

Praise for
Sams Teach Yourself Visual C# 2010 in 24 Hours

“The Teach Yourself in 24 Hours series of books from Sams has been a staple of anyone
wanting to quickly come up-to-speed on a new technology. This book is not just a simple
refresh of last year’s book, Scott has written it from the ground up for the Visual Studio 2010
and .NET 4.0 release. From the C# type system, to events and data, from ASP.NET Web to
WPF Windows applications, Sams Teach Yourself Visual C# 2010 in 24 Hours will provide any
developer new to the C# language a great foundation to build upon.”

—Shawn Weisfeld, Microsoft Visual C# MVP

“The key to learning software development is to have a great foundation. Sams Teach Yourself
Visual C# 2010 in 24 Hours is a must-read for anyone who wants to learn C# from the
beginning, or just brush up on its features. Scott Dorman brings a very knowledgeable, yet
casual approach to his book that anyone with the desire to learn to program in .NET can be
inspired by. I found a few gems that will enhance my future programming projects.”

—Chris “Woody” Woodruff, Co-Host of Deep Fried Bytes Podcast

“This book is an excellent resource for anyone who is learning C# for the first time,
migrating from Visual Basic, or catching up on the latest features of C#. It is full of
information and should be on the desks of any developer who is becoming familiar with
C# 2010.”

—]Jeff Julian, Managing Partner, AJI Software, Founder of GeeksWithBlogs.NET

“Scott Dorman has written an excellent reference book that not only covers the basic
fundamentals of .NET 4.0 C# development, but also includes instruction and guidance on
the finer points of advanced C# and development with Visual Studio 2010.

The book is written in a clear and concise manner, with liberal usage of ‘Did You Know,’

‘By the Way,” and ‘Watch Out!’ sidebars that help provide the reader with informative ‘sign
posts’ along their journey for re-enforcing key concepts, best practices, and anti-patterns.
These invaluable sign posts really help to ‘bring-it-home’ to the reader with Scott’s real-world
commentary about why certain topics are critical in the overall understanding and use of
the C# language and associated constructs.

Whether you are a novice, intermediate, or professional developer, this book will certainly
become a very handy, well-thumbed, desk reference for today’s highly productive .NET
4.0 C# developer.”

—]Jeff Barnes, Architect Microsoft Developer & Platform Evangelism, Microsoft Corporation

“This book covers all the bases, from the C# language, through the frameworks you'll use it
with and the tools you need to be productive. The best way to learn is to do, and there is no
shortage of doing here.”

—Chris Burrows, C# Compiler Team, Microsoft Corporation

“Sams Teach Yourself Visual C# 2010 in 24 Hours gives you the jump start you need to be
productive quickly. I found the book extremely clear to follow and laid out logically hour by
hour to flow you through related topics. From novices to C# veterans, this book gives you all
you need to understand all that is new in the 2010 release.”

—Richard Jones, Microsoft MVP

Scott Dorman

Sams Teach Yourself

Visual C#
2010

Complete Starter Kit

N
ours

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Visual C#® 2010 in 24 Hours: Complete Starter Kit
Copyright © 2010 by Pearson Education
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
This material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).
ISBN-13: 978-0-672-33101-5
ISBN-10: 0-672-33101-2
Library of Congress Cataloging-in-Publication Data
Dorman, Scott, 1973-

Sams teach yourself Visual C# 2010 : in 24 hours / Scott Dorman.

p. cm.

Includes index.

ISBN 978-0-672-33101-5

1. C# (Computer program language) 2. Microsoft Visual C#. I. Millspaugh, A. C. (Anita C.)
II. Title.

QA76.73.C154D57 2010

005.13'3—dc22

2010018992

Printed in the United States on America

First Printing June 2010

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Sams Publishing
800 East 96th Street
Indianapolis, Indiana, 46240 USA

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling
Development
Editor

Mark Renfrow

Managing Editor
Kristy Hart
Senior Project
Editor

Lori Lyons

Copy Editor
Apostrophe Editing
Services

Indexer
Publishing Works,
Inc.

Proofreader
Water Crest
Publishing, Inc.

Technical Editors
Claudio Lasalla
Eric Lippert
Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Jake McFarland
Nonie Ratcliff

http://www.opencontent.org/openpub/

Contents at a Glance

Introduction

Part I: C# Fundamentals

HOUR 1 The .NET Framework and C#
2 Understanding C# Types
3 Understanding Classes and Objects the C# Way
4 Inheritance, Interfaces, and Abstract Classes
5 Creating Enumerated Types and Structures

6 Events and Event Handling

Part II: Programming in C#

HOUR 7 Controlling Program Flow
8 Using Strings and Regular Expressions
9 Working with Arrays and Collections
10 Handling Errors Using Exceptions
11 Understanding Generics

12 Understanding Query Expressions

Part lll: Working with Data

HOUR 13 Using Files and Streams
14 Working with XML
15 Working with Databases

Part IV: Building an Application Using Visual Studio

HOUR 16 Debugging in Visual Studio
17 Building a Windows Application
18 Using Data Binding and Validation
19 Building a Web Application

35
63
93
113
131

147
167
195
227
245
267

289
311
329

347
363
385
407

vi

Sams Teach Yourself C# 2010 in 24 Hours

Part V: Diving Deeper

HOUR 20
21
22
23
24

Programming with Attributes

Dynamic Types and Language Interoperability

Memory Organization and Garbage Collection
Understanding Threads, Concurrency, and Parallelism
Next Steps: Silverlight, PowerShell, and Entity Framework

Index

427
439
451
461
479
485

Table of Contents

Introduction
Audience and Organization
Conventions Used in This Book

Closing Thoughts

Part 1 C# Fundamentals

HOUR 1 The .NET Framework and C#
The .NET Framework
The C# Language
Visual Studio 2010
Writing Your First Program
Q&A

Worksho .
HOUR 2 Undeestandmg C# Types

Types

Predefined Types
Operators

Default Values

Null and Nullable Types
Casting and Conversion
Q&A

Worksh%g . .
HOUR 3 Understanding Classes and Objects the C# Way

Object-Oriented Programming
Component-Oriented Programming
Classes in C#

Scope and Declaration Space

w w N B

17
24
27
31
32

35
36
37
47
53
53
55
59
60

63
64
65
65
66

viii

Sams Teach Yourself C# 2010 in 24 Hours

Nested Classes 85
Partial Classes 86
Static Classes 86
Object Initializers 88
Q&A 89
HOURV\Qor%ﬁt}llgfti)tance, Interfaces, and Abstract Classes %0
93
Inheritance and Polymorphism 93
Abstract Classes and Members 103
Interfaces 105
Q&A 109
HOURV\éOr(léirelgPing Enumerated Types and Structures i
113
Enumerated Types 114
Structures 119
Q&A 127
HOURV\(/iOﬂE\S/}égPs and Event Handling 127
131
Understanding Events 132
Subscribing and Unsubscribing 132
Publishing an Event 136
Raising an Event 139
Q&A 141
Workshop 142

Part Il Programming in C#
HOUR 7 Controlling Program Flow 147
Selection Statements 148
Iteration Statements 153

Jump Statements 159

Q&A

Worksho . ;
HOUR 8 Usmgsmngs and Regular Expressions

Strings

Mutable Strings Using StringBuilder

Type Formatting
Regular Expressions
Q&A

Workshop . .
HOUR 9 Worlgng with Arrays and Collections

Arrays

Indexers

Generic Collections

Collection Initializers

Collection Interfaces

Enumerable Objects and Iterators
Q&A

Workshop . . .
HOUR 10 HarPdImg Errors Using Exceptions

Understanding Exceptions
Throwing Exceptions

Handling Exceptions
Rethrowing Caught Exceptions
Overflow and Integer Arithmetic
Q&A

Workshcg) . .
HOUR 11 Understanding Generics

Why You Should Use Generics
Using Generic Methods

Creating Generic Classes

ix

Contents

162
163

167
168
177
178
187
190
191

195
196
200
203
217
219
220
223
224

227
228
231
232
239
241
243
243

245
246
253
254

X

Sams Teach Yourself C# 2010 in 24 Hours

Combining Generics and Arrays 257
Working with Tuples 261
Q&A 263
Hounvgofk%}h%rstanding Query Expressions 264
267
Introducing LINQ 268
Standard Query Operator Methods 279
Lambdas 280
Deferred Execution 283
Q&A 284
Workshop 285

Part Il Working with Data
HOUR 13 Using Files and Streams 289
Files and Directories 290
Reading and Writing Data 300
Q&A 307
HOUR' 14 ‘WoRking with XML 308
311
Understanding the XML DOM 312
Using LINQ to XML 313
Selecting and Querying XML 319
Modifying XML 323
Q&A 326
HOURV\;.OSrkSWhgpking with Databases 326
329
Understanding ADO.NET 330
Understanding LINQ to ADO.NET 333
Q&A 342

Workshop 343

Xi

Contents

Part IV Building an Application Using Visual Studio

HOUR 16 Debugging in Visual Studio 347
Commenting Your Code 348
Compiler and Runtime Errors 349
Debugging in Visual Studio 350
Visualizing Data 359
Q&A 361

HOURV\;.O;kSB}}JCi)%ing a Windows Application 361

363

Understanding WPF 364
Creating a WPF Application 370
Styling the Layout 379
Q&A 382
HOUR' 13 “Usihe Data Binding and Validation 382
385

Understanding Data Binding 386
Converting Data 390
Binding to Collections 395
Working with Data Templates 399
Validating Data 400
Q&A 404
HOURV\;.OQrkSBk{ﬁRIing a Web Application 405
407

Understanding Web Application Architecture 408
Working with ASP.NET 408
Creating a Web Application 411
Understanding Data Validation 420
Q&A 423

Workshop 424

Part V Diving Deeper

HOUR 20 Programming with Attributes 427
Understanding Attributes 428
Working with the Common Attributes 430
Using Custom Attributes 433
Accessing Attributes at Runtime 434
Q&A 436

HOURV%OkaDhy?%mic Types and Language Interoperability 436

439

Using Dynamic Types 439
Understanding the DLR 444
Interoperating with COM 447
Reflection Interoperability 448
Q&A 449
HOURV\QOzrk%IIg%ory Organization and Garbage Collection 450
451

Memory Organization 452
Garbage Collection 452
Understanding IDisposable 453
Using the Dispose Pattern 455
Declaring and Using Finalizers 456
Q&A 458
HOURV\écgkiJm%rstanding Threads, Concurrency, and Parallelism 459
461

Understanding Threads and Threading 462
Concurrency and Synchronization 463
Understanding the Task Parallel Library 467
Working with Parallel LINQ (PLINQ) 472
Potential Pitfalls 473
Q&A 475

Workshop 476

Xiii

Foreword

HOUR 24 Next Steps: Silverlight, PowerShell, and Entity Framework 479
Understanding the Entity Framework 479
Introducing PowerShell 482
%lgg)r(light 483

485

This page intentionally left blank

Foreword

Over a decade ago, a small team of designers met in a small conference room on the sec-
ond floor of Building 41 at Microsoft to create a brand-new language, C#. The guiding prin-
ciples of the language emphasized simplicity, familiarity, safety, and practicality. Of course,
all those principles needed to balance against one another; none are absolutes. The design-
ers wanted the language to be simple to understand but not simplistic, familiar to C++ and
Java programmers but not a slavish copy of either, safe by default but not too restrictive,
and practical but never abandoning a disciplined, consistent, and theoretically valid design.

After many, many months of thought, design, development, testing, and documentation,
C# 1.0 was delivered to the public. It was a pretty straightforward object-oriented language.
Many aspects of its design were carefully chosen to ensure that objects could be organized
into independently versionable components, but the fundamental concepts of the language
came from ideas developed in object-oriented and procedural languages going back to the
1970s or earlier.

The design team continued to meet three times a week in that same second-floor conference
room to build upon the solid base established by C# 1.0. By working with colleagues in
Microsoft Research Cambridge and the CLR team across the street, the type system was
extended to support parametric polymorphism on generic types and methods. They also
added “iterator blocks” (sometimes known as “generators” in other languages) to make it
easier to build iterable collections and anonymous methods. Generics and generators had
been pioneered by earlier languages such as CLU and Ada in the 1970s and 1980s; the idea
of embedding anonymous methods in an existing method goes all the way back to the
foundations of modern computer science in the 1950s.

C# 2.0 was a huge step up from its predecessor, but still the design team was not content.
They continued to meet in that same second-floor conference room three times a week. This
time, they were thinking about fundamentals. Traditional “procedural” programming lan-
guages do a good job of basic arithmetic, but the problems faced by modern developers go
beyond adding a column of numbers to find the average. They realized that programmers
manipulate data by combining relatively simple operations in complex ways. Operations
typically include sorting, filtering, grouping, joining, and projecting collections of data. The
concept of a syntactic pattern for “query comprehensions” that concisely describes these
operations was originally developed in functional languages such as Haskell but also works
well in a more imperative language like C#. And thus LINQ—Language Integrated Query—
was born.

Xvi

Sams Teach Yourself C# 2010 in 24 Hours

After ten years of meeting for six hours a week in the same conference room, the need to
teleconference with offsite team members motivated a change of venue to the fifth floor.
The design team looked back on the last ten years to see what real-world problems were not
solved well by the language, where there were “rough edges,” and so on. The increasing
need to interoperate with both modern dynamic languages and legacy object models moti-
vated the design of new language features like the “dynamic” type in C# 4.0.

I figured it might be a good idea to do a quick look at the evolution of the C# language
here, in the Foreword, because this is certainly not the approach taken in this book. And
that is a good thing! Authors of books for novices often choose to order the material in the
order they learned it, which, as often as not, is the order in which the features were added
to the language. What I particularly like about this book is that Scott chooses a sensible
order to develop each concept, moving from the most basic arithmetic computations up to
quite complex interrelated parts. Furthermore, his examples are actually realistic and moti-
vating while still being clear enough and simple enough to be described in just a few para-
graphs.

I've concentrated here on the evolution of the language, but of course the evolution of one
language is far from the whole story. The language is just the tool you use to access the
power of the runtime and the framework libraries; they are large and complex topics in
themselves. Another thing I like about this book is that it does not concentrate narrowly on
the language, but rather builds upon the language concepts taught early on to explain how
to make use of the power afforded by the most frequently used base class library types.

As my brief sketch of the history of the language shows, there’s a lot to learn here, even
looking at just the language itself. I've been a user of C# for ten years, and one of its
designers for five, and I'm still finding out new facts about the language and learning new
programming techniques every day. Hopefully your first 24 hours of C# programming
described in this book will lead to your own decade of practical programming and continu-
al learning. As for the design team, we're still meeting six hours a week, trying to figure out
what comes next. I'm looking forward to finding out.

Eric Lippert
Seattle, Washington
March 2010

Dedication

This book is first and foremost dedicated to Nathan, who I hope follows
in my footsteps and someday writes books of his own.
Thank you for giving me a unique perspective
and showing me the world through the eyes of a child.

About the Author

Scott Dorman has been designated by Microsoft as a C# Most Valued Professional in recog-
nition for his many contributions to the C# community. Scott has been involved with com-
puters in one way or another for as long as he can remember. He has been working with
computers professionally since 1993 and with .NET and C# since 2001. Currently, Scott’s pri-
mary focus is developing commercial software applications using Microsoft .NET technolo-
gies. Scott runs a software architecture-focused user group, speaks extensively (including at
Microsoft TechEd and community-sponsored code camps), and contributes regularly to
online communities such as The Code Project and StackOverflow. Scott also maintains a
.NET Framework and C#-focused technology blog at http://geekswithblogs.com/sdorman.

http://geekswithblogs.com/sdorman

Acknowledgments

When I decided to undertake this project, I wasn’t prepared for just how difficult it is to
actually write a book. As I look back on the amount of time and effort it took, I realize that,
although I was the one responsible for writing the content, I couldn’t have done it without
the help and support of others. First, I need to thank Brook for giving me the idea of writing
this book for Sams Publishing in the first place and taking the chance on a new author. The
rest of the editors at Sams, without whom the book would never have been published, were
also great to work with. I also want to thank Keith Elder, Shawn Weisfeld, Brad Abrams,
and Krzysztof Cwalina for their early input on the table of contents and helping me focus
the content and overall direction of the book. My technical editors, Claudio and Eric, also
deserve a huge amount of thanks; they have both provided an incredible amount of com-
ments and insight. Of course, without the entire C#, .NET Framework, and Visual Studio
product teams, I wouldn’t have anything to write about in the first place.

I wrote this book for the development community, which has given so much to me. Without
its encouragement and support, I wouldn’t have been in a position to write this book at all.
This includes everyone associated with the Microsoft MVP program and the Microsoft field
evangelists, particularly Joe “devfish” Healy, Jeff Barnes, and Russ “ToolShed” Fustino.

Finally, of course, I have to thank my family for being so patient and understanding of the
many long nights and weekends it took to finish this book. Although Nathan is too young
right now to understand why I spent so much time on the computer rather than playing
with him, I hope he will appreciate it as he gets older. The biggest thing it did was introduce
him to computers at a very early age, as at 21 months old, he received his first laptop (an
old IBM ThinkPad 770 that was collecting dust). To my stepson, Patrick, thank you for
understanding all the canceled amusement park plans. Last, but certainly not least, thank
you Erin for your support and patience. I know you are happy that everything is done and I
can start having more family time.

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator.

We value your opinion and want to know what we’re doing right, what we could do better,
what areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way.

You can email or write me directly to let me know what you did or didn't like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name
and contact information. I will carefully review your comments and share them with the
author and editors who worked on the book.

Email: neil.rowe@pearson.com

Mail: Neil Rowe
Executive Editor
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

In late December 1998, Microsoft began working on a new development platform
that would result in an entirely new way to create and run next-generation applica-
tions and web services. This new platform was called the .NET Framework and was
publicly announced in June 2000.

The .NET Framework unified the existing Windows interfaces and services under a
single application programming interface (API) and added many of the emerging
industry standards, such as Simple Object Access Protocol (SOAP), and many existing
Microsoft technologies, such as the Microsoft Component Object Model (COM and
COM+) and Active Server Pages (ASP). In addition to providing a consistent develop-
ment experience, the .NET Framework enabled developers to focus on the application
logic rather than more common programming tasks with the inclusion of one of the
largest available class libraries.

Finally, by running applications in a managed runtime environment that automati-
cally handled memory allocation and provided a “sandboxed” (or restricted access)
environment, many common programming errors and tasks were reduced and, in
some cases, eliminated.

Now, nearly 10 years later, the .NET Framework continues to evolve by supporting
new technologies and industry standards, adding support for dynamic languages
and providing even more classes that are built-in. At Microsoft’s Professional Devel-
oper Conference (PDC) in 2008, one of the themes was “make the simple things easy
and the difficult things possible.” The .NET Framework achieved that with its first
release, and each release after that continues to realize that goal.

