes. Most, but not all, parts of an XML document are represented as nodes
in the XPath data model. A root node represents the document itself. An element node repre-
sents each element in an XML document. Each attribute is represented by an attribute node and
similarly for comments and processing instructions. A text node represents an element’s text
content. In-scope namespaces are represented by namespace nodes. We will look in more detail
at each type of node in a moment.

A few parts of an XML document are not represented in the XPath data model. An XML declara-
tion, if present, is not represented in any way in the XPath data model, nor is a document type
declaration (DOCTYPE declaration) represented. In addition, while comments and processing
instructions can be represented by comment nodes and processing instruction nodes, any com-
ments and processing instructions contained in the document type declaration are not repre-
sented in the XPath data model.

U The Document Object Model — Like the XPath data model, the Document Object Model repre-
sents an XML document as a hierarchical tree of nodes. The types of nodes used in the DOM are
different from those used in XPath. The nodes used in the DOM and writing code to manipulate
the DOM are described in Chapter 11.

QO The XML Information Set— The XML Information Set (infoset) represents an XML document as
a hierarchical tree but uses a different approach from both the XPath model and the DOM. The
XML Information Set recommendation is located at http: //www.w3 .org/TR/xml-infoset/.

It is currently in its second edition.

The infoset represents an XML document as a tree of information items. Each information item is
similar in concept to a node in the XPath model. Each information item has properties, which
store values describing one of the item’s characteristics. Many of the W3's specifications refer to
the infoset, as it represents a very pure version of the information held in an XML document. It
is also a platform and programming language infoset. When two documents need to be com-
pared as XML, rather than just as text files, the infoset is commonly used. This overcomes the
difficulties of a standard text comparison, such as whether attributes are quoted with single or
double quote marks or their order in an element. Both of these aspects can vary in a document
without its infoset changing.

Visualizing XPath

XPath can be a very abstract and confusing topic. One way of visualizing XPath that newcomers to
XPath often find helpful is to think of XPath as street directions around the hierarchical tree of nodes
that make up the XPath data model.

251

Part Ill: Processing

In real life, you can give street directions in two ways: relative to a fixed point or relative to the current
position. In XPath, you can write absolute XPath expressions, which always start from a standard point,
the root node. Alternatively, you can write relative XPath expressions, which vary depending on where
you start. In XPath, the starting point is called the context.

All legal XPath code can be called an expression. An XPath expression that returns a node-set is called
a location path.

When giving street directions, you have four basic directions: north, south, east, and west. In XPath,
there are 13 directions (see the “XPath 1.0 Axes” section later in this chapter for a discussion of these
directions). In XPath, a direction is called an axis. Just as you might give someone street directions such
as “Starting from the square, head east for one block and it’s the first building on the right with a red
door,” in XPath, you might write something like this:

/Book/Chapter [@number=2]

If we were to express that XPath expression in English, we might say, “Starting from the root node, take
the child axis and look for element nodes called Book; then, for each of those Book element nodes, look
for element nodes called Chapter, also using the child axis; then select only those Chapter elements
that have a number attribute whose value is 2.” We can refer to a child axis when it isn’t actually men-
tioned because the child axis, being the most commonly used, is the default axis in XPath. The part of
the expression in square brackets is a predicate, which acts to filter nodes selected by the earlier part of
the expression. Axes, predicates, and other XPath constructs are explored in more detail later.

A relative location path could be written as follows:
Chapter [@number=2]

This could be expressed in English as, “Starting from where you are currently located, take the child
axis, select Chapter element nodes, and then filter those nodes to retain only Chapter element nodes
that possess a number attribute whose value is 2.” You will likely immediately realize that the result you
get depends on your starting position (the XPath context), so it’s important to understand just what con-
text means in XPath.

Understanding Context

In XPath, the context indicates the location of the node where a processor is currently situated, so to
speak. That node is called the context node. However, the context consists of more than just the context
node. It also includes a context position and a context size. Consider the following XML document,
book.xml:

<Book>

<Chapter number="1">This is the first chapter</Chapter>
<Chapter number="2">This is the second chapter</Chapter>
<Chapter number="3">This is the third chapter</Chapter>
<Chapter number="4">This is the fourth chapter</Chapter>
<Chapter number="5">This is the fifth chapter</Chapter>
</Book>

Suppose the context node is the node that represents the Chapter element node for the second chapter.
We can use the position() and last () functions, described in more detail later in this chapter, to
show the position of the context node and the context size, as demonstrated in the following example.

252

Chapter 7: XPath

The examples in this chapter rely on XSLT, as XPath does not exist in isolation, but always acts as a
helper for another technology such as XSLT or XQuery. For a fuller explanation see Chapter 8, but the
basics are explained here. An XSLT file consists of a number of templates that match specific nodes in
the XML being processed. The standard way to select the nodes that are matched is by specifying them
using an apply-templates instruction. There are also built-in rules that start the process.

The following XSLT (context-information.xslt) contains two templates. The first matches the root
node and will be called automatically; the second matches any <Chapter> element and is called by the
<xsl:apply-templates> instruction within the first template:

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >

<xsl:template match="/">
<html>
<head>
<title>This shows the context position and context size.</title>
</head>
<body>
<h3>Context position and context size demo.</h3>
<xsl:apply-templates select="/Book/Chapter" />
</body>
</html>
</xsl:template>

<xsl:template match="Chapter">
<xsl:1f test="position()=2">
<p>When the context node is the second Chapter element node then</p>

<p>the context position is <xsl:value-of select="position()" /></p>
<p>and the context size is <xsl:value-of select="last ()" />.</p>
<p>The text the Chapter element node contains is
'<xsl:value-of select="." />'.</p>

</xsl:if>
</xsl:template>

</xsl:stylesheet>
To run the transform you need to install the Saxon processor, described in Chapter 8, and run the follow-
ing at the command prompt. (Alternatively, follow the documentation for your chosen processor.) The
command-line syntax for the .NET version is as follows:

Transform.exe -o book.html book.xml context-information.xslt
Use the following syntax if you are working with Java:

java -jar saxon8.jar -o book.html book.xml context-information.xslt

This assumes both context-information.xslt and book.xml are in the current directory.

The simple HTML document created by the stylesheet is shown in Figure 7-1.

253

Part Ill: Processing

Figure 7-1

The file book . xml and the XSLT examples are included in the code download. The instructions to

install Saxon and run transformations are described more fully in Chapter 8, “XSLT.”
In the second template, the one matching Chapter elements, notice that in the value of the select
attribute of the xs1:value-of element you see the position () function and the last () function. As
shown in Figure 7-1, the context position is 2 and the context size is 5. This is because we selected five

Chapter elements with our XPath. Had the XPath been more explicit, such as /Book/Chapter[2], then
the context size and position would both have equaled 1.

What Is a Node?
Anode is a representation in the XPath data model of a logical part of an XML document.

In XPath 1.0 there are seven types of nodes:

d Rootnode

d Element node

254

Chapter 7: XPath

Attribute node
Text node

Namespace node

0O 0O 0 O

Comment node

Q Processing Instruction node

Each node type is described in more detail in the following sections.

Root Node

The root node represents the document itself, independent of any content. The root node is the apex of
the hierarchy of nodes that represents an XML document; it has no name and cannot be seen when the
document is serialized. The element node (described next), which represents the document element, is a
child of the root node. A root node can only have one child element — that is, the document element. The
root node may also have child nodes, which are processing instruction nodes or comment nodes that
correspond to any processing instructions or comments in the prolog of the serialized XML document.

It is vital to understand the difference between a node and an element, and especially important to dif-
ferentiate between the root node and the document’s root element. All the different items in an XML
document are nodes; these can be elements, attributes, comments or any of the other types mentioned
earlier. The root node is not visible in the document’s serialized form and just serves as a starting point
when navigating the document. The root element, however, is the first element in the document and is a
child of the root node.

The XML declaration and the document type declaration are not children of the root node. Neither of
those features of a serialized XML document is represented in the XPath data model.

The root node’s text value is the concatenation of the values of all descendant text nodes of the root
node, in document order. Examine the following XML document:

<MixedContent>
Mary had a <Emphasis>little</Emphasis> lamb.
</MixedContent>
The text value of this document is Mary had a little lamb.
The root node does not have a name.
Element Node
Each element in an XML document is represented as an element node in the XPath data model.
Element nodes have a name that consists of the namespace URI of the element and the local part of its
name. For developers it is easier to work with a qualified name, also called a QName, which is a name-

space prefix followed by a colon character followed by the local part of the element type name:

prefix:localpart

255

Part Ill: Processing

The string value of an element node is the concatenation of the values of all its descendant text nodes, in
document order.

An element node may possess an attribute that is defined to be of type ID. For an attribute to be defined
this way, the XML document must have an associated Document Type Definition (DTD), either embed-
ded into the XML or linked to it. The following XML, book-with-ID-node.xml, shows how an
attribute can be specified to have a type of ID:

<!DOCTYPE Book [

<!ELEMENT Book (Chapter+)>

<!ELEMENT Chapter (#PCDATA)>

<!ATTLIST Chapter number ID #REQUIRED>
1>
<Book>

<Chapter number="cl">This is the first chapter</Chapter>
<Chapter number="c2">This is the second chapter</Chapter>
<Chapter number="c3">This is the third chapter</Chapter>
<Chapter number="c4">This is the fourth chapter</Chapter>
<Chapter number="c5">This is the fifth chapter</Chapter>
</Book>

In the preceding example, a DTD states that the document element is Book, which can contain one or
more Chapter elements. The Chapter elements have text content— #PCDATA in DTD parlance—and
possess a number attribute of type ID. Note how the attribute’s name is number; it is not necessary for
the attribute to be called ID, nor is it sufficient to call it ID for the id () function to work. IDs cannot
begin with a digit, so the prefix ¢ has been added. The following XSLT fragment shows the XPath to
select the entire Chapter element whose number attribute equals c2:

<xsl:copy-of select="id(‘c2")" />

Because of the difficulties associated with internal DTDs, including lack of good toolsets to create and
maintain them, the id () function is not often encountered. In XSLT the key () function is used instead
because it can retrieve nodes based on a much wider range of criteria and without the need for any sup-
plementary information such as a DTD.

Attribute Node

Each attribute in an XML document is represented in the XPath model as an attribute node. The element
node with which the attribute node is associated is said to be the parent node of the attribute node.

Attribute nodes have a name and a value. In XPath the attributes are not children of their parent ele-
ment, which can lead to confusion. In practical terms, this means they are always accessed via the
attribute axis, not the default child one.

Text Node

Text content of an element node is represented in the XPath data model as a text node. The string value
of a text node is its character data. A text node does not have a name.

256

Chapter 7: XPath

Namespace Node

Although a specific node can only belong to one namespace, any number of in-scope namespaces can be
in effect for the node. In-scope namespaces are those for which there exists a valid prefix to URI map-
ping or where a URI is associated with an empty prefix, the default namespace.

All in-scope namespaces of an element node are represented as namespace nodes. XPath takes an extrav-
agant approach to namespace nodes. Each element node has its own namespace node for all in-scope
namespaces. For example, consider the XPath model of the following code:

<library:Book xmlns:library="http://www.XMML.com/booknamespace">
<chapter:Chapter xmlns:chapter="http://www.XMML.com/chapter" number="1">
Some text content.</chapter:Chapter>

<chapter:Chapter xmlns:chapter="http://www.XMML.com/chapter" number="2">
Some different text content.</chapter:Chapter>

</library:Book>

The Book element node has a namespace node associated with the namespace URI http: / /www . XMML
.com/booknamespace mapped to the library prefix. Each of the Chapter element nodes also has its own
namespace node associated with the same namespace URI, http: //www.XMML . com/booknamespace.

In addition, they have a namespace node associated with the http: //www.XMML. com/chapter URI

and bound to the chapter prefix. This simple document has five separate namespace nodes associated
with the two namespace URIs declared in it. In complex documents, large numbers of namespace nodes
can be associated with a single URI, and some elements deep in the hierarchy can have several name-
space nodes.

The name () function returns the namespace prefix associated with the namespace node. The self::
node () expression (which can be abbreviated to a period character) returns the namespace URI of the
namespace node.

Comment Node

A comment node represents a comment in the XML document. Comments in the document type declara-
tion are not represented in the XPath data model.

Processing Instruction Node

A processing instruction node in the XPath model represents a processing instruction in the correspond-
ing XML document. Processing instructions in the document type declaration are not represented in the
XPath data model.

The name of a processing instruction node is its target (turn to Chapter 2 for more on processing instruc-
tions). The string value of a processing instruction node is its content, excluding the target.

XPath 1.0 Types

XPath 1.0 has four expression types:

O Boolean

O node-set

257

Part Ill: Processing

d number

a string

These are greatly expanded in version 2.0, which is addressed later in the chapter.

Booleans

In an XPath 1.0 expression, a Boolean value is written as one of the values true () or false (). You may
wonder why XPath doesn’t simply use the values true and false. It is possible that an XML developer
might choose to have a structure like this:

<true>
some content
</true>

true is a legal XML name and therefore can be used to name an element. There are no reserved words in
the XPath language, so the functions true () and false () are used instead, whereas in other languages
constants such as TRUE and FALSE might be available. That way there is no ambiguity between selecting
nodes and choosing a Boolean value.

Node-Sets

A node-set is a set of XPath nodes. Technically, an XPath 1.0 node-set is unordered. However, when used
in XSLT, which is currently XPath’s main use, processing of a node-set is always in the document order
of the nodes for forward axes and in reverse document order for reverse axes. XPath axes are discussed
later. Most axes, including the child axis, are forward axes.

Consider what document order means by examining the following simple document:

<PurchaseOrder>
<Date>2005-01-01</Date>
<To>XMML. com</To>
<ShippingAddress>
<Street>123 Any Street</Street>
<City>Anytown</City>
<State>AZ</State>
</ShippingAddress>
<ZipCode>12345</ZipCode>
</PurchaseOrder>

The PurchaseOrder element is first in document order. Document order among the children of the
PurchaseOrder element is then Date, To, ShippingAddress, and ZipCode. All the child nodes of
ShippingAddress appear earlier in document order than the zipCode element.

Numbers

In XPath 1.0, numbers are floating-point numbers (more varieties are available in version 2.0). There is no
way to directly represent an integer in XPath, although numeric functions will typically return a whole
number — for example, from the count () function, which counts the number of nodes in a node-set.

258

Chapter 7: XPath

Strings
A string value in XPath is a sequence of Unicode characters. Generally, like XML, XPath is not limited to
ASCII characters but uses the much more extensive Unicode character set (turn to Chapter 2 for more on
Unicode).
XPath 1.0 has no type corresponding to a date. All dates are treated in XPath as strings. Therefore, for
example, manipulating strings that represent dates to extract the month from a date depends on know-
ing exactly how the string is written, and on using various XPath string manipulation functions.

So far, we have talked about XPath in a pretty abstract way. How is XPath written?

Abbreviated and Unabbreviated Syntax

XPath syntax is not written in XML, one reason being that we often use an XPath expression as the value
of an attribute. For example, if you wanted to select the value of a Section element node, you might
write the following:
<xsl:value-of select="/Book/Chapter/Section" />
If XPath were written using XML, there would be problems in achieving well-formedness. For example,
you couldn’t use left or right-angled brackets inside the select attribute. The syntax used in XPath is
similar to the path syntax used for UNIX and Linux directories. The xs1:value-of element, by the way,
is an XSLT element, which is described in Chapter 8.
The most common tasks you will perform using XPath, the selection of elements and attributes, can be
written using an abbreviated syntax, as shown in the previous example. The unabbreviated syntax with
the same meaning is written as follows:
<xsl:value-of select="/child: :Book/child: :Chapter/child: :Section" />
To select an attribute using unabbreviated syntax, you can write the following:
attribute::attributename
Or, in the abbreviated form, simply write the following;:
@attributename
So the XPath

/Book/Chapter/@number

would select the number attribute on a <Chapter> element that was a child of the document element,
<Book>.

When using XPath, use the abbreviated syntax where possible. For the two most common tasks —

selecting element nodes and attribute nodes using the child and attribute axes—your paths will be
more concise and legible.

259

Part Ill: Processing

XPath 1.0 Axes

XPath 1.0 has a total of 13 axes, which are used to navigate the node tree of the XPath data model. XSLT
supports all of these axes but for performance reasons, some XQuery processors, particularly those asso-
ciated with relational databases, do not support them all. They ignore those that traverse backward
through the document, the reverse axes, as well as some of the other less frequently used ones.

In the following list, notice that the first letter of the name of an axis is always lowercase. Because
XPath, like XML, is case sensitive, using an uppercase initial letter for the name of an axis will cause
unexpected results.

O 00U D0 U U0 0O

child axis

attribute axis

ancestor axis
ancestor-or-self axis
descendant axis
descendant-or-self axis
following axis
following-sibling axis
namespace axis (not used in XQuery, and deprecated in XPath 2.0)
parent axis

preceding axis
preceding-sibling axis

self axis

The following sections look more closely at each axis in turn. You'll examine the child and attribute
axes first because these are the axes you will use most often.

Child Axis

The child axis is the default axis in XPath. The child axis selects nodes that are immediate child nodes
of the context node. Thus, consider a structure like this in an XML document:

<Invoice>
<Date>2004-01-02</Date>

<Item quantity="4">QD123</Item>
<Item quantity="5">AC345</Item>
</Invoice>

If the context node is the Invoice element node, the location path

child::Item

260

Chapter 7: XPath

or, in abbreviated syntax
Item

will return a node-set containing both Item element nodes, which are child nodes of the Invoice
element.

To select both the Date element node and Item element node, which are child nodes of the Invoice ele-
ment node (which is also the context node), you can write the following:

el dl@le g
Or, in abbreviated syntax, use the following;:
*
The * indicates any name, and the only nodes in the child axis that have names are element nodes.

If you want to select all child nodes, including comment nodes, processing instruction nodes, and text
nodes, you can write the following:

child: :node()
Or, in abbreviated syntax, use the following;:
node ()
If you want to specifically select text node children of a context node, you can write the following:
child: :text ()
Or, in abbreviated syntax, use the following;:
text ()

Because it is the default axis, it is not necessary to express the child axis when using abbreviated syn-
tax. Thus, the location paths

/child: :Book/child: :Chapter/child: :Section
and

/Book/Chapter/Section
both mean the same thing. Starting at the root node, there are three location steps, each of which uses
the child axis. In the first example, which uses the unabbreviated syntax, the child axis is expressed

explicitly. In the second example, the child axis is not explicitly expressed.

At the end of the following section, the Try It Out example demonstrates the use of the child axis and
the attribute axis.

261

Part Ill: Processing

attribute Axis

The attribute axis is used to select the attribute nodes associated with an element node. If the context
node is an element node, the location paths

attribute::*
or
@x
will each return all the attribute nodes associated with that element node.
Alternatively, if you want to select a specific attribute node named security, you write either
attribute::security
or
@security
Remember that the @ character is an abbreviation for the attribute axis.
If the context node is not an element node, the attribute axis returns an empty node-set.

The following example shows the use of the child and attribute axes in a simple XSLT stylesheet. If
you have no experience with XSLT, you may need to take a look at Chapter 8 for basic information.

Try It Out Using Child and Attribute Axes

In this example you will use both the child and attribute axes. First take a look at using XPath
in XSLT to create a very simple HTML web page. The source XML document, PersonData .xml, is
shown here:

<?xml version='1.0'?>
<PersonData>

<Name DOB="1920/11/25">
<FirstName>Jack</FirstName>
<LastName>Slack</LastName>
</Name>

</PersonData>

The XSLT stylesheet, PersonData.xslt, is shown here:
<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"

>

<xsl:template match="/">
<html>

262

Chapter 7: XPath

<head>
<title>Information about <xsl:value-of select="/PersonData/Name/FirstName"/>
<xsl:text> </xsl:text>
<xsl:value-of select="/PersonData/Name/LastName" />
</title>
</head>
<body>
<p><xsl:value-of select="/PersonData/Name/FirstName" /><xsl:text>
</xsl:text>
<xsl:value-of select="/PersonData/Name/LastName" /> was born on
<xsl:value-of select="/PersonData/Name/@DOB" /></p>
</body>
</html>

</xsl:template>

</xsl:stylesheet>

The following instructions assume that you have installed the Saxon XSLT processor, as described in
Chapter 8:

1. Openacommand window.

2. Navigate to the directory in which the files PersonData.xml and PersonData.xslt are
located.

3. Enter the following command at the command line:

java -jar saxon8.jar -o PersonData.html PersonData.xml PersonData.xslt
If you are using the .NET version, enter this:
transform.exe -o PersonData.html PersonData.xml PersonData.xslt

If everything has worked correctly, you should see no error messages, although you may see a
warning that you are running a version 1.0 stylesheet with a version 2.0 processor. If you see
error messages from Saxon, review how you installed Saxon in light of the instructions in
Chapter 8.

4. Double-click PersonData.html, and you should see a very simple web page with the follow-
ing code:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Information about Jack Slack</title>

</head>
<body>
<p>Jack Slack was born on 1920/11/25</p>
</body>
</html>

263

Part Ill: Processing

How It Works

First, look at how the content of the title element is created. The XSLT xs1:value-of element, shown
in the following snippet, uses the child axis three times to select the value of the FirstName element:

<xsl:value-of select="/PersonData/Name/FirstName" />

The location path is an absolute location path, which uses abbreviated syntax, so from the root node the
PersonData element in the child axis is selected. Then, with the PersonData element node as context
node, the Name element is selected. Finally, with the Name element node as context node, the FirstName
element node is selected. The xs1:value-of element does what it says —it selects the value of the node
specified, which in this case is the FirstName element node. Here, the value is the string value of the
element’s textual content.

Similarly, the following code retrieves the person’s last name, also using the child axis three times:
<xsl:value-of select="/PersonData/Name/LastName" />

The date of birth displayed in the web page is retrieved using both the child axis and the attribute
axis as follows:

<xsl:value-of select="/PersonData/Name/@DOB" />

The context node is the root node. First the child axis is used, and the PersonData element node is
selected. In the next location step, the child axis is again used and the Name element node is selected.
Finally, the attribute axis is used and the DOB attribute node is selected. This selects the value of the DoB
attribute node.

ancestor Axis

The ancestor axis selects the parent node of the context node, the parent of that node, its parent, and so
on until the root node of the document is selected. If the context node is the root node, the ancestor
axis returns an empty node-set.

If you had an XML document such as

<Book>
<Chapter number="1">
<Section>This is the first section.</Section>
<Section>This is the second section.</Section>
</Chapter>
<Chapter number="2">
<!-- and so on -->
</Chapter>
</Book>

and the context node were the element node corresponding to the second Section element node in
Chapter 1, then the location path

ancestor::*

264

Chapter 7: XPath

would return the Chapter element node, which has a number attribute node with a value of 1, the Book
element node, and the root node.

Note that there is no way to express the ancestor axis using abbreviated syntax.

ancestor-or-self Axis

The ancestor-or-self axis includes all nodes in the ancestor axis plus the context node (which is in
the self axis).

Using the document in the ancestor axis section and the same context node, the location path
ancestor: :Section

returns an empty node-set because no ancestor element node is named Section, but the location path
ancestor-or-self::Section

would return the section element node, which is the context node.

descendant Axis

The descendant axis selects the child nodes of the context node, the child nodes of those child nodes,
and so on.

