
ptg

ptg

Praise for
Sams Teach Yourself Visual C# 2010 in 24 Hours

“The Teach Yourself in 24 Hours series of books from Sams has been a staple of anyone

wanting to quickly come up-to-speed on a new technology. This book is not just a simple

refresh of last year’s book, Scott has written it from the ground up for the Visual Studio 2010

and .NET 4.0 release. From the C# type system, to events and data, from ASP.NET Web to

WPF Windows applications, Sams Teach Yourself Visual C# 2010 in 24 Hours will provide any

developer new to the C# language a great foundation to build upon.”

—Shawn Weisfeld, Microsoft Visual C# MVP

“The key to learning software development is to have a great foundation. Sams Teach Yourself

Visual C# 2010 in 24 Hours is a must-read for anyone who wants to learn C# from the

beginning, or just brush up on its features. Scott Dorman brings a very knowledgeable, yet

casual approach to his book that anyone with the desire to learn to program in .NET can be

inspired by. I found a few gems that will enhance my future programming projects.”

—Chris “Woody” Woodruff, Co-Host of Deep Fried Bytes Podcast

“This book is an excellent resource for anyone who is learning C# for the first time,

migrating from Visual Basic, or catching up on the latest features of C#. It is full of

information and should be on the desks of any developer who is becoming familiar with

C# 2010.”

—Jeff Julian, Managing Partner, AJI Software, Founder of GeeksWithBlogs.NET

ptg

“Scott Dorman has written an excellent reference book that not only covers the basic

fundamentals of .NET 4.0 C# development, but also includes instruction and guidance on

the finer points of advanced C# and development with Visual Studio 2010.

The book is written in a clear and concise manner, with liberal usage of ‘Did You Know,’

‘By the Way,’ and ‘Watch Out!’ sidebars that help provide the reader with informative ‘sign

posts’ along their journey for re-enforcing key concepts, best practices, and anti-patterns.

These invaluable sign posts really help to ‘bring-it-home’ to the reader with Scott’s real-world

commentary about why certain topics are critical in the overall understanding and use of

the C# language and associated constructs.

Whether you are a novice, intermediate, or professional developer, this book will certainly

become a very handy, well-thumbed, desk reference for today’s highly productive .NET

4.0 C# developer.”

—Jeff Barnes, Architect Microsoft Developer & Platform Evangelism, Microsoft Corporation

“This book covers all the bases, from the C# language, through the frameworks you’ll use it

with and the tools you need to be productive. The best way to learn is to do, and there is no

shortage of doing here.”

—Chris Burrows, C# Compiler Team, Microsoft Corporation

“Sams Teach Yourself Visual C# 2010 in 24 Hours gives you the jump start you need to be

productive quickly. I found the book extremely clear to follow and laid out logically hour by

hour to flow you through related topics. From novices to C# veterans, this book gives you all

you need to understand all that is new in the 2010 release.”

—Richard Jones, Microsoft MVP

ptg

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Scott Dorman

SamsTeachYourself

24in

Hours

Visual C#®

2010
Complete Starter Kit

ptg

Sams Teach Yourself Visual C#®2010 in 24 Hours: Complete Starter Kit
Copyright © 2010 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

This material may be distributed only subject to the terms and conditions set forth in the
Open Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

ISBN-13: 978-0-672-33101-5
ISBN-10: 0-672-33101-2

Library of Congress Cataloging-in-Publication Data

Dorman, Scott, 1973-
Sams teach yourself Visual C# 2010 : in 24 hours / Scott Dorman.

p. cm.
Includes index.
ISBN 978-0-672-33101-5

1. C# (Computer program language) 2. Microsoft Visual C#. I. Millspaugh, A. C. (Anita C.)
II. Title.

QA76.73.C154D57 2010
005.13’3—dc22

2010018992

Printed in the United States on America

First Printing June 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Sams Publishing
800 East 96th Street
Indianapolis, Indiana, 46240 USA

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development
Editor
Mark Renfrow

Managing Editor
Kristy Hart

Senior Project
Editor
Lori Lyons

Copy Editor
Apostrophe Editing
Services

Indexer
Publishing Works,
Inc.

Proofreader
Water Crest
Publishing, Inc.

Technical Editors
Claudio Lasalla
Eric Lippert

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Jake McFarland
Nonie Ratcliff

http://www.opencontent.org/openpub/

ptg

Contents at a Glance

Introduction. ... 1

Part I: C# Fundamentals

HOUR 1 The .NET Framework and C# . .. 7

2 Understanding C# Types. 35

3 Understanding Classes and Objects the C# Way . 63

4 Inheritance, Interfaces, and Abstract Classes . 93

5 Creating Enumerated Types and Structures . .. 113

6 Events and Event Handling . .. 131

Part II: Programming in C#

HOUR 7 Controlling Program Flow. 147

8 Using Strings and Regular Expressions . 167

9 Working with Arrays and Collections. 195

10 Handling Errors Using Exceptions. 227

11 Understanding Generics . 245

12 Understanding Query Expressions . 267

Part III: Working with Data

HOUR 13 Using Files and Streams . 289

14 Working with XML . 311

15 Working with Databases. 329

Part IV: Building an Application Using Visual Studio

HOUR 16 Debugging in Visual Studio. 347

17 Building a Windows Application. 363

18 Using Data Binding and Validation . 385

19 Building a Web Application . 407

ptg

Part V: Diving Deeper

HOUR 20 Programming with Attributes . 427

21 Dynamic Types and Language Interoperability . 439

22 Memory Organization and Garbage Collection . 451

23 Understanding Threads, Concurrency, and Parallelism . 461

24 Next Steps: Silverlight, PowerShell, and Entity Framework . 479

Index . 485

vi

Sams Teach Yourself C# 2010 in 24 Hours

ptg

Table of Contents

Introduction 1

Audience and Organization . 2

Conventions Used in This Book . 3

Closing Thoughts . 3

Part I C# Fundamentals

HOUR 1 The .NET Framework and C# 7

The .NET Framework . .. 7

The C# Language 17

Visual Studio 2010 24

Writing Your First Program . .. 27

Q&A . .. 31

Workshop 32
HOUR 2 Understanding C# Types

35

Types . .. 36

Predefined Types 37

Operators 47

Default Values. .. 53

Null and Nullable Types 53

Casting and Conversion 55

Q&A . .. 59

Workshop 60
HOUR 3 Understanding Classes and Objects the C# Way

63

Object-Oriented Programming . 64

Component-Oriented Programming . 65

Classes in C#. 65

Scope and Declaration Space . 66

ptg

Nested Classes . .. 85

Partial Classes . .. 86

Static Classes. .. 86

Object Initializers. ... 88

Q&A . .. 89

Workshop 90
HOUR 4 Inheritance, Interfaces, and Abstract Classes

93

Inheritance and Polymorphism 93

Abstract Classes and Members 103

Interfaces 105

Q&A . .. 109

Workshop 111
HOUR 5 Creating Enumerated Types and Structures

113

Enumerated Types . .. 114

Structures 119

Q&A . .. 127

Workshop 127
HOUR 6 Events and Event Handling

131

Understanding Events . 132

Subscribing and Unsubscribing. 132

Publishing an Event . 136

Raising an Event . 139

Q&A . 141

Workshop . 142

Part II Programming in C#

HOUR 7 Controlling Program Flow 147

Selection Statements . 148

Iteration Statements . 153

Jump Statements . 159

viii

Sams Teach Yourself C# 2010 in 24 Hours

ptg

Q&A . .. 162

Workshop 163
HOUR 8 Using Strings and Regular Expressions

167

Strings . .. 168

Mutable Strings Using StringBuilder . .. 177

Type Formatting 178

Regular Expressions . .. 187

Q&A . .. 190

Workshop 191
HOUR 9 Working with Arrays and Collections

195

Arrays . .. 196

Indexers 200

Generic Collections. .. 203

Collection Initializers . .. 217

Collection Interfaces . .. 219

Enumerable Objects and Iterators . .. 220

Q&A . .. 223

Workshop 224
HOUR 10 Handling Errors Using Exceptions

227

Understanding Exceptions . .. 228

Throwing Exceptions . .. 231

Handling Exceptions. .. 232

Rethrowing Caught Exceptions. ... 239

Overflow and Integer Arithmetic . .. 241

Q&A . .. 243

Workshop 243
HOUR 11 Understanding Generics

245

Why You Should Use Generics . 246

Using Generic Methods . 253

Creating Generic Classes . 254

Contents

ix

ptg

Combining Generics and Arrays 257

Working with Tuples. .. 261

Q&A . .. 263

Workshop 264
HOUR 12 Understanding Query Expressions

267

Introducing LINQ. 268

Standard Query Operator Methods . 279

Lambdas . 280

Deferred Execution . 283

Q&A . 284

Workshop . 285

Part III Working with Data

HOUR 13 Using Files and Streams 289

Files and Directories . .. 290

Reading and Writing Data. .. 300

Q&A . .. 307

Workshop 308
HOUR 14 Working with XML

311

Understanding the XML DOM 312

Using LINQ to XML . .. 313

Selecting and Querying XML . .. 319

Modifying XML 323

Q&A . .. 326

Workshop 326
HOUR 15 Working with Databases

329

Understanding ADO.NET. 330

Understanding LINQ to ADO.NET. 333

Q&A . 342

Workshop . 343

x

Sams Teach Yourself C# 2010 in 24 Hours

ptg

Part IV Building an Application Using Visual Studio

HOUR 16 Debugging in Visual Studio 347

Commenting Your Code 348

Compiler and Runtime Errors. .. 349

Debugging in Visual Studio . .. 350

Visualizing Data 359

Q&A . .. 361

Workshop 361
HOUR 17 Building a Windows Application

363

Understanding WPF . .. 364

Creating a WPF Application . .. 370

Styling the Layout . .. 379

Q&A . .. 382

Workshop 382
HOUR 18 Using Data Binding and Validation

385

Understanding Data Binding . .. 386

Converting Data 390

Binding to Collections. .. 395

Working with Data Templates 399

Validating Data 400

Q&A . .. 404

Workshop 405
HOUR 19 Building a Web Application

407

Understanding Web Application Architecture . 408

Working with ASP.NET . 408

Creating a Web Application. 411

Understanding Data Validation . 420

Q&A . 423

Workshop . 424

Contents

xi

ptg

Part V Diving Deeper

HOUR 20 Programming with Attributes 427

Understanding Attributes . .. 428

Working with the Common Attributes 430

Using Custom Attributes 433

Accessing Attributes at Runtime 434

Q&A . .. 436

Workshop 436
HOUR 21 Dynamic Types and Language Interoperability

439

Using Dynamic Types . .. 439

Understanding the DLR. ... 444

Interoperating with COM . .. 447

Reflection Interoperability . .. 448

Q&A . .. 449

Workshop 450
HOUR 22 Memory Organization and Garbage Collection

451

Memory Organization 452

Garbage Collection. .. 452

Understanding IDisposable . .. 453

Using the Dispose Pattern . .. 455

Declaring and Using Finalizers 456

Q&A . .. 458

Workshop 459
HOUR 23 Understanding Threads, Concurrency, and Parallelism

461

Understanding Threads and Threading . 462

Concurrency and Synchronization . 463

Understanding the Task Parallel Library . 467

Working with Parallel LINQ (PLINQ). 472

Potential Pitfalls. 473

Q&A . 475

Workshop . 476

ptg

HOUR 24 Next Steps: Silverlight, PowerShell, and Entity Framework 479

Understanding the Entity Framework . 479

Introducing PowerShell . 482

Silverlight . 483
Index . 485

Foreword

xiii

ptg

This page intentionally left blank

ptg

Foreword

Over a decade ago, a small team of designers met in a small conference room on the sec-

ond floor of Building 41 at Microsoft to create a brand-new language, C#. The guiding prin-

ciples of the language emphasized simplicity, familiarity, safety, and practicality. Of course,

all those principles needed to balance against one another; none are absolutes. The design-

ers wanted the language to be simple to understand but not simplistic, familiar to C++ and

Java programmers but not a slavish copy of either, safe by default but not too restrictive,

and practical but never abandoning a disciplined, consistent, and theoretically valid design.

After many, many months of thought, design, development, testing, and documentation,

C# 1.0 was delivered to the public. It was a pretty straightforward object-oriented language.

Many aspects of its design were carefully chosen to ensure that objects could be organized

into independently versionable components, but the fundamental concepts of the language

came from ideas developed in object-oriented and procedural languages going back to the

1970s or earlier.

The design team continued to meet three times a week in that same second-floor conference

room to build upon the solid base established by C# 1.0. By working with colleagues in

Microsoft Research Cambridge and the CLR team across the street, the type system was

extended to support parametric polymorphism on generic types and methods. They also

added “iterator blocks” (sometimes known as “generators” in other languages) to make it

easier to build iterable collections and anonymous methods. Generics and generators had

been pioneered by earlier languages such as CLU and Ada in the 1970s and 1980s; the idea

of embedding anonymous methods in an existing method goes all the way back to the

foundations of modern computer science in the 1950s.

C# 2.0 was a huge step up from its predecessor, but still the design team was not content.

They continued to meet in that same second-floor conference room three times a week. This

time, they were thinking about fundamentals. Traditional “procedural” programming lan-

guages do a good job of basic arithmetic, but the problems faced by modern developers go

beyond adding a column of numbers to find the average. They realized that programmers

manipulate data by combining relatively simple operations in complex ways. Operations

typically include sorting, filtering, grouping, joining, and projecting collections of data. The

concept of a syntactic pattern for “query comprehensions” that concisely describes these

operations was originally developed in functional languages such as Haskell but also works

well in a more imperative language like C#. And thus LINQ—Language Integrated Query—

was born.

ptg

xvi

Sams Teach Yourself C# 2010 in 24 Hours

After ten years of meeting for six hours a week in the same conference room, the need to

teleconference with offsite team members motivated a change of venue to the fifth floor.

The design team looked back on the last ten years to see what real-world problems were not

solved well by the language, where there were “rough edges,” and so on. The increasing

need to interoperate with both modern dynamic languages and legacy object models moti-

vated the design of new language features like the “dynamic” type in C# 4.0.

I figured it might be a good idea to do a quick look at the evolution of the C# language

here, in the Foreword, because this is certainly not the approach taken in this book. And

that is a good thing! Authors of books for novices often choose to order the material in the

order they learned it, which, as often as not, is the order in which the features were added

to the language. What I particularly like about this book is that Scott chooses a sensible

order to develop each concept, moving from the most basic arithmetic computations up to

quite complex interrelated parts. Furthermore, his examples are actually realistic and moti-

vating while still being clear enough and simple enough to be described in just a few para-

graphs.

I’ve concentrated here on the evolution of the language, but of course the evolution of one

language is far from the whole story. The language is just the tool you use to access the

power of the runtime and the framework libraries; they are large and complex topics in

themselves. Another thing I like about this book is that it does not concentrate narrowly on

the language, but rather builds upon the language concepts taught early on to explain how

to make use of the power afforded by the most frequently used base class library types.

As my brief sketch of the history of the language shows, there’s a lot to learn here, even

looking at just the language itself. I’ve been a user of C# for ten years, and one of its

designers for five, and I’m still finding out new facts about the language and learning new

programming techniques every day. Hopefully your first 24 hours of C# programming

described in this book will lead to your own decade of practical programming and continu-

al learning. As for the design team, we’re still meeting six hours a week, trying to figure out

what comes next. I’m looking forward to finding out.

Eric Lippert

Seattle, Washington

March 2010

ptg

Dedication

This book is first and foremost dedicated to Nathan, who I hope follows
in my footsteps and someday writes books of his own.

Thank you for giving me a unique perspective
and showing me the world through the eyes of a child.

About the Author

Scott Dorman has been designated by Microsoft as a C# Most Valued Professional in recog-

nition for his many contributions to the C# community. Scott has been involved with com-

puters in one way or another for as long as he can remember. He has been working with

computers professionally since 1993 and with .NET and C# since 2001. Currently, Scott’s pri-

mary focus is developing commercial software applications using Microsoft .NET technolo-

gies. Scott runs a software architecture-focused user group, speaks extensively (including at

Microsoft TechEd and community-sponsored code camps), and contributes regularly to

online communities such as The Code Project and StackOverflow. Scott also maintains a

.NET Framework and C#-focused technology blog at http://geekswithblogs.com/sdorman.

http://geekswithblogs.com/sdorman

ptg

Acknowledgments

When I decided to undertake this project, I wasn’t prepared for just how difficult it is to

actually write a book. As I look back on the amount of time and effort it took, I realize that,

although I was the one responsible for writing the content, I couldn’t have done it without

the help and support of others. First, I need to thank Brook for giving me the idea of writing

this book for Sams Publishing in the first place and taking the chance on a new author. The

rest of the editors at Sams, without whom the book would never have been published, were

also great to work with. I also want to thank Keith Elder, Shawn Weisfeld, Brad Abrams,

and Krzysztof Cwalina for their early input on the table of contents and helping me focus

the content and overall direction of the book. My technical editors, Claudio and Eric, also

deserve a huge amount of thanks; they have both provided an incredible amount of com-

ments and insight. Of course, without the entire C#, .NET Framework, and Visual Studio

product teams, I wouldn’t have anything to write about in the first place.

I wrote this book for the development community, which has given so much to me. Without

its encouragement and support, I wouldn’t have been in a position to write this book at all.

This includes everyone associated with the Microsoft MVP program and the Microsoft field

evangelists, particularly Joe “devfish” Healy, Jeff Barnes, and Russ “ToolShed” Fustino.

Finally, of course, I have to thank my family for being so patient and understanding of the

many long nights and weekends it took to finish this book. Although Nathan is too young

right now to understand why I spent so much time on the computer rather than playing

with him, I hope he will appreciate it as he gets older. The biggest thing it did was introduce

him to computers at a very early age, as at 21 months old, he received his first laptop (an

old IBM ThinkPad 770 that was collecting dust). To my stepson, Patrick, thank you for

understanding all the canceled amusement park plans. Last, but certainly not least, thank

you Erin for your support and patience. I know you are happy that everything is done and I

can start having more family time.

ptg

We Want to Hear from You

As the reader of this book, you are our most important critic and commentator.

We value your opinion and want to know what we’re doing right, what we could do better,

what areas you’d like to see us publish in, and any other words of wisdom you’re willing to

pass our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name

and contact information. I will carefully review your comments and share them with the

author and editors who worked on the book.

Email: neil.rowe@pearson.com

Mail: Neil Rowe

Executive Editor

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

ptg

This page intentionally left blank

ptg

1

Introduction

In late December 1998, Microsoft began working on a new development platform

that would result in an entirely new way to create and run next-generation applica-

tions and web services. This new platform was called the .NET Framework and was

publicly announced in June 2000.

The .NET Framework unified the existing Windows interfaces and services under a

single application programming interface (API) and added many of the emerging

industry standards, such as Simple Object Access Protocol (SOAP), and many existing

Microsoft technologies, such as the Microsoft Component Object Model (COM and

COM+) and Active Server Pages (ASP). In addition to providing a consistent develop-

ment experience, the .NET Framework enabled developers to focus on the application

logic rather than more common programming tasks with the inclusion of one of the

largest available class libraries.

Finally, by running applications in a managed runtime environment that automati-

cally handled memory allocation and provided a “sandboxed” (or restricted access)

environment, many common programming errors and tasks were reduced and, in

some cases, eliminated.

Now, nearly 10 years later, the .NET Framework continues to evolve by supporting

new technologies and industry standards, adding support for dynamic languages

and providing even more classes that are built-in. At Microsoft’s Professional Devel-

oper Conference (PDC) in 2008, one of the themes was “make the simple things easy

and the difficult things possible.” The .NET Framework achieved that with its first

release, and each release after that continues to realize that goal.

The C# (pronounced “See Sharp”) programming language was developed with the

.NET Framework by Anders Hejlsberg, Scott Wiltamuth, and Peter Golde and was first

available in July 2000. Having been written specifically for the .NET Framework, it is

considered by many to be the canonical language of the .NET Framework. As a lan-

guage, C# drew inspiration for its syntax and primary features from Delphi 5, C++,

and Java 2. C# is a general-purpose, object-oriented, type-safe programming lan-

guage used for writing applications of any type. Just as the .NET Framework has

continued to evolve, C# has evolved to keep pace with the changes in the .NET

Framework and to introduce new language features that continue to make the

simple things easy and the difficult things possible.

ptg

2 Introduction

Although there are more than 50 different programming languages supported by the

.NET Framework, C# continues to be one of the most popular and modern general-

purpose languages.

Audience and Organization
This book is targeted toward the non-.NET programmer who is venturing into .NET

for the first time or an existing .NET programmer trying to learn C#. If you are first

learning how to program, this book can help you on your way, but it isn’t intended

to be a beginning programming book. The book is designed with the purpose of get-

ting you familiar with how things are done in C# and becoming productive as

quickly as possible. I take a different approach in this book by using a more holistic

view of the language. I chose this approach to give you the most complete under-

standing of the C# language by focusing on how the current language features

enable you to solve problems.

This book is divided in to five parts, each one focusing on a different aspect of the

language. These parts progress from the simple fundamentals to more advanced

topics, so I recommend reading them in order:

. Part I, “C# Fundamentals,” teaches you about the .NET Framework, the object-

oriented programming features of C#, the fundamentals of C# type system,

and events.

. Part II, “Programming in C#,” teaches you the fundamentals of programming.

You learn how to perform loops and work with strings, regular expressions, and

collections. Then we move to more advanced topics, such as exception man-

agement and generics. Finally, we finish with anonymous functions (lambdas),

query expressions (LINQ), and how to interact with dynamic languages.

. Part III, “Working with Data,” shows how to interact with the file system and

streams, create and query XML documents, and work with databases.

. Part IV, “Building an Application Using Visual Studio,” starts with an introduc-

tion to Visual Studio 2010 and debugging applications. We then build a Win-

dows client application using data binding and validation. Next, you learn

how to build an application for the web.

. Part V, “Diving Deeper,” introduces the advanced concepts of attribute pro-

gramming, dynamic types, and language interoperability. You learn the fun-

damentals of how the .NET Framework organizes memory, how the garbage

collector works, and how the .NET Framework provides mechanisms for deter-

ministic finalization. Next, you learn how to use multiple threads and parallel

processing. Finally, you look at some of the newer technologies from Microsoft

ptg

Closing Thoughts 3

Did you
Know?

By the
Way

built on the .NET Framework, such as Silverlight, PowerShell, and the Entity

Framework.

By the Way boxes provide useful sidebar information that you can read immedi-
ately or circle back to without losing the flow of the topic at hand.

Did You Know? boxes highlight information that can make your programming more
effective.

Watch Out! boxes focus your attention on problems or side effects that can occur
under certain situations.

Watch
Out!

Throughout the book, I use examples that show real-world problems and how to

solve them using C# and the .NET Framework. In Part IV, we actually build some

complete applications from scratch that draw on the skills you learned in the previ-

ous three parts.

Conventions Used in This Book
This book uses several design elements and conventions to help you prioritize and

reference the information it contains.

New terms appear in bold for emphasis.

In addition, this book uses various typefaces to help you distinguish code from regu-

lar English. Code is presented in a monospace font. Placeholders—words or characters

that represent the real words or characters you would type in code—appear in italic

monospace. When you are asked to type or enter text, that text appears in bold.

Some code statements presented in this book are too long to appear on a single line.

In these cases, a line continuation character is used to indicate that the following

line is a continuation of the current statement.

Closing Thoughts
The Microsoft .NET Framework and C# continue to be one of the most powerful yet

elegant languages I’ve worked with and provide many exciting opportunities for

developing the next “killer application.” You won’t be an expert in C# when you

finish this book, but I hope you feel comfortable about creating applications in .NET

and C#.

ptg

This page intentionally left blank

ptg

PART I

C# Fundamentals

HOUR 1 The .NET Framework and C# 7

HOUR 2 Understanding C# Types 35

HOUR 3 Understanding Classes and Objects the C# Way 63

HOUR 4 Inheritance, Interfaces, and Abstract Classes 93

HOUR 5 Creating Enumerated Types and Structures 113

HOUR 6 Events and Event Handling 131

ptg

This page intentionally left blank

ptg

The .NET Framework 7

HOUR 1

The .NET Framework and C#

What You’ll Learn in This Hour:
. Understanding the .NET Framework
. The Parallel Computing Platform
. The Role of the Dynamic Language Runtime
. An Overview of the C# Language
. C# Language Syntax
. How to Write Your First C# Program

Learning a new language is like learning to ride a bicycle or drive a car. You must

learn the fundamentals first and build your confidence as you progress to more com-

plex actions. When you understand the principles and have the confidence that you

can accomplish your goal, suddenly that goal doesn’t seem so far out of reach. By the

end of this hour, you will have a basic understanding of the .NET Framework, its com-

ponents and their relationship to each other, and how you create applications. You

will have been introduced to the C# language and written your first .NET application.

The .NET Framework
The .NET Framework provides developers with the tools and technology to create and

run next-generation applications and web services in a way that is language- and

platform-independent. It has a rich class library that supports many common tasks

and simplifies many difficult tasks, enabling you to focus your time more effectively on

the problem at hand: solving the business needs in the most efficient manner possible.

The .NET Framework is designed to do the following:

. Provide a runtime environment that simplifies software deployment and

reduces the chances of version conflicts.

ptg

8 HOUR 1: The .NET Framework and C#

By the
Way

. Enable the safe execution of code.

. Use industry standards for all communication to enable integration with

non-.NET code.

. Provide a consistent developer experience across all types of applications in a

way that is language- and platform-independent.

. Provide a runtime environment that minimizes or eliminates the performance

problems of scripted or interpreted languages.

To achieve these goals, the .NET Framework has four components. The first compo-

nent is the common language runtime, which you can think of as the core, or heart,

of the .NET Framework. Just as your heart provides the pumping action your body

needs to function, the common language runtime provides the low-level core services

your application needs to function and is said to manage your code. Code written for

the .NET Framework is called managed code, whereas any other code is called

unmanaged code.

The second component of the .NET Framework is the class library, which is a rich col-

lection of reusable classes, or types, that you can use to develop almost any applica-

tion you can imagine.

Framework Class Library
The Framework Class Library contains more than 4,000 public classes and is one
of the largest class libraries available today.

The .NET Framework provides support for parallel programming directly in the com-

mon language runtime through class libraries and diagnostic tools in the parallel

computing platform, which is the third component of the.NET Framework. The paral-

lel computing platform enables you to write efficient and scalable code that takes

advantage of multiple processors in a natural and simple way.

The dynamic language runtime is built on top of the common language runtime and

is the fourth component of the .NET Framework, providing language services for

dynamic languages such as IronRuby and IronPython. Because dynamic languages

are much better at certain things than a general-purpose language such as C#, the

dynamic language runtime gives you the flexibility to choose the most appropriate

language to solve a specific business need. Not only that, the dynamic language run-

time enables non-dynamic languages such as C# to support a consistent and simple

syntax for working with dynamic objects whether the source is COM, IronRuby, Iron-

Python, or JavaScript.

ptg

The .NET Framework 9

Did you
Know?What Is a Dynamic Language?

In a language such as C#, which is statically typed, the compiler attempts to
prove type safety, and, if it cannot, generates an error. In a dynamic language, this
attempt at proving type safety is not made. In addition, most dynamic languages
perform more complex type operations, such as determining the correct method
overload, at runtime whereas C# performs this type of resolution at compile time.

In effect, what would normally be done at compile time in a statically typed lan-
guage is done at runtime. This includes the idea that you can generate code at
runtime (using what is commonly called an eval or repl loop) that can modify the
state of running objects. As a result, dynamic languages enable a great deal of
freedom and are most frequently used as scripting languages.

Some common dynamic languages are Jscript, JavaScript, Python, IronPython,
Ruby, and IronRuby.

Just as code written for the .NET Framework is called managed code, the resulting

application is called a managed application. When a managed application runs, it

automatically hosts the common language runtime it was built against. Not only

does the .NET Framework provide a number of different runtime hosts, it also pro-

vides the tools necessary to write your own. Because of this capability, unmanaged

applications such as Internet Information Services (IIS) and Microsoft SQL Server can

host their own copy of the common language runtime, enabling them to take advan-

tage of both managed and unmanaged features.

Figure 1.1 shows how the different components of the .NET Framework relate to your

application, the overall operating system, and unmanaged applications.

The Common Language Runtime
The common language runtime (CLR) is the core of the .NET Framework and pro-

vides a unified type system and a managed runtime environment. Together they

form a foundation for developing and executing applications that are language- and

platform-independent and help eliminate, or at least reduce, many common pro-

gramming errors.

Common Type System
The unified type system, called the common type system (CTS), enables all .NET

languages to share the same type definitions, enabling those types to be manipu-

lated in a consistent manner. This helps ensure correctly written applications by

GO TO .

We discuss
types a bit later
in this hour.
Hour 2, “Under-
standing C#
types,” provides
more detailed
information.

ptg

10 HOUR 1: The .NET Framework and C#

Internet
Information

Services

ASP.NET
Runtime

Managed Web
Applications

Class
Library

Custom
Object

Libraries

Managed Applications

SQL
Server

SQL-
CLR

CLR Stored
Procedures

Operating System/
Hardware

Runtime

Unmanaged Applications

FIGURE 1.1
.NET Framework
context

. Removing the possibility that incompatible data can be assigned to a type

. Enabling every .NET language to have the same description of a type, regard-

less of what language was used to define that type

. Enforcing a consistent manner in which a language manipulates a type

Type Safety and the CTS
The common type system and common language specification form the founda-
tion of the type-safety found in the .NET Framework.

This foundation provides the .NET Framework a consistent way to promote type
safety but not enforce it. The task of enforcing type safety is left to the individual
language compilers and the virtual execution system (which you will learn about a
bit later this hour).

By the
Way

ptg

The .NET Framework 11

Because the common type system specifies the definition of how types look and

behave in a language-independent fashion, it must take into account differences in

those languages. The common type system provides a minimum set of rules a .NET

language (and consequently, its compiler) must follow, called the common language

specification (CLS). This common definition also enables the idea of language inte-

gration, which enables you to use a type defined in another language as if it were

defined natively in your language.

CLS Compliance
Almost all of the classes provided by the Framework class library are CLS compli-
ant, so any .NET language will have access to the same library. If you are develop-
ing your own library, it is suggested that you also ensure that your classes are
CLS compliant to allow for the widest adoption and use possible.

Did you
Know?

Common Intermediate Language
The common type system and common language specification help meet the goal of

being language- and platform-independent, but it does no good if the compiler gen-

erates executable object code tied to the hardware platform. To resolve this problem,

managed code is partially compiled into a low-level language called common inter-

mediate language (CIL). You can think of common intermediate language like

assembly language; it is made up of individual, low-level instructions that represent

your code.

An assembly is a partially compiled unit, or package, that contains CIL instructions

and provides a logical boundary for defining types. Because assemblies are partially

compiled, they can be either 32- or 64-bit, depending on the operating system and

hardware. This capability truly means that managed applications are platform-inde-

pendent and, at the same time, can take advantage of hardware technology without

recompiling or adding special instructions to your code.

Virtual Execution System
The other important part of the common language runtime is the managed runtime

environment, called the virtual execution system (VES), which handles the low-level

core services your application needs. Just as Java applications require the Java virtual

machine (JVM) to run, a managed application requires the CLR, and more specifi-

cally the VES, to run.

When a .NET application starts, it is the VES that is responsible for actually loading

the CIL code, executing that code and, ultimately, managing the memory allocations

ptg

12 HOUR 1: The .NET Framework and C#

Just-In-Time Compilation
The process of Just-In-Time compilation is called jitting and the JIT compiler is
also called the jitter.

Did you
Know?

By compiling the code in this manner, the .NET Framework gains a considerable speed

improvement over traditional interpreted languages. Just-In-Time compilation also

has benefits over regular (static) compilation, as it can enforce security guarantees at

runtime and recompile the code at runtime to gain additional optimizations. The

.NET Framework JIT compiler is highly optimized for compiling CIL code into highly

efficient object code, runs on demand, and caches the compiled code for future use.

Memory Management and Garbage Collection
Proper memory management is a classic problem in many unmanaged program-

ming languages and is a potential source for some common errors. In these lan-

guages, the developer is responsible for allocating and deallocating memory at the

correct times. The .NET Framework resolves this problem by controlling these memory

allocations and deallocations automatically as part of the VES.

It is this automatic memory management, also known as garbage collection, which

makes C# (and the other .NET languages) a garbage-collected language. Garbage

collection frees you from having to worry as much about releasing memory when it is

no longer needed. This enables you to create applications that are more stable by

required by the application. In other words, the VES provides the services and infra-

structure to abstract both platform and language differences.

As part of the loading and compilation process, the VES performs various validation

and verification checks to ensure that the file format, assembly metadata, and CIL

are consistent and that the CIL instructions themselves do not allow illegal memory

access. This ensures that an application can access only memory or other resources to

which it has been explicitly granted access. This restricted environment can be

thought of as a sandbox.

If the VES provides a runtime environment and executes assemblies containing CIL,

are those assemblies interpreted or compiled? Remember, one of the goals for the

.NET Framework is to provide a runtime environment that minimizes or eliminates

the performance problems of scripted or interpreted languages. This would imply that

the CIL code is compiled, but when does that compilation happen?

One of the services the VES provides is the Just-In-Time (JIT) compiler. Just-In-Time

compilation is the process of taking the partially compiled CIL code and generating

executable object code, or native code, at runtime.

ptg

The .NET Framework 13

.NET Framework Class Library (FCL)

Base Class Libraries (BCL)

Diagnostics Extensibility …

Workflow WCF Security Configuration

XML LINQ Data Network

Windows Forms Web WPF Globalization

FIGURE 1.2
Framework Class
Library

preventing many of those common programming errors and focusing your time on

the business logic your application requires.

Even with automatic memory management, it is still important to understand how the

garbage collector interacts with your program and the types you create. An in-depth

discussion on garbage collection is well outside the scope of this book, but we talk a lit-

tle bit more about it in Hour 22, “Memory Organization and Garbage Collection.”

Framework Class Library
Although the CLR forms the core of the .NET Framework, the framework class

library (FCL) actually gives it substance. The class library is similar to Java’s class

libraries, the C++ Standard Template Library (STL), Microsoft’s Active Template

Library (ATL), the Microsoft Foundation Classes (MFC), Borland’s Object Windows

Library (OWL), or any of the various other class libraries available today.

Just like those class libraries, the FCL is a rich set of reusable types enabling you to

achieve a high level of developer productivity by simplifying many common pro-

gramming tasks.

Figure 1.2 shows some of the types available in the FCL, grouped by functional area.

Framework Class Library
The framework class library is the best example in the .NET Framework of making
the simple things easy and the hard things possible.

Although it is possible to create an application without using the types provided
by the FCL, it is impractical to do so.

By the
Way

ptg

14 HOUR 1: The .NET Framework and C#

At the lowest level are the Base Class Libraries (BCL) that serve as the standard run-

time for any .NET language and provide types that represent the intrinsic CLR types,

collections, streams, string manipulation, basic file access, and a variety of other oper-

ations or data structures. In total, there are 172 publicly available types in the BCL

and 331 total public types in what is considered the Standard Library as defined by the

Standard Ecma-335: Common Language Infrastructure (CLI), 4th Edition/June 2006.

What Is Ecma?
Ecma International is an international standards association founded in 1961
that aims to help develop standards for the use of information communication
technology and consumer electronics.

The C# Language Specification along with the Common Language Infrastructure
(CLI) were accepted as an Ecma standard on December 14, 2001.

The CLI is an open source version of the Common Language Runtime. It has fos-
tered several open source versions of C# and the .NET Framework, including Dot-
GNU and Mono. Of these, Mono is probably the most well known and provides an
implementation of the .NET development platform on Linux, BSD, UNIX, Mac OS X,
Solaris, and Windows operating systems.

It is the open source standards provided by Ecma and projects such as DotGNU
and Mono that enable development skills and applications to be used on virtually
any platform.

Did you
Know?

The remaining classes in the FCL are focused on specific functional areas, such as

providing data access, XML support, globalization support, diagnostics, configura-

tion, networking, communication, business workflow support, web applications, and

Windows desktop applications, to name just a few.

Namespaces
With thousands of classes in the .NET Framework class library, there needs to be a

way to prevent ambiguity between type names and to provide a convenient hierar-

chical grouping mechanism. The .NET Framework uses the concept of namespaces to

accomplish this. A namespace is simply a collection of types and has no effect on the

accessibility of a type. Namespaces can be split across multiple assemblies. The .NET

Framework uses the hierarchical nature of namespaces to provide a progressive

framework, creating a powerful and easy-to-use development platform.

ptg

The .NET Framework 15

Almost 400 namespaces exist in the .NET Framework class library, although you will

probably never interact with some of them. As you become more familiar with the

class library, you will find certain namespaces that you use more frequently than oth-

ers, which might be a different set than ones your co-workers or peers use.

The most commonly used namespaces are shown in Table 1.1.

TABLE 1.1 Commonly Used Namespaces

Namespace Description

System The base, or root, namespace for .NET; contains
classes that define the commonly used data types,
exceptions, and events

System.Collections.Generic Contains classes that define various generic
collections, enabling you to create strongly typed
collections

System.Data Contains classes that form the majority of the
ADO.NET library, enabling you to manage data from
multiple data sources

System.Diagnostics Contains classes that enable you to interact with event
logs and performance counters, debug your
application, and trace the execution of your code

System.Globalization Contains classes that represent culture-related
information, including the language, country/region,
calendars in use, sort order for strings, and format
patterns for dates, currency, and numbers

System.IO Contains classes that enable synchronous and
asynchronous reading and writing on data streams
and files

By the
WayNamespaces and Type Names

Namespaces use a dotted syntax to denote a hierarchical grouping, with each
level in the hierarchy separated by a dot (.).