The C# (pronounced “See Sharp”) programming language was developed with the
.NET Framework by Anders Hejlsberg, Scott Wiltamuth, and Peter Golde and was first
available in July 2000. Having been written specifically for the .NET Framework, it is
considered by many to be the canonical language of the .NET Framework. As a lan-
guage, C# drew inspiration for its syntax and primary features from Delphi 5, C++,
and Java 2. C# is a general-purpose, object-oriented, type-safe programming lan-
guage used for writing applications of any type. Just as the .NET Framework has
continued to evolve, C# has evolved to keep pace with the changes in the .NET
Framework and to introduce new language features that continue to make the
simple things easy and the difficult things possible.

Introduction

Although there are more than 50 different programming languages supported by the
.NET Framework, C# continues to be one of the most popular and modern general-
purpose languages.

Audience and Organization

This book is targeted toward the non-.NET programmer who is venturing into .NET
for the first time or an existing .NET programmer trying to learn C#. If you are first
learning how to program, this book can help you on your way, but it isn’t intended
to be a beginning programming book. The book is designed with the purpose of get-
ting you familiar with how things are done in C# and becoming productive as
quickly as possible. I take a different approach in this book by using a more holistic
view of the language. I chose this approach to give you the most complete under-
standing of the C# language by focusing on how the current language features
enable you to solve problems.

This book is divided in to five parts, each one focusing on a different aspect of the
language. These parts progress from the simple fundamentals to more advanced
topics, so I recommend reading them in order:

» Part I, “C# Fundamentals,” teaches you about the .NET Framework, the object-
oriented programming features of C#, the fundamentals of C# type system,
and events.

» Part 1], “Programming in C#,” teaches you the fundamentals of programming.
You learn how to perform loops and work with strings, regular expressions, and
collections. Then we move to more advanced topics, such as exception man-
agement and generics. Finally, we finish with anonymous functions (lambdas),
query expressions (LINQ), and how to interact with dynamic languages.

> Part III, “Working with Data,” shows how to interact with the file system and
streams, create and query XML documents, and work with databases.

» Part IV, “Building an Application Using Visual Studio,” starts with an introduc-
tion to Visual Studio 2010 and debugging applications. We then build a Win-
dows client application using data binding and validation. Next, you learn
how to build an application for the web.

> Part V, “Diving Deeper,” introduces the advanced concepts of attribute pro-
gramming, dynamic types, and language interoperability. You learn the fun-
damentals of how the .NET Framework organizes memory, how the garbage
collector works, and how the .NET Framework provides mechanisms for deter-
ministic finalization. Next, you learn how to use multiple threads and parallel
processing. Finally, you look at some of the newer technologies from Microsoft

Closing Thoughts

built on the .NET Framework, such as Silverlight, PowerShell, and the Entity
Framework.

By the Way boxes provide useful sidebar information that you can read immedi-
ately or circle back to without losing the flow of the topic at hand.

Did You Know? boxes highlight information that can make your programming more
effective.

Watch Out! boxes focus your attention on problems or side effects that can occur
under certain situations.

Throughout the book, I use examples that show real-world problems and how to
solve them using C# and the .NET Framework. In Part IV, we actually build some
complete applications from scratch that draw on the skills you learned in the previ-
ous three parts.

Conventions Used in This Book

This book uses several design elements and conventions to help you prioritize and
reference the information it contains.

New terms appear in bold for emphasis.

In addition, this book uses various typefaces to help you distinguish code from regu-
lar English. Code is presented in a monospace font. Placeholders—words or characters
that represent the real words or characters you would type in code—appear in italic
monospace. When you are asked to type or enter text, that text appears in bold.

Some code statements presented in this book are too long to appear on a single line.
In these cases, a line continuation character is used to indicate that the following
line is a continuation of the current statement.

Closing Thoughts

The Microsoft .NET Framework and C# continue to be one of the most powerful yet
elegant languages I've worked with and provide many exciting opportunities for
developing the next “killer application.” You won't be an expert in C# when you
finish this book, but I hope you feel comfortable about creating applications in .NET
and C#.

Bythe
DS
Wah—

This page intentionally left blank

PART |
C# Fundamentals

HOUR 1 The .NET Framework and C# 7
HOUR 2 Understanding C# Types 35
HOUR 3 Understanding Classes and Objects the C# Way 63
HOUR 4 Inheritance, Interfaces, and Abstract Classes 93
HOUR 5 Creating Enumerated Types and Structures 113

HOUR 6 Events and Event Handling 131

This page intentionally left blank

HOUR 1
The .NET Framework and C#

What You’ll Learn in This Hour:

» Understanding the .NET Framework

The Parallel Computing Platform

The Role of the Dynamic Language Runtime
An Overview of the C# Language

C# Language Syntax

How to Write Your First C# Program

vV vYVvyyvwvyy

Learning a new language is like learning to ride a bicycle or drive a car. You must
learn the fundamentals first and build your confidence as you progress to more com-
plex actions. When you understand the principles and have the confidence that you
can accomplish your goal, suddenly that goal doesn’t seem so far out of reach. By the
end of this hour, you will have a basic understanding of the .NET Framework, its com-
ponents and their relationship to each other, and how you create applications. You
will have been introduced to the C# language and written your first .NET application.

The .NET Framework

The .NET Framework provides developers with the tools and technology to create and
run next-generation applications and web services in a way that is language- and
platform-independent. It has a rich class library that supports many common tasks
and simplifies many difficult tasks, enabling you to focus your time more effectively on
the problem at hand: solving the business needs in the most efficient manner possible.

The .NET Framework is designed to do the following:

» Provide a runtime environment that simplifies software deployment and
reduces the chances of version conflicts.

HOUR 1: The .NET Framework and C#

» Enable the safe execution of code.

» Use industry standards for all communication to enable integration with
non-.NET code.

> Provide a consistent developer experience across all types of applications in a
way that is language- and platform-independent.

> Provide a runtime environment that minimizes or eliminates the performance
problems of scripted or interpreted languages.

To achieve these goals, the .NET Framework has four components. The first compo-
nent is the common language runtime, which you can think of as the core, or heart,
of the .NET Framework. Just as your heart provides the pumping action your body
needs to function, the common language runtime provides the low-level core services
your application needs to function and is said to manage your code. Code written for
the .NET Framework is called managed code, whereas any other code is called
unmanaged code.

The second component of the .NET Framework is the class library, which is a rich col-
lection of reusable classes, or types, that you can use to develop almost any applica-
tion you can imagine.

Framework Class Library

The Framework Class Library contains more than 4,000 public classes and is one
of the largest class libraries available today.

The .NET Framework provides support for parallel programming directly in the com-
mon language runtime through class libraries and diagnostic tools in the parallel
computing platform, which is the third component of the.NET Framework. The paral-
lel computing platform enables you to write efficient and scalable code that takes
advantage of multiple processors in a natural and simple way.

The dynamic language runtime is built on top of the common language runtime and
is the fourth component of the .NET Framework, providing language services for
dynamic languages such as IronRuby and IronPython. Because dynamic languages
are much better at certain things than a general-purpose language such as C#, the
dynamic language runtime gives you the flexibility to choose the most appropriate
language to solve a specific business need. Not only that, the dynamic language run-
time enables non-dynamic languages such as C# to support a consistent and simple
syntax for working with dynamic objects whether the source is COM, IronRuby, Iron-
Python, or JavaScript.

The .NET Framework

What Is a Dynamic Language?

In a language such as C#, which is statically typed, the compiler attempts to
prove type safety, and, if it cannot, generates an error. In a dynamic language, this
attempt at proving type safety is not made. In addition, most dynamic languages
perform more complex type operations, such as determining the correct method
overload, at runtime whereas C# performs this type of resolution at compile time.

In effect, what would normally be done at compile time in a statically typed lan-
guage is done at runtime. This includes the idea that you can generate code at
runtime (using what is commonly called an eval or repl loop) that can modify the
state of running objects. As a result, dynamic languages enable a great deal of
freedom and are most frequently used as scripting languages.

Some common dynamic languages are Jscript, JavaScript, Python, IronPython,
Ruby, and IronRuby.

Just as code written for the .NET Framework is called managed code, the resulting
application is called a managed application. When a managed application runs, it
automatically hosts the common language runtime it was built against. Not only
does the .NET Framework provide a number of different runtime hosts, it also pro-
vides the tools necessary to write your own. Because of this capability, unmanaged
applications such as Internet Information Services (IIS) and Microsoft SQL Server can
host their own copy of the common language runtime, enabling them to take advan-
tage of both managed and unmanaged features.

Figure 1.1 shows how the different components of the .NET Framework relate to your
application, the overall operating system, and unmanaged applications.

The Common Language Runtime

The common language runtime (CLR) is the core of the .NET Framework and pro-
vides a unified type system and a managed runtime environment. Together they
form a foundation for developing and executing applications that are language- and
platform-independent and help eliminate, or at least reduce, many common pro-
gramming errors.

Common Type System

The unified type system, called the common type system (CTS), enables all .NET
languages to share the same type definitions, enabling those types to be manipu-
lated in a consistent manner. This helps ensure correctly written applications by

Dl —

GOTO

We discuss
types a bit later
in this hour.
Hour 2, “Under-
standing C#
types,” provides
more detailed
information.

10

FIGURE 1.1
.NET Framework
context

HOUR 1: The .NET Framework and C#

> Removing the possibility that incompatible data can be assigned to a type

> Enabling every .NET language to have the same description of a type, regard-
less of what language was used to define that type

» Enforcing a consistent manner in which a language manipulates a type

Managed Web
Applications

CLR Stored
Procedures

ASP.NET
Runtime

Internet
Information
Services

Unmanaged Applications

Operating System/
Hardware

Custom
Object
Libraries

Runtime
Class

Library

Managed Applications

Type Safety and the CTS

The common type system and common language specification form the founda-
tion of the type-safety found in the .NET Framework.

This foundation provides the .NET Framework a consistent way to promote type
safety but not enforce it. The task of enforcing type safety is left to the individual
language compilers and the virtual execution system (which you will learn about a
bit later this hour).

The .NET Framework 11

Because the common type system specifies the definition of how types look and
behave in a language-independent fashion, it must take into account differences in
those languages. The common type system provides a minimum set of rules a .NET
language (and consequently, its compiler) must follow, called the common language
specification (CLS). This common definition also enables the idea of language inte-
gration, which enables you to use a type defined in another language as if it were
defined natively in your language.

CLS Compliance Diﬂﬁ\gl#,,_

Almost all of the classes provided by the Framework class library are CLS compli-
ant, so any .NET language will have access to the same library. If you are develop-
ing your own library, it is suggested that you also ensure that your classes are
CLS compliant to allow for the widest adoption and use possible.

Common Intermediate Language

The common type system and common language specification help meet the goal of
being language- and platform-independent, but it does no good if the compiler gen-
erates executable object code tied to the hardware platform. To resolve this problem,
managed code is partially compiled into a low-level language called common inter-
mediate language (CIL). You can think of common intermediate language like
assembly language; it is made up of individual, low-level instructions that represent
your code.

An assembly is a partially compiled unit, or package, that contains CIL instructions
and provides a logical boundary for defining types. Because assemblies are partially
compiled, they can be either 32- or 64-bit, depending on the operating system and
hardware. This capability truly means that managed applications are platform-inde-
pendent and, at the same time, can take advantage of hardware technology without
recompiling or adding special instructions to your code.

Virtual Execution System

The other important part of the common language runtime is the managed runtime
environment, called the virtual execution system (VES), which handles the low-level
core services your application needs. Just as Java applications require the Java virtual
machine (JVM) to run, a managed application requires the CLR, and more specifi-
cally the VES, to run.

When a .NET application starts, it is the VES that is responsible for actually loading
the CIL code, executing that code and, ultimately, managing the memory allocations

12

Disw—

HOUR 1: The .NET Framework and C#

required by the application. In other words, the VES provides the services and infra-
structure to abstract both platform and language differences.

As part of the loading and compilation process, the VES performs various validation
and verification checks to ensure that the file format, assembly metadata, and CIL
are consistent and that the CIL instructions themselves do not allow illegal memory
access. This ensures that an application can access only memory or other resources to
which it has been explicitly granted access. This restricted environment can be
thought of as a sandbox.

If the VES provides a runtime environment and executes assemblies containing CIL,
are those assemblies interpreted or compiled? Remember, one of the goals for the
.NET Framework is to provide a runtime environment that minimizes or eliminates
the performance problems of scripted or interpreted languages. This would imply that
the CIL code is compiled, but when does that compilation happen?

One of the services the VES provides is the Just-In-Time (JIT) compiler. Just-In-Time
compilation is the process of taking the partially compiled CIL code and generating
executable object code, or native code, at runtime.

Just-In-Time Compilation

The process of Just-In-Time compilation is called jitting and the JIT compiler is
also called the jitter.

By compiling the code in this manner, the .NET Framework gains a considerable speed
improvement over traditional interpreted languages. Just-In-Time compilation also
has benefits over regular (static) compilation, as it can enforce security guarantees at
runtime and recompile the code at runtime to gain additional optimizations. The
.NET Framework JIT compiler is highly optimized for compiling CIL code into highly
efficient object code, runs on demand, and caches the compiled code for future use.

Memory Management and Garbage Collection

Proper memory management is a classic problem in many unmanaged program-
ming languages and is a potential source for some common errors. In these lan-
guages, the developer is responsible for allocating and deallocating memory at the
correct times. The .NET Framework resolves this problem by controlling these memory
allocations and deallocations automatically as part of the VES.

It is this automatic memory management, also known as garbage collection, which
makes C# (and the other .NET languages) a garbage-collected language. Garbage
collection frees you from having to worry as much about releasing memory when it is
no longer needed. This enables you to create applications that are more stable by

The .NET Framework

preventing many of those common programming errors and focusing your time on
the business logic your application requires.

Even with automatic memory management, it is still important to understand how the
garbage collector interacts with your program and the types you create. An in-depth
discussion on garbage collection is well outside the scope of this book, but we talk a lit-
tle bit more about it in Hour 22, “Memory Organization and Garbage Collection.”

Framework Class Library

Although the CLR forms the core of the .NET Framework, the framework class
library (FCL) actually gives it substance. The class library is similar to Java’s class
libraries, the C++ Standard Template Library (STL), Microsoft’s Active Template
Library (ATL), the Microsoft Foundation Classes (MFC), Borland’s Object Windows
Library (OWL), or any of the various other class libraries available today.

Just like those class libraries, the FCL is a rich set of reusable types enabling you to
achieve a high level of developer productivity by simplifying many common pro-
gramming tasks.

Figure 1.2 shows some of the types available in the FCL, grouped by functional area.

.NET Framework Class Library (FCL)

(oegosies) (oo) ()
Coionaon) (“wor) (Csvomy) (Gontomenn)
Cow) (e) (o) (e)
(ramaromd) (v) (wer) (Cooatzaion)

(Base Class Libraries (BCL))

Framework Class Library

The framework class library is the best example in the .NET Framework of making
the simple things easy and the hard things possible.

Although it is possible to create an application without using the types provided
by the FCL, it is impractical to do so.

13

FIGURE 1.2
Framework Class
Library

14

Dl

HOUR 1: The .NET Framework and C#

At the lowest level are the Base Class Libraries (BCL) that serve as the standard run-
time for any .NET language and provide types that represent the intrinsic CLR types,
collections, streams, string manipulation, basic file access, and a variety of other oper-
ations or data structures. In total, there are 172 publicly available types in the BCL
and 331 total public types in what is considered the Standard Library as defined by the
Standard Ecma-335: Common Language Infrastructure (CLI), 4th Edition/June 2006.

What Is Ecma?

Ecma International is an international standards association founded in 1961
that aims to help develop standards for the use of information communication
technology and consumer electronics.

The C# Language Specification along with the Common Language Infrastructure
(CLI) were accepted as an Ecma standard on December 14, 2001.

The CLI is an open source version of the Common Language Runtime. It has fos-

tered several open source versions of C# and the .NET Framework, including Dot-

GNU and Mono. Of these, Mono is probably the most well known and provides an

implementation of the .NET development platform on Linux, BSD, UNIX, Mac OS X,
Solaris, and Windows operating systems.

It is the open source standards provided by Ecma and projects such as DotGNU
and Mono that enable development skills and applications to be used on virtually
any platform.

The remaining classes in the FCL are focused on specific functional areas, such as
providing data access, XML support, globalization support, diagnostics, configura-
tion, networking, communication, business workflow support, web applications, and
Windows desktop applications, to name just a few.

Namespaces

With thousands of classes in the .NET Framework class library, there needs to be a
way to prevent ambiguity between type names and to provide a convenient hierar-
chical grouping mechanism. The .NET Framework uses the concept of namespaces to
accomplish this. A namespace is simply a collection of types and has no effect on the
accessibility of a type. Namespaces can be split across multiple assemblies. The .NET
Framework uses the hierarchical nature of namespaces to provide a progressive
framework, creating a powerful and easy-to-use development platform.

The .NET Framework

Namespaces and Type Names

Namespaces use a dotted syntax to denote a hierarchical grouping, with each
level in the hierarchy separated by a dot (.).

Given a type’s full name, everything up to the rightmost dot is the namespace
whereas the last part (after the rightmost dot) is the type name. For example,
System.Printing.PrintDriver is the full name for the PrintDriver type in the
System.Printing namespace.

Namespaces, however, are only conveniences supported by the .NET programming
languages. In the CLR, a type is always identified by its full name, which contains
both the name of the type and its containing namespace.

Almost 400 namespaces exist in the .NET Framework class library, although you will

probably never interact with some of them. As you become more familiar with the

class library, you will find certain namespaces that you use more frequently than oth-

ers, which might be a different set than ones your co-workers or peers use.

The most commonly used namespaces are shown in Table 1.1.

TABLE 1.1 Commonly Used Namespaces

Namespace

Description

System

System.Collections.Generic

System.Data

System.Diagnostics

System.Globalization

System.lO

The base, or root, namespace for .NET; contains
classes that define the commonly used data types,
exceptions, and events

Contains classes that define various generic
collections, enabling you to create strongly typed
collections

Contains classes that form the majority of the
ADO.NET library, enabling you to manage data from
multiple data sources

Contains classes that enable you to interact with event
logs and performance counters, debug your
application, and trace the execution of your code

Contains classes that represent culture-related
information, including the language, country/region,
calendars in use, sort order for strings, and format
patterns for dates, currency, and numbers

Contains classes that enable synchronous and
asynchronous reading and writing on data streams
and files

15

Bxﬂg;—

16

GO TO

Hour 23,
“Understanding
Threads,
Concurrency, and
Parallelism,” for
more information
on multithreaded
and parallel
programming.