Consider the following XML document:

<Invoices>
<Invoice>
<Date>2004-01-01</Date>
<Item>KDH987</Item>
<Item>DSE355</Item>
</Invoice>
<Invoice>
<Date>2004-01-01</Date>
<Item>RAH198</Item>
<Item>DJE385</Item>
</Invoice>
</Invoices>

If the Invoices element node were the context node, the location path
descendant: : *

would select both the Invoice element nodes, both the Date element nodes, and all the Item element
nodes. Location paths that use the descendant axis can be expressed only in unabbreviated syntax.

Examine the following, which uses the descendant axis with an absolute location path:

/descendant: : Item

265

Part Ill: Processing

All the Item element nodes in the document that contain the context node would be selected.

Only elements can have child elements, so using descendant on any other type, such as attributes or
text nodes, will return an empty node-set.

descendant-or-self Axis

The descendant-or-self axis includes all the nodes in the descendant axis plus the context node
(which is contained in the self axis). The abbreviated form for the descendant-or-self axis is / /.

This enables you to find nodes irrespective of their position. For example, if you want all the Chapter
elements but are unsure of the XML hierarchy, or perhaps Chapter elements can be nested, then the
XPath //Chapter will retrieve them all. However, this flexibility comes at a price, as the processor
needs to do an extensive recursive search of the document tree. Contrary to many examples shown, you
should only use this form of XPath when the exact path is unknown.

following Axis

The following axis contains all nodes that come after the context node in document order, but excludes
all descendant nodes and any attribute nodes and namespace nodes associated with the context node.

It’s probably easiest to demonstrate the use of the following axis using an example. (We will use the
same XML document, Employees.xml, to demonstrate the use of the following-sibling axis, the
preceding axis, and the preceding-sibling axis a little later in this section.)

Here is the source XML document, Employees.xml:

<Employees>
<Person>
<FirstName>Lara</FirstName>
<LastName>Farmer</LastName>
<DateOfBirth>1944-12-12</DateOfBirth>
</Person>
<Person>
<FirstName>Patrick</FirstName>
<LastName>Stepfoot</LastName>
<DateOfBirth>1955-11-11</DateOfBirth>
</Person>
<Person>
<FirstName>Angela</FirstName>
<LastName>Paris</LastName>
<DateOfBirth>1980-10-10</DateOfBirth>
</Person>
</Employees>

Here is the XSLT stylesheet (Employees.xs1t) that shows the element nodes in the following axis:
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
<xsl:template match="/">

<html>
<head>

266

Chapter 7: XPath

<title>This demonstrates the following axis.</title>
</head>

<body>
<h3>Following axis demo.</h3>
<xsl:apply-templates select="/Employees/Person[l]/FirstName" />
</body>
</html>
</xsl:template>

<xsl:template match="FirstName">
<xsl:for-each select="following::*">
<p><xsl:value-of select="name(.)" /> which contains the text
"<xsl:value-of select="." />".</p>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Notice the use of the following axis in the xs1: for-each element toward the end of the XSLT:
<xsl:for-each select="following::*" />

The element nodes in the following axis are shown in Figure 7-2. Alongside each element node is its
text content. Notice that for the Person elements all the text content of its child elements is shown.

Fi 7-2
igure 267

Part Ill: Processing

following-sibling Axis

The following-sibling axis includes any nodes in the following axis that share their parent node
with the context node. Again, a demo may help you grasp the concept. We will use the same XML docu-
ment, Employees.xml, used in the example for the following axis together with this XSLT stylesheet
(Employees?2.xslt):

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform" >

<xsl:template match="/">
<html>
<head>
<title>This demonstrates the following-sibling axis.</title>
</head>
<body>
<h3>Following-sibling axis demo.</h3>
<xsl:apply-templates select="/Employees/Person[l]/FirstName" />
</body>
</html>
</xsl:template>

<xsl:template match="FirstName">
<xsl:for-each select="following-sibling::*">
<p><xsl:value-of select="name(.)" /> which contains the text
"<xsl:value-of select="." />".</p>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>
Notice the use of the following-sibling axis in the xs1: for-each element toward the end of the code:
<xsl:for-each select="following-sibling::*">

As shown in Figure 7-3, there are only two element nodes, the LastName and DateOfBirth element
nodes for the same person whose FirstName element node was the context node.

namespace Axis

The namespace axis is used to select namespace nodes. An element node has a separate namespace
node for each in-scope namespace.

Examine the following XML source document (xmm1Book . xm1):

<xmml :Book xmlns:xmml="http://www.XMML.com/namespaces">
<xmml :Chapter number="1">Some text.</xmml:Chapter>
<xmml : Chapter number="2">Some more text.</xmml:Chapter>
</xmml : Book>

268

Chapter 7: XPath

Figure 7-3

You can apply the following stylesheet (xmm1Book.xs1t) to show the namespace nodes that exist on the
xmml : Book element node:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xmml="http://www.XMML.com/namespaces" >

<xsl:template match="/">
<html>
<head>
<title>This shows namespace nodes.</title>
</head>
<body>
<h3>Namespace nodes of the xmml:Book element.</h3>
<xsl:apply-templates select="/xmml:Book" />
</body>
</html>
</xsl:template>

<xsl:template match="xmml :Book">

<xsl:for-each select="namespace: :node()">

269

Part Ill: Processing

<p><xsl:value-of select="position()" />. The namespace prefix
<xsl:value-of select="name(.)" /> has the namespace URI <xsl:value-of
select="." />. </p>

</xsl:for-each>
</xsl:template>

</xsl:stylesheet>
Notice the namespace declaration using the xmm1 namespace prefix on the xmml : Book element:
<xmml :Book xmlns:xmml="http://www.XMML.com/namespaces">

As shown in Figure 7-4, two namespace nodes are associated with the xmm1 : Book element node. The
namespace node with the URI of http: //www.XMML. com/namespaces will likely not be a surprise,
because it was explicitly declared in a namespace declaration. The namespace node with the URI of
http://www.w3.org/XML/1998/namespace may be unexpected. It is present because all XML element
nodes have a namespace node with that namespace URI associated with them. Remember that you can
use xml: lang and xml : space attributes on any XML element, so the xm1 namespace must be declared;
in this case, the namespace declaration is built into all XML processors.

Figure 7-4

270

Chapter 7: XPath

parent Axis

The parent axis is used to select the parent node of the context node. Examine the following document:

<Parts>
<Part number="ABC123" />
<Part number="DEF234" />
</Parts>

If the context node were a Part element node, then the following location path selects the parent node,
which is the Parts element node:

parent: :node ()

Following is an abbreviated syntax for the parent axis:

This is probably familiar to you from encountering the same usage in directory paths on your hard disk.

If, however, the context node were the Parts element node, the same location path would select the root
node of the document. In XPath 1.0, one way of testing whether the node you are dealing with is the root
node is to see if the parent node is null. The root node is the only node without a parent.

preceding Axis

The preceding axis contains all nodes that come before the context node in document order, excluding
nodes in the ancestor axis and attribute and namespace nodes.

To demonstrate the preceding axis, we will again use Employees.xml as the source XML document.
The stylesheet (Employees3.xslt) is shown here:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >

<xsl:template match="/">
<html>
<head>
<title>This demonstrates the preceding axis.</title>
</head>
<body>
<h3>Preceding axis demo.</h3>
<xsl:apply-templates select="/Employees/Person[3]/DateOfBirth" />
</body>
</html>
</xsl:template>

<xsl:template match="DateOfBirth">
<xsl:for-each select="preceding::*">

271

Part Ill: Processing

<p><xsl:value-of select="name(.)" /> which contains the text
"<xsl:value-of select="." />".</p>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>
Notice the use of the preceding axis in the xs1: for-each element:
<xsl:for-each select="preceding::*">

Figure 7-5 shows the element nodes in the preceding axis, with their contained text. The HTML output
file (Employees3.html) is included in the code download for this book.

preceding-sibling Axis

The preceding-sibling axis includes those nodes that are in the preceding axis and that also share a
parent node with the context node.

Figure 7-5

272

Chapter 7: XPath

The following stylesheet (Employees4.xs1t) displays the preceding siblings of the Date0OfBirth ele-
ment node of the third person in the source XML document:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.o0rg/1999/XSL/Transform" >

<xsl:template match="/">
<html>
<head>
<title>This demonstrates the preceding-sibling axis.</title>
</head>
<body>
<h3>Preceding axis demo.</h3>
<xsl:apply-templates select="/Employees/Person[3]/DateOfBirth" />
</body>
</html>
</xsl:template>

<xsl:template match="DateOfBirth">
<xsl:for-each select="preceding-sibling::*">
<p><xsl:value-of select="name(.)" /> which contains the text
"<xsl:value-of select="." />".</p>
</xsl:for-each>
</xsl:template>

</xsl:stylesheet>

Figure 7-6 shows the element nodes in the preceding-sibling axis, with their text content.

self Axis

The self axis selects the context node. The unabbreviated syntax for the self axis is as follows:
self: :node()

The abbreviated syntax for the context node is the period character. Thus, if you wanted to select the
value of the context node using the xs1:value-of element, you would write the following:

<xsl:value-of select="." />
The unabbreviated syntax is as follows:
<xsl:value-of select="self::node()" />
XPath allows you to filter nodes selected from an axis using predicates. Predicates frequently use XPath

functions, so next we’ll look at the functions available in XPath 1.0 and at how predicates can be used to
filter node-sets.

273

Part Ill: Processing

Figure 7-6

XPath 1.0 Functions

The XPath 1.0 specification defines a core function library. The functions making up the function library
are listed here; some are used in XSLT examples in Chapter 8.

Boolean Functions

The XPath 1.0 Boolean functions are as follows:

QO boolean () —Takes an object as its argument and returns a Boolean value. If the argument is a

number, true is returned if the number is not zero or NaN. If the argument is a node-set, true is
returned if the node-set is not empty. If the argument is a string, true is returned if the string is

not empty.

Q false() —Takes no argument and returns the Boolean value false

lang () —Takes a string argument. Returns true if the language of the context node is the lan-
guage indicated by the string argument or one of its sublanguages.

274

Chapter 7: XPath

Qa

Q

not () —Takes a Boolean expression as its argument, returning true if the argument evaluates to
false, and false if the argument evaluates to true

true () —Has no argument and returns the Boolean value true

Node-Set Functions

The XPath 1.0 functions are as follows:

Q

Q

count () — Takes a node-set argument and returns a value equal to the number of nodes in the
node-set
id () —Takes a string as its argument and returns a node-set containing any node that has an

attribute of type ID equal to the function’s argument
last () —Returns a value equal to the context size

local-name () —Takes zero or one node-sets as its argument and returns the local part of the
element name if it exists; if no argument node-set exists, it returns the local part of the name of
the context node. For example, the element <library:Book xmlns:library=http://www

. XMML . com/booknamespace/> local-name () would return Book.

name () — Takes zero or one node-set arguments and returns the name of the node in
prefix:localpart format. For example, for the element 1ibrary: Book shown above, name ()
would return library:Book.

namespace-uri () —Takes zero or one node-sets as its argument and returns the namespace
URI of the argument node-set; if there is no argument, the namespace URI of the context
node is returned. For example, for the element 1ibrary:Book in the last two examples,
namespace-uri () would return http: //www.XMML . com/booknamespace.

position() —Returns a value equal to the context position

Numeric Functions

The number functions of XPath 1.0 are as follows:

a
a

ceiling () —Takes a number as its argument and returns the smallest integer greater than this
floor () —Takes a number as its argument and returns the largest integer that is lower

than this

number () — Takes a string, Boolean or node-set as its argument and returns a number. If there is

a string argument and it contains characters that constitute a number, that number is returned;
otherwise, NaN is returned. If the argument is the Boolean true, 1 is returned. If the argument is
the Boolean false, 0 is returned. If the argument is a node-set, it is as if the string () function is
applied to the node-set, and then the number () function is applied to the string value that results.

round () — Takes a number as its argument and returns the integer that is closest to the number
argument. The method of rounding is not specified, which may cause problems if a particular
algorithm — for example, banker’s rounding —is needed.

275

Part Ill: Processing

a

sum () — Takes a node-set as its argument and returns the sum of the value of each individual
node after converting the values to a numeric type if possible. Be careful when using sum (). If
some of the values cannot be converted, then they will end up as NaN, not a number, and the sum
itself will then be NaN.

String Functions

The string functions of XPath 1.0 are as follows:

276

g
a

concat () — Takes two or more string arguments and returns the concatenation of those strings

contains () —Takes two string arguments and returns a Boolean value that is true if the first
string argument contains the second string argument

normalize-space () — Takes a single string argument. Adjacent whitespace characters are
replaced by single-space characters, and leading and trailing spaces are stripped.

starts-with () —Takes two string arguments and returns a Boolean value that is true if the
first argument string starts with the second argument string

string () —Takes a Boolean, node-set, or number as its argument and returns a string value

string-length () —Takes a single string argument and returns a number that indicates the
length of the string

substring () —Can take two or three arguments. When it takes two arguments, the first is a
string (of which you select a substring) and the second is a number. It then returns a string
beginning at the character of the first argument as indicated by the number argument and con-
tinuing to the end of the string. If a third argument is present, it indicates the character at which
the returned string ends.

substring-after () —Takes two string arguments and returns the part of the first string that
occurs after the first occurrence of the second string argument in the first string argument

substring-before () —Takes two string arguments and returns the part of the first string that
occurs before the first occurrence of the second string

translate () — Takes three string arguments and coverts each of the characters in the first
argument that appear in the second to the corresponding characters in the third. A common use
of the translate function is to turn text into all uppercase characters for a case-insensitive
comparison. The following transform, LowerToUpper . xslt, shows how to use the
translate () function:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">

<html>
<body>
<xsl:apply-templates select="//text () [normalize-space(.)]"/>
</body>
</html>

</xsl:template>

Chapter 7: XPath

<xsl:template match="text () ">
<xsl:variable name="upper"
select=""'ABCDEFGHIJKLMNOPQRSTUVWXYZ'" />
<xsl:variable name="lower"
select=""'abcdefghijklmnopgrstuvwxyz'"/>

The input

<xsl:value-of select="."/>

was translated to

<xsl:value-of select="translate(., $lower, Supper)"/>

</xsl:template>
</xsl:stylesheet>

If you run this transform against any XML that includes some text nodes — for example,
Employees.xml —you'll see output similar to what is shown in Figure 7-7.

Figure 7-7

277

Part Ill: Processing

All text nodes that do not consist entirely of whitespace are selected using the XPath
//text () [normalize-space (.) 1. Each character in the variable $1ower, if found in the
selected text node, is converted to the corresponding character in the variable Supper.
This sort of conversion can also be used to strip unwanted characters by not specifying a replacement
character in the third argument. For example, use the following code to remove all the vowels from
some text held in the variable $text:
<xsl:value-of select="translate($text, ‘aeiou’, *’)” />
Be aware that the lower—to-uppercase translation only works when all relevant characters are supplied
in the second and third parameters. The preceding example will not alter characters such as the é found

in languages such as French. If you want to perform this sort of translation in XPath 2.0, you can use
the upper-case () and lower-case () functions.

Predicates

Predicates are used to filter node-sets selected using an axis and location step. A predicate is optional
in each location step of an XPath expression, and there can be more than one predicate in any one loca-
tion step.

For example, if you had a document with various security levels assigned in a security attribute on a
Section element, you could use predicates to decide which sections to display:

//Section[@security="confidential"]

This would select Section element nodes that possessed a security attribute whose value was the
string confidential.

If the Section element also had a version attribute that identified draft or final sections, you could
choose public, final sections using two predicates, like this:

//Section[@security="public"] [@version="final"]
Each predicate selects only from nodes that are already selected.

Now that you have looked at each of the parts of XPath expressions, let’s put the pieces together so you
have a solid appreciation of what is and is not allowed in an XPath expression.

Structure of XPath Expressions

Most complex XPath expressions select node-sets — therefore, those expressions are also location paths.

Alocation path is made up of location steps. Depending on the context node and the complexity of the
document, location paths can have many location steps.

278

Chapter 7: XPath

Each location step is potentially made up of three parts:

a An axis
O Anode test

QO An optional predicate
Examine the following location path:
child: :Paragraph([position()=2]

The axis is child, the node test is Paragraph, and the predicate (one predicate appears in this example)
is [position()=2].

An axis is present in every location path. However, when the chi1d axis is used in abbreviated syntax,
the axis is not actually expressed in the surface syntax of the location path.

The node test is used to specify what type of node in the axis should be selected. For example, to select
all child element nodes of Book element nodes that are Chapter element nodes, you could write the
following:

/Book/Chapter

This location path has two location steps. The initial / character indicates that the context node is the
root node. The next location step, Book, selects all Book element nodes in the child axis. The second /
character is a separator between location steps. The second location step is Chapter, which selects
Chapter element nodes in the child axis. The same location path would be written in unabbreviated
syntax like this:

/child: :Book/child: :Chapter
You may find that this syntax shows the parts of the location path more clearly.
The first location step starts at the root node and selects all Book element nodes that are children of the
root node. If the document element is a Book element, a single Book element node is present in the node-
set selected by the first location step (with any other document element, the node-set is empty and pro-
cessing of the location path stops, with an empty node-set returned). Starting at that node, the next
location step then looks for Chapter element nodes that are child element nodes of the Book element
node returned by the first location step.
Suppose the location path had another location step, as shown here:

/child: :Book/child: :Chapter/child: :Section

In that case, after finding all the Chapter element nodes that are selected by the second location step,
any Section element nodes of each of the selected Chapter element nodes are chosen in turn.

Suppose the location path is modified to include a predicate, as shown here:

/child: :Book/child: :Chapter [position()=3]/child: :Section

279

Part Ill: Processing

In this case, only the Chapter element node in the third position in document order would be selected
by the second location step. Processing of all other Chapter element nodes would stop and those nodes
would not be included in the returned node-set. For the Chapter element node in third position, all its
Section element node children would be selected.

The only type of node in the child axis that has a name is the element node, but other nodes, such as
comment nodes and text nodes, can also be present in the child axis. To select all nodes in the child
axis that are child nodes of the Book element node, you would write the following:

/Book/node ()

This location path would select all nodes in the child axis that are child nodes of Book element nodes,
which are children of the root node.

Predicates are optional. Suppose you have a more complex structure that included Chapter elements,
Section elements, and Paragraph elements, and you want to select the third paragraph in the second
section in the first chapter. You could use a location path like this:

/Book/Chapter[1]/Section[2]/Paragraph[3]

The second, third, and fourth location steps each include a predicate. The same location path could be
written in unabbreviated syntax, like this:

/child: :Book/child: :Chapter[position()=1]/child::Section[position()=2]1/
child: :Paragraph[position()=3]

Notice how a numeric expression can be used directly in a predicate, where it is short for position() =
expression.

Predicates can also be multiple for any location step. Suppose you want to select the third paragraph in
the second section in the first chapter only if the first Chapter element has a security attribute whose
value is public. You could write the following:

/Book/Chapter[1] [@security="public"]/Section[2]/Paragraph[3]

Or, using unabbreviated syntax, you could write this:

/child: :Book/child: :Chapter[position()=1] [attribute: :security="public"]/
child: :Section[position()=2]/child: :Paragraph[position()=3]

Notice that the second location step has two predicates, [1] [@security="public"]. Both predicates
must be satisfied before a Chapter element node can be selected. The order of predicates can also influ-
ence the node-set returned.

Be careful when using predicates such as [@security="public"] as the values of XSLT attributes, such
as the select attribute of the xs1:value-of element. Make sure you use different paired quotes or
apostrophes for the value inside the predicate than those used to delimit the attribute value. You could

write the following:

<xsl:value-of select="/Book/Chapter[@security='public']" />

280

Chapter 7: XPath

Alternatively, you could write this:
<xsl:value-of select='/Book/Chapter[@security="public"]"' />

In other words, if you use paired quotes to delimit the value of the select attribute, use paired apostro-
phes inside the predicate; if you use paired apostrophes to delimit the attribute value, use paired quotes
inside the predicate.

Before you move on to Chapter 8 and look at how XPath is used with XSLT, take a look at the new fea-
tures and syntax in XPath version 2.0.

XPath 2.0

The latest version of the XPath 2.0 specification is located at http: //www.w3 .org/tr/xpath20/.
Functions for XPath 2.0 are specified in a separate document located at http: //www.w3 .org/TR/
xpath-functions/. At the time of writing, further general information on XPath 2.0 can be found
at http://www.w3.org/XML/Query. Currently, the XPath link from http: //www.w3 .org/
describes only XPath 1.0.

XPath 2.0 is a much more powerful language than XPath 1.0 and is significantly more complex. Unlike
the XPath 1.0 specification, which is described in a single document, the XPath 2.0 specification is
described in several supporting documents in addition to the XPath 2.0 specification itself.

XPath 2.0 is a syntactic subset of the XML Query Language (XQuery), which is described in Chapter 9,
so reading Chapter 9 will give you a good overview of XPath 2.0 too.

Revised XPath Data Model

The data model underlying XPath 2.0 is significantly different from the XPath 1.0 model. Some high-
lights of differences are described here and in the following sections.

XPath 2.0 can be described as an expression language for processing sequences. A sequence is a general-
ization of the XPath 1.0 concept of a node-set to also include atomic values. Every XPath 2.0 expression
returns a sequence. Unlike an XPath 1.0 node-set, an XPath 2.0 sequence is ordered. In XPath 1.0, a node-
set is not allowed to contain duplicates. By contrast, an XPath 2.0 sequence may contain duplicates.

The XPath 2.0 data model is described at www.w3 .org/TR/xpath-datamodel/.

W3C XML Schema Data Types

In XPath 1.0, a node has a rather primitive type system, which really doesn’t intrude much into the
developer’s consciousness. In XPath 2.0, typing of nodes becomes much more formal and complex.
Typing of nodes and items in XPath 2.0 uses the W3C XML Schema. (The W3C XML Schema is described
in Chapter 5.)

XPath 2.0 adds the W3C XML Schema data types for date-time values. Because many XML documents,

such as invoices and purchase orders, include date-time data, the ability to automatically validate values in
XPath 2.0 is a potentially significant advantage, compared to the absence of date-time types in XPath 1.0.

281

Part Ill: Processing

Additional XPath 2.0 Functions

XPath 2.0 shares its function library with XQuery 1.0. Many more functions are provided in XPath 2.0
than were specified in XPath 1.0. In fact, XPath 2.0 contains so many functions that a separate specifica-
tion describes them.

The document specifying XPath 2.0 functions is located at http: //www.w3 . org/TR/
xpath-functions.

XPath 2.0 Features

The main feature improvements over XPath 1.0 are listed here and described in the following sections:

Q Better string handling

Better date and time handling

The ability to create new sequences
Conditional logic

Ability to call user-defined functions

U 000U

More node tests

Better String Handling

Among other functions, XPath 2.0 adds a tokenize () function to split strings, and a matches () func-
tion to test strings against regular expressions.

The tokenize () function takes a string and returns a sequence created by splitting the string on the
regular expression supplied as the second argument. For example, the XPath

tokenize(“I love Wrox books”, “\s+")
returns the sequence of strings representing each separate word in the sentence. The regular expression
\ s+ means one or more whitespace characters. An optional third argument can be used to modify the
tokenization.
The matches () function also uses a regular expression but returns a Boolean depending on whether the
string matches the expression. For example, to verify that a particular variable, $phone, was composed
entirely of digits, you could use the following XPath:

matches($phone, “ \d+$")

The expression ~\d+$ tests that the input contains at least one digit and no other character.

The new version also offers a slew of functions such as normalize-unicode (), which enables input to
be converted to a standardized form.