Given a type’s full name, everything up to the rightmost dot is the namespace
whereas the last part (after the rightmost dot) is the type name. For example,
System.Printing.PrintDriver is the full name for the PrintDriver type in the
System.Printing namespace.

Namespaces, however, are only conveniences supported by the .NET programming
languages. In the CLR, a type is always identified by its full name, which contains
both the name of the type and its containing namespace.

ptg

16 HOUR 1: The .NET Framework and C#

Parallel Computing Platform
Writing multithreaded and asynchronous applications has always been possible in

both managed and unmanaged code; however, it has always been difficult to get cor-

rect. The .NET Framework 4.0 simplifies writing these applications with the parallel

computing platform. This is a new programming model for both managed and

unmanaged code and raises the level of abstraction so that you no longer need to

think about the lower-level concepts, such as threads and locks.

GO TO .

Hour 23,
“Understanding
Threads,
Concurrency, and
Parallelism,” for
more information
on multithreaded
and parallel
programming.

TABLE 1.1 Commonly Used Namespaces

Namespace Description

System.Linq Contains classes and interfaces that support queries
using Language-Integrated Query (LINQ)

System.Net Contains classes that provide a simple programming
interface for many of the protocols used on networks
today

System.Security Contains classes that provide the .NET Framework
security system

System.ServiceModel Contains classes necessary to build Windows
Communication Foundation (WCF) services and client
applications

System.Text Contains classes for working with strings and
characters

System.Web Contains classes that enable browser-server
communication

System.Windows Contains several important Windows Presentation
Foundation (WPF) base element classes, various
classes that support the WPF property system and
event logic, and other types more broadly consumed

System.Windows.Controls Contains classes to create controls that enable a user
to interact with an application

System.Windows.Forms Contains classes for creating Windows-based
applications that take full advantage of the rich user
interface features available in the Windows operating

System.Xml Contains classes that provide standards-based
support for processing XML

Continued

ptg

The C# Language 17

For managed code, the parallel computing platform includes parallel implementa-

tions of the common loop instructions, a parallel implementation of LINQ to Objects,

and new lock-free and thread-safe collections. Visual Studio 2010 introduces new

diagnostic tools, such as the parallel concurrency analyzer and processor migration

analysis that enable you to easily debug and tune your code.

The parallel computing platform simplifies the mechanics of writing code that can

effectively take advantage of multiple processors. The decision of what code is right

for parallelism still requires analysis and, ultimately, changing the way you think

about how to solve a particular problem. We touch on some of these aspects of the

parallel computing platform in Hour 23, “Understanding Threads, Concurrency, and

Parallelism.”

Dynamic Language Runtime
The dynamic language runtime (DLR) was introduced in the .NET Framework 4.0

and is an additional runtime environment providing language services and support

for dynamic languages.

Being built on top of the common language runtime means these dynamic lan-

guages can now integrate with other .NET languages. The DLR also enables dynamic

features for existing statically typed languages such as C#, enabling them to support

consistent expressions when working with dynamic objects from any source.

With the inclusion of the DLR, the support for dynamic languages, and enabling

dynamic features in static languages, developers are now free to choose the best lan-

guage possible to solve the task and be certain that other developers and other .NET

languages can easily use the dynamic code they create.

The C# Language
If you are a C, C++, or Java programmer, C# will be immediately familiar because it

shares a similar syntax. If you are already familiar with Visual Basic (any version of

Visual Basic that runs on the .NET Framework, not Visual Basic 6.0 or earlier), the

syntax might seem foreign, but the Framework class library will be familiar. For those

of you who have never worked in any of these languages, you will soon find that

developing with C# is easier than many other languages due to the elegant syntax

and rich class library.

GO TO .

Hour 21,
“Dynamic Types
and Language
Interoperability,”
covers
integrating with
dynamic
languages in
detail.

ptg

18 HOUR 1: The .NET Framework and C#

Language Inspiration
As a language, C# has drawn inspiration for its syntax and primary features from
a number of different languages, including Delphi 5, C++, and Java 2.

The generic type system (which you learn more about in Hour 11, “Understanding
Generics”) drew from the generic type systems in Eiffel and Ada. Haskell and Lisp
were the primary inspirations for query comprehensions in LINQ and lambda
expression evaluation (see Hour 12, “Understanding Query Expressions”).

C# also added features found in dynamic languages such as Ruby and functional
languages like F#.

Like many modern programming languages, C# is an object-oriented language and

fully supports the object-oriented programming concepts of inheritance, polymor-

phism, encapsulation, and abstraction. In addition to being an object-oriented lan-

guage, C# also supports component-oriented programming, which enables you to

specify units of functionality (components) that are self-contained and self-document-

ing by presenting a model with properties, methods, events, and metadata about the

component. C# has support for these concepts directly in the language, making it a

natural process to create and use components. If you aren’t familiar with these princi-

ples, we cover the basics in Hour 2.

C# has language features enabling developers to take advantage of the advances and

improvements made in the CLR. Garbage collection automatically manages memory.

Exception handling creates a structured and extensible way to detect and recover

from errors. As a type-safe language, it impossible to have uninitialized variables,

illegally access memory, or store data of one type in a location that can accept only a

different type.

In addition, C# also has language features and syntax designed to reduce the

amount of boilerplate code you must write, making your code less complex and

reducing the chance for making common errors. In some cases, these are nothing

more than simple changes in syntax, simplifying complex or error-prone language

features, and are readily accessible and easily understood; in other cases, these

improvements enable scenarios that are more advanced.

C# continues to evolve with each new release, adding new language features and

syntax, always striving to achieve the goal of making the simple things easy, the dif-

ficult things possible, and the bad things difficult. As C# adds new capabilities, the

simple things become easier, the difficult things become easy, and the things not pre-

viously possible become possible.

Did you
Know?

ptg

The C# Language 19

Types
In C#, types describe values. Any time you want to use a value, you need a type. As

you saw when you learned about the common type system, a type defines the

allowed values and operations supported by those values. Every value in C# is fully

described by its exact type and is an instance of that exact type. Being fully described

means that the type unambiguously defines both the representation and operations

of a value.

Types in C# are divided into value types and reference types. Value types describe

values that are completely self-contained and include numeric types, enumerated

types, and structures. Reference types, however, store a reference to a value rather

than the actual value.

C# provides many predefined value types and a few predefined reference types. It also

enables you to create your own user-defined types. In upcoming hours, you explore,

in more detail, the difference between value types and reference types and how to cre-

ate your own. For now, however, the most important difference is that a value type is

copied “by value” because it contains the actual value, whereas a reference type con-

tains a reference to the actual data.

Statements and Expressions
A statement is simply a single, complete program instruction that must end with a

semicolon (;). Only specifying a single instruction seems like it would be restrictive,

but C# also gives us the idea of a statement block, which is simply a group of state-

ments enclosed by braces. You can use a statement block anywhere you would nor-

mally use a single statement.

Because statements end with a semicolon, you are free to use whitespace (such as a

space character, tab character, or newline) in a way that helps visually orient your

code. The best approach is to adopt a simple and consistent style (if your company or

team does not already have one) to make your code easier to read and maintain.

GO TO .

Hour 2, for a
more in-depth
look at the
difference
between value
and reference
types.

Whitespace
Even though the compiler generally ignores whitespace, the whitespace between
a type declaration, its identifier, and any other keywords is important. Without
whitespace here, the compiler can’t distinguish the keywords.

Watch
Out!

An expression evaluates to a value. If you consider a statement to be a program

action, an expression is a computation. Expressions that result in a Boolean value

(either true or false) are most commonly used to test if one or more conditions are

true and are called Boolean expressions.

ptg

20 HOUR 1: The .NET Framework and C#

Variables and Constants
The simplest definition for a variable is that it represents a storage location whose

value can change over time. The most common forms of variables are local variables

and fields, both of which are defined by providing a type, an identifier, and, option-

ally, an initial value:

int a;
int b = 1;

If you are declaring multiple variables of the same type, you can combine the decla-

rations, as follows:

int a, b;

When a variable is declared inside of a limited scope (such as a method), it is said to

be a local variable and is accessible by name only from within that scope.

Scope, Declaration Space, and Lifetime
Scope can be thought of as a container in which it is legal to refer to a variable by
its unqualified name. This is different from the declaration space, in which no two
identifiers are allowed to have the same name. If scope defines where you can
use a name, declaration space answers where that name is unique.

The lifetime of a variable is closely connected to its scope and defines how long
the variable will be accessible. A variable is guaranteed to be alive at least as
long as its scope is executing.

You learn about scope and declaration space in more detail in Hour 3, “Under-
standing Classes and Objects the C# Way.”

By the
Way

A field is simply a variable that is not declared inside of a limited scope and can be

associated with either the type itself, in which case it is a static variable (which you

can think of as the equivalent to a global variable), or with an instance of the type,

in which case it is an instance variable. Local variables and fields must be initialized

before they are used and are accessible only while the block containing their declara-

tion is executing.

The code in Listing 1.1 shows a Color type that has private instance fields named

red, blue, and green and public static fields named White, Red, Blue, and Green.

LISTING 1.1 A Color Class
class Color
{

private byte red;
private byte blue;
private byte green;

public Color(byte red, byte blue, byte green)
{

ptg

The C# Language 21

this.red = red;
this.blue = blue;
this.green = green;

}

public static Color White = new Color(0xFF, 0xFF, 0xFF);
public static Color Red = new Color(0xFF, 0, 0);
public static Color Blue = new Color(0, 0xFF, 0);
public static Color Green = new Color(0, 0, 0xFF);

}

The static fields are initialized at some point before they are used, but afterward,

there is nothing to prevent them from being changed. To accommodate the idea of

declaring a field that cannot be changed after it has been assigned, C# enables you to

create read-only fields.

Listing 1.2 shows the changed lines of the Color class.

LISTING 1.2 A Color Class Using Read-Only Fields
class Color
{

// ...

public static readonly Color White = new Color(0xFF, 0xFF, 0xFF);
public static readonly Color Red = new Color(0xFF, 0, 0);
public static readonly Color Blue = new Color(0, 0xFF, 0);
public static readonly Color Green = new Color(0, 0, 0xFF);

}

A constant represents a value that can be computed at compile time. Constants are

associated with the type itself, as if they were static. Like variables, constants can be

declared inside of a limited scope or globally. Unlike variables, a constant must

always be initialized when it is declared.

GO TO .

Hour 3, for more
information on
readonly fields.

Literal Values and “Magic Numbers”
Literal values are generally numeric values that have special fixed meanings spec-
ified directly in code. Over time, the meaning of these literal values can be lost,
making that part of the code difficult to maintain. As a result, these literals are
often called “magic numbers.” By using constants instead of literal values, the
meaning is preserved, making the code self-documenting.

How long would it take you to figure out what the number means in the following
function?

static float Compute(float f1)
{

return 299792458 / f1;
}

Did you
Know?

ptg

22 HOUR 1: The .NET Framework and C#

Now, if that same function were written using a constant, the meaning of that
“magic number” becomes clear:

static float Compute(float f1)
{

const float SpeedOfLight = 299792458;

return SpeedOfLight / f1;
}

In our example, the value 299792458 is a literal value and would therefore be
considered a magic number. As you might have guessed, constants are preferred
over using just literal values because they have names that can provide more
meaning than just a number, and you can guarantee that its value has not
changed.

A statement that declares a variable or a constant is generally called a declaration

statement and can appear anywhere within a block.

Identifiers and Keywords
When you declare a variable, field, or constant, you must provide both the data type

and a meaningful name called an identifier.

Identifiers must follow these rules:

. Only letters (uppercase and lowercase), digits, and the underscore character

are valid.

. An identifier must begin with a letter or the underscore character, although

using an underscore (or multiple underscores) as the beginning character for

any publicly accessible identifier is considered poor style and should be

avoided.

. Identifiers must be unique within a given declaration space.

. Identifiers are case-sensitive.

Some additional guidelines that should be followed when choosing identifiers are

. Identifiers should be easily readable.

. Identifiers should not use abbreviations or contractions as part of the name.

. Identifiers should convey the meaning or intent as much as possible.

ptg

The C# Language 23

In C#, identifiers are case-sensitive. The recommended naming conventions suggest

using camel casing notation, which capitalizes the first letter of each word except

the first word (for example, bookTitle) for variable and parameter names and

Pascal casing notation, which capitalizes the first letter of each word (for example,

BookTitle) for methods and other identifiers.

Camel and Pascal Casing
Camel casing is so named because the sequence of letters look like the humps
on a camel’s back. Pascal casing was named after the style popularized by the
Pascal programming language (and because Anders was the original designer of
the Turbo Pascal language).

Microsoft no longer recommends using Hungarian notation or using the under-
score character to separate words, both common in other languages.

Did you
Know?

If you are already familiar with another case-sensitive language, such as C, C++, or

Java, this should feel normal to you. However, if you are coming from a language

that is not case-sensitive, such as Visual Basic, this might take a bit of practice. Fortu-

nately, the Visual Studio 2010 code editor has features that can help make that tran-

sition easier.

Because identifiers define the names of specific elements, it is reasonable that the C#

language also needs to use identifiers to indicate special meaning to the compiler

(and to you), so it has reserved certain identifiers, called keywords, for its own uses.

There are 77 keywords in C# reserved at all times under any circumstance; these are

listed in Table 1.2.

TABLE 1.2 C# Keywords

abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

ptg

24 HOUR 1: The .NET Framework and C#

An additional 24 keywords, known as contextual keywords, have special meaning

only in limited circumstances, or context. Outside of that context, these keywords can

be for your own purposes, although to minimize confusion, you should try to avoid

doing so, if possible. The contextual keywords are listed in Table 1.3.

Visual Studio 2010
Visual Studio is a complete integrated development environment (IDE) that is actu-

ally made up of many different tools designed with one goal: enabling you to create

innovative, next-generation applications. At heart, Visual Studio includes a powerful

code editor, language compilers (including support for Visual Basic, C#, C++, and F#),

and debugging tools. Visual Studio also includes much more than that:

. Integration with source control systems

. Graphical design tools

. Tools for Microsoft Office, SharePoint, and Cloud development

. Testing tools

Although it is entirely possible to write applications using your favorite text editor

and the command-line utilities that are part of the .NET Framework Software Devel-

oper Kit (SDK), it is not practical to do so. The benefits of the integration of the editing

and debugging tools, combined with the productivity enhancements provided by

Visual Studio, enable you to easily and effectively write and debug your applications.

TABLE 1.2 C# Keywords

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

TABLE 1.3 C# Contextual Keywords

add alias ascending by descending

dynamic equals from get global

group into join let on

orderby partial remove select set

value var where yield

Continued

ptg

Visual Studio 2010 25

Microsoft offers four primary editions of Visual Studio 2010:

. Express

. Professional with MSDN

. Premium with MSDN

. Ultimate with MSDN

The Express editions are free and targeted at VB, C#, C++, or Web development. The

three editions that include MSDN are designed for use in a corporate development

setting and offer additional features and capability.

Throughout this book, the examples and screen images are from Visual C# 2010

Express using Basic settings enabled. If you run one of the Visual Studio with MSDN

editions or Visual C# Express with Advanced settings enabled, the screen images can

look different.

When Visual Studio starts, you see the Start Page, shown in Figure 1.3, which enables

you to access recent projects, create new projects, learn about upcoming product

releases, or read the latest development news.

FIGURE 1.3
Visual C# 2010
Express Start
Page

ptg

26 HOUR 1: The .NET Framework and C#

FIGURE 1.4
Pinning Recent
Projects

The Start Page is divided into the following sections:

. The command section, which shows the New Project and Open Project com-

mands. This section can also show the Connect to Team Foundation Server

command, if you have installed one of the Visual Studio with MSDN editions.

. The Recent Projects list, which shows the most recently opened projects. Click-

ing one of the projects opens it in Visual Studio. It is also possible to pin a proj-

ect, as shown in Figure 1.4, which keeps it in its current position after other

projects are opened and closed.

. A tabbed content area. The Get Started tab displays a list of help topics and

other resources that can help you learn about the features of Visual Studio. The

Latest News tab lists featured articles from the selected RSS feed.

Solutions, Projects, and Items
Visual Studio uses two concepts to help you organize and interact with your source

code files called solutions and projects.

A project is a collection of source files and related metadata that produce a single

assembly when compiled. A solution includes one or more projects plus additional

files and metadata that define the solution as a whole. Whenever you create a new

project, Visual Studio automatically creates a solution for you. When necessary, you

can add additional projects to that solution. A project can belong to multiple solu-

tions, and complex applications can require more than one solution.

The Solution Explorer, shown in Figure 1.5, displays the solution, the project (or proj-

ects) contained in that solution, and the items for each project, enabling you to eas-

ily view and manage these containers and their associated items.

Most of the time, you interact with the Solution Explorer by double-clicking a project

item, such as a code file, to display it in an editor window or through the context

menu to add or remove items or projects.

ptg

Writing Your First Program 27

FIGURE 1.5
Solution Explorer

Writing Your First Program
At this point, you should be familiar enough with the C# language and syntax to

write your first program. If you haven’t already installed Visual Studio 2010, now is

the time to do so. As your first introduction to C#, you will continue the tradition of

starting with a simple application that displays the message “Hello, world” on the

screen.

Creating a Project
Creating the project can be done using the New Project command on the Start Page,

the New Project toolbar button, or the application menu. These three locations are

shown in Figure 1.6.

This displays the New Project dialog box, shown in Figure 1.7, which enables you to

specify the name and type of the project.

FIGURE 1.6
New Project
commands

ptg

28 HOUR 1: The .NET Framework and C#

For this first application, you will create a console application named

ConsoleHelloWorld. After you select the project type and provide the name, you can

click the OK button or double-click the project type. This closes the dialog, creates the

project, and displays the default code for that project, as shown in Figure 1.8.

FIGURE 1.8
Default code for
a console appli-
cation

FIGURE 1.7
New Project
dialog

As you can see, Visual Studio has already done some of the work for us and provided

some starting code. Before we start adding our own code, let’s examine the code

Visual Studio generated for us.

ptg

Writing Your First Program 29

FIGURE 1.9
Using directives

At the top of the file (lines 1 to 4) is a list of namespaces (see Figure 1.9). Each name-

space is included by a using directive, which is simply the keyword using followed

by the namespace. Using directives tell the compiler, and us, that we are referencing a

namespace and the types declared in that namespace should be available for use.

Just below the using directives (see Figure 1.10), you declare a namespace named

ConsoleHelloWorld (line 6) and a class named Program (line 8). Inside this class, we

have defined a static function named Main (line 10). We cover classes and methods in

more detail in Hour 3, but for now, think of them as a container whose boundaries

are defined by the opening and closing braces.

FIGURE 1.10
Default
Program.cs
contents

Adding Program Statements
Now, you can focus on what we need this application to do. Because you are working

in a console application, you need a way to interact with the console window that

runs our application. By examining the Framework class library, you find a class

named Console, which provides methods for displaying messages and receiving user

input through the keyboard.

To display text in the console window, you need to enter the following statement

between the braces that define Main (lines 11 and 12):

Console.WriteLine(“Hello, world”);

Your file should now look like Figure 1.11.

FIGURE 1.11
Adding
Console.
WriteLine

ptg

30 HOUR 1: The .NET Framework and C#

You could have also written this line using the full type name, which is

System.Console. It isn’t necessary to do so because of the using directives included at

the beginning of the file. Because these using directives tell the compiler that you

want to use types declared in that namespace, you can use just the type name. If,

however, there were two types with the same name in two included namespaces, the

compiler cannot determine which one to use. In that case, you would still need to use

the full type name.

At this point, you have a complete “Hello, world” application. Although this might

seem like a trivial example, it only appears that way. Keep in mind that a Windows

command prompt is not a managed application, so that single line in your C# pro-

gram encapsulates all the necessary logic to interact with that unmanaged applica-

tion and direct it to display the text you want. To the C# compiler, that seemingly

innocuous line ultimately depends on dozens of types in about a dozen different

namespaces, all provided by the Framework class library.

Saving Projects and Solutions
If you use Visual C# 2010 Express, the project and solution files are created in a
temporary location. When you close Visual C# 2010 Express or click Save or
Save All for the first time, you will be prompted to specify a path where the project
will be saved. If you use one of the Visual Studio with MSDN editions, the project
and solution are automatically saved in the location specified in the New Project
dialog.

By the
Way

Running the Application
If you haven’t already done so, run your application by pressing Ctrl+F5. Visual Stu-

dio then saves your file (if you haven’t already saved it), compiles it to an applica-

tion named ConsoleHelloWorld.exe, and runs it.

If you entered everything correctly, you should see the message “Hello, world” in a

command window, as shown in Figure 1.12.

The message “Press any key to continue” was added by Visual Studio, so you can

actually see the output. Without it, the application would have run, displayed your

message, and then exited.

FIGURE 1.12
Hello, world

ptg

31Q&A

Summary
Congratulations! You have now successfully written your first C# application.

Whether this was your first managed application as well or simply your first C#

application, these first steps are laying the foundation for what comes later.

At the beginning of the hour, you looked at the .NET Framework and the components

that are part of it. This might have been a little more in-depth than what you were

expecting for the first hour, but having at least a basic understanding of why the .NET

Framework was created and how it is put together is essential to becoming a well-

rounded and successful .NET programmer. Next, you looked at the C# language, learn-

ing about statements, expressions, variables, constants, identifiers, and keywords.

Finally, you took what you had already learned and put it together to create your first

C# application. This might have seemed like a trivial example—after all, how excit-

ing is it to print the words “Hello, world” on the screen—but it is just the beginning.

Throughout the rest of this book, each hour builds upon what you learn from the

previous hours and progresses from learning the fundamentals of C# and how it pro-

vides support for both object-oriented and component-oriented programming, all the

way to learning about more advanced topics such as multithreading and parallel

programming. Along the way, you build a more complete real-world application,

from “soup to nuts” as the saying goes, and you build a solid foundation in C# and

.NET programming on which you can build larger and more complex applications.

Q&A
Q. What is the .NET Framework?

A. The .NET Framework is a platform enabling developers to create and run next-

generation applications and web services in a way that is language- and plat-

form-independent and helps eliminate, or at least reduce, many common

programming errors.

Q. What is the common language runtime (CLR)?

A. The common language runtime (CLR) is the core of the .NET Framework upon

which C# runs.

Q. What is the difference between a managed application and an unmanaged
application?

A. Code written for the .NET Framework is called managed code, whereas any

other code is called unmanaged code.

ptg

32 HOUR 1: The .NET Framework and C#

Q. What is meant by garbage collection and why is it important?

A. Garbage collection is a runtime service provided by the .NET Framework that

frees you from having to handle memory allocation and deallocation manu-

ally. This enables you to create more stable applications by preventing many

of those common programming errors and enables you to focus your time on

the business logic your application requires.

Q. What is C#?

A. C# is an object-oriented, type-safe programming language that runs on

the .NET Framework.

Q. Are C# programs compiled?

A. Yes, C# programs are compiled at development time to common intermediate

language (CIL). At runtime, they are compiled to executable object code by the

Just-In-Time (JIT) compiler.

Workshop

Quiz
1. What are the components of the .NET Framework?

2. Why is the common type system important?

3. What is common intermediate language (CIL)?

4. Why is the Framework class library important?

5. What does the dynamic language runtime (DLR) provide to C#?

6. Is the following code valid in C#?

class Program
{

static void Main()
{

const int LettersInEnglishAlphabet = 26

system.console.WriteLine(
“There are {0} letters in the English alphabet.”,
LettersInEnglishAlphabet)

}
}

ptg

33Workshop

7. What is the correct interpretation of the following variable declarations?

int a, b = 1;

8. Which of the following is not a valid identifier?

A. lightHouse

B. _lighthouse

C. 22lighthouse

D. lighthouse2

Answers
1. The .NET Framework has four major components: the common language run-

time, framework class library, parallel computing platform, and the dynamic

language runtime.

2. The common type system is important because it gives every .NET language

the same description of a type and defines how that type can be used, which

enables language integration.

3. Common intermediate language is the low-level language into which man-

aged code is partially compiled. You can think of common intermediate lan-

guage like assembly language; it is made up of individual, low-level

instructions that represent your code.

4. The Framework class library provides a rich set of reusable types available to

all .NET languages and enables you to achieve a high level of developer pro-

ductivity by simplifying many common programming tasks.

5. The DLR enables C# to work with dynamic objects from any source (COM, Iron-

Ruby, IronPython, and JavaScript, to name a few) using a consistent syntax.

6. No, the code shown is not valid C# for two reasons. First, none of the state-

ments end in a semicolon (;). Second, the correct type name is

System.Console.WriteLine not system.console.WriteLine because C# is a

case-sensitive language.

7. Combining multiple variable declarations and initial value assignments like

this is dangerous because it can be ambiguous. The correct interpretation of

this statement is equivalent to the following:

int a;
int b = 1;

8. The correct answer is C. Identifiers cannot start with a number.

ptg

34 HOUR 1: The .NET Framework and C#

Exercise
1. Explore what else is available in the System.Console class by changing the

“Hello, world” application to ask for your name and output “Hello, name.”,

where name is text entered while the program is running.

ptg

35

HOUR 2

Understanding C# Types

What You’ll Learn in This Hour:
. An Overview of Types
. The C# Predefined Types
. Operators
. Value and Reference Types
. Nullable Types
. Type Conversion

In Hour 1, “The .NET Framework and C#,” you were introduced to the fundamentals

of the .NET Framework and C#, including the framework class library, the common

language runtime, and the idea of automatic memory management. You briefly

learned about namespaces and types and then moved on to statements, expressions,

variables, constants, identifiers, and keywords. From those humble beginnings, you

then built a simple C# application.

Building on what you have already learned, this hour introduces you to the prede-

fined types offered by C# and the different operations that you can perform using

them. You then learn about value and reference types. After that, you see nullable

types and learn about type conversion.

At the end of this hour, you should have a thorough understanding of the C# types,

including the difference between value, reference, and nullable types. You wrote

some more advanced applications that can store and manipulate simple data.

ptg

36 HOUR 2: Understanding C# Types

Types
C# is both a type-safe and statically typed language. These concepts go hand-in-

hand and require you to inform the compiler of the data type for any variable you

create. In return, the compiler guarantees that you can only store a compatible data

type in that variable. This helps prevent common programming errors, leading to a

more stable and secure application.

Types are divided into three main categories:

. Value types

. Reference types

. Type parameters

Did you
Know? Pointers

There is actually a fourth category of type, called a pointer, which is not part of
the core C# language. A pointer type contains the actual location (called an
address) of an item in memory. Pointers also allow arithmetic operations as if the
value were a number. Although pointers are powerful, they can also be difficult to
use correctly and safely.

There are times, however, when using pointers might be required. Fortunately,
almost all those times are situations that are more advanced and not something
that we need to worry about on a regular basis. Some of those situations can
include directly interacting with the underlying operating system or implementing
an extremely time-critical algorithm.

To allow the flexibility (and danger) of pointers, C# enables you to write unsafe
code in which it is possible to create and operate on pointers. When using unsafe
code and pointers, be aware that the garbage collector does not track pointers,
so you must handle the memory allocation and deletion yourself. In a way, it’s like
writing C code in a C# program.

By disallowing pointer types except in explicit unsafe code blocks, C# can elimi-
nate an entire category of common errors, making it a much safer language.

Put simply, a value type is completely self-contained and copied “by value.” This

means that variables of a value type directly contain their data, and it is not possible

for operations on one to affect the other. Value types are further categorized into

structures, enumerated types, and nullable types.

A reference type contains a reference to the actual data, meaning it is possible for two

variables to reference the same object, allowing the possibility that operations on one

will affect the other. Reference types are further categorized into classes, arrays, inter-

faces, and delegates.

GO TO .

Hour 11,
“Understanding
Generics,” for
more information
on type
parameters.

ptg

Predefined Types 37

By the
WayUnified Type System

Despite this division between types, C# has a unified type system, enabling the
value of any non-pointer type to be treated as an object. This gives value types
the benefits a reference type has without introducing unnecessary overhead and
makes it possible to call object methods on any value, even predefined value
types.

Predefined Types
The C# language predefines a set of types that map to types in the common type sys-

tem. If you are familiar with another programming language, the names of these

types might be different, but you can easily see the correlation. All the predefined

types are value types except for object and string. The predefined types are shown

in Table 2.1.

TABLE 2.1 Predefined C# Types

Keyword
Aliased
Type Description Range

bool Boolean Logical Boolean true or false

byte Byte Unsigned 8-bit integer 0 to 255

char Char A single 16-bit Unicode
character

U+0000 to U+FFFF

decimal Decimal A 128-bit data type
with 28–29 significant
digits

(–7.9 × 1028 to 7.9 × 1028) / (100 to 28)

double Double Double-precision 64-bit
floating point up to
15–16 digits

±5.0 × 10–324 to ±1.7 × 10308

float Single Single-precision 32-bit
floating point up to
7 digits

±1.5 × 10–45 to ±3.4 × 1038

int Int32 Signed 32-bit integer –231 to 231 – 1

long Int64 Signed 64-bit integer –263 to 263 – 1

sbyte SByte Signed 8-bit integer –128 to 127

short Int16 Signed 16-bit integer –32,768 to 32,767

uint UInt32 Unsigned 32-bit
integer

0 to 4,294,967,295

ptg

38 HOUR 2: Understanding C# Types

TABLE 2.1 Predefined C# Types

Keyword
Aliased
Type Description Range

ulong UInt64 Unsigned 64-bit integer 0 to 18,446,744,073,
709,551,615

ushort UInt16 Unsigned 16-bit integer 0 to 65,535

object Object Base type of all other
value and reference
types, except interfaces

N/A

string String A sequence of Unicode
characters

N/A

By including a type to directly represent Boolean values (values that are either true

or false), there is no ambiguity that the value is intended to be a Boolean value as

opposed to an integer value. This helps eliminate several common programming

errors, making it easier to write self-documenting code.

The object type is the underlying base type for all the other reference and value

types. The string type represents a sequence of Unicode code units and cannot be

changed once given a value. As a result, values of type string are immutable.

All the predefined types are CLS-compliant except the unsigned integer types and the

sbyte type. You can use these types and still be CLS-compliant as long as they are

not publicly accessible. If you do need to make one of these types publicly accessible,

they can safely map to a CLS-compliant type:

. sbyte maps to short.

. uint normally maps to long but can be mapped to int when the original

value is less than 2,147,483,647.5.

Boolean Values
In C, Boolean values are represented as an integer value, and it is left up to the
programmer to decide if 0 means true or false. Typically, C programs define
named constants representing the integer values of 0 and 1 to help eliminate this
ambiguity, but this still allows any integer value to be used.

By the
Way

Continued

The decimal type provides at least 28 significant digits and is designed to have no

representation error over a wide range of values frequently used in financial calcula-

tions. The range of values the double type can represent with no representation error

is a set used primarily in physical calculations.

ptg

▼

Predefined Types 39

System.Object

All the value types and the class, array, and delegate reference types derive from
object. Interface types can derive only from other interface types, but they are
convertible to object.

Type parameter types actually do not derive from anything, but they are still con-
vertible to object.

Unsafe pointer types neither derive from nor are convertible to object because
they are outside the normal type rules for C#.

All this actually means that every nonpointer type in C# is convertible to, but
might not derive from, object.

Did you
Know?

Var Is Not Short for Variant
When the var type was first introduced, many people thought it was equivalent to
the Visual Basic Variant type. A Variant is a type that can be used to represent
any other data type and is not strongly typed. A var type is still strongly typed
because it is replaced with a real data type during compilation. Even so, overus-
ing it can decrease the understandability of your code, so use it carefully.

Watch
Out!

Try It Yourself

Working with the Predefined Types
Now that you are familiar with the predefined types, let’s see how to use them. By
following these steps, you write an application that creates some local variables
and displays their values. Then you create an implicitly typed variable and verify
that it actually creates a strongly typed variable.

. ulong normally maps to decimal but can be mapped to long when the origi-

nal value is less than 9,223,372,036,854,775,807.5.

. ushort normally maps to int but can be mapped to short when the original

value is less than 32,767.5.

C# also has some special types, the most common being the void type. The void type

indicates the absence of a type. The dynamic type is similar to object, with the pri-

mary difference being all operations on that type will be resolved at runtime rather

than compile time.

Although void and dynamic are types, var represents an implicitly typed variable

and tells the compiler to determine the real type based on the assigned data.

ptg

40 HOUR 2: Understanding C# Types

FIGURE 2.1
Output of work-
ing with prede-
fined types

FIGURE 2.2
Tooltip showing a
var as an int

1. Create a new Console application.

2. In the Main method of the Program.cs file, enter the following code:

int i = 20;
float f = 20.2f;
string s = “Hello, world...again”;

Console.WriteLine(“This is an {0} value: {1}”, i.GetTypeCode(), i);
Console.WriteLine(“This is a {0} value: {1}”, f.GetTypeCode(), f);
Console.WriteLine(“This is a {0} value: {1}”, s.GetTypeCode(), s);

3. Run the application by pressing Ctrl+F5; you should see the following in the

console window, as shown in Figure 2.1.

4. Press any key to close the console and return to Visual Studio.

5. Enter the following code in the Main method, just after the previous code:

var v = 20;
Console.WriteLine(“This is also an {0} value: {1}”, v.GetTypeCode(), v);

6. Hover the mouse cursor over the var keyword until the tooltip is displayed,

which confirms that v is actually an int, as shown in Figure 2.2.

7. Press Ctrl+F5 again to run the application, and you should now see an addi-

tional line appear:

This is also an Int32 value: 10

8. Press any key to close the console and return to Visual Studio.

9. Enter the following line in the Main method:

v = “hello”;

10. You should immediately notice a red “squiggly” line under the statement you

just entered and an error message stating that you Cannot Implicitly

ptg

Predefined Types 41

▲

TABLE 2.2 Common DateTime Properties

Property Description

Date Gets the date component of the current instance

Day Gets the day of the month represented by the current instance

DayOfWeek Gets the day of the week represented by the current instance

Hour Gets the hour component of the date represented by the current
instance

Minute Gets the minute component of the date represented by the
current instance

Month Gets the month component of the date represented by the current
instance

Now Gets a DateTime object that is set to the current date and time,
in the local time zone

TimeOfDay Gets the time of day for the current instance

Today Gets the current date

Convert Type ‘string’ to ‘int’. This error occurs because the compiler has

already assigned v to be of type int and the strong-typing capabilities of C#

prevent you from assigning a string value to the same variable, which is an

incompatible type.

11. Remove the line you entered from step 9 so your program compiles again.

Other Commonly Used Types
In addition to the standard predefined types, the .NET Framework provides types for

other commonly used values. These types do not have aliases in C# like the prede-

fined types but allow the same operations.

Date and Time
Working with date and time values is done with the DateTime structure, which

enables you to create values that represent a date and a time, just a date, or just a

time value. The two most common ways to create a new DateTime value are to use

one of the various constructor overloads or one of the four static parse methods:

Parse, ParseExact, TryParse, or TryParseExact.

The DateTime structure provides several properties; the most common are shown in

Table 2.2.

ptg

42 HOUR 2: Understanding C# Types

TABLE 2.2 Common DateTime Properties

Property Description

UtcNow Gets a DateTime object that is set to the current date and time,
in Coordinated Universal Time (UTC)

Year Gets the year component of the date represented by the current
instance

TABLE 2.3 Common DateTime Arithmetic Methods

Method Description

AddDays Adds or subtracts the specified number of days

AddHours Adds or subtracts the specified number of hours

AddMinutes Adds or subtracts the specified number of minutes

AddMonths Adds or subtracts the specified number of months

AddYears Adds or subtracts the specified number of years

TABLE 2.4 Common TimeSpan Members

Name Description

Add Adds the specified TimeSpan to the current instance

Days Gets the days component of the time interval represented by
the current TimeSpan

FromDays Returns a TimeSpan that represents a specified number of days

FromHours Returns a TimeSpan that represents a specified number of
hours

When adding or subtracting date or time values, you can use instance methods,

which return a new DateTime value rather than modifying the original one. The

common DateTime arithmetic methods are shown in Table 2.3.

It is also possible to subtract two DateTime values using the subtraction operator,

which results in a TimeSpan instance. A TimeSpan represents an interval of time

measured as a positive or negative number of days, hours, minutes, seconds, and

fractions of a second. To ensure consistency, time intervals are measured in days. You

can also add a TimeSpan to or subtract a TimeSpan from a DateTime, both of which

result in a new DateTime value.

The common methods and properties of TimeSpan are shown in Table 2.4.