HOUR 1: The .NET Framework and C#

TABLE 1.1 Commonly Used Namespaces Continued

Namespace Description

System.Ling Contains classes and interfaces that support queries
using Language-Integrated Query (LINQ)

System.Net Contains classes that provide a simple programming

System.Security

System.ServiceModel

System.Text

System.Web

System.Windows

System.Windows.Controls

System.Windows.Forms

System.Xml

interface for many of the protocols used on networks
today

Contains classes that provide the .NET Framework
security system

Contains classes necessary to build Windows
Communication Foundation (WCF) services and client
applications

Contains classes for working with strings and
characters

Contains classes that enable browser-server
communication

Contains several important Windows Presentation
Foundation (WPF) base element classes, various
classes that support the WPF property system and
event logic, and other types more broadly consumed

Contains classes to create controls that enable a user
to interact with an application

Contains classes for creating Windows-based
applications that take full advantage of the rich user
interface features available in the Windows operating

Contains classes that provide standards-based
support for processing XML

Parallel Computing Platform

Writing multithreaded and asynchronous applications has always been possible in
both managed and unmanaged code; however, it has always been difficult to get cor-

rect. The .NET Framework 4.0 simplifies writing these applications with the parallel

computing platform. This is a new programming model for both managed and

unmanaged code and raises the level of abstraction so that you no longer need to

think about the lower-level concepts, such as threads and locks.

The C# Language

For managed code, the parallel computing platform includes parallel implementa-
tions of the common loop instructions, a parallel implementation of LINQ to Objects,
and new lock-free and thread-safe collections. Visual Studio 2010 introduces new
diagnostic tools, such as the parallel concurrency analyzer and processor migration
analysis that enable you to easily debug and tune your code.

The parallel computing platform simplifies the mechanics of writing code that can
effectively take advantage of multiple processors. The decision of what code is right
for parallelism still requires analysis and, ultimately, changing the way you think
about how to solve a particular problem. We touch on some of these aspects of the
parallel computing platform in Hour 23, “Understanding Threads, Concurrency, and
Parallelism.”

Dynamic Language Runtime

The dynamic language runtime (DLR) was introduced in the .NET Framework 4.0
and is an additional runtime environment providing language services and support
for dynamic languages.

Being built on top of the common language runtime means these dynamic lan-
guages can now integrate with other .NET languages. The DLR also enables dynamic
features for existing statically typed languages such as C#, enabling them to support
consistent expressions when working with dynamic objects from any source.

With the inclusion of the DLR, the support for dynamic languages, and enabling
dynamic features in static languages, developers are now free to choose the best lan-
guage possible to solve the task and be certain that other developers and other .NET
languages can easily use the dynamic code they create.

The C# Language

If you are a C, C++, or Java programmer, C# will be immediately familiar because it
shares a similar syntax. If you are already familiar with Visual Basic (any version of
Visual Basic that runs on the .NET Framework, not Visual Basic 6.0 or earlier), the
syntax might seem foreign, but the Framework class library will be familiar. For those
of you who have never worked in any of these languages, you will soon find that
developing with C# is easier than many other languages due to the elegant syntax
and rich class library.

17

GO TO

Hour 21,
“Dynamic Types
and Language
Interoperability,”
covers
integrating with
dynamic
languages in
detail.

18

Dl —

HOUR 1: The .NET Framework and C#

Language Inspiration

As a language, C# has drawn inspiration for its syntax and primary features from
a number of different languages, including Delphi 5, C++, and Java 2.

The generic type system (which you learn more about in Hour 11, “Understanding
Generics”) drew from the generic type systems in Eiffel and Ada. Haskell and Lisp
were the primary inspirations for query comprehensions in LINQ and lambda
expression evaluation (see Hour 12, “Understanding Query Expressions”).

C# also added features found in dynamic languages such as Ruby and functional
languages like F#.

Like many modern programming languages, C# is an object-oriented language and
fully supports the object-oriented programming concepts of inheritance, polymor-
phism, encapsulation, and abstraction. In addition to being an object-oriented lan-
guage, C# also supports component-oriented programming, which enables you to
specify units of functionality (components) that are self-contained and self-document-
ing by presenting a model with properties, methods, events, and metadata about the
component. C# has support for these concepts directly in the language, making it a
natural process to create and use components. If you aren’t familiar with these princi-
ples, we cover the basics in Hour 2.

C# has language features enabling developers to take advantage of the advances and
improvements made in the CLR. Garbage collection automatically manages memory.
Exception handling creates a structured and extensible way to detect and recover
from errors. As a type-safe language, it impossible to have uninitialized variables,
illegally access memory, or store data of one type in a location that can accept only a
different type.

In addition, C# also has language features and syntax designed to reduce the
amount of boilerplate code you must write, making your code less complex and
reducing the chance for making common errors. In some cases, these are nothing
more than simple changes in syntax, simplifying complex or error-prone language
features, and are readily accessible and easily understood; in other cases, these
improvements enable scenarios that are more advanced.

C# continues to evolve with each new release, adding new language features and
syntax, always striving to achieve the goal of making the simple things easy, the dif-
ficult things possible, and the bad things difficult. As C# adds new capabilities, the
simple things become easier, the difficult things become easy, and the things not pre-
viously possible become possible.

The C# Language

Types

In C#, types describe values. Any time you want to use a value, you need a type. As
you saw when you learned about the common type system, a type defines the
allowed values and operations supported by those values. Every value in C# is fully
described by its exact type and is an instance of that exact type. Being fully described
means that the type unambiguously defines both the representation and operations
of a value.

Types in C# are divided into value types and reference types. Value types describe
values that are completely self-contained and include numeric types, enumerated
types, and structures. Reference types, however, store a reference to a value rather
than the actual value.

C# provides many predefined value types and a few predefined reference types. It also
enables you to create your own user-defined types. In upcoming hours, you explore,
in more detail, the difference between value types and reference types and how to cre-
ate your own. For now, however, the most important difference is that a value type is
copied “by value” because it contains the actual value, whereas a reference type con-
tains a reference to the actual data.

Statements and Expressions

A statement is simply a single, complete program instruction that must end with a
semicolon (;). Only specifying a single instruction seems like it would be restrictive,
but C# also gives us the idea of a statement block, which is simply a group of state-
ments enclosed by braces. You can use a statement block anywhere you would nor-
mally use a single statement.

Because statements end with a semicolon, you are free to use whitespace (such as a
space character, tab character, or newline) in a way that helps visually orient your
code. The best approach is to adopt a simple and consistent style (if your company or
team does not already have one) to make your code easier to read and maintain.

Whitespace

Even though the compiler generally ignores whitespace, the whitespace between
a type declaration, its identifier, and any other keywords is important. Without
whitespace here, the compiler can’t distinguish the keywords.

An expression evaluates to a value. If you consider a statement to be a program
action, an expression is a computation. Expressions that result in a Boolean value
(either true or false) are most commonly used to test if one or more conditions are
true and are called Boolean expressions.

19

GO TO

Hour 2, for a
more in-depth
look at the
difference
between value
and reference
types.

Wi —

20

HOUR 1: The .NET Framework and C#

Variables and Constants

The simplest definition for a variable is that it represents a storage location whose
value can change over time. The most common forms of variables are local variables
and fields, both of which are defined by providing a type, an identifier, and, option-
ally, an initial value:

int a;

int b = 1;

If you are declaring multiple variables of the same type, you can combine the decla-
rations, as follows:

int a, b;

When a variable is declared inside of a limited scope (such as a method), it is said to
be a local variable and is accessible by name only from within that scope.

Scope, Declaration Space, and Lifetime

Scope can be thought of as a container in which it is legal to refer to a variable by
its unqualified name. This is different from the declaration space, in which no two
identifiers are allowed to have the same name. If scope defines where you can
use a name, declaration space answers where that name is unique.

The lifetime of a variable is closely connected to its scope and defines how long
the variable will be accessible. A variable is guaranteed to be alive at least as
long as its scope is executing.

You learn about scope and declaration space in more detail in Hour 3, “Under-
standing Classes and Objects the C# Way.”

A field is simply a variable that is not declared inside of a limited scope and can be
associated with either the type itself, in which case it is a static variable (which you
can think of as the equivalent to a global variable), or with an instance of the type,
in which case it is an instance variable. Local variables and fields must be initialized
before they are used and are accessible only while the block containing their declara-
tion is executing.

The code in Listing 1.1 shows a Color type that has private instance fields named
red, blue, and green and public static fields named White, Red, Blue, and Green.

LISTING 1.1 A Color Class

class Color

{
private byte red;
private byte blue;
private byte green;

public Color(byte red, byte blue, byte green)
{

The C# Language

this.red = red;
this.blue = blue;
this.green = green;

}

public static Color White = new Color(@xFF, OxFF, OxFF);
public static Color Red = new Color(@xFF, @, 0);

public static Color Blue = new Color(@, OxFF, 0);
public static Color Green = new Color(@, @, OxFF);

The static fields are initialized at some point before they are used, but afterward,
there is nothing to prevent them from being changed. To accommodate the idea of
declaring a field that cannot be changed after it has been assigned, C# enables you to
create read-only fields.

Listing 1.2 shows the changed lines of the Color class.

LISTING 1.2 A Color Class Using Read-Only Fields

class Color

{
/1
public static readonly Color White = new Color(@xFF, OxFF, OxFF);
public static readonly Color Red = new Color(@xFF, 0, 0);
public static readonly Color Blue = new Color(@, OxFF, 0);
public static readonly Color Green = new Color(@, 0, OxFF);

}

A constant represents a value that can be computed at compile time. Constants are
associated with the type itself, as if they were static. Like variables, constants can be
declared inside of a limited scope or globally. Unlike variables, a constant must
always be initialized when it is declared.

Literal Values and “Magic Numbers”

Literal values are generally numeric values that have special fixed meanings spec-
ified directly in code. Over time, the meaning of these literal values can be lost,
making that part of the code difficult to maintain. As a result, these literals are
often called “magic numbers.” By using constants instead of literal values, the
meaning is preserved, making the code self-documenting.

How long would it take you to figure out what the number means in the following
function?

static float Compute(float f1)

{
return 299792458 / f1;

}

21

GO TO

Hour 3, for more
information on
readonly fields.

ow:

22 HOUR 1: The .NET Framework and C#

Now, if that same function were written using a constant, the meaning of that
“magic number” becomes clear:

static float Compute(float f1)

{
const float SpeedOfLight = 299792458;

return SpeedOfLight / f1;
}

In our example, the value 299792458 is a literal value and would therefore be
considered a magic number. As you might have guessed, constants are preferred
over using just literal values because they have names that can provide more
meaning than just a number, and you can guarantee that its value has not
changed.

A statement that declares a variable or a constant is generally called a declaration
statement and can appear anywhere within a block.

Identifiers and Keywords

When you declare a variable, field, or constant, you must provide both the data type
and a meaningful name called an identifier.

Identifiers must follow these rules:

» Only letters (uppercase and lowercase), digits, and the underscore character
are valid.

» An identifier must begin with a letter or the underscore character, although
using an underscore (or multiple underscores) as the beginning character for
any publicly accessible identifier is considered poor style and should be
avoided.

> Identifiers must be unique within a given declaration space.

» Identifiers are case-sensitive.

Some additional guidelines that should be followed when choosing identifiers are
» Identifiers should be easily readable.
> Identifiers should not use abbreviations or contractions as part of the name.

» Identifiers should convey the meaning or intent as much as possible.

The C# Language

In C#, identifiers are case-sensitive. The recommended naming conventions suggest
using camel casing notation, which capitalizes the first letter of each word except
the first word (for example, bookTitle) for variable and parameter names and
Pascal casing notation, which capitalizes the first letter of each word (for example,
BookTitle) for methods and other identifiers.

Camel and Pascal Casing

Camel casing is so named because the sequence of letters look like the humps
on a camel’s back. Pascal casing was named after the style popularized by the
Pascal programming language (and because Anders was the original designer of
the Turbo Pascal language).

Microsoft no longer recommends using Hungarian notation or using the under-
score character to separate words, both common in other languages.

If you are already familiar with another case-sensitive language, such as C, C++, or
Java, this should feel normal to you. However, if you are coming from a language
that is not case-sensitive, such as Visual Basic, this might take a bit of practice. Fortu-
nately, the Visual Studio 2010 code editor has features that can help make that tran-
sition easier.

Because identifiers define the names of specific elements, it is reasonable that the C#
language also needs to use identifiers to indicate special meaning to the compiler
(and to you), so it has reserved certain identifiers, called keywords, for its own uses.

There are 77 keywords in C# reserved at all times under any circumstance; these are
listed in Table 1.2.

TABLE 1.2 C# Keywords

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto

if implicit in int interface
internal is lock long namespace
new null object operator out

override params private protected public

23

Dl

24

HOUR 1: The .NET Framework and C#

TABLE 1.2 C# Keywords Continued

short sizeof stackalloc static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while

An additional 24 keywords, known as contextual keywords, have special meaning
only in limited circumstances, or context. Outside of that context, these keywords can
be for your own purposes, although to minimize confusion, you should try to avoid
doing so, if possible. The contextual keywords are listed in Table 1.3.

TABLE 1.3 C# Contextual Keywords

add alias ascending by descending
dynamic equals from get global
group into join let on

orderby partial remove select set

value var where yield

Visual Studio 2010

Visual Studio is a complete integrated development environment (IDE) that is actu-
ally made up of many different tools designed with one goal: enabling you to create
innovative, next-generation applications. At heart, Visual Studio includes a powerful
code editor, language compilers (including support for Visual Basic, C#, C++, and F#),
and debugging tools. Visual Studio also includes much more than that:

» Integration with source control systems
» Graphical design tools
» Tools for Microsoft Office, SharePoint, and Cloud development

> Testing tools

Although it is entirely possible to write applications using your favorite text editor
and the command-line utilities that are part of the .NET Framework Software Devel-
oper Kit (SDK), it is not practical to do so. The benefits of the integration of the editing
and debugging tools, combined with the productivity enhancements provided by
Visual Studio, enable you to easily and effectively write and debug your applications.

Visual Studio 2010

Microsoft offers four primary editions of Visual Studio 2010:
> Express
» Professional with MSDN
» Premium with MSDN

» Ultimate with MSDN

The Express editions are free and targeted at VB, C#, C++, or Web development. The
three editions that include MSDN are designed for use in a corporate development
setting and offer additional features and capability.

Throughout this book, the examples and screen images are from Visual C# 2010
Express using Basic settings enabled. If you run one of the Visual Studio with MSDN
editions or Visual C# Express with Advanced settings enabled, the screen images can
look different.

When Visual Studio starts, you see the Start Page, shown in Figure 1.3, which enables
you to access recent projects, create new projects, learn about upcoming product
releases, or read the latest development news.

25

FIGURE 1.3
Visual C# 2010
Express Start
Page

26

FIGURE 1.4
Pinning Recent
Projects

HOUR 1: The .NET Framework and C#

The Start Page is divided into the following sections:

» The command section, which shows the New Project and Open Project com-
mands. This section can also show the Connect to Team Foundation Server
command, if you have installed one of the Visual Studio with MSDN editions.

» The Recent Projects list, which shows the most recently opened projects. Click-
ing one of the projects opens it in Visual Studio. It is also possible to pin a proj-
ect, as shown in Figure 1.4, which keeps it in its current position after other
projects are opened and closed.

> A tabbed content area. The Get Started tab displays a list of help topics and
other resources that can help you learn about the features of Visual Studio. The
Latest News tab lists featured articles from the selected RSS feed.

Solutions, Projects, and Items

Visual Studio uses two concepts to help you organize and interact with your source
code files called solutions and projects.

A project is a collection of source files and related metadata that produce a single
assembly when compiled. A solution includes one or more projects plus additional
files and metadata that define the solution as a whole. Whenever you create a new
project, Visual Studio automatically creates a solution for you. When necessary, you
can add additional projects to that solution. A project can belong to multiple solu-
tions, and complex applications can require more than one solution.

The Solution Explorer, shown in Figure 1.5, displays the solution, the project (or proj-
ects) contained in that solution, and the items for each project, enabling you to eas-
ily view and manage these containers and their associated items.

Most of the time, you interact with the Solution Explorer by double-clicking a project
item, such as a code file, to display it in an editor window or through the context
menu to add or remove items or projects.

Writing Your First Program 27

FIGURE 1.5
Solution Explorer

Writing Your First Program

At this point, you should be familiar enough with the C# language and syntax to
write your first program. If you haven’t already installed Visual Studio 2010, now is
the time to do so. As your first introduction to C#, you will continue the tradition of
starting with a simple application that displays the message “Hello, world” on the
screen.

Creating a Project

Creating the project can be done using the New Project command on the Start Page,
the New Project toolbar button, or the application menu. These three locations are
shown in Figure 1.6.

FIGURE 1.6
New Project
commands

This displays the New Project dialog box, shown in Figure 1.7, which enables you to
specify the name and type of the project.

28 HOUR 1: The .NET Framework and C#

FIGURE 1.7

New Project

dialog
For this first application, you will create a console application named
ConsoleHelloWorld. After you select the project type and provide the name, you can
click the OK button or double-click the project type. This closes the dialog, creates the
project, and displays the default code for that project, as shown in Figure 1.8.

FIGURE 1.8

Default code for
a console appli-
cation

As you can see, Visual Studio has already done some of the work for us and provided
some starting code. Before we start adding our own code, let’s examine the code

Visual Studio generated for us.

Writing Your First Program

At the top of the file (lines 1 to 4) is a list of namespaces (see Figure 1.9). Each name-
space is included by a using directive, which is simply the keyword using followed
by the namespace. Using directives tell the compiler, and us, that we are referencing a
namespace and the types declared in that namespace should be available for use.

Tag NyiTesg]
I Syitem Lolllet booa, Geamric; |

ik L) Tyt L ey
thmg Syrlem. Feni)

Just below the using directives (see Figure 1.10), you declare a namespace named
ConsoleHelloWorld (line 6) and a class named Program (line 8). Inside this class, we
have defined a static function named Main (line 10). We cover classes and methods in
more detail in Hour 3, but for now, think of them as a container whose boundaries
are defined by the opening and closing braces.

Adding Program Statements

Now, you can focus on what we need this application to do. Because you are working
in a console application, you need a way to interact with the console window that
runs our application. By examining the Framework class library, you find a class
named Console, which provides methods for displaying messages and receiving user
input through the keyboard.

To display text in the console window, you need to enter the following statement
between the braces that define Main (lines 11 and 12):

Console.WriteLine("Hello, world");

Your file should now look like Figure 1.11.