282

Chapter 7: XPath

Better Date and Time Handling

There was no real support for dates and times in XPath 1.0. Version 2.0 has many functions designed to
compare, create, and manipulate dates and times.

The current-date (), current-DateTime (), and current-time () functions do exactly what they
say: they return the current date, date and time, or just time, in a standard ISO 8601 format. The one
thing to be aware of is that if used twice in the same XSLT, the functions will return identical results, so

you cannot attempt to time operations.

Functions such as day-from-date () and hour-from-time ()extract parts of a full date or time,
respectively.

Also available are functions that work on durations, rather than specific date-times. These all have sensi-
ble names such as years-from-yearMonthDuration ().

The time functions also support different time zones, so it is possible to convert and compare dates and
times from different points on the planet.

Creating New Sequences

A powerful way of creating new sequences and dealing with current ones is available using the new for
operator. As an example, if you want to construct a sequence of square numbers, you can use the follow-
ing XPath:
for $iin 1 to 10 return $i * $i
This gives results in the sequence 1,4, 9 . . . 100.
You can also write expressions such as the following:
sum(for $item in order/item return $item/@price * $item/@quantity)
This would return the total order value assuming a structure such as this:
<order>
<item sku="abcl23" value="10.00" quantity="3"/>
<item sku="abc456" value="20.00" quantity="2"/>

<item sku="abc789" value="30.00" quantity="1"/>
</order>

This sort of calculation can be very laborious in XPath 1.0.

Conditional Logic
XPath 2.0 supports an if/else construct:

<xsl:value-of select=
“if ($total > 1000) then $total * 0.9 else $total * 0.95” />

This reduces $total by 10 percent if it’s over 1,000; otherwise, by only 5 percent.

283

Part Ill: Processing

Ability to Call User-Defined Functions

Version 2.0 has the ability to call user-defined functions. Suppose you have a routine that calculates a
customer’s order total, which involves some complex logic. You can encapsulate it into a function such
as get-order-total () that accepts the order ID. You can then use this function as you would a built-in
one such as string-length:

<xsl:value-of select="get-order-total(order/@orderld)” />

How do you define a function? Here’s the catch: You can’t in XPath. You can, however, in applications
that support XPath such as XSLT and XQuery. As such, a fuller discussion of this topic is left to Chapters
8 and 9 in which those subjects are covered in more detail.

More Node Tests

In XPath 2.0 you can select nodes based on their type, a capability lacking in version 1.0. For example,
you can select all elements in a document using //element (). You can also search for all nodes that are
of type xs: token with //element (*, xs:token). There is a similar syntax for attributes as well.

XPath2.0.xs1lt shows a number of the new features and can be run against any XML input document.
You can see the results of the following code in Figure 7-8:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<html>
<body>
<h3>String handling</h3>
<xsl:variable name="sentence" select="'I love Wrox books'"/>
The sentence: '<xsl:value-of select="$sentence"/>' has
<xsl:value-of select="count (tokenize($sentence, '\s+'))"/> words.

Case-sensitive match against 'wrox':
<xsl:value-of select="matches($Ssentence, 'wrox')"/>

Case-insensitive match against 'wrox':
<xsl:value-of select="matches($sentence, 'wrox',6 'i')"/>
<h3>Date and Time</h3>
The current date is: <xsl:value-of select="current-date()"/>

The current time is: <xsl:value-of select="current-time()"/>

The day of the month is:
<xsl:value-of select="day-from-date(current-date())"/>

<h3>Creating sequences</h3>
Showing string-join() and a for expression:
<xsl:value-of select=
"string-join((for $i in 1 to 10 return string($i * $i)), ' => ')"/>

<h3>Node tests</h3>
The 17th element in this document that is under the xsl:template is:

<textarea rows="10" cols="60">
<xsl:copy-of select="document('')/*/xsl:template//element () [18]"/>
</textarea>

</body>
</html>
</xsl:template></xsl:stylesheet>

284

Chapter 7: XPath

Figure 7-8

Because the XSLT doesn’t need a source XML file, you can run it against itself. The command line for
NET would be as follows:

transform -o XPath2.0.html XPath2.0.xslt XPath2.0.xslt

Summary

This chapter covered the XML Path Language, XPath. You were introduced to the concept of the XPath
model and the important concept of context was discussed. The XPath axes and the functions in the
XPath function library were also described.

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

285

Part Ill: Processing

Question 1

Name two XPath axes that, respectively, can be used to select element nodes and attribute nodes. If the
context node is an element node, give the XPath location path, which selects the number attribute node
of that element node. Show the answer in both abbreviated and unabbreviated syntax.

Question 2

XPath 1.0 allows wildcards to be used when selecting child nodes of the context node. What is the loca-
tion path, which selects all child nodes of the context node? Give the answer in both abbreviated and
unabbreviated syntax.

286

XSLT

XSLT, Extensible Stylesheet Language Transformations, is a very important XML application in
many XML workflows. In many business situations, data is either stored as XML or can be made
available from a database as XML. XSLT is important because, typically, the way in which XML is
stored needs to be changed before it is used. Wherever the data comes from, the XML might need
to be presented to end-users or be shared with business partners in a format that is convenient for
them. XSLT plays a key role in converting XML to its presentation formats and restructuring XML
to fit the structures useful to business partners.

This chapter covers the following:

Q

Qa

How XSLT can be used to convert XML for presentation or restructure XML for business-
to-business data interchange

How XSLT differs from conventional procedural languages

An XSLT transformation is described in terms of a source document and a result docu-
ment. However, under the hood, the transformation taking place is a source tree (which
uses the XPath data model) to a result tree (which also uses the XPath data model).

How the elements that make up an XSLT stylesheet are used. For example, you look at
how to use the xs1:value-of element to retrieve values from the source tree being trans-
formed. In addition, you look at the xs1: copy and xs1:copy-of elements, which,
respectively, shallow copy and deep copy nodes from the source tree.

How to use XSLT variables and parameters

The new features of XSLT 2.0 and how they make transformations easier

XSLT 2.0 reached W3C Recommendation status as of January 23, 2007.

What Is XSLT?

XSLT is a declarative programming language, written in XML, for converting XML to some other
output. Often the output is XML or HTML, but in principle, XSLT can produce arbitrary output

Part Ill: Processing

from any given XML source document. For example, an XML document can be restructured to conform
to a business partner’s schema, or a selection from an XML document can be made to correspond to
specified criteria, such as selecting invoices from a specified period.

In XSLT 1.0 the source had to be XML. In version 2.0 this restriction does not apply and you can trans-
form other formats, such as CSV files, where the data is separated by commas and carriage returns, into
different structures.

Alternatively, XML data can be transformed so that the data is part of an HTML document, XHTML doc-
ument, WML (Wireless Markup Language) page, or other presentation format. Just as it is efficient to
store relational data once to avoid data inconsistencies, having one XML data source that can then be
converted to multiple presentation formats results in an efficient and effective workflow when multiple
formats, which may themselves be evolving, need to be produced.

XSLT uses XPath, to which you were introduced in Chapter 7, to select the parts of the source XML doc-
ument that are used in the result document. All the XPath 1.0 functions are available to an XSLT proces-
sor, and XSLT 1.0 has a few functions of its own.

XSLT is a declarative language. Often, newcomers to XSLT find it difficult to adapt from the mindset that
they use while programming in procedural languages such as Java or JavaScript. Therefore, you will
take the first code examples slowly to help you understand the difference between a declarative lan-
guage and a procedural one.

Restructuring XML

One of the major uses of XSLT is to restructure XML for use by another user — for example, a business
partner. In a common scenario, two companies need to exchange XML documents electronically but for
historical reasons have differences in the structures of basic documents such as invoices and purchase
orders.

XSLT can copy selected parts of the source XML unchanged into the result document or can create new
elements or attributes in the result document. The names of elements and attributes can be changed.
Elements or attributes present in the source document can be selectively omitted from the result docu-
ment. By combining these options, any arbitrary change can typically be achieved between the source
document and the result document.

Presenting XML Content

XML is often presented as HTML or XHTML on the desktop, as well as various other options on mobile
devices. XSLT is often used to transform select parts of the XML document for display. For example, you
might create a linked set of HTML pages, each of which contains data from a specified time period.
Using XSLT, appropriate data for each HTML page can be selected from the same XML document.

How an XSLT Processor Works

Before you start writing code, it is helpful to understand how, in general terms, an XSLT processor
works. At its simplest, you can look at an XSLT processor as a piece of software that accepts an XML

288

Chapter 8: XSLT

document (the source document), applies an XSLT stylesheet to it, and produces another document called
the result document, which can be XML, HTML, or plain text.

If you have read Chapter 7 on XPath, then you will likely already be able to guess that this isn’t the
whole story. A slightly more detailed description of an XSLT processor is that it accepts a source docu-
ment and creates an in-memory tree representation of that source document, according to the XPath data
model, called the source tree. The XSLT processor processes the source tree according to the templates con-
tained in the XSLT stylesheet. A result tree is created. The creation of a result tree from a source tree is
called transformation. After the result tree is created, a process called serialization takes place, which cre-
ates a familiar, serialized XML (or other) document from the result tree.

Strictly speaking, an XSLT processor is responsible only for the transformation of the source tree to one
or, in the case of XSLT 2.0, multiple result trees. However, most XSLT processor software also contains an
XML parser that creates the source tree and a serializer component that serializes the result tree.

Running the Examples

The first examples used in this chapter are standard XSLT 1.0 code; toward the end of the chapter some
version 2.0 transformations are shown. To run the version 1.0 transformations, virtually any processor
will do. For version 2.0 you are limited, as many vendors are waiting for the final W3C recommendation.
The main contender at the moment is the Saxon processor written by Wrox author Michael Kay. Details
for installing this are provided later in the chapter.

Information on the Java 2 and C++ versions of the Xalan XSLT processor are avail-
able at http: //xml .apache.org/. Information on the MSXML software, which
comprises a COM version called Microsoft XML Core Services as well as .NET, is
available at http: //msdn.microsoft.com/xml/. Useful support information on
MSXML is available at http: //www.netcrucible.com/.

In this chapter, step-by-step instructions are supplied for using the Saxon XSLT processor.

Introducing the Saxon XSLT Processor

All the examples in this chapter use the Saxon XSLT processor, which is written by Michael Kay, editor
of the XSLT 2.0 specification. It has two versions, a free one called Saxon-B, for basic, and a commercial
version named Saxon-SA, for schema aware. The examples in this book all use the free version. The differ-
ences are explained in the discussion of XSLT 2.0 later in the chapter. General information on the latest
version of Saxon is located at http: //saxon.sourceforge.net/. The version used when writing this
chapter is Saxon 8.8, which incorporates both XSLT 1.0 and XSLT 2.0 functionality. If you want to explore
only XSLT 1.0 functionality, you can use Saxon 6.5.5.

At the time of writing, the Saxon processor is being updated on an ongoing basis to add more complete
XPath 2.0 and XSLT 2.0 functionality. Therefore, it is likely that the latest version when you read this
will be a version other than 8.8 or 6.5.5. Take time to read the descriptions of the available versions at
the Saxon web page to ensure that you choose a version that supports XSLT 1.0 (all versions currently
do) and that is stable (from time to time quasi-experimental versions are released).

289

Part Ill: Processing

Installing the Saxon XSLT Processor

Saxon now comes with installs for Java and .NET. The installation of the Java version is covered first.

Installing the Java Version

To run the Saxon XSLT processor, you need a Java Virtual Machine (JVM) installed. To check whether
you have a JVM correctly installed, open a command window and type the following:

java -version
If Java is installed, then you will see a message similar to the following:

java version "1.5.1"
Java (TM)2 Runtime Environment, Standard Edition (build 1.5.1-b65)
Java HotSpot (TM) Client VM (build 1.5.1-b65, mixed mode)

If Java is not installed, you need to obtain a suitable version of Java and install it.

You can obtain a JVM by installing either a Java Runtime Environment (JRE) or a Java Software
Development Kit (SDK). If you don’t already have a JVM installed, then information on the current ver-
sion of Java (you need J2SE, Java 2 Standard Edition, version 1.4 or higher, to run Saxon 7.8) is available
athttp://java.sun.com. Look for a link to additional information on J2SE.

Assuming that you have downloaded a Java 2 version 1.5 SDK, launch the installer and follow the
onscreen installation instructions to install it. After you have completed the installation, open a com-
mand prompt window. At the command prompt, type

java -version

and press Enter. If a JVM has been successfully installed, then a message similar to the one shown earlier
will be displayed.

You also need to install the selected version of Saxon to an appropriate directory. Launch the Saxon zip
file that you downloaded and extract the files to the desired directory using a tool such as WinZip. In
order to run saxon8. jar from any directory, you need to add the file, providing its full path, to your
CLASSPATH environment variable.

To create or edit the CLASSPATH environment variable on Windows XP, click Start, select Control Panel,
and select the System option. On the System Properties window, select the Advanced tab and click the
Environment Variables button near the bottom. The Environment Variables window opens.

In the System Variables section look at the existing environment variables to see if CLASSPATH or
classpath (it isn’t case sensitive) is already present. If it is, then click the Edit button; the Edit System
Variable window opens. Edit the Variable Value text box to reflect the location where you installed
Saxon and the version that you chose to install. Once you are sure that you correctly typed the location,
click OK.

If there is no CLASSPATH variable in the System Variables section, then look at the User Variables section
to determine whether it’s there. Assuming that it isn’t, click the New button in the System Variables

290

Chapter 8: XSLT

section. The New System Variable window opens. Enter CLASSPATH (either case) in the Variable Name
text box and enter the location of Saxon in the Variable Value text box. Figure 8-1 shows the Edit System
Variable window with the CLASSPATH variable added. Click OK.

Figure 8-1

If you have a command prompt window open, you need to restart it so that the changes you made to the
environment variables are applied to it.

Now you can test whether the installation of Saxon is working correctly. Navigate to the directory in which
you intend to install your XML source files and your XSLT stylesheets. For the purposes of this chapter,
they are installed on my machine at ¢ : \BXML\Ch08. At the command prompt, type the following:

java -jar saxon8.jar

If everything is working correctly, you will see the default Saxon error message, which includes informa-
tion about how to use the command-line switches (shown in Figure 8-2), indicating that you haven’t

entered a full command to make Saxon carry out a transformation. At the moment, you don’t need to do
anything more, because the display of that error message is an indication that Saxon is installed correctly.

Installing the .NET Version

The .NET version is simpler to set up once you have the .NET Framework 1.1 installed.

You can download the framework from www.microsoft.com/downloads/details
.aspx?FamilyID=262d25e3-£589-4842-8157-034dle7cf3a3&displaylang=en. Alternatively,
go to www.microsoft.com/downloads/ and search for .NET framework redistributable. Most
Windows XP machines will have the NET Framework 1.1 installed already:.

Unzip the install package, saxonb8-8n.zip, for version 8.8, into a folder such as C: \program
files\Saxon\. That’s it. You can optionally install the libraries to the global assemble cache (GAC) if
you want to use them in other applications without recopying them each time by running install-gac
.cmd. You may need to modify the first line if you do not have a default installation of the NET SDK.
You can then run the examples by using Transform. exe, found in the bin directory.

The final step that will help is to add the bin folder to the Path environment variable. See the instruc-
tions for the Java install regarding how to change environment variables in Windows. You are almost
ready to run your first XSLT example, but first let’s look briefly at how procedural and declarative pro-
gramming languages differ.

291

Part Ill: Processing

Figure 8-2

Procedural versus Declarative Programming

Many newcomers to XSLT find it tough to adjust to the difference in approach when using XSLT com-
pared to using procedural programming languages. The following brief sections highlight the differ-
ences between the two approaches.

Procedural Programming

When using a procedural programming language such as JavaScript, you tell the computer what you
want to do step by step. You might define a function, and then define each thing that the computer is
supposed to do, assigning a variable, iterating through a loop, and so on. The mental picture of what the
function is supposed to achieve exists only in your mind.

Declarative Programming

The procedural programming approach differs from declarative programming in that you tell the com-
puter what you want to achieve. XSLT resembles SQL in that respect. For example, in SQL you tell the

292

Chapter 8: XSLT

relational database management system (RDBMS) to SELECT certain columns, but you don’t expect to
tell it how to retrieve the desired data. XSLT is similar. You specify what the XSLT processor is to create
each time it comes across a particular pattern in the source tree.

To specify what the XSLT processor is to do, you frequently use the xs1: template element with a
match attribute that contains the relevant pattern.

For example, if you wanted to create certain output for every Chapter element in a source XML docu-
ment you would have code like this:

<xsl:template match="Chapter">

<!-- The content of the <xsl:template> element defines what is to be added -->
<!-- to the result tree. -->
</xsl:template>

Notice how the pattern Chapter appears as the value of the match attribute of the xs1:template
element.

XSLT is also a functional language. A functional language is one that relies entirely on functions that accept
and return data and does not rely on maintaining state to carry out its tasks. You will see some of the effects
of this later in the chapter, especially when dealing with variables.

Let’s move on and create a simple XSLT stylesheet and see how it works.

Foundational XSLT Elements

In this section, you create an example that makes a simple HTML web page from the XML source docu-
ment shown here. Refer to the People.xml file:

<People>

<Person>

<Name>Winston Churchill</Name>

<Description>Winston Churchill was a mid 20th century British politician who
became famous as Prime Minister during the Second World War.</Description>

</Person>

<Person>

<Name>Indira Gandhi</Name>

<Description>Indira Gandhi was India's first female prime minister and was
assassinated in 1984.</Description>

</Person>

<Person>

<Name>John F. Kennedy</Name>

<Description>JFK, as he was affectionately known, was a United States president
who was assassinated in Dallas, Texas.</Description>

</Person> </People>

As you can see from the file, People.xml contains brief information about three famous twentieth-
century politicians.

The following stylesheet, People.xslt, creates a simple HTML web page, People.html, which con-
tains the name and description information about the politicians:

293

Part Ill: Processing

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" >

<xsl:template match="/">
<html>
<head>
<title>Information about
<xsl:value-of select="count (/People/Person)" /> people.</title>
</head>
<body>
<h3>Information about
<xsl:value-of select="count (/People/Person)" /> people.</h3>

<xsl:apply-templates select="/People/Person" />
</body>
</html>
</xsl:template>

<xsl:template match="Person">
<h3><xsl:value-of select="Name" /></h3>
<p><xsl:value-of select="Description" /></p>

</xsl:template>

</xsl:stylesheet>
The HTML page created by the transformation is shown in Figure 8-3.

The HTML code produced by the listing, with whitespace tidied for display, is shown in the following
block (People.html):

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Information about 3 people.</title>
</head>
<body>
<h3>Information about 3 people.</h3>
<h3>Winston Churchill</h3>
<p>Winston Churchill was a mid 20th Century British politician who became
famous as Prime Minister during the Second World War.</p>
<h3>Indira Gandhi</h3>
<p>Indira Gandhi was India's first female prime minister and was assassinated
in 1984.</p>
<h3>John F. Kennedy</h3>
<p>JFK, as he was affectionately known, was a United States President who was
assassinated in Dallas, Texas.</p>
</body>

</html>

Next you will analyze the stylesheet People.xs1t while you look at the XSLT elements that were
used in it.

294

Chapter 8: XSLT

Figure 8-3

The <xsl:stylesheet> Element

Every full XSLT stylesheet has, as its document element, either an xs1:stylesheet element or an
xsl:transform element.

For very simple XSLT stylesheets it is possible to omit the xs1:stylesheet element and have, for
example, an HTML document that includes elements from the XSLT namespace scattered inside it,
similar to Active Server Pages (ASP) or JavaServer Page (JSP) code. Because these simplified XSLT
stylesheets are very limited in what they can do, they aren’t discussed further here.

The <xsl:stylesheet> element is semantically identical to the <xsl: transform> element. You
can use the elements interchangeably in your XSLT stylesheets. Most XSLT stylesheets that you are
likely to see use the <xsl:stylesheet> element, so that element is used in this chapter.

The start-tag of the xs1:stylesheet element has a mandatory version attribute. Most stylesheets in
existence are version 1.0, although as version 2.0 processors become more common this will change. You

can see this in the following excerpt from the People.xslt example stylesheet:

<xsl:stylesheet =xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0" >

295

Part Ill: Processing

You can also see in the preceding excerpt from the stylesheet that the xs1:stylesheet element must
also have a namespace declaration for the XSLT namespace. The XSLT namespace has the URI
http://www.w3.0rg/1999/XSL/Transform. Any other URI in a namespace declaration identifies ele-
ments that are not XSLT. You can use any namespace prefix that you want for XSLT elements; some peo-
ple use an xs1t namespace prefix, but the indicative namespace prefix for the XSLT namespace is xs1.

The <xsl:template> Element

An XSLT processor looks in a stylesheet for an xs1: template element that has a match attribute with
value of / (which matches the root node of the XPath model of the source tree). The following excerpt
from the People.xslt example stylesheet shows the xs1:template element with the match attribute
of /:

<xsl:template match="/">
<html>
<head>
<title>Information about
<xsl:value-of select="count (/People/Person)" /> people.</title>
</head>
<body>
<h3>Information about
<xsl:value-of select="count (/People/Person)" /> people.</h3>

<xsl:apply-templates select="/People/Person" />
</body>
</html>
</xsl:template>

Each time the XSLT processor finds a node in the source tree that is a root node, the structure corre-
sponding to the content of this template is added to the result tree. Of course, you have only one root
node in an XPath model, so the nodes are added only once to the result tree.

Many of the elements in the template that match the root node are likely to be familiar to you as
HTML/XHTML elements. These elements are added to the result tree literally, and so are called literal
result elements. However, the template also contains several elements from the XSLT namespace. Those
elements are called instructions.

A frequently used instruction is the xs1:apply-templates element.

The <xsl:apply-templates> Element

In the People.xslt stylesheet, there is one xs1l:apply-templates element inside the template that
matches the root node:

<xsl:apply-templates select="/People/Person" />

The xs1:apply-templates element causes the XSLT processor to look for matching nodes in

the source tree. In this case, the nodes to be looked for are specified by the XPath location path
/People/Person, which specifies Person element nodes that are child nodes of a People element
node, which is, in turn, a child node of the root node. In the source document, People.xml, there are
three Person elements (as is shown by the highlighted code lines in the following excerpt):

296

Chapter 8: XSLT

<People>
<Person>
<Name>Winston Churchill</Name>
<Description>Winston Churchill was a mid 20th Century British politician who
became famous as Prime Minister during the Second World War.</Description>
</Person>
<Person>
<Name>Indira Gandhi</Name>
<Description>Indira Gandhi was India's first female prime minister and was
assassinated in 1984.</Description>
</Person>
<Person>
<Name>John F. Kennedy</Name>
<Description>JFK, as he was affectionately known, was a United States President
who was assassinated in Dallas, Texas.</Description>
</Person>
</People>

The XSLT processor then looks for a template that matches such a Person element node. The example
stylesheet, People.xslt, has such a template, as follows:

<xsl:template match="Person">
<h3><xsl:value-of select="Name" /></h3>
<p><xsl:value-of select="Description" /></p>

</xsl:template>

The preceding template has an xs1: template element with a match attribute that matches

the XPath pattern Person, so it provides a match for the value of the select attribute of the
xsl:apply- templates element. Each time the XSLT processor finds a Person element node that
corresponds to the location path /People/Person, the content of this template is processed and content
is added to the result tree. Because three such nodes exist, the content specified by the template is added
to the result tree three times.

The content of the template consists partly of literal result elements that are HTML/XHTML elements
and partly of elements in the XSLT namespace — specifically, the xs1:value-of element.