Continued

ptg

Predefined Types 43

TABLE 2.4 Common TimeSpan Members

Name Description

FromMilliseconds Returns a TimeSpan that represents a specified number of
milliseconds

FromMinutes Returns a TimeSpan that represents a specified number of
minutes

FromSeconds Returns a TimeSpan that represents a specified number of
seconds

Hours Gets the hours component of the time interval represented by
the current TimeSpan

Milliseconds Gets the milliseconds component of the time interval
represented by the current TimeSpan

Minutes Gets the minutes component of the time interval represented
by the current TimeSpan

Seconds Gets the seconds component of the time interval represented
by the current TimeSpan

Subtract Subtracts the specified TimeSpan from the current instance

TotalDays Gets the value of the current TimeSpan expressed as whole and
fractional days

TotalHours Gets the value of the current TimeSpan expressed as whole and
fractional hours

TotalMilliseconds Gets the value of the current TimeSpan expressed as whole and
fractional milliseconds

TotalMinutes Gets the value of the current TimeSpan expressed as whole and
fractional minutes

TotalSeconds Gets the value of the current TimeSpan expressed as whole and
fractional seconds

Globally Unique Identifiers (GUIDs)
A GUID is a 128-bit integer value that can be used whenever a unique identifier is

required that has a low probability of being duplicated. The System.Guid structure

enables you to create and compare GUID values. The common members are shown

in Table 2.5.

ptg

44 HOUR 2: Understanding C# Types

TABLE 2.5 Common Guid Members

Name Description

CompareTo Compares the current instance to the specified Guid

Empty A read-only instance representing a Guid whose value is
guaranteed to be all zeros

NewGuid Creates a new instance of the Guid id structure

Parse Converts the string representation of a GUID into the equivalent
Guid instance

TryParse Converts the string representation of a GUID into the equivalent
Guid instance, indicating if the conversion was successful

TABLE 2.6 Common Uri Members

Name Description

AbsoluteUri Gets the absolute URI

Compare Compares the specified parts of two URI instances using the
specified comparison rules

EscapeUriString Converts a URI string to its escaped representation

IsFile Gets a value indicating whether the specified Uri is a file URI

LocalPath Gets a local operating-system representation of a filename

MakeRelativeUri Determines the difference between two Uri instances

TryCreate Creates a new Uri but does not throw an exception if the Uri
cannot be created

Uniform Resource Identifiers (URIs)
A Uniform Resource Identifier (URI) is a compact representation of a resource avail-

able on the intranet or the Internet and can be an absolute URI (like a web page

address) or a relative URI that must be expanded with respect to a base URI.

The Uri class enables you to create new URI values and access the parts of a URI, and

provides methods for working with URIs, such as parsing, comparing, and combin-

ing. Some of the common members are shown in Table 2.6.

An instance of the Uri class is immutable. To create a modifiable URI, use the

UriBuilder class. The UriBuilder class enables you to easily change the properties

of a URI without creating a new instance for each modification. All the properties

ptg

Predefined Types 45

shown in Table 2.7 are common to both Uri (where they are read-only) and

UriBuilder except for the Uri property, which is only available on UriBuilder.

TABLE 2.7 Common Uri and UriBuilder Properties

Name Description

Fragment Gets or sets the fragment portion of the URI

Host Gets or sets the hostname or IP address of a server

Password Gets or sets the password associated with the user who
accesses the URI

Path Gets or sets the path to the resource defined by the URI

Port Gets or sets the port number of the URI

Query Gets or sets any query information included in the URI

Scheme Gets or sets the scheme name of the URI

Uri Gets the Uri instance constructed by the specified UriBuilder
instance

UserName Gets or sets the username associated with the user who
accesses the URI

Listing 2.1 shows how to use the UriBuilder class.

LISTING 2.1 Working with UriBuilder
Uri immutableUri = new Uri(“http://www.example.com”);
Console.WriteLine(immutableUri);

UriBuilder mutableUri = new UriBuilder(immutableUri);
Console.WriteLine(mutableUri);

mutableUri.Scheme = “https”;
mutableUri.Host = “www.example.com”;
mutableUri.Path = “exampleFile.html”;
Console.WriteLine(mutableUri);

BigInteger
The System.Numerics.BigInteger type represents an arbitrarily large integer value

that has no theoretical upper or lower bound. When a BigInteger instance has been

created, you can use it just as you would any of the other integer types, enabling you

to perform basic mathematical operations and comparisons.

ptg

46 HOUR 2: Understanding C# Types

TABLE 2.8 Common BigInteger Members

Name Description

Abs Returns the absolute value of a BigInteger value

DivRem Returns both the quotient and remainder of a division
operation

GreatestCommonDivisor Returns the greatest common divisor of two
BigInteger values

IsEven Indicates if the current BigInteger value is an even
number

IsOne Indicates if the current BigInteger value is
BigInteger.One

IsZero Indicates if the current BigInteger value is
BigInteger.Zero

Max Returns the larger of two BigInteger values

Min Returns the smaller of two BigInteger values

MinusOne Gets a value that represents the number negative
one (–1)

One Gets a value that represents the number one (1)

Remainder Performs an integer division on two BigInteger values
and returns the remainder

Sign Gets a number indicating the sign of the current
BigInteger value

Zero Gets a value that represents the number zero (0)

The BigInteger structure also includes members that correspond directly to members

of the other integral types but also adds members that correspond to methods pro-

vided by the Math class and some that are specific to working with BigInteger

instances. The common members are shown in Table 2.8.

Listing 2.2 shows some of the ways you can use the BigInteger type.

LISTING 2.2 Working with BigInteger
BigInteger b1 = new BigInteger(987321.5401);
BigInteger b2 = (BigInteger)435623411897L;
BigInteger b3 = BigInteger.Parse(“435623411897”);

Console.WriteLine(BigInteger.Pow(Int32.MaxValue, 2));
Console.WriteLine(b2 == b3);
Console.WriteLine(BigInteger.GreatestCommonDivisor(b1, b2));

ptg

Operators 47

Operators
C# supports a wide variety of operators, but we only cover the more commonly used

ones. An operator is a special symbol that indicates which operation to perform in

an expression. All the C# predefined types support operators, although not all types

support the same operators.

Table 2.9 shows all the C# operators in order of precedence. Within each category,

operators have equal precedence.

Arithmetic and Assignment Operators
You have already seen the assignment operator (=) in many of the previous exam-

ples. This operator simply stores the value of the right operand in the variable indi-

cated by its left operand. Both operands must be the same type or the right operand

must be implicitly convertible to the type of the left operand.

TABLE 2.9 Operators and Operator Precedence in C#

Category Operators

Primary x.y f(x) a[x] x++ x-- new typeof checked

unchecked ->

Unary + - ! ~ ++x --x (T)x true false & sizeof

Multiplicative * / %

Additive + -

Shift << >>

Relational and Type Testing < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = += -= *= /= %= &= |= ^= <<= >>=

Null-Coalescing ??

Lambda =>

ptg

48 HOUR 2: Understanding C# Types

C# provides arithmetic operators that support the standard mathematical operations

of addition (+), subtraction (–), multiplication (*), and division (/). Subtle differences

exist between the behavior of the C# arithmetic operators and the arithmetic rules

you learned in school. In particular, integer division behaves a bit differently depend-

ing on the data types you are dividing. When dividing one integer by another, the

result is an integer. Any remainder is discarded, and the result is rounded toward

zero. To obtain the remainder of an integer division, you must use the modulus oper-

ator (%).

C# also supports a compound assignment operator, which combines an arithmetic

operation and an assignment in a single operator. A corresponding operation (+=,–=,

*=, /=) exists for each of the standard arithmetic operators and the modulus operator

(%=), which combine addition, subtraction, multiplication, division, and modulus

division with assignment.

For example, suppose you need to increment a variable by one. Using the standard

arithmetic operators, such an action would typically look like this:

i = i + 1;

However, by using the addition compound assignment operator, this operation could

be performed like this:

i += 1;

Taking this simplification even further, you can increment or decrement a value by 1

using the increment (++) and decrement (––) operators. The increment and decre-

ment operators can occur before (prefix) or after (postfix) the variable being modified

and change the contents of that variable by one. The prefix form results in the value

of the variable as it was before the change occurred, whereas the postfix form results

in the changed value.

All the operations shown in Listing 2.3 are equivalent and show how to use the basic

operators, the compound assignment operators, and the increment operators.

LISTING 2.3 Incrementing a Value
i = i + 1;
i += 1;
i++;

ptg

▼

Operators 49

Try It Yourself

Arithmetic Operators
To examine how the assignment, addition, compound assignment, and increment
and decrement operators behave, follow these steps. For the increment and decre-
ment operators, you explore the difference in behavior between a prefix operation
and a postfix operation.

1. Create a new Console application.

2. In the Main method of the Program.cs file, enter the following code:

int i = 20;
Console.WriteLine(“i = {0}”, i);

i = i + 1;
Console.WriteLine(“i = {0}”, i);

i += 2;
Console.WriteLine(“i = {0}”, i);
Console.WriteLine(“i = {0}.”, --i);
Console.WriteLine(“i was {0}, but now is {1} again.”, i++, i);

3. Run the application by pressing Ctrl+F5; you should see the following lines in

the console window, as shown in Figure 2.3.

FIGURE 2.3
Output of work-
ing with the arith-
metic operators

4. Press any key to close the console and return to Visual Studio.

Relational Operators
The relational operators, shown in Table 2.10, are used when comparing two values

and result in a Boolean value.

In many programming languages, the assignment and equality operators are easily

confused because they use the same symbol. This confusion can result in accidental

assignments, which remains one of the more common programming mistakes today.

To help minimize the possibility for confusion, C# defines a different operator for

equality (==).

▲

ptg

50 HOUR 2: Understanding C# Types

TABLE 2.10 Relational Operators in C#

Name Operator Expression Result

Equals == x == 20 true

y == 30 false

Not Equals != x != 20 false

y != 30 true

Greater Than > x > y true

y > x false

Greater Than or Equals >= x >= y true

y >= x false

Less Than < x < y false

y < x true

Less Than or Equals <= x <= y false

y <= x true

Assuming x = 20 and y = 10.

TABLE 2.11 Logical Operators in C#

Name Operator Expression Result

And (Conditional) && (x == 20) &&

(y == 30)

false, both expressions must
be true

And (Logical) & (x == 20) &

(y == 30)

false, both expressions must
be true

Or (Conditional) || (x == 20) ||

(y == 30)

true, either or both
expressions must be true

Or (Logical) | (x == 20) |

(y == 30)

true, either or both
expressions must be true

Or (Exclusive) ^ (x == 20) ^

(y == 30)

true, the expressions are both
different

Logical Operators
The logical operators, shown in Table 2.11, evaluate Boolean expressions that result

in either true or false.

ptg

▼

The rules for the logical operators can be easily summarized, assuming an x and y

that are Boolean expressions, as shown in Table 2.12.

Operators 51

▲

TABLE 2.11 Logical Operators in C#

Name Operator Expression Result

Not ! !(x == 30) true, the expression must be
false

Assuming x = 20 and y = 10.

TABLE 2.12 Logical Operators Truth Table

X Y X && Y X || Y X ^ Y

true true true true false

true false false true true

false true false true true

false false false false false

Try It Yourself

Relational and Logical Operators
By following these steps, you verify the expressions shown in Table 2.10 and
Table 2.11.

1. Create a new Console application.

2. In the Main method, declare two integer variables named x and y and initialize

them to 20 and 10, respectively.

3. Using the expressions from Table 2.10 and Table 2.11, write a series of

Console.WriteLine statements using the following format, where expression

is replaced with the correct expression from the tables:

Console.WriteLine(“expression: {0}”, expression);

4. Run the application by pressing Ctrl+F5, and observe that the results match

what is shown in the results column of both tables.

ptg

52 HOUR 2: Understanding C# Types

Watch
Out!

By the
Way Short-Circuit Evaluation

In C#, the conditional logical operators perform short-circuit evaluation, or mini-
mal evaluation, which means that additional expressions are evaluated only if the
first expression would not result in the entire expression being false. The logical
operators do not perform short-circuit evaluation.

When short-circuit evaluation is in effect, if the first expression of an AND opera-
tor is false, it is not necessary to evaluate any additional expressions because
the entire expression will be false. Similarly, if the first expression of an OR oper-
ator is true, it is not necessary to evaluate any additional expressions because
the entire expression will be true. It is only when the first expression is not suffi-
cient to determine the result of the entire expression that the additional expres-
sions will be evaluated.

Common Problems with the Ternary Operator
This operator is right-associative, different than most of the other operators which
are left-associative. This means an expression like
a ? b : c ? d : e

is evaluated as
a ? b : (c ? d : e)

The type of the conditional expression is determined only from the types of the
consequence and alternative, not from the type to which it is being assigned.

Ultimately, this requires that the consequence and alternative be of the same
type, which means an expression like
object x = b ? 0 : “hello”;

won’t compile because the types of the consequence and alternative are int
and string.

Although this code isn’t practical and should probably never be used outside of
this example, the correct way to write this would be
object x = b ? (object)0 : (object)”hello”;

Conditional Operator
The conditional operator (also called a ternary operator, or ternary if, because it

takes three terms) is useful for writing concise expressions and evaluates a condition

returning one of two values depending on the result.

The conditional operator has the following form:

condition ? consequence : alternative

When condition is true, the consequence is evaluated and becomes the result.

However, when condition is false, the alternative is evaluated and becomes the

result instead.

ptg

Null and Nullable Types 53

As you can see, for the integral value types, the default value is zero. The default

value for the char type is the character equivalent of zero and false for the bool

type. The object and string types have a default value of null, representing a null

reference that literally is one that does not refer to any object.

Null and Nullable Types
These default values mean that a value-type cannot be null, which at first glance

might seem reasonable. However, it presents certain limitations when you work with

databases, other external data sources, or other data types that can contain elements

that might not be assigned a value. A classic example of this is a numeric field in a

database that can store any integer data or might be undefined.

Nullable types provide a solution to this problem. A nullable type is a value type

that can represent the proper value range of its underlying type and a null value.

Nullable types are represented by the syntax Nullable<T> or T? where T is a value

Default Values
You learned earlier that C# does not allow you to use an uninitialized variable, which

means the variable must have a value before you use it. Although this idea of

definite assignment helps reduce errors, because it is enforced by the compiler, it can

be cumbersome if you have to explicitly provide a default value for every field.

To alleviate this burden, fields, or member variables, are always initially assigned

with an appropriate default value. Table 2.13 shows the default value for the different

predefined data types.

TABLE 2.13 Default Values

Type Default

sbyte, byte, short, ushort, int, uint, long, ulong 0

char ’\x0000’

float 0.0f

double 0.0d

decimal 0.0m

bool false

object null

string null

ptg

▼

54 HOUR 2: Understanding C# Types

type. The preferred syntax is T?. You assign a value to a nullable type just as you

would a non-nullable type:

int = 10;
int? = 10;
int? = null;

To access the value of a nullable type, you should use the GetValueOrDefault

method, which returns the assigned value, or, if the value is null, the default value

for the underlying type. You can also use the HasValue property, which returns true

if the variable contains an actual value, and the Value property, which returns the

actual value or results in an exception if the value is null.

All nullable types, including reference types, support the null-coalescing operator

(??), which defines the default value to be returned when a nullable type is assigned

to a non-nullable type. If the left operator is null, the right operator is returned; oth-

erwise, the left operator is returned. Listing 2.4 shows how the null-coalescing opera-

tor can be used.

LISTING 2.4 Null-Coalescing Operator
int? x = null;
Console.WriteLine(x ?? -1);

x = 3;
Console.WriteLine(x ?? -1);

string s = null;
Console.WriteLine(s ?? “Undefined”);

Try It Yourself

Working with Nullable Types
To examine how to work with nullable types, follow these steps. You create a nul-
lable int, making use of HasValue, Value, and GetValueOrDefault() and the
implicit conversion between a nullable int and a non-nullable int.

1. Create a new Console application.

2. In the Main method, declare an integer variable named x and initialize it to 10.

Then declare a nullable integer named nx and initialize it to null.

3. Enter the following statements:

Console.WriteLine(“nx has a value? {0}”, nx.HasValue);
Console.WriteLine(“x == nx: {0}”, x == nx);
Console.WriteLine(“x != nx: {0}”, x != nx);

ptg

Casting and Conversion 55

4. Now, set nx equal to 20, and enter the following statements:

Console.WriteLine(“nx has a value? {0}”, nx.HasValue);
Console.WriteLine(“nx has the value {0}”, nx.Value);
Console.WriteLine(“x == nx: {0}”, x == nx);
Console.WriteLine(“x != nx: {0}”, x != nx);

5. Set nx equal to null and enter the following statements:

Console.WriteLine(“nx = {0}”, nx ?? -1);
Console.WriteLine(“nx = {0}”, nx.GetValueOrDefault());
Console.WriteLine(“nx = {0}”, nx.GetValueOrDefault(-2));

6. Finally, set nx equal to 10 and enter the following statements:

Console.WriteLine(“nx = {0}”, nx ?? -1);
Console.WriteLine(“nx = {0}”, nx.GetValueOrDefault());
Console.WriteLine(“nx = {0}”, nx.GetValueOrDefault(-2));

7. Run the application by pressing Ctrl+F5 and observe that the output is the

same, as shown in Figure 2.4.

▲

FIGURE 2.4
Output of work-
ing with nullable
types

8. Press any key to close the console and return to Visual Studio.

Casting and Conversion
Now that you know about value types and reference types, what happens when you

need a value type to act like a reference type?

Earlier you learned that, as part of the unified type system, all value types are con-

vertible to object. When a value type variable needs to be used as a reference type,

an object “box” is automatically created, and the value is copied into the box. When

boxed, operations on one do not affect the other. When an object box is changed back

to its original value type, the value is copied out of the box and into the variable.

ptg

56 HOUR 2: Understanding C# Types

Boxing and Unboxing Operations
Although conversions between value types and reference types are usually
called casts because they use the C# cast operator, the CIL instructions are
box and unbox. As a result, these conversions are also called boxing and unbox-
ing operations.

A boxing conversion is always implicit and converts a value type to a reference
type. An unboxing conversion is always explicit and converts a boxed value type (a
reference type) back to a value type.

Boxing and unboxing operations are expensive in terms of resources and over-
head, so you should try to avoid them whenever possible and ensure that you use
the correct type to solve your problem.

All the predefined types support implicit conversions that always succeed, shown in

Table 2.14. These implicit conversions are allowed because when converting from the

original numeric type to the new numeric type, no magnitude can be lost.

Implicit Conversion
An implicit conversion can lose precision but should never lose magnitude. Con-
sider converting a large int value to a float. Both are 32 bits, but not every
large int can be exactly represented as a float, which results in a loss of preci-
sion. However, because the range of float is strictly greater than that of int, the
conversion can be performed with no loss of magnitude.

Did you
Know?

TABLE 2.14 Implicit Conversions on the Predefined Types

From To

short ushort int uint long ulong float double decimal

sbyte ✓ ✓ ✓ ✓ ✓ ✓

byte ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

short ✓ ✓ ✓ ✓ ✓

ushort ✓ ✓ ✓ ✓ ✓ ✓ ✓

int ✓ ✓ ✓ ✓

uint ✓ ✓ ✓ ✓ ✓

long ✓ ✓ ✓

ulong ✓ ✓ ✓

char ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

float ✓

By the
Way

ptg

▼

Casting and Conversion 57

An explicit conversion is required when there is the possibility of precision being lost

as the result of the conversion operation, and requires you to specify the type to

which you are converting the original value. The form of an explicit conversion,

shown in Figure 2.5, is (T)E, which performs an explicit conversion of the value of E

to type T.

int i = 36;

object boxed = i;

int j = (int) boxed;

Implicit

Explicit

FIGURE 2.5
Anatomy of
an explicit
conversion

The problem with explicit conversion is that if you are not careful, you can end up

with code that compiles, but fails at runtime. An explicit conversion tells the compiler

that you are certain the conversion will succeed, and if it doesn’t, a runtime error is

acceptable.

To reduce the possibilities of an explicit conversion failing at runtime, C# provides the

as operator, which looks like e as T, where e is an expression and T must be a refer-

ence type or a nullable type. The as operator tells the compiler that there is sufficient

reason to believe the conversion will succeed an attempt to convert the value to the

specified type, returning the value as T or null if the conversion was unsuccessful.

To take advantage of the as operator, the code from Figure 2.5 can be rewritten like this:

int? i = 36;
object boxed = i;
int? j = boxed as int?;

Try It Yourself

Conversions
By following these steps, you explore how to use conversions by converting a value
type to a reference type. The application demonstrates how operations on value
types, reference types, and boxed value types affect each other.

1. Create a new Console application.

2. In the Main method, declare an integer variable named i and initialize it to 36.

Then declare an object named boxed and initialize it to i.

ptg

58 HOUR 2: Understanding C# Types

3. Enter two Console.WriteLine statements to display the value of i and the

value of boxed.

4. Increment the value of boxed by 2, making use of an explicit cast.

5. Duplicate the two Console.WriteLine statements entered from step 3 to verify

that the value of i has not changed while the value of boxed has.

6. Now, increment the value of i by 1 and duplicate the two Console.WriteLine

statements from step 3 to verify that the value of i has changed while the

value of boxed has not.

7. Set the value of i to the new value of boxed, again using an explicit cast.

8. Finally, declare two nullable integers named h and j, initializing h to null and

j to i and an object named jboxed initialized to j.

9. Enter the following code:

Console.WriteLine(“h has a value? {0}”, h.HasValue);
h = jboxed as int?;
Console.WriteLine(“h now has the value {0}”, h.Value);

10. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 2.6.

FIGURE 2.6
Output of box-
ing, unboxing,
and casts

11. Press any key to close the console and return to Visual Studio.

Summary
Continuing to build your C# foundation, you have explored the predefined types pro-

vided by C# and learned about the rich set of operations you can perform on them.

You then learned about value and reference types, including how you can treat a

value type as a reference type and how to create a nullable type.

▲

ptg

59Q&A

You have written a few more simple C# applications to explore how these concepts

work. Although these applications might not be glamorous, they help to complete

your foundation, enabling you to build applications that are more advanced. As your

foundation in C# grows, the examples and exercises expect you to do more work.

Q&A
Q. What does being statically typed mean?

A. C# is a statically typed language, so you must always inform the compiler of

the data type for any variable you create. In return, the compiler guarantees

that you can store only compatible data in that variable.

Q. Does C# have pointers?

A. C# does actually have pointer types, although they are not part of the core lan-

guage. Pointers are available only in the context of unsafe code.

Q. Why is the unified type system in C# important?

A. By providing a unified type system, C# enables the value of any type to be

treated as an object without unnecessary overhead.

Q. Are all the predefined types CLS-compliant?

A. No, the unsigned integer types and the sbyte type are not CLS-compliant. There

are CLS-compliant types that can be used in place of these types, if necessary.

Q. Is a variable declared using var strongly typed?

A. Yes, a variable declared using var is still strongly typed because you let the

compiler fill in the real type during compilation. var is not equivalent to the

Visual Basic Variant type.

Q. What is the difference between a value type and a reference type?

A. Value types directly contain their data, whereas reference types contain a refer-

ence to their data.

Q. Can value types be null?

A. All value types are either nullable or non-nullable. A nullable value type can

be either null or a value of its underlying non-nullable type. A non-nullable

value type cannot be null.

ptg

60 HOUR 2: Understanding C# Types

Q. Why should you avoid boxing and unboxing operations when possible?

A. You should avoid boxing and unboxing operations when possible because they

are expensive in terms of resources and overhead.

Workshop

Quiz
1. What are the three primary groups C# types are divided into?

2. Which predefined type is useful for financial calculations and why?

3. What is a base type for all the predefined types?

4. Why is the inclusion of a distinct bool type important?

5. Is all string and character data stored as Unicode?

6. What are the implications of strings being immutable?

7. What is the difference between a prefix increment and a postfix increment

operation?

8. Can the null-coalescing operator (??) be used with reference types and nullable

value types?

9. Explain what happens during a boxing operation.

10. Can a long be implicitly converted to an int?

Answers
1. Types in C# are divided into reference types, value types, and type parameter

types.

2. The decimal type is useful for financial calculations because it eliminates

many representation errors commonly found with other floating-point types.

3. All the predefined types and everything in C# ultimately derive from the

object type.

4. By including a distinct bool type, C# helps eliminate several common pro-

gramming errors by eliminating the ambiguity that can arise when using an

integer 0 or 1 value.

ptg

61Workshop

5. Yes, all strings and characters in C# are stored as Unicode code units, allowing

them to be localized.

6. Because strings are immutable, they cannot be changed after given a value.

This means that any string concatenation operations result in creating an

entirely new string object to hold the new value. Performing a large number of

these operations in a repetitive fashion over a short period of time can lead to

significantly increased memory usage and should be done using a

StringBuilder instead.

7. In a prefix increment operation, the result is the value of the variable before

the increment; in a postfix increment operation, the result is the incremented

value assigned back to the variable.

8. Yes, the null-coalescing operator can be used with any type that can contain a

null, including objects.

9. A boxing operation occurs when a value type is used as a reference type and

involves creating a new instance to hold the boxed value. Operations on a

boxed object do not affect the original value.

10. No, a long cannot be implicitly converted to an int because it would lose pre-

cision; it can, however, be explicitly converted.

Exercises
1. Write a console application that generates the truth table shown in Table 2.7.

2. Write a console application that demonstrates the difference between value

types and reference types. The application should declare two integer variables

and two object variables of type LightHouse. For the object variables, create a

new class file named LightHouse.cs and replace the generated code for

LightHouse with the following code:

public class LightHouse
{

public int NumberOfLights = 1;
public int RevolutionsPerMinute = 30;

}

ptg

This page intentionally left blank

ptg

63

HOUR 3

Understanding Classes and
Objects the C# Way

What You’ll Learn in This Hour:
. Object- and Component-Oriented Programming
. Classes in C#
. Scope and Accessibility
. Methods and Properties
. Nested and Partial Classes
. Static Classes and Data
. Object Initializers

A class is the fundamental programming concept in C#, defining both representation

and behavior in a single unit. Classes provide the language support required for

object-oriented and component-oriented programming and are the primary mecha-

nism you use to create user-defined types. Traditionally, object-oriented program-

ming languages have used the term “type” to refer to behavior, whereas value-

oriented programming languages have used it to refer to data representation. In C#,

it is used to mean both data representation and behavior. This is the basis of the

common type system and means two types are assignment-compatible if, and only

if, they have compatible representations and behaviors.

In this hour, you learn the basics of both object-oriented and component-oriented

programming. When you understand these concepts, you move on to creating a class

in C# and examining how it fulfills the goals of object-oriented and component-

oriented programming. You learn about the different accessibility models, how to cre-

ate and use properties and methods, and about optional and named parameters.

ptg

64 HOUR 3: Understanding Classes and Objects the C# Way

Object-Oriented Programming
Before we start talking about classes in detail, you need to understand the benefits of

object-oriented programming and understand how it relates to C#. Object-oriented

programming helps you think about the problem you want to solve and gives you a

way to represent, or model, that problem in your code. If you do a good job model-

ing the problem, you end up with code that’s easy to maintain, easy to understand,

and easy to extend.

Maintainable Code
There is, of course, more to creating code that’s easy to maintain, understand,
and extend than just getting the model correct. The implementation also has to
be correct, readable, and correctly organized.

By the
Way

As previously mentioned, classes are the fundamental programming concept in C#,

defining both representation and behavior in a single unit. Put another way, a class

is a data structure that combines data storage with methods for manipulating that

data. Classes are simply another data type that becomes available to you in much

the same way any of the predefined types are available to you. Classes provide the

primary mechanism you use to create user-defined types.

The four primary concepts of object-oriented programming are encapsulation, abstrac-

tion, inheritance, and polymorphism. In this hour, you learn about encapsulation and

abstraction. In the next hour, you learn about inheritance and polymorphism.

Encapsulation and Abstraction
Encapsulation enables a class to hide the internal implementation details and to

protect itself from unwanted changes that would result in an invalid or inconsistent

internal state. For that reason, encapsulation is also sometimes referred to as data

hiding.

As an example of encapsulation at work, think about your car. You start your car in

the morning by inserting a key and turning it (or simply pushing a button, in some

cases). The details of what happens when you turn the key (or push the button) that

actually causes the engine to start running are hidden from you. You don’t need to

know about them to start the car. It also means you can’t influence or change the

internal state of the engine except by turning the ignition key.

By hiding the internal details and data, you create a public interface or abstraction

representing the external details of a class. This abstraction describes what actions the

ptg

Component-Oriented Programming 65

class can perform and what information the class makes publicly available. As long

as the public interface does not change, the internal details can change in any way

required without having an adverse affect on other classes or code that depends on it.

By keeping the public interface of a class small and by providing a high degree of

fidelity between your class and the real-world object it represents, you help ensure

that your class will be familiar to other programmers who need to use it.

Let’s look at our car example again. By encapsulating the details of what happens

when you start your car and providing an action, StartCar, and information, such

as IsCarStarted, we have defined a public interface, thereby creating an abstraction

(or at least a partial abstraction, because cars do much more than just start) of a car.

Component-Oriented Programming
Component-oriented programming is a technique of developing software applica-

tions by combining pre-existing and new components, much the same way automo-

biles are built from other components. Software components are self-contained, self-

describing packages of functionality containing definitions of types that expose both

behavior and data.

C# supports component-oriented programming through the concepts of properties,

methods, events, and attributes (or metadata), allowing self-contained and self-

describing components of functionality called assemblies.

Classes in C#
Now that you have a basic understanding of object-oriented and component-oriented

programming, it is time to see how C# enables these concepts to become reality by

using classes. You have actually already used classes in the examples and exercises

from the previous two hours.

Classes in C# are reference types that implicitly derive from object. To define a class,

you use the class keyword. Look at the application you built at the end of Hour 1,

“The .NET Framework and C#.” Everything you did was inside a class named

Program.

The body of the class, defined by the opening and closing braces, is where you define

the data and behavior for the class.

ptg

66 HOUR 3: Understanding Classes and Objects the C# Way

Scope and Declaration Space
We briefly mentioned scope and declaration space in Hour 1, saying that scope

defines where you can use a name, whereas declaration space focuses on where that

name is unique. Scope and declaration space are closely related, but there are a few

subtle differences.

A more formal definition is that scope is an enclosing context or region that defines

where a name can be used without qualification.

In C#, both scope and declaration space is defined by a statement block enclosed by

braces. That means namespaces, classes, methods, and properties all define both a

scope and a declaration space. As a result, scopes can be nested and overlap each other.

If scope defines the visibility of a name and scopes are allowed to overlap, any name

defined in an outer scope is visible to an inner scope, but not the other way around.

In the code shown in Listing 3.1, the field age is in scope throughout the entire body

of Contact, including within the body of F and G. In F, the use of age refers to the

field named age.

LISTING 3.1 Scope and Declaration Space
class Contact
{

public int age;

public void F()
{

age = 18;
}

public void G()
{

int age;
age = 21;

}
}

However, in G, the scopes overlap because there is also a local variable named age

that is in scope throughout the body of G. Within the scope of G, when you refer to

age, you are actually referring to the locally scoped entity named age and not the

one in the outer scope. When this happens, the name declared in the outer scope is

hidden by the inner scope.

Figure 3.1 shows the same code with the scope boundaries indicated by the dotted

and dashed rectangles.

ptg

▼

Scope and Declaration Space 67

class Contact

{

int age;

void F()

{

age = 18;

 }

void G()

{

 int age;

age = 21;

 }

}

FIGURE 3.1
Nested scopes
and hiding

Declaration space, on the other hand, is an enclosing context or region in which no

two entities are allowed to have the same name. In the Contact class, for example,

you are not allowed to have anything else named age in the body of the class,

excluding the bodies of F and G. Likewise, inside the body of G, when you redeclare

age, you aren’t allowed to have anything else named age inside the declaration

space of G.

You learn about method overloading a bit later this hour, but methods are treated a

little differently when it comes to declaration spaces. If you consider the set of all

overloaded methods with the same name as a single entity, the rule of having a

unique name inside a declaration space is still satisfied.

Try It Yourself

Working with Scope
To explore the differences between scope and declaration space, follow these
steps. Keep Visual Studio open at the end of this exercise because you will use
this application later.

1. Create a new Console application.

2. Add a new class file named Contact.cs that looks like Listing 3.1.

3. In G, add a Console.WriteLine statement at the end of the method that prints

the value of age.

ptg

68 HOUR 3: Understanding Classes and Objects the C# Way

▲

FIGURE 3.2
Working with
scope

4. In the Main method of the Program.cs file, enter the following code to create a

new instance of the Contact class and print the current value of age:

Contact c = new Contact();
Console.WriteLine(c.age);
c.F();
Console.WriteLine(c.age);
G();
Console.WriteLine(c.age);

5. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 3.2.

Accessibility
Accessibility enables you to control the visibility, or accessibility, of an entity outside

of its containing scope. C# provides this through access modifiers, which specify con-

straints on how members can be accessed outside the boundary of the class and, in

some cases, even constrain inheritance. A particular class member is accessible when

access to that member has been allowed; conversely, the member is inaccessible

when access has been disallowed.

These access modifiers follow a simple set of contextual rules that determine when

certain types of accessibility are permitted:

. Namespaces are not allowed to have any access modifiers and are always

public.

. Classes default to internal accessibility but are allowed to have either public

or internal declared accessibility. A nested class, which is a class defined

inside of another class, defaults to private accessibility but can have any of

the five kinds of declared accessibility.

. Class members default to private accessibility but can have any of the five

kinds of declared accessibility.

These rules also define the default accessibility, which occurs when a member does

not include any access modifiers.

ptg

Scope and Declaration Space 69

By the
Way

Watch
Out!

TABLE 3.1 Access Modifiers

Modifier Description

public Access is not limited.

protected Access is limited to the containing class or types derived
from the containing class.

internal Access is limited to the containing assembly.

protected internal Access is limited to the containing assembly or types
derived from the containing class.

private Access is limited to the containing class only.

Explicitly Declaring Accessibility
Although C# provides reasonable default access modifiers, you should always
explicitly declare the accessibility of your class members. This prevents unin-
tended ambiguity, indicates that the choice was a conscious decision, and is self-
documenting.

The access modifiers supported by C# are shown in Table 3.1.

Protected Internal
Be careful when using protected internal accessibility because it is effectively
protected or internal. C# does not provide a concept of protected and
internal.

Fields and Constants
Fields are variables that represent data associated with a class. In other words, a field

is simply a variable defined in the outermost scope of a class. If you recall from Hour

1, a field can be either an instance field or a static field, and for both types of field,

you can specify any of the five access modifiers. Typically, fields are private, which is

the default.

If a field, no matter whether it is an instance or static field, is not given an initial

value when it is declared, it is assigned the default value appropriate for its type.

Similar to fields, constants can be declared with the same access modifiers. Because a

constant must have a value that can be computed at compile time, it must be

assigned a value as part of its declaration. One benefit of requiring a value that can

be computed at compile time is that a constant can depend on other constants.

ptg

70 HOUR 3: Understanding Classes and Objects the C# Way

Watch
Out!

▼

A constant is usually a value type or a string literal because the only way to create a

non-null value of a reference type other than string is to use the new operator,

which is not permitted.

Constants Should Be Constant
When creating constants, you should be sure that the value is something that is
logically constant forever. Good constants are things that never change, such as
the value of Pi, the year Elvis was born, or the number of items in a mol.

If you need to create a field that has constant-like behavior but uses a type not

allowed in a constant declaration, you can use a static read-only field instead by

specifying both the static and readonly modifiers. A read-only field can be initial-

ized only as part of its declaration or in a constructor.

Try It Yourself

Working with Fields
By following these steps, you explore how to create a class containing data and
how to provide access to that data. If you closed Visual Studio, repeat the previous
exercise first. Keep Visual Studio open at the end of this exercise because you will
use this application later.

1. Create a new Console application.

2. Add a new class file named Contact.cs. Inside the body of the class, declare

three private fields named firstName, lastName, and dateOfBirth of type

string, string, and DateTime, respectively.

3. Add the following method to the class. You learn more about methods later in

this hour and more about the StringBuilder class in Hour 8, “Using Strings

and Regular Expressions”:

public override string ToString()
{

StringBuilder stringBuilder = new StringBuilder();
stringBuilder.AppendFormat(“Name: {0} {1}\r\n”, this.firstName,

➥this.lastName);
stringBuilder.AppendFormat(“Date of Birth: {0}\r\n”, this.dateOfBirth);
return stringBuilder.ToString();

}

4. In the Main method of the Program.cs file, enter the following:

Contact c = new Contact();
Console.WriteLine(c.ToString());

ptg

Scope and Declaration Space 71

▲

FIGURE 3.3
Working with
fields

5. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 3.3.

Properties
If fields represent state and data but are typically private, there must be a mechanism

that enables the class to provide that information publicly. Knowing the different

accessibility options allowed it would be tempting to simply declare the class fields to

have public accessibility.

This would allow us to satisfy the rules of abstraction, but this would then violate the

rules of encapsulation because the fields could be directly manipulated. How, then, is

it possible to satisfy both the rules of encapsulation and abstraction? What is needed

is something accessed using the same syntax as a field but that can define different

accessibility than the field itself. Properties enable us to do exactly that. A property

provides a simple way to access a field, called the backing field, which can be pub-

licly available while still allowing the internal details of that field to be hidden. Just

as fields can be static, properties can also be static and are not associated with an

instance of the class.

Although fields declare variables, which require storage in memory, properties do not.

Instead, properties are declared with accessors that enable you to control whether a

value can be read or written and what should occur when doing so. The get accessor

enables the property value to be read, whereas the set accessor enables the value to

be written.

Listing 3.2 shows the simplest way to declare a property. When using this syntax,

known as automatic properties, you omit the backing field declaration and must

always include both the get and set accessor without a declared implementation,

which the compiler provides.