LLELR! | HaLag Ay bagt | L L] 1

kel A "l 1, =]

29

FIGURE 1.9
Using directives

FIGURE 1.10
Default
Program.cs
contents

FIGURE 1.11
Adding
Console.
WriteLine

30

FIGURE 1.12
Hello, world

HOUR 1: The .NET Framework and C#

You could have also written this line using the full type name, which is
System.Console. It isn't necessary to do so because of the using directives included at
the beginning of the file. Because these using directives tell the compiler that you
want to use types declared in that namespace, you can use just the type name. If,
however, there were two types with the same name in two included namespaces, the
compiler cannot determine which one to use. In that case, you would still need to use
the full type name.

At this point, you have a complete “Hello, world” application. Although this might
seem like a trivial example, it only appears that way. Keep in mind that a Windows
command prompt is not a managed application, so that single line in your C# pro-
gram encapsulates all the necessary logic to interact with that unmanaged applica-
tion and direct it to display the text you want. To the C# compiler, that seemingly
innocuous line ultimately depends on dozens of types in about a dozen different
namespaces, all provided by the Framework class library.

Saving Projects and Solutions

If you use Visual C# 2010 Express, the project and solution files are created in a
temporary location. When you close Visual C# 2010 Express or click Save or
Save All for the first time, you will be prompted to specify a path where the project
will be saved. If you use one of the Visual Studio with MSDN editions, the project
and solution are automatically saved in the location specified in the New Project
dialog.

Running the Application

If you haven't already done so, run your application by pressing Ctrl+F5. Visual Stu-
dio then saves your file (if you haven't already saved it), compiles it to an applica-
tion named ConsoleHelloWorld.exe, and runs it.

If you entered everything correctly, you should see the message “Hello, world” in a
command window, as shown in Figure 1.12.

The message “Press any key to continue” was added by Visual Studio, so you can
actually see the output. Without it, the application would have run, displayed your
message, and then exited.

Q&A

Summary

Congratulations! You have now successfully written your first C# application.
Whether this was your first managed application as well or simply your first C#
application, these first steps are laying the foundation for what comes later.

At the beginning of the hour, you looked at the .NET Framework and the components
that are part of it. This might have been a little more in-depth than what you were
expecting for the first hour, but having at least a basic understanding of why the .NET
Framework was created and how it is put together is essential to becoming a well-
rounded and successful .NET programmer. Next, you looked at the C# language, learn-
ing about statements, expressions, variables, constants, identifiers, and keywords.

Finally, you took what you had already learned and put it together to create your first
C# application. This might have seemed like a trivial example—after all, how excit-
ing is it to print the words “Hello, world” on the screen—but it is just the beginning.

Throughout the rest of this book, each hour builds upon what you learn from the
previous hours and progresses from learning the fundamentals of C# and how it pro-
vides support for both object-oriented and component-oriented programming, all the
way to learning about more advanced topics such as multithreading and parallel
programming. Along the way, you build a more complete real-world application,
from “soup to nuts” as the saying goes, and you build a solid foundation in C# and
.NET programming on which you can build larger and more complex applications.

Q&A
Q. What is the .NET Framework?

A. The .NET Framework is a platform enabling developers to create and run next-
generation applications and web services in a way that is language- and plat-
form-independent and helps eliminate, or at least reduce, many common
programming errors.

Q. What is the common language runtime (CLR)?

A. The common language runtime (CLR) is the core of the .NET Framework upon
which C# runs.

Q. What is the difference between a managed application and an unmanaged
application?

A. Code written for the .NET Framework is called managed code, whereas any
other code is called unmanaged code.

31

32

HOUR 1: The .NET Framework and C#

Q. What is meant by garbage collection and why is it important?

Garbage collection is a runtime service provided by the .NET Framework that
frees you from having to handle memory allocation and deallocation manu-
ally. This enables you to create more stable applications by preventing many
of those common programming errors and enables you to focus your time on
the business logic your application requires.

Q. What is C#?

C# is an object-oriented, type-safe programming language that runs on
the .NET Framework.

Q. Are C# programs compiled?

Yes, C# programs are compiled at development time to common intermediate
language (CIL). At runtime, they are compiled to executable object code by the
Just-In-Time (JIT) compiler.

Workshop

Quiz

1.

® a0 & 0w b

What are the components of the .NET Framework?

Why is the common type system important?

What is common intermediate language (CIL)?

Why is the Framework class library important?

What does the dynamic language runtime (DLR) provide to C#?

Is the following code valid in C#?

class Program
{
static void Main()

{
const int LettersInEnglishAlphabet = 26

system.console.WriteLine(
"There are {0} letters in the English alphabet.",
LettersInEnglishAlphabet)

7.

8.

Workshop

What is the correct interpretation of the following variable declarations?
int a, b = 1;
Which of the following is not a valid identifier?

A. lightHouse

B. _lighthouse

C. 22lighthouse

D. lighthouse2

Answers

1.

The .NET Framework has four major components: the common language run-
time, framework class library, parallel computing platform, and the dynamic
language runtime.

. The common type system is important because it gives every .NET language

the same description of a type and defines how that type can be used, which
enables language integration.

. Common intermediate language is the low-level language into which man-

aged code is partially compiled. You can think of common intermediate lan-
guage like assembly language; it is made up of individual, low-level
instructions that represent your code.

. The Framework class library provides a rich set of reusable types available to

all .NET languages and enables you to achieve a high level of developer pro-
ductivity by simplifying many common programming tasks.

. The DLR enables C# to work with dynamic objects from any source (COM, Iron-

Ruby, IronPython, and JavaScript, to name a few) using a consistent syntax.

. No, the code shown is not valid C# for two reasons. First, none of the state-

ments end in a semicolon (;). Second, the correct type name is
System.Console.WriteLine not system.console.WriteLine because C# is a
case-sensitive language.

. Combining multiple variable declarations and initial value assignments like

this is dangerous because it can be ambiguous. The correct interpretation of
this statement is equivalent to the following:

int a;
int b = 1;

. The correct answer is C. Identifiers cannot start with a number.

33

34 HOUR 1: The .NET Framework and C#

Exercise

1. Explore what else is available in the System.Console class by changing the
“Hello, world” application to ask for your name and output “Hello, name.”,
where name is text entered while the program is running.

HOUR 2

Understanding C# Types

What You’ll Learn in This Hour:

» An Overview of Types

The C# Predefined Types
Operators

Value and Reference Types
Nullable Types

vV vYVvyyvwvyy

Type Conversion

In Hour 1, “The .NET Framework and C#,” you were introduced to the fundamentals
of the .NET Framework and C#, including the framework class library, the common
language runtime, and the idea of automatic memory management. You briefly
learned about namespaces and types and then moved on to statements, expressions,
variables, constants, identifiers, and keywords. From those humble beginnings, you
then built a simple C# application.

Building on what you have already learned, this hour introduces you to the prede-
fined types offered by C# and the different operations that you can perform using
them. You then learn about value and reference types. After that, you see nullable
types and learn about type conversion.

At the end of this hour, you should have a thorough understanding of the C# types,
including the difference between value, reference, and nullable types. You wrote
some more advanced applications that can store and manipulate simple data.

36 HOUR 2: Understanding C# Types

Types

GOTO C# is both a type-safe and statically typed language. These concepts go hand-in-

Hour 11, hand and require you to inform the compiler of the data type for any variable you
“Understanding
Generics,” for
more information type in that variable. This helps prevent common programming errors, leading to a
on type
parameters.

create. In return, the compiler guarantees that you can only store a compatible data

more stable and secure application.

Types are divided into three main categories:
> Value types
> Reference types

> Type parameters

Didyou, | pojinters

There is actually a fourth category of type, called a pointer, which is not part of
the core C# language. A pointer type contains the actual location (called an
address) of an item in memory. Pointers also allow arithmetic operations as if the
value were a number. Although pointers are powerful, they can also be difficult to
use correctly and safely.

There are times, however, when using pointers might be required. Fortunately,
almost all those times are situations that are more advanced and not something
that we need to worry about on a regular basis. Some of those situations can
include directly interacting with the underlying operating system or implementing
an extremely time-critical algorithm.

To allow the flexibility (and danger) of pointers, C# enables you to write unsafe
code in which it is possible to create and operate on pointers. When using unsafe
code and pointers, be aware that the garbage collector does not track pointers,
so you must handle the memory allocation and deletion yourself. In a way, it’s like
writing C code in a C# program.

By disallowing pointer types except in explicit unsafe code blocks, C# can elimi-
nate an entire category of common errors, making it a much safer language.

Put simply, a value type is completely self-contained and copied “by value.” This
means that variables of a value type directly contain their data, and it is not possible
for operations on one to affect the other. Value types are further categorized into
structures, enumerated types, and nullable types.

A reference type contains a reference to the actual data, meaning it is possible for two
variables to reference the same object, allowing the possibility that operations on one
will affect the other. Reference types are further categorized into classes, arrays, inter-

faces, and delegates.

Predefined Types

types.

Unified Type System

Despite this division between types, C# has a unified type system, enabling the
value of any non-pointer type to be treated as an object. This gives value types
the benefits a reference type has without introducing unnecessary overhead and
makes it possible to call object methods on any value, even predefined value

Predefined Types

The C# language predefines a set of types that map to types in the common type sys-
tem. If you are familiar with another programming language, the names of these
types might be different, but you can easily see the correlation. All the predefined
types are value types except for object and string. The predefined types are shown
in Table 2.1.

TABLE 2.1 Predefined C# Types

Aliased

Keyword Type Description Range

bool Boolean Logical Boolean true or false

byte Byte Unsigned 8-bit integer 0 to 255

char Char A single 16-bit Unicode U+0000 to U+FFFF
character

decimal Decimal A 128-bit data type (=7.9 x10% to 7.9 x 10%) / (10°%2¥)
with 28-29 significant
digits

double Double Double-precision 64-bit +5.0 x 10°* to £1.7 x 10
floating point up to
15-16 digits

float Single Single-precision 32-bit +£1.5 x 10 to £3.4 x 10
floating point up to
7 digits

int Int32 Signed 32-bit integer —2%1t0 2% -1

long Int64 Signed 64-bit integer —-2%%102% -1

sbyte SByte Signed 8-bit integer -128 to 127

short Int16 Signed 16-bit integer -32,768 to 32,767

uint UInt32 Unsigned 32-bit 0 to0 4,294,967,295

integer

37

Bxﬂg;—

38

HOUR 2: Understanding C# Types

TABLE 2.1 Predefined C# Types Continued

Aliased
Keyword Type Description Range

ulong UInte4 Unsigned 64-bit integer 0 to 18,446,744,073,
709,551,615

ushort UInti6 Unsigned 16-bit integer 0 to 65,535
object Object Base type of all other N/A

value and reference
types, except interfaces

string String A sequence of Unicode N/A
characters

By including a type to directly represent Boolean values (values that are either true
or false), there is no ambiguity that the value is intended to be a Boolean value as
opposed to an integer value. This helps eliminate several common programming
errors, making it easier to write self-documenting code.

Boolean Values

In C, Boolean values are represented as an integer value, and it is left up to the
programmer to decide if 0 means true or false. Typically, C programs define
named constants representing the integer values of O and 1 to help eliminate this
ambiguity, but this still allows any integer value to be used.

The decimal type provides at least 28 significant digits and is designed to have no
representation error over a wide range of values frequently used in financial calcula-
tions. The range of values the double type can represent with no representation error
is a set used primarily in physical calculations.

The object type is the underlying base type for all the other reference and value
types. The string type represents a sequence of Unicode code units and cannot be
changed once given a value. As a result, values of type string are immutable.

All the predefined types are CLS-compliant except the unsigned integer types and the
sbyte type. You can use these types and still be CLS-compliant as long as they are
not publicly accessible. If you do need to make one of these types publicly accessible,
they can safely map to a CLS-compliant type:

» sbyte maps to short.

» uint normally maps to long but can be mapped to int when the original
value is less than 2,147,483,647.5.

Predefined Types

> ulong normally maps to decimal but can be mapped to long when the origi-
nal value is less than 9,223,372,036,854,775,807.5.

» ushort normally maps to int but can be mapped to short when the original
value is less than 32,767.5.

System.Object

All the value types and the class, array, and delegate reference types derive from
object. Interface types can derive only from other interface types, but they are
convertible to object.

Type parameter types actually do not derive from anything, but they are still con-
vertible to object.

Unsafe pointer types neither derive from nor are convertible to object because
they are outside the normal type rules for C#.

All this actually means that every nonpointer type in C# is convertible to, but
might not derive from, object.

C# also has some special types, the most common being the void type. The void type
indicates the absence of a type. The dynamic type is similar to object, with the pri-
mary difference being all operations on that type will be resolved at runtime rather
than compile time.

Although void and dynamic are types, var represents an implicitly typed variable
and tells the compiler to determine the real type based on the assigned data.

Var Is Not Short for Variant

When the var type was first introduced, many people thought it was equivalent to
the Visual Basic Variant type. A Variant is a type that can be used to represent
any other data type and is not strongly typed. A var type is still strongly typed
because it is replaced with a real data type during compilation. Even so, overus-
ing it can decrease the understandability of your code, so use it carefully.

39

D

Wyt —

Try It Yourself

Working with the Predefined Types

Now that you are familiar with the predefined types, let’s see how to use them. By
following these steps, you write an application that creates some local variables
and displays their values. Then you create an implicitly typed variable and verify
that it actually creates a strongly typed variable.

40

FIGURE 2.1
Output of work-
ing with prede-
fined types

FIGURE 2.2
Tooltip showing a
var as an int

HOUR 2: Understanding C# Types

10.

Create a new Console application.

In the Main method of the Program. cs file, enter the following code:

int i = 20;
float f = 20.2f;
string s = "Hello, world...again";

Console.WriteLine("This is an {0} value: {1}", i.GetTypeCode(), i);
Console.WriteLine("This is a {@} value: {1}", f.GetTypeCode(), f);
Console.WriteLine("This is a {0} value: {1}", s.GetTypeCode(), s);

Run the application by pressing Ctrl+F5; you should see the following in the
console window, as shown in Figure 2.1.

Press any key to close the console and return to Visual Studio.

. Enter the following code in the Main method, just after the previous code:

var v = 20;
Console.WriteLine("This is also an {0} value: {1}", v.GetTypeCode(), V);

. Hover the mouse cursor over the var keyword until the tooltip is displayed,

which confirms that v is actually an int, as shown in Figure 2.2.

[enr v = 35 |
| pkrimt Spates. ErdiE
Erprwerein 8 J1-Elt sigrsd Lefager

. Press Ctrl+F5 again to run the application, and you should now see an addi-

tional line appear:

This is also an Int32 value: 10

. Press any key to close the console and return to Visual Studio.

. Enter the following line in the Main method:

v = "hello";

You should immediately notice a red “squiggly” line under the statement you
just entered and an error message stating that you Cannot Implicitly

Predefined Types

Convert Type 'string' to 'int'. This error occurs because the compiler has
already assigned v to be of type int and the strong-typing capabilities of C#
prevent you from assigning a string value to the same variable, which is an
incompatible type.

11. Remove the line you entered from step 9 so your program compiles again.

41

Other Commonly Used Types

In addition to the standard predefined types, the .NET Framework provides types for
other commonly used values. These types do not have aliases in C# like the prede-
fined types but allow the same operations.

Date and Time

Working with date and time values is done with the DateTime structure, which
enables you to create values that represent a date and a time, just a date, or just a
time value. The two most common ways to create a new DateTime value are to use
one of the various constructor overloads or one of the four static parse methods:
Parse, ParseExact, TryParse, or TryParseExact.

The DateTime structure provides several properties; the most common are shown in
Table 2.2.

TABLE 2.2 Common DateTime Properties

Property Description

Date Gets the date component of the current instance

Day Gets the day of the month represented by the current instance

DayOfWeek Gets the day of the week represented by the current instance

Hour Gets the hour component of the date represented by the current
instance

Minute Gets the minute component of the date represented by the
current instance

Month Gets the month component of the date represented by the current
instance

Now Gets a DateTime object that is set to the current date and time,

in the local time zone
TimeOfDay Gets the time of day for the current instance

Today Gets the current date

42

HOUR 2: Understanding C# Types

TABLE 2.2 Common DateTime Properties Continued

Property Description

UtcNow Gets a DateTime object that is set to the current date and time,
in Coordinated Universal Time (UTC)

Year Gets the year component of the date represented by the current
instance

When adding or subtracting date or time values, you can use instance methods,
which return a new DateTime value rather than modifying the original one. The
common DateTime arithmetic methods are shown in Table 2.3.

TABLE 2.3 Common DateTime Arithmetic Methods

Method Description

AddDays Adds or subtracts the specified number of days
AddHours Adds or subtracts the specified number of hours
AddMinutes Adds or subtracts the specified number of minutes
AddMonths Adds or subtracts the specified number of months
AddYears Adds or subtracts the specified number of years

It is also possible to subtract two DateTime values using the subtraction operator,
which results in a TimeSpan instance. A TimeSpan represents an interval of time
measured as a positive or negative number of days, hours, minutes, seconds, and
fractions of a second. To ensure consistency, time intervals are measured in days. You
can also add a TimeSpan to or subtract a TimeSpan from a DateTime, both of which
result in a new DateTime value.

The common methods and properties of TimeSpan are shown in Table 2.4.

TABLE 2.4 Common TimeSpan Members

Name Description

Add Adds the specified TimeSpan to the current instance

Days Gets the days component of the time interval represented by
the current TimeSpan

FromDays Returns a TimeSpan that represents a specified number of days

FromHours Returns a TimeSpan that represents a specified number of

hours

Predefined Types

TABLE 2.4 Common TimeSpan Members

Name Description

FromMilliseconds Returns a TimeSpan that represents a specified number of
milliseconds

FromMinutes Returns a TimeSpan that represents a specified number of
minutes

FromSeconds Returns a TimeSpan that represents a specified number of
seconds

Hours Gets the hours component of the time interval represented by
the current TimeSpan

Milliseconds Gets the milliseconds component of the time interval
represented by the current TimeSpan

Minutes Gets the minutes component of the time interval represented
by the current TimeSpan

Seconds Gets the seconds component of the time interval represented
by the current TimeSpan

Subtract Subtracts the specified TimeSpan from the current instance

TotalDays Gets the value of the current TimeSpan expressed as whole and
fractional days

TotalHours Gets the value of the current TimeSpan expressed as whole and
fractional hours

TotalMilliseconds Gets the value of the current TimeSpan expressed as whole and
fractional milliseconds

TotalMinutes Gets the value of the current TimeSpan expressed as whole and
fractional minutes

TotalSeconds Gets the value of the current TimeSpan expressed as whole and

fractional seconds

Globally Unique Identifiers (GUIDs)

A GUID is a 128-bit integer value that can be used whenever a unique identifier is
required that has a low probability of being duplicated. The System.Guid structure
enables you to create and compare GUID values. The common members are shown

in Table 2.5.