Getting Information from the Source Tree

When you are writing a stylesheet, it is often important to be able to use literal result elements, but typi-
cally, you will often also want to use information contained in the source tree. XSLT provides a number
of ways to use information from the source tree. A frequently used XSLT instruction to achieve that is the
xsl:value-of element.

The <xsl:value-of> Element

The xs1:value-of element, as its name implies, provides the value of a part of the source tree that rep-
resents the source XML document. The xs1:value-of element has a mandatory select attribute,
whose value is an XPath location path.

297

Part Ill: Processing

In the template that matched the root node, you used the xs1:value-of element to provide the content
of the title and h3 elements:

<html>
<head>

<title>Information about <xsl:value-of select="count (/People/Person)" />
people.</title>

</head>
<body>

<h3>Information about <xsl:value-of select="count (/People/Person)" />
people.</h3>

The value of the select attribute uses the XPath count () function. The argument to the count () func-
tion is itself an XPath location path, /People/Person. That location path again matches each Person
element node in the source tree, which has a People element node as its parent, which, in turn, has the
root node as its parent. As you saw a short time ago, there are three such Person elements in the source
document and therefore three corresponding Person element nodes in the source tree. Not surprisingly,
the count () function counts how many such nodes are there and the XSLT processor replaces the
xsl:value-of XSLT instruction with the literal value 3. For example, in the title element,

<title>Information about <xsl:value-of select="count (/People/Person)" />
people.</title>

in the stylesheet is replaced by
<title>Information about 3 people.</title>
in the result document.

Similarly, in the template that matches a Person element node (like the following one from the sample
stylesheet),

<xsl:template match="Person">
<h3><xsl:value-of select="Name" /></h3>
<p><xsl:value-of select="Description" /></p>

</xsl:template>

the xs1:value-of elements are replaced in the result document by text corresponding, respectively, to
the Name element node and the Description element node that are child nodes of the Person element
node that matches the value of the match attribute of the xs1: template element.

To clarify further, the value of the select attribute is the relative location path Name, which
matches a Name element node that is a child node of the context node. When the template that
matches the pattern Person is instantiated, the context node is defined by the select attribute of the

xsl:apply-templates element, as indicated in the following excerpt from the sample stylesheet:

<xsl:apply-templates select="/People/Person" />

298

Chapter 8: XSLT

Therefore, the relative location path Name in
<h3><xsl:value-of select="Name" /></h3>
could be written as the following absolute location path:
/People/Person/Name

That path matches any of the three Name element nodes in the source tree, but by using the relative loca-
tion path, you ensure that only the value of the Name element node that is the child of the present
person element node is added to the result tree.

The xs1:value-of element is the simplest XSLT element that extracts information from the source tree. It
simply selects the value of a node-set, which might be only a single node, specified by the location path
that is the value of the select attribute of the xs1:value-of element. If there is more than one node in
the node-set, then the xs1:value-of element uses the value of the first node in document order only, not
the values of all nodes. The xs1:value-of element is particularly useful when producing output for pre-
sentation, as in the example just shown, but it can also be used when XML is being restructured.

The next two elements discussed, the xs1:copy and xs1:copy-of elements, are useful primarily when
XML is being restructured.

The <xsl:copy> Element

The xs1: copy element copies a node to the result tree, but it doesn’t copy any descendant nodes; nor, if
the context node is an element node, does it cause any attribute nodes to be copied. This can be useful
when, for example, you want to use an element but change the structure of its content or add or remove
attributes from it.

Try It Out Using the xsl:copy Element

Let’s look at how the xs1: copy element can be used. We'll first demonstrate how you can convert an
element-based structure to one in which child elements in the source document are expressed in the
result document as attributes.

The source XML, Persons.xml, is shown here:

<Persons>
<Person>
<FirstName>Jill</FirstName>
<LastName>Harper</LastName>
</Person>
<Person>
<FirstName>Claire</FirstName>
<LastName>Vogue</LastName>
</Person>
<Person>
<FirstName>Paul</FirstName>
<LastName>Cathedral</LastName>
</Person>
</Persons>

299

Part Ill: Processing

Notice that the first and last names are held as child elements of the Person element.

Suppose you want to restructure this so that the Person element has a FirstName attribute and a
LastName attribute instead of the child elements shown previously. The stylesheet, Persons.xslt, can
restructure the XML to achieve that:

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" >

<xsl:template match="/">
<Persons>
<xsl:apply-templates select="/Persons/Person" />
</Persons>
</xsl:template>

<xsl:template match="Person">

<xsl:copy>

<xsl:attribute name="FirstName"><xsl:value-of select="FirstName"/>
</xsl:attribute>

<xsl:attribute name="LastName"><xsl:value-of select="LastName"/>
</xsl:attribute>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

1. Navigate to the directory in which Persons.xml and Persons.xs1t are stored.
2. To carry out the transformation, type the following at the command line if you are using the

Java version:

java -jar saxon8.jar -o PersonsOut.xml Persons.xml Persons.xslt
Or type the following when using .NET:

transform.exe -o PersonsOut.xml Persons.xml Persons.xslt

How It Works

As before, there is a template that matches the root node of the source document. Instead of creating
HTML/XHTML literal result elements as you did in the first example, you add a Persons literal result
element. The xs1:apply-templates element is used with the absolute location path /Persons/Person.
There is a template that has a match attribute with value of Person, which matches the value of the
select attribute of the xs1:apply-templates element. Therefore, for each Person node in the source
document, that template specifies how it is processed.

Notice first how the xs1: copy element is used inside the template:
<xsl:template match="Person">
<xsl:copy>

<xsl:attribute name="FirstName"><xsl:value-of select="FirstName"/>
</xsl:attribute>

300

Chapter 8: XSLT

<xsl:attribute name="LastName"><xsl:value-of select="LastName"/>
</xsl:attribute>

</xsl:copy>
</xsl:template>

The xs1 : copy element is used when the context node is a Person element node. Therefore, a node that
is the same as the context node is added to the result tree. In other words, a Person element node is
added to the result tree, but its child nodes — the FirstName element node and the LastName element
node —are not copied.

If you serialized the result document at this point, when only the xs1: copy element has been processed,
then it would look like this:

<Persons>
<Person />
<Person />
<Person />
</Person>

However, the template uses the xs1:attribute element to add a new attribute to the Person element
node in the result tree. The name attribute of the xs1:attribute element specifies that the name of the
new attributes are called FirstName and LastName:

<xsl:template match="Person">

<xsl:copy>

<xsl:attribute name="FirstName"><xsl:value-of select="FirstName"/>
</xsl:attribute>

<xsl:attribute name="LastName"><xsl:value-of select="LastName"/>
</xsl:attribute>

</xsl:copy>
</xsl:template>

The xs1:value-of element is used to specify the value of the newly created attributes. For the
FirstName attribute, the value is the value of the FirstName element in the source document. For the
LastName attribute, the value selected is the value of the LastName element in the source document.
Figure 8-4 shows the result document displayed in Internet Explorer.

The result document, Personsout . xm1l, tidied for on-page presentation, is shown here:

<?xml version="1.0" encoding="UTF-8"?>

<Persons>

<Person FirstName="Jill" LastName="Harper"/>
<Person FirstName="Claire" LastName="Vogue"/>
<Person FirstName="Paul" LastName="Cathedral"/>
</Persons>

Notice that the Person elements are now empty elements and that each Person element now has a
FirstName attribute and a LastName attribute.

301

Part Ill: Processing

Figure 8-4

Try It Out Adding Child Elements

Sometimes you need to do the opposite when restructuring an element. You can reverse the process,
again using the xs1: copy element. Using PersonsOut .xml as the source document, remove the
FirstName and LastName attributes and add new FirstName and LastName child elements to the
person element. The stylesheet Persons2.xs1t is shown here:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0" >
<xsl:template match="/">

<Persons>

<xsl:apply-templates select="/Persons/Person" />

</Persons>

</xsl:template>

<xsl:template match="Person">

<xsl:copy>

<xsl:element name="FirstName"><xsl:value-of select="@FirstName"/>
</xsl:element>

<xsl:element name="LastName"><xsl:value-of select="@LastName" />
</xsl:element>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>

1. Navigate to the directory containing the PersonsOut . xml and Persons2.xs1t files.
2. To run the transformation, type the following at the command line:

java -jar saxon8.jar -o PersonsBack.xml PersonsOut.xml Persons2.xslt

or

transform.exe -o PersonsBack.xml PersonsOut.xml Persons2.xslt

302

Chapter 8: XSLT

In subsequent examples, only the Java style command line will be shown; for .NET, substitute
transform.exe for java -jar saxon8.jar.

3. Open PersonsBack.xml in your favorite editor to see the structure created using the
Persons2.xslt stylesheet.

How It Works

The stylesheet Persons2.xslt differs from the previous stylesheet, Persons.xs1t, only in the content
of the template that matches the Person element node:

<xsl:template match="Person">

<xsl:copy>

<xsl:element name="FirstName"><xsl:value-of select="@FirstName"/>
</xsl:element>

<xsl:element name="LastName"><xsl:value-of select="@LastName" />
</xsl:element>

</xsl:copy>
</xsl:template>

The xs1 : copy element, as before, adds a Person element node to the result tree. Each xs1:element
element adds a child element node to the Person element node. The name of the new element node is
specified in the name attribute of the xs1:element element. The value of the new element is specified
using the xs1:value-of element:

<xsl:value-of select="@FirstName" />

The location path in the select attribute specifies that the value of the newly created FirstName ele-
ment node is the value of the FirstName attribute in the source tree.

The preceding examples give you an idea of how to use the xs1: copy element. However, sometimes
you will want to copy an entire structure from the source XML document to the result document. In that
case, the xs1:copy-of element comes into play.

The <xsl:copy-of> Element

The xs1:copy-of element causes a deep copy to take place. In other words, a node, together with all its
attribute nodes and descendant nodes, is copied to the result tree.

Suppose you receive a purchase order (PurchaseOrder .xml shown here) as a source document:

<PurchaseOrder>
<From>Example.org</From>
<To>XMML. com</To>
<Address>
<Street>234 Any Street</Street>
<City>Any Town</City>
<State>MO</State>
<ZipCode>98765</ZipCode>
</Address>
<!-- Other purchase order information would go here. -->
</PurchaseOrder>

303

Part Ill: Processing

The stylesheet, PurchaseOrder.xslt, to create an Invoice, Invoice.xml, from the purchase order is
shown here:

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0" >

<xsl:template match="/">
<Invoice>

<xsl:apply-templates select="/PurchaseOrder/To" />
<xsl:apply-templates select = "/PurchaseOrder/From" />
<xsl:apply-templates select="/PurchaseOrder/Address" />
<xsl:comment>The rest of the Invoice would go here.</xsl:comment>
</Invoice>
</xsl:template>

<xsl:template match="To">
<xsl:element name="From"><xsl:value-of select="." /></xsl:element>
</xsl:template>

<xsl:template match="From">
<xsl:element name="To"><xsl:value-of select="." /></xsl:element>
</xsl:template>

<xsl:template match="Address">
<xsl:copy-of select="." />
</xsl:template>

</xsl:stylesheet>
To run the transformation, enter the following at the command line:
java -jar saxon8.jar -o Invoice.xml PurchaseOrder.xml PurchaseOrder.xslt

Now let’s walk through what the stylesheet does. The template that matches the root node creates an
Invoice element as a literal result element. Then three xs1:apply-templates element are used to cre-
ate the content of the Invoice element:

<xsl:template match="/">

<Invoice>
<xsl:apply-templates select="PurchaseOrder/To" />
<xsl:apply-templates select="PurchaseOrder/From" />
<xsl:apply-templates select="PurchaseOrder/Address" />
<xsl:comment>The rest of the Invoice would go here.</xsl:comment>
</Invoice>

</xsl:template>

The first xs1:apply-templates element selects To element nodes in the source tree and matches this
template:

<xsl:template match="To">

<xsl:element name="From"><xsl:value-of select="." /></xsl:element>
</xsl:template>

304

Chapter 8: XSLT

A new element node, From, is created using the value of the To element node in the source tree.
Remember that the value of the select attribute of xs1:value-of,

<xsl:value-of select="." />
is the abbreviated syntax for the context node, which is the To element node.
Similarly, the second xs1:apply-templates element matches From element nodes:

<xsl:template match="From">
<xsl:element name="To"><xsl:value-of select="." /></xsl:element>
</xsl:template>

A new element, To, is created in the result tree and given the value of the From element node in the
source tree.

The result of those two templates simply switches the From and To parties, which you would expect to
be switched between a purchase order and an invoice.

The Address element in the source document can be used unchanged in the invoice:

<Address>

<Street>234 Any Street</Street>
<City>Any Town</City>
<State>MO</State>
<ZipCode>98765</ZipCode>
</Address>

Therefore, the third xs1:apply-templates element in the stylesheet selects the location path
/PurchaseOrder/Address, and the following template matches:

<xsl:template match="Address">
<xsl:copy-of select="." />
</xsl:template>

The xs1:copy-of element copies the Address element node from the source tree to the result tree,
together with all its descendant nodes (and attribute nodes, if it had any).

The result document, Invoice.xml, is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<Invoice>
<From>XMML . com</From>
<To>Example.org</To>
<Address>
<Street>234 Any Street</Street>
<City>Any Town</City>
<State>MO</State>
<ZipCode>98765</ZipCode>
</Address><!--The rest of the Invoice would go here.-->
</Invoice>

305

Part Ill: Processing

Influencing the Output with the
<xsl:output> Element

XSLT can be used to produce XML, HTML, or text output. The developer makes a choice among these
options by using the method attribute of the xs1:output element.

XML output is the default, and it is not necessary to specify XML as an output method. If you want to do
it explicitly, then the following code is used:

<xsl:output method="xml" />
The value of the method attribute is case sensitive and must be all lowercase.
HTML output is specified like this:

<xsl:output method="html" />
Text output is specified like this:

<xsl:output method="text" />

In XSLT 1.0, there is no way to specify XHTML output although this has been added to version 2.0. For
true XHTML, you should use the xm1 designation.

Sometimes the processor will guess that you want HTML rather than XML. This normally happens
when the first literal result element is html, so in this case there is no need to specify the method as
html. The basic difference between HTML output and XML is that many HTML elements — img or
br, for example — are empty of content but have no closing tag. These violate the well-formedness of
XML. Another difference is that of standalone attributes such as the SELECTED marker found on a
select element’s option. The text method of output has no restrictions on its format and is normally used
to create any non-markup files.

Conditional Processing

So far you have seen pretty simple XSLT stylesheets that carry out a transformation in only one way
each time a template is instantiated. At times, you will want to apply conditions when processing. The
xsl:1if and xsl:choose elements allow conditional processing in XSLT.

The <xsl:if> Element

The xs1:1if element tests whether a Boolean condition is true or false. If it is true, then the content of the
xsl:1if element is instantiated. If it is false, then nothing specified inside the xs1:if element is added
to the result tree.

Suppose you want to test whether the age data for some historical or fictional characters corresponded to
an imposed upper realistic age limit of 110 years. The source document, Characters.xml, is shown here:

306

Chapter 8: XSLT

<Characters>

<Character age="99">Julius Caesar</Character>
<Character age="23">Anne Boleyn</Character>
<Character age="41">George Washington</Character>
<Character age="45">Martin Luther</Character>
<Character age="800">Methuselah</Character>
<Character age="119">Moses</Character>

<Character age="50">Asterix the Gaul</Character>
</Characters>

A quick glance at a short document like this reveals that two characters have unusually high ages. When

you have thousands or tens of thousands of Character elements, it is more appropriate to automate the
checks.

The stylesheet Characters.xslt uses the xs1:1if element to add to the result tree only when the value
of the age attribute exceeds the specified upper age limit of 110:

<xsl:stylesheet =xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0" >

<xsl:template match="/">
<html>
<head>
<title>Age check on Characters.</title>
</head>
<body>
<h3>The recorded age is unusually high. Please check original data.</h3>
<xsl:apply-templates select="/Characters/Character" />
</body>
</html>
</xsl:template>
<xsl:template match="Character">
<xsl:if test="@age > 110 " >
<p><xsl:value-of select="." /> is older than expected.
Please check if this character's age, <xsl:value-of select="@age" />
, 1s correct.</p>
</xsl:if>
</xsl:template>

</xsl:stylesheet>

The xs1:apply-templates element in the template that matches the root node selects Character ele-
ment nodes for which the following template matches:

<xsl:template match="Character">

<xsl:1f test="@age > 110 " >

<p><xsl:value-of select="." /> is older than expected. Please check if
this character's age, <xsl:value-of select="@age" />, 1is correct.</p>
</xsl:if>

</xsl:template>

Notice that the xs1:1if element is a child element of the xs1 : template element. Therefore, if the test

attribute of the xs1:1if element returns the Boolean value false, then nothing is output from the tem-
plate for that Character element.

307

Part Ill: Processing

The output from the transformation is shown in Figure 8-5.

Figure 8-5

As you can see in Figure 8-5, only those characters whose age exceeds 110 are displayed in the web page
created by the transformation.

While the xs1:1if element either outputs something or outputs nothing, the xs1:choose element is
intended to allow alternate output options.

The <xsl:choose> Element

Suppose that you want to indicate whether the age of a character is suspicious or acceptable. Using the
same XML source document used in the previous section, Characters.xml, you can use the following
stylesheet, CharactersChoose.xslt, to indicate an assessment for each character:

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0" >

<xsl:template match="/">
<html>
<head>
<title>Age check on all Characters.</title>
</head>
<body>
<h3>The following is the assessment of the age data.</h3>
<xsl:apply-templates select="/Characters/Character" />
</body>
</html>
</xsl:template>

<xsl:template match="Character">
<xsl:choose>

308

Chapter 8: XSLT

<xsl:when test="@age > 110 " >

<p><xsl:value-of select="." /> - too high. Please check if this
character's age, <xsl:value-of select="@age" />, 1is correct.</p>
</xsl:when>
<xsl:otherwise>

<p><xsl:value-of select="." /> - ok</p>.
</xsl:otherwise>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>
To run the transformation, enter the following at the command line:

java -jar saxon8.jar -o AgeAssessed.html Characters.xml CharactersChoose.xslt
The key part of this transformation is in the template that matches Character element nodes:

<xsl:template match="Character">
<xsl:choose>
<xsl:when test="@age > 110 " >
<p><xsl:value-of select="." /> - too high. Please check if this
character's age, <xsl:value-of select="@age" />, is correct.</p>
</xsl:when>
<xsl:otherwise>
<p><xsl:value-of select="." /> - ok</p>.
</xsl:otherwise>
</xsl:choose>
</xsl:template>

Notice how the xs1:choose element is nested immediately inside the xs1: template element.
Therefore, output from that template is entirely controlled by the xs1:choose element.

Nested inside the xs1 : choose element are an xs1 : when element and an xs1:otherwise element. On
the xs1:when element is a test attribute whose value is a Boolean value. If the value of the test
attribute is the Boolean value true, then the content of the xs1:when element is output. If the value of
the test attribute of the xs1 :when attribute is false, then none of the content of the xs1: when element
is output; the content of the xs1:otherwise element is output instead.

The HTML output, AgeAssessed.html, tidied for on-page display, is shown here:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Age check on all Characters.</title>
</head>
<body>
<h3>The following is the assessment of the age data.</h3>
<p>Julius Caesar - ok</p>
<p>Anne Boleyn - ok</p>
<p>George Washington - ok</p>
<p>Martin Luther - ok</p>

309

Part Ill: Processing

<p>Methuselah - too high. Please check if this character's age,
800, is correct.</p>
<p>Moses - too high. Please check if this character's age, 119
, is correct.</p>
<p>Asterix the Gaul - ok</p>

</body>

</html>

Output is created for every Character element node in the source tree. If the value of the age attribute
is greater than 110, then a message asking the user to check that character’s age is output, as indicated by
the content of the xs1:when element. Otherwise, an ok message is output, as specified in the xs1:oth-
erwise element.

The resulting web page is shown in Figure 8-6.

Figure 8-6

In the preceding example, the xs1: choose element had only one xs1 : when element. However, it can
have an arbitrary number of xs1 : when elements as its children, each with a Boolean test specified in the
test attribute. The content of the first xs1:when element that has a test attribute evaluating to the
Boolean value true is output. All other xs1 :when elements generate no output, and the xs1:otherwise

310

Chapter 8: XSLT

is ignored. However, if none of the xs1:when elements has a test attribute that evaluates to the Boolean

value true, then the content of the xs1:otherwise element, if one is present, is output.

Having looked at how you can make choices between processing options, let’s move on to examine how

you can process several nodes, with each being processed in the same way.

The <xsl:for-each> Element

The xs1: for-each element allows all nodes in a node-set to be processed according to the XSLT
instructions nested inside the xs1: for-each element. For example, consider a source document,
Objects.xml, that shows some characteristics of an object:

<?xml version="1.0"?>
<Objects>
<Object name="Car">
<Characteristic>Hard</Characteristic>
<Characteristic>Shiny</Characteristic>
<Characteristic>Has 4 wheels</Characteristic>
<Characteristic>Internal Combustion Engine</Characteristic>
</Object>
</Objects>

The xs1: for-each element can be used to iterate across this node-set and create some specified output

for each node in the node-set. You could, for example, use the xs1: for-each element to create an

HTML list item, a 11 element, for each characteristic of an object. The following code, object.xslt,

shows a stylesheet that does this:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"
>

<xsl:template match="/">
<html>
<head>
<title>Object Characteristics</title>
</head>
<body>
<h3>Characteristics of <xsl:value-of select="Objects/Object/@name" /></h3>
<xsl:apply-templates select="/Objects/Object" />
</body>
</html>
</xsl:template>

<xsl:template match="Object">

<xsl:for-each select="Characteristic">
<xsl:value-of select="." /></1li>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

311

Part Ill: Processing

The interesting part of this stylesheet is the template that matches Object element nodes:

<xsl:template match="Object">

<xsl:for-each select="Characteristic">
<xsl:value-of select="." /></1li>
</xsl:for-each>

</xsl:template>

Inside the template, the start-tags and end-tags of an unordered list are specified using literal result
elements. Between those tags you use the xs1: for-each element to create a list item for each
Characteristic element node child of the context node, which is an 0bject element node.

Remember that XSLT is declarative, not procedural. xs1: Eor-each does not loop through the ele-
ments as you might loop through a collection or an array in other languages. In theory, the nodes can be
processed in any order — with a multi-processor machine processing one per processor simultaneously,
for example. This is why you cannot break out of a for-each as you can in, say, Java.

So far the order of the elements in the output document has matched that of the input document.
However, you may need to output data in an order that differs from the order in the source document.
The xs1:sort element provides the functionality to sort XML data during a transformation.

The <xsl:sort> Element

The xs1:sort element is used to specify sort order for node-sets. The xs1:sort element can be used
together with the xs1:apply-templates element and the xs1: for-each element. The following
example shows both usages.