LISTING 3.2 Declaring an Automatic Property
class Contact
{

public string FirstName
{

get;
set;

}
}

ptg

72 HOUR 3: Understanding Classes and Objects the C# Way

Watch
Out!

In fact, the compiler transforms the code shown in Listing 3.2 into code that looks

roughly like that shown in Listing 3.3.

LISTING 3.3 Declaring a Property
class Contact
{

private string firstName;

public string FirstName
{

get
{

return this.firstName;
}
set
{

this.firstName = value;
}

}
}

Automatic Properties
Automatic properties are convenient, especially when you implement a large num-
ber of properties. This convenience does come at a slight cost, however.

Because you don’t provide a body for the accessors, you can’t specify any logic
that executes as part of that accessor, and both accessors must be declared
using the automatic property syntax. As a result, if at some point later you realize
that you need to provide logic for either of the accessors, you need to add a back-
ing field and the appropriate logic to both accessors.

Fortunately, this change doesn’t affect the public interface of your class, so it is
safe to make, although it might be a bit tedious.

The get accessor uses a return statement, which simply instructs the accessor to

return the value indicated. In the set accessor of the code in Listing 3.3, the class

field firstName is set equal to value, but where does value come from? From Table

1.6 in Chapter 1, you know that value is a contextual keyword. When used in a

property set accessor, the value keyword always means “the value that was provided

by the caller” and is always typed to be the same as the property type.

By default, the property accessors inherit the accessibility declared on the property

definition itself. You can, however, declare a more restrictive accessibility for either

the get or the set accessor.

ptg

Scope and Declaration Space 73

By the
Way

▼

You can also create calculated properties that are read-only and do not have a back-

ing field. These calculated properties are excellent ways to provide data derived from

other information.

Listing 3.4 shows a calculated FullName property that combines the firstName and

lastName fields.

LISTING 3.4 Declaring a Calculated Property
class Contact
{

private string firstName;
private string lastName;

public string FullName
{

get
{

return this.firstName + “ “ + this.lastName;
}

}
}

Read-Only and Write-Only Properties
For explicitly declared properties, you are allowed to omit either accessor. By
including only the get accessor, you create a read-only property. To create the
equivalent of a read-only property using automatic properties, you would declare
the set accessor to be private.

By including only the set accessor, or declaring the get accessor to be private,
you create a write-only property. In practice, you should avoid write-only properties.

Because properties are accessed as if they were fields, the operations performed in the

accessors should be as simple as possible. If you need to perform more complex oper-

ations or perform an operation that could be time-consuming or expensive (resource

consuming), it might be better to use a method rather than a property.

Try It Yourself

Working with Properties
To modify the Contact class to allow access to the private data using properties,
and to use automatic and calculated properties, follow these steps. If you closed
Visual Studio, repeat the previous exercise first. Be sure to keep Visual Studio
open at the end of this exercise because you will use this application later.

ptg

74 HOUR 3: Understanding Classes and Objects the C# Way

▲

FIGURE 3.4
Working with
properties

1. Open the Contact.cs file.

2. Add a new public property named DateOfBirth that enables reading and writ-

ing to the dateOfBirth field.

3. Remove the firstName and lastName fields and create a FirstName and

LastName property as automatic properties.

4. Add a calculated property named FullName, which combines the values of the

FirstName and LastName properties. This should be similar to the calculated

property shown in Listing 3.4.

5. Modify the ToString method to make use of the new FullName property

instead of performing the string concatenation directly.

6. In the Main method of the Program.cs file, enter the following code after the

Console.WriteLine statement:

c.FirstName = “Jim”;
c.LastName = “Morrison”;
c.DateOfBirth = new DateTime(1943, 12, 8);
Console.WriteLine(c.ToString());

7. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 3.4.

Methods
If fields and properties define and implement data, methods, which are also called

functions, define and implement a behavior or action that can be performed. The

WriteLine action of the Console class you have been using in the examples and

exercises so far is an example of a method.

Listing 3.5 shows how to add a method to the Contact class that verifies an email

address. In this case, the VerifyEmailAddress method specifies void as the return

type, meaning that it does not return a value.

ptg

Scope and Declaration Space 75

By the
Way

LISTING 3.5 Declaring a Method
class Contact
{

public void VerifyEmailAddress(string emailAddress)
{
}

}

Listing 3.6 shows the same method declared to have a bool as the return type.

LISTING 3.6 Declaring a Method That Returns a Value
class Contact
{

public bool VerifyEmailAddress(string emailAddress)
{

return true;
}

}

A method declaration can specify any of the five access modifiers. In addition to the

access modifiers, a method can also include the static modifier. Just as static proper-

ties and fields are not associated with an instance of the class, neither are static meth-

ods. The WriteLine method is actually a static method on the Console class.

Methods can accept zero or more parameters, or input, declared by the formal

parameter list, which consists of one or more comma-separated parameters. Each

parameter must include both its type and an identifier. If a method accepts no

parameters, an empty parameter list must be specified.

Parameters are divided into three categories:

. Value parameters—The most common. When a method is called, a local vari-

able is implicitly created for each value parameter and assigned the value of

the corresponding argument in the argument list.

Parameter Arrays
Parameter arrays, declared with the params keyword, can be thought of as a spe-
cial case of value parameters and declare a single parameter that can contain
zero or more arguments of the given type in the argument list.

A method’s formal parameter list can include only a single parameter array; in
which case it must be the last parameter in the list. A parameter array can also
be the only parameter.

ptg

76 HOUR 3: Understanding Classes and Objects the C# Way

By the
Way

. Reference parameters—Do not create a new storage location but represent the

same storage location as the corresponding argument in the argument list. Ref-

erence parameters are declared using the ref keyword, which must be present

both in the parameter list and the argument list.

. Output parameters—Similar to reference parameters but require the out key-

word to be present in both the parameter and invocation lists. Unlike reference

parameters, they must be given a definite value before the method returns.

For a method to actually perform its desired action on the object, it must be invoked,

or called. If the method requires input parameters, those values must be provided in

an argument list, and if the method provides an output value, that value can also

be stored in a variable.

The argument list is normally a one-to-one relationship with the parameter list,

meaning that for each parameter, you must provide a value of the appropriate type

in the same order when you call the method.

Methods as Input
Methods that return a value and properties can also be used as input to other
methods, as long as the return value type is compatible with the parameter type.
This capability greatly increases the usefulness of both methods and properties,
allowing you to chain method or property calls to form behaviors that are more
complex.

Looking at the VerifyEmailAddress method that has a void return type from the

earlier examples, you would call the method like this:

Contact c = new Contact();
c.VerifyEmailAddress(“joe@example.com”);

However, for the VerifyEmailAddress method defined to return a bool, you would

call the method like this:

Contact c = new Contact();
bool result = c.VerifyEmailAddress(“joe@example.com”);

Just as you do with the parameter list, if a method invocation requires no arguments,

you must still specify an empty list.

Method Overloading
Ordinarily, two entities cannot have the same name within a declaration space,

except for overloaded methods. When two or more methods have the same name in a

declaration space but have different method signatures, they are overloaded.

ptg

Scope and Declaration Space 77

Watch
Out!

Watch
Out!

Method Signatures
The return type is not part of the method signature, so methods cannot differ only
in return type.

Although the formal parameter list is part of the method signature, methods can-
not differ based on a parameter being a ref or out parameter. For the purposes of
the method signature, the ref or out attribute of the parameter is not considered.

Overloaded methods can vary only by signature. More appropriately, they can vary

only by the number and types of parameters. Consider the Console.WriteLine

method you have already used; there are 19 different overloads from which you can

choose.

Overloading methods is common in the .NET Framework and enables you to give the

users of your class a single method with which they interact and provide different input.

Based on that input, the compiler figures out which method should actually be used.

Overloads with Different Return Types
Because method signatures do not include the return type, it is possible for over-
loaded methods to have different return types. Even though this might be legal C#
code, you should avoid it to minimize the possibility for confusion.

Method overloading is useful when you want to provide several different possibilities

for initiating an action, but method overloading can become unwieldy when there

are many options. An example of method overloading is shown in Listing 3.7.

LISTING 3.7 Method Overloading
public void Search(float latitude, float longitude)
{

Search(latitude, longitude, 10, “en-US”);
}

public void Search(float latitude, float longitude, int distance)
{

Search(latitude, longitude, distance, “en-US”);
}

public void Search(float latitude, float longitude, int distance, string culture)
{
}

The method signature is made up of the method name and the number, types, and

modifiers of the formal parameters and must be different from all other method sig-

natures declared in the same class; the method name must be different from all other

non-methods declared in the class.

ptg

▼

78 HOUR 3: Understanding Classes and Objects the C# Way

▲

FIGURE 3.5
Working with
methods

Try It Yourself

Working with Methods
Continuing to expand the Contact class, add the VerifyEmailAddress and
Search methods by following these steps. If you closed Visual Studio, repeat the
previous exercises first. Be sure to keep Visual Studio open at the end of this exer-
cise because you will use this application later.

1. Open the Contact.cs file.

2. Add the VerifyEmailAddress method shown in Listing 3.6 so that it returns

true if the email address entered is “joe@example.com”.

3. Add the overloaded methods shown in Listing 3.7.

4. In the last overloaded Search method, enter a Console.WriteLine call that

prints the values of the parameters.

5. In the Main method of the Program.cs file, enter the following code after the

last Console.WriteLine statement:

c.Search(37.479444f, -122.450278f);
c.Search(37.479444f, -122.450278f, 50);
c.Search(37.479444f, -122.450278f, 50, “en”);

Console.WriteLine(c.VerifyEmailAddress(“joe@example.com”));
Console.WriteLine(c.VerifyEmailAddress(“jim@example.com”));

6. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 3.5.

Optional Parameters and Named Arguments
Optional parameters enable you to omit that argument in the invocation list when

calling a method. Only value parameters can be optional, and all optional parame-

ters must appear after required parameters, but before a parameter array.

To declare a parameter as optional, you simply provide a default value for it. The

modified Search method using optional parameters is shown here:

ptg

Scope and Declaration Space 79

By the
Way

public void Search(float latitude, float longitude, int distance = 10,
string culture = “en-US”);

The latitude and longitude parameters are required, whereas distance and

culture are both optional. The default values used are the same values provided by

the first overloaded Search method.

Looking at the Search method overloads from the previous section, it should become

clear that the more parameters you have the more overloads you need to provide. In

this case, there are only a few overloads, but that is still more than providing a single

method with optional parameters. Although overloads are the only option in some

cases, particularly those that don’t imply a reasonable default for a parameter, often

you can achieve the same result using optional parameters.

Optional and Required Parameters
A parameter with a default argument is an optional parameter, whereas a parame-
ter without a default argument is a required parameter.

Optional parameters are also particularly useful when integrating with unmanaged

programming interfaces, such as the Office automation APIs, which were written

specifically with optional parameters in mind. In these cases, the original API call

might require a large number of arguments (sometimes as many as 30), most of

which have reasonable default values.

A method that contains optional parameters can be invoked without explicitly pass-

ing arguments for those parameters, allowing the default arguments to be used

instead. If, however, the method is invoked and provides an argument for an

optional parameter, that argument is used instead of the default.

Listing 3.8 shows an example of calling the Search method, allowing the default val-

ues to be used.

LISTING 3.8 Using Optional Parameters
Search(27.966667f, 82.533333f, 3);
Search(27.966667f, 82.533333f, 3, “en-GB”);
Search(27.966667f, 82.533333f);

The drawback to optional parameters is that you cannot omit arguments between the

commas, meaning you could not call the Search method like this:

Search(27.966667f, 82.533333f, , “en-GB”);

To resolve this situation, C# enables any argument to be passed by name,

whereby you are explicitly indicating the relationship between the argument and its

ptg

80 HOUR 3: Understanding Classes and Objects the C# Way

By the
Way

Did you
Know?

corresponding parameter. Using named arguments, the different method calls in

Listing 3.8 and the illegal call just shown could be written as shown in Listing 3.9.

LISTING 3.9 Using Named Arguments
Search(latitude: 27.966667f, longitude: 82.533333f, distance: 3);
Search(latitude: 27.966667f, longitude: 82.533333f, distance: 3, culture: “en-GB”);
Search(latitude: 27.966667f, longitude: 82.533333f);
Search(27.966667f, 82.533333f, culture: “en-GB”);
Search(latitude: 27.966667f, longitude: 82.533333f, culture: “en-GB”);

All these calls are equivalent. The first three calls are the same as the calls in Listing

3.8 except that each parameter is explicitly named. The last two calls show how we

can omit an argument in the middle of the parameter list and are also the same,

although one uses a mixture of named and positional arguments.

Named and Positional Arguments
Arguments that are not passed by name are called positional arguments. Posi-
tional arguments are the most common.

Named arguments are most often used with optional parameters, but they can be

used without them as well. Unlike optional parameters, named arguments can be

used with value, reference, and output parameters. You can also use named argu-

ments with parameter arrays, but you must explicitly declare a new array to contain

the values, as shown here:

Console.WriteLine(String.Concat(values: new string[] { “a”, “b”, “c” }));

As you can see from the Search method, by enabling you to explicitly indicate the

name of an argument, C# provides an additional (and powerful) way to help write

fully describing and self-documenting code.

Changing the Order of Arguments
Arguments are always evaluated in the order they are specified. Although not gen-
erally needed, named arguments enable you to change the order an argument
appears in the invocation list:

Search(longitude: 82.533333f, latitude: 27.966667f);
Search(latitude: 27.966667f, longitude: 82.533333f);

ptg

Scope and Declaration Space 81

▼

▲

FIGURE 3.6
Working with
optional parame-
ters and named
arguments

Try It Yourself

Working with Optional Parameters and Named Arguments
To modify the Search methods previously defined to use optional parameters rather
than overloads, follow these steps. If you closed Visual Studio, repeat the previous
exercises first. Be sure to keep Visual Studio open at the end of this exercise
because you will use this application later.

1. Open the Contact.cs file.

2. Remove the first two Search methods, leaving only the method containing all

four parameters, and modify that method so that distance and culture are

optional, using 10 and ”en-US” as the default values.

3. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 3.6.

4. In the Main method of the Program.cs file, change the calls to the Search

method to use different combinations of named parameters and observe the

output after each change.

Instantiating a Class
Unlike the predefined value types in which you could simply declare a variable and

assign it a value, to use a class in your own programs, you must create an instance

of that class.

Remember, even though you create new objects directly using the new keyword, the

virtual execution system is responsible for actually allocating the memory required,

and the garbage collector is responsible for deallocating that memory.

Instantiating a class is accomplished using the new keyword, like this:

Contact c = new Contact();

ptg

82 HOUR 3: Understanding Classes and Objects the C# Way

By the
Way

A newly created object must be given an initial state, which means any fields

declared must be given an initial value either by explicitly providing one or accepting

the default values (see Table 2.13 in Chapter 2).

Sometimes this level of initialization is sufficient, but often it won’t be. To provide

additional actions that occur during initialization, C# provides an instance construc-

tor (sometimes just called a constructor), which is a special method executed auto-

matically when you create the instance.

A constructor has the same name of the class but it cannot return a value, which is

different from a method that returns void. If the constructor has no parameters, it is

the default constructor.

Default Constructors
Every class must have a constructor, but you don’t always have to write one. If
you don’t include any constructors, the C# compiler creates a default constructor
for you. This constructor won’t actually do anything, but it will be there.

Because the compiler only generates the default constructor if you don’t provide
any additional constructors, it is easy to break the public interface of your class
by adding an additional constructor that has parameters and forgetting to also
explicitly add the default constructor. As a result, it is a good idea to always pro-
vide a default constructor rather than letting the compiler generate it for you.

The default constructor (or any constructor) can have any of the accessibility mod-
ifiers, so it is entirely possible to create a private default constructor. This is use-
ful if you want to allow your class to be created but want to ensure that certain
information is always provided when the object is instantiated.

Listing 3.10 shows the default constructor for the Contact class.

LISTING 3.10 Declaring a Default Constructor
public class Contact
{

public Contact()
{
}

}

Just as it is possible to overload regular methods, it is also possible to overload con-

structors. The signature for a constructor is the same as it is for a regular method, so

the set of overloaded constructors must also vary by signature.

Some reasons for providing specialized constructors follow:

. There is no reasonable initial state without parameters.

. Providing an initial state is convenient and reasonable for the type.

ptg

Scope and Declaration Space 83

By the
Way

. Constructing the object can be expensive, so you want to ensure that the object

has the correct initial state when it is created.

. A non-public constructor restricts who can create objects using it.

Looking at the Contact class you have been using, it would certainly be useful if you

provided values for the firstName, lastName, and dateOfBirth fields when creating

a new instance. To do that, you would declare an overloaded constructor like the one

shown in Listing 3.11.

LISTING 3.11 Declaring a Constructor Overload
public class Contact
{

public Contact(string firstName, string lastName, DateTime dateOfBirth)
{

this.firstName = firstName;
this.lastName = lastName;
this.dateOfBirth = dateOfBirth;

}
}

In the constructor overload from Listing 3.11, you assigned the value of the parame-

ter to its corresponding private field.

Typically, although not always, when a class contains multiple constructors, those

constructors are chained together. To chain constructors together, you use a special

syntax that uses the this keyword.

The this Keyword
The this keyword refers to the current instance of the class. It is similar to the
Me keyword in Visual Basic, a self identifier in F#, the __self__ attribute in
Python, and self in Ruby.

The common uses of this follow:
. To qualify members hidden by similar names

. To pass an object as a parameter to other methods

. To specify which constructor should be called from another constructor overload

. To indicate the extended type in an extension method

Because static members exist at the class level and are not associated with an
instance, you can’t use the this keyword.

In Listing 3.11, the this keyword is used to distinguish between the class field
and the parameter because both have the same name.

ptg

84 HOUR 3: Understanding Classes and Objects the C# Way

Listing 3.12 shows the Contact class with both constructors from Listing 3.10 and

Listing 3.11 using constructor chaining.

LISTING 3.12 Constructor Chaining
public class Contact
{

public Contact()
{
}

public Contact(string firstName, string lastName, DateTime dateOfBirth)
: this()

{
this.firstName = firstName;
this.lastName = lastName;
this.dateOfBirth = dateOfBirth;

}
}

One benefit of constructor chaining is that you can chain in any constructor provided

by the class, not just the default constructor. When you use constructor chaining, it is

important to understand the order in which the constructors execute. The constructor

chain is followed until it reaches the last chained constructor, and then constructors

will be executed in order going back out of the chain. Listing 3.13 shows a class, C,

with three constructors, each chained through to the default constructor.

LISTING 3.13 Chained Constructor Order of Execution
public class C
{

string c1;
string c2;
int c3;

public C()
{

Console.WriteLine(“Default constructor”);
}

public C(int i, string p1) : this(p1)
{

Console.WriteLine(i);
}

public C(string p1) : this()
{

Console.WriteLine(p1);
}

}

Figure 3.7 shows the sequence in which each constructor would execute when instan-

tiated using the second constructor (the one that takes an int and a string as

input).

ptg

Nested Classes 85

C c = new C(3, “C2”);

C(int, string)

C(string)

C()

3

2

1

FIGURE 3.7
Constructor
chaining
sequence

Static Construction
Instance constructors, like you have just seen, implement the actions required to ini-

tialize instances of the class. In some cases, a class might require specific initializa-

tion actions to occur at most once and before any instance members are accessed.

To accomplish this, C# provides a static constructor, which has the same form as the

default constructor with the addition of the static modifier instead of one of the

access modifiers. Because static constructors initialize the class, you cannot directly

call a static constructor.

A static constructor executes at most once and will be executed the first time an

instance is created or the first time any of the static class members are referenced.

Nested Classes
A nested class is one that is fully enclosed, or nested, inside another class declara-

tion. Nested classes are a convenient way to allow an outer class to create and use

objects without making them accessible outside of that class. Although nested classes

can be convenient, they are also easy to overuse, which can make your class more

difficult to work with.

Nested classes implicitly have at least the same access level as the containing class.

For example, if the nested class is public but the containing class is internal, the

nested class is implicitly internal as well, and only members of that assembly can

access the nested class. However, if the containing class is public, the nested class

follows the same accessibility rules as a non-nested class.

ptg

86 HOUR 3: Understanding Classes and Objects the C# Way

Did you
Know?

You should consider implementing a class as a nested class if it has no stand-alone

significance and can be logically contained by another class or members of the class

need to access private data of the containing class. Nested classes should generally

not be public because they are for the internal use of the containing class.

Partial Classes
Partial classes enable you to split the declaration of a class into multiple parts, typi-

cally across multiple files. Partial classes are implemented in exactly the same way as

normal classes but contain the keyword partial just before the class keyword.

When working with partial classes, all the parts must be available during compila-

tion and have the same accessibility to form the complete class.

Code-generation tools, such as the visual designers in Visual Studio, which generate a

class for you representing the visual control being designed, use partial classes exten-

sively. The machine-generated code is added to one part of the partial class, allowing

you to modify the other part of the partial class without concern that your changes

will be lost when the machine-generated portion is regenerated.

Partial classes can also be used in other scenarios that don’t involve machine-gener-

ated code. Large class declarations can benefit from using partial classes; however,

this can sometimes mean that your class is trying to do too much and would be better

split into multiple classes.

Nested Classes with Partial Classes
Even though C# does not require a single class per file, like Java, it is often help-
ful to follow that structure. When using nested classes, this isn’t possible unless
the containing class is a partial class.

Static Classes
So far, you have seen the static modifier applied to constructors, fields, methods,

and properties. You can also apply the static modifier to a class, which defines a

static class. A static class can have only a static constructor, and as a result, it is not

possible to create an instance of a static class. For that reason, static classes most com-

monly contain utility or helper methods that do not require a class instance to work.

ptg

Static Classes 87

Watch
Out!

By the
Way

▼

Implicit Static Members
Static classes can contain only static members, but those members are not auto-
matically static. You must explicitly include the static modifier; however, you can
declare any static member as public, private, or internal.

Extension Methods
Extension methods are regular static methods, but the first parameter includes the

this modifier and represents the type instance being extended, typically called the

type extension parameter. Extension methods must be declared in a non-nested,

non-generic static class.

When the namespace containing an extension class is in scope through a using

directive, the extension methods appear as if they were native instance methods on

the extended type. This allows them to be called in a natural and intuitive manner.

Because an extension method is nothing more than a specially marked static

method, it does not have any special access to the type being extended and can work

only with the public interface of the extended type. It also enables you to call the

extension method in the more traditional way by referring to its fully qualified name.

GO TO .

Hour 11,
“Understanding
Generics,” for
more information
on generic
classes.

Access to Internals
An extension method defined in the same assembly as the type being extended
also has access to internal members of that type.

Although an extension method matching the signature of an actual method on the

type can be defined, it will not be visible. The compiler ensures that during method

resolution, any actual class methods take precedence over extension methods. This

ensures that an extension method cannot change the behavior of a standard class

method, which would cause unpredictable, or at least unexpected, behavior.

Try It Yourself

Working with Extension Methods
By following these steps, you add an extension method on the Contact class and
modify the Main method of Program.cs to use this new extension method. If you
closed Visual Studio, repeat the previous exercises first.

1. Create a new file named Extensions.cs.

2. Make the Extensions class static and create a new extension named

GetFullName that extends Contact and uses the same logic as you used for

the FullName property.

 Download from www.wowebook.com

ptg

88 HOUR 3: Understanding Classes and Objects the C# Way

▲

FIGURE 3.8
Results of work-
ing with exten-
sion methods

3. Remove the FullName property in the Contact class and modify the ToString

method to use this new extension method.

4. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 3.8.

Object Initializers
You have seen how to create constructors for your class that provide a convenient

way to set the initial state. However, as with method overloading, the more fields you

require to be set, the more overloaded constructors you might need to provide.

Although constructors support optional parameters, sometimes you want to set prop-

erties when you create the object instance.

Classes provide an object initialization syntax that enables you to assign values to

any publicly accessible fields or properties as part of the constructor call. This allows

a great deal of flexibility and can significantly reduce the number of overloaded con-

structors you need to provide.

Listing 3.14 shows code similar to what you wrote in the “Working with Properties”

section, followed by code using an object initializer. The code generated by the com-

piler in both cases is almost the same.

LISTING 3.14 Object Initializers
Contact c1 = new Contact();
c1.FirstName = “Jim”;
c1.LastName = “Morrison”;
c1.DateOfBirth = new DateTime(1943, 12, 8);
Console.WriteLine(c1.ToString());

Contact c2 = new Contact
{

FirstName = “Jim”,
LastName = “Morrison”,
DateOfBirth = new DateTime(1943, 12, 8)

};

Console.WriteLine(c2.ToString());

 Download from www.wowebook.com

ptg

89Q&A

As long as there are no dependencies between fields or properties, object initializers

are an easy and concise way to instantiate and initialize an object at the same time.

Summary
At this point, you should have a good understanding of how classes in C# provide a

language implementation for object-oriented programming. You learned how scope

affects the visibility of members in a class and how you can change accessibility

using the different access modifiers. From there, you built a class and instantiated an

instance of that class. You then learned about methods and properties, including

method overloading, optional, and named parameters. Finally, we talked about

nested and partial classes.

Departing from the simple examples you worked with in the previous hours, the

samples and exercises in this hour focused on building more real-world classes.

Q&A
Q. What are the four primary principles of object-oriented programming?

A. The four primary principles of object-oriented programming are encapsulation,

abstraction, inheritance, and polymorphism.

Q. Why are encapsulation and abstraction important?

A. By using encapsulation and abstraction, you can change internal implementa-

tion details without affecting already-written code that uses that class.

Q. What is method overloading?

A. Method overloading is creating more than one method of the same name in a

given type. Overloaded methods must have different signatures.

Q. How do properties enable a class to meet the goals of encapsulation?

A. A property provides a simple way to access a field that can be publicly avail-

able while still allowing the internal details of that field to be hidden.

Q. What are partial classes?

A. A partial class contains the keyword partial on all class declarations and is

typically split across multiple source code files.

ptg

90 HOUR 3: Understanding Classes and Objects the C# Way

Q. What is the benefit of using extension methods?

A. Using extension methods enables additional functionality to be added to an

existing type without requiring the use of inheritance. This additional func-

tionality can then be used in a natural and intuitive way.

Workshop

Quiz
1. What are the five access modifiers available in C#?

2. What is the default accessibility for a class?

3. What is a constructor?

4. Can the default constructor of a class have parameters?

5. Using the code shown in Listing 3.13, what is the output of the following

statement?

C c = new C(3, “C2”);

6. When can a read-only field be assigned?

7. What is method overloading?

8. Are there limitations when using automatic properties?

9. What is a nested class?

10. Can extension methods access private members of the type being extended?

11. What happens when the new operator is executed?

Answers
1. The five access modifiers available in C# are public, protected, internal,

protected internal, and private.

2. Classes default to internal accessibility but are allowed to have either public

or internal declared accessibility. Nested classes default to private accessibil-

ity but are allowed to have any accessibility.

3. A constructor is a special method that is executed automatically when you cre-

ate an object to provide additional initialization actions.

ptg

91Workshop

4. No, the default constructor of a class must always have no parameters.

5. The output of the statement is

Default Constructor
C2
3

6. A read-only field can be initialized only as part of its declaration or in a

constructor.

7. Method overloading is creating more than one method of the same name that

differs only by the number and type of parameters.

8. Automatic properties do not provide a way to access the implicit backing field,

do not enable you to specify additional statements that execute as part of the get

or set accessor, and do not enable a mixture of regular and automatic syntax.

9. A nested class is one that is fully enclosed inside another class declaration.

10. Because extension methods are simply static methods, they do not have any

special access to the type they extend. However, an extension method defined

in the same assembly as the type being extended also has access to internal

members of that type.

11. The two primary actions that occur when the new operator is executed are 1)

Memory is allocated from the heap and 2) the constructor for the class is exe-

cuted to initialize the allocated memory.

Exercise
1. Add a class to the PhotoViewer project that represents a photo. This class

should be named Photo and be in the PhotoViewer namespace. The class

should have the following private fields and a read-only property to retrieve

the value of those fields:

Data Type Field Name

bool Exists

BitmapFrame image

Uri source

ptg

92 HOUR 3: Understanding Classes and Objects the C# Way

Add the following constructor:

public Photo(Uri path)
{

if (path.IsFile)
{

this.source = path;
}

}

ptg

[(H3F)] 93

HOUR 4

Inheritance, Interfaces, and
Abstract Classes

What You’ll Learn in This Hour:
. Inheritance and Polymorphism
. Working with Inherited Members
. Sealed Classes
. Abstract Classes
. Interfaces

In the last hour, you learned how classes in C# provide the language support

required for object-oriented and component-oriented programming through encap-

sulation and abstraction. Although these aspects of object-oriented programming are

important, they don’t provide a good mechanism for expressing a hierarchical rela-

tionship between specialized variations of a class.

Inheritance provides a natural way to express such relationships. Through inheri-

tance, you can create a completely new class that inherits the characteristics and

behaviors from its parents. Polymorphism, which is the capability of a type to be

used like another type, is a natural result of inheritance.

In this hour, you learn how C# provides support for inheritance and polymorphism

through the use of abstract classes and interfaces. You also learn how C# enables you

to prevent a class from being extended.

Inheritance and Polymorphism
Just as children inherit characteristics and behaviors from their parents, classes can

inherit characteristics and behavior as well. Inheritance, also called derivation, in

ptg

94 HOUR 4: Inheritance, Interfaces, and Abstract Classes

Watch
Out!

object-oriented programming enables a new class to be created (called a child or

derived class) that inherits the characteristics and behaviors from its parents (called

base classes).

Inheritance enables you to reduce the apparent complexity of a problem into man-

ageable parts. These parts form conceptual layers that provide increasing amounts of

specialization or generalization, depending on your point of view, describing in a

natural way the hierarchical nature of certain problems expressed using an “is-a”

relationship.

Multiple Inheritance
The general idea of inheritance is simple. However, many object-oriented program-
ming languages enable derived classes to inherit from multiple parents, called
multiple inheritance.

Multiple inheritance does not change the requirement that the classes have an
“is-a” relationship, and can be a powerful mechanism, but that power can also
result in considerable complexity in the implementation. It can also cause ambigu-
ity when trying to understand the derivation chain of a class because a class with
two parents enables two different inheritance paths to a particular base class.

In order to remove the possible ambiguity and because the number of scenarios
where multiple inheritance is the only appropriate solution is rather small, C# only
allows single inheritance.

Typically, specialization is when the new class has additional data or behavior that is

not part of the inherited (base) class. Specialization can also occur when the base class

specifies that only an action or behavior exists but does not implement that behavior.

It is then the responsibility of the derived classes to provide the implementation.

By creating a new type derived from an existing type, you inherit characteristics and

behaviors from the parent type. Inheritance also enables derived classes to make sev-

eral changes from their base class. The derived class can do the following:

. Add new private data.

. Add new behavior.

. Redefine existing behavior.

Again, taking the car example from last hour, Figure 4.1 shows a possible inheritance

chain for a car. A car is-a four-wheel vehicle, which in turn is-a vehicle. The vehicle is

the base, or root, class and provides behavior and data common for all vehicles. As

ptg

Inheritance and Polymorphism 95

By the
Way

we go down the hierarchy, we find the four-wheel and two-wheel vehicle base classes,

which are specializations of vehicle that add additional behavior and data. Finally,

we find the car, truck, and motorcycle classes, which are derived classes that might

also add additional behavior and data.

Vehicle

Vehicle
4-wheel

Vehicle
2-wheel

Car Truck Motorcycle

FIGURE 4.1
A class diagram

In object-oriented programming, polymorphism is the capability of one type to be

used like another type. Typically, there are two ways this is achieved:

. One type inherits (or derives) from another type, enabling it access to the same

actions and public data as its parent.

. Both types implement a compatible public interface, enabling the same

actions and public data but possibly different implementations.

Looking at the class diagram in Figure 4.1, it should be clear that although a car and

a truck are clearly not the same type, either of those could be substituted for a four-

wheel vehicle because they both inherit from that class. Likewise, although a motor-

cycle could not be substituted for a four-wheel vehicle, it could, along with a car or a

truck, be substituted for a vehicle.

As you can see, polymorphism relies heavily on the ideas presented in encapsula-

tion, abstraction, and inheritance. Without these aspects, it would be virtually

impossible for one class to be substituted for another.

Polymorphism
Polymorphism is one of those words that might sound like it is complicated, but it
really isn’t. Polymorphism is a natural and common occurrence. The word is the
combination of the Greek words poly (meaning many) and morphe (meaning
shape or form), literally meaning many shapes or forms.

ptg

96 HOUR 4: Inheritance, Interfaces, and Abstract Classes

Inheritance is easily accomplished in C# by providing the name of the class being

inherited on the class declaration. Listing 4.1 shows the hierarchy described by

Figure 4.1 in code.

LISTING 4.1 A Class Hierarchy in Code
public class Vehicle { }

public class FourWheeledVehicle : Vehicle { }

public class TwoWheeledVehicle : Vehicle { }

public class Car : FourWheeledVehicle { }

public class Truck : FourWheeledVehicle { }

public class Motorcycle : TwoWheeledVehicle { }

This type of inheritance is also called implementation inheritance because you are

actually inheriting an implementation from the parent class. Now that you have a

code representation of the hierarchy, how would you go about using it?

Designing Class Hierarchies
The one thing that inheritance does not enable is removing data or behaviors. If
you find that you need to remove behavior or data from one of your derived
classes, it is most likely because your class hierarchy is not designed correctly.

Designing class hierarchies is not always an easy task and usually takes several
attempts to get it right. The best approach is to spend a little more time thinking
about the relationships between objects you know and those that might be
needed later. If your class hierarchy is overly shallow (not a lot of inheritance) or
overly deep (a lot of inheritance), you might want to rethink the relationships.

Remember, not everything in a class hierarchy must be related to one another. It’s
perfectly acceptable to have a hierarchy that is conceptually made up of several
smaller ones.

In C#, an expression assigned to a variable must be known to be compatible with the

type of that variable. This means the following code is not allowed:

Car c = new Car();
Truck t = c;

This should make sense, as a truck is not the same thing as a car. However, logically

both a truck and a car are a FourWheeledVehicle and, in turn, a Vehicle so the fol-

lowing code is allowed:

Watch
Out!

ptg

Inheritance and Polymorphism 97

Car c = new Car();
Truck t = new Truck();
Vehicle v1 = c;
Vehicle v2 = t;

Even though c and v1 both refer to the same Car object, there is an important dis-

tinction. When you access c, you are doing so through a variable declared to be of

type Car, allowing you access to the members defined by Car and by its base class

FourWheeledVehicle, and subsequently Vehicle. However, when you access v1, you

are doing so through a variable declared to be of type Vehicle that allows you

access only to those members defined by Vehicle.

By the
Way

Think of it this way: A car knows that it is a vehicle and therefore enables access to

anything a vehicle can do, but a vehicle knows nothing of a car and can therefore

allow you access only to what it knows.

Although you can move upward in the class hierarchy (going from a more derived

class to a less derived one), you cannot move downward. For example, the following

is not allowed:

Vehicle v1 = new Vehicle();
Car c = v1;

This might be surprising at first until you remember that a Vehicle could represent

any one of five different types. As a result, it is not possible to implicitly assign an

expression of a more general type to a variable of a more specific one.

To achieve this, you must explicitly tell the compiler that you want to downcast the

base class to the derived class. In this case, you would want to write:

Vehicle v1 = new Vehicle();
Car c = (Car)v1;

Although this code is legal, it does pose a problem. What would happen if you wrote

the following instead?

Vehicle v1 = new Vehicle();
Vehicle v2 = new Truck();
Car c = (Car)v2;

Upcasting and Downcasting
The process of casting a derived class to one of its base classes is called
upcasting. Casting from a base class to one of its derived classes is called down-
casting.

ptg

98 HOUR 4: Inheritance, Interfaces, and Abstract Classes

▼

This code is still legal and will compile without error, but will result in an

InvalidCastException at runtime, saying that you cannot cast an object of type

Truck to type Car.

The way around this problem is to follow the “trust but verify” philosophy. This sim-

ply means that you trust that the code will compile and run, but you verify that the

variable of the base class type is actually the correct derived type before performing

the cast. Listing 4.2 shows a variety of ways you can accomplish “trust but verify.”

LISTING 4.2 “Trust but Verify” Code
Car c = new Car();
Truck t = new Truck();
Vehicle v1 = c;
Vehicle v2 = t;

if (typeof(Car).IsAssignableFrom(v1.GetType()))
{

c = (Car)v1;
Console.WriteLine(c.GetType());

}

if (v1 is Car)
{

c = (Car)v1;
Console.WriteLine(c.GetType());

}

c = v1 as Car;
if (c != null)
{

Console.WriteLine(c.GetType());
}

The first method uses the underlying type system in C# to determine if the type Car

(the result of the typeof(Car) call) is assignable from the type of v1 (the result of the

v1.GetType() call), and, if so, explicitly casts v1 to Car. A base class is always

assignable from one of its derived classes.

The second method is somewhat simpler and asks the type system if v1 is a Car, and

if so, explicitly casts v1 to Car.

The third method is the simplest option, and says if v1 is convertible to Car then per-

form the conversion and return the result; otherwise, return null.