43

44

HOUR 2: Understanding C# Types

TABLE 2.5 Common Guid Members

Name Description

CompareTo Compares the current instance to the specified Guid

Empty A read-only instance representing a Guid whose value is
guaranteed to be all zeros

NewGuid Creates a new instance of the Guid id structure

Parse Converts the string representation of a GUID into the equivalent

Guid instance

TryParse Converts the string representation of a GUID into the equivalent
Guid instance, indicating if the conversion was successful

Uniform Resource Identifiers (URIs)

A Uniform Resource Identifier (URI) is a compact representation of a resource avail-
able on the intranet or the Internet and can be an absolute URI (like a web page
address) or a relative URI that must be expanded with respect to a base URI.

The Uri class enables you to create new URI values and access the parts of a URI, and
provides methods for working with URIs, such as parsing, comparing, and combin-
ing. Some of the common members are shown in Table 2.6.

TABLE 2.6 Common Uri Members

Name Description
AbsoluteUri Gets the absolute URI
Compare Compares the specified parts of two URI instances using the

specified comparison rules
EscapeUriString Converts a URI string to its escaped representation
IsFile Gets a value indicating whether the specified Uri is a file URI
LocalPath Gets a local operating-system representation of a filename
MakeRelativeUri Determines the difference between two Uri instances

TryCreate Creates a new Uri but does not throw an exception if the Uri
cannot be created

An instance of the Uri class is immutable. To create a modifiable URI, use the
UriBuilder class. The UriBuilder class enables you to easily change the properties
of a URI without creating a new instance for each modification. All the properties

Predefined Types

shown in Table 2.7 are common to both Uri (where they are read-only) and
UriBuilder except for the Uri property, which is only available on UriBuilder.

TABLE 2.7 Common Uri and UriBuilder Properties

Name Description

Fragment Gets or sets the fragment portion of the URI

Host Gets or sets the hostname or IP address of a server

Password Gets or sets the password associated with the user who
accesses the URI

Path Gets or sets the path to the resource defined by the URI

Port Gets or sets the port number of the URI

Query Gets or sets any query information included in the URI

Scheme Gets or sets the scheme name of the URI

Uri Gets the Uri instance constructed by the specified UriBuilder
instance

UserName Gets or sets the username associated with the user who

accesses the URI

Listing 2.1 shows how to use the UriBuilder class.

LISTING 2.1 Working with UriBuilder

Uri immutableUri = new Uri("http://www.example.com");
Console.WritelLine(immutableUri);

UriBuilder mutableUri = new UriBuilder (immutableUri);
Console.WriteLine(mutableUri);

mutableUri.Scheme = "https";
mutableUri.Host = "www.example.com";
mutableUri.Path = "exampleFile.html";
Console.WritelLine(mutableUri);

Biginteger

The System.Numerics.BigInteger type represents an arbitrarily large integer value
that has no theoretical upper or lower bound. When a BigInteger instance has been
created, you can use it just as you would any of the other integer types, enabling you
to perform basic mathematical operations and comparisons.

45

46

HOUR 2: Understanding C# Types

The BigInteger structure also includes members that correspond directly to members
of the other integral types but also adds members that correspond to methods pro-
vided by the Math class and some that are specific to working with BigInteger

instances. The common members are shown in Table 2.8.

TABLE 2.8 Common BigInteger Members

Name Description
Abs Returns the absolute value of a BigInteger value
DivRem Returns both the quotient and remainder of a division

GreatestCommonDivisor

IsEven

IsOne

IsZero

Max

Min

MinusOne

One

Remainder

Sign

Zero

operation

Returns the greatest common divisor of two
BigInteger values

Indicates if the current BigInteger value is an even
number

Indicates if the current BigInteger value is
BigInteger.One

Indicates if the current BigInteger value is
BigInteger.Zero

Returns the larger of two BigInteger values
Returns the smaller of two BigInteger values

Gets a value that represents the number negative
one (-1)

Gets a value that represents the number one (1)

Performs an integer division on two BigInteger values
and returns the remainder

Gets a number indicating the sign of the current
BigInteger value

Gets a value that represents the number zero (0)

Listing 2.2 shows some of the ways you can use the BigInteger type.

LISTING 2.2 Working with BigInteger

BigInteger b1 = new BigInteger(987321.5401);

BigInteger b2

(BigInteger)435623411897L;

BigInteger b3 = BigInteger.Parse("435623411897");

Console.WriteLine(BigInteger.Pow(Int32.MaxValue, 2));

Console.WriteLine (b2 == b3);

Console.WriteLine(BigInteger.GreatestCommonDivisor (b1, b2));

Operators

Operators

C# supports a wide variety of operators, but we only cover the more commonly used
ones. An operator is a special symbol that indicates which operation to perform in
an expression. All the C# predefined types support operators, although not all types
support the same operators.

Table 2.9 shows all the C# operators in order of precedence. Within each category,

operators have equal precedence.

TABLE 2.9 Operators and Operator Precedence in C#

Category Operators

Primary x.y f(x) a[x] x++ x-- new typeof checked
unchecked ->

Unary + - | ~ ++x --x (T)x true false & sizeof

Multiplicative * /%

Additive + -

Shift << >>

Relational and Type Testing < > <= >= is as

Equality == I=

Logical AND &

Logical XOR ~

Logical OR !

Conditional AND &&

Conditional OR n

Conditional ?:
Assignment = 4= -= *= [= %= &= |= "= <<= >>=
Null-Coalescing ??
Lambda =>

Arithmetic and Assignment Operators

You have already seen the assignment operator (=) in many of the previous exam-
ples. This operator simply stores the value of the right operand in the variable indi-
cated by its left operand. Both operands must be the same type or the right operand
must be implicitly convertible to the type of the left operand.

47

48

HOUR 2: Understanding C# Types

C# provides arithmetic operators that support the standard mathematical operations
of addition (+), subtraction (-), multiplication (*), and division (/). Subtle differences
exist between the behavior of the C# arithmetic operators and the arithmetic rules
you learned in school. In particular, integer division behaves a bit differently depend-
ing on the data types you are dividing. When dividing one integer by another, the
result is an integer. Any remainder is discarded, and the result is rounded toward
zero. To obtain the remainder of an integer division, you must use the modulus oper-
ator (%).

C# also supports a compound assignment operator, which combines an arithmetic
operation and an assignment in a single operator. A corresponding operation (+=,-=,
*=, [=) exists for each of the standard arithmetic operators and the modulus operator
(%=), which combine addition, subtraction, multiplication, division, and modulus
division with assignment.

For example, suppose you need to increment a variable by one. Using the standard
arithmetic operators, such an action would typically look like this:

i=i+

However, by using the addition compound assignment operator, this operation could
be performed like this:

i+=1;

Taking this simplification even further, you can increment or decrement a value by 1
using the increment (++) and decrement (--) operators. The increment and decre-
ment operators can occur before (prefix) or after (postfix) the variable being modified
and change the contents of that variable by one. The prefix form results in the value
of the variable as it was before the change occurred, whereas the postfix form results
in the changed value.

All the operations shown in Listing 2.3 are equivalent and show how to use the basic
operators, the compound assignment operators, and the increment operators.

LISTING 2.3 Incrementing a Value

=1i+1;
=1;
i++;

i
i

+

Operators

49

Try It Yourself

Arithmetic Operators

To examine how the assignment, addition, compound assignment, and increment
and decrement operators behave, follow these steps. For the increment and decre-
ment operators, you explore the difference in behavior between a prefix operation
and a postfix operation.

1. Create a new Console application.

2. In the Main method of the Program.cs file, enter the following code:

int i = 20;
Console.WriteLine("i = {0}", 1i);

i=1+1;
Console.WriteLine("i = {0}", 1i);

i+=2;

Console.WriteLine("i = {0}", 1i);

Console.WriteLine("i = {0}.", --i);

Console.WriteLine("i was {@}, but now is {1} again.", i++, 1i);

3. Run the application by pressing Ctrl+F5; you should see the following lines in
the console window, as shown in Figure 2.3.

4. Press any key to close the console and return to Visual Studio.

FIGURE 2.3
Output of work-
ing with the arith-
metic operators

Relational Operators

The relational operators, shown in Table 2.10, are used when comparing two values
and result in a Boolean value.

In many programming languages, the assignment and equality operators are easily
confused because they use the same symbol. This confusion can result in accidental
assignments, which remains one of the more common programming mistakes today.
To help minimize the possibility for confusion, C# defines a different operator for

equality (==).

HOUR 2: Understanding C# Types

TABLE 2.10 Relational Operators in C#

Name Operator Expression Result
Equals == X == 20 true
y == 30 false
Not Equals |= x 1= 20 false
y != 30 true
Greater Than > X >y true
y > X false
Greater Than or Equals >= X >=y true
y >= X false
Less Than < X <y false
y < X true
Less Than or Equals <= X <=y false
y <= X true

Assuming x =20 and y = 10.

Logical Operators

The logical operators, shown in Table 2.11, evaluate Boolean expressions that result
in either true or false.

TABLE 2.11 Logical Operators in C#

Name Operator Expression Result

And (Conditional) && (x == 20) && false, both expressions must
(y == 30) be true

And (Logical) & (x == 20) & false, both expressions must
(y == 30) be true

Or (Conditional) i (x == 20) true, either or both
(y == 30) expressions must be true

Or (Logical) ' (x == 20) ,; true, either or both
(y == 30) expressions must be true

Or (Exclusive) 8 (x == 20) * true, the expressions are both

(y == 30) different

Operators

TABLE 2.11 Logical Operators in C#

Name Operator Expression Result
Not ! I(x == 30) true, the expression must be
false

Assuming x = 20 andy = 10.

The rules for the logical operators can be easily summarized, assuming an x and y
that are Boolean expressions, as shown in Table 2.12.

TABLE 2.12 Logical Operators Truth Table

X Y X&&Y XY XAY
true true true true false
true false false true true
false true false true true
false false false false false

51

Try It Yourself

Relational and Logical Operators

By following these steps, you verify the expressions shown in Table 2.10 and
Table 2.11.

1. Create a new Console application.

2. In the Main method, declare two integer variables named x and y and initialize
them to 20 and 10, respectively.

3. Using the expressions from Table 2.10 and Table 2.11, write a series of
Console.WritelLine statements using the following format, where expression
is replaced with the correct expression from the tables:

Console.WriteLine("expression: {@}", expression);

4. Run the application by pressing Ctrl+F5, and observe that the results match
what is shown in the results column of both tables.

52

Bxﬂg;—

WEt—

HOUR 2: Understanding C# Types

Short-Circuit Evaluation

In C#, the conditional logical operators perform short-circuit evaluation, or mini-
mal evaluation, which means that additional expressions are evaluated only if the
first expression would not result in the entire expression being false. The logical
operators do not perform short-circuit evaluation.

When short-circuit evaluation is in effect, if the first expression of an AND opera-
tor is false, it is not necessary to evaluate any additional expressions because
the entire expression will be false. Similarly, if the first expression of an OR oper-
ator is true, it is not necessary to evaluate any additional expressions because
the entire expression will be true. It is only when the first expression is not suffi-
cient to determine the result of the entire expression that the additional expres-
sions will be evaluated.

Conditional Operator

The conditional operator (also called a ternary operator, or ternary if, because it
takes three terms) is useful for writing concise expressions and evaluates a condition
returning one of two values depending on the result.

The conditional operator has the following form:

condition ? consequence : alternative

When condition is true, the consequence is evaluated and becomes the result.
However, when condition is false, the alternative is evaluated and becomes the
result instead.

Common Problems with the Ternary Operator

This operator is right-associative, different than most of the other operators which
are left-associative. This means an expression like

a?b:c?d:e

is evaluated as
a?bz:(c?2d:e)

The type of the conditional expression is determined only from the types of the
consequence and alternative, not from the type to which it is being assigned.
Ultimately, this requires that the consequence and alternative be of the same
type, which means an expression like

object x = b ? 0 : "hello";

won’t compile because the types of the consequence and alternative are int
and string.

Although this code isn’t practical and should probably never be used outside of
this example, the correct way to write this would be
object x = b ? (object)® : (object)"hello";

Null and Nullable Types 53

Default Values

You learned earlier that C# does not allow you to use an uninitialized variable, which
means the variable must have a value before you use it. Although this idea of
definite assignment helps reduce errors, because it is enforced by the compiler, it can
be cumbersome if you have to explicitly provide a default value for every field.

To alleviate this burden, fields, or member variables, are always initially assigned
with an appropriate default value. Table 2.13 shows the default value for the different
predefined data types.

TABLE 2.13 Default Values

Type Default
sbyte, byte, short, ushort, int, uint, long, ulong 0

char "\x0000'
float 0.0f
double 0.0d
decimal 0.0m
bool false
object null
string null

As you can see, for the integral value types, the default value is zero. The default
value for the char type is the character equivalent of zero and false for the bool
type. The object and string types have a default value of null, representing a null
reference that literally is one that does not refer to any object.

Null and Nullable Types

These default values mean that a value-type cannot be null, which at first glance
might seem reasonable. However, it presents certain limitations when you work with
databases, other external data sources, or other data types that can contain elements
that might not be assigned a value. A classic example of this is a numeric field in a
database that can store any integer data or might be undefined.

Nullable types provide a solution to this problem. A nullable type is a value type
that can represent the proper value range of its underlying type and a null value.
Nullable types are represented by the syntax Nullable<T> or T? where T is a value

54

HOUR 2: Understanding C# Types

type. The preferred syntax is T?. You assign a value to a nullable type just as you
would a non-nullable type:

int = 10;
int? = 10;
int? = null;

To access the value of a nullable type, you should use the GetValueOrDefault
method, which returns the assigned value, or, if the value is null, the default value
for the underlying type. You can also use the HasValue property, which returns true
if the variable contains an actual value, and the Value property, which returns the
actual value or results in an exception if the value is null.

All nullable types, including reference types, support the null-coalescing operator
(??), which defines the default value to be returned when a nullable type is assigned
to a non-nullable type. If the left operator is null, the right operator is returned; oth-
erwise, the left operator is returned. Listing 2.4 shows how the null-coalescing opera-
tor can be used.

LISTING 2.4 Null-Coalescing Operator

int? x = null;
Console.WriteLine(x ?? -1);

X = 3;
Console.WriteLine(x ?? -1);

string s = null;
Console.WriteLine(s ?? "Undefined");

Try It Yourself

Working with Nullable Types

To examine how to work with nullable types, follow these steps. You create a nul-
lable int, making use of HasValue, Value, and GetValueOrDefault() and the
implicit conversion between a nullable int and a non-nullable int.

1. Create a new Console application.

2. In the Main method, declare an integer variable named x and initialize it to 10.
Then declare a nullable integer named nx and initialize it to null.

3. Enter the following statements:
Console.WriteLine("nx has a value? {@}", nx.HasValue);

Console.WriteLine("x == nx: {0}", x == nx);
Console.WriteLine("x != nx: {@}", x != nx);

Casting and Conversion

4. Now, set nx equal to 20, and enter the following statements:

Console.WriteLine
Console.WritelLine
Console.WriteLine
Console.WritelLine

"nx has a value? {0}", nx.HasValue);
"nx has the value {0}", nx.Value);

x == nx: {0}", X == nx);

x !=nx: {0}", x != nx);

5. Set nx equal to null and enter the following statements:

Console.WriteLine("nx
Console.WriteLine("nx
Console.WriteLine("nx

{0}", nx ?? -1);
{0}", nx.GetValueOrDefault());
{0}", nx.GetValueOrDefault(-2));

6. Finally, set nx equal to 10 and enter the following statements:

Console.WriteLine("nx
Console.WriteLine("nx
Console.WriteLine("nx

{0}", nx ?? -1);
{0}", nx.GetValueOrDefault());
{0}", nx.GetValueOrDefault(-2));

7. Run the application by pressing Ctrl+F5 and observe that the output is the
same, as shown in Figure 2.4.

8. Press any key to close the console and return to Visual Studio.

55

FIGURE 2.4
Output of work-
ing with nullable
types

Casting and Conversion

Now that you know about value types and reference types, what happens when you
need a value type to act like a reference type?

Earlier you learned that, as part of the unified type system, all value types are con-
vertible to object. When a value type variable needs to be used as a reference type,
an object “box” is automatically created, and the value is copied into the box. When
boxed, operations on one do not affect the other. When an object box is changed back
to its original value type, the value is copied out of the box and into the variable.

56 HOUR 2: Understanding C# Types

B"ﬂ%‘;— Boxing and Unboxing Operations

Although conversions between value types and reference types are usually
called casts because they use the C# cast operator, the CIL instructions are
box and unbox. As a result, these conversions are also called boxing and unbox-
ing operations.

A boxing conversion is always implicit and converts a value type to a reference
type. An unboxing conversion is always explicit and converts a boxed value type (a
reference type) back to a value type.

Boxing and unboxing operations are expensive in terms of resources and over-
head, so you should try to avoid them whenever possible and ensure that you use
the correct type to solve your problem.

All the predefined types support implicit conversions that always succeed, shown in
Table 2.14. These implicit conversions are allowed because when converting from the
original numeric type to the new numeric type, no magnitude can be lost.

D"ﬁ,—’!gl#?— Implicit Conversion

An implicit conversion can lose precision but should never lose magnitude. Con-
sider converting a large int value to a float. Both are 32 bits, but not every
large int can be exactly represented as a float, which results in a loss of preci-
sion. However, because the range of float is strictly greater than that of int, the
conversion can be performed with no loss of magnitude.

TABLE 2.14 Implicit Conversions on the Predefined Types

From To

short wushort int uint long ulong float double decimal

sbyte v v v 4 v 4
byte v v v v v v v v
short v v v v v
ushort v v v v v v v
int v v v v
uint v 4 v 4 v
long v v v
ulong v v v
char v 4 v 4 v 4 v v
float v

Casting and Conversion

An explicit conversion is required when there is the possibility of precision being lost
as the result of the conversion operation, and requires you to specify the type to
which you are converting the original value. The form of an explicit conversion,
shown in Figure 2.5, is (T)E, which performs an explicit conversion of the value of E

to type T.

The problem with explicit conversion is that if you are not careful, you can end up
with code that compiles, but fails at runtime. An explicit conversion tells the compiler
that you are certain the conversion will succeed, and if it doesn’t, a runtime error is
acceptable.

To reduce the possibilities of an explicit conversion failing at runtime, C# provides the
as operator, which looks like e as T, where e is an expression and T must be a refer-
ence type or a nullable type. The as operator tells the compiler that there is sufficient
reason to believe the conversion will succeed an attempt to convert the value to the
specified type, returning the value as T or null if the conversion was unsuccessful.

To take advantage of the as operator, the code from Figure 2.5 can be rewritten like this:

int? i = 36;
object boxed = i;
int? j = boxed as int?;

Try It Yourself

FIGURE 2.5
Anatomy of
an explicit
conversion

57

Conversions

By following these steps, you explore how to use conversions by converting a value
type to a reference type. The application demonstrates how operations on value
types, reference types, and boxed value types affect each other.