Suppose you have a larger group of objects that you want to describe in an HTML web page. The source
XML, objects2.xml, is shown in the following code:

<?xml version="1.0"?>

<Objects>

<Object name="Car">
<Characteristic>Hard</Characteristic>
<Characteristic>Shiny</Characteristic>
<Characteristic>Has 4 wheels</Characteristic>
<Characteristic>Internal Combustion Engine</Characteristic>
</0Object>
<Object name="Orange">
<Characteristic>Fruit</Characteristic>
<Characteristic>Juicy</Characteristic>
<Characteristic>Dimpled skin</Characteristic>
<Characteristic>Citrus</Characteristic>
</0Object>
<Object name="Giraffe">
<Characteristic>Tall</Characteristic>
<Characteristic>Four legs</Characteristic>
<Characteristic>Big spots</Characteristic>

312

Chapter 8: XSLT

<Characteristic>Mammal</Characteristic>
</Object>
<Object name="Prawn Cracker">
<Characteristic>Crisp</Characteristic>
<Characteristic>Savoury</Characteristic>
<Characteristic>0ff white</Characteristic>
<Characteristic>Edible</Characteristic>
</Object>
</Objects>

Now suppose you want to sort the data before displaying it. The objects are to be sorted in ascending
alphabetical order, and the characteristics are to be sorted in descending alphabetical order. The
stylesheet, Objects.xslt, creates an HTML file with those sort orders applied:

<?xml version="1.0"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"
>

<xsl:template match="/">
<html>
<head>
<title>Object Characteristics</title>
</head>
<body>
<xsl:apply-templates select="/Objects/Object" >
<xsl:sort select="@name" />
</xsl:apply-templates>
</body>
</html>
</xsl:template>

<xsl:template match="Object">
<h3>Characteristics of <xsl:value-of select="@name" /></h3>

<xsl:for-each select="Characteristic">
<xsl:sort select="." order="descending" />
<xsl:value-of select="." /></1li>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>
First, look at the use of xs1:sort in association with the xs1:apply-templates element:
<xsl:apply-templates select="/Objects/Object" >
<xsl:sort select="€name" />

</xsl:apply-templates>

As normal, you use the select attribute of the xs1:apply-templates element to specify a node-set.
Unlike earlier examples, the xs1:apply-templates element is not an empty element; instead, it has an

313

Part Ill: Processing

xsl:sort element nested inside it. The value of the select attribute of the xs1:sort element specifies
the value by which the node-set is to be sorted. In this case, the value of the select attribute is a relative
location path, @name, which specifies the name attribute node whose parent is an Object element node.

The default sort order is ascending so you don’t need to specify that to produce the desired sort order
for objects. However, when you want to sort the Characteristic element nodes, the desired sort order
is descending, so that needs to be specified using the order attribute on the xs1:sort element:

<xsl:template match="Object">
<h3>Characteristics of <xsl:value-of select="@name" /></h3>

<xsl:for-each select="Characteristic">
<xsl:sort select="." order="descending" />
<xsl:value-of select="." /></1li>
</xsl:for-each>

</xsl:template>

Notice how the unordered list is created in the preceding template. The start- and end-tags of the ul ele-
ment come outside the xs1: for-each element. The xs1:sort element is nested inside the xs1: for-
each element, coming immediately after its start-tag. The node-set selected by the xs1: for-each
element are Characteristic element nodes. It is the value of those nodes that you want to sort by, so
you use the period character as the value of the select attribute of the xs1:sort element. Remember
that the period character selects the context node itself, being an abbreviation for the location path
self: :node (). To sort the characteristics in descending order, you specify the value of the order
attribute of the xs1:sort element as descending.

xsl:sort elements can be repeated so that if you wish to sort by one value and then another this is also
possible. For example, if you want to process a number of Person elements that have a FirstName and
a LastName element and have them sorted by LastName and then FirstName, the following
xsl:apply-templates would be needed:

<xsl:apply-templates select="Person">
<xsl:sort select="LastName"/>
<xsl:sort select="FirstName"/>

</xsl:apply-templates>

Both these sorts were alphabetical, as the processor could tell from the Characteristic’s type. If you
want to sort numerically, you need to add the attribute data-type to the xs1:sort element and specify
number as its value. If you wish to specify alphabetical sorting, specify text.

XSLT Modes

You have learned how you can select, for example, element nodes in the source tree and produce output
corresponding to their content. So far in the examples that you have seen, a node in the source tree has
been processed once or not at all. Sometimes, however, you will need to use a node in the source tree
more than once. A classic situation is using a chapter title in the source document at the top of its own
page and using the same information in a table of contents for the document.

314

Chapter 8: XSLT

The XSLT solution to this need to process certain nodes more than once is the mode. An XSLT mode is
expressed using a mode attribute on an xs1:apply-templates element, like this:

<xsl:apply-templates select="/Book/Chapter" mode="TOC" />
Suppose the stylesheet had two templates, one with the start-tag
<xsl:template match="Chapter" >
and the other with the start-tag
<xsl:template match="Chapter" mode="TOC" >

Both templates match as far as the value of the match attribute is concerned. However, if the
xsl:apply-templates element has a mode attribute, a template is instantiated only if it has both a
matching value in the match attribute and in the mode attribute of the xs1:template element.

We can see this in operation to solve the example problem of processing chapter titles so that they are
both used in a table of contents and displayed as the title of the chapter when the chapter is displayed.
The content of a very abbreviated version of this book, BegXML . xm1, is stored as XML and is shown
here:

<?xml version="1.0"?>

<Book>

<Authors>

<Author>David Hunter</Author>
<Author>Danny Ayers</Author>
<Author>Jeff Rafter</Author>
<Author>John Duckett</Author>
<Author>Eric van der Vlist</Author>
<Author>Andrew Watt</Author>
<Author>Joe Fawcett</Author>
</Authors>
<Year>2007</Year><Chapters>

<Chapter number="1" title="What is XML?">

XML is a markup language, derived from SGML.</Chapter>

<Chapter number="2" title="Well-formed XML">

To be well-formed an XML document must satisfy several rules about its
structure.</Chapter>

<Chapter number="3" title="Namespaces">

To help unambiguously identify the names of elements and attributes the
notion of an XML namespace is used.</Chapter>

<Chapter number="4" title="DTD">

A document type definition, DTD, is a way to specify the permitted
structure of an XML document.</Chapter>

<Chapter number="5" title="Schemas">

W3C XML Schema and Relax NG are two schema languages to specify the
structure of XML documents.</Chapter>

</Chapters>

</Book>

315

Part Ill: Processing

The aim is to create an HTML document with a table of contents and the chapter text, as shown in
Figure 8-7.

Figure 8-7

The stylesheet, BegXML . xs1t, to create the HTML web page is shown here:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"
>

<xsl:template match="/">
<html>
<head>
<title><xsl:value-of select="/Book/Title" /></title>
</head>
<body>
<h3><xsl:value-of select="/Book/Title" /></h3>
<p>by <xsl:apply-templates select="/Book/Authors/Author" />
</p>
<h3>Table of Contents</h3>

316

Chapter 8: XSLT

<xsl:apply-templates select="/Book/Chapters/Chapter" mode="TOC" />
<xsl:apply-templates select="/Book/Chapters/Chapter" mode="fulltext"
</body>

</html>

</xsl:template>

<xsl:template match="Author">

<xsl:value-of select="." />

<xsl:1if test="position() != last()"><xsl:text>, </xsl:text></xsl:if>
<xsl:1f test="position() last()-1"><xsl:text>and </xsl:text></xsl:if>
<xsl:if test="position/() last () "><xsl:text>.</xsl:text></xsl:if>
</xsl:template>

<xsl:template match="Chapter" mode="TOC">

/>

<p><xsl:value-of select="@number" />: <xsl:value-of select="@title" />

</p>
</xsl:template>

<xsl:template match="Chapter" mode="fulltext">

<h3><xsl:value-of select="@number" />. <xsl:value-of select="@title" /></h3>

<p><xsl:value-of select="." /></p>
</xsl:template>

</xsl:stylesheet>

Note several differences from stylesheets that you have already seen. The template that matches the root

node has three xs1:apply-templates elements in it:

<xsl:template match="/">
<html>
<head>
<title><xsl:value-of select="/Book/Title" /></title>
</head>
<body>
<h3><xsl:value-of select="/Book/Title" /></h3>
<p>by <xsl:apply-templates select="/Book/Authors/Author" />
</p>
<h3>Table of Contents</h3>
<xsl:apply-templates select="/Book/Chapters/Chapter" mode="TOC" />
<xsl:apply-templates select="/Book/Chapters/Chapter" mode="fulltext"
</body>
</html>
</xsl:template>

The first xs1:apply-templates element matches this template:

<xsl:template match="Author">

<xsl:value-of select="." />

<xsl:1if test="position() != last()"><xsl:text>, </xsl:text></xsl:if>
<xsl:1f test="position() = last()-1"><xsl:text>and </xsl:text></xsl:if>
<xsl:if test="position() = last()"><xsl:text>.</xsl:text></xsl:if>

</xsl:template>

/>

317

Part Ill: Processing

The xs1:value-of element simply outputs an author’s name, but punctuation is controlled using the
xsl:if element and the XPath position () function and last () function. The first xs1:if element
causes a comma followed by a space character to be output. This is done when the position of the
Author element node is not last in document order among the Author element nodes in the node-set
selected by the first of the three xs1:apply-templates elements in the template matching the root
node.

The second xs1:1f element produces output only if the Author element node is the second last Author
element node in the node-set. The third xs1:1if element produces a period character only when the
Author element node is the last one.

Taken together, all this produces a correctly punctuated author list:

<p>by David Hunter, Danny Ayers, Jeff Rafter, John Duckett,
Eric van der Vlist, and Joe Fawcett.</p>

The xs1: text element was used in each of the xs1:1if elements. It is not needed here, and you could
have obtained the same output without using it. However, the xs1: text element is essential if you
want to output whitespace literally — either a space character or a newline character, for example. To
output a space character, you could write the following;:

<xsl:text> </xsl:text>
To output a newline character, you could write the following:

<xsl:text>
</xsl:text>

The second and third xs1:apply-templates from the BegxML.xs1t stylesheet demonstrate the use of
modes:

<xsl:apply-templates select="/Book/Chapters/Chapter" mode="TOC" />
<xsl:apply-templates select="/Book/Chapters/Chapter" mode="fulltext" />

The first xs1:apply-templates element matches this template, as shown in the following;:

<xsl:template match="Chapter" mode="TOC">
<p><xsl:value-of select="@number" />: <xsl:value-of
select= "@title" /></p>

</xsl:template>

Notice that the value of the select attribute of the xs1:apply-templates element matches the value
of the match attribute of the xs1:template element, and at the same time the values of the two mode
attributes are the same.

The content added to the result tree is straightforward using the xs1:value-of element that you have
seen several times before. Importantly, using a mode attribute on both the xs1:apply-templates and
xsl:template element leaves you free to process the Chapter nodes a second time, using another

xsl:apply-templates element:

<xsl:apply-templates select="/Book/Chapters/Chapter" mode="fulltext" />

318

Chapter 8: XSLT

The preceding xs1:apply-templates element matches the following template:

<xsl:template match="Chapter" mode="fulltext">

<h3><xsl:value-of select="@number" />. <xsl:value-of select="@title" /></h3>
<p><xsl:value-of select="." /></p>

</xsl:template>

Note that the match attribute of the xs1: template element matches the select attribute of the
xsl:apply-templates element, and the two mode attributes also match.

The HTML document, BegXML. html, that the stylesheet produces is shown here after tidying for on-
page presentation:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Beginning XML, 4th Edition</title>
</head>
<body>
<h3>Beginning XML, 4th Edition</h3>
<p>by David Hunter, Danny Ayers, Jeff Rafter, John Duckett,
Eric van der Vlist, and Joe Fawcett.</p>
<h3>Table of Contents</h3>
<p>1:What Is XML?
</p>
<p>2:Well-Formed XML
</p>
<p>3:Namespaces
</p>
<p>4:DTD
</p>
<p>5:Schemas
</p>
<h3>1. What Is XML?</h3>
<p>XML is a markup language, derived from SGML.</p>
<h3>2. Well-formed XML</h3>
<p>To be well-formed an XML document
must satisfy several rules about its structure.</p>
<h3>3. Namespaces</h3>
<p>To help unambiguously identify the
names of elements and attributes,
the notion of an XML namespace is used.</p>
<h3>4. DTD</h3>
<p>A document type definition, DTD, is a way to
specify the permitted structure of an XML document.</p>
<h3>5. Schemas</h3>
<p>W3C XML Schema and Relax NG are two schema
languages to specify the structure of XML documents.</p>
</body>
</html>

As you have seen, modes allow multiple processing of nodes in the source tree for different purposes.

319

Part Ill: Processing

XSLT Variables and Parameters

XSLT allows variables and parameters to be specified by the xs1:variable and xs1:parameter ele-
ments, respectively. Both variables and parameters are referenced using $vVariableName or

$ParameterName syntax

Variables in XSLT can be confusing because they resemble constants in other languages; once their
value is set it cannot be altered. This means that expressions common in other languages, such as
$VariableName = $VariableName + 1, are illegal in XSLT. If you find yourself needing such con-

structs you will have to rethink the approach to fit with a functional language.

Suppose you want to be able to enter the name of a person and find his or her age. A source document,

Ages.xml, is shown here:

<?xml version="1.0"?>
<Ages>
<Person name="Peter" age="21" />
<Person name="Angela" age="12" />
<Person name="Augustus" age="92" />
<Person name="George" age="44" />
<Person name="Hannah" age="30" />
</Ages>

Next, you show the stylesheet. Note the xs1 :param element as a child element of the xs1
element:

<?xml version="1.0"?>

:stylesheet

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0"

>
<xsl:param name="person" />

<xsl:template match="/">
<html>
<head>
<title>Finding an age using an XSLT parameter</title>
</head>
<body>
<xsl:apply-templates select="/Ages/Person[@name=Sperson]" />
</body>
</html>

</xsl:template>

<xsl:template match="Person">

<p>The age of <xsl:value-of select="Sperson" /> is <xsl:value-of
select="Q@age" /> </p>

</xsl:template>

</xsl:stylesheet>

To pass in a parameter from the command line, use syntax like this:

java -jar saxon8.jar -o Ages.html Ages.xml Ages.xslt person="Peter"

320

Chapter 8: XSLT

This passes in Peter as the value of the person parameter. If you pass in the name Hannah to the
stylesheet, the HTML output is as follows:

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Finding an age using an XSLT parameter</title>

</head>

<body>
<p>The age of Hannah is 30</p>

</body>

</html>

The person parameter is used twice in the stylesheet. First, it is used in a predicate in the value of the
select attribute of the xs1:apply-templates element:

<xsl:apply-templates select="/Ages/Person[@name=$person]" />

Later, it is used inside the matching template to display the value of the person parameter using the
xsl:value-of element:

<xsl:template match="Person">

<p>The age of <xsl:value-of select="Sperson" /> is <xsl:value-of
select="@age" /></p>

</xsl:template>

XSLT variables behave in the same way as parameters but with one difference: Parameters can be passed
into a transformation from outside. Variables are defined inside an XSLT stylesheet. There are two ways
to specify an XSLT variable: the first way uses the select attribute of the xs1:variable element, as
shown in the following:

<xsl:variable name=" variableName" select=" someExpression" />

The second way to specify an XSLT variable is to supply content between the start-tag and the end-tag of
the xs1:variable element, as shown in the following:

<xsl:variable name=" variableName">
<!-- Some content goes here which can define the value of the variable. -->
</xsl:variable>

Don’t forget to enclose the contents of param or variable in quotes if you are using the select
attribute and you want a string value. For example, if you have

<xsl:param name="searchLetter” select=""A""/>

then the param $searchLetter will be set to A unless set externally before the transform. If you omit the
inner pair of single quotes, then it will default to the node set of all A elements under the context node.

The variable can then be employed by using the $ variableName notation at an appropriate place in the
stylesheet.

321

Part Ill: Processing

Finally, as noted previously, a global variable, one residing as a child of the xs1:stylesheet element, can
be set programmatically before the transform runs. The specification doesn’t indicate how this must be
done, so each processor has a slightly different technique. You need to look at the documentation for the
particular transformer you are using.

Named Templates and the
<xsl:call-template> Element

The xs1:apply-templates element that you have seen in use several times in this chapter allows
addressing of selected parts of the source tree of nodes. However, at times you may want to use a tem-
plate in a manner similar to using a function in, for example, JavaScript. Named templates in XSLT enable
you to do this.

Named templates are identified, not surprisingly, by a name attribute on an xs1: template element:
<xsl:template name=" TemplateName">
<!-- The template content goes here. -->
</xsl:template>

Named templates are called using the xs1:call-template element.

The simplest use of xs1:call-template is when no parameter is passed to the named template:

<xsl:call-template name=" TemplateName" />

When you want to pass one or more parameters to a named template, you can do so using the
xs1:with-param element, like this:

<xsl:call-template name=" TemplateName" >
<xsl:with-param name=" ParameterName" />

<!-- More <xsl:with-param> elements can go here. -->
</xsl:call-template>

The xs1:with-param element can optionally have a select attribute whose value is an expression,
which can specify how the value to be passed is selected.

When a parameter is passed to a named template, the template is written like this:
<xsl:template name=" TemplateName">
<xsl:with-param name=" ParameterName" />
<!-- Rest of template goes here. -->

</xsl:template>

The content of a template called using xs1:call-template can use any of the XSLT elements described
in this chapter.

322

Chapter 8: XSLT

XSLT Functions

All of the XPath 1.0 functions described in Chapter 7 are available to an XSLT processor. In addition to
those functions, XSLT 1.0 provides a limited number of additional functions to provide functionality
specifically relevant to XSLT, several of which are listed here:

Q

a

The document () function enables access to documents other than the document that contains
the context node. This allows the use of multiple documents as source XML documents.

The key () function can be used with the xs1 :key element to provide an indexing mechanism
for XML source documents.

The format-number () function can be used with the xs1:decimal-format element to pro-
vide fine control of how numeric values are displayed in a result document.

The generate-id () function allows the generation of ID attribute nodes in the result tree.

XSLT 2.0

XSLT 2.0 was a long time coming but finally made it as a W3C Recommendation in January 2007.

The latest version of the XSLT 2.0 specification is located at www.w3 .org/tr/xslt20/.

As well as harnessing the more powerful XPath 2.0, a number of other improvements make XSLT 2.0 a
much more powerful tool:

Qa

Q

New data model — The data model for XSLT 2.0 is the same data model that is used for XPath
2.0 and for the XML Query Language, XQuery. XQuery is described in Chapter 9.

W3C XML Schema datatypes — W3C XML Schema datatypes replace the datatypes used in
XPath 1.0 and in XSLT 1.0.

New elements — Several new elements are added in XSLT 2.0, including elements that help
with grouping tasks, which are difficult to accomplish in XSLT 1.0.

Non-XML input— XSLT 2.0 enables you to transform textual data that is not well-formed XML.

Improved string handling — As well as using XPath’s regular expression functions, XSLT 2.0
has its own instructions that help with text parsing, The main addition is xs1:analyze-
string.

Multiple outputs — XSLT 2.0 allows more than one document to be output.

New functions — XSLT 2.0 uses the additional functions that form part of XPath 2.0 as well as
adding some of its own. This provides a much bigger function library than is standardly avail-
able in XSLT 1.0. You can also define your own custom functions.

Along with these new features are a number of rules that apply when a version 1.0 transform is carried
out by a version 2.0 processor. Some elements, notably xs1:value-of, produce quite different results
under version 2.0, so you need to be careful in specifying the version of the transformation and knowing
which processor will apply it.

323

Part Ill: Processing

Another improvement is the abandonment of the result tree fragment. This means that variables created
like this:

<xsl:variable name="newNodes">
<newElement>
<xsl:copy-of select="//person"/>
</newElement>
</xsl:variable>

are directly usable as nodes without needing the node-set extension function that many processors were
forced to implement.

The following sections looks at how these new features help with some common transformation
requirements.

Grouping in Version 2.0

Grouping elements — for example, creating a list of contacts based on country of origin —was no mean
feat in XSLT 1.0. A popular technique was Muenchian grouping, details of which can be found at

www . jenitennison.com/xslt/grouping/muenchian.xml, but this technique was tricky to explain
and difficult to write.

XSLT 2.0 solves this problem by having an xs1: for-each-group instruction allied to new functions
such as current-grouping-key () and current-group ().

xsl:for-each-group has a variety of options, allowing you to group on specific values or by position,
where there is some sort of header element, and where nodes needing grouping are adjacent in the
document.

The following example uses a section of my address book, contacts.xml, to illustrate how the new
grouping features work:

<Contacts>

<Contact>
<FirstName>Bruce</FirstName>
<LastName>Willis</LastName>
<Country>USA</Country>

</Contact>

<Contact>
<FirstName>Stephen</FirstName>
<LastName>Fry</LastName>
<Country>UK</Country>

</Contact>

<Contact>
<FirstName>Anne</FirstName>
<LastName>Hathaway</LastName>
<Country>USA</Country>

</Contact>

<Contact>
<FirstName>Etienne</FirstName>
<LastName>Pradier</LastName>

324

Chapter 8: XSLT

<Country>France</Country>

</Contact>

<Contact>
<FirstName>Bill</FirstName>
<LastName>Gates</LastName>
<Country>USA</Country>

</Contact>

<Contact>
<FirstName>Kiera</FirstName>
<LastName>Knightley</LastName>
<Country>UK</Country>

</Contact>

</Contacts>

The requirement is to produce a list of all contacts grouped by Country. You also want them listed
alphabetically, by LastName and then FirstName. The transform, groupedContacts.xslt, produces
the output shown in Figure 8-8.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<html>
<body>
<h3>Contacts by Country</h3>
<xsl:for-each-group select="Contacts/Contact" group-by="Country">
<xsl:sort select="current-grouping-key()"/>
<p>Contacts who live in:

<xsl:value-of select="current-grouping-key()"/>

<xsl:apply-templates select="current-group() ">
<xsl:sort select="LastName"/>
</xsl:apply-templates>

</p>
</xsl:for-each-group>
</body>
</html>
</xsl:template>

<xsl:template match="Contact">

<xsl:value-of select="LastName"/>, <xsl:value-of select="FirstName"/>
</1li>
</xsl:template>
</xsl:stylesheet>

325

Part Ill: Processing

Figure 8-8

Aside from the standard HTML elements, this transformation has one notable section, the xs1: for-
each-group instruction:

<xsl:for-each-group select="Contacts/Contact" group-by="Country">
<! —more code here -->
</xsl:for-each-group>

The select attribute is used to choose the nodes that need grouping —in this case the contact ele-
ments lying under the Contacts document element. The group-by attribute states how to group and
the expression is relative to the nodes chosen to group —in this case the Country element, which is a
child of Contact.

You want to sort by Country, so the next instruction is xs1:sort:

<xsl:for-each-group select="Contacts/Contact" group-by="Country">
<xsl:sort select="current-grouping-key()"/>
<! —more code here -->

</xsl:for-each-group>

The item to sort on is specified by the select attribute as normal, but a new function, current-
grouping-key (), is used to obtain the specific Country element that the current group is based on.

The next stage is to ouput the group’s heading;:

326

Chapter 8: XSLT

<xsl:for-each-group select="Contacts/Contact" group-by="Country">
<xsl:sort select="current-grouping-key()"/>
<p>Contacts who live in:

<xsl:value-of select="current-grouping-key()"/>

<!—more code here -->
</p>

</xsl:for-each-group>
The current group name is shown, again using the current-grouping-key () function.

Finally, the actual nodes in each group are selected; these will be matched by the contact template and
output as individual list items:

<xsl:for-each-group select="Contacts/Contact" group-by="Country">
<xsl:sort select="current-grouping-key()"/>
<p>Contacts who live in:

<xsl:value-of select="current-grouping-key()"/>

<xsl:apply-templates select="current-group() ">
<xsl:sort select="LastName" />
</xsl:apply-templates>

</p>
</xsl:for-each-group>

The individual groups are sorted by an xs1:sort instruction with LastName chosen as the sort item.