Try It Yourself

Simple Class Inheritance and Polymorphism
To implement the class hierarchy shown in Listing 4.1 and explore how inheritance
and polymorphism behave, follow these steps. Keep Visual Studio open at the end
of this exercise because you will use this application later.

ptg

Inheritance and Polymorphism 99

▲

1. Create a new Console application.

2. Add a new class file named Vehicles.cs and implement the basic class hierar-

chy shown in Listing 4.1.

3. In the Main method of the Program.cs file, enter the following code:

Vehicle v1 = new Vehicle();
Car c1 = (Car)v1;

4. Run the application by pressing Ctrl+F5. You should encounter an

InvalidCastException, as shown in Figure 4.2.

5. Remove the statements you previously entered from step 2, and replace it with

the code shown in Listing 4.2.

6. Run the application again by pressing Ctrl+F5 and observe that the output

matches what is shown in Figure 4.3.

Listing 4.3 shows a modified version of the code hierarchy from Listing 4.1, providing

constructors for some of the derived classes that call one of base class constructors.

FIGURE 4.2
Result showing
an InvalidCast
Exception

FIGURE 4.3
Result of work-
ing with class
inheritance and
polymorphism

Watch
Out!Constructor Chaining and Default Constructors

If you don’t explicitly chain a base class constructor, the compiler tries to chain
the default constructor.

The problem here is that not all classes have a public default constructor, in
which case forgetting to explicitly chain the correct base class constructor can
result in a compiler error.

ptg

100 HOUR 4: Inheritance, Interfaces, and Abstract Classes

▼

▲

FIGURE 4.4
Result of work-
ing with con-
structor chaining

LISTING 4.3 Constructors in Derived Classes
public class Vehicle
{

private Vehicle() { }

public Vehicle(int wheels)
{

Console.WriteLine(“The number of wheels requested is {0}”, wheels);
}

}

public class FourWheeledVehicle : Vehicle
{

public FourWheeledVehicle() : base(4) { }
}

public class TwoWheeledVehicle : Vehicle
{

public TwoWheeledVehicle() : base(2) { }
}

public class Car : FourWheeledVehicle { }

public class Truck : FourWheeledVehicle { }

public class Motorcycle : TwoWheeledVehicle { }

Try It Yourself

Constructor Chaining
By following these steps, you modify the class hierarchy you created in the previous
section to explore constructor chaining. If you closed Visual Studio, repeat the pre-
vious exercise first. Be sure to keep Visual Studio open at the end of this exercise
because you will use this application later.

1. Open the file named Vehicle.cs.

2. Modify the classes to reflect the code shown in Listing 4.3.

3. In the Main method of the Program.cs file, replace the code with code to create

a new car, motorcycle, truck, and three-wheeled vehicle.

4. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 4.4.

ptg

Inheritance and Polymorphism 101

Watch
Out!

Working with Inherited Members
Sometimes a derived class needs to have a method or property with the same name

but exactly the same behavior, accomplished using member hiding. To hide a base

class member, you declare a member in your derived class with the same signature as

the base class member you want to hide. Because member hiding is based on the sig-

nature, you can use member hiding to change the return type of the member as well.

Member hiding is great if you effectively want to redefine a base class member. What

if you simply wanted to provide a more appropriate implementation? C# enables you

to do this using overridden methods.

Member Hiding
Hiding base class members is something that can produce unexpected, or at
least unintended, results. Although hiding base class members can sometimes
be intentional in the derived class, it is often a result of a change to the base
class (which you might or might not have control of) that causes you to uninten-
tionally hide a base class member.

As a result, when a base class member is hidden, the compiler generates a warn-
ing to let you know. If you are sure that is what you want to do, you should use
the new keyword on the derived member. The use of the new keyword does not
remove the need to be cautious when hiding base class members; it simply
makes it explicit.

To keep things as clear as possible, C# requires the use of two different keywords to

override a class member. In the base class, the member declaration must contain the

virtual keyword, whereas in the derived class, the member declaration must contain

the override keyword.

Typically, virtual members are simple in the behavior they implement—if they pro-

vide a behavior at all. Their purpose is to ensure that in all cases, the derived classes

will have the member available and that it will perform some nominal default

behavior. The expectation is that the derived classes will override the virtual member

with a more appropriate and specific behavior.

Just as you can with constructors, you can use the base keyword to access the original

implementation. The base keyword behaves similarly to the this keyword, except it

refers to the immediate base class rather than the current class.

Unlike member hiding, member overriding has certain restrictions:

. The overriding member declaration cannot change the accessibility declared by

the virtual member.

. Neither a virtual nor overridden member can be declared as private.

ptg

102 HOUR 4: Inheritance, Interfaces, and Abstract Classes

Watch
Out!

▼

. Both declarations must have the same signature.

. The overridden member cannot contain the new, static, or virtual modifiers.

Default Virtual Members
While some object-oriented languages, such as Java, default to making members
virtual, C# does not. This means that you must be explicit about the possibility of
a member being overridden by including the virtual keyword as only members
declared as virtual can be overridden.

Try It Yourself

Overriding Base Class Members
Follow these steps to modify the classes you previously created to create virtual
and overridden class members. If you closed Visual Studio, repeat the previous
exercise first. Be sure to keep Visual Studio open at the end of this exercise
because you will use this application later.

1. Open the file named Vehicle.cs.

2. Modify the Vehicle class to include a virtual Operate method that simply

prints the word “Default” to the console.

3. Modify the FourWheeledVehicle and TwoWheeledVehicle classes to override

the Operate method, and print “Driving a four-wheeled vehicle” and “Riding a

two-wheeled vehicle,” respectively, after the call to base.Operate().

4. Modify the Car class to also override the Operate method, but this time replace

the call to base.Operate() with a Console.WriteLine statement that prints

“Driving a car.”

5. In the Main method of the Program.cs file, add a call to Operate after each

instance created. Follow that with a Console.WriteLine() to print an empty

line.

6. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 4.5.

ptg

Abstract Classes and Members 103

By the
Way

FIGURE 4.5
Result showing
how overriding
base class
members
behave

As you saw from the previous exercise, an overridden member is implicitly virtual

and can be further overridden by subsequent derived classes. You did this when you

implemented the override for Drive in the Car class, even though

FourWheeledVehicle already overrode Drive. Normally this behavior is desirable;

however, there might be times when you want to prevent it from occurring.

You can prevent further inheritance for a class member or a class by sealing it. To

seal a class member, you include the sealed keyword in addition to the override

keyword. To seal a class, you simply include the sealed keyword.

Sealing Classes
Designing classes properly for inheritance can be a lot of work, so you have three
choices:
. Leave the class unsealed but do the work to make it safely inheritable, which

might end up being unnecessary if no one ever inherits from your class.
. Leave the class unsealed but don’t do the work. This puts the burden on the

consumer for understanding how your class can be safely extended.
. Seal the class. If you are reasonably certain no one will need to inherit from

your class, it is probably the best option. It is always possible to unseal the
class later, which should have no breaking impact on code that is already
using it. Sealing a class also allows certain additional runtime optimizations to
occur during JIT compilation.

Abstract Classes and Members
Although inheriting from a class provides a lot of benefit, there are times when you

need to provide derived classes with a standard implementation and need to guaran-

tee that a derived class provides an implementation for a particular property or

method, or it simply makes sense to have a class that can have no instances. If you

think back to the vehicle hierarchy, there are simply no objects that are “vehicles”

▲

ptg

104 HOUR 4: Inheritance, Interfaces, and Abstract Classes

▼

By declaring a class as abstract, you prevent it from being instantiated directly. As a

result, abstract classes typically have protected constructors rather than public

ones. If you don’t provide a default constructor, the compiler creates a protected

default constructor for you. An abstract class can contain virtual, non-virtual, and

abstract members. An abstract member is declared with the abstract modifier but

does not provide an implementation. Listing 4.4 shows an example of the Vehicle

class as an abstract class containing an abstract method named Operate.

LISTING 4.4 The Abstract Vehicle Class
public abstract class Vehicle
{

int wheels;

protected Vehicle() { }

public Vehicle(int wheels)
{

this.wheels = wheels;
}

public abstract Operate();
}

Unlike virtual members, which a derived class can optionally override, abstract mem-

bers must be overridden in a concrete (non-abstract) derived class. If the derived

class is also abstract, it does not need to override a base class abstract member.

Because an abstract member has no implementation until overridden in a derived

class, it is not possible for that overridden member to call the same member from the

base class.

Try It Yourself
Using Abstract Classes
By following these steps, you explore how to create an abstract class, and use it as
a base class for derived classes. If you closed Visual Studio, repeat the previous
exercise first. Be sure to keep Visual Studio open at the end of this exercise
because you will use this application later.

Did you
Know?

that are not also some more specific kind of vehicle. To achieve these goals, C# pro-

vides the abstract modifier that can be applied to both classes and class members.

Static Classes
The compiler actually implements static classes as sealed abstract classes,
preventing them from being instantiated or inherited.

ptg

Interfaces 105

▲

Watch
Out!

FIGURE 4.6
Result of work-
ing with abstract
classes

1. Open the file named Vehicle.cs.

2. Modify the Vehicle class so that it is an abstract class and make the Operate

method an abstract method.

3. Correct the resulting compiler errors.

4. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 4.6.

Interfaces Are Not Contracts
It is common to say that an interface defines a contract which any derived
classes must implement. This is only true in the sense that the inherited inter-
face defines the method signatures and properties guaranteed to be available on
the derived class.

In no way does this provide any guarantee of a specific implementation. It is
entirely possible to satisfy the interface while providing no useful implementation
what so ever. The interface simply defines a contract that specifies any classes
inheriting it have specific properties and methods.

Interfaces
Because C# does not enable you to inherit from multiple base classes, you need to

carefully choose that base class. Fortunately, C# provides an alternative that does

enable multiple inheritance. An interface defines a set of common characteristics

and behaviors, in the form of public properties and methods, that all derived classes

are guaranteed to implement. Think of an interface as a partial type definition, or a

type description.

Like abstract classes, an interface cannot be directly instantiated and can have meth-

ods, properties, and events. Interfaces cannot contain fields, constructors, or a

destructor.

ptg

106 HOUR 4: Inheritance, Interfaces, and Abstract Classes

By the
Way

Did you
Know?

You declare an interface in much the same way as declaring a class, substituting the

keyword interface for the class keyword. An interface can be internal, public,

protected, or private; however, if you don’t explicitly indicate the accessibility,

interfaces default to internal accessibility. All interface members are automatically

public and cannot specify an access modifier. Because interface members are also

automatically abstract, they cannot provide an implementation.

When a class inherits an interface, called interface inheritance or interface imple-

mentation, it inherits only the member names and signatures because the interface

doesn’t provide an implementation. This means the derived class must provide an

implementation for all members defined by that interface. To inherit an interface,

you provide the name of the interface just as if you were inheriting a class. You can

inherit from multiple interfaces simply by providing a comma-separated list of inter-

face names.

Inheriting Both a Base Class and Interfaces
C# uses a positional notation to indicate the base class and the interfaces in the
inheritance list. If a class inherits from both a base class and one or more inter-
faces, the base class is always listed first.

You can also “mix and match” inheritance, meaning that you can inherit from only

a base class, inherit only one or more interfaces, or inherit from both a base class and

one or more interfaces. If a base class inherits from an interface, any classes that

derive from that base class inherit that implementation.

Although interfaces cannot inherit from a class, they can inherit from other inter-

faces. If you think of an interface as a weak contract, interface inheritance simply

means that to satisfy this contract, you must also satisfy these other contracts. This

enables you to create highly specialized interfaces and then aggregate those inter-

faces together to form a larger interface. This is particularly useful if you have multi-

ple unrelated classes that need to implement similar functionality, such as saving

data to a compressed ZIP file. The behavior and characteristics related to this could be

defined by interfaces, which could then be included as part of other interfaces that

define your business objects.

Interfaces and Extension Methods
In the context of interfaces, extension methods become even more powerful as
you can also extend interfaces. Doing this allows all types that implement that
interface to gain the extension method. In fact, the entire Language Integrated
Query (LINQ) functionality for the generic collections is implemented this way.

ptg

Interfaces 107

▼

When an interface inherits from another interface, the derived interface defines only

members that are new; it does not redefine the members of the inherited interfaces.

When a class implements this aggregated interface, it must provide implementations

for members defined in all the interfaces.

Where the real power and flexibility of using interfaces shines is when used in combi-

nation with abstract classes. Because interface methods are implicitly abstract, an

abstract class does not need to provide an implementation for an interface member.

Instead, it can provide its own abstract member for the interface member. In that

case, any derived classes must override it and provide an implementation.

Looking at the vehicle hierarchy from Listing 4.1, what would it take to introduce the

concept of emergency vehicles, such as fire trucks, police cars, and police motorcy-

cles? You could introduce a new class, called EmergencyVehicle, but it isn’t entirely

clear where this new class fits in the existing hierarchy because it would need to be a

base class at the same level as FourWheeledVehicle and TwoWheeledVehicle, and

any concrete classes would want to inherit from both EmergencyVehicle or Truck,

Car, or Motorcycle. 1You already know this type of multiple inheritance is not possi-

ble, but how would this change if you used interfaces instead?

Try It Yourself

Working with Interfaces
These steps explore how to use both interfaces and base classes to create a flexi-
bility class hierarchy. If you closed Visual Studio, repeat the previous exercise first.

1. Create a new interface named IVehicle that defines a method named

Operate and modify the Vehicle class to inherit from it. The

IVehicle.Operate method should have the same signature as the

Vehicle.Operate method.

2. Create a new interface named IEmergencyVehicle that inherits from

IVehicle and provides a void method named SoundSiren that takes no

parameters.

3. Create three new classes named PoliceCar, PoliceMotorcycle, and

FireTruck that derive from the appropriate base class and implement the

IEmergencyVehicle interface. For the implementation of SoundSiren, simply

print a message to the console.

4. In the Main method of the Program.cs file, enter code that will:

a. Create a new instance of a Car, assigned to a variable named car, and

call the Operate method.

ptg

108 HOUR 4: Inheritance, Interfaces, and Abstract Classes

▲

FIGURE 4.7
Result of working
with interfaces

b. Assign a new instance of PoliceCar to car and call the Operate

method.

c. Create a new instance of PoliceCar named policeCar and assign car

to it. You need to cast car to be of type PoliceCar.

d. Call SoundSiren on policeCar.

5. Run the application using Ctrl+F5, and observe that the output matches what

is shown in Figure 4.7.

When you implemented the interfaces from the last exercise, you used implicit

interface implementation, in which the class simply declares public members that

match those defined by the interface. This is the most common form of interface

implementation.

What happens if the class implements multiple interfaces that specify a member

with the same signature, as shown in Listing 4.5?

LISTING 4.5 Multiple Interface Inheritance
interface IVehicle
{

void Operate();
}

interface IEquipment
{

void Operate();
}

class PoliceCar : IVehicle, IEquipment
{

public void Operate()
{
}

}

In this case, the compiler makes the public method match both interface members. If

this isn’t what you intended, you must use explicit interface implementation, as

shown in Listing 4.6, which requires that you fully qualify the name of the member

being implemented. In explicit interface implementation, you do not provide an

ptg

Q&A 109

access modifier because the implementing member is implicitly public but only

explicitly through the interface.

LISTING 4.6 Multiple Explicit Interface Inheritance
interface IVehicle
{

void Operate();
}

interface IEquipment
{

void Operate();
}

class PoliceCar : IVehicle, IEquipment
{

void IVehicle.Operate()
{
}

void IEquipment.Operate()
{
}

}

This means that the implementing class must be converted, either implicitly or

explicitly, to that interface to have access to the member. As a result, explicit inter-

face implementation has the effect of hiding members from casual use.

Summary
You have now completed your understanding of how C# classes provide a language

implementation for object-oriented programming. You learned how class inheritance

enables polymorphic objects, chaining base class constructors, and how to override

or hide inherited class members. You also learned about abstract classes, and learned

how to prevent a class or class member from further inheritance by sealing. Finally,

you learned about interfaces and interface implementation.

As your foundation in C# programming begins to take shape, you should also start

seeing the foundation of the address book application beginning to take shape as well.

Q&A
Q. Does C# support multiple inheritance?

A. No, C# supports only single inheritance enabling a class to inherit from only a

single parent, or base, class.

ptg

110 HOUR 4: Inheritance, Interfaces, and Abstract Classes

Q. What is polymorphism?

A. Polymorphism is the ability of one type to be used like another type.

Q. What is upcasting and downcasting?

A. The process of casting a derived class to one of its base classes is called upcast-

ing. Casting from a base class to one of its derived classes is called downcasting.

Q. What is member hiding?

A. Member hiding enables a derived class to have a member with the same as a

base class member with exactly the same behavior.

Q. What is a virtual member?

A. A virtual member contains the virtual modifier in the base class and might

or might not provide default behavior. Derived classes can override a virtual

member and provide more appropriate specific behavior.

Q. Is it possible to prevent a class from being inherited?

A. Yes, classes marked with the sealed modifier cannot be inherited.

Q. What is an interface?

A. An interface defines a set of common characteristics and behaviors that all

derived classes are guaranteed to implement but cannot contain any imple-

mentation, and all interface members must be public. Interfaces do not guar-

antee an implementation, only that the inheriting class must also contain

members matching the signature of the interface members.

Q. Does C# support multiple interface inheritance?

A. Yes, C# supports inheriting from multiple interfaces. Interfaces can also inherit

from other interfaces.

Q. Can extension methods be used to extend interfaces?

A. Yes, extension methods can be used to extend interfaces in exactly the same

way they are used to extend classes.

ptg

Workshop 111

Workshop

Quiz
1. Why is class inheritance also called implementation inheritance?

2. What is the correct way to hide an inherited member?

3. What are the restrictions on member overriding?

Answers
1. Class inheritance is also called implementation inheritance because the

derived class inherits the implementation of the base class.

2. To hide an inherited member, you should use the new keyword on the derived

member to explicitly indicate that the base class member is being hidden.

3. Member overriding has the following restrictions:

. The overriding member declaration cannot change the accessibility

declared by the virtual member.

. Neither a virtual nor overridden member can be declared as private.

. Both declarations must have the same signature.

. The overridden member cannot contain the new, static, or virtual

modifiers.

Exercise
1. Add a public constructor to the Photo class in the PhotoViewer project that

accepts a string parameter named path. This constructor should contain an

empty body and call the Photo(Uri) constructor you previously added. Next,

add an override for the ToString method that returns the result of calling

source.ToString().

2. Add an interface named IPhoto that mimics the current public class members

of the Photo class. Change the Photo class to implement this new interface.

ptg

This page intentionally left blank

ptg

113

HOUR 5

Creating Enumerated Types
and Structures

What You’ll Learn in This Hour:
. Enumerated Types
. Flags Enumerated Types
. Predefined Enumerated Types
. Structures

In the last few hours, you have been introduced to the basics of how types in C#

work, including the predefined types and nullable types, and how classes in C# pro-

vide language syntax for object-oriented programming. You have also seen how

classes enable you to create your own types to represent real-world data. There are

still two classifications of value types in C# that we have not talked about: the enu-

merated type and the structure.

While classes are the primary mechanism you use to create new types, they do not

provide a way to create types that are restricted in value nor do they enable you to

create new value types. There are already many predefined enumerated types and

structures in C#, but you have the ability to create your own. You have actually

already used structures without knowing it because every value type is a structure.

In this hour, we explore enumerated types, looking at what they are and why they

are useful. You are introduced to some of the enumerated types included in the base

class library and see how to use them. Next, we discover the benefits (and draw-

backs) to structures, including how to create your own structures.

ptg

114 HOUR 5: Creating Enumerated Types and Structures

By the
Way

Enumerated Types
An enumerated type, also called an enumeration (or just an enum for short), is sim-

ply a way to create a numeric type restricted to a predetermined set of valid values

with meaningful names for those values. Although this might sound simple, enums

are actually powerful. By defining a set of valid values, enumerations easily enable

you to represent real-world concepts and information in such a way that the compiler

understands the underlying values, whereas the programmer understands the higher-

level meaning. This enables code that is self-describing and unambiguous.

Many things in the real-world conceptually represent enumerations: the days of the

week, months of the year, seasons, oceans, and compass directions, to name a few.

Let’s use the days of the week as an example.

You could represent the days of the week in your code using the integer values 0

through 6 to represent Sunday through Saturday, respectively. Unfortunately, those

integer values don’t convey much meaning to someone who looks at your code for

the first time, or even to you later on when you need to maintain that code. It is also

ambiguous because those integer values now have multiple meanings, and it is not

always clear if you mean the integer value 0 or Sunday when you see it in code.

Using an integer to represent the days of the week also allows you to assign any valid

integer value, not just the ones you expect. Enumerations solve these problems by

enabling you to define the set of valid values and give them symbolic names. Think

of enumerations as defining a discrete set of constants that are available only

through a “container” name.

To define an enumeration, you must use the enum keyword followed by an identifier.

You then define the set of legal values inside the body of the enumeration, each sepa-

rated by a comma (,). Keep in mind that the identifiers used for the named values

must follow the same rules defined for variable identifiers. The days of the week enum

would look as shown in Listing 5.1.

Enum Values
The comma after the last value is optional, but it’s a good idea to include it so
that it is easier to add values to the enum at a later time.

LISTING 5.1 A Simple Enumeration
public enum Days
{

Sunday,
Monday,
Tuesday,
Wednesday,

ptg

Enumerated Types 115

By the
Way

By the
Way

Thursday,
Friday,
Saturday,

}

Whenever you need to refer to a day of the week, you can refer to it by name using

the enumeration name and value. For instance, to refer to Wednesday, you would use

Days.Wednesday and not just Wednesday.

Multiple Named Values
You can also have more than one named value represent the same numeric
value. This is useful in situations where multiple names could represent the
same concept. To do this, you simply add that name as a new enumeration value
and set it equal to the named value it represents, as shown here:

public enum Days
{

Sunday,
Monday,
Tuesday,
Wednesday,
HumpDay = Wednesday,
Thursday,
Friday,
Saturday,

}

Remember, enumerations are a form of named constants restricted to numeric values

only, so it makes sense that each of the named values defined corresponds to a

numeric value. In Listing 5.1, those numeric values were not defined. By default,

when you define an enumeration, the compiler assigns the first value of the enumer-

ation the integer value 0. The remaining values get a sequentially increasing number

from the previous value. The Days enumeration could have been written and is

equivalent to the code shown in Listing 5.2.

The Zero Value
Generally it is best to always provide a zero value named None. If that’s not appro-
priate for the context of the enumeration, the most common default value should
be assigned the zero value.

LISTING 5.2 A Simple Enumeration Specifying Values
public enum Days
{

Sunday = 0,
Monday = 1,
Tuesday = 2,
Wednesday = Sunday + 3,

ptg

▼

116 HOUR 5: Creating Enumerated Types and Structures

Thursday = Sunday + 4,
Friday = 5,
Saturday = 6,

}

Enumerations also support most of the standard operators that you can use on inte-

ger values, although not all of them are actually meaningful. The most common

operations you perform with enumerations are equality and inequality tests. Because

enumerations are value types, you can declare a nullable enumeration as well.

Underlying Enumeration Types
All the values contained in an enumeration must be of the same data type, called
the underlying type. By default, the underlying type for enumerations is int, but
any of the predefined integer types can be used: byte, short, int, long, sbyte,
ushort, uint, or ulong.

To give your enumeration a different underlying type, you specify it after the identi-
fier, like this:

enum Days : byte
{

Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,

}

Keep in mind, however, that the underlying type determines the overall range of
valid values you can choose from when defining the enumeration. In this case,
the Days enumeration can have only values from 0 to 255.

Did you
Know?

Try It Yourself

Working with Enumerations
To implement the Days enumeration and explore how to use it, follow these steps.
Keep Visual Studio open at the end of this exercise because you will use this appli-
cation later.

1. Create a new Console application.

2. Add a new code file named Days.cs, and implement the Days enumeration.

3. In the Main method of the Program.cs file, declare a local variable of type Days

named days and assign an initial value of Days.Sunday.

ptg

Enumerated Types 117

4. Enter a Console.WriteLine statement that displays the enumerated value and

integer value of the days variable. To get the integer value, you need to cast the

variable to an int.

5. Run the application by pressing Ctrl+F5, and observe that the output matches

what is shown in Figure 5.1.

6. Now set days to Days.Saturday + 1.

7. Run the application again by pressing Ctrl+F5, and observe that the output

matches what is shown in Figure 5.2.

You notice that both the enumerated value and the numeric value are 7. This is

because there is no named value that represents the numeric value 7, so the

runtime has no choice but to treat it directly as a number. This is a good reason

why you should avoid performing arithmetical operations on enumerations.

Flags Enumerations
So far you have looked at enumerations that represent discrete values, but that isn’t

always the case in the real world. Taking the days of the week example a bit further,

you might decide that the users of your application need to specify any combination

of the days of the week.

Enumerations also provide the capability to combine values in flags enumerations.

When using a flags enumeration, you can create new combined values by using the

logical OR operation.

Taking the Days enumeration, you can turn it into a flags enumeration, as shown in

Listing 5.3.

▲

FIGURE 5.1
Displaying a
named
enumerated
value

FIGURE 5.2
Displaying an
enumerated
value that is not
in the enumer-
ated type

ptg

▼

118 HOUR 5: Creating Enumerated Types and Structures

LISTING 5.3 A Flags Enumeration
[Flags]
public enum Days
{

None = 0,
Sunday = 0x001,
Monday = 0x002,
Tuesday = 0x004,
Wednesday = 0x008,
Thursday = 0x010,
Friday = 0x020,
Saturday = 0x040,

}

To allow the values of a flags enumeration to be combined, all the values must be

powers of two. This is necessary because when multiple values are combined, there

must still be a way to identify which discrete values make up that combination. As a

result, when defining a flags enumeration, you must always specify the values.

The Flags Attribute
Another difference between a regular enum and a flags enum is the use of the
Flags attribute, which specifies additional metadata about the enumeration.

The Flags attribute also changes the string representation of the enumeration
value (from the ToString method) when used with a value made by combining
other values.

Although you are not required to use the Flags attribute, it is strongly recom-
mended because it provides a clear indication of intent, not just to the compiler
but also to other programmers.

By the
Way

Unlike simple enumerations in which the zero value can be either None or the most

common default, flags enumerations should always name the zero value None, and it

should always mean that all flags are not set.

Try It Yourself

Working with Flags Enumerations
By following these steps, you modify the Days enumeration to be a flags enumera-
tion and add some of the commonly used combinations. If you closed Visual Stu-
dio, repeat the previous exercise first.

1. Modify the Days enumeration to the one shown in Listing 5.3.

2. Add the following combinations:

ptg

Structures 119

a. Weekend = Sunday | Saturday

b. Workdays = Monday | Tuesday | Wednesday | Thursday | Friday

3. Set the value of the days variable in the Main method to the combination:

Days.Saturday | Days.Sunday

4. Enter the following statements to determine if the days variable has a specific

flag set:

Console.WriteLine(days.HasFlag(Days.Saturday));
Console.WriteLine(days.HasFlag(Days.Friday));

5. Run the application by pressing Ctrl+F5, and observe that the output matches

what is shown in Figure 5.3.

6. Set the value of the days variable to the combination:

Days.Weekend | Days.Friday

7. Run the application by pressing Ctrl+F5, and observe that the output matches

what is shown in Figure 5.4.

Structures
Structures, also called structs, are intended to be lightweight alternatives to classes

when you need a simple user-defined type. Structures are similar to classes and can

contain all the same members as a class but are value types rather than reference

types. Structures are different, however, from classes in the following ways:

. Structures don’t support inheritance. Structures implicitly inherit from

System.ValueType (which, in turn, inherits from System.Object). Structures

can inherit from interfaces, just as classes can.

▲

FIGURE 5.3
Result of using
HasFlag and a
named enumer-
ated value

FIGURE 5.4
Result of using
HasFlag and an
unnamed enu-
merated value

ptg

120 HOUR 5: Creating Enumerated Types and Structures

. Structures are implicitly sealed, which means you cannot inherit from a structure.

. A structure cannot have a destructor or declare a default constructor and ini-

tialize instance fields. If a structure provides any constructors, all the fields

must be assigned in that constructor call.

Structures Included in the Base Class Library
All the primitive data types except for string and object are implemented as
structures. The .NET Framework provides more than 200 public structures. Some
of the commonly used structures follow:
. System.DateTime

. System.DateTimeOffset

. System.Guid

. System.TimeSpan

. System.Drawing.Color

. System.Drawing.Point

. System.Drawing.Rectangle

. System.Drawing.Size

By the
Way

In C#, structures are declared in the same way as classes, except the struct keyword

is used in place of the class keyword.

Methods
Just as classes can define methods, structs can as well. These methods can be either

static or instance methods; although, it is more common for structs to contain static

public methods and private instance methods.

Operator Overloading
Because structs are user-defined value types, you cannot use most of the common

operators, such as the equality operator, on variables defined as one of your own

structs. This is a significant limitation, but fortunately, C# provides a way to resolve

this through the concept of operator overloading.

If you think of operators simply as specially named methods, operator overloading is

simply a special form of method overloading. To declare an overloaded operator, you

define a public static method whose identifier is the keyword operator and the

ptg

Structures 121

actual operator symbol you are declaring. In addition, at least one parameter of the

operator you are overloading must be the same as the containing type. The overload-

able operators are defined in Table 5.1.

Language Interoperability
Not all .NET languages support operator overloading, so if you create classes that
you want to use from other languages, they should be CLS-compliant and should
provide alternatives that correspond to any overloaded operators defined.

Watch
Out!

The compound operators are conspicuously missing from this list, but if you recall

that these operators perform both an arithmetic action and an assignment together,

by overloading the appropriate arithmetic operator, you allow the corresponding

compound assignment operator to use your new overloaded operator.

Typically, operators should always be overloaded in symmetrical groups. For exam-

ple, if you overload the equality operator you should also overload the inequality

operator. The only exceptions to this symmetrical overloading guideline are the one’s

complement operator (~) and the not operator (!). The logical symmetrical groups

that should be followed for operator overloading are shown in Table 5.2.

TABLE 5.1 Overloadable Operators

Category Operators

Unary + - ! ~ ++ -- true false

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >=

Logical & | ^

Equality == !=

TABLE 5.2 Symmetric Operator Overload Groups

Category Operator Groups

Unary + -

++ ––

true false

Multiplicative * / %

Additive + –

Shift << >>

ptg

122 HOUR 5: Creating Enumerated Types and Structures

Conversion Operators
In much the same manner as user-defined structs enable you to overload operators to

support common operations on your data you can also influence the casting and

conversion process by creating overloaded conversion operators. Again, if you think

of conversion and casting as specially named functions, conversion overloading is

also a special form of method overloading.

Implicit or Explicit Conversion
Implicit conversions are widening conversions because nothing from the original
value is lost because of the conversion. Explicit conversions are narrowing conver-
sions because there is the possibility that data from the original value can be lost
because of the conversion.

When defining your own conversion operators, you should keep these behaviors in
mind. If the conversion you define has the possibility of losing data as a result, it
should be defined as an explicit conversion. If the conversion is safe, meaning
there is no possibility of losing data, it should be defined as an implicit conversion.

Watch
Out!

You have already seen how the built-in numeric types have both implicit conversions,

which require no special syntax, and explicit conversions, which do. You can over-

load these implicit and explicit conversions for your own types by declaring your own

conversion operators, which follow similar rules to declaring operator overloads.

To declare a conversion operator, you define a public static method whose identi-

fier is the keyword operator and whose return type is the type to which you are con-

verting. The type you convert from is the single parameter to the conversion operator.

If you want to declare an implicit conversion, use the keyword implicit before the

operator keyword; otherwise, use the keyword explicit to declare an explicit con-

version. Conversion operators are sometimes used with operator overloading to

reduce the number of operator overloads you must define.

TABLE 5.2 Symmetric Operator Overload Groups

Category Operator Groups

Relational < >

<= >=

Logical & | ^

Equality == != Equals GetHashCode

Continued

ptg

▼

Structures 123

Try It Yourself

Operator Overloading in Structs
By following these steps, you implement a custom struct to represent degrees in
Celsius and Fahrenheit.

1. Create a new Console application.

2. Add a new code file named Celsius.cs, which defines a struct that looks

like this:

struct Celsius
{

private float degrees;

public float Degrees
{

get
{

return this.degrees;
}

}

public Celsius(float temperature)
{

this.degrees = temperature;
}

public static Celsius operator +(Celsius x, Celsius y)
{

return new Celsius(x.Degrees + y.Degrees);
}

public static implicit operator float(Celsius c)
{

return c.Degrees;
}

}

3. Add another code file named Fahrenheit.cs that defines a struct similar to

Celsius but is named Fahrenheit.

4. In both structs, define an operator overload for the – operator. Follow the same

pattern as the + operator overload.

5. In both structs, define an implicit conversion operator that converts from float

to the appropriate struct type. Follow the same pattern as the implicit conver-

sion operator that converts from the struct type to float.

6. Next, define an explicit conversion operator in each struct that converts from

one to the other. Use the following formulas for the conversion:

. Celsius to Fahrenheit: (9.0f / 5.0f) * c.Degrees + 32

. Fahrenheit to Celsius: (5.0f / 9.0f) * (f.Degrees - 32)

ptg

124 HOUR 5: Creating Enumerated Types and Structures

▲

FIGURE 5.5
Results of work-
ing with a cus-
tom struct

FIGURE 5.6
Results after
overriding the
ToString
method

7. In the Main method of Program.cs, enter the following:

Fahrenheit f = new Fahrenheit(100.0f);
Console.WriteLine(“{0} fahrenheit = {1} celsius”, f.Degrees, (Celsius)f);

Celsius c = 32f;
Console.WriteLine(“{0} celsius = {1} fahrenheit”, c.Degrees,
➥(Fahrenheit)c);

Fahrenheit f2 = f + (Fahrenheit)c;
Console.WriteLine(“{0} + {1} = {2} fahrenheit”, f.Degrees, (Fahrenheit)c,
➥f2.Degrees);

Fahrenheit f3 = 100f;
Console.WriteLine(“{0} fahrenheit”, f3.Degrees);

8. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 5.5.

Clearly, this is not useful because some of the values display using the type name.

9. Add an override for the ToString() method that returns the result of calling

this.Degrees.ToString().

10. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 5.6.

Construction and Initialization
Just as classes must be given an initial state, so must structs. For classes, this must

always occur through a class constructor; however, because structs are value types,

you can create a struct variable without calling a constructor. For example, we

could have created a new NumberStruct variable like this:

NumberStruct ns1;

ptg

Structures 125

Watch
Out!

This creates the new variable but leaves the fields in an uninitialized state. The result

is that if you try to access a struct field, you receive a compiler error. By calling the

constructor, as you see in Listing 5.4, you guarantee that the fields will be initialized.

Another aspect of struct initialization is that you are not allowed to assign one struct

variable to another if the source (the one on the right side of the assignment) is not

fully initialized. This means that the following is legal:

NumberStruct ns1 = new NumberStruct();
NumberStruct ns2 = ns1;

However, the following is not:

NumberStruct ns1;
NumberStruct ns2 = ns1;

Custom Default Constructors
Unlike classes, structs cannot have a custom default constructor, and you cannot
initialize fields in a struct outside of a constructor. As a result, when a struct is
created, all the fields are initially set to a zero value.

You can provide overloaded constructors and make use of constructor chaining.
However, when you provide overloaded constructors, all the fields must be initial-
ized by your constructor either explicitly or through a chained constructor.

The interesting thing to note is that you can still chain in the default constructor if
the zero value is acceptable for the other fields.

Listing 5.4 shows the similarities and differences between structs and classes.

LISTING 5.4 Comparing Structs and Classes
struct NumberStruct
{

public int Value;
}

class NumberClass
{

public int Value = 0;
}

class Test
{

static void Main()
{

NumberStruct ns1 = new NumberStruct();
NumberStruct ns2 = ns1;
ns2.Value = 42;

NumberClass nc1 = new NumberClass();
NumberClass nc2 = nc1;
nc2.Value = 42;

ptg

126 HOUR 5: Creating Enumerated Types and Structures

Watch
Out!

FIGURE 5.7
The differences
between a class
and a struct

Console.WriteLine(“Struct: {0}, {1}”, ns1.Value, ns2.Value);
Console.WriteLine(“Class: {0}, {1}”, nc1.Value, nc2.Value);

}
}

Because both ns1 and ns2 are of the NumberStruct value type, they each have their

own storage location, so the assignment of ns2.Number does not affect the value of

ns1.Number. However, because nc1 and nc2 are both reference types, the assignment

of nc2.Number does affect the value of nc1.Number because they both contain the

same reference.

Properties or Public Fields
There is some debate concerning structs and properties. Some feel that proper-
ties should always be used, even in simple types like structs, whereas others feel
it is acceptable for structs to simply make their fields public.

Although using public fields is easier, it allows your value type to be mutable,
which is usually not desirable. When defining your own structs, remember that
they are value types and, just as strings are immutable, they should be immutable
as well. To do this, you should provide constructors allowing the private fields to
be set and read-only properties for retrieving the values.

The output produced is shown in Figure 5.7.

Summary
Enumerated types and structures complete a significant portion of your program-

ming foundation. Now that you know about classes, structures, and enumerated

types, you have all the tools to create your own specialized data types for your busi-

ness applications. Enumerated types enable you to define a set of discrete named val-

ues, whereas structures enable you to define your own lightweight value types.

ptg

127Workshop

Q&A
Q. Why are enumerated types useful?