1. Create a new Console application.

2. In the Main method, declare an integer variable named i and initialize it to 36.
Then declare an object named boxed and initialize it to i.

58

FIGURE 2.6

Output of box-

ing, unboxing,
and casts

HOUR 2: Understanding C# Types

3. Enter two Console.WritelLine statements to display the value of i and the
value of boxed.

4. Increment the value of boxed by 2, making use of an explicit cast.

5. Duplicate the two Console.WriteLine statements entered from step 3 to verify
that the value of i has not changed while the value of boxed has.

6. Now, increment the value of i by 1 and duplicate the two Console.WritelLine
statements from step 3 to verify that the value of i has changed while the
value of boxed has not.

7. Set the value of i to the new value of boxed, again using an explicit cast.

8. Finally, declare two nullable integers named h and j, initializing h to null and
j to 1 and an object named jboxed initialized to j.
9. Enter the following code:

Console.WriteLine("h has a value? {0}", h.HasValue);
h = jboxed as int?;
Console.WriteLine("h now has the value {0}", h.Value);

10. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 2.6.

11. Press any key to close the console and return to Visual Studio.

Summary

Continuing to build your C# foundation, you have explored the predefined types pro-
vided by C# and learned about the rich set of operations you can perform on them.
You then learned about value and reference types, including how you can treat a
value type as a reference type and how to create a nullable type.

Q&A

You have written a few more simple C# applications to explore how these concepts
work. Although these applications might not be glamorous, they help to complete
your foundation, enabling you to build applications that are more advanced. As your
foundation in C# grows, the examples and exercises expect you to do more work.

Q. What does being statically typed mean?

A. C# is a statically typed language, so you must always inform the compiler of
the data type for any variable you create. In return, the compiler guarantees
that you can store only compatible data in that variable.

Q. Does C# have pointers?

A. C# does actually have pointer types, although they are not part of the core lan-
guage. Pointers are available only in the context of unsafe code.

Q. Why is the unified type system in C# important?

A. By providing a unified type system, C# enables the value of any type to be
treated as an object without unnecessary overhead.

Q. Are all the predefined types CLS-compliant?

A. No, the unsigned integer types and the sbyte type are not CLS-compliant. There
are CLS-compliant types that can be used in place of these types, if necessary.

Q. Is a variable declared using var strongly typed?

A. Yes, a variable declared using var is still strongly typed because you let the
compiler fill in the real type during compilation. var is not equivalent to the
Visual Basic Variant type.

Q. What is the difference between a value type and a reference type?
A. Value types directly contain their data, whereas reference types contain a refer-
ence to their data.

Q. Can value types be null?

A. All value types are either nullable or non-nullable. A nullable value type can
be either null or a value of its underlying non-nullable type. A non-nullable
value type cannot be null.

59

60 HOUR 2: Understanding C# Types

Q.
A.

Why should you avoid boxing and unboxing operations when possible?

You should avoid boxing and unboxing operations when possible because they
are expensive in terms of resources and overhead.

Workshop

Quiz

1.

N o o & 0 BN

9.

10.

What are the three primary groups C# types are divided into?
Which predefined type is useful for financial calculations and why?
What is a base type for all the predefined types?

Why is the inclusion of a distinct bool type important?

Is all string and character data stored as Unicode?

What are the implications of strings being immutable?

What is the difference between a prefix increment and a postfix increment
operation?

Can the null-coalescing operator (??) be used with reference types and nullable
value types?

Explain what happens during a boxing operation.

Can a long be implicitly converted to an int?

Answers

1.

Types in C# are divided into reference types, value types, and type parameter
types.

The decimal type is useful for financial calculations because it eliminates
many representation errors commonly found with other floating-point types.

. All the predefined types and everything in C# ultimately derive from the

object type.

By including a distinct bool type, C# helps eliminate several common pro-
gramming errors by eliminating the ambiguity that can arise when using an
integer O or 1 value.

Workshop

5. Yes, all strings and characters in C# are stored as Unicode code units, allowing
them to be localized.

6. Because strings are immutable, they cannot be changed after given a value.
This means that any string concatenation operations result in creating an
entirely new string object to hold the new value. Performing a large number of
these operations in a repetitive fashion over a short period of time can lead to
significantly increased memory usage and should be done using a
StringBuilder instead.

7. In a prefix increment operation, the result is the value of the variable before
the increment; in a postfix increment operation, the result is the incremented
value assigned back to the variable.

8. Yes, the null-coalescing operator can be used with any type that can contain a
null, including objects.

9. A boxing operation occurs when a value type is used as a reference type and
involves creating a new instance to hold the boxed value. Operations on a
boxed object do not affect the original value.

10. No, a long cannot be implicitly converted to an int because it would lose pre-
cision; it can, however, be explicitly converted.

Exercises

1. Write a console application that generates the truth table shown in Table 2.7.

2. Write a console application that demonstrates the difference between value
types and reference types. The application should declare two integer variables
and two object variables of type LightHouse. For the object variables, create a
new class file named LightHouse.cs and replace the generated code for
LightHouse with the following code:

public class LightHouse

{
public int NumberOfLights = 1;
public int RevolutionsPerMinute = 30;

This page intentionally left blank

HOUR 3

Understanding Classes and
Objects the C# Way

What You’ll Learn in This Hour:

» Object- and Component-Oriented Programming
Classes in C#

Scope and Accessibility

Methods and Properties

Nested and Partial Classes

Static Classes and Data

vV vy VvVvyywyy

Object Initializers

A class is the fundamental programming concept in C#, defining both representation
and behavior in a single unit. Classes provide the language support required for
object-oriented and component-oriented programming and are the primary mecha-
nism you use to create user-defined types. Traditionally, object-oriented program-
ming languages have used the term “type” to refer to behavior, whereas value-
oriented programming languages have used it to refer to data representation. In C#,
it is used to mean both data representation and behavior. This is the basis of the
common type system and means two types are assignment-compatible if, and only
if, they have compatible representations and behaviors.

In this hour, you learn the basics of both object-oriented and component-oriented
programming. When you understand these concepts, you move on to creating a class
in C# and examining how it fulfills the goals of object-oriented and component-
oriented programming. You learn about the different accessibility models, how to cre-
ate and use properties and methods, and about optional and named parameters.

64

B’Lﬂ%ﬁ—

HOUR 3: Understanding Classes and Objects the C# Way

Object-Oriented Programming

Before we start talking about classes in detail, you need to understand the benefits of
object-oriented programming and understand how it relates to C#. Object-oriented
programming helps you think about the problem you want to solve and gives you a
way to represent, or model, that problem in your code. If you do a good job model-
ing the problem, you end up with code that’s easy to maintain, easy to understand,
and easy to extend.

Maintainable Code

There is, of course, more to creating code that’s easy to maintain, understand,
and extend than just getting the model correct. The implementation also has to
be correct, readable, and correctly organized.

As previously mentioned, classes are the fundamental programming concept in C#,
defining both representation and behavior in a single unit. Put another way, a class
is a data structure that combines data storage with methods for manipulating that
data. Classes are simply another data type that becomes available to you in much
the same way any of the predefined types are available to you. Classes provide the
primary mechanism you use to create user-defined types.

The four primary concepts of object-oriented programming are encapsulation, abstrac-
tion, inheritance, and polymorphism. In this hour, you learn about encapsulation and
abstraction. In the next hour, you learn about inheritance and polymorphism.

Encapsulation and Abstraction

Encapsulation enables a class to hide the internal implementation details and to
protect itself from unwanted changes that would result in an invalid or inconsistent
internal state. For that reason, encapsulation is also sometimes referred to as data
hiding.

As an example of encapsulation at work, think about your car. You start your car in
the morning by inserting a key and turning it (or simply pushing a button, in some
cases). The details of what happens when you turn the key (or push the button) that
actually causes the engine to start running are hidden from you. You don't need to
know about them to start the car. It also means you can’t influence or change the
internal state of the engine except by turning the ignition key.

By hiding the internal details and data, you create a public interface or abstraction
representing the external details of a class. This abstraction describes what actions the

Component-Oriented Programming 65

class can perform and what information the class makes publicly available. As long
as the public interface does not change, the internal details can change in any way
required without having an adverse affect on other classes or code that depends on it.

By keeping the public interface of a class small and by providing a high degree of
fidelity between your class and the real-world object it represents, you help ensure
that your class will be familiar to other programmers who need to use it.

Let’s look at our car example again. By encapsulating the details of what happens
when you start your car and providing an action, StartCar, and information, such
as IsCarStarted, we have defined a public interface, thereby creating an abstraction
(or at least a partial abstraction, because cars do much more than just start) of a car.

Component-Oriented Programming

Component-oriented programming is a technique of developing software applica-
tions by combining pre-existing and new components, much the same way automo-
biles are built from other components. Software components are self-contained, self-
describing packages of functionality containing definitions of types that expose both
behavior and data.

C# supports component-oriented programming through the concepts of properties,
methods, events, and attributes (or metadata), allowing self-contained and self-
describing components of functionality called assemblies.

Classes in C#

Now that you have a basic understanding of object-oriented and component-oriented
programming, it is time to see how C# enables these concepts to become reality by
using classes. You have actually already used classes in the examples and exercises
from the previous two hours.

Classes in C# are reference types that implicitly derive from object. To define a class,
you use the class keyword. Look at the application you built at the end of Hour 1,
“The .NET Framework and C#.” Everything you did was inside a class named
Program.

The body of the class, defined by the opening and closing braces, is where you define
the data and behavior for the class.

66

HOUR 3: Understanding Classes and Objects the C# Way

Scope and Declaration Space

We briefly mentioned scope and declaration space in Hour 1, saying that scope
defines where you can use a name, whereas declaration space focuses on where that
name is unique. Scope and declaration space are closely related, but there are a few
subtle differences.

A more formal definition is that scope is an enclosing context or region that defines
where a name can be used without qualification.

In C#, both scope and declaration space is defined by a statement block enclosed by
braces. That means namespaces, classes, methods, and properties all define both a
scope and a declaration space. As a result, scopes can be nested and overlap each other.

If scope defines the visibility of a name and scopes are allowed to overlap, any name
defined in an outer scope is visible to an inner scope, but not the other way around.

In the code shown in Listing 3.1, the field age is in scope throughout the entire body
of Contact, including within the body of F and G. In F, the use of age refers to the
field named age.

LISTING 3.1 Scope and Declaration Space

class Contact

{
public int age;
public void F()
{
age = 18;
}
public void G()
{
int age;
age = 21;
}
}

However, in G, the scopes overlap because there is also a local variable named age
that is in scope throughout the body of G. Within the scope of G, when you refer to
age, you are actually referring to the locally scoped entity named age and not the
one in the outer scope. When this happens, the name declared in the outer scope is
hidden by the inner scope.

Figure 3.1 shows the same code with the scope boundaries indicated by the dotted
and dashed rectangles.

Scope and Declaration Space

class Contact

{

Declaration space, on the other hand, is an enclosing context or region in which no
two entities are allowed to have the same name. In the Contact class, for example,
you are not allowed to have anything else named age in the body of the class,
excluding the bodies of F and G. Likewise, inside the body of G, when you redeclare
age, you aren’t allowed to have anything else named age inside the declaration
space of G.

You learn about method overloading a bit later this hour, but methods are treated a
little differently when it comes to declaration spaces. If you consider the set of all
overloaded methods with the same name as a single entity, the rule of having a
unique name inside a declaration space is still satisfied.

67

FIGURE 3.1
Nested scopes
and hiding

Try It Yourself

Working with Scope

To explore the differences between scope and declaration space, follow these
steps. Keep Visual Studio open at the end of this exercise because you will use
this application later.

1. Create a new Console application.
2. Add a new class file named Contact.cs that looks like Listing 3.1.

3. In G, add a Console.WriteLine statement at the end of the method that prints
the value of age.

68

FIGURE 3.2
Working with
scope

A

HOUR 3: Understanding Classes and Objects the C# Way

4. In the Main method of the Program.cs file, enter the following code to create a
new instance of the Contact class and print the current value of age:

Contact ¢ = new Contact();
Console.WriteLine(c.age);
c.F();

Console.WriteLine(c.age);

G();
Console.WriteLine(c.age);

5. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.2.

Accessibility

Accessibility enables you to control the visibility, or accessibility, of an entity outside
of its containing scope. C# provides this through access modifiers, which specify con-
straints on how members can be accessed outside the boundary of the class and, in
some cases, even constrain inheritance. A particular class member is accessible when
access to that member has been allowed; conversely, the member is inaccessible
when access has been disallowed.

These access modifiers follow a simple set of contextual rules that determine when
certain types of accessibility are permitted:

» Namespaces are not allowed to have any access modifiers and are always
public.

» Classes default to internal accessibility but are allowed to have either public
or internal declared accessibility. A nested class, which is a class defined
inside of another class, defaults to private accessibility but can have any of
the five kinds of declared accessibility.

» Class members default to private accessibility but can have any of the five
kinds of declared accessibility.

These rules also define the default accessibility, which occurs when a member does
not include any access modifiers.

Scope and Declaration Space

Explicitly Declaring Accessibility

Although C# provides reasonable default access modifiers, you should always
explicitly declare the accessibility of your class members. This prevents unin-
tended ambiguity, indicates that the choice was a conscious decision, and is self-
documenting.

The access modifiers supported by C# are shown in Table 3.1.

TABLE 3.1 Access Modifiers

Modifier Description

public Access is not limited.

protected Access is limited to the containing class or types derived
from the containing class.

internal Access is limited to the containing assembly.

protected internal Access is limited to the containing assembly or types

derived from the containing class.

private Access is limited to the containing class only.

Protected Internal

Be careful when using protected internal accessibility because it is effectively
protected or internal. C# does not provide a concept of protected and
internal.

Fields and Constants

Fields are variables that represent data associated with a class. In other words, a field
is simply a variable defined in the outermost scope of a class. If you recall from Hour
1, a field can be either an instance field or a static field, and for both types of field,
you can specify any of the five access modifiers. Typically, fields are private, which is
the default.

If a field, no matter whether it is an instance or static field, is not given an initial
value when it is declared, it is assigned the default value appropriate for its type.

Similar to fields, constants can be declared with the same access modifiers. Because a
constant must have a value that can be computed at compile time, it must be
assigned a value as part of its declaration. One benefit of requiring a value that can
be computed at compile time is that a constant can depend on other constants.

69

Wyt —

70

Wt —

HOUR 3: Understanding Classes and Objects the C# Way

A constant is usually a value type or a string literal because the only way to create a
non-null value of a reference type other than string is to use the new operator,
which is not permitted.

Constants Should Be Constant

When creating constants, you should be sure that the value is something that is
logically constant forever. Good constants are things that never change, such as
the value of Pi, the year Elvis was born, or the number of items in a mol.

If you need to create a field that has constant-like behavior but uses a type not
allowed in a constant declaration, you can use a static read-only field instead by
specifying both the static and readonly modifiers. A read-only field can be initial-
ized only as part of its declaration or in a constructor.

Try It Yourself

Working with Fields

By following these steps, you explore how to create a class containing data and
how to provide access to that data. If you closed Visual Studio, repeat the previous
exercise first. Keep Visual Studio open at the end of this exercise because you will
use this application later.

1. Create a new Console application.

2. Add a new class file named Contact.cs. Inside the body of the class, declare
three private fields named firstName, lastName, and dateOfBirth of type
string, string, and DateTime, respectively.

3. Add the following method to the class. You learn more about methods later in
this hour and more about the StringBuilder class in Hour 8, “Using Strings
and Regular Expressions”:

public override string ToString()
{
StringBuilder stringBuilder = new StringBuilder();
stringBuilder.AppendFormat ("Name: {0} {1}\r\n", this.firstName,
wthis.lastName);
stringBuilder.AppendFormat ("Date of Birth: {@}\r\n", this.dateOfBirth);
return stringBuilder.ToString();

}

4. In the Main method of the Program.cs file, enter the following:

Contact ¢ = new Contact();
Console.WriteLine(c.ToString());

Scope and Declaration Space

5. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.3.

FIGURE 3.3

71

Working with

fields

A

Properties

If fields represent state and data but are typically private, there must be a mechanism
that enables the class to provide that information publicly. Knowing the different
accessibility options allowed it would be tempting to simply declare the class fields to
have public accessibility.

This would allow us to satisfy the rules of abstraction, but this would then violate the
rules of encapsulation because the fields could be directly manipulated. How, then, is
it possible to satisfy both the rules of encapsulation and abstraction? What is needed
is something accessed using the same syntax as a field but that can define different
accessibility than the field itself. Properties enable us to do exactly that. A property
provides a simple way to access a field, called the backing field, which can be pub-
licly available while still allowing the internal details of that field to be hidden. Just
as fields can be static, properties can also be static and are not associated with an
instance of the class.

Although fields declare variables, which require storage in memory, properties do not.
Instead, properties are declared with accessors that enable you to control whether a
value can be read or written and what should occur when doing so. The get accessor
enables the property value to be read, whereas the set accessor enables the value to
be written.

Listing 3.2 shows the simplest way to declare a property. When using this syntax,
known as automatic properties, you omit the backing field declaration and must
always include both the get and set accessor without a declared implementation,
which the compiler provides.

LISTING 3.2 Declaring an Automatic Property

class Contact

{ public string FirstName
{
get;
set;
}

72

Wt —

HOUR 3: Understanding Classes and Objects the C# Way

In fact, the compiler transforms the code shown in Listing 3.2 into code that looks
roughly like that shown in Listing 3.3.

LISTING 3.3 Declaring a Property

class Contact

{
private string firstName;
public string FirstName
{
get
{
return this.firstName;
}
set
this.firstName = value;
}
}
}

Automatic Properties

Automatic properties are convenient, especially when you implement a large num-
ber of properties. This convenience does come at a slight cost, however.

Because you don’t provide a body for the accessors, you can’t specify any logic
that executes as part of that accessor, and both accessors must be declared
using the automatic property syntax. As a result, if at some point later you realize
that you need to provide logic for either of the accessors, you need to add a back-
ing field and the appropriate logic to both accessors.

Fortunately, this change doesn’t affect the public interface of your class, so it is
safe to make, although it might be a bit tedious.

The get accessor uses a return statement, which simply instructs the accessor to
return the value indicated. In the set accessor of the code in Listing 3.3, the class
field firstName is set equal to value, but where does value come from? From Table
1.6 in Chapter 1, you know that value is a contextual keyword. When used in a

property set accessor, the value keyword always means “the value that was provided

by the caller” and is always typed to be the same as the property type.

By default, the property accessors inherit the accessibility declared on the property
definition itself. You can, however, declare a more restrictive accessibility for either
the get or the set accessor.