Non-XML Input and String Handling

XSLT 2.0 allows non-XML to be used in a transformation. Although the principal input must be XML,
secondary documents can be accessed via the new unparsed-text () function, which accepts a URL
that can be a local file or a document accessed via HTTP. To illustrate the use of this function, let’s take a
look at another new instruction, xs1:analyze-string.

xsl:analyze-string breaks down a string based on a regular expression. It then passes those parts
that match the expression to an xs1:matching-substring instruction, and those that don’t to an
xs1:non-matching-substring element.

For example, suppose you have a variable named historicalDates that contains a mixture of years
and text:

Some famous years in history were 1066 — the Battle of Hastings in England,
1776 — the signing of the Declaration of Independence in America, and 1789 — the

Storming of the Bastille in France.

327

Part Ill: Processing

To extract the actual years into an HTML list, use the following XSLT:

<xsl:analyze-string select="S$historicalDates" regex="\d+">
<xsl:matching-substring>
<xsl:value-of select="."/></1li>
</xsl:matching-substring>
</xsl:analyze-string>

The regular expression \d+ matches a string of at least one digit. Each match is processed by the
xsl:matching-substring instruction, where the actual match can be accessed via the context node.

You can also use the xs1:non-matching-substring instruction, where it’s easier to match the charac-
ters you don’t need and process those remaining. If necessary, both the xs1:matching-substring and
xsl:non-matching-substring instructions can be used

Try It Out Reading and Using Non-XML Input

For an example of combining the unparsed-text () function and xs1:analyze-string instruction,
start with a traditional INI file, config.ini:

name = joe

server = Socrates

role = admin

initial screen = accounts

Now suppose your requirement is to turn this into a more modern XML representation:

<config>

<item name="name">joe</item>

<item name="server">Socrates</item>

<item name="role">admin</item>

<item name="initial screen">accounts</item>
</config>

The following XSLT, createConfig.xslt, shows how it’s done:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xsl:param name="sourceUri" as="xs:string"/>

<xsl:template name="main">
<xsl:variable name="iniFile" select="unparsed-text (SsourceUri)"/>
<config>
<xsl:analyze-string select="$iniFile" regex="\n">
<xsl:non-matching-substring>
<item>
<xsl:for-each select="tokenize(., '\s+=\s+')">

328

Chapter 8: XSLT

<xsl:choose>

<xsl:when test="position() = 1">
<xsl:attribute name="name">
<xsl:value-of select="."/>

</xsl:attribute>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="."/>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</item>
</xsl:non-matching-substring>
</xsl:analyze-string>
</config>
</xsl:template>
</xsl:stylesheet>

To test the transformation, use the following command line:
java -jar saxon8.jar -o config.xml -it main createConfig.xslt sourceUri=config.ini

The stylesheet has no XML input, so the -it switch instructs processing to begin at a template named
main. The xs1:param named sourceUri is also set to the name of the INI file.

How It Works

The template named main first uses the unparsed-text () function to read the INI file and store the
text in a variable named iniFile:

<xsl:template name="main">
<xsl:variable name="iniFile" select="unparsed-text ($sourceUri)"/>

Then the document element config is created and xs1:analyze-string is used with a newline char-
acter as the regular expression:

<xsl:template name="main">
<xsl:variable name="iniFile" select="unparsed-text ($SsourceUri)"/>
<config>
<xsl:analyze-string select="$iniFile" regex="\n">

The xs1:non-matching-substring instruction processes the name-value pairs and begins by creating
an item element:

<xsl:template name="main">
<xsl:variable name="iniFile" select="unparsed-text ($sourceUri)"/>
<config>
<xsl:analyze-string select="$iniFile" regex="\n">
<xsl:non-matching-substring>
<item>
<xsl:for-each select="tokenize(., '\s+=\s+')">

329

Part Ill: Processing

It then splits the name value based on a regular expression that looks for a number of spaces surround-
ing an equals sign:

<xsl:template name="main">
<xsl:variable name="iniFile" select="unparsed-text ($SsourceUri)"/>
<config>
<xsl:analyze-string select="$iniFile" regex="\n">
<xsl:non-matching-substring>

<item>
<xsl:for-each select="tokenize(., '\s*=\s*')">
<xsl:choose>
<xsl:when test="position() = 1">
<xsl:attribute name="name">
<xsl:value-of select="."/>

</xsl:attribute>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="."/>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</item>
</xsl:non-matching-substring>

The xs1 : choose instruction uses the first node, the name, to create an attribute, and the second, the
value, to create a text node.

Multiple Outputs

One of the most common questions in XSLT forums asks how to produce more than one document as
output. In version 1.0, the only way was through extensions or scripting within the transformation. XSLT
2.0 introduces the xs1:result-document element, which enables any number of documents to be pro-
duced. As an example, suppose you wanted to group contacts as in the previous example, but this time
each country’s contacts should be output to a separate file and the main result will give an overall
report.

The XSLT used is separatedContacts.xslt:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">
<html>
<body>
<h3>Contacts by Country</h3>

330

Chapter 8: XSLT

<xsl:for-each-group select="Contacts/Contact" group-by="Country">
<xsl:sort select="current-grouping-key()"/>
<p>Number of contacts who live in:

<xsl:value-of select="current-grouping-key()"/>
 is
<xsl:value-of select="count (current-group())"/>
</p>
<xsl:result-document href="{current-grouping-key()}.xml">
<Contacts>
<xsl:copy-of select="current-group()"/>
</Contacts>

</xsl:result-document>
</xsl:for-each-group>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

If you run this transform with the line

java -jar saxon8.jar -o ContactsReport.html Contacts.xml separatedContacts.xslt

you end up with three files named France.xml, UK.xml, and USA.xml. USA.xml looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<Contacts>
<Contact>
<FirstName>Bruce</FirstName>
<LastName>Willis</LastName>
<Country>USA</Country>
</Contact>
<Contact>
<FirstName>Anne</FirstName>
<LastName>Hathaway</LastName>
<Country>USA</Country>
</Contact>
<Contact>
<FirstName>Bill</FirstName>
<LastName>Gates</LastName>
<Country>USA</Country>
</Contact>
</Contacts>

You'll also get the main result document, ContactsReport.html, as shown in Figure 8-9.

331

Part Ill: Processing

Figure 89

The main difference between this and the groupedContacts.xslt is the use of xsl:result-
document:

<xsl:result-document href="{current-grouping-key()}.xml">
<!—more code here -->
</xsl:result-document>

When the xs1:result-document is encountered, a new document node is constructed and eventually
output to a file specified using the href attribute. In this example, the current-grouping-key () func-
tion is used to give each file a different name based on the location.

Using curly braces, {}, around an expression in an attribute is known as an Attribute Value
Template. You can use this technique on certain attributes to insert the result of an XPath expression
where normally a fixed string would be expected.

Within the result document, a document element, Contacts, is created” and then all of the current-
group is copied in its entirety using the xs1: copy-of instruction:

<xsl:result-document href="{current-grouping-key ()} .xml">
<Contacts>
<xsl:copy-of select="current-group()"/>
</Contacts>
</xsl:result-document>

User-Defined Functions

XPath 2.0 adds the capability to call user-defined functions but has no way of actually defining them. It
is up to the host—XSLT or XQuery, for example —to do this. XSLT 2.0 uses a new instruction,
xsl: function, to define them.

332

Chapter 8: XSLT

Suppose you have a simple orders.xml document as follows:

<Orders CustomerId="abcl23">
<Order OrderId="ordl"

<Items>
<Item
<Item
<Item
</Items>
</Order>

ItemId="al"
ITtemId="b2"
ItemId="c3"

<Order OrderId="ord2"

<Items>
<Item
<Item
<Item
<Item

</Items>

</Order>

ItemId="al"
ItemId="d4"
ItemId="eb5"
ItemId="h8"

<Order OrderId="ord3"

<Items>
<Item
<Item
</Items>
</Order>
</Orders>

ItemId="eb5"
ItemId="f6"

OrderDate="2006-09-01">

Quantity="1"
Quantity="1"
Quantity="2"

ItemPrice="2.
ItemPrice="3.
ItemPrice="1.

OrderDate="2006-10-30">

Quantity="2"
Quantity="2"
Quantity="1"
Quantity="1"

ItemPrice="2.
ItemPrice="1.
ItemPrice="3.
ItemPrice="5.

OrderDate="2006-11-19">

Quantity="3"
Quantity="1"

ItemPrice="3.
ItemPrice="4.

00"></Item>
00"></Item>
50"></Item>

00"></Item>
00"></Item>
50"></Item>
00"></Item>

50"></Item>
00"></Item>

You want to show a summary of all the orders with their dates and totals. You can use some standard
XSLT combined with a function that accepts an Items node and return the order total. The function is

defined so:

<xsl:function name="udf:get-order-total" as="xs:double">
<xsl:param name="items"/>

<xsl:value

—of

select="sum(for $item in Sitems/Item return Sitem/@Quantity * Sitem/@ItemPrice)"/>
</xsl:function>

The name of the function must be a qualified name; the udf prefix shown above is mapped to a URI in
the xs1:stylesheet element. The return type of the function is specified by the as attribute. The func-
tion has one parameter, which is referenced as $items.

The function then uses one of the new constructs in XPath 2.0, a for expression. This states that for each
Item element, the program will return the Quantity multiplied by the ITtemPrice and return the sum
of all these values. The full stylesheet, order Summary.xs1t, is shown here:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:udf="http://wrox.com/XSLT/functions">

<xsl:template match="/">

<html>
<body>

333

Part Ill: Processing

<h3>0rder Summary for Customer
<xsl:value-of select="Orders/@CustomerId"/>
</h3>
<table>
<thead>
<tr>
<th>Order ID</th>
<th>Order Date</th>
<th>Order Total</th>
</tr>
</thead>
<tbody>
<xsl:apply-templates select="Orders/Order">
<xsl:sort data-type="number"

select="translate (@OrderDate, '-', '')" />
</xsl:apply-templates>
</tbody>
</table>
</body>
</html>

</xsl:template>

<xsl:template match="Order">
<tr>
<td>
<xsl:value-of select="@OrderId"/>
</td>
<td>
<xsl:value-of select="@OrderDate"/>
</td>
<td>
<xsl:value-of select="udf:get-order-total (Items)"/>
</td>
</tr>
</xsl:template>

<xsl:function name="udf:get-order-total" as="xs:double">
<xsl:param name="items"/>
<xsl:value-of
select="sum(for $item in Sitems/Item return $item/@Quantity * $item/@ItemPrice)"/>
</xsl:function>
</xsl:stylesheet>

xsl:value-of changes

The way xs1:value-of works has changed dramatically in version 2.0. In version 1.0, when a sequence
of nodes is used as the select, only the first, converted to a string, was output. In version 2.0, all the
nodes are output, separated by a space. Imagine you have the following nodes:

<persons>
<person>Joe</person>
<person>Peter</person>
<person>Stephen</person>
</persons>

334

Chapter 8: XSLT

The instruction, assuming the context node is persons:
<xsl:value-of select="person"/>
in version 1.0 produces
Joe
with the first node converted to a string. In version 2.0, the output would be as follows:
Joe Peter Stephen
If you want to use a different separator —a comma, for instance — use the following syntax:
<xsl:value-of select="person" separator=","/>
If you want the same behavior as version 1.0, use a predicate:
<xsl:value-of select="person[l]"/>

There are many other new features and functions in XSLT 2.0. For a full reference see Michael Kay’s
XSLT 2.0, Third Edition (Wrox, 2004).

Summary

In this chapter, you learned that XML documents can be restructured for data interchange or trans-
formed for presentation using XSLT. An XSLT transformation changes a source tree into a result tree. You
saw how an XSLT stylesheet is created and how elements are available to retrieve values from a source
tree, copy nodes from the source tree to the result tree, carry out conditional processing, iterate over
nodes, and sort nodes. Finally, you learned how the new features in version 2.0 make transforming eas-
ier and allow the use of non-XML formats as input.

Exercise Questions

Suggested solutions to these questions can be found in Appendix A.

Question 1

If you need to process a node in the source tree more than once but in different ways each time, what
technique does XSLT provide to achieve this?

Question 2

What are the two XSLT elements that provide conditional processing? Describe how the functionality
provided by these two elements differs.

335

Part IV
Databases

Chapter 9: XQuery, the XML Query Language

Chapter 10: XML and Databases

XQuery, the XML
Query Language

Large amounts of information are now being stored as XML or can be made available as XML from
relational and other databases with XML functionality. As the volume of XML-based information
increases, the need for a query language to efficiently query and make use of that XML data is
obvious. At the time of writing, the W3C, the World Wide Web Consortium, is developing an XML
query language called XQuery. This chapter introduces you to using XQuery and walks you
through several working examples using XQuery’s features.

XQuery is likely to become as important in the XML world as SQL has become in the relational
database world. In the near future, any self-respecting developer who uses XML will be expected
to have at least a basic understanding of XQuery and the skill to use it to carry out frequently
used queries. Those who work routinely with large volumes of XML data will be expected to have
significant expertise in using XQuery as they create programmatic solutions to XML data-
handling business issues.

In this chapter you will learn the following:

a
a
Q

Why XQuery was created to complement languages such as SQL and XSLT
How to get started with XQuery using the XQuery tools that are already available

How to query an XML document using XQuery and how to create new elements in the
result using element constructors

About the XQuery data model and how to use the different types of expression in XQuery,
including the important FLWOR (for, let, where, order by, return) expressions

How to use some XQuery functions

What further developments are likely in future versions of XQuery, including full-text
searching and update functionality

Part IV: Databases

At the time of writing, the specification of XQuery is not yet finalized at the
W3C. However, much of the XQuery language is now stable and at the Proposed
Recommendation stage. General XQuery information is located at http: / /www
.w3.org/XML/Query, including links to each of the several XQuery specification
documents.

Why XQuery?

First, let’s briefly look at a few of the factors that led to the creation of XQuery at the W3C.

Historical Factors

The expansion in storage of data as XML and the different approaches to storing that XML data—in
conventional relational databases that are XML-enabled, in native XML databases, and so on —meant
that the ways to access XML data could potentially splinter, with no single language being accepted as
the XML query language. This would mean that an important advantage of XML, that it can be pro-
cessed using standard tools, would potentially be lost. The realization that several vendors and experts
were working on the development of XML query languages resulted in an effort at the W3C to create a
single, standard XML query language, which is now called XQuery.

When relational databases became a standard technology for enterprise and desktop databases, the advan-
tages of having a common language for retrieving, inserting, deleting, or updating data in a relational data
store were recognized and applied when the Structured Query Language (SQL) was created. Due, perhaps,
to intercompany rivalry and the timescale of the development of the SQL standard compared to commer-
cial need, significant differences in how individual relational products implemented SQL developed and
still exist. Similar processes to develop distinct XML-targeted query languages were underway but have, in
the end, been brought together to support the development of XQuery at the W3C.

Despite these efforts at cooperation, XQuery may still be at risk of suffering partial splintering into propri-
etary approaches, in part because XQuery 1.0 won't have all the necessary functionality that is needed in
an XML query language for an enterprise data-handling system. XQuery 1.0 will be able to query XML
data, but will have no functionality to delete, update, or insert XML data. The XQuery Working Group is,
of course, well aware of those additional needs but took a pragmatic decision that it is better to get the
most commonly used part of an XML query language —the capacity to retrieve data— finished as a W3C
Recommendation in a reasonable time frame, rather than attempt to do everything in XQuery 1.0 but risk
substantial slippage of the timeline for doing so. The data model used by XQuery has been designed with
the future needs for deleting, updating, and inserting in mind, so it is hoped that once development of the
XQuery 1.0 specification is complete, users of XQuery shouldn’t have to wait too long for an update with
the additional functionality just mentioned.

Technical Factors

Storing the huge volumes of business data that are around today in lengthy sequences of Unicode char-
acters as serialized XML documents is probably a very inefficient way to store that data, and retrieval
would be difficult, too. Therefore, under the hood, the data that can be made available as XML is likely

340

Chapter 9: XQuery, the XML Query Language

to be stored in some binary format, whether in an enterprise relational database management system or
in a native XML database.

Databases that can store or emit XML data are discussed in Chapter 10.

XQuery is designed primarily around a data model that has the property of being able to be serialized as
XML. Therefore, when developing a query language for XML, significant effort was focused on defining
a data model appropriate for use in large data stores.

XML data, like any other data stored in large quantity and that typically is at least partially confidential,
requires many of the features already available in relational database management systems. For exam-
ple, indexing of XML data is needed to enable speedy retrieval. Security capabilities are also essential in
any real-life scenario.

Current Status

At the time of writing, the XQuery specifications are at Proposal Recommendation status at the W3C.
This means that it is unlikely any major changes will be made to the final version; its status offers one
final chance for any bugs to be spotted. The Update specifications, however, which include insert,
update, and delete functionality, are at a Working Draft stage. This means that a lot could change before
the standard settles down.

Developing XQuery, XSLT 2.0, and XPath 2.0

Work on XSLT 1.0 and on the predecessor prototypes for XQuery started as separate processes. The
background of XSLT, and of XPath, is in document processing. The historical background of XQuery is in
querying databases. Of course, XML can express both documents and data, a notion often expressed by
referring to document-centric XML and data-centric XML. When the various efforts started, the extent of
the potential for common ground in querying document-centric XML and data-centric XML was very
likely not fully appreciated.

In the XSLT 1.0 specification, it was specifically stated that XSLT was not intended as a general-purpose
transformation language. Therefore, several potentially useful features were not included in XSLT 1.0, and
XSLT was targeted primarily at producing result documents for human consumption. It was reasonable
that the XSLT processing should attempt to produce some output, rather than fail completely if a source
document wasn’t structured quite as expected. Because at that time it was often assumed that XSLT pro-
cessing would be carried out on the client side, it was rightly assumed that it would be inappropriate to
deliver some error message to an end-user who had no control over the stylesheet producing the error.

Because of the refusal to attempt a general-purpose transformation language, some potentially useful
functionality such as strong math support and text manipulation did not feature in XSLT 1.0. Developers
of XSLT might also plausibly have been assumed to be working with XML, using XML tools, and so
would be comfortable using a language expressed in XML. Therefore, a language expressed in XML
made a lot of sense.

The background to the need for XQuery differed significantly. XQuery was intended for retrieval of data
from large collections of XML documents, in contrast to the common scenario in which XSLT is used to
process a single source XML document or a small number of XML documents. Unlike source documents
to be processed by XSLT, the XML to be processed by XQuery would be unlikely to be held in memory at
one time; single documents or collections of documents would be simply too large to allow a Document

341

Part IV: Databases

Object Model (DOM) tree to be constructed in memory. The large size of XML documents to be queried
increased the importance of optimizing queries, including indexing of the XML to be queried. Potential
users of XQuery would likely come from a database background where they would expect document
structure to be defined by a schema, in contrast to the relatively permissive approach accepted when
using XSLT to process document-centric XML. Error handling would appropriately be rigorous in the
context of a large data store and so error handling is much stricter in XQuery than it was in XSLT 1.0.

As you can probably appreciate, despite the differences highlighted, there is considerable overlap in
what the two initially separate communities wanted to do with XML using XSLT and XQuery, respec-
tively. Both XSLT and XQuery have XML as input, create a result that takes nodes from the source XML
tree(s), and combine and filter the source, often adding arbitrary literal content (supplied either statically
or dynamically) to the result. Both XSLT and XQuery provide a library of functions (much more exten-
sive in XSLT 2.0 than XSLT 1.0) and allow the creation of user-defined functions. Both languages allow
nested iteration — using the xs1: for-each element in XSLT and the FLWOR expression (described later
in this chapter) in XQuery. Both XSLT and XQuery take a similar approach to variables, in that the value
of variables may not be changed once the variable is created, a characteristic that many newcomers to
XSLT find surprising. Both XSLT and XQuery are declarative functional languages without a full assign-
ment statement, although XQuery does have a limited assignmentlike 1et clause available.

Given a different history, it is quite possible that only one XML query language, rather than two, would
have been developed at the W3C. Even had that been the case, sufficient flexibility to accommodate the
differing emphases described previously would likely have been necessary.

Using XSLT and XQuery

XSLT is probably used most for converting XML documents to HTML (and to a lesser extent XHTML)
for display. XSLT is also used to create other XML-based presentation formats such as Scalable Vector
Graphics (SVG), which is described in Chapter 19. The final part of XSLT is in the conversion of one
XML document structure to another XML document structure in business-to-business (B2B) transactions.
It seems likely that the latter usage will continue to increase significantly. XSLT 2.0 also adds the capabil-
ity to transform non-XML formats, so as version 2.0 becomes more established this facility will lead to
even further uptake.

XQuery, on the other hand, will likely be used more in querying databases, a task that can be accom-
plished using XSLT (at least where the data is exposed as XML) but may most appropriately be carried
out using XQuery. The practical needs associated with using XQuery mean that it is likely to be used
either in an enterprise-level database management system or programmatically using C#, Java, or a simi-
lar programming language. The absence of XML syntax in XQuery makes it easier to use XQuery with
other programming languages. An alternative XML-based syntax for XQuery, named XQueryX, is under
development and has reached Proposed Recommendation status, but it is very verbose and initial uptake
looks likely to be slow.

Comparing XSLT, XPath, and XQuery

XSLT is written using XML syntax. By contrast, XQuery uses a non-XML syntax. The fact that XSLT
stylesheets are written in XML means that XSLT stylesheets can be generated by or modified by XML
tools, including other XSLT stylesheets. Such use of XSLT isn’t uncommon in large-scale programs.
XQuery cannot be sculpted using such tools because it uses a non-XML syntax.

Both XSLT and XQuery can be used to add nodes to a result tree and they both require XPath as a means
to select nodes to process. The roles of the two languages can be broadly summarized as follows: XPath

342

Chapter 9: XQuery, the XML Query Language

selects nodes from a source tree (which models an XML document), and XSLT causes nodes to be added
to a result tree. Similarly, much of XQuery depends on its XPath 2.0 subset.

There are some similarities between the two approaches. In XSLT the value of some attributes is an
attribute value template, which is an expression enclosed in paired curly brackets. This resembles the syn-
tax used in XQuery for expressions. For example, the code

Click for further information

can be written in both XSLT and XQuery. The paired curly brackets are used in XSLT to indicate an
attribute value template. In XQuery, paired curly brackets enclose an XQuery expression. In XQuery it is
possible to nest expressions, which, given the XML syntax limitations of XSLT, is not possible in XSLT.

XPath 1.0 has been adapted in version 2.0 to form a subset of XQuery 1.0. The use of XPath 2.0 to select
nodes in XQuery is not surprising because XQuery needs to carry out similar retrieval of specified XML
data. You will see in a moment that you can use XPath expressions in XQuery to retrieve nodes. In
XQuery the retrieved nodes (and, if present, the values that are also allowed) are called a sequence, rather
than the XPath 1.0 term, node-set.

XQuery Tools

Despite the fact that XQuery is still relatively new, a large number of software companies and indepen-
dent developers have developed partial or more complete implementations of XQuery. The proliferation
of XQuery tools indicates that many software vendors see XQuery as an important XML standard with
significant commercial potential.

On an ongoing basis, the W3C updates a web page where links to XQuery implementations and other
sources of useful XQuery information are included. Visit www.w3 . org/XML/Query and follow the link
to Products to explore XQuery implementations.