A. An enumerated type enables you to define a discrete set of numeric values that

can be given easily understood names (identifiers). This enables your code to

be more self-documenting but also helps to ensure correctness.

Q. Can enumerated type values be combined to identify values not present in
the original enumerated type?

A. This can be accomplished using a flags enumeration, in which all explicit val-

ues must be unique powers of two. Values can be combined using the bitwise or

operator to form new values that are not present in the original enumeration.

Q. Are structures value or reference types?

A. Even though structures can be thought of as lightweight classes, they are actu-

ally value types.

Workshop

Quiz
1. What are the possible underlying types of an enumerated type?

2. What is the default type for an enumeration if one is not explicitly specified?

3. What does providing the Flags attribute do?

4. Do structures support inheritance?

5. Can you overload operators for a structure?

6. Can structures have a custom default constructor?

Answers
1. Enumerations can be based only on the following types: byte, short, int,

long, sbyte, ushort, uint, or ulong.

2. If you don’t explicitly specify the type for an enumeration, it is based on the

int type.

ptg

128 HOUR 5: Creating Enumerated Types and Structures

3. By providing the Flags attribute on an enumeration, you clearly communicate

that it is permissible for the values of the enumeration to be combined to form

new values. It also changes the runtime behavior of the ToString method to

display the constituent values when called on a combined value.

4. Structures do not support class inheritance, but they do support interface

implementation inheritance.

5. Yes, structures support operator overloading.

6. No, structs do not enable a custom default constructor. You can provide addi-

tional overloaded constructors, but all fields must be initialized when the con-

structor is finished.

Exercises
1. Add a public enum named ColorRepresentation to the PhotoViewer.Exif

namespace under the Exif project folder. This enum should have the following

named values:

Uncalibrated
sRGB

2. In the Exif project folder, create a public struct named ExifMetadata that

contains the following fields:

private string cameraModel;
private ushort? colorRepresentation;
private string creationSoftware;
private string dateTaken;
private string equipmentManufacturer;
private decimal? exposureCompensation;
private ushort? exposureMode;
private decimal? exposureTime;
private ushort? flashMode;
private decimal? focalLength;
private uint? height;
private decimal? horizontalResolution;
private ushort? isoSpeed;
private decimal? lensAperature;
private ushort? lightSource;
private decimal? verticalResolution;
private uint? width;

Add a public constructor with the following signature that sets each of the

fields to null:

public ExifMetadata(Uri imageUri)

ptg

Workshop 129

Add public read-only properties for each of the fields. For the

colorRepresentation, flashMode, exposureMode, lightSource, and

dateTaken fields, use the following code:

public ColorRepresentation ColorRepresentation
{

get
{

ColorRepresentation value = Exif.ColorRepresentation.Uncalibrated;
if (this.colorRepresentation.HasValue)
{

if (!String.IsNullOrWhiteSpace(Enum.GetName(typeof
➥(ColorRepresentation), this.colorRepresentation)))

{
value = (ColorRepresentation)this.colorRepresentation;

}
}

return value;
}

}

public DateTime? DateTaken
{

get
{

DateTime? result = null;
if (!String.IsNullOrWhiteSpace(this.dateTaken))
{

DateTime date;
if (DateTime.TryParse(this.dateTaken,

➥DateTimeFormatInfo.InvariantInfo, DateTimeStyles.None, out date))
{

result = date;
}

}

return result;
}

}

public ExposureMode ExposureMode
{

get
{

ExposureMode value = Exif.ExposureMode.Unknown;
if (this.exposureMode.HasValue)
{

if (!String.IsNullOrWhiteSpace(Enum.GetName(typeof
➥(ExposureMode),this.exposureMode)))

{
value = (ExposureMode)this.exposureMode;

}
}

ptg

130 HOUR 5: Creating Enumerated Types and Structures

return value;
}

}

public FlashMode FlashMode
{

get
{

FlashMode value = FlashMode.FlashDidNotFire;
if (this.flashMode.HasValue && this.flashMode % 2 == 1)
{

value = FlashMode.FlashFired;
}

return value;
}

}

public LightSource LightSource
{

get
{

LightSource value = Exif.LightSource.Unknown;
if (this.lightSource.HasValue)
{

if (!String.IsNullOrWhiteSpace(Enum.GetName(typeof
➥(LightSource),this.lightSource)))

{
value = (LightSource)this.lightSource;

}
}

return value;
}

}

3. Add a private field to the Photo class named metadata and whose data type is

PhotoViewer.Exif.ExifMetadata. Add a read-only property to the interface

and the class that returns the metadata field.

ptg

131

HOUR 6

Events and Event Handling

What You’ll Learn in This Hour:
. Understanding Events
. Subscribing and Unsubscribing
. Publishing an Event
. Raising an Event

C# is inherently an imperative programming language, which enables you to

describe how to accomplish tasks using procedures (methods). Procedural program-

ming defines the exact statements that will be executed and the order in which they

will be executed. This type of programming is most often found in command-line or

non-interactive programs because of the generally limited amount of user interaction.

In contrast, event-driven programming is a programming style in which the program

flow is determined by events. Events are simply anything of interest, such as user

actions (mouse clicks or key presses) or messages from other programs or parts of the

same program. In C#, the class that raises, or sends, the event is the publisher, and

the classes that receive, or handle, the event are subscribers. Although you can use

events for a variety of reasons, they are most commonly used to signal user actions

in a graphical user interface, such as keyboard-related events (keys pressed) and

mouse-related events (mouse movement, button clicks, and so on).

In this hour, you learn the basics of event-driven programming, including how to

define your own events, initiate and respond to events, and send data through

events.

ptg

132 HOUR 6: Events and Event Handling

Understanding Events
Events follow a publish/subscribe model where the publisher determines when an

event is raised. The subscribers determine the action taken in response to that event.

Events can have multiple subscribers, in which case the event handlers are invoked

synchronously when the event is raised. If an event has no subscribers, it is never

actually raised. Subscribers can handle multiple events from multiple publishers.

Delegates
In traditional programming terms, an event is a form of a callback, which enables
a method to be passed as an argument to other methods. In C#, these callbacks
are referred to as delegates. Event handlers are actually nothing more than meth-
ods invoked through delegates.

You can think of delegates as being similar to C or C++ function pointers or Del-
phi closures and are a type-safe and secure means of writing a callback. Dele-
gates run under the caller’s security permissions, not the declarer’s permissions.

A delegate type simply defines a method signature and any method with a com-
patible signature can be associated with a delegate. One key difference between
delegate signatures and regular method signatures is that the return type is
included in the signature and the use of the params modifier in the parameter list
is allowed.

By the
Way

Subscribing and Unsubscribing
When you are interested in responding to an event published by another class, you

subscribe to that event by defining an event handler method whose signature

matches the event delegate signature. You then use the addition assignment operator

(+=) to attach the event handler to the event. Listing 6.1 shows how you would sub-

scribe to an event based on the ElapsedEventHandler delegate.

LISTING 6.1 Subscribing to an Event
var timer = new Timer(1000);
timer.Elapsed += new ElapsedEventHandler(TimerElapsedHandler);

void TimerElapsedHandler(object sender, ElapsedEventArgs e)
{

MessageBox.Show(“The timer has expired.”);
}

The first parameter should always be an object parameter named sender that rep-

resents the object that raised the event. The second parameter represents the data

passed to the event handler method. This is always an EventArgs type or a type

ptg

Subscribing and Unsubscribing 133

derived from EventArgs named e. The event handler method should always have a

void return type.

Method Group Inference
Although the code shown in Listing 6.1 is the traditional way to attach an event
handler method, C# enables you to use a simpler syntax called method group
inference. The code shown in Listing 6.1 is shown here but uses method group
inference:

var timer = new Timer(1000);
timer.Elapsed += TimerElapsedHandler;

void TimerElapsedHandler(object sender, ElapsedEventArgs e)
{

MessageBox.Show(“The timer has expired.”);
}

Even though Visual Studio automatically generates event handler attachments
using the more traditional syntax, it is common to use method group inference
when attaching your own event handler methods.

By the
Way

The method name can be anything you want, but it is best to be consistent and use a

name that is the combination of the name of the object providing the event, the

name of the event being handled, and the word Handler.

Although subscribing to events in this manner is common for many classes, Visual

Studio makes it easy to subscribe to events, especially those published by any of the

user interface controls.

These steps show how to subscribe to a button’s Click event in a Windows Presenta-

tion Foundation (WPF) application:

1. Make sure the button is selected and click the Events tab on the top of the Prop-

erties window in Design view, as shown in Figure 6.1. If you don’t see the Prop-

erties window, right-click the form or control to which you are going to handle

an event and select Properties.

FIGURE 6.1
The Properties
window

ptg

134 HOUR 6: Events and Event Handling

2. Double-click the event you will be handling. This causes Visual Studio to create

an empty event handler method in your code, shown in Figure 6.2.

Visual Studio also attaches the event handler for you, as shown in Figure 6.3.

For WPF applications, this is done in the XML markup, or XAML, which

describes the control.

If you create a Windows Forms-based application, the process is similar but

instead of attaching the event handler in the XAML, Visual Studio would attach

the event handler in the InitializeComponent method of your form, as shown

in Figure 6.4.

When you double-click the event, Visual Studio uses a default naming conven-

tion. If you want to use a different event handler method name, simply type

the name in the text area next to the event, and press the Enter key to cause

Visual Studio to create the event handler method. If you double-click the con-

trol itself rather than the event, Visual Studio creates an event handler method

for the default event of the control.

FIGURE 6.2
The generated
event handler
method

FIGURE 6.3
Attaching the
event handler
in XAML

FIGURE 6.4
Attaching the
event handler in
code

ptg

Subscribing and Unsubscribing 135

▼

FIGURE 6.5
Message box
from the event
handler

FIGURE 6.6
Solution Explorer
context menu

Try It Yourself

Subscribing to Events
To subscribe to events published by a user interface control in a Windows Forms
application and a WPF application, follow these steps.

1. Open the Hour6 solution in Visual Studio.

2. Open Form1.cs in the EventsWinForms project by double-clicking the file.

3. In the design view for Form1, select the button and add an event handler for the

Click event.

4. In the generated event handler method, add the following statement:

MessageBox.Show(“You pressed the button.”);

5. Run the application by pressing Ctrl+F5. When you click the button, you should

see the following dialog appear, as shown in Figure 6.5.

6. Open MainWindow.xaml in the EventsWpf project by double-clicking the file.

7. In the design view for MainWindow, select the button and add an event handler

for the Click event. In the generated event handler method, add the same

statement you added in step 4.

8. Run the application by right-clicking the project in the Solution Explorer win-

dow and selecting the Start new instance option from the Debug menu, as

shown in Figure 6.6.

9. When you click the button, you should see the following dialog appear, as

shown in Figure 6.7.

ptg

136 HOUR 6: Events and Event Handling

FIGURE 6.7
Message box
from the event
handler

By the
Way

When you no longer want your event handler invoked when the event is raised, you

must unsubscribe from the event. You should also unsubscribe from events before you

dispose of the subscriber object. If you don’t unsubscribe from the events, the publish-

ing object continues to hold a reference to the delegate that represents the subscriber’s

event handler, which prevents the garbage collector from deallocating your subscriber

object.

To unsubscribe from an event, you either remove the attribute from the XAML

markup or use the subtraction assignment operator (–=), as shown here:

timer.Elapsed -= TimerElapsedHandler;

Anonymous Methods
In the previous examples, you attached a named method as the event handler
delegate. You can also use the addition assignment operator to attach an anony-
mous method to the event. An anonymous method provides a way to write an
unnamed inline statement block that can be executed in a delegate invocation.

The code shown in Listing 6.1 is shown here using an anonymous method
instead of a named delegate:

var timer = new Timer(1000);
timer.Elapsed += delegate(object sender, ElapsedEventArgs e)
{

MessageBox.Show(“The timer has expired.”);
}

Although using an anonymous method for an event handler provides a lot of con-
venience, it does not provide an easy way to unsubscribe from the event.

Publishing an Event
Events can be published by both classes and structs (although they are more com-

monly found in classes) using a simple event declaration. Events can be based on any

valid delegate type; however, the standard practice is to base your events on the

EventHandler and EventHandler<T> delegates. These are delegate types predefined

in the .NET Framework specifically for defining events.

▲

ptg

Publishing an Event 137

The first decision you need to make when defining your own events is whether you

need to send custom data with your event. The .NET Framework provides the

EventArgs class, which the predefined event delegate types support. If you need to

send custom data with your event, you should create a new class that derives from

EventArgs. If you don’t need to send custom data, you can use the EventArgs type

directly, but cannot change it later without breaking compatibility. As a result, you

should always create a new class that derives from EventArgs, even if it is initially

empty, to provide the flexibility later on to add data.

Listing 6.2 shows an example of a custom EventArgs derived class.

LISTING 6.2 A Custom EventArgs Derived Class
public class CustomEventArgs : System.EventArgs
{

private object data;

public CustomEventArgs(object data)
{

this.data = data;
}

public object Data
{

get
{

return this.data;
}

}
}

The most common way of declaring your event is using a field-like syntax. If you

have no custom EventArgs class, you would use the EventHandler delegate type,

shown in Listing 6.3.

LISTING 6.3 A Simple Event Declaration
public class Contact
{

public event EventHandler AddressChanged;
}

If you do have a custom EventArgs class, you would use the generic

EventHandler<T> delegate, substituting your own EventArgs class for the T.

Although the field-like event definition is the most common, it might not always be

the most efficient, particularly for classes with a large numbers of events. Consider a

class with a large number of events. It is reasonable that only a few events have sub-

scribers. Using the field declaration style, you create one field per event, which results

in a lot of unnecessary overhead.

GO TO .
Hour 11,
“Understanding
Generics,” for
more informa-
tion on generics.

ptg

138 HOUR 6: Events and Event Handling

To solve this problem, C# also enables defining events with a property-like syntax, as

shown in Listing 6.4.

LISTING 6.4 Event Declaration Using Event Properties
1. public class Contact
2. {
3. private EventHandlerList events = new EventHandlerList();
4. private static readonly object addressChangedEventKey = new object();
5.
6. public event EventHandler AddressChanged
7. {
8. add
9. {
10. this.events.AddHandler(addressChangedEventKey, value);
11. }
12. remove
13. {
14. this.events.RemoveHandler(addressChangedEventKey, value);
15. }
16. }
17. }

Line 3 declares an EventHandlerList specifically designed to contain a list of event

delegates. This enables you to use a single variable that contains an entry for every

event that has a subscriber. Next, line 4 declares a static read-only object variable

named addressChangedEventKey that represents the key used for the event in the

EventHandlerList. Finally, lines 6 through 16 declare the actual event property.

This syntax should be familiar to you because it is almost the same syntax for defin-

ing a property. The difference is that rather than get and set accessors, you have add

and remove accessors. The add accessor simply adds the input delegate instance to

the list, whereas the remove accessor removes it. Both of the accessors use the prede-

fined key for the event property to add and remove instances from the list.

Now that you understand the basics of publishing an event, a convenient and consis-

tent way to describe when the event occurs are to categorize them as pre-events and

post-events.

Post-events are the most common type of event and occur after the state of the object

has changed. Pre-events, also called cancellable events, occur before the state of the

object changes and provide the capability to cancel the event. These events use the

CancelEventArgs class to store event data. The CancelEventArgs class simply adds

a Cancel property your code can read and write. If you create or own cancelable

events, you should derive your own custom event data class from the

CancelEventArgs class.

ptg

Raising an Event 139

Raising an Event
Defining an event isn’t of much use if no mechanism is in place to initiate that event.

Event initiation is called raising, or firing, an event and follows a standard pattern.

By following a pattern, it becomes easier to work with events because the structure is

well defined and consistent.

Listing 6.5 builds on the example in Listing 6.1 and shows the complete event han-

dler mechanism.

LISTING 6.5 The Complete Event Handler
1. public class Contact
2. {
3. public event EventHandler<AddressChangedEventArgs> AddressChanged;
4.
5. private string address;
6.
7. protected virtual void OnAddressChanged(AddressChangedEventArgs e)
8. {
9. EventHandler<AddressChangedEventArgs> handler = AddressChanged;
10. if (handler != null)
11. {
12. handler(this, e);
13. }
14. }
15.
16. public string Address
17. {
18. get { return this.address; }
19. set
20. {
21. this.address = value;
22. AddressChangedEventArgs args = new
➥AddressChangedEventArgs(this.address);
23. OnAddressChanged(args);
24. }
25. }
26. }

Line 3 declares the event, using the EventHandler<T> delegate. Lines 7 through 14

declare a protected virtual method used to raise the event. By making this method

protected and virtual, any derived classes have the capability to handle the event

by overriding the method rather than subscribing to the event. This is a more natural

and convenient mechanism for derived classes. Finally, lines 22 and 23 declare a new

EventArgs class and raise the event. If the event did not have custom data, you could

have used the EventArgs.Empty field to represent an empty EventArgs.

ptg

140 HOUR 6: Events and Event Handling

Watch
Out!

▼

Raising an Event When Using Event “Properties”
If you use the property-like syntax, the method used to actually raise the event
needs to be a bit different to retrieve the event handler from the handler list, as
shown here:

protected virtual void OnAddressChanged(AddressChangedEventArgs e)
{

var handler = events[addressChangedEventKey] as
➥EventHandler<AddressChangedEventArgs>;

if (handler != null)
{

handler(this, e);
}

}

By the
Way

By convention, the name of the event raiser method starts with “On” followed by the

name of the event. For non-static events on unsealed classes, this method should be

declared as a protected virtual method. For static events, non-static events on

sealed classes, or events on structs, the method should be public. This method should

always have a void return type and take a single parameter, named e, which should

be typed to the appropriate EventArgs class.

The content of this method also follows a standard pattern, which makes a tempo-

rary copy of the event (line 9) to avoid the possibility of a race condition occurring if

the last subscriber unsubscribes immediately after the null check (line 10) and before

the event is raised (line 12).

Multithreading and Events
This pattern only prevents one possible type of race condition, whereby the event
becomes null after the check and is only relevant if the code is multithreaded.
There are complexities that must be safeguarded against when writing multi-
threaded events, such as ensuring that any necessary state is still present in a
thread-safe manner before executing code that relies on that state.

Try It Yourself

Publishing and Raising Events
By following these steps, you will explore how to publish and raise events.

1. Open the Hour6 solution in Visual Studio.

2. Add a class named AddressChangedEventArgs to the PublishAndRaise

project. This class should follow the same pattern as shown in Listing 6.2.

GO TO .
Hour 23,
“Understanding
Threads,
Concurrency, and
Parallelism,” for
more information
on race
conditions.

ptg

141Q&A

▲

FIGURE 6.8
Results of sub-
scribing to an
event

3. Add a class named Contact that looks like the one shown in Listing 6.5.

4. Run the application by pressing Ctrl+F5. The output should look like Figure

6.8. Make sure to set the PublishAndRaise project as the startup project.

Summary
In this hour, you learned how C# enables you to create highly interactive applica-

tions by raising and responding to events. You also learned that events are not just

about user interaction through a graphical user interface but that events also pro-

vide a rich and sophisticated notification system that your classes can use.

Through the Visual Studio 2010 editor, you have seen how easy it is to create your

own event handlers for responding to events initiated through the user interface.

Q&A
Q. What is a delegate?

A. A delegate is a type-safe and secure way of writing a callback, similar to a C++

function pointer or Delphi closure. Using a delegate allows you to encapsulate

a reference to a method. The code that calls the referenced method does not

need to know at compile time which method will be invoked. Delegates run

under the caller’s security permissions, not the declarer’s permissions.

Q. What is an event?

A. An event is any external stimulus to a program, such as user actions (mouse

clicks or key presses), messages from other programs, or parts of the same

programs.

Q. What is the EventArgs class?

A. The EventArgs class stores data for an event. Although it can be used directly,

it is best to derive a new class for your event, even if it is initially empty.

ptg

142 HOUR 6: Events and Event Handling

Q. What are the two types of event?

A. The two types of event are pre-events and post-events. Pre-events are cance-

lable events raised before the state of the object changes. Post-events are raised

after the state of the object has changed.

Workshop

Quiz
1. What is the most common way to declare an event and what are the draw-

backs of using it?

2. Using a property-like syntax to declare an event requires what two accessor

members?

3. The standard pattern for raising an event requires a method with what accessi-

bility for non-static events on an unsealed class?

4. Looking at the OnAddressChanged method declared in Listing 6.3, why is a

copy of the event delegate made?

Answers
1. The most common way to define an event is to use the field-like syntax. For

classes with a large number of events, particularly when it is reasonable that

only a small number of those events will have subscribers, this syntax creates

one field per event and results in a lot of unnecessary overhead.

2. The property-like syntax for declaring an event uses an add and remove acces-

sor. The add accessor simply adds the input delegate to the list, whereas the

remove accessor removes it.

3. For non-static events on unsealed classes, the method should be declared as a

protected virtual method, which enables any derived classes the capability

to handle the event using an override.

4. A temporary copy of the delegate is made to avoid one possible race condition

where the event is reset to null, causing a runtime error when the event is

invoked.

ptg

143Workshop

Exercise
1. Extend the application you wrote in the last exercise to add a cancelable

AddressChanging event. If the event is canceled, do not actually change the

value of the address variable. Modify the AddressChangedEventArgs class to

contain the old and new value of the address, which will be printed by the

event handler in the subscriber class.

ptg

This page intentionally left blank

ptg

PART II

Programming in C#

HOUR 7: Controlling Program Flow 147

HOUR 8: Using Strings and Regular Expressions 167

HOUR 9: Working with Arrays and Collections 195

HOUR 10: Handling Errors Using Exceptions 227

HOUR 11: Understanding Generics 245

HOUR 12: Understanding Query Expressions 267

ptg

This page intentionally left blank

ptg

147

HOUR 7

Controlling Program Flow

What You’ll Learn in This Hour:
. Selection Statements
. Iteration (Looping) Statements
. Jump Statements

At heart, C# is a procedural programming language, so statements are executed

sequentially in the order they appear in the source code. This execution order is

referred to as program flow. As you might imagine, following only a strict execution

order would provide little flexibility. What is missing is a way to control or change

what statements are executed based on the result of testing conditions. C# provides

control flow statements that change the order of execution.

All the control flow statements have the same basic characteristics; they select any

number of statements to be executed based on a given set of conditions. These state-

ments are grouped into three main categories, described by their primary behavior.

Selection statements and jump statements are most closely related. They both select a

statement that will be executed only once, whereas iteration statements repeatedly

execute that statement. Jump statements are unconditional, but selection and itera-

tion statements enable conditions to restrict which statements will be executed and

how many iterations the execution will occur.

In this hour, you learn the syntax for each of the different control flow statements,

learn how they behave, and how to write and test conditions that control program

flow. More important, you learn the differences between them and when one type of

control flow statement should be used over another.

ptg

148 HOUR 7: Controlling Program Flow

Selection Statements
Selection statements are perhaps the most common form of control flow statements

available. They enable a single statement (from a number of possible statements) to

be executed based on the value of an expression.

The if Statement
The most basic selection statement is the if statement, which selects a statement

based on the result of a Boolean expression.

The basic syntax for an if statement is

if (boolean-expression)
embedded-statement

A slightly more advanced syntax is

if (boolean-expression)
consequence-statement

else
alternative-statement

If the result of boolean-expression evaluates to true, control is transferred to the

consequence-statement. If the result of boolean-expression evaluates to false

and an else portion is present, control is transferred to the alternative-

statement. When control reaches the end of the statement executed, it is then trans-

ferred to the next statement.

The statement executed can be any valid statement, including another if statement.

In this syntax, the second statement is said to be a nested if statement.

In the code shown in Listing 7.1, “y <= 10” displays if the condition (y > 10) evalu-

ates to false and the condition (x > 10) evaluates to true.

LISTING 7.1 Nested if Statements
int x = 20, y = 10;

if (x > 10)
{

if (y > 10)
{

Console.WriteLine(“y > 10”);
}
else
{

Console.WriteLine(“y <= 10”);
}

}

ptg

Selection Statements 149

The “Mismatched Else” Problem
A common problem when writing if statements is known as the “mismatched
else” problem, where the formatting of the code does not match the actual con-
trol flow:

int x = 20, y = 10;

if (x > 10)
if (y > 10)

Console.WriteLine(“y > 10”);
else

Console.WriteLine(“y <= 10”);

The code here visually looks like the else is the alternative of if (x > 10). In
reality, it is actually the alternative of if (y > 10).

To help prevent this problem, it is a good idea to always use braces to make it
clear which else goes with which if.

Watch
Out!

If you need to check a series of exclusive conditions, it is possible to cascade if state-

ments by joining an if statement to the else portion of a previous if statement. In

such a series, all the if statements will be executed in sequence until one of them

evaluates to true.

Listing 7.2 shows a cascaded if statement. If the condition (x > 10) evaluates to

true, “x > 10” displays. If the condition (x < 10) evaluates to true, “x < 10” dis-

plays; otherwise, “x = 10” displays.

LISTING 7.2 A Cascaded if Statement
int x = 20, y = 10;

if (x > 10)
{

Console.WriteLine(“x > 10”);
}
else if (x < 10)
{

Console.WriteLine(“x < 10”);
}
else
{

Console.WriteLine(“x = 10”);
}

ptg

150 HOUR 7: Controlling Program Flow

▲

▼ Try It Yourself

Working with the if Statement
To see how the if statement works, follow these steps. Keep Visual Studio open at
the end of this exercise because you will use this application later.

1. Open the SelectionStatements project in Visual Studio.

2. Open Form1.cs by right-clicking the file and selecting the View Code context

menu choice.

3. In the code editor, locate the method named CheckGuess, which looks like

private Result CheckGuess(decimal guess)
{

Result result;
return result;

}

4. Modify the CheckGuess method so that the appropriate value of Result is

returned based on the number passed as the method argument.

5. Look at the buttonCheckGuess_Click method, examining the nested if state-

ment it contains.

6. Run the application by pressing F5. Enter guesses and watch how the program

responds based on your guess.

The switch Statement
Switches can be thought of as the natural progression from cascaded if statements.

They provide similar functionality but are more compact and flexible. The switch

statement selects a statement list based on a label that corresponds to the value of the

expression.

The syntax of a switch statement is

switch (expression)
{

case constant-expression :
statement-list
break;

default :
statement-list
break;

}

ptg

Selection Statements 151

Watch
Out!

The body of the switch is the switch-block and contains one or more switch-sections.

Each switch-section contains at least one label followed by a statement-list.

The type of expression establishes the governing type of the switch and can be

sbyte, byte, short, ushort, int, uint, long, ulong, char, the nullable version of

those types, the string type, or an enumerated type. The expression is evaluated

only once.

The label for a switch-section must be a constant expression that is unique within the

same switch-block and be implicitly convertible to the governing type. For switches

whose governing type is string or a nullable type, a case label of null is permitted.

Switches on string
The evaluation of expression is case-sensitive, so a switch-section will only be
executed if its label exactly matches.

If the value of expression matches one of the constants in a case label, control is

transferred to the first statement after that label. If no matching case is found, control

is transferred to the first statement after the default label, if present; otherwise, con-

trol is transferred to the next statement after the switch.

In Listing 7.3, if the condition (x == 0) or (x == 1) evaluates to true, the value of x

displays; otherwise, “Invalid” displays.

LISTING 7.3 A Simple switch Statement
int x = 4;

switch (x)
{

case 0:
Console.WriteLine(“x = “ + x);
break;

case 1:
Console.WriteLine(“x = “ + x);
break;

default:
Console.WriteLine(“Invalid”);
break;

}

You might have noticed that the code for case 0 and case 1 is identical. To eliminate

this redundancy, you can provide a list of labels with no intervening statements.

ptg

152 HOUR 7: Controlling Program Flow

Watch
Out!

By the
Way

▼

Fall Through
Unlike other programming languages, such as C and C++, switch statements in
C# do not allow fall through of switch-sections, which occurs when execution
starts in one switch-section and continues through to another switch-section.

To prevent fall-through, C# requires all switch-sections to end in a statement with
an unreachable endpoint, of which an unconditional jump statement is one exam-
ple. The most common is the break statement.

By not allowing such fall-through behavior, C# eliminates a common bug found in
C and C++ programs and allows the order of the switch-sections to be changed
without affecting the behavior of the statement.

Listing 7.4 shows the same switch statement from Listing 7.3 but uses case fall-

through. Because there are no intervening statements, the “no fall-through rule” is not

violated, and control is transferred to the first statement after the last label in the list.

LISTING 7.4 A switch Statement Using Case Fall-Through
int x = 4;

switch (x)
{

case 0:
case 1:

Console.WriteLine(“x = “ + x);
break;

default:
Console.WriteLine(“Invalid”);
break;

}

Scope
Scope within a switch statement is bounded by the entire switch-block, not each
switch-section. This means that any local variables or constants declared inside a
switch-section are local to the entire switch-block, not just that switch-section.

If you need to restrict scope to within a specific switch-section, you can create an
additional nested scope by enclosing the statement list in curly braces.

Try It Yourself

Working with the switch Statement
To see how the switch statement works, follow these steps. If you closed Visual
Studio, repeat the previous exercise first.

ptg

▲

Iteration Statements 153

1. In the code editor, locate the method named buttonCheckGuess_Click. This

method contains a nested if statement that determines which Label controls to

display based upon the return value of the CheckGuess method.

2. Modify the buttonCheckGuess_Click method so that it uses a switch state-

ment over the return value of the CheckGuess method rather than the nested

if statements.

3. Run the application by pressing F5. Enter guesses and watch how the program

responds based on your guess, which should be identical to the behavior from

the previous exercise.

Iteration Statements
Although selection statements enable one-time execution of a statement based on the

value of an expression, iteration statements, also called looping statements, repeat-

edly execute the same statement. Iteration statements evaluate their expression each

time, or iteration, through the loop. A top-tested loop evaluates the expression

before the statement executes, whereas a bottom-tested loop evaluates the expres-

sion after the statement executes.

To terminate the loop early, without reevaluating the expression, you can use any of

these jump statements: break, goto, return, or throw. The continue statement

passes control to the next iteration.

The while Statement
A while statement is a top-tested loop that repeatedly executes an embedded state-

ment until the boolean-expression evaluates to false. Because the expression is

evaluated before each iteration, the statement can be executed zero or more times.

The syntax for a while statement is

while (boolean-expression)
embedded-statement

If the result of evaluating boolean-expression is true, control is transferred to the

embedded-statement. When the statement finishes executing, control is transferred

to the start of the loop, where the expression is reevaluated.

If the result of evaluating boolean-expression is false, control is transferred to the

next statement after the while statement. If the result of the boolean-expression is

initially false, the embedded-statement never executes.

ptg

154 HOUR 7: Controlling Program Flow

▼

▲

In Listing 7.5, the statements inside the body of the loop execute until i is greater

than or equal to 10. If the i++; statement were not included in either the body of the

loop or as part of the boolean-expression, the loop would execute forever.

LISTING 7.5 The while Statement
int i = 0;
while (i < 10)
{

Console.WriteLine(i);
i++;

}

Try It Yourself

Working with the while Statement
By following these steps, you see how the while statement works. Keep Visual
Studio open at the end of this exercise because you will use this application later.

1. Open the IterationStatements project in Visual Studio.

2. Open Form1.cs right-clicking the file and selecting the View Code context

menu choice.

3. In the code editor, modify the PowersOfTwoWhileLoop method so that it exe-

cutes the following statements in a while loop.

this.textBoxOutput.AppendText(String.Format(“{0}^2 = {1}\r\n”, i,
➥Math.Pow(i, 2)));
i++;

4. Run the application by pressing F5. Enter a maximum value, select the While

radio button, and click the Generate button.

The do Statement
A do statement also repeatedly executes an embedded statement until the boolean-

expression evaluates to false. Unlike the while statement, a do statement is a bot-

tom-tested loop, so the embedded-statement is executed once before the boolean-

expression is evaluated. This means it is guaranteed to execute at least one time.

The syntax for a do statement is

do
embedded-statement

while (boolean-expression);

ptg

Iteration Statements 155

▼

▲

If the result of evaluating boolean-expression is true, control is transferred to the

beginning of the loop where the embedded-statement is executed again. If the result

of evaluating boolean-expression is false, control is transferred to the next state-

ment after the do statement.

In Listing 7.6, the statements inside the body of the loop execute if i is less than 10. Just

as in the while statement, if the i++; statement were not included in either the body of

the loop or as part of the boolean-expression, the loop would execute forever.

LISTING 7.6 The do Statement
int i = 0;
do
{

Console.WriteLine(i);
i++;

}
while (i < 10);

Try It Yourself

Working with the do Statement
To see how the do statement works, follow these steps. If you closed Visual Studio,
repeat the previous exercise first. Be sure to keep Visual Studio open at the end of
this exercise because you will use this application later.

1. In the code editor, modify the PowersOfTwoDoLoop method so that it executes

the following statement in a do loop:

this.textBoxOutput.AppendText(String.Format(“{0}^2 = {1}\r\n”, i,
➥Math.Pow(i, 2)));

2. Run the application by pressing F5. Enter a maximum value, select the Do

radio button, and click the Generate button.

3. Explore what happens if you remove the increment statement from the body of

the loop and instead place it as part of the while condition.

The for Statement
The for statement is possibly the most misunderstood iteration statement because it

looks the most complex; however, it still provides the same basic behavior of the

other iteration statements. It also repeatedly executes an embedded statement until a

specified expression evaluates to false.

ptg

156 HOUR 7: Controlling Program Flow

Did you
Know?

Watch
Out!

The syntax of a for statement is

for (initializer ; condition ; iterator)
embedded-statement

The for statement is most commonly used for sequential processing and iterating

over arrays.

What makes a for statement look complex is the three different expressions, or sec-

tions, all of which are optional. Each section must be separated by a semicolon, even

when it is omitted.

The initializer can be either a single local variable initialization or a comma-sepa-

rated list of local variable initialization statements. Any local variables declared in

the initailzer are scoped to the condition, iterator, and embedded statement.

Initializer Declaration Space
Think of the entire for statement as being defined inside “invisible braces” that
define the local variable declaration space for the initializer.

The condition must be a Boolean expression. If you omit the condition, the expres-

sion defaults to true.

Finally, the iterator can be either a single expression or a comma-separated list of

expressions that usually change the corresponding local variables declared in the

initializer.

Infinite Loops
Just as it is possible to create an infinite loop using a while statement, you can
create a for statement that runs forever by omitting all three sections in the
declaration:

for (; ; ;)
{

Console.WriteLine(“line”);
}

If you look at the while statement from Listing 7.5 again, you should see some ele-

ments that look similar to the different sections of the for statement. A while state-

ment and a for statement are interchangeable; the for statement is a more compact

way to write the same code. Figure 7.1 shows a comparison between a while state-

ment and a for statement, which should make the relationship between them clear.

ptg

Iteration Statements 157

int i = 0;

while (i < 10)

{

 Console.WriteLine(i);

 i++;

}

3

4

2

1

3

421

for (int i = 0; i < 10; i++)

{

 Console.WriteLine(i);

}

FIGURE 7.1
Comparison of a
for and while
statement

▼

Looking at the sequence of events that occur when a for statement executes, it is the

same sequence as a while statement:

1. The initializer is executed, if present. If there are multiple expressions, they are

executed in the order they are written. The initializer is executed once at the

beginning of the statement.

2. If condition evaluates to true, control is transferred to the embedded statement.

3. The embedded statement is executed.

4. The statements in the iterator are evaluated, if present, and the condition is

reevaluted. If condition evaluates to false, control is transferred to the next

statement after the for statement.

Try It Yourself

Working with the for Statement
By following these steps, you see how the for statement works. If you closed
Visual Studio, repeat the previous exercise first. Be sure to keep Visual Studio
open at the end of this exercise because you will use this application later.

1. In the code editor, modify the PowersOfTwoForLoop method so that it executes

the following statement in a for loop:

this.textBoxOutput.AppendText(String.Format(“{0}^2 = {1}\r\n”, i,
➥Math.Pow(i, 2)));

ptg

158 HOUR 7: Controlling Program Flow

▲

By the
Way

2. Run the application by pressing F5. Enter a maximum value, select the For

radio button, and click the Generate button.

3. Explore what happens if you change the initializer and the iterator expressions.

The foreach Statement
The foreach statement executes a statement for each element in an array or collec-

tion. Unlike a for statement, a foreach statement cannot be used to add or remove

items from the source collection.

The syntax of a foreach statement is

foreach (type identifier in expression)
embedded-statement

If expression is an array type, an implicit conversion to IEnumerable is performed;

otherwise, the collection must implement either IEnumerable or IEnumerable<T> or

provide an appropriate GetEnumerator method.

Iteration Variable
The type and identifier of a foreach statement is the iteration variable and corre-
sponds to a read-only local variable scoped only to the embedded statement.

As the iteration progresses through the elements in the collection, the iteration
variable represents the current element.

The foreach statement is the only iteration statement that does not contain a condi-

tion to be evaluated. The embedded statement continues to execute for all the ele-

ments in the collection or a jump statement has terminated the loop. For a collection

or single-dimensional array, the elements are traversed in increasing order starting

with index 0. If expression is a multi-dimensional array, the elements are traversed

in increasing order, starting with the rightmost dimension, then the next left dimen-

sion, and then continuing to the left.

If the collection contains no elements, the embedded statement is not executed.

The code in Listing 7.7 displays each character of a string on a single line.