Scope and Declaration Space

You can also create calculated properties that are read-only and do not have a back-
ing field. These calculated properties are excellent ways to provide data derived from
other information.

Listing 3.4 shows a calculated FullName property that combines the firstName and
lastName fields.

LISTING 3.4 Declaring a Calculated Property

class Contact

{
private string firstName;
private string lastName;

public string FullName

{
get
{
return this.firstName + " " + this.lastName;
}
}

Read-Only and Write-Only Properties

For explicitly declared properties, you are allowed to omit either accessor. By
including only the get accessor, you create a read-only property. To create the
equivalent of a read-only property using automatic properties, you would declare
the set accessor to be private.

By including only the set accessor, or declaring the get accessor to be private,
you create a write-only property. In practice, you should avoid write-only properties.

Because properties are accessed as if they were fields, the operations performed in the
accessors should be as simple as possible. If you need to perform more complex oper-
ations or perform an operation that could be time-consuming or expensive (resource
consuming), it might be better to use a method rather than a property.

73

Try It Yourself

Working with Properties

To modify the Contact class to allow access to the private data using properties,
and to use automatic and calculated properties, follow these steps. If you closed
Visual Studio, repeat the previous exercise first. Be sure to keep Visual Studio
open at the end of this exercise because you will use this application later.

74

FIGURE 3.4
Working with
properties

HOUR 3: Understanding Classes and Objects the C# Way

. Open the Contact.cs file.

. Add a new public property named Date0OfBirth that enables reading and writ-

ing to the dateOfBirth field.

. Remove the firstName and lastName fields and create a FirstName and

LastName property as automatic properties.

. Add a calculated property named FullName, which combines the values of the

FirstName and LastName properties. This should be similar to the calculated
property shown in Listing 3.4.

. Modify the ToString method to make use of the new FullName property

instead of performing the string concatenation directly.

. In the Main method of the Program.cs file, enter the following code after the

Console.WritelLine statement:

c.FirstName = "Jim";

c.LastName = "Morrison";

c.DateOfBirth = new DateTime (1943, 12, 8);
Console.WriteLine(c.ToString());

. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 3.4.

Methods

If fields and properties define and implement data, methods, which are also called
functions, define and implement a behavior or action that can be performed. The
WritelLine action of the Console class you have been using in the examples and
exercises so far is an example of a method.

Listing 3.5 shows how to add a method to the Contact class that verifies an email
address. In this case, the VerifyEmailAddress method specifies void as the return
type, meaning that it does not return a value.

Scope and Declaration Space

LISTING 3.5 Declaring a Method

class Contact

{
public void VerifyEmailAddress(string emailAddress)
{
}

}

Listing 3.6 shows the same method declared to have a bool as the return type.

LISTING 3.6 Declaring a Method That Returns a Value

class Contact

{
public bool VerifyEmailAddress(string emailAddress)
{
return true;
}
}

A method declaration can specify any of the five access modifiers. In addition to the
access modifiers, a method can also include the static modifier. Just as static proper-
ties and fields are not associated with an instance of the class, neither are static meth-
ods. The WriteLine method is actually a static method on the Console class.

Methods can accept zero or more parameters, or input, declared by the formal
parameter list, which consists of one or more comma-separated parameters. Each
parameter must include both its type and an identifier. If a method accepts no
parameters, an empty parameter list must be specified.

Parameters are divided into three categories:
» Value parameters—The most common. When a method is called, a local vari-

able is implicitly created for each value parameter and assigned the value of
the corresponding argument in the argument list.

Parameter Arrays

Parameter arrays, declared with the params keyword, can be thought of as a spe-
cial case of value parameters and declare a single parameter that can contain
zero or more arguments of the given type in the argument list.

A method’s formal parameter list can include only a single parameter array; in
which case it must be the last parameter in the list. A parameter array can also
be the only parameter.

75

76

HOUR 3: Understanding Classes and Objects the C# Way

> Reference parameters—Do not create a new storage location but represent the
same storage location as the corresponding argument in the argument list. Ref-
erence parameters are declared using the ref keyword, which must be present
both in the parameter list and the argument list.

» Output parameters—Similar to reference parameters but require the out key-
word to be present in both the parameter and invocation lists. Unlike reference
parameters, they must be given a definite value before the method returns.

For a method to actually perform its desired action on the object, it must be invoked,
or called. If the method requires input parameters, those values must be provided in
an argument list, and if the method provides an output value, that value can also
be stored in a variable.

The argument list is normally a one-to-one relationship with the parameter list,
meaning that for each parameter, you must provide a value of the appropriate type
in the same order when you call the method.

Methods as Input

Methods that return a value and properties can also be used as input to other
methods, as long as the return value type is compatible with the parameter type.
This capability greatly increases the usefulness of both methods and properties,
allowing you to chain method or property calls to form behaviors that are more
complex.

Looking at the VerifyEmailAddress method that has a void return type from the
earlier examples, you would call the method like this:

Contact ¢ = new Contact();
c.VerifyEmailAddress("joe@example.com");

However, for the VerifyEmailAddress method defined to return a bool, you would
call the method like this:

Contact ¢ = new Contact();
bool result = c.VerifyEmailAddress("joe@example.com");

Just as you do with the parameter list, if a method invocation requires no arguments,
you must still specify an empty list.

Method Overloading

Ordinarily, two entities cannot have the same name within a declaration space,
except for overloaded methods. When two or more methods have the same name in a
declaration space but have different method signatures, they are overloaded.

Scope and Declaration Space

The method signature is made up of the method name and the number, types, and
modifiers of the formal parameters and must be different from all other method sig-
natures declared in the same class; the method name must be different from all other
non-methods declared in the class.

Method Signatures

The return type is not part of the method signature, so methods cannot differ only
in return type.

Although the formal parameter list is part of the method signature, methods can-
not differ based on a parameter being a ref or out parameter. For the purposes of
the method signature, the ref or out attribute of the parameter is not considered.

Overloaded methods can vary only by signature. More appropriately, they can vary
only by the number and types of parameters. Consider the Console.WriteLine
method you have already used; there are 19 different overloads from which you can
choose.

Overloading methods is common in the .NET Framework and enables you to give the
users of your class a single method with which they interact and provide different input.
Based on that input, the compiler figures out which method should actually be used.

Overloads with Different Return Types

Because method signatures do not include the return type, it is possible for over-
loaded methods to have different return types. Even though this might be legal C#
code, you should avoid it to minimize the possibility for confusion.

Method overloading is useful when you want to provide several different possibilities
for initiating an action, but method overloading can become unwieldy when there
are many options. An example of method overloading is shown in Listing 3.7.

LISTING 3.7 Method Overloading

public void Search(float latitude, float longitude)

{
Search(latitude, longitude, 10, "en-US");

}

public void Search(float latitude, float longitude, int distance)
{

Search(latitude, longitude, distance, "en-US");
}

public void Search(float latitude, float longitude, int distance, string culture)
{
}

77

Wyt —

ut!

78

HOUR 3: Understanding Classes and Objects the C# Way

FIGURE 3.5
Working with
methods

Try It Yourself

Working with Methods

Continuing to expand the Contact class, add the VerifyEmailAddress and
Search methods by following these steps. If you closed Visual Studio, repeat the
previous exercises first. Be sure to keep Visual Studio open at the end of this exer-
cise because you will use this application later.

1. Open the Contact.cs file.

2. Add the VerifyEmailAddress method shown in Listing 3.6 so that it returns
true if the email address entered is “joe@example.com”.

3. Add the overloaded methods shown in Listing 3.7.

4. In the last overloaded Search method, enter a Console.WriteLine call that
prints the values of the parameters.

5. In the Main method of the Program.cs file, enter the following code after the
last Console.WritelLine statement:

c.Search(37.479444f, -122.450278f);
c.Search(37.479444f, -122.450278f, 50);
c.Search(37.479444f, -122.450278f, 50, "en");

Console.WriteLine(c.VerifyEmailAddress("joe@example.com"));
Console.WriteLine(c.VerifyEmailAddress("jim@example.com"));

6. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.5.

Optional Parameters and Named Arguments

Optional parameters enable you to omit that argument in the invocation list when
calling a method. Only value parameters can be optional, and all optional parame-
ters must appear after required parameters, but before a parameter array.

To declare a parameter as optional, you simply provide a default value for it. The
modified Search method using optional parameters is shown here:

Scope and Declaration Space

public void Search(float latitude, float longitude, int distance = 10,
string culture = "en-US");

The latitude and longitude parameters are required, whereas distance and
culture are both optional. The default values used are the same values provided by
the first overloaded Search method.

Looking at the Search method overloads from the previous section, it should become
clear that the more parameters you have the more overloads you need to provide. In
this case, there are only a few overloads, but that is still more than providing a single
method with optional parameters. Although overloads are the only option in some
cases, particularly those that don’t imply a reasonable default for a parameter, often
you can achieve the same result using optional parameters.

Optional and Required Parameters

A parameter with a default argument is an optional parameter, whereas a parame-
ter without a default argument is a required parameter.

Optional parameters are also particularly useful when integrating with unmanaged
programming interfaces, such as the Office automation APIs, which were written
specifically with optional parameters in mind. In these cases, the original API call
might require a large number of arguments (sometimes as many as 30), most of
which have reasonable default values.

A method that contains optional parameters can be invoked without explicitly pass-
ing arguments for those parameters, allowing the default arguments to be used
instead. If, however, the method is invoked and provides an argument for an
optional parameter, that argument is used instead of the default.

Listing 3.8 shows an example of calling the Search method, allowing the default val-
ues to be used.

LISTING 3.8 Using Optional Parameters

Search(27.966667f, 82.533333f, 3);
Search(27.966667f, 82.533333f, 3, "en-GB");
Search(27.966667f, 82.533333f);

The drawback to optional parameters is that you cannot omit arguments between the
commas, meaning you could not call the Search method like this:

Search(27.966667f, 82.533333f, , "en-GB");

To resolve this situation, C# enables any argument to be passed by name,
whereby you are explicitly indicating the relationship between the argument and its

79

80

Dl

HOUR 3: Understanding Classes and Objects the C# Way

corresponding parameter. Using named arguments, the different method calls in
Listing 3.8 and the illegal call just shown could be written as shown in Listing 3.9.

LISTING 3.9 Using Named Arguments

Search(latitude: 27.966667f, longitude: 82.533333f, distance: 3);
Search(latitude: 27.966667f, longitude: 82.533333f, distance: 3, culture: "en-GB");
Search(latitude: 27.966667f, longitude: 82.533333f);

Search(27.966667f, 82.533333f, culture: "en-GB");

Search(latitude: 27.966667f, longitude: 82.533333f, culture: "en-GB");

All these calls are equivalent. The first three calls are the same as the calls in Listing
3.8 except that each parameter is explicitly named. The last two calls show how we
can omit an argument in the middle of the parameter list and are also the same,
although one uses a mixture of named and positional arguments.

Named and Positional Arguments

Arguments that are not passed by name are called positional arguments. Posi-
tional arguments are the most common.

Named arguments are most often used with optional parameters, but they can be
used without them as well. Unlike optional parameters, named arguments can be
used with value, reference, and output parameters. You can also use named argu-
ments with parameter arrays, but you must explicitly declare a new array to contain
the values, as shown here:

Console.WritelLine(String.Concat(values: new string[] { "a", "b", "c" }));

As you can see from the Search method, by enabling you to explicitly indicate the
name of an argument, C# provides an additional (and powerful) way to help write
fully describing and self-documenting code.

Changing the Order of Arguments

Arguments are always evaluated in the order they are specified. Although not gen-
erally needed, named arguments enable you to change the order an argument
appears in the invocation list:

Search(longitude: 82.533333f, latitude: 27.966667f);
Search(latitude: 27.966667f, longitude: 82.533333f);

Scope and Declaration Space

81

Try It Yourself

Working with Optional Parameters and Named Arguments

To modify the Search methods previously defined to use optional parameters rather
than overloads, follow these steps. If you closed Visual Studio, repeat the previous
exercises first. Be sure to keep Visual Studio open at the end of this exercise
because you will use this application later.

1. Open the Contact.cs file.

2. Remove the first two Search methods, leaving only the method containing all
four parameters, and modify that method so that distance and culture are
optional, using 10 and "en-US" as the default values.

3. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.6.

4. In the Main method of the Program.cs file, change the calls to the Search
method to use different combinations of named parameters and observe the
output after each change.

FIGURE 3.6
Working with
optional parame-
ters and named
arguments

Instantiating a Class

Unlike the predefined value types in which you could simply declare a variable and
assign it a value, to use a class in your own programs, you must create an instance
of that class.

Remember, even though you create new objects directly using the new keyword, the
virtual execution system is responsible for actually allocating the memory required,
and the garbage collector is responsible for deallocating that memory.
Instantiating a class is accomplished using the new keyword, like this:

Contact ¢ = new Contact();

82

HOUR 3: Understanding Classes and Objects the C# Way

A newly created object must be given an initial state, which means any fields
declared must be given an initial value either by explicitly providing one or accepting
the default values (see Table 2.13 in Chapter 2).

Sometimes this level of initialization is sufficient, but often it won’t be. To provide
additional actions that occur during initialization, C# provides an instance construc-
tor (sometimes just called a constructor), which is a special method executed auto-
matically when you create the instance.

A constructor has the same name of the class but it cannot return a value, which is
different from a method that returns void. If the constructor has no parameters, it is
the default constructor.

Default Constructors

Every class must have a constructor, but you don’t always have to write one. If
you don’t include any constructors, the C# compiler creates a default constructor
for you. This constructor won’t actually do anything, but it will be there.

Because the compiler only generates the default constructor if you don’t provide
any additional constructors, it is easy to break the public interface of your class
by adding an additional constructor that has parameters and forgetting to also
explicitly add the default constructor. As a result, it is a good idea to always pro-
vide a default constructor rather than letting the compiler generate it for you.

The default constructor (or any constructor) can have any of the accessibility mod-
ifiers, so it is entirely possible to create a private default constructor. This is use-
ful if you want to allow your class to be created but want to ensure that certain
information is always provided when the object is instantiated.

Listing 3.10 shows the default constructor for the Contact class.

LISTING 3.10 Declaring a Default Constructor

public class Contact

{
public Contact()
{
}

}

Just as it is possible to overload regular methods, it is also possible to overload con-
structors. The signature for a constructor is the same as it is for a regular method, so
the set of overloaded constructors must also vary by signature.

Some reasons for providing specialized constructors follow:

» There is no reasonable initial state without parameters.

» Providing an initial state is convenient and reasonable for the type.

Scope and Declaration Space 83

> Constructing the object can be expensive, so you want to ensure that the object
has the correct initial state when it is created.

» A non-public constructor restricts who can create objects using it.

Looking at the Contact class you have been using, it would certainly be useful if you
provided values for the firstName, lastName, and dateOfBirth fields when creating
a new instance. To do that, you would declare an overloaded constructor like the one
shown in Listing 3.11.

LISTING 3.11 Declaring a Constructor Overload

public class Contact

{
public Contact(string firstName, string lastName, DateTime dateOfBirth)
{
this.firstName = firstName;
this.lastName = lastName;
this.dateOfBirth = dateOfBirth;
}
}

In the constructor overload from Listing 3.11, you assigned the value of the parame-
ter to its corresponding private field.

Typically, although not always, when a class contains multiple constructors, those
constructors are chained together. To chain constructors together, you use a special
syntax that uses the this keyword.

The this Keyword Bxﬂgfy_

The this keyword refers to the current instance of the class. It is similar to the
Me keyword in Visual Basic, a self identifier in F#, the __self__ attribute in
Python, and self in Ruby.

The common uses of this follow:

» To qualify members hidden by similar names

» To pass an object as a parameter to other methods
» To specify which constructor should be called from another constructor overload
» To indicate the extended type in an extension method

Because static members exist at the class level and are not associated with an
instance, you can’t use the this keyword.

In Listing 3.11, the this keyword is used to distinguish between the class field
and the parameter because both have the same name.

84

HOUR 3: Understanding Classes and Objects the C# Way

Listing 3.12 shows the Contact class with both constructors from Listing 3.10 and
Listing 3.11 using constructor chaining.

LISTING 3.12 Constructor Chaining

public class Contact

{
public Contact()
{
}
public Contact(string firstName, string lastName, DateTime dateOfBirth)
1 this()
{
this.firstName = firstName;
this.lastName = lastName;
this.dateOfBirth = dateOfBirth;
}
}

One benefit of constructor chaining is that you can chain in any constructor provided
by the class, not just the default constructor. When you use constructor chaining, it is
important to understand the order in which the constructors execute. The constructor
chain is followed until it reaches the last chained constructor, and then constructors
will be executed in order going back out of the chain. Listing 3.13 shows a class, C,
with three constructors, each chained through to the default constructor.

LISTING 3.13 Chained Constructor Order of Execution

public class C

{

string ci;
string c2;
int c3;

public C()
{

Console.WriteLine("Default constructor");

}

public C(int i, string p1) : this(p1)
{

Console.WritelLine(1i);
}

public C(string p1) : this()
{
Console.WriteLine(p1);

}

Figure 3.7 shows the sequence in which each constructor would execute when instan-
tiated using the second constructor (the one that takes an int and a string as
input).

Nested Classes

C c =new C(3, "C2");

C(int, string)

|

v O

v ©

C()

Static Construction

Instance constructors, like you have just seen, implement the actions required to ini-
tialize instances of the class. In some cases, a class might require specific initializa-
tion actions to occur at most once and before any instance members are accessed.

To accomplish this, C# provides a static constructor, which has the same form as the
default constructor with the addition of the static modifier instead of one of the
access modifiers. Because static constructors initialize the class, you cannot directly
call a static constructor.

A static constructor executes at most once and will be executed the first time an
instance is created or the first time any of the static class members are referenced.

Nested Classes

A nested class is one that is fully enclosed, or nested, inside another class declara-
tion. Nested classes are a convenient way to allow an outer class to create and use
objects without making them accessible outside of that class. Although nested classes
can be convenient, they are also easy to overuse, which can make your class more
difficult to work with.

Nested classes implicitly have at least the same access level as the containing class.
For example, if the nested class is public but the containing class is internal, the
nested class is implicitly internal as well, and only members of that assembly can
access the nested class. However, if the containing class is public, the nested class
follows the same accessibility rules as a non-nested class.

FIGURE 3.7
Constructor
chaining
sequence

85

86

Dl

HOUR 3: Understanding Classes and Objects the C# Way

You should consider implementing a class as a nested class if it has no stand-alone
significance and can be logically contained by another class or members of the class
need to access private data of the containing class. Nested classes should generally
not be public because they are for the internal use of the containing class.

Partial Classes

Partial classes enable you to split the declaration of a class into multiple parts, typi-
cally across multiple files. Partial classes are implemented in exactly the same way as
normal classes but contain the keyword partial just before the class keyword.
When working with partial classes, all the parts must be available during compila-
tion and have the same accessibility to form the complete class.

Code-generation tools, such as the visual designers in Visual Studio, which generate a
class for you representing the visual control being designed, use partial classes exten-
sively. The machine-generated code is added to one part of the partial class, allowing
you to modify the other part of the partial class without concern that your changes
will be lost when the machine-generated portion is regenerated.

Partial classes can also be used in other scenarios that don’t involve machine-gener-
ated code. Large class declarations can benefit from using partial classes; however,
this can sometimes mean that your class is trying to do too much and would be better
split into multiple classes.

Nested Classes with Partial Classes

Even though C# does not require a single class per file, like Java, it is often help-
ful to follow that structure. When using nested classes, this isn’t possible unless
the containing class is a partial class.

Static Classes

So far, you have seen the static modifier applied to constructors, fields, methods,
and properties. You can also apply the static modifier to a class, which defines a
static class. A static class can have only a static constructor, and as a result, it is not
possible to create an instance of a static class. For that reason, static classes most com-
monly contain utility or helper methods that do not require a class instance to work.

Static Classes 87

Implicit Static Members %_

Static classes can contain only static members, but those members are not auto-
matically static. You must explicitly include the static modifier; however, you can
declare any static member as public, private, or internal.

Extension Methods

Extension methods are regular static methods, but the first parameter includes the GOTO

this modifier and represents the type instance being extended, typically called the Hour 11,

type extension parameter. Extension methods must be declared in a non-nested, Gté?]i?ircsst%ngpg

non-generic static class. more information
on generic

When the namespace containing an extension class is in scope through a using classes.

directive, the extension methods appear as if they were native instance methods on
the extended type. This allows them to be called in a natural and intuitive manner.

Because an extension method is nothing more than a specially marked static
method, it does not have any special access to the type being extended and can work
only with the public interface of the extended type. It also enables you to call the
extension method in the more traditional way by referring to its fully qualified name.

Access to Internals B_)L‘”zﬁl_

An extension method defined in the same assembly as the type being extended
also has access to internal members of that type.

Although an extension method matching the signature of an actual method on the
type can be defined, it will not be visible. The compiler ensures that during method
resolution, any actual class methods take precedence over extension methods. This
ensures that an extension method cannot change the behavior of a standard class
method, which would cause unpredictable, or at least unexpected, behavior.

Try It Yourself v

Working with Extension Methods

By following these steps, you add an extension method on the Contact class and
modify the Main method of Program.cs to use this new extension method. If you
closed Visual Studio, repeat the previous exercises first.

1. Create a new file named Extensions.cs.

2. Make the Extensions class static and create a new extension named
GetFullName that extends Contact and uses the same logic as you used for
the FullName property.

Download from www.wowebook.com

88 HOUR 3: Understanding Classes and Objects the C# Way

3. Remove the FullName property in the Contact class and modify the ToString
method to use this new extension method.

4. Run the application using Ctrl+F5 and observe that the output matches what is
shown in Figure 3.8.

FIGURE 3.8
Results of work-
ing with exten-
sion methods

Object Initializers

You have seen how to create constructors for your class that provide a convenient
way to set the initial state. However, as with method overloading, the more fields you
require to be set, the more overloaded constructors you might need to provide.
Although constructors support optional parameters, sometimes you want to set prop-
erties when you create the object instance.

Classes provide an object initialization syntax that enables you to assign values to
any publicly accessible fields or properties as part of the constructor call. This allows
a great deal of flexibility and can significantly reduce the number of overloaded con-
structors you need to provide.

Listing 3.14 shows code similar to what you wrote in the “Working with Properties”
section, followed by code using an object initializer. The code generated by the com-
piler in both cases is almost the same.

LISTING 3.14 Object Initializers

Contact c¢1 = new Contact();

c1.FirstName = "Jim";

c1.LastName = "Morrison";

c1.DateOfBirth = new DateTime (1943, 12, 8);
Console.WriteLine(c1.ToString());

Contact c2 = new Contact

{

FirstName = "Jim",

LastName = "Morrison",

DateOfBirth = new DateTime (1943, 12, 8)
}s

Console.WriteLine(c2.ToString());

Download from www.wowebook.com

Q&A

As long as there are no dependencies between fields or properties, object initializers
are an easy and concise way to instantiate and initialize an object at the same time.

Summary

At this point, you should have a good understanding of how classes in C# provide a
language implementation for object-oriented programming. You learned how scope
affects the visibility of members in a class and how you can change accessibility
using the different access modifiers. From there, you built a class and instantiated an
instance of that class. You then learned about methods and properties, including
method overloading, optional, and named parameters. Finally, we talked about
nested and partial classes.

Departing from the simple examples you worked with in the previous hours, the
samples and exercises in this hour focused on building more real-world classes.

Q. What are the four primary principles of object-oriented programming?

A. The four primary principles of object-oriented programming are encapsulation,
abstraction, inheritance, and polymorphism.

Q. Why are encapsulation and abstraction important?

A. By using encapsulation and abstraction, you can change internal implementa-
tion details without affecting already-written code that uses that class.

Q. What is method overloading?

A. Method overloading is creating more than one method of the same name in a
given type. Overloaded methods must have different signatures.

Q. How do properties enable a class to meet the goals of encapsulation?

A. A property provides a simple way to access a field that can be publicly avail-
able while still allowing the internal details of that field to be hidden.

Q. What are partial classes?

A. A partial class contains the keyword partial on all class declarations and is
typically split across multiple source code files.

89

90 HOUR 3: Understanding Classes and Objects the C# Way

Q. What is the benefit of using extension methods?

Using extension methods enables additional functionality to be added to an
existing type without requiring the use of inheritance. This additional func-
tionality can then be used in a natural and intuitive way.

Workshop

Q

LN I S e —

¥ ® N @

10.

11.

iz
What are the five access modifiers available in C#?
What is the default accessibility for a class?
What is a constructor?
Can the default constructor of a class have parameters?

Using the code shown in Listing 3.13, what is the output of the following
statement?

C ¢c = new G(3, "C2");

When can a read-only field be assigned?

What is method overloading?

Are there limitations when using automatic properties?

What is a nested class?

Can extension methods access private members of the type being extended?

What happens when the new operator is executed?

Answers

1.

The five access modifiers available in C# are public, protected, internal,
protected internal, and private.

Classes default to internal accessibility but are allowed to have either public
or internal declared accessibility. Nested classes default to private accessibil-
ity but are allowed to have any accessibility.

. A constructor is a special method that is executed automatically when you cre-

ate an object to provide additional initialization actions.

Workshop 91

4. No, the default constructor of a class must always have no parameters.

5. The output of the statement is

Default Constructor
c2
3

6. A read-only field can be initialized only as part of its declaration or in a
constructor.

7. Method overloading is creating more than one method of the same name that
differs only by the number and type of parameters.

8. Automatic properties do not provide a way to access the implicit backing field,
do not enable you to specify additional statements that execute as part of the get
or set accessor, and do not enable a mixture of regular and automatic syntax.

9. A nested class is one that is fully enclosed inside another class declaration.

10. Because extension methods are simply static methods, they do not have any
special access to the type they extend. However, an extension method defined
in the same assembly as the type being extended also has access to internal
members of that type.

11. The two primary actions that occur when the new operator is executed are 1)
Memory is allocated from the heap and 2) the constructor for the class is exe-
cuted to initialize the allocated memory.

Exercise

1. Add a class to the PhotoViewer project that represents a photo. This class
should be named Photo and be in the PhotoViewer namespace. The class
should have the following private fields and a read-only property to retrieve
the value of those fields:

Data Type Field Name
bool Exists
BitmapFrame image

Uri source

92 HOUR 3: Understanding Classes and Objects the C# Way

Add the following constructor:

public Photo(Uri path)
{
if (path.IsFile)
{
this.source = path;
}
}

HOUR 4

Inheritance, Interfaces, and
Abstract Classes

What You'll Learn in This Hour:

Inheritance and Polymorphism
Working with Inherited Members
Sealed Classes

v

Abstract Classes

v vyyvVvyy

Interfaces

In the last hour, you learned how classes in C# provide the language support
required for object-oriented and component-oriented programming through encap-
sulation and abstraction. Although these aspects of object-oriented programming are
important, they don’t provide a good mechanism for expressing a hierarchical rela-
tionship between specialized variations of a class.

Inheritance provides a natural way to express such relationships. Through inheri-
tance, you can create a completely new class that inherits the characteristics and
behaviors from its parents. Polymorphism, which is the capability of a type to be
used like another type, is a natural result of inheritance.

In this hour, you learn how C# provides support for inheritance and polymorphism
through the use of abstract classes and interfaces. You also learn how C# enables you
to prevent a class from being extended.

Inheritance and Polymorphism

Just as children inherit characteristics and behaviors from their parents, classes can
inherit characteristics and behavior as well. Inheritance, also called derivation, in

94

Wt —

HOUR 4: Inheritance, Interfaces, and Abstract Classes

object-oriented programming enables a new class to be created (called a child or
derived class) that inherits the characteristics and behaviors from its parents (called
base classes).

Inheritance enables you to reduce the apparent complexity of a problem into man-
ageable parts. These parts form conceptual layers that provide increasing amounts of
specialization or generalization, depending on your point of view, describing in a
natural way the hierarchical nature of certain problems expressed using an “is-a”
relationship.

Multiple Inheritance

The general idea of inheritance is simple. However, many object-oriented program-
ming languages enable derived classes to inherit from multiple parents, called
multiple inheritance.

Multiple inheritance does not change the requirement that the classes have an
“is-a” relationship, and can be a powerful mechanism, but that power can also
result in considerable complexity in the implementation. It can also cause ambigu-
ity when trying to understand the derivation chain of a class because a class with
two parents enables two different inheritance paths to a particular base class.

In order to remove the possible ambiguity and because the number of scenarios
where multiple inheritance is the only appropriate solution is rather small, C# only
allows single inheritance.

Typically, specialization is when the new class has additional data or behavior that is
not part of the inherited (base) class. Specialization can also occur when the base class
specifies that only an action or behavior exists but does not implement that behavior.
It is then the responsibility of the derived classes to provide the implementation.

By creating a new type derived from an existing type, you inherit characteristics and
behaviors from the parent type. Inheritance also enables derived classes to make sev-
eral changes from their base class. The derived class can do the following:

> Add new private data.
» Add new behavior.

> Redefine existing behavior.

Again, taking the car example from last hour, Figure 4.1 shows a possible inheritance
chain for a car. A car is-a four-wheel vehicle, which in turn is-a vehicle. The vehicle is
the base, or root, class and provides behavior and data common for all vehicles. As

Inheritance and Polymorphism

we go down the hierarchy, we find the four-wheel and two-wheel vehicle base classes,
which are specializations of vehicle that add additional behavior and data. Finally,
we find the car, truck, and motorcycle classes, which are derived classes that might
also add additional behavior and data.

Vehicle Vehicle
4-wheel 2-wheel

In object-oriented programming, polymorphism is the capability of one type to be
used like another type. Typically, there are two ways this is achieved:

» One type inherits (or derives) from another type, enabling it access to the same
actions and public data as its parent.

> Both types implement a compatible public interface, enabling the same
actions and public data but possibly different implementations.

Looking at the class diagram in Figure 4.1, it should be clear that although a car and
a truck are clearly not the same type, either of those could be substituted for a four-
wheel vehicle because they both inherit from that class. Likewise, although a motor-
cycle could not be substituted for a four-wheel vehicle, it could, along with a car or a
truck, be substituted for a vehicle.

As you can see, polymorphism relies heavily on the ideas presented in encapsula-
tion, abstraction, and inheritance. Without these aspects, it would be virtually
impossible for one class to be substituted for another.

Polymorphism

Polymorphism is one of those words that might sound like it is complicated, but it
really isn’t. Polymorphism is a natural and common occurrence. The word is the
combination of the Greek words poly (meaning many) and morphe (meaning
shape or form), literally meaning many shapes or forms.

95

FIGURE 4.1
A class diagram

fEy—

96

ut!

HOUR 4: Inheritance, Interfaces, and Abstract Classes

Inheritance is easily accomplished in C# by providing the name of the class being
inherited on the class declaration. Listing 4.1 shows the hierarchy described by
Figure 4.1 in code.

LISTING 4.1 A Class Hierarchy in Code

public class Vehicle { }

public class FourWheeledVehicle : Vehicle { }
public class TwoWheeledVehicle : Vehicle { }
public class Car : FourWheeledVehicle { }
public class Truck : FourWheeledVehicle { }

public class Motorcycle : TwoWheeledVehicle { }

This type of inheritance is also called implementation inheritance because you are
actually inheriting an implementation from the parent class. Now that you have a
code representation of the hierarchy, how would you go about using it?

Designing Class Hierarchies

The one thing that inheritance does not enable is removing data or behaviors. If
you find that you need to remove behavior or data from one of your derived
classes, it is most likely because your class hierarchy is not designed correctly.

Designing class hierarchies is not always an easy task and usually takes several
attempts to get it right. The best approach is to spend a little more time thinking
about the relationships between objects you know and those that might be
needed later. If your class hierarchy is overly shallow (not a lot of inheritance) or
overly deep (a lot of inheritance), you might want to rethink the relationships.

Remember, not everything in a class hierarchy must be related to one another. It's
perfectly acceptable to have a hierarchy that is conceptually made up of several
smaller ones.

In C#, an expression assigned to a variable must be known to be compatible with the
type of that variable. This means the following code is not allowed:

Car ¢ = new Car();
Truck t = c;

This should make sense, as a truck is not the same thing as a car. However, logically
both a truck and a car are a FourWheeledVehicle and, in turn, a Vehicle so the fol-
lowing code is allowed:

Inheritance and Polymorphism

Car ¢ = new Car();
Truck t = new Truck();
Vehicle v1 = c;
Vehicle v2 = t;

Even though ¢ and v1 both refer to the same Car object, there is an important dis-
tinction. When you access ¢, you are doing so through a variable declared to be of
type Car, allowing you access to the members defined by Car and by its base class
FourWheeledVehicle, and subsequently Vehicle. However, when you access v1, you
are doing so through a variable declared to be of type Vehicle that allows you
access only to those members defined by Vehicle.

Upcasting and Downcasting

The process of casting a derived class to one of its base classes is called
upcasting. Casting from a base class to one of its derived classes is called down-
casting.

Think of it this way: A car knows that it is a vehicle and therefore enables access to
anything a vehicle can do, but a vehicle knows nothing of a car and can therefore
allow you access only to what it knows.

Although you can move upward in the class hierarchy (going from a more derived
class to a less derived one), you cannot move downward. For example, the following
is not allowed:

Vehicle v1 = new Vehicle();
Car ¢ = vi;

This might be surprising at first until you remember that a Vehicle could represent
any one of five different types. As a result, it is not possible to implicitly assign an
expression of a more general type to a variable of a more specific one.

To achieve this, you must explicitly tell the compiler that you want to downcast the
base class to the derived class. In this case, you would want to write:

Vehicle v1 = new Vehicle();
Car ¢ = (Car)vi;

Although this code is legal, it does pose a problem. What would happen if you wrote
the following instead?
Vehicle v1 new Vehicle();

Vehicle v2 = new Truck();
Car ¢ = (Car)v2;

97

gy —

98

HOUR 4: Inheritance, Interfaces, and Abstract Classes

This code is still legal and will compile without error, but will result in an
InvalidCastException at runtime, saying that you cannot cast an object of type
Truck to type Car.

The way around this problem is to follow the “trust but verify” philosophy. This sim-
ply means that you trust that the code will compile and run, but you verify that the

variable of the base class type is actually the correct derived type before performing

the cast. Listing 4.2 shows a variety of ways you can accomplish “trust but verify.”

LISTING 4.2 “Trust but Verify” Code

Car ¢ = new Car();
Truck t = new Truck();
Vehicle vi c;
Vehicle v2 t;

if (typeof(Car).IsAssignableFrom(v1.GetType()))

c = (Car)vi;
Console.WriteLine(c.GetType());
}

if (v1 is Car)
{
c = (Car)vi;
Console.WriteLine(c.GetType());
}

c = vl as Car;
if (¢ != null)
{

}

Console.WriteLine(c.GetType());

The first method uses the underlying type system in C# to determine if the type Car
(the result of the typeof (Car) call) is assignable from the type of v1 (the result of the
v1.GetType() call), and, if so, explicitly casts v1 to Car. A base class is always
assignable from one of its derived classes.

The second method is somewhat simpler and asks the type system if v1 is a Car, and
if so, explicitly casts v1 to Car.

The third method is the simplest option, and says if v1 is convertible to Car then per-
form the conversion and return the result; otherwise, return null.

Try It Yourself

Simple Class Inheritance and Polymorphism
To implement the class hierarchy shown in Listing 4.1 and explore how inheritance
and polymorphism behave, follow these steps. Keep Visual Studio open at the end
of this exercise because you will use this application later.

Inheritance and Polymorphism

1. Create a new Console application.

2. Add a new class file named Vehicles.cs and implement the basic class hierar-

chy shown in Listing 4.1.

3. In the Main method of the Program.cs file, enter the following code:
Vehicle v1 = new Vehicle();

Car c1 = (Car)vi;

4. Run the application by pressing Ctrl+F5. You should encounter an
InvalidCastException, as shown in Figure 4.2.

5. Remove the statements you previously entered from step 2, and replace it with

the code shown in Listing 4.2.

6. Run the application again by pressing Ctrl+F5 and observe that the output
matches what is shown in Figure 4.3.

99

FIGURE 4.2
Result showing
an InvalidCast
Exception

FIGURE 4.3
Result of work-
ing with class
inheritance and
polymorphism

A

Listing 4.3 shows a modified version of the code hierarchy from Listing 4.1, providing

constructors for some of the derived classes that call one of base class constructors.

Constructor Chaining and Default Constructors

If you don’t explicitly chain a base class constructor, the compiler tries to chain
the default constructor.

The problem here is that not all classes have a public default constructor, in
which case forgetting to explicitly chain the correct base class constructor can
result in a compiler error.

Wyt —

100

HOUR 4: Inheritance, Interfaces, and Abstract Classes

LISTING 4.3 Constructors in Derived Classes

public class Vehicle

{
private Vehicle() { }

public Vehicle(int wheels)
{

Console.WriteLine("The number of wheels requested is {0}", wheels);
}
}

public class FourWheeledVehicle : Vehicle

{
public FourWheeledVehicle() : base(4) { }

}

public class TwoWheeledVehicle : Vehicle

{ public TwoWheeledVehicle() : base(2) { }
}

public class Car : FourWheeledVehicle { }
public class Truck : FourWheeledVehicle { }

public class Motorcycle : TwoWheeledVehicle { }

FIGURE 4.4
Result of wor