Because, at the time of writing, XQuery has not been finalized, none of the prototype XQuery tools can
yet be finalized. Tools are being updated on different schedules, with some prototypes now being visibly
outdated (at least in publicly available versions) compared to the most recent XQuery draft specification
documents.

The examples in this chapter use the Saxon XQuery engine, which is a free and very up-to-date implemen-
tation of XQuery. The creator of Saxon, Michael Kay, is a member of the working groups that are creating
XQuery, XPath 2.0, and XSLT 2.0. Therefore, Saxon is typically among the most up-to-date implementa-
tions, with the latest release normally passing all the W3C’s test cases.

Saxon

If you chose to download Saxon version 8.8 in Chapter 8, then you are well placed to process XQuery
queries. If not, then to use Saxon to process XQuery queries, visit http: //saxon.sourceforge.net/
again and look for the currently available versions of Saxon that support XQuery. Versions after

Saxon 7.6 have some XQuery support. At the time of writing, Saxon 8.8 is the latest version and has full
XQuery functionality.

343

Part IV: Databases

If necessary, first install the Saxon processor, following the instructions given in Chapter 8. To test
whether Saxon XQuery functionality is present, type the following at the command line:

java net.sf.saxon.Query -?
If you are using the .NET version, enter this:
Query -7

If everything is working correctly, then you should see a screen detailing various options, as shown in
Figure 9-1.

Figure 9-1
Remember that Java is case sensitive; accidentally typing an incorrect uppercase or lowercase character
on the command line will likely lead to an error message when java . exe runs.
If you used Saxon in Chapter 8 to carry out XSLT transformations, you will notice that the command-line

syntax to access Saxon’s XQuery functionality is significantly different from the syntax used when
using XSLT.

344

Chapter 9: XQuery, the XML Query Language

Saxon comes with extensive help files. Typically, installation of Saxon creates a doc directory, which
includes several HTML help files. Look for a file labeled using-xquery.html, or something similar,
and check the latest information about which parts of XQuery are supported.

Several other online XQuery demos are available, and several other products or prototypes support
XQuery. Some are mentioned in the following sections.

X-Hive.com Online

You can find a very user-friendly XQuery demonstration online at www.x-hive.com/xquery/. An exam-
ple query and its result are shown in Figure 9-2. You can use one of the pre-built queries that were used in
the XQuery use cases document or edit them to test your increasing understanding of XQuery; the results,
or, if you get things wrong, lengthy Java error messages, are displayed in the right panel. If you get the
syntax hopelessly wrong as you try to adapt existing queries, then you can restore a query with correct
syntax simply by reselecting it from a drop-down list.

Figure 9-2

At the time of this book’s writing, the X-Hive online demo had not been updated for some time and
bases its syntax on the April 2005 Working Draft, rather than the newer specifications. Therefore, some

345

Part IV: Databases

minor differences exist between it and the latest XQuery draft. Nonetheless, it offers a very nice interac-
tive interface to explore the creation of XQuery queries.

X-Hive Database

The X-Hive database that underpins the X-Hive.com database also supports XQuery. Further informa-
tion is located at www.x-hive.com.

Tamino Database

You can find an online demo of XQuery using Software AG’s Tamino database located at http://
tamino.demozone.softwareag.com/demoXQuery/XQueryDemo/index. jsp. Tamino was one of the
first commercial products to support XQuery and is used in many successful XML applications.

Microsoft SQL Server 2005

Microsoft’s enterprise relational database management system, SQL Server, includes XQuery support start-
ing in version 2005. It supports a useful working subset of the whole specification and adds extensions for
updates and deletes in advance of the W3C finalizing its recommendation. There are examples of XQuery
specific to SQL Server 2005 in Chapter 10. You can find more details about SQL Server 2005 and plans for
the next version, code-named Katmai, at www.microsoft.com/sql/.

Oracle

Oracle is also working on XQuery support for its database products. You can find more information on
XQuery and a downloadable demo available for the Oracle database at www.oracle.com/technology/
tech/xml/xquery/index.html. If the preceding URL is not available when you are reading this chap-
ter, then visit http: //otn.oracle.com/ and insert XQuery in the Search text box to find the current
information about XQuery in Oracle.

The implementations mentioned in the preceding sections are only a few of many. Visit www . w3 . org/
XML/Query to check for further implementations and for links to current information about them.

Let’s now move on to run some simple XQuery examples so that you begin to have a feel for what
XQuery queries look like.

Some XQuery Examples

Saxon can run XQuery queries from Java or .NET applications, but for the purposes of this chapter we
will run queries from the command line. One difference between the Saxon syntax for XSLT processing
and for XQuery processing is that the location of the XML document to be queried is not specified on the
command line. Rather, it is specified using one of XQuery’s input functions.

Input Functions

At the time of writing, the XQuery input functions are the doc () function and the collection () func-
tion, and both are implemented in Saxon 8.8.

346

Chapter 9: XQuery, the XML Query Language

The doc() Function

The doc () function is used to specify the XML document that you want to query. To demonstrate basic
XQuery functionality, you will query the following simple XML document, SimpleBooks .xml. It is
used here and later in the chapter as a source XML document:

<?xml version="1.0"?>

<Books>

<Book>Beginning XML, 4th Edition</Book>
<Book>Beginning XML Databases</Book>
<Book>Professional Web 2.0 Programming</Book>
</Books>

For convenience, we will specify XQuery queries in documents with a . xquery suffix, but you can use
another suffix if you prefer. Using Saxon from the command line, you simply specify the filename that
contains the XQuery query.

The first query you will run is contained in the file SimpleBooks.xquery, and contains the following
single line of code:

doc ("SimpleBooks.xml") /Books/Book
The query consists of the doc () function, whose single string argument specifies that the XML docu-
ment SimpleBooks.xml is to be used as the source document for the query. The remaining part of the
query should remind you of XPath location paths that you were introduced to in Chapter 7, because that
is exactly what they are. Recall that XPath 2.0 is a subset of XQuery. The expression /Books/Book is an
XQuery expression that could also be an XPath 2.0 expression —the syntax and semantics are the same
in both XQuery and XPath 2.0. This means that you can apply your understanding of XPath, gained in
Chapter 7, to some parts of XQuery syntax.
The expression is evaluated from left to right. The initial / character indicates that evaluation starts at
the document node of SimpleBooks.xml, that a Books element node (there can be only one element
node child of the document node in a well-formed XML document) that is a child node of the document
node is selected, and then using that node as context, its Book child element node(s) are selected.

The XQuery doc () function is similar to the XSLT document () function. The doc () function

returns a single document. The document () function processes a sequence of URIs, enabling multiple

XML documents to be processed.
To have Saxon run the query and display the output to the command window, enter

java net.sf.saxon.Query SimpleBooks.xquery
or, if using the .NET version, enter

Query SimpleBooks.xquery

at the command line.

From this point on, only the Java version will be shown for command-line execution.

347

Part IV: Databases

The filename SimpleBooks.xquery is supplied to the Saxon XQuery processor. The output of the query
is shown in Figure 9-3.

Figure 9-3

Notice that an XML declaration is output to the command window, followed by three Book elements
and their text content. That behavior occurs because all XQuery queries return a sequence of items. Each
Book element node selected by the XPath expression /Books/Book is in the sequence returned by the
query. Notice how the result is only a document fragment; it’s not a full XML document because it lacks
a root element.

The collection() Function

The collection() function is used to process several XML documents at one time. The collection ()
function takes as its argument a string that is an xsd: anyURT value. The collection () function can be
used to access a collection of nodes in a database or to process all files in a specified folder.

Because you are primarily using individual XML documents as the target of queries in this chapter, you
will focus on the use of the doc () function.

Retrieving Nodes

As you have seen, in XQuery you can retrieve nodes in a fairly straightforward way using XPath expres-
sions. However, XQuery 1.0 has a few limitations when compared to XPath. All XQuery processors
lack the XPath namespace axis. In addition, some XQuery processors lack support for the following
XPath axes:
U ancestor
ancestor-or-self
following
following-sibling

preceding

U 00 oo

preceding-sibling

XQuery implementations that support the preceding axes are said to support the full-axis feature, but even
those XQuery processors are not “full” in a certain sense, because the namespace axis is not supported.

348

Chapter 9: XQuery, the XML Query Language

Those that do not support the full-axis feature are still following the recommendations and support the
other axes, and, optionally, some of the axes on the preceding list.

The decision in XQuery, at least as currently drafted, to drop these axes seems to have arisen from a dif-
ference in view between those familiar with XPath and those who think more in terms of relational
databases. In any case, unless later drafts reverse the situation, it will be necessary to accept the absence
of the axes mentioned in some XQuery processors and code accordingly.

Try It Out Retrieving Nodes

This exercise carries out some queries using a source XML document adapted from the W3C’s use case
sample data. It is shown here and contained in the file BibAdapted.xml.

1. The following data will be used as the source XML in several example queries:

<?xml version="1.0"?>

<bib>

<book year="1988">
<title>The C Programming Language</title>
<author><last>Kernighan</last><first>Brian</first></author>
<author><last>Ritchie</last><first>Dennis</first></author>
<publisher>Prentice Hall</publisher>
<price> 44.20</price>

</book>

<book year="2004">

<title>XSLT 2.0 Programmer's Reference</title>
<author><last>Kay</last><first>Michael</first></author>
<publisher>Wrox Press</publisher>

<price>39.99</price>

</book>

<book year="2006">
<title>Professional Web 2.0 Programming</title>
<author><last>van der Vlist</last><first>Eric</first></author>
<author><last>Ayers</last><first>Danny</first></author>
<author><last>Bruchez</last><first>Eric</first></author>
<author><last>Vernet</last><first>Alessandro</first></author>
<author><last>Fawcett</last><first>Joe</first></author>
<publisher>Wrox Press</publisher>
<price>39.99</price>
</book>

<book year="2002">
<title>The Economics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>
</book>

<book year="2004">
<title>Beginning XML, 4th Edition</title>

349

Part IV: Databases

<author><last>Hunter</last><first>David</first></author>
<author><last>Watt</last><first>Andrew</first></author>
<author><last>Rafter</last><first>Jeff</first></author>
<author><last>Cagle</last><first></first>Kurt</author>
<author><last>Duckett</last><first>John</first></author>
<author><last>Fawcett</last><first>Joe</first></author>

<publisher>Wrox Press</publisher>
<price>TBA</price>
</book>

</bib>

As you can see, the document element is a bib element, inside of which are nested several book
elements, each of which has some basic data such as year of publication and authors or editors.

2. Select all book elements in BibAdapted.xml using the following query, which is contained in
the file BibQueryl .xquery:

doc ("BibAdapted.xml") /bib/book

3. Send the result of the query to an output file BibQuerylout.xml by typing the following at the
command line:

java net.sf.saxon.Query -o BibQuerylOut.xml BibQueryl.xquery

Notice that the name of the output file is specified by the -o switch followed by the output filename,
before the name of the file that contains the XQuery query. Part of that result document is shown here in
BibQuerylOut.xml (trimmed to reduce page length, only two of the five book elements are shown):

<?xml version="1.0" encoding="UTF-8"?>
<book year="1988">
<title>The C Programming Language</title>
<author>
<last>Kernighan</last>
<first>Brian</first>
</author>
<author>
<last>Ritchie</last>
<first>Dennis</first>
</author>
<publisher>Prentice Hall</publisher>
<price> 44.20</price>
</book>

<!-- other books removed -->

<book year="2004">

<title>Beginning XML, 4th Edition</title>

<author>
<last>Ayers</last>
<first>Danny</first>

</author>

<author>
<last>Watt</last>

350

Chapter 9: XQuery, the XML Query Language

<first>Andrew</first>
</author>
<author>
<last>Rafter</last>
<first>Jeff</first>
</author>
<author>
<last>van der Vlist</last>
<first/>Eric</author>
<author>
<last>Duckett</last>
<first>John</first>
</author>
<author>
<last>Fawcett</last>
<first>Joe</first>
</author>
<publisher>Wrox Press</publisher>
<price>TBA</price>

</book>

How It Works

One important thing to observe here is that XQuery can output a document that is not well-formed
XML. Notice there is no single document element in BibQuerylOut .xml.

This contrasts with XSLT, which (assuming you use the xm1 output method) will not let you create a
stylesheet to output markup that is not well formed. In XQuery the responsibility of producing well-
formed XML lies very much with the creator of the query.

Creating a well-formed result in this case is straightforward. You simply add an element constructor to
the query and ensure that the XQuery expression is nested inside it. Let’s introduce element constructors
and look at how they are used.

Element Constructors

In XSLT, new elements can be added to the result document using literal result elements. In XQuery you
can similarly create new XML elements by including literal start-tags and end-tags in appropriate places
in the XQuery query.

A very simple example of using an element constructor is the following query, which is contained in the
file SimpleBooks2 .xquery:

<Books>
{doc ("SimpleBooks.xml") /Books/Book}
</Books>

The element constructor has a literal start-tag for a Books element, followed by the expression shown

earlier that retrieves Book element nodes from the file SimpleBooks.xml. Then, after all the selected
Book element nodes have been found, it adds a literal end-tag for the Books element.

351

Part IV: Databases

To display the output to the command window, you can enter the following at the command line:
java net.sf.saxon.Query -o SimpleBooks20ut.xml SimpleBooks2.xquery
The output file, SimpleBooks20ut . xml, is shown here:

<?xml version="1.0" encoding="UTF-8"?>

<Books>
<Book>Beginning XML, 4rd Edition</Book>
<Book>Beginning XML Databases</Book>
<Book>Professional Web 2.0 Programming</Book></Books>

Notice that in the preceding query the XQuery expression doc ("SimpleBooks.xml") /Books/Book is
contained inside paired curly brackets. If you omit the paired curly brackets, then the XPath expression
is treated as text. The XPath expression is displayed literally. The output document when you make that
error is SimpleBooks2WRONGOut . xml, shown here:

<?xml version="1.0" encoding="UTF-8"?>
<Books>
doc ("SimpleBooks.xml") /Books/Book
</Books>

You can create well-formed XML from the BibAdapted.xml file using the following query:

<myNewBib> {
doc ("BibAdapted.xml") /bib/book}</myNewBib>

This appears in the code downloads as BibQuery2 .xquery. The query creates the start-tag for a new
element named myNewBib, uses an XQuery expression similar to those you have used before to select all
the book elements, and then outputs the end-tag of the newly created myNewBib element.

The output document, BibQuery20ut .xml (trimmed for presentation) is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-8"?>
<myNewBib>
<book year="1988">
<title>The C Programming Language</title>
<author>
<last>Kernighan</last>
<first>Brian</first>
</author>
<author>
<last>Ritchie</last>
<first>Dennis</first>
</author>
<publisher>Prentice Hall</publisher>
<price> 44.20</price>
</book>

<!-- other books removed -->

<book year="2004">

352

Chapter 9: XQuery, the XML Query Language

<title>Beginning XML, 4th Edition</title>
<author>
<last>Ayers</last>
<first>Danny</first>
</author>
<author>
<last>Watt</last>
<first>Andrew</first>
</author>
<author>
<last>Rafter</last>
<first>Jeff</first>
</author>
<author>
<last>van der Vlist</last>
<first/>Eric</author>
<author>
<last>Duckett</last>
<first>John</first>
</author>
<author>
<last>Fawcett</last>
<first>Joe</first>
</author>
<publisher>Wrox Press</publisher>
<price>TBA</price>
</book>
</myNewBib>

Up to this point, you have used simple XPath expressions to output content based only on the structure
of the source XML. In practice, you will want to manipulate or filter that XML in various ways. One
option is simply to filter using an XPath predicate.

A predicate in XPath filters a sequence by limiting its elements to those where the predicate is true. The
predicate is placed between square brackets. For example:

//Chapter[@status = 'approved']
selects only those Chapter elements that have their status attribute set to approved.
You can use XPath predicates in an XQuery query, as in the following code:
<myNewBib> {
doc ("BibAdapted.xml") /bib/book [@year > 2005]
}</myNewBib>
This is contained in the file BibQuery3 .xquery. The predicate [@year >2005] tests whether the value
of the year attribute of a book element in BibAdapted.xml is greater than 2005; if it is, then that book

element is selected and, together with its content, output.

That query filters out all but one book in BibAdapted.xml, and the output it produces, in
BibQuery30ut.xml, is shown here:

353

Part IV: Databases

<?xml version="1.0" encoding="UTF-8"?>
<myNewBib>
<book year="2006">
<title>Professional Web 2.0 Programming</title>
<author>
<last>van der Vlist</last>
<first>Eric</first>
</author>
<author>
<last>Ayers</last>
<first>Danny</first>
</author>
<author>
<last>Fawcett</last>
<first>Joe</first>
</author>
<author>
<last>Vernet</last>
<first>Alessandro</first>
</author>
<publisher>Wrox Press</publisher>
<price>39.99</price>
</book>
<book year="2007">
<title>Beginning XML, 4th Edition</title>
<author>
<last>Ayers</last>
<first>Danny</first>
</author>
<author>
<last>Watt</last>
<first>Andrew</first>
</author>
<author>
<last>Rafter</last>
<first>Jeff</first>
</author>
<author>
<last>van der Vlist</last>
<first/>Eric</author>
<author>
<last>Duckett</last>
<first>John</first>
</author>
<author>
<last>Fawcett</last>
<first>Joe</first>
</author>
<publisher>Wrox Press</publisher>
<price>TBA</price>
</book>

</myNewBib>

354

Chapter 9: XQuery, the XML Query Language

As you can see, even a very simple answer like this can take up quite a bit of space. Whitespace in XML
documents has always been a bone of contention between the data-centric developers and the document-
centric ones. In general, those who use XML as a way of passing data like to ignore insignificant white-
space such as newlines between the end-tag of one element and the start-tag of the next. Those who use
XML to mark up documents like to preserve all whitespace, so XQuery allows control of whitespace in
the prolog of an XQuery query, described next.

The XQuery Prolog

The prolog of an XQuery document is used to provide the XQuery processor with pieces of information
that might be necessary for correct processing of a query. The prolog is written before the main part of an
XQuery query.

Strictly speaking, the version declaration and module declaration come before the prolog proper, but
most developers are likely to treat them as effectively part of the prolog. The important thing to remem-
ber is the following order:

1. The version declaration, if present, must always come first.

2. Next is the module declaration (if there is one).

3. Then comes the rest of the prolog.

The XQuery Version Declaration

You might want to first specify the version of XQuery being used. It is optional, but if it is present, then
it must come first. At the time of writing, that requirement is rather superfluous because only a single
version — version 1.0 —exists, but after a version of XQuery with update and other functionality is
added, other XQuery versions are likely to be available.

To specify that the query is XQuery 1.0, use the following code:

xquery version "1.0";
Notice the xquery keyword (all lowercase), followed by version, and then the version number as a
string contained in paired quotes or paired apostrophes. The declaration is completed by a semicolon

character. Unlike XML, there is no = character between version and the version number. If you are used
to writing XML code, that’s an easy mistake to make.

XQuery Modules

XQuery queries may consist of one or more modules. The examples in this chapter consist of a single
module, but reuse of XQuery code is likely to be common in the construction of complex queries.

The prolog of an XQuery module contains the following declaration:
module namespace WROX = "http://www.wrox.com/XQuery/Books";
The module declaration identifies the module as a library module. In the preceding declaration, the

namespace prefix WROX is associated with the Uniform Resource Identifier (URI) http: //www.wrox
.com/XQuery/Books. An XQuery module declaration is similar to an XML namespace declaration in

355

Part IV: Databases

that a namespace prefix is associated with a namespace URI. In a library module, as in standalone
XQuery documents, the version declaration, if present, comes first, and then the module declaration
precedes the rest of the prolog.

XQuery Prolog Continued

Having looked at the version declaration and module declaration, the remaining prolog items can be
examined. These can be written in any convenient order.

The base-uri Declaration

URISs can be relative or absolute. Relative URIs are resolved in relation to a base URI. The base-uri is
declared in XQuery using the base-uri declaration, similar to the following:

declare base-uri "http://someRelevantURI.com";
This means that if you specify a file location as myFile.xml —for example, as an argument to a doc ()

function such as doc ("myFile.xml") —the XQuery processor will try to retrieve it from http: //
someRelevantURI.com/myFile.xml.

The namespace Declaration

Also included in the prolog are the relevant namespace declarations. For example, in an XQuery that is
creating output that includes elements that are namespace qualified, it is necessary to declare the name-
space to which those elements belong. Like an XML namespace declaration, an XQuery namespace
declaration associates a namespace prefix with a namespace URL. If you intended to use XQuery to cre-
ate an XSLT stylesheet, you might include a namespace declaration like this:

declare namespace xsl = "http://www.w3.org/1999/XSL/Transform"
Later, in the body of the query, you might see the following;:

<xsl:stylesheet version = "1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
This indicates the start of an XSLT 1.0 stylesheet.

Default namespace Declarations

Any default namespace declarations are also included in the prolog. For convenience, you may want to
write element or function names without a namespace prefix. This is done using the default namespace
declarations.
To declare a default namespace for elements, use the following syntax:

declare default element namespace "http://someRelevantURI.com"

To declare a default namespace for functions, use this syntax:

declare default function namespace "http://someRelevantURI.com"

356

Chapter 9: XQuery, the XML Query Language

Schema Imports

You may want to have access to element, attribute, or type definitions from a particular schema; this too
is expressed in the prolog. This schema can be imported using the following syntax:

import schema namespace xhtml = "http://www.w3.org/1999/xhtml"

This imports the schema for an XHTML document. If you want to specify a URL at which the schema is
located, you can use a schema import of the following type:

import schema namespace xhtml = "http://www.w3.org/1999/xhtml"
at "http://ActualSchemalocation.com/xhtml.xsd"

This specifies a URL from which the schema can be accessed.

Variable Declarations

You may want to declare XQuery variables. If so, that too is done in the prolog. To declare a variable
$seven and specify that its value is the integer 7, you can use the following syntax:

declare variable $seven as Xs:integer :=7;

You could also omit the type; if you do this the processor will try to infer the type from the expression
used to initialize it (in the preceding example, 7):

declare variable $seven :=7;
You can also declare a variable that will be set externally by the processor before the XQuery runs:
declare variable $seven as Xs:integer external;

The xs prefix is automatically bound to the XML Schema namespace of http: //www.w3.org/
2001 /XMLSchema.

How an external variable is set depends on the XQuery implementation. It might be from a command-
line parameter, as is the case for Saxon, by reading an external file or using an environment variable.

Validation Declaration
You may also want to specify in the prolog how validation is to be carried out. Permitted values are lax,

skip, or strict. To specify strict validation, you can write a validation declaration like this:

declare validation strict;

The boundary-space Declaration
One of the prolog’s declarations indicates whether to strip or preserve whitespace, as shown in the fol-
lowing query, BibQuery4 .xquery:

xquery version "1.0";
declare boundary-space strip;
(: The above line is the XQuery way to strip whitespace :)

357

Part IV: Databases

<myNewBib> {
doc ("BibAdapted.xml") /bib/book [@year>2002]
}</myNewBib>

Whitespace in XQuery is handled a little differently from whitespace in XML. In XQuery the concept of
boundary whitespace indicates whitespace that occurs at the boundaries of elements (before the start-tag
or after the end-tag) or expressions. Such boundary whitespace can be useful in laying out complex
queries neatly. If you want to strip extraneous boundary whitespace, you can use the construct shown in
the second line of the preceding code.

Also shown here is the XQuery way of writing comments, which is discussed a bit later in the chapter.