LISTING 7.7 The foreach Statement
string s = “This is a test.”;

foreach (char c in s)
{

Console.WriteLine(c);
}

ptg

▼

Jump Statements 159

▲

By the
Way

Try It Yourself

Working with the foreach Statement
To see how the foreach statement works, follow these steps.

1. In the code editor, modify the PowersOfTwoForEachLoop method so that it exe-

cutes the following statement in a foreach loop:

this.textBoxOutput.AppendText(String.Format(“{0}^2 = {1}\r\n”, i,
➥Math.Pow(i, 2)));

2. Run the application by pressing F5. Enter a maximum value, select the Foreach

radio button, and click the Generate button.

Jump Statements
Jump statements are different from selection and iteration statements because they

unconditionally and immediately transfer control to a new location, called the target

of the jump statement.

The goto Statement
Although not commonly used, C# does provide a goto statement, which transfers
control to a statement marked by a label. The goto statement can also target a
specific case or the default case in a switch statement.

The syntax for a goto statement is

goto identifier;
goto case constant-expression;
goto default;

Just as with the break and continue statements, any statements in the same
block appearing after the goto statement are not executed.

The use of a goto statement is strongly discouraged in everyday practice
because it is easy to misuse and can result in code that is difficult to read and
maintain. Code that makes heavy use of goto statements is often referred to as
“spaghetti” code because of the resemblance the program flow has to a plate of
spaghetti.

ptg

160 HOUR 7: Controlling Program Flow

▼

The break Statement
The break statement is used to exit the nearest switch, while, do, for, or foreach

statement. If multiple statements are nested within each other, only the innermost

statement is exited.

Listing 7.8 shows the same for statement from Figure 7.1 using a break statement

that causes the loop to terminate after four iterations.

LISTING 7.8 The break Statement
for (int i = 0; i < 10; i++)
{

Console.WriteLine(i);
if (i == 3)
{

break;
}

}

Try It Yourself

Working with the break Statement
By following these steps, you see how the break statement works within different
iteration statements. Keep Visual Studio open at the end of this exercise because
you will use this application later.

1. Open the JumpStatements project in Visual Studio.

2. Open Form1.cs by right-clicking the file and selecting the View Code context

menu choice.

3. In the code editor, modify the following methods to include a break statement

when the loop iteration counter equals the breakAfter parameter after the

power of two has been calculated:

. PowersOfTwoBreakDoLoop

. PowersOfTwoBreakForLoop

. PowersOfTwoBreakForEachLoop

. PowersOfTwoBreakWhileLoop

4. Run the application by pressing F5. Enter a break iterations value, select one of

the radio buttons, and click the Generate button.

5. Change the location of the break statement so that it occurs before the power

of two has been calculated.

ptg

Jump Statements 161

▲

▼

6. Run the application again by pressing F5. Enter a break iterations value, select

one of the radio buttons, and click the Generate button. You should notice that

for the same iteration statement and break iterations values chosen in step 4,

the output is different.

The continue Statement
The continue statement starts a new iteration of the nearest while, do, for, or

foreach statement. If multiple statements are nested within each other, the

continue statement applies only to the innermost statement. Any statements

between continue and the end of the loop body are skipped.

It is important to realize that a continue statement causes the expression, or the iter-

ator section of a for statement, to be reevaluated.

Listing 7.9 shows the same for statement from Figure 7.1 using a continue state-

ment that causes the first three iterations to be skipped.

LISTING 7.9 The continue Statement
for (int i = 0; i < 10; i++)
{

if (i < 3)
{

continue;
}

Console.WriteLine(i);
}

Try It Yourself

Working with the continue Statement
To see how the continue statement works within different iteration statements,
follow these steps. If you closed Visual Studio, repeat the previous exercise first.

1. In the code editor, modify the following methods to include a continue state-

ment when the loop iteration counter is less than the skip parameter before

the power of two has been calculated:

. PowersOfTwoContinueDoLoop

. PowersOfTwoContinueForLoop

. PowersOfTwoContinueForEachLoop

. PowersOfTwoContinueWhileLoop

ptg

162 HOUR 7: Controlling Program Flow

▲

2. Run the application by pressing F5. Enter a skip iterations value, select one of

the radio buttons, and click the Generate button.

3. Change the location of the continue statement so that it occurs after the

power of two has been calculated.

4. Run the application again by pressing F5. Enter a skip iterations value, select

one of the radio buttons, and click the Generate button. Because the continue

statement occurs after, it has no effect on the iterations.

The return Statement
You have already seen the return statement in Hour 3, “Understanding Classes and

Objects the C# Way,” when you learned about methods and properties. The return

statement causes control to return to the caller of the member containing the return

statement. A return statement can be used with an expression, as you saw from the

examples in Hour 3, in which case it can be used only in a class member that has a

non-void return type. A return statement can also be used without an expression,

in which case it can be used only in a class member that has a void return type,

including constructors and finalizers.

Summary
In this hour, you moved away from foundational aspects and learned how to control

your application by making decisions, repeating sections of code under certain con-

ditions, and unconditionally jumping to different sections of code.

Knowing how to control the flow of an application is the most central concept in pro-

gramming. These seemingly simple flow control statements provide the most power

and flexibility the C# language has to make an application behave in ways that

solve a specific problem.

Q&A
Q. What are the types of control flow statements available in C#?

A. C# provides three types of control flow statements:

. Selection statements, which enable for the selection of a single statement

to be executed based on the value of an expression from a number of

possible statements.

ptg

163Workshop

. Iteration statements, which repeatedly execute the same statement based

on the value of an expression evaluated at each iteration.

. Jump statements, which unconditionally transfer control to a new location.

Q. What is the difference between the while and do statements?

A. The while statement provides a top-tested loop, whereas the do statement pro-

vides a bottom-tested loop. This means that the embedded statement in a

while loop might execute zero or more times, whereas the embedded state-

ment in a do loop executes at least one time.

Workshop

Quiz
1. Does the switch statement enable the same code to be used for multiple cases?

2. Can a switch statement have more than one default case?

3. How many times will the following while statement execute?

int i = 10;
while (i < 10)
{

Console.WriteLine(i);
i++;

}

4. How many times will the following do statement execute?

int i = 10;
do
{

Console.WriteLine(i);
i++;

} while (i < 10)

5. What will this for statement do?

for (int i = 0; ; i++)
{

Console.WriteLine(i);
}

A. Generate a compiler error.

B. Print the value of i one time.

ptg

164 HOUR 7: Controlling Program Flow

C. Do nothing.

D. Print the value of i forever.

6. Are the three components of a for statement required?

7. Can the identifier declared in a foreach statement be used outside the scope of

the iteration?

8. When a jump statement has been reached, will the statements occurring after

the jump statement be executed?

9. Are jump statements supported within the embedded statement of the iteration

statements?

Answers
1. Yes, the same code can be used by multiple cases if they are specified sequen-

tially and contain no intervening statements.

2. No, a switch statement can have only one default case.

3. The statement will not execute because the condition is tested first and fails

because i is equal to 10.

4. The statement will execute once. At the end of the first iteration, the condition

is tested and fails because i is equal to 10.

5. The correct answer is D. By omitting the condition section of the for loop, it

continues processing forever because there is no termination condition.

6. No, each component in a for statement is optional.

7. This is called the iteration variable and is equivalent to a read-only local vari-

able that is scoped to the embedded statement.

8. No. A jump statement unconditionally transfers control to a new location so

any statements that appear after the jump statement within the same scope

will not be executed.

9. Yes, all the iteration statements support using jump statements within the

embedded statement.

ptg

165Workshop

Exercise
1. Add a Refresh method to the IPhoto interface with the following signature:

public void Refresh()

Implement this method in the Photo class. The method should contain a single

if statement. For the boolean-expression, test to determine that this.source

is not null. For the consequence-statement, use the following code:

this.image = BitmapFrame.Create(this.source);
this.metadata = new ExifMetadata(this.source);
this.exists = true;

For the alternative-statement, use the following code:

this.image = null;
this.metadata = new ExifMetadata();
this.exists = false;

In the PhotoViewer(Uri) constructor, add a call to Refresh() after the state-

ment that sets the source field.

ptg

This page intentionally left blank

ptg

167

Did you
Know?

HOUR 8

Using Strings and Regular
Expressions

What You’ll Learn in This Hour:
. Strings
. String Manipulation
. Type and Composite Formatting
. Standard and Custom Format Strings
. StringBuilder
. Regular Expressions

As computer programming has evolved from being primarily concerned with per-

forming complex numeric computations to providing solutions for a broader range

of business problems, programming languages have shifted to focus more on string

data and the manipulation of such data. String data is simply a logical sequence of

individual characters. The System.String class, which encapsulates the data

manipulation, sorting, and searching methods you most commonly perform on

strings, enables C# to provide rich support for string data and manipulation.

String or string?
In C#, string is an alias for System.String, so they are equivalent. Use
whichever naming convention you prefer, although the common use is to use
string when referring to the data type and String when accessing static mem-
bers of the class.

In this hour, you learn to work with strings in C#, including how to manipulate and

concatenate strings, extract substrings, and build new strings. After you understand

the basics, you learn how to work with regular expressions to perform more complex

pattern matching and manipulation.

ptg

168 HOUR 8: Using Strings and Regular Expressions

Strings
A string in C# is an immutable sequence of Unicode characters that cannot be modi-

fied after creation. Strings are most commonly created by declaring a variable of type

string and assigning to it a quoted string of characters, known as a string literal, as

shown here:

string myString = “Now is the time.”;

String Interning
If you have two identical string literals in the same assembly, the runtime only cre-
ates one string object for all instances of that literal within the assembly. This
process, called string interning, is used by the C# compiler to eliminate duplicate
string literals, saving memory space at runtime and decreasing the time required
to perform string comparisons.

String interning can sometimes have unexpected results when comparing string
literals using the equality operator:

object obj = “String”;
string string1 = “String”;
string string2 = typeof(string).Name;

Console.WriteLine(string1 == string2); // true
Console.WriteLine(obj == string1); // true
Console.WriteLine(obj == string2); // false

The first comparison is testing for value equality, meaning it is testing to see if
the two strings have the same content. The second and third comparisons use
reference equality because you are comparing an object and a string. If you
were to enter this code in a program, you would see two warnings about a
“Possible Unintended Reference Comparison” that further tells you to “Cast
the Left Hand Side to Type ‘string’” to get a value comparison.

Because string interning applies only to literal string values, the value of string2
is not interned because it isn’t a literal. This means that obj and string2 actu-
ally refer to different objects in memory, so the reference equality fails.

By the
Way

These string literals can include special escape sequences to indicate nonprinting

characters, such as a tab or new line that begin with the backslash character (\). If

you want to include the backslash character as part of the string literal, it must also

be escaped. Table 8.1 lists the defined C# character escape sequences.

Another option for creating string literals are verbatim string literals, which start

with the @ symbol before the opening quote. The benefit of verbatim string literals is

that the compiler treats the string exactly as it is written, even if it spans multiple

lines or includes escape characters. Only the double-quote character must be escaped,

by including two double-quote characters, so that the compiler knows where the

string ends.

ptg

Strings 169

TABLE 8.1 C# Character Escape Sequences

Escape Sequence Description

\’ Single quote, used for character literals.

\” Double quote, used for string literals.

\\ Backslash.

\0 Unicode character 0.

\a Alert (char 7).

\b Backspace (char 8).

\f Form Feed (char 12).

\n New Line (char 10).

\r Carriage Return (char 13).

\t Horizontal Tab (char 9).

\v Vertical Quote (char 11).

\uxxxx Unicode escape sequence for a character with a
hexadecimal value xxxx. Also a variable-length version
can contain 1 to 4 numeric values.

\uxxxxxxxx Unicode escape sequence for a character with a
hexadecimal value of xxxxxxxx, used for generating
Unicode surrogates.

When the compiler encounters a verbatim string literal, it translates that literal in to

the properly escaped string literal. Listing 8.1 shows four different strings. The first

two declarations are equivalent, although the verbatim string literal is generally eas-

ier to read. The second two declarations are also equivalent, where multipleLines2

represents the translated string literal.

LISTING 8.1 String Literals
string stringLiteral = “C:\\Program Files\\Microsoft Visual Studio 10\\VC#”;
string verbatimLiteral = @”C:\Program Files\Microsoft Visual Studio 10\VC#”;

string multipleLines = @”This is a ““line”” of text.
And this is the second line.”;
string multipleLines2 =
➥“This is a \”line\” of text.\nAnd this is the second line.”;

ptg

170 HOUR 8: Using Strings and Regular Expressions

By the
Way

Empty Strings
An empty string is different from an unassigned string variable (which is null) and is

a string containing no characters between the quotes (””).

String.Empty or ””
There is no practical difference between ”” and String.Empty, so which one you
choose ultimately depends on personal preference, although String.Empty is
generally easier to read.

The fastest and simplest way to determine if a string is empty is to test if the Length

property is equal to 0. However, because strings are reference types, it is possible for a

string variable to be null, which would result in a runtime error when you tried to

access the Length property. Because testing to determine if a string is empty is such a

common occurrence, C# provides the static method String.IsNullOrEmpty method,

shown in Listing 8.2.

LISTING 8.2 The String.IsNullOrEmpty Method
public static bool IsNullOrEmpty(string value)
{

if (value != null)
{

return (value.Length == 0);
}

return true;
}

It is also common to consider a string that contains only whitespace characters as an

empty string as well. You can use the static String.IsNullOrWhiteSpace method,

shown in Listing 8.3.

LISTING 8.3 The String.IsNullOrWhiteSpace Method
public static bool IsNullOrWhiteSpace(string value)
{

if (value != null)
{

for (int i = 0; i < value.Length; i++)
{

The ToString Method
Strings can also be created by calling the ToString method. Because ToString
is declared by System.Object, every object is guaranteed to have it; although,
the default implementation is to simply return the name of the class. All the prede-
fined data types override ToString to provide a meaningful string representation.

By the
Way

ptg

Strings 171

if (!char.IsWhiteSpace(value[i]))
{

return false;
}

}
}

return true;
}

Using either String.IsNullOrEmpty or String.IsNullOrWhiteSpace helps ensure cor-

rectness, readability, and consistency, so they should be used in all situations where you

need to determine if a string is null, empty, or contains only whitespace characters.

String Manipulation
The System.String class provides a rich set of methods and properties for interacting

with and manipulating strings. In fact, System.String defines more than 40 differ-

ent public members.

Even though strings are a first-class data type and string data is usually manipulated

as a whole, a string is still composed of individual characters. You can use the Length

property to determine the total number of characters in the string. Unlike strings in

other languages, such as C and C++, strings in C# do not include a termination char-

acter. Because strings are composed of individual characters, it is possible to access

specific characters by position as if the string were an array of characters.

Working with Substrings
A substring is a smaller string contained within the larger original value. Several

methods provided by System.String enable you to find and extract substrings.

To extract a substring, the String class provides an overloaded Substring method,

which enables you to specify the starting character position and, optionally, the

length of the substring to extract. If you don’t provide the length, the resulting sub-

string ends at the end of the original string.

The code in Listing 8.4 creates two substrings. The first substring will start at character

position 10 and continue to the end of the original string, resulting in the string

“brown fox”. The second substring results in the string “quick”.

LISTING 8.4 Working with Substrings
string original = “The quick brown fox”;
string substring = original.Substring(10);
string substring2 = original.Substring(4, 5);

ptg

172 HOUR 8: Using Strings and Regular Expressions

Watch
Out!

▼

▲

FIGURE 8.1
Results of work-
ing with sub-
strings

Extracting substrings in this manner is a flexible approach, especially when com-

bined with other methods enabling you to find the position of specific characters

within a string.

The IndexOf and LastIndexOf methods report the index of the first and last occur-

rence, respectively, of the specified character or string. If you need to find the first or

last occurrence of any character in a given set of characters, you can use one of the

IndexOfAny or LastIndexOfAny overloads, respectively. If a match is found, the

index (or more intuitively, the offset) position of the character or start of the matched

string is returned; otherwise, the value –1 is returned. If the string or character you

are searching for is empty, the value 0 is returned.

Zero-Based Counting
When accessing a string by character position, as the IndexOf, LastIndexOf,
IndexOfAny, and LastIndexOfAny methods do, C# starts counting at 0 not 1.
This means that the first character of the string is at index position 0. A better
way to think about these methods is that they return an offset from the beginning
of the string.

Try It Yourself

Working with Substrings
To implement the code shown in Listing 8.4 and see how to create substrings, fol-
low these steps. Keep Visual Studio open at the end of this exercise because you
use this application later.

1. Create a new Console application.

2. In the Main method of the Program.cs file, enter the statements shown in

Listing 8.4, followed by statements to print the value of each string.

3. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 8.1.

4. Modify the two substring calls to use IndexOf and IndexOfAny, respectively, to

produce the same output as shown in Figure 8.1.

ptg

Strings 173

Watch
Out!

By the
Way

String Comparison
To perform string comparisons to determine if one string is equal to or contains

another string, you can use the Compare, CompareOrdinal, CompareTo, Contains,

Equals, EndsWith, and StartsWith methods.

There are 10 different overloaded versions of the static Compare method, enabling

you to control everything from case-sensitivity, culture rules used to perform the com-

parison, starting positions of both strings being compared, and the maximum num-

ber of characters in the strings to compare.

String Comparison Rules
By default, string comparisons using any of the Compare methods are performed
in a case-sensitive, culture-aware manner. Comparisons using the equality (==)
operator are always performed using ordinal comparison rules.

You can also use the static CompareOrdinal overloads (of which there are only two) if

you want to compare strings based on the numeric ordinal values of each character,

optionally specifying the starting positions of both strings and the maximum number

of characters in the strings to compares.

Changing Case
Even though the string comparison methods enable ways to perform case-insensi-
tive string comparisons, you can also convert strings to an all-uppercase or all-
lowercase representation. This is useful for string comparisons but also for stan-
dardizing the representation of string data.

The CompareTo method compares the current string with the specified one and

returns an integer value indicating whether the current string precedes, follows, or

appears in the same position in the sort order as the specified string.

The Contains method searches using ordinal sorting rules, and enables you to deter-

mine if the specified string exists within the current string. If the specified string is

found or is an empty string, the method returns true.

The StartsWith and EndsWith methods (there are a total of six) determine if the

beginning or ending of the current string matches a specified string. Just as with the

Compare method, you can optionally indicate if you want the search to be case-

insensitive search and what culture rules should be used.

ptg

174 HOUR 8: Using Strings and Regular Expressions

▲

FIGURE 8.2
Results of
performing
with string
comparisons

▼ Try It Yourself

String Comparison
To perform different string comparisons, follow these steps. If you closed Visual
Studio, repeat the previous exercise first. Be sure to keep Visual Studio open at the
end of this exercise because you will use this application later.

1. In the Main method of the Program.cs file, enter the following statements:

Console.WriteLine(original.StartsWith(“quick”));
Console.WriteLine(substring2.StartsWith(“quick”));
Console.WriteLine(substring.EndsWith(“fox”));
Console.WriteLine(original.CompareTo(original));
Console.WriteLine(String.Compare(substring2, “Quick”));
Console.WriteLine(original.Contains(substring2));

2. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 8.2.

The standard way to normalize case is to use the ToUpperInvariant method, which

creates an all-uppercase representation of the string using the casing rules of the

invariant culture. To create an all-lowercase representation, it is preferred that you

use the ToLowerInvariant method, which uses the casing rules of the invariant cul-

ture. In addition to the invariant methods, you can also use the ToUpper and

ToLower methods, which use the casing rules of either the current culture or the speci-

fied culture, depending on which overload you use.

Modifying Parts of a String
Although performing string comparisons is common, sometimes you need to modify

all or part of a string. Because strings are immutable, these methods actually return a

new string rather than modifying the current one.

To remove whitespace and other characters from a string, you can use the Trim,

TrimEnd, or TrimStart methods. TrimEnd and TrimStart remove whitespace from

ptg

Strings 175

▼

▲

FIGURE 8.3
Results of string
modification

either the end or beginning of the current string, respectively, whereas Trim removes

from both ends.

To expand, or pad, a string to be a specific length, you can use the PadLeft or

PadRight methods. By default, these methods pad using spaces, but they both have

on overload that enables you to specify the padding character to use.

The String class also provides a set of overloaded methods enabling you to create

new strings by removing or replacing characters from an existing string. The Remove

method deletes all the characters from a string starting at a specified character posi-

tion and either continues through the end of the string or for a specified number of

positions. The Replace method simply replaces all occurrences of the specified char-

acter or string with another character or string by performing an ordinal search that

is case-sensitive but culture-insensitive.

Try It Yourself

Modifying Parts of a String
To use the Replace and Remove methods, follow these steps.

1. In the Main method of the Program.cs file, remove all the Console.WriteLine

statements, leaving only the string variable declarations.

2. Enter Console.WriteLine statements that will print the string created by:

. Replacing all ‘o’ characters with ‘x’ characters in original

. Removing all characters after index position 4 in original

. Removing 5 characters after index position 4 in original

3. After each Console.WriteLine statement you entered, enter another

Console.WriteLine statement that prints the current value of original.

4. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 8.3.

ptg

176 HOUR 8: Using Strings and Regular Expressions

Did you
Know?

String Concatenation, Joining, and Splitting
You have already seen several ways to create new strings from string literals and from

substrings, but you can also create new strings by combining existing strings in a

process called string concatenation.

String Concatenation Using Addition
The addition operator actually just calls the appropriate overload of the Concat
method.

String concatenation typically occurs two different ways. The most common is to use the

overloaded addition (+) operator to combine two or more strings. You can also use one

of the nine different overloads of the Concat method, which enables you to concatenate

an unlimited number of strings. Both of these methods are shown in Listing 8.5.

LISTING 8.5 String Concatenation
string string1 = “this is “ + “ basic concatenation.”;
string string2 = String.Concat(“this”, “is”, “more”, “advanced”,
➥“concatenation”);

Closely related to concatenation is the idea of joining strings, which uses the Join

method. Unlike the Concat method, Join concatenates a specified separator between

each element of a given set of strings.

If joining a string combines a set of strings, the opposite is splitting a string into an

undetermined number of substrings based on a delimiting character, accomplished

by using the Split method, which accepts either a set of characters or a set of strings

for the delimiting set.

Listing 8.6 shows an example of joining a string and then splitting it based on the

same delimiting character. First, an array of 10 strings is created and then joined

using # as the separator character. The resulting string is then split on the same sepa-

rator character and each word is printed on a separate line.

LISTING 8.6 Joining and Splitting Strings
string[] strings = new string[10];
for (int i = 0; i < 10; i++)
{

strings[i] = String.Format(“{0}”, i * 2);
}

string joined = String.Join(“#”, strings);
Console.WriteLine(joined);

ptg

Mutable Strings Using StringBuilder 177

foreach (string word in joined.Split(new char[] { ‘#’ }))
{

Console.WriteLine(word);
}

Mutable Strings Using StringBuilder
Because strings are immutable, every time you perform any string manipulation, you

create new temporary strings. To allow mutable strings to be created and manipu-

lated without creating new strings, C# provides the StringBuilder class. Using string

concatenation is preferred if a fixed number of strings will be concatenated. If an

arbitrary number of strings will be concatenated, such as inside an iteration state-

ment, a StringBuilder is preferred.

StringBuilder supports appending data to the end of the current string, inserting

data at a specified position, replacing data, and removing characters from the cur-

rent string. Appending data uses one of the overloads of either the Append or

AppendFormat methods.

The Append method adds text or a string representation of an object to the end of the

current string. The AppendFormat method supports adding text to the end of the cur-

rent string by using composite formatting. Because AppendFormat uses composite for-

matting, you can pass it a format string, which you learn about in the next section.

Listing 8.7 shows the same example of joining and splitting strings shown in Listing

8.6 but uses a StringBuilder rather than a string array.

LISTING 8.7 Using StringBuilder
StringBuilder stringBuilder = new StringBuilder();
for (int i = 0; i < 10; i++)
{

stringBuilder.AppendFormat(“{0}#”, i * 2);
}

// Remove the trailing ‘#’ character.
stringBuilder.Remove(stringBuilder.Length - 1, 1);

string joined = String.Join(“#”, stringBuilder.ToString());
Console.WriteLine(joined);

foreach (string word in joined.Split(new char[] { ‘#’ }))
{

Console.WriteLine(word);
}

To insert data, one of the Insert overloads should be used. When you insert data,

you must provide the position within the current StringBuilder string where the

GO TO .
We discuss com-
posite formatting
a bit later in this
hour.

ptg

178 HOUR 8: Using Strings and Regular Expressions

By the
Way

insertion will begin. To remove data, you use the Remove method and indicate the

starting position where the removal begins and the number of characters to remove.

The Replace method, or one of its overloads, can be used to replace characters within

the current StringBuilder string with another specified character. The Replace

method also supports replacing characters within a substring of the current

StringBuilder string, specified by a starting position and length.

StringBuilder Capacity
Internally, the StringBuilder string is maintained in a buffer to accommodate
concatenation. The StringBuilder needs to allocate additional memory only if
the buffer does not have enough room to accommodate the new data.

The default size, or capacity, for this internal buffer is 16 characters. When the
buffer reaches capacity, additional buffer space is allocated for an additional
amount of characters as specified by the capacity. StringBuilder also has a
maximum capacity, which is Int32.MaxValue, or 231, characters.

The length of the current string can be set using the Length property. By setting
the Length to a value that is larger than the current capacity, the capacity is auto-
matically changed. Similarly, by setting the Length to a value that is less than the
current capacity, the current string is shortened.

Type Formatting
Formatting allows you to convert an instance of a class, structure, or enumeration

value to a string representation. Every type that derives from System.Object auto-

matically inherits a parameterless ToString method, which, by default, returns the

name of the type. All the predefined value types have overridden ToString to return

a general format for the type.

Because getting the name of the type from ToString isn’t generally useful, you can

override the ToString method and provide a meaningful string representation of

your type. Listing 8.8 shows the Contact class overriding the ToString method.

LISTING 8.8 Overriding ToString
class Contact
{

private string firstName;
private string lastName;

public override string ToString()
{

return firstName + “ “ + lastName;
}

}

ptg

Type Formatting 179

Watch
Out!

TABLE 8.4 Standard Format Specifiers

Format Specifier Description

”G”, “g” Represents a general string representation.

For all numeric types, results in the most compact of either
fixed-point or exponential notation. The precision specifier
indicates the number of significant digits.

For all date and time types, represents the general date/time
pattern. “G” represents the long time pattern, whereas “g” is
the short time pattern.

For enumeration types, displays the enumeration entry as a
string value, if possible, and otherwise displays the integer
value of the current instance. If the enumeration is defined
with the Flags attribute set, the string values of each valid
entry are concatenated together, separated by commas. If the
Flags attribute is not set, an invalid value is displayed as a
numeric entry.

Overriding ToString
Before you start adding ToString overrides to all your classes, be aware that the
Visual Studio debugging tools use ToString extensively to determine what values
to display for an object when viewed through a debugger.

The value of an object often has multiple representations, and ToString enables you

to pass a format string as a parameter that determines how the string representation

should appear. A format string contains one or more format specifiers that define

how the string representation should appear.

Standard Format Strings
A standard format string contains a single format specifier, which is a single charac-

ter that defines a more complete format string, and an optional precision specifier

that affects the number of digits displayed in the result. If supported, the precision

specifier can be any integer value from 0 to 99. All the numeric types, date and time

types, and enumeration types support a set of predefined standard format strings,

including a “G” standard format specifier, which represents a general string represen-

tation of the value.

The standard format specifiers are shown in Table 8.4.

ptg

180 HOUR 8: Using Strings and Regular Expressions

TABLE 8.4 Standard Format Specifiers

Format Specifier Description

”X”, “x” For integral types, results in a hexadecimal string. The
precision specifier indicates the number of digits in the result
string.

For enumeration types, displays the enumeration entry as a
hexadecimal value. The value is represented with leading
zeros as necessary, to ensure that the value is a minimum
eight digits in length.

”D”, “d” For integral types, results in a string of integer digits with an
optional negative sign. The precision specifier indicates the
minimum number of digits.

For enumeration types, displays the enumeration entry as an
integer value in the shortest representation possible.

”E”, “e” Supported only by numeric types. Results in the exponential
notation representation of the value. The precision specifier
indicates the number of decimal digits, and the default is 6.

”F”, “f” For all numeric types and results in a string of integral and
decimal digits with an optional negative sign. The precision
specifier indicates the number of decimal digits.

For date and time types represents the full date/time pattern.
“F” represents the long time pattern, whereas “f” is the short
time pattern.

For enumeration types, displays the enumeration entry as a
string value, if possible. If the value can be completely
displayed as a summation of the entries in the enumeration
(even if the Flags attribute is not present), the string values
of each valid entry are concatenated together, separated by
commas. If the value cannot be completely determined by the
enumeration entries, the value is formatted as the integer
value.

”N”, “n” Supported only by numeric types. Results in a string of
integral and decimal digits, group separators, and a decimal
separator with an optional negative sign. The precision
specifier indicates the desired number of decimal places.

”P”, “p” Supported only by numeric types. Results in the number
multiplied by 100 and displayed with a percent symbol. The
precision specifier indicates the desired number of decimal
places.

Continued

ptg

Type Formatting 181

TABLE 8.4 Standard Format Specifiers

Format Specifier Description

”R”, “r” Supported only by Single, Double, and BigInteger. Results
in a string that can round-trip to an identical number. The
precision specifier is ignored.

”M”, “m” Supported only by date and time types. Represents the
month/day pattern.

”O”, “o” Supported only by date and time types. Represents the round-
trip date/time pattern.

”R”, “r” Supported only by date and time types. Represents the RFC
1123 pattern.

”s” Supported only by date and time types. Represents the
sortable date/time pattern.

”t” Supported only by date and time types. Represents the short
time pattern.

”T” Supported only by date and time types. Represents the long
time pattern.

”u” Supported only by date and time types. Represents the
universal sortable date/time pattern.

”U” Supported only by date and time types. Represents the
universal full date/time pattern.

”Y”, “y” Supported only by date and time types. Represents the
year/month pattern.

Using the standard format strings to format a Days enumeration value is shown in

Listing 8.9.

LISTING 8.9 Standard Format Strings
Days days = Days.Monday;
string[] formats = { “G”, “F”, “D”, “X” };
foreach (string format in formats)
{

Console.WriteLine(days.ToString(format));
}

Just as you can override the ToString method, you can define standard format speci-

fiers for your own classes as well by defining a ToString(string) method, which

should support the following:

ptg

182 HOUR 8: Using Strings and Regular Expressions

. A “G” format specifier that represents a common format. Your override of the

parameterless ToString method should simply call ToString(string) and

pass it the “G” standard format string.

. A format specifier that is equal to a null reference that should be considered

equivalent to the “G” format specifier.

Listing 8.10 shows an updated Celsius struct from Hour 5, “Creating Enumerated

Types and Structures,” that supports format specifiers to represent the value in

degrees Fahrenheit and degrees Kelvin.

LISTING 8.10 Supporting the Standard Format Strings in ToString
struct Celsius
{

public float Degrees;

public Celsius(float temperature)
{

this.Degrees = temperature;
}

public string ToString()
{

return this.ToString(“C”);
}

public string ToString(string format)
{

if (String.IsNullOrWhiteSpace(format))
{

format = “C”;
}

format = format.ToUpperInvariant().Trim();

switch(format)
{

case “C”:
case “c”:

return this.Degrees.ToString(“N2”) + “ °C”;

case “F”:
case “f”:

return (this.Degrees * 9 / 5 + 32).ToString(“N2”) + “ °F”;

case “K”:
case “k”:

return (this.Degrees + 273.15f).ToString(“N2”) + “ °K”;

default:
throw new FormatExcpetion();

}
}

}

ptg

Type Formatting 183

Custom Format Strings
Custom format strings consist of one or more custom format specifiers that define the

string representation of a value. If a format string contains a single custom format

specifier, it should be preceded by the percent (%) symbol so that it won’t be confused

with a standard format specifier.

All the numeric types and the date and time types support custom format strings.

Many of the standard date and time format strings are aliases for custom format

strings. Using custom format strings also provides a great deal of flexibility by enabling

you to define your own formats by combining multiple custom format specifiers.

The custom format specifiers are described in Table 8.5.

Listing 8.11 displays a DateTime instance using two different custom format strings.

TABLE 8.5 Custom Format Specifiers

Format Specifier Description

”0” Supported only by numeric types. The zero is replaced with
the corresponding digit if one is present; otherwise, zero
appears in the result.

”#” Supported only by numeric types. The pound sign is replaced
with the corresponding digit if one is present; otherwise, no
digit appears in the result.

”.” Supported only by numeric types. Determines the location of
the decimal separator in the result.

”,” Supported only by numeric types. As a group separator, it
inserts a localized group separator character between each
group. As a number scaling specifier, it divides each number
by 1,000 for each comma specified. To be used as a number
scaling specifier, it must be immediately to the left of the
explicit or implicit decimal point.

”%” Supported only by numeric types. Multiplies a number by 100
and inserts a localized percent symbol in the result.

”‰” Supported only by numeric types. Multiplies a number by
1,000 and inserts a localized per mille symbol in the result.
The ‰ symbol is the Unicode symbol U+2030.

ptg

184 HOUR 8: Using Strings and Regular Expressions

TABLE 8.5 Custom Format Specifiers

Format Specifier Description

”E0”, “E+0”,

“E–0”, “e0”,

“e+0”, “e–0”

Supported only by numeric types. If followed by at least one 0,
formats the result using exponential notation. The case of “E”
or “e” indicates the case of the exponent symbol in the result
and the number of zeros determines the minimum number of
digits in the exponent. A plus sign (+) indicates that a sign
character always precedes the exponent, whereas a minus
sign (–) indicates that a sign character precedes only negative
exponents.

; Supported only by numeric types. Defines sections with
separate format strings for positive, negative, and zero
numbers. If only one section is included, which is the default,
the format string applies to all values. If two sections are
included, the first section applies to all positive values and
zeros, whereas the second applies to negative values. If three
sections are included, the first applies to positive values, the
second to negative values, and the third to zeros.

”d” Supported only by date and time types. The day of the month,
from 1 through 31.

”dd” Supported only by date and time types. The day of the month,
from 01 through 31.

”ddd” Supported only by date and time types. The abbreviated name
of the day of the week.

”dddd” Supported only by date and time types. The full name of the
day of the week.

”g”, “gg” Supported only by date and time types. The period or era.

”h” Supported only by date and time types. The hour, using a 12-
hour clock from 0 to 11.

”hh” Supported only by date and time types. The hour, using a 12-
hour clock from 00 to 11.

”H” Supported only by date and time types. The hour, using a 24-
hour clock from 0 to 23.

”HH” Supported only by date and time types. The hour, using a 24-
hour clock from 00 to 23.

”K” Supported only by date and time types. Time zone
information.

Continued

ptg

Type Formatting 185

TABLE 8.5 Custom Format Specifiers

Format Specifier Description

”m” Supported only by date and time types. The minute, from
0 through 59.

”mm” Supported only by date and time types. The minute, from
00 through 59.

”M” Supported only by date and time types. The month, from
1 through 12.

”MM” Supported only by date and time types. The month, from
through 12.

”MMM” Supported only by date and time types. The abbreviated name
of the month.

”MMMM” Supported only by date and time types. The full name of the
month.

”s” Supported only by date and time types. The second, from
0 through 59.

”ss” Supported only by date and time types. The second, from
00 through 59.

”t” Supported only by date and time types. The first character of
the AM/PM designator.

”tt” Supported only by date and time types. The AM/PM
designator.

”y” Supported only by date and time types. The year, from
0 to 99.

”yy” Supported only by date and time types. The year, from
00 to 99.

”yyy” Supported only by date and time types. The year, with a
minimum of three digits.

”yyyy” Supported only by date and time types. The year as a
four-digit number.

”yyyyy” Supported only by date and time types. The year as a
five-digit number.

”z” Supported only by date and time types. Hours offset from
UTC, with no leading zeros.

”zz” Supported only by date and time types. Hours offset from
UTC, with a leading zero for single-digit values.

”zzz” Supported only by date and time types. Hours and minutes
offset form UTC.

ptg

186 HOUR 8: Using Strings and Regular Expressions

LISTING 8.11 Custom Format Strings
DateTime date = new DateTime(2010, 3, 22);

// Displays 3
Console.WriteLine(date.ToString(“%M”));

// Displays Monday March 22, 2010
Console.WriteLine(date.ToString(“dddd MMMM dd, yyyy”));

Composite Formatting
You have already seen composite formatting in some of the previous examples using

Console.WriteLine and StringBuilder.AppendFormat. Methods that use compos-

ite formatting accept a composite format string and a list of objects as parameters. A

composite format string defines a template consisting of fixed text and indexed place-

holders, called format items, which correspond to the objects in the list. Composite

formatting does not allow you to specify more format items than there are objects in

the list, although you can include more objects in the list than there are format items.

The syntax for a format item is as follows:

{index[,alignment][:formatString]}

The matching curly braces and index are required.

The index corresponds to the position of the object it represents in the method’s

parameter list. Indexes are zero-based but multiple format items can use the same

index, and format items can refer to any object in the list, in any order.

TABLE 8.5 Custom Format Specifiers

Format Specifier Description

”:” Supported only by date and time types. The time separator.

”/” Supported only by date and time types. The date separator.

’string’, “string” Literal string delimiter. The enclosed characters should be
copied to the result unchanged.

\ The escape character that causes the next character to be
interpreted as a literal character rather than a custom format
specifier.

Other All other characters are copied to the result string unchanged.

Continued

ptg

Regular Expressions 187

The optional alignment component indicates the preferred field width. A positive

value produces a right-aligned field, whereas a negative value produces a left-aligned

field. If the value is less than the length of the formatted string, the alignment com-

ponent is ignored.

The formatString component uses either the standard or custom format strings you

just learned. If the formatString is not specified, the general format specifier “G” is

used instead.

In Listing 8.12, the first format item, {0:D}, is replaced by the string representation of

date and the second format item {1} is replaced by the string representation of temp.

LISTING 8.12 Composite Formatting
Celsius temp = new Celsius(28);

// Using composite formatting with String.Format.
string result = String.Format(“On {0:d}, the high temperature was {1}.”,
➥DateTime.Today, temp);
Console.WriteLine(result);

// Using composite formatting with Console.WriteLine.
Console.WriteLine(“On {0:d}, the high temperature was {1}.”,
➥DateTime.Today, temp);

Regular Expressions
Often referred to as patterns, a regular expression describes a set of strings. A regular

expression is applied to a string to find out if the string matches the provided pattern,

to return a substring or a collection of substrings, or to return a new string that repre-

sents a modification of the original.

Regular Expression Compatibility
Regular expressions in the .NET Framework are designed to be compatible with
Perl 5 regular expressions, incorporating the most popular features of other regu-
lar expression implementations, such as Perl and awk, and including features not
yet seen in other implementations.

Did you
Know?

Regular expressions are a programming language in their own right and are

designed and optimized for text manipulation by using both literal text characters

and metacharacters. A literal character is one that should be matched in the target

string, whereas metacharacters inform the regular expression parser, which is

responsible for interpreting the regular expression and applying it the target string,

how to behave, so you can think of them as commands. These metacharacters give

ptg

188 HOUR 8: Using Strings and Regular Expressions

TABLE 8.9 Common Regular Expression Metacharacters

Metacharacter Description

. Matches any single character except newline (\n).

[] Matches a single character contained within the brackets. A
range of characters can be specified using the – character.

[^] Matches a single character not contained with the brackets.

^ Indicates matching should start at the beginning of the line.

$ Indicates matching should end at the end of the line.

\w Matches a word character. This is equivalent to
[a–zA–Z_0–9].

\W Matches a nonword character.

\s Matches a space character. This is equivalent to
[\n\r\t\f].

\S Matches a nonspace character.

\d Matches a decimal digit. This is equivalent to [0–9].

\D Matches a nondigit.

* Matches the preceding element zero or more times.

+ Matches the preceding element one or more times.

? Matches the preceding element zero or one times.

{n} Matches the preceding element exactly n times.

{n,} Matches the preceding element at least n times.

{n,m} Matches the preceding element at least n times but no more
than m times.

| (Alternation operator) Matches the expression either before or
after the operator.

() Defines an unnamed capturing group.

(?<name>) Defines a named capturing group.

(?’name’)

(?<number>) Defines a numbered capturing group.

(?’number’)

regular expressions their flexibility and processing power. The common metacharac-

ters used in regular expressions are described in Table 8.9.

ptg

Regular Expressions 189

The Regular Expression Classes in C#
Regular expressions are implemented in the .NET Framework by several classes in the

System.Text.RegularExpression namespace that provide support for parsing and

applying regular expression patterns and working with capturing groups.

The Regex Class
The Regex class provides the implementation of the regular expression parser and

the engine that applies that pattern to an input string. Using this class, you can

quickly parse large amounts of text for specific patterns and easily extract and edit

substrings.

The Regex class provides both instance and static members, allowing it to be used

two different ways. When you create specific instances of the Regex class, the expres-

sion patterns are not compiled and cached. However, by using the static methods,

the expression pattern is compiled and cached. The regular expression engine caches

the 15 most recently used static regular expressions by default. You might prefer to

use the static methods rather than the equivalent instance methods if you exten-

sively use a fixed set of regular expressions.

The Match and MatchCollection Classes
When a regular expression is applied to a string using the Match method of the

Regex class, the first successful match found is represented by an instance of the

Match class. The MatchCollection contains the set of Matches found by repeatedly

applying the regular expression until the first unsuccessful match occurs.

The Group and Capture Classes
The Match.Groups property represents the collection of captured groups in a single

match. Each group is represented by the Group class, which contains a collection of

Capture objects returned by the Captures property. A Capture represents the results

from a single subexpression match.

String Validation Using Regular Expressions
One of the most common uses of regular expressions is to validate a string by testing

if it conforms to a particular pattern. To accomplish this, you can use one of the over-

loads for the IsMatch method. Listing 8.13 shows using a regular expression to vali-

date United States Zip+4 postal codes.

ptg

190 HOUR 8: Using Strings and Regular Expressions

LISTING 8.13 Validation Using Regular Expressions
string pattern = “^\d{5}(-\d{4})?$”;
Regex expression = new Regex(pattern);

Console.WriteLine(expression.IsMatch(“90210”)); // true
Console.WriteLine(expression.IsMatch(“00364-3276”)); // true
Console.WriteLine(expression.IsMatch(“3361”)); // false
Console.WriteLine(expression.IsMatch(“0036-43275”)); // false
Console.WriteLine(expression.IsMatch(“90210-”)); // false

Using Regular Expressions to Match Substrings
Regular expressions can also be used to search for substrings that match a particular

regular expression pattern. This searching can be performed once, in which case the

first occurrence is returned, or it can be performed repeatedly, in which case a collec-

tion of occurrences is returned.

Searching for substrings in this manner uses the Match method to find the first occur-

rence matching the pattern or the Matches method to return a sequence of successful

nonoverlapping matches.

Summary
Continuing to move further away from the foundational aspects of programming,

you learned how C# enables you to work with string data.

Q&A
Q. Are strings immutable?

A. Yes, strings in C# are immutable, and any operation that modifies the content

of a string actually creates a new string with the changed value.

Q. What does the @ symbol mean when it precedes a string literal?

A. The @ symbol is the verbatim string symbol and causes the C# compiler to treat

the string exactly as it is written, even if it spans multiple lines or includes spe-

cial characters.

Q. What are the common string manipulation functions supported by C#?

A. C# supports the following common string manipulations:

. Determining the string length

ptg

191Workshop

. Trimming and padding strings

. Creating substrings, concatenating strings, and splitting strings based on

specific characters

. Removing and replacing characters

. Performing string containment and comparison operations

. Converting string case

Q. What is the benefit of the StringBuilder class?

A. The StringBuilder class enables you to create and manipulate a string that is

mutable and is most often used for string concatenation inside a loop.

Q. What are regular expressions?

A. Regular expressions are a pattern that describes a set of strings that are opti-

mized for text manipulation.

Workshop

Quiz
1. What is string interning and why is it used?

2. Using a verbatim string literal, must an embedded double-quote character be

escaped?

3. What is the recommended way to test for an empty string?

4. What is the difference between the IndexOf and IndexOfAny methods?

5. Do any of the string manipulation functions result in a new string being created?

6. What will the output of the following statement be and why?

int i = 10;
Console.WriteLine(i.ToString(“P”));

7. What will the output of the following statement be and why?

DateTime today = new DateTime(2009, 8, 23);
Console.WriteLine(today.ToString(“MMMM”));

ptg

192 HOUR 8: Using Strings and Regular Expressions

8. What will the output of the following Console.WriteLine statements be?

Console.WriteLine(“|{0}|”, 10);
Console.WriteLine(“|{0, 3}|”, 10);
Console.WriteLine(“|{0:d4}|”, 10);

int a = 24;
int b = -24;

Console.WriteLine(a.ToString(“##;(##)”));
Console.WriteLine(b.ToString(“##;(##)”));

9. What is the benefit of using a StringBuilder for string concatenation inside

a loop?

10. What does the following regular expression pattern mean?

[\w-]+@([\w-]+\.)+[\w-]+

Answers
1. String interning is used by the C# compiler to eliminate duplicate string literals

to save space at runtime.

2. The double-quote character is the only character that must be escaped using a

verbatim string literal so that the compiler can determine where the string ends.

3. The recommended way to test for an empty string is to use the static

String.IsNullOrEmpty method.

4. The IndexOf method reports the index of the first occurrence found of a single

character or string, whereas the IndexOfAny method reports the first occur-

rence found of any character in a set of characters.

5. Yes, because strings are immutable, all the string manipulation functions result

in a new string being created.

6. The output will be “1,000.00 %” because the “P” numeric format specifier

results in the number being multiplied by 100 and displayed with a percent

symbol.

7. The “MMMM” custom date and time format specifier represents the full name

of the month, so the output will be “August”.

ptg

193Workshop

8. The output will be as follows:

|10|
| 10|
|0010|
24
(24)

9. Because the StringBuilder represents a mutable string, using it for string con-

catenation inside a loop prevents multiple temporary strings from being cre-

ated during each iteration to perform the concatenation.

10. This is a simple regular expression for parsing a string as an email address.

Broken down, it means “Match any word character one or more times followed

by the @ character followed by a group containing any word character one or

more times followed by a period (.) character, where that group is repeated one

or more times, followed by any word character one or more times.”

Exercises
1. Add a read-only string property to the Contact class of the AddressBook project

named DisplayAs. The get accessor should use String.Format to return the

FirstName and LastName properties in the order indicated by the

DisplayAsStyle property.

2. Override the ToString method on PhoneNumber to return a properly formatted

phone number using a StringBuilder. If the CountryCode or Extension

properties do not have valid values, they should be excluded. (Any nonzero

value for CountryCode is valid and any nonempty string value for Extension

is valid.)

3. Implement a Validate method on PhoneNumber that uses the static

RegEx.IsMatch method to validate the phone number. Use the result of calling

this.ToString as the input value for the IsMatch method. The regular expres-

sion pattern should look like:

^(\+?\d+)\s\(\d{3}\)\s(\w{7}|\w{3}\-\w{4})(\s[xX]\w+)?$

ptg

This page intentionally left blank

ptg

195

HOUR 9

Working with Arrays and
Collections

What You’ll Learn in This Hour:
. Single and Multidimensional Arrays
. Jagged Arrays
. Array Indexing
. Array Initialization
. Indexers
. Collections
. Collection Interfaces
. Collection Initializers

The majority of problems solved by computer programs involve working with large

amounts of data. Sometimes there is a lot of individual and unrelated datum, but

many times, there are large amounts of related datum. C# provides a rich set of col-

lection types that enable you to manage large amounts of data.

An array is the simplest type of collection and is the only one that has direct lan-

guage support. Although the other collection types offer more flexibility than arrays,

including the ability to create your own specialized collections, they are generally

used in similar ways.

Over the next hour, you learn to work with different types of arrays, including multi-

dimensional and jagged arrays. When you understand how to work with arrays, you

move to using some of the different collection classes provided by the .NET Frame-

work, in which there are more than 40 different classes, base classes, and interfaces.

ptg

196 HOUR 9: Working with Arrays and Collections

Watch
Out!

By the
Way

Arrays
An array is a numerically indexed collection of objects that are all the same type.

Although C# provides direct language support for creating arrays, the common type

system means that you are implicitly creating a type of System.Array. As a result,

arrays in C# are reference types, and the memory allocated to refer to the array itself

is allocated on the managed heap. However, the elements of the array, which are the

individual items contained in the array, are allocated based on their own type.

In its simplest form, the declaration of a variable of array type looks like:

type[] identifier;

Arrays
Arrays in C# are different from arrays in C because they are actually objects of
type System.Array. As a result, C# arrays provide the power and flexibility
afforded by classes through properties and methods with the simple syntax
offered by C style arrays.

The type indicates the type of each element that will be contained in the array.

Because the type is declared only once, all the elements in the array must be of that

same type. The square brackets are the index operator and tell the compiler that you

are declaring an array of the given type; they are the only difference between an

array declaration and a regular variable declaration. In contrast to other languages,

such as C, the size of a dimension is specified when the array is instantiated rather

than when it is declared.

To create an array that can contain five integer values, you can specify it like this:

int[] array = new int[5];

Array Sizes
In C# the size of an array, obtained through the Length property, is the total num-
ber of elements in all the dimensions of the array, not the upper bound of the array.

Because C# uses a zero-based indexing scheme for arrays, the first element in an
array is at position 0. Therefore, the following statement declares an array of 5
elements with indices 0 through 4:
int[] array = new int[5];

The length of the array is 5, but the upper bound is 4.

This type of array declaration creates a single-dimensional rectangular array. The

length of each row in a rectangular array must be the same size. This restriction

results in a rectangular shape and is what gives rectangular arrays their name. To

ptg

Arrays 197

declare a multidimensional rectangular array, you specify the number of dimensions,

or rank of the array, using commas inside the square brackets. The most common

multidimensional arrays are two-dimensional arrays, which can be thought of as

rows and columns. An array cannot have more than 32 dimensions.

In addition to rectangular multidimensional arrays, C# also supports jagged arrays.

Because each element of a jagged array is an array itself, each row of the array does

not need to be the same size like it does for a rectangular array.

Jagged Rectangular Arrays
In the following code, you create a two-dimensional array a with six elements
(three rows of two elements) and a one-dimensional array j whose elements are
a one-dimensional array with one, two, and three elements, respectively:

int[,] a = {
{10, 20},
{30, 40},
{50, 60} };

int[][] j = {
new[] {10},
new[] {20, 30},
new[] {40, 50, 60} };

When you try to make a jagged array of rectangular arrays is when things can get
confusing. What is the type of the following?
int[,][] j2;

This is actually a two-dimensional array (three rows of two elements) whose ele-
ments are each a one-dimensional array. To initialize such an array, you would write:
j2 = new int[3,2][];

For this reason, it is almost always better if you can use one of the generic collec-
tions. It is completely clear that List<int[,]> means a list of two-dimensional
arrays, whereas List<int>[,] means a two-dimensional array whose elements
are List<int>.

By the
Way

The type system requires that all variables be initialized before use and provides

default values for each data type. Arrays are no different. For arrays containing

numeric elements, each element is initially set to 0; for arrays containing reference

types, including string types, each element is initially null. Because the elements of

a jagged array are other arrays, they are initially null as well.

Array Indexing
For arrays to be useful, it is necessary to access specific elements of the array. This is

done by enclosing the numeric position of the desired element in the index operator.

ptg

▼

198 HOUR 9: Working with Arrays and Collections

To access an element of a multidimensional or a jagged array, both index locations

must be provided.

Try It Yourself

Array Indexing
By following these steps, you see how to access an array by index.

1. Create a new Console application.

2. In the Main method of the Program.cs file, declare an integer array named

array of five elements.

3. Write a for statement that initializes each element of the array to its index

position times 2.

4. Write another for statement that prints the value of each element so that it fol-

lows this format, where index and value correspond to the array index and the

value at that index:

array[index] = value

5. Run the application using Ctrl+F5 and observe that the output matches what is

shown in Figure 9.1.

Array Initialization
Using the new operator creates an array and initializes the array elements to their

default values. In this case, the rank specifier is required for the compiler to know the

size of the array. When declaring an array in this manner, additional code must be

written.

Listing 9.1 shows what you should have written for step 3 of the previous exercise.

LISTING 9.1 Traditional Array Initialization
class Program
{

static void Main()
{

▲

FIGURE 9.1
Results of work-
ing with array
indexers

ptg

Arrays 199

int[] array = new int[5];
for(int i = 0; i < array.Length; i++)
{

array[i] = i * 2;
}

}
}

Fortunately, C# provides a shorthand form that enables the array declaration and

initialization to be written so that the array type does not need to be restated. This

shorthand notation is called an array initializer and can be used for local variable

and field declarations of arrays, or immediately following an array constructor call.

An array initializer is a sequence of variable initializers separated by a comma and

enclosed by curly braces. Each variable initializer is an expression or a nested array

initializer when used with multidimensional arrays.

When an array initializer is used for a single-dimensional array, it must consist of a

sequence of expressions that are assignment-compatible with the element type of the

array. The expressions initialize elements starting at index 0, and the number of

expressions determines the length of the array being created.

Listing 9.2 shows how to use a simple array initializer that results in the same initial-

ized array, as shown in Listing 9.1.

LISTING 9.2 Array Initialization
class Program
{

static void Main()
{

int[] array = {0, 2, 4, 6, 8};
}

}

Although array initializers are useful for single-dimensional arrays, they become

powerful for multidimensional arrays that use nested array initializers. In this case,

the levels of nesting in the array initializer must be equal to the number of dimen-

sions in the array. The leftmost dimension is represented by the outermost nesting

level, and the rightmost dimension is represented by the innermost nesting level.

For example, the statement

int[,] array = { {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9} };

is equivalent to the following:

int[,] array = new int[5, 2];
array[0, 0] = 0; array[0, 1] = 1;
array[1, 0] = 2; array[1, 1] = 3;

ptg

200 HOUR 9: Working with Arrays and Collections

array[2, 0] = 4; array[2, 1] = 5;
array[3, 0] = 6; array[3, 1] = 7;
array[4, 0] = 8; array[4, 1] = 9;

The System.Array Class
The System.Array class is the base class for arrays, but only the runtime and compil-

ers can explicitly derive from it. Despite this restriction, there are more than 25 differ-

ent static methods available for you to use. These methods operate primarily on one-

dimensional arrays, but because those are the most common type of array, this

restriction generally isn’t very limiting. The more common methods are shown in

Table 9.1.

TABLE 9.1 Common Static Methods of System.Array

Name Description

BinarySearch Searches a one-dimensional sorted array for a value using a
binary search algorithm.

Clear Sets a range of elements in the array to zero, false, or null,
depending on the element type.

Exists Determines whether the specified array contains elements
that match the conditions specified.

Find Searches for an element that matches the conditions defined
and returns the first occurrence within the entire array.

FindAll Retrieves all the elements that match the conditions defined.

ForEach Performs the specified action on each element in the array.

Resize Changes the size of an array to the specified new size, if
necessary. If the size stays the same, nothing changes, and if
the size is larger, a new array is created and the elements are
copied from the old array into the new one.

Sort Sorts the elements in the specified array.

TrueForAll Determines whether every element in the array matches the
conditions defined.

Indexers
You have seen how useful and simple accessing arrays can be through the index oper-

ator. Although it is not possible to override the index operator, your own classes can

provide an indexer that enables them to be indexed in the same way as an array.

ptg

Indexers 201

▼

Indexers are declared in a similar manner as properties, but there are some impor-

tant differences. The most important differences are

. Indexers are identified by signature rather than by name.

. Indexers must be an instance member only.

The signature for an indexer is the number and types of its formal parameters.

Because indexers are identified by signature, it is possible to include overloaded

indexers as long as their signatures are unique within the class.

To declare an indexer, you use the following syntax:

type this [type parameter]
{

get;
set;

}

The modifiers allowed for an indexer are new, virtual, sealed, override, abstract,

and a valid combination of the four access modifiers. Remember, because an indexer

must be an instance member, it is not allowed to be static. The formal parameter

list for an indexer must contain at least one parameter, but can contain more than

one separated by a comma. This is similar to the formal parameter list for methods.

The type for the indexer determines the type of the object returned by the get accessor.

An indexer should always provide a get accessor (although it isn’t required) but does

not need to provide a set accessor. Indexers that provide only a get accessor are read-

only indexers because they do not allow assignments to occur.

Try It Yourself

Indexers
To create an indexer for a custom class, follow these steps.

1. Create a new Console application.

2. Add a new class file named IndexerExample.cs, and replace the contents with

this code:

class IndexerExample
{

private string[] array = new string[4] { “now”, “is”, “the”, “time” };

public int Length
{

get
{

ptg

202 HOUR 9: Working with Arrays and Collections

FIGURE 9.2
Results of using
a custom
indexer

return this.array.Length;
}

}

public string this[int index]
{

get
{

return this.array[index];
}
set
{

this.array[index] = value;
}

}
}

3. In the Main method of the Program.cs file, declare a new variable of type

IndexerExample named example1.

4. Write a for statement that prints the value of each element so that it follows

this format, in which index and value correspond to the array index and the

value at that index:

index[index] = value

5. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.2.

6. Now, declare a new variable of type IndexerExample named example2 and

write a for statement that sets the values of example2 to those of example1 in

reverse order. This for statement should look like:

for (int i = example1.Length - 1, j = 0; i >= 0; i—, j++)
{

example2[j] = example1[i];
}

7. Copy the for statement you wrote in step 4 below the code you just wrote, and

change it to print the values of example2. You might want to print a blank line

before the for statement starts.

ptg

Generic Collections 203

▲

Did you
Know?

FIGURE 9.3
Results of using
a custom
indexer over two
instances

8. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.3.

Generic Collections
Although arrays are the only built-in data structure in C# that supports the concept

of a collection of objects, the base class library provides a rich set of collection and

collection-related types to supplement them, which provide much more flexibility

and enable you to derive custom collections for your own data types.

These types are separated into classes and interfaces, and are further separated in to

non-generic and generic collections. The non-generic collections are not type-safe,

because they work only with the object type, and are available for backward com-

patibility with older versions of the .NET Framework. The generic collections are pre-

ferred because they provide type-safety and better performance than the non-generic

collections. There are almost twice as many generic collections as there are non-

generic collections.

GO TO .
Hour 11,
“Understanding
Generics,” for
more information
on generic types.

Generic Collections in Silverlight
The Silverlight version of the .NET Framework removes the non-generic collections
because there was no legacy code to be compatible with.

Lists
Within the set of collection types, List<T> is the one that could be considered to be

closest to an array and is probably the most commonly used collection. Like an array,

it is a numerically indexed collection of objects. Unlike an array, a List<T> is dynam-

ically sized as needed.

The default capacity for a list is 16 elements. When you add the 17th element, the size

of the list is automatically doubled. If the number (or an approximate number) of

elements the list contains is known ahead of time, it can be beneficial to set the ini-

tial capacity using one of the overloaded constructors or by setting the Capacity

property before adding the first item.

ptg

204 HOUR 9: Working with Arrays and Collections

TABLE 9.2 Common Members of List<T>

Name Description

Capacity Gets or sets the total number of elements the list can contain
without resizing

Count Gets the total number of elements actually contained in the
list

Add Adds an object to the end of the list

AddRange Adds a collection of objects to the end of the list

BinarySearch Searches a sorted list for a value using a binary search
algorithm

Clear Removes all elements from the list

Contains Determines whether an element is in the list

Exists Determines whether the list contains elements that match the
conditions specified

Find Searches for an element that matches the conditions defined
and returns the first occurrence within the entire list

FindAll Retrieves all the elements that match the conditions defined

ForEach Performs the specified action on each element in the list

Sort Sorts the elements in the list

TrimExcess Sets the capacity to the actual number of elements in the list

TrueForAll Determines whether every element in the list matches the
conditions defined

Table 9.2 lists some of the commonly used properties and methods of List<T>. If you

compare this to the common static methods of System.Array (refer to Table 9.1), you

should see a great deal of similarity.

Related to List<T> is LinkedList<T>, which is a general-purpose doubly linked list

and might be the better choice when elements will be most commonly added at spe-

cific locations in the list and access to the elements will always be sequential.

ptg

Generic Collections 205

▼

FIGURE 9.4
Results of work-
ing with List<T>

Try It Yourself

Working with List<T>
To see how List<T> works, follow these steps. Keep Visual Studio open at the end
of this exercise because you will use this application later.

1. Create a new Console application.

2. In the Main method of the Program.cs file, declare a new integer list named

list using the following statement:

List<int> list = new List<int>();

3. Write a for statement that initializes 16 elements of the list to its index position

times 2.

4. Write a foreach statement that prints the value of each element.

5. Now, print the value of the Capacity property.

6. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.4.

7. Now, duplicate the code you wrote in steps 3 through 5.

8. Run the application again using Ctrl+F5, and observe that the output matches

what is shown in Figure 9.5.

ptg

206 HOUR 9: Working with Arrays and Collections

▼

FIGURE 9.5
Results of
List<T> show-
ing an increased
capacity

TABLE 9.3 Common Members of Collection<T>

Name Description

Count Gets the number of elements actually contained in the
collection

Add Adds an object to the end of the collection

Clear Removes all elements from the list

Contains Determines whether an element is in the collection

Collections
Although List<T> is powerful, it has no virtual members and does not enable a way

to prevent modification of the list. Because there are no virtual members, it is not eas-

ily extended, which can limit its usefulness as a base class for your own collections.

To create your own collections that can be accessed by numeric index like an array,

you can derive your collection from Collection<T>. It is also possible to use the

Collection<T> class immediately by creating an instance and supplying the type of

object to be contained in the collection. Table 9.3 shows some of the common mem-

bers of Collection<T>.

Try It Yourself

Working with Collection<T>
By following these steps, you see how Collection<T> works. If you closed Visual
Studio, repeat the previous exercise first. Be sure to keep Visual Studio open at the
end of this exercise because you will use this application later.

▲

ptg

Generic Collections 207

▲

FIGURE 9.6
Results of
working with
Collection<T>

TABLE 9.4 Protected Virtual Members of Collection<T>

Name Description

ClearItems Removes all elements from the collection. Can change the
behavior of the Clear method.

InsertItem Inserts an element into the collection at the specified index.

RemoveItem Removes the element at the specified index.

SetItem Replaces the element at the specified index.

1. Change the declaration of list from type List<int> to be of type

Collection<int>. You might need to include the System.Collections.

ObjectModel namespace.

2. Correct the two compiler errors by changing the Console.WriteLine state-

ments to print the value of the Count property instead.

3. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.6.

To derive your own collection class, Collection<T> provides several protected virtual

methods you can override to customize the behavior of the collection. These virtual

methods are shown in Table 9.4.

ptg

208 HOUR 9: Working with Arrays and Collections

▼

▲

FIGURE 9.7
Results of a
custom defined
Collection
<int>

Try It Yourself

Deriving Your Own Collection
To derive a concrete (closed) integer collection, follow these steps. If you closed
Visual Studio, repeat the previous exercise first.

1. Add a new class named Int32Collection, which derives from

Collection<int> and overrides the InsertItem method. The body of the over-

ridden InsertItem method should look like this:

protected override void InsertItem(int index, int item)
{

Console.WriteLine(“Inserting item {0} at position {1}”, item, index);
base.InsertItem(index, item);

}

2. Change the declaration of list from type Collection<int> to be of type

Int32Collection.

3. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.6. If you scroll the console window up, you should see the

output from the overridden InsertItem method, as shown in Figure 9.7.

Related to Collection<T> is ReadOnlyCollection<T>, which can be used immedi-

ately just like Collection<T> or can be used to create your own read-only collections.

It is also possible to create a read-only collection from an instance of a List<T>. The

most commonly used members are shown in Table 9.5.

ptg

Generic Collections 209

Did you
Know?

TABLE 9.5 Common Members of ReadOnlyCollection<T>

Name Description

Count Gets the number of elements actually contained in the
collection

Contains Determines whether an element is in the collection

IndexOf Searches for the specified element and returns the index of
the first occurrence

TABLE 9.6 Common Members of Dictionary<TKey, TValue>

Name Description

Count Gets the number of key/value pairs contained in the
dictionary

Keys Gets a collection containing the keys in the dictionary

Values Gets a collection containing the values in the dictionary

Add Adds the specified key and value to the dictionary

Clear Removes all keys and values from the dictionary

ContainsKey Determines if the dictionary contains the specified key

ContainsValue Determines if the dictionary contains a specific value

Remove Removes the value with the specified key from the dictionary

ReadOnlyCollection<T>

You can think of ReadOnlyCollection<T> as a wrapper around an existing muta-
ble collection, which throws exceptions if you try to change it. The underlying col-
lection is still mutable.

Dictionaries
List<T> and Collection<T> are useful for general purpose collections, but some-

times it is necessary to have a collection that can provide a mapping between a set of

keys and a set of values, not allowing duplicate keys.

The Dictionary<TKey, TValue> class provides such a mapping and enables access

using the key rather than a numeric index. To add an element to a

Dictionary<TKey, TValue> instance, you must provide both a key and a value. The

key must be unique and cannot be null, but if TValue is a reference type, the value

can be null. Table 9.6 shows the common members of the Dictionary<TKey,

TValue> class.

ptg

210 HOUR 9: Working with Arrays and Collections

TABLE 9.7 Common SortedList and SortedDictionary Members

Name Description

Capacity (Only available on SortedList<TKey, TValue>.) Gets or sets
the number of elements that the list can contain.

Count Gets the number of key/value pairs contained in the list.

Add Adds the specified key and value to the list.

Clear Removes all keys and values from the list.

ContainsKey Determines if the list contains the specified key.

ContainsValue Determines if the list contains a specific value.

Remove Removes the value with the specified key from the list.

Unlike List<T> and Collection<T> when the elements of a dictionary are enumer-

ated, the dictionary returns a KeyValuePair<TKey, TValue> structure that repre-

sents a key and its associated value. Because of this, the var keyword is useful when

using the foreach statement to iterate over the elements of a dictionary.

Normally, a dictionary does not provide any order to the elements it contains, and

those elements are returned in an arbitrary order during enumeration. Although

List<T> provides a Sort method to sort the elements of the list, dictionaries do not. If

you need a collection that maintains sorting as you add or remove elements, you

actually have two different choices: a SortedList<TKey, TValue> or a

SortedDictionary<TKey, TValue>. The two classes are similar and provide the

same performance when retrieving an element but are different in memory use and

performance of element insertion and removal:

. SortedList<TKey, TValue> uses less memory.

. SortedDictionary<TKey, TValue> provides faster insertion and removal for

unsorted data.

. SortedList<TKey, TValue> is faster when populating the list at one time from

sorted data.

. SortedList<TKey, TValue> is more efficient for indexed retrieval of keys and

values.

The common members of SortedList<TKey, TValue> and SortedDictionary

<TKey, TValue> are shown in Table 9.7.

ptg

Generic Collections 211

▼

TABLE 9.7 Common SortedList and SortedDictionary Members

Name Description

TrimExcess Sets the capacity to the actual number of elements stored in
the list, if that number is less than 90% of current capacity.

TryGetValue Gets the value associated with the specified key.

Try It Yourself

Working with Dictionaries
To use a Dictionary<TKey, TValue> and a SortedDictionary<TKey, TValue>
for storing and retrieving data by an arbitrary key, follow these steps.

1. Create a new Console application.

2. In the Main method of the Program.cs file, declare a new Dictionary<string,

double> named dictionary.

3. Add the following lines to initialize the dictionary:

dictionary.Add(“Speed Of Light”, 2.997924580e+8F);
dictionary.Add(“Gravitational Constant”, 6.67428e-11F);
dictionary.Add(“Planck’s Constant”, 6.62606896e-34F);
dictionary.Add(“Atomic Mass Constant”, 1.660538782e-27F);
dictionary.Add(“Avogadro’s number”, 6.02214179e+23F);
dictionary.Add(“Faraday Constant”, 9.64853399e+4F);
dictionary.Add(“Electron Volt”, 1.602176487e-19F);

4. Write a foreach statement that prints the name of the key and its associated

value. You can use either var or KeyValuePair<string, double> for the type

of the iteration variable.

5. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.8. Notice that the output is displayed in the same order the

values were entered in the dictionary.

FIGURE 9.8
Result of using
Dictionary
<TKey, TValue>

ptg

212 HOUR 9: Working with Arrays and Collections

▲

FIGURE 9.9
Result of using
SortedDictionary
<TKey, TValue>

TABLE 9.8 Common Members of HashSet<T> and SortedSet<T>

Name Description

Count Gets the number of elements contained in the set.

Max Gets the maximum value in the set. (SortedSet<T> only.)

Min Gets the minimum value in the set. (SortedSet<T> only.)

Add Adds the specified element to the set.

Clear Removes all elements from the set.

Contains Determines if the set contains the specified element.

ExceptWith Removes all elements in the specified collection from the set.

IntersectWith Modifies the current set to contain only elements that are
present in the set and in the specified collection.

6. Change the declaration of dictionary to be a SortedDictionary<string,

Double>.

7. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.9. Notice that by simply changing the declaration, the out-

put is displayed in alphabetically sorted order by key.

Sets
In mathematics, a set is a collection containing no duplicate elements that are stored

and accessed in random order. In addition to standard insert and remove operations,

sets support superset, subset, intersection, and union operations.

Sets in .NET are available through the HashSet<T> and SortedSet<T> classes.

HashSet<T> is equivalent to a mathematical set, whereas SortedSet<T> maintains a

sorted order through insertion and removal of elements without affecting perform-

ance. Both classes do not allow duplicate elements. These classes share an almost

identical public interface, shown in Table 9.8.

ptg

Generic Collections 213

TABLE 9.8 Common Members of HashSet<T> and SortedSet<T>

Name Description

IsProperSubsetOf Determines if the set is a proper subset of the specified
collection.

IsProperSupersetOf Determines if the set is a proper superset of the specified
collection.

IsSubsetOf Determines if the set is a subset of the specified collection.

IsSupersetOf Determines if the set is a superset of the specified collection.

Overlaps Determines if the set and a specified collection share
common elements.

Remove Removes the specified element from the set.

RemoveWhere Removes all elements that match the specified conditions
from the set.

Reverse Returns an enumerator that iterates over the set in reverse
order. (SortedSet<T> only.)

SetEquals Determines if the set and a specified collection contain the
same elements.

SymmetricExceptWith Modifies the current set to contain only elements that are
present either in the set or the specified collection, but not
both.

TrimExcess Sets the capacity of the set to the actual number of elements
it contains, rounded up to a nearby value. (HashSet<T> only.)

UnionWith Modifies the current set to contain all elements that are
present in both the set and the specified collection.

Did you
Know?

Why HashSet<T>?
Unlike most of the other generic collections, HashSet<T> has a name that is
based on its implementation details rather than its purpose. The reason is that
Set is a reserved word in Visual Basic, so it could be used only by escaping it:
Dim s as [Set] of Int

Rather than requiring this syntax, the designers of the .NET Framework chose a
name that would not conflict with any reserved words.

ptg

214 HOUR 9: Working with Arrays and Collections

▼

FIGURE 9.10
Result of using
HashSet<T>

Try It Yourself

Working with Sets
By following these steps, you see how to work with HashSet<T> and
SortedSet<T>.

1. Create a new Console application.

2. In the Main method of the Program.cs file, declare two integer sets, as follows:

HashSet<int> even = new HashSet<int>() { 0, 2, 4, 6, 8, 10, 12 };
HashSet<int> odd = new HashSet<int>() { 1, 3, 5, 7, 9, 11 };

3. Print the result of performing a SetEquals call between even and odd.

4. Run the application using Ctrl+F5, and observe that the output is False.

5. Calculate the union between even and odd by executing the UnionWith

method.

6. Print the contents of the even set using a foreach statement.

7. Run the application again using Ctrl+F5, and observe that the output contains

the numbers from the original even set and the numbers from the odd set.

8. Calculate the intersection between even and odd by executing the

IntersectWith method.

9. Repeat the line of code entered from step 3.

10. Run the application again using Ctrl+F5 and observe that the final output

matches what is shown in Figure 9.10.

11. Change the declarations of even and odd to use SortedSet<int>.

ptg

Generic Collections 215

▲

FIGURE 9.11
Result of using
SortedSet<T>

12. Run the application again using Ctrl+F5, and observe that the final output

matches what is shown in Figure 9.11.

Stacks and Queues
Stacks and queues are relatively simple collections that represent either a last-in-first-

out (LIFO) collection or first-in-first-out (FIFO) collection. Even though these are sim-

ple collections, they are nevertheless very useful as well. Queues are useful for storing

data in the order received for sequential processing, whereas stacks are useful for

operations such as statement parsing. In general, stacks and queues are used when

operations should be restricted to either the beginning or end of the list.

The Stack<T> class provides a stack implemented as an array in which operations

always occur at the end of that array and can contain duplicate elements and null

elements. Stack<T> provides a simple public interface, shown in Table 9.9.

TABLE 9.9 Common Members of Stack<T>

Name Description

Count Gets the number of elements contained in the stack

Clear Removes all elements from the stack

Contains Determines if an element is in the stack

Peek Returns the element at the top of the queue without removing it

Pop Removes and returns the element at the top of the stack

Push Inserts an element at the top of the stack

TrimExcess Sets the capacity to the actual number of elements in the stack, if
that number is less than 90% of the current capacity

ptg

216 HOUR 9: Working with Arrays and Collections

▼

▲

FIGURE 9.12
Results of
working with
Stack<T>

TABLE 9.10 Common Members of Queue<T>

Name Description

Count Gets the number of elements contained in the queue

Clear Removes all elements from the queue

Contains Determines if an element is in the queue

Dequeue Removes and returns the element at the beginning of the
queue

Enqueue Adds an element to the end of the queue

Try It Yourself

Working with Stack<T>
To implement an integer stack, follow these steps.

1. Create a new Console application.

2. In the Main method of the Program.cs file, declare an integer stack named stack.

3. Push the values 0, 2, and 4 on to the stack.

4. Print the current top of the stack by calling the Peek() method.

5. Push the values 6, 8, and 10 on to the stack.

6. Print the current top of the stack by calling the Pop() method and then again

by calling the Peek() method.

7. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.12.

The Queue<T> class provides a queue implemented as an array in which insert opera-

tions always occur at one end of the array and remove operations occur at the other.

Queue<T> also allows duplicate elements and null as an element. Queue<T> provides

a simple public interface, as shown in Table 9.10.

ptg

Collection