At the time of this writing, Saxon seems to ignore the declaration to strip boundary whitespace using the
syntax just shown. If you want to explicitly specify that boundary whitespace be preserved, use the fol-
lowing construct:

declare boundary-space preserve;

You saw earlier how to use element constructors to add XML elements literally to the output of a query.
Now take a look at how to create computed constructors.

Computed Constructors

In earlier examples you saw how literal start-tags and end-tags can be used to construct elements in the
result of a query. Another syntax allows elements and attributes to be constructed at runtime.

Now you'll create a simple library using element and attribute constructors. For clarity, you will use
string literals to provide the values of the created attributes and elements. Of course, you can substitute
any arbitrary XQuery expression in place of the string literals to achieve similar but more complex
things. The query, Library.xquery, is shown here:

element library({
element book {
attribute year {2007},
element title {
"Beginning XML, 4thEdition"
}
P
element book {
attribute year {2006},
element title {
"Beginning XML Databases"
}
P
element book {
attribute year {2006},
element title {
"Professional Web 2.0 Programming"

}

358

Chapter 9: XQuery, the XML Query Language

The 1library element, which is the document element of the output XML document, is created using the
following construct:

element library {
}
All attributes and descendants are created inside that construct.

When creating a single child element of the 1ibrary element, the book element, a similar syntax is
followed:

element book {
attribute year {2004},
element title {
"Beginning XML, 4th Edition"
}
}

Any attributes that belong to the book element are specified first, using a comma as the separator
between attribute specifications. Then any child elements of the book element are added in the order in
which they are to be included in the output document.

If you have a sequence of elements to be constructed, then a comma is added after the relevant closing
curly bracket.

The output document, LibraryOut .xml, is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<library>
<book year="2007">
<title>Beginning XML, 4th Edition</title>
</book>
<book year="2006">
<title>Beginning Beginning XML Databases</title>
</book>
<book year="2006">
<title>Professional Web 2.0 Programming</title>
</book></library>

When creating queries of this type, once you get beyond fairly simple queries, such as the preceding one,
it is very easy to make mistakes by failing to correctly pair up curly braces or omitting the crucial
comma that separates attributes and child elements. If you make such basic mistakes in long queries,
you will most likely receive several error messages — due, for example, to omitting a single comma
fairly early in the query. The best way to avoid such errors is to create the elements and attributes from
the outside in, pairing up curly brackets as you add an element or attribute.

Syntax

The following two sections briefly introduce a couple of aspects of XQuery syntax of which you need to
be aware when writing XQuery code.

359

Part IV: Databases

XQuery Comments

In XQuery, comments are written using scowling and smiley faces to start and end the comment,
respectively:

(: After the scowl, we smile when the comment ends. :)

This notation is used only to define comments inside the query. Unlike HTML comments, for example, it
is permissible to nest XQuery comments, which can be useful when using comments to comment out
suspect code when debugging by hand.

No syntax to create a “to end of line” comment, equivalent to the // notation in JavaScript, for example,
exists in XQuery.

Delimiting Strings

Strings in XQuery are delimited by paired double quotes or by paired apostrophes, as shown in the
example that created elements and supplied their content as string literals. For example, a Paragraph
element with text content can be written in either of the two following ways:

element Paragraph {
"Some content contained in paired double guotes"
}

or

element Paragraph {
'Some content contained in paired apostrophes.'
}

The XQuery Data Model

The XQuery data model is significantly different from the XPath 1.0 data model to which you were intro-
duced in Chapter 7, but it also has similarities to the XPath 1.0 data model.

Shared Data Model with XPath 2.0 and XSLT 2.0

The XQuery data model and XPath 2.0 and XSLT 2.0 data models are the same, so once you have learned
the data model for one of these technologies, you know the foundations of the other two. Chapter 8
mentioned that XSLT transformations use a source tree as input to a transformation. Similarly, all XQuery
queries use an instance of the XQuery data model as input, and another instance of the data model as out-
put. Each of those instances of the data model is represented as a treelike hierarchy broadly similar to an
XSLT source tree.

Many parts of an XML document can be represented by nodes in the XQuery data model. Let’s move on
to look briefly at each of the nodes available in XQuery.

360

Chapter 9: XQuery, the XML Query Language

Node Kinds

Node kinds in XQuery are similar to the types of node available in XPath 1.0. The one notable change is
that the root node of XPath 1.0 is replaced by the document node in XQuery 1.0. The XQuery 1.0 node
kinds are document, element, attribute, namespace, text, comment, and processing instruction. Each
node represents the corresponding part of an XML document indicated by its name. Every XQuery node
has identity that distinguishes it from all other nodes, including nodes with the same name and content.

Sequences of Node-Sets

In XQuery, the XPath 1.0 node-set is replaced by a sequence. A sequence can contain nodes or atomic val-
ues or a mixture of nodes and atomic values. The term item is the collective term in XQuery for nodes
and atomic values. An atomic value corresponds to a W3C XML Schema simple-Type.

Sequences are written inside paired parentheses, and items are separated by commas. Sequences cannot
be nested, so the sequence

Document Order

In XQuery, all nodes created when parsing an XML document are in an order called document order.
Attributes associated with an element are considered to occur after the element in document order and
before any child elements. The actual order of the attributes is considered irrelevant by the XML Infoset
so you cannot rely on position to select an attribute, nor can you guarantee ordering in the output.

Comparing Items and Nodes

The XQuery data model generalizes the idea of a node-set that was present in XPath 1.0. In XQuery, the
result of an expression is a sequence. A sequence can include nodes (just like XPath 1.0) but can also
include atomic values.

Types in XQuery

In XQuery, the W3C XML Schema type system is used. Chapter 5 introduced W3C XML Schema types.

Axes in XQuery

As mentioned earlier in the chapter, XQuery processors do not support the XPath namespace axis. Only
XQuery processors that support the full-axis feature support processing of the ancestor, ancestor-
or-self, following, following-sibling, preceding or preceding-sibling axes. All XQuery pro-
cessors support the child, parent, descendant, or descendant-or-self axes.

361

Part IV: Databases

XQuery Expressions

As mentioned earlier, XQuery expressions include XPath expressions, which tend to principally focus
on path expressions. However, XQuery adds a rich feature set on top of the XPath functionality. The
FLWOR expression adds significant power to queries that cannot be expressed by traditional XPath path
expressions.

FLWOR Expressions

The FLWOR expression is a pivotal part of XQuery’s power. It owes much to the SELECT statement in
SQL. A FLWOR expression binds variables to sequences of values in the for and let clauses and then
uses those variables in the construction of the output of the query. Because binding is an essential part
of a FLWOR expression, every FLWOR expression must have either a for clause or a 1et clause, and many
FLWOR expressions have both.

The first four components of FLWOR can be expressed in XSLT using, respectively, the xs1: for-each,
xsl:variable, xs1:1if, and xsl:sort elements to produce similar results. Therefore, many XQuery
FLOWR expressions can be expressed in XSLT with very similar semantics.

If you make the error of using the wrong case for any of the keywords for, let, where, order by, and
return, you can expect to get some very puzzling error messages from the Saxon XQuery processor,
perhaps mentioning odd characters beyond the end of the query. For example, if you use uppercase FOR
instead of the correct lowercase for, then among the error messages you are likely to get is an indication
that a variable is undeclared, as any variable declared in the for statement in which you mistakenly
used uppercase FOR is not recognized as having been declared. If you see mention of an undeclared vari-
able, then it is worth checking the case of either for or let in your query, as for clauses bind multiple
variables and 1et clauses bind single variables; a case error would lead to the relevant variable or vari-
ables not being bound. However, other XQuery processors, or indeed later versions of Saxon, may give
more informative error messages.

for Expressions

One version of the for expression is the for ... in expression, as shown in ForIn.xquery:
<items>
{for $i in (1,2,3,4) return <item>{$i}</item>}
</items>

If you run the preceding query from the command line, you receive the following output in file
ForInOut.xml:

<?xml version="1.0" encoding="UTF-8"?>
<items>

<item>1l</item>

<item>2</item>

<item>3</item>

<item>4</item>
</items>

The query contains an element constructor that is a literal start-tag of the enclosing i tems element in the
output document. The for statement binds the items in the sequence (1, 2, 3, 4) to the variable $1i.

362

Chapter 9: XQuery, the XML Query Language

Because the in keyword is used in the for statement, each individual item in the sequence is, in turn,
considered to be represented by $1, in much the same way you could use an XPath expression to return
a sequence of nodes (in XPath 1.0 a node-set of nodes).

The return statement specifies that for each item in $1i an item start-tag is created, an expression $i
is evaluated and inserted as text, and a literal end-tag for the item element is added. After all possible
values for the $1i variable have been processed, the end-tag for the items element is added.

It doesn’t matter whether items are values or nodes because both values and nodes are items, as the fol-
lowing example demonstrates. The source XML is Products .xml, shown here:

<?xml version="1.0"?>
<Products>
<Product>Widget</Product>
<Product>Gadget</Product>
<Product>Knife</Product>
<Product>Spoon</Product>
</Products>

The query, ForIn2.xquery, is shown here:

<items>

{for $i in (1,2, doc("Products.xml")/Products/Product/text (), 3, 4) return
<item>{$i}</item>}

</items>

Notice that between the first pair of items in the sequence in the for statement and the last pair of items
in the sequence an XPath expression doc ("Products.xml) /Products/Product/text () has been
inserted. For each value in $1i, whether it is a value or a text node selected by the XPath expression, the
value of $1 is inserted between the start-tag and end-tag of an item element.

The output document, ForIn20ut .xml, is shown here:

<?xml version="1.0" encoding="UTF-8"?>

<items>
<item>1</item>
<item>2</item>
<item>Widget</item>
<item>Gadget</item>
<item>Knife</item>
<item>Spoon</item>
<item>3</item>
<item>4</item>

</items>

Items supplied as literal values in the sequence in the for statement of the query and items selected by
the XPath expression are treated the same.

The for statement also hasa for ... in ... to option that can be used with integers. In other words,
instead of writing

for $i in (1,2,3,4,5)

363

Part IV: Databases

you can write
for $i in 1 to 5
Therefore, if you run ForIn3.xquery, as here:

<items>
{for $i in 1 to 5 return <item>{S$il}</item>}
</items>

you produce the output in ForIn30out .xml, shown here:

<?xml version="1.0" encoding="UTF-8"?>
<items>

<item>1l</item>

<item>2</item>

<item>3</item>

<item>4</item>

<item>5</item>
</items>

You can use this structure in combination with other literal values, as here in ForIn4 .xquery:

<items>
{for $i in (1 to 5, 7, 8)
return <item>{$i}</item>}
</items>

The second line of the preceding example is a convenient shorthand for the following;:
{for $i in (1, 2, 3, 4, 5, 7, 8)

The output is in the code download in the file ForIn4Out .xml. An item element is created that contains
a value contained in the input sequence.

It is also possible to nest for statements, as shown here in ForNested.xquery:

<items>

{for $i in (1 to 5, 7, 8) return

<group>{ for $a in (1 to ($i - 2)) return<item>{S$a}</item>}
</group>

}

</items>
The output, ForNestedOut . xml, is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<items>
<group/>
<group/>
<group>
<item>1</item>
</group>

364

Chapter 9: XQuery, the XML Query Language

<group>
<item>l</item>
<item>2</item>

</group>

<group>
<item>1l</item>
<item>2</item>
<item>3</item>

</group>

<group>
<item>1l</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>

</group>

<group>
<item>1l</item>
<item>2</item>
<item>3</item>
<item>4</item>
<item>5</item>
<item>6</item>

</group>

</items>

The variable $1 is specified in the outer for statement and is equivalent to the sequence (1, 2, 3, 4, 5,
7, 8). For each value of $i, a group element is created.

The content of each group element is defined by the nested for expression:

{ for $a in (1 to ($i - 2))
return<item>{Sal</item>}

When $1 is 1 or 2, no item elements are added to the corresponding group elements because the value
$i -2 isless than 1.

When ¢1 is 3, then a single item element is generated because
for $a in (1 to ($i - 2))

is equivalent to
for $a in 1 to 1

Therefore, one item element is output. As $i becomes larger, additional item elements are nested in
subsequent group elements.

Filtering with the where Clause

Often, you will want to filter the output of a FLWOR statement using a where clause. The where clause is
used in for expressions to filter what is returned in the result. For example, suppose you wanted to find any

365

Part IV: Databases

books in BibAdapted.xml that were published by Wrox Press. The query shown here, Publisher.xquery,
can do that:

<books>{
for $book in doc ("BibAdapted.xml") /bib/book
where S$book/publisher = "Wrox Press" return

element book {
attribute year {Sbook/@year},
element title {Sbook/title/text()}
}

}

</books>

Abooks element is created literally, and its content is defined using a FLWOR expression. The where
clause selects only books for which the publisher element has the value Wrox Press. The content of
such books, of which there are three in the example, is specified using the expression

element book { attribute year {Sbook/@year}, element title {Sbook/title/text()}
}

which constructs a book element and uses XPath expressions to assign a value to its year attribute and
its title child element.

The output is shown in PublisherOut .xml:

<?xml version="1.0" encoding="UTF-8"?>
<books>
<book year="2004">
<title>XSLT 2.0 Programmer's Reference</title>
</book>
<book year="2006">
<title>Professional Web 2.0 Programming</title>
</book>
<book year="2007">
<title>Beginning XML, 4th Edition</title>
</book>
</books>

Sorting Using the order by Clause

The order by clause allows the sorting of the output in a specified order. The following query,
OrderByTitle.xquery, shows how the order by clause is used:

<books>{
for $book in doc ("BibAdapted.xml") /bib/book
let St := Sbook/title/text() order by $t return

<book><title>{S$t}</title></book>
}
</books>

The order by clause

order by St

366

Chapter 9: XQuery, the XML Query Language

specifies that the output is to be ordered by the value of the text content of the title element of book
elements in the source XML document. In other words, the output is sorted alphabetically by title, as
demonstrated in the output of the query OrderByTitleOut.xml shown here:

<?xml version="1.0" encoding="UTF-8"?>
<books>
<book>
<title>Beginning XML, 4th Edition</title>
</book>
<book>
<title>Professional Web 2.0 Programming</title>
</book>
<book>
<title>The C Programming Language</title>
</book>
<book>
<title>The Economics of Technology and Content for Digital TV</title>
</book>
<book>
<title>XSLT 2.0 Programmer's Reference</title>
</book>
</books>

If you wanted the order in reverse alphabetical order, you could write the order by clause as follows:

order by $t descending

Conditional Expressions

The FLWOR expression enables you to iterate over a sequence of items. However, sometimes you need to
process nodes only in certain circumstances using XQuery’s support for conditional processing.

Conditional expressions in XQuery use the if keyword.

Try It Out Using Conditional Expressions

In this example, you produce a query on BibAdapted.xml that outputs a book’s title and a count of its
authors only if the number of authors exceeds two.

Enter the following query, MultiAuthor .xquery:

<MultiAuthor>
{for S$book in doc("BibAdapted.xml") /bib/book
return if (count ($book/author) gt 2)

then <book>

<title>{$book/title/text ()}</title>
<NumberOfAuthors>{count ($book/author) }</NumberOfAuthors>
</book>

else ()
}
</MultiAuthor>

367

Part IV: Databases

You should see the following output (MultiAuthorOut.xml) :

<?xml version="1.0" encoding="UTF-8"?>
<MultiAuthor>
<book>
<title>Professional Web 2.0 Programming</title>
<NumberOfAuthors>4</NumberOfAuthors>
</book>
<book>
<title>Beginning XML, 4th Edition</title>
<NumberOfAuthors>6</NumberOfAuthors>
</book></MultiAuthor>

How It Works

The query uses a for statement to associate the variable $book with each book element in
BibAdapted.xml. All of the return statement is governed by the conditional statement

if (count (Sbook/author) gt 2)

gt is a new comparison operator used to compare values. In this example, the older comparator, >,
would also have worked. The value comparison operators are covered in Chapter 7.

The count () function counts how many author elements are child elements of $book. For example, if
the number of author elements that are child elements of $book exceeds two, then the then clause
specifies the corresponding output:

then <book>
<title>{S$book/title/text()}</title>
<NumberOfAuthors>{count ($book/author) }</NumberOfAuthors>
</book>

Conversely, if the number of author elements does not exceed two, then the else clause, which is
mandatory, comes into play:

else ()

In this case, producing the empty sequence is signified by ().

XQuery Functions

XQuery provides a huge range of functions to allow an extensive set of tools to manipulate and filter
data. You just saw a simple use of the count () function to count the number of author element nodes
in an example describing conditional processing. This section describes a couple of commonly used
functions.

A full description of the XQuery functions is contained in a lengthy, separate W3C document located at

www.w3 .org/tr/xpath-functions. The URL describes the functions common to XPath 2.0
(hence the final part of the URL) and XQuery 1.0.

368

Chapter 9: XQuery, the XML Query Language

The concat() Function

The concat () function is used to concatenate strings. The following shows a simple example. The
source XML, Parts.xml, contains two strings that we want to join together:

<?xml version="1.0"?>
<Parts>

<Part>To be or not to be,</Part>
<Part>that is the question!</Part>
</Parts>

The query, ASaying.xquery, is shown here:

<ASaying>{

for $Sa in doc("Parts.xml")/Parts/Part[1]
for $b in doc("Parts.xml")/Parts/Part([2]
return concat($a, " ", $b)

}</ASaying>

Notice that you declare two variables, $a and $b, using XPath path expressions to select relevant parts of
the source XML document. In the return statement, the concat () function is used to concatenate the
strings while interspersing a space between the two; and the output, ASayingOut.xml, is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<ASaying>To be or not to be, that is the question!</ASaying>

The concat () function is unusual in that it can take any number of arquments. It is not possible to
define your own functions this way; it’s only possible with the built-in functions.

The count() Function

Let’s use the count () function to calculate the number of Book elements that are present in
SimpleBooks.xml, shown earlier in the chapter. The query is contained in the file Count . xquery,
whose content is shown here:

<library count="{count (doc("SimpleBooks.xml") /Books/Book)}">
{ for $b in doc ("SimpleBooks.xml")/Books/Book return <book>{$b/text () }</book>
}

</library>

To run the query, type the following at the command line:
java net.sf.saxon.Query -o CountOut.xml Count.xquery

Notice that the count () function is used inside the value of the count attribute of the element
library, which is created literally. The expression used to create the value of the count attribute,
count (doc (' SimpleBooks.xml') /Books/Book), uses the count () function with the argument
doc (' SimpleBooks.xml') /Books/Book. That expression selects all the Book elements in
SimpleBook.xml and returns them in a sequence. At the risk of stating the obvious, there are three
Book element nodes in the sequence. The count () function then counts those nodes and returns the
value 3 in the count attribute.

369

Part IV: Databases

The query uses two nested expressions to create the content of the 1ibrary element. The for statement
is used to iterate over Book element nodes. The result of the query is shown in CountoOut . xm1, which is
displayed here:

<?xml version="1.0" encoding="UTF-8"?>
<library count="3">
<book>Beginning XML, 4rd Edition</book>
<book>Beginning XML Databases</book>
<book>Professional Web 2.0 Programming</book></library>

Using Parameters with XQuery

External parameters may be passed to an XQuery query. In XQuery, a parameter is considered to be a
variable that is declared as external.

To pass a string "Hello World!" to an XQuery, ParameterExample.xquery, and display the output on
the console, use the following syntax at the command line:

java net.sf.saxon.Query ParameterExample.xquery input="Hello, World!"
The query is shown here:

declare variable $input as xs:string external;
<output>

{$input}
</output>

Notice the variable declaration specifies that the variable $input is external and of type xs:string. In
the absence of a namespace declaration to the contrary, the namespace prefix xs is treated as the names-
pace prefix for the W3C XML Schema namespace.

In this simple example, you simply use an element constructor to create an output element and specify
that the element’s content is an XQuery expression $input. The output is shown in Figure 9-4.

Figure 9-4

370

Chapter 9: XQuery, the XML Query Language

User-Defined Functions

Although XPath 2.0 enables you to call custom functions, there is no inherent way to define these functions.
That is left to the technology using XPath, be it XSLT, XQuery, or some other host.

XQuery uses a straightforward way of declaring these functions in the XQuery prolog. A simple declara-
tion is shown here:

declare namespace math = "http://wrox.com/namespaces/xquery/math";
declare function math:add(Sopl as xs:integer, $op2 as Xs:integer) as Xs:integer
{
Sopl + $op2
b3

After declaring a suitable namespace URI and prefix for the function, it is declared using a syntax simi-
lar to most modern languages. There is a parameter list with each argument’s name preceded by a dollar
sign, and the return type is either one of the built-in schema types or a type from a user-defined schema.
The curly braces then hold the function body, which follows the normal XQuery rules of evaluation.
SimpleFunction.xquery shows how to use this function in a simple scenario:

declare namespace math = "http://wrox.com/namespaces/xquery/math";
declare function math:add(Sopl as xs:integer, $op2 as Xs:integer) as Xs:integer
{
Sopl + $op2
};
declare variable $opl as xXs:integer :
declare variable $op2 as Xs:integer :
<add>
<opl>{$opl}</opl>
<op2>{$op2}</op2>
<result>{math:add(Sopl, S$op2)}</result>
</add>

Inn
N

Here is a more useful function that calculates the factorial of a number, something not available in the
standard library:

The factorial of a number, written as x !, is the product of that number with all smaller integers greater
than one. So 4! = 4x3 x 2 = 24,

declare namespace math = "http://wrox.com/namespaces/xquery/math";
declare variable $n as xs:integer external;
declare function math:factorial ($integer as xs:integer) as xs:double
{

if (Sinteger gt 1) then Sinteger * math:factorial (Sinteger - 1) else 1
¥

This time a recursive function is used. If the input to the function is greater than 1, the function returns the
input multiplied by the factorial of the input less 1. Once the input reaches 1, the function unwinds and
the final result is returned. Recursion is common in functional languages because alternative techniques,
such as an iterative loop, cannot work without altering the value of variables. This is not allowed in
functional languages.

371

Part IV: Databases

The function can be tested using FactorialFunction.xquery:

declare namespace math = "http://wrox.com/namespaces/xquery/math";
declare variable $n as xs:integer external;
declare function math:factorial ($integer as xs:integer) as xs:double
{

if ($integer gt 1) then $integer * math:factorial ($integer - 1) else 1
bi

concat ($n, "! = ", math:factorial($n))
You can test this query by using the following from the command line:

java net.sf.saxon.Query FactorialFunction.xquery n=5

Looking Ahead

As mentioned earlier in the chapter, it is likely that the XQuery specification will be finalized shortly
after this book is published. However, almost everyone who has taken an interest in XQuery during its
development recognizes that XQuery 1.0 is only a step toward a full-featured XQuery language. Two
important aspects of the future of XQuery are mentioned here.

Update Functionality

Any XML data store that relies on XQuery as its primary query language must, like XML, be able to
insert, delete, and update arbitrary parts of XML content. XQuery 1.0 has no such functionality, but the
W3C Working Group has made it clear that such functionality is very much in its plans for XQuery after
version 1.0. At the time of writing, the main URL for update features is www.w3.org/TR/xqupdate/.
You can also find some use cases that demonstrate the need for the functionality at www.w3 .org/
TR/xqupdateusecases/.

Full-Text Search

Currently, the W3C has issued a working draft concerned with text searching within XML documents.
The draft is available at www.w3 . org/TR/xquery-full-text/. You can also find use cases at www.w3
.org/TR/xqupdateusecases/.

Summary

In this chapter, you learned about some foundational aspects of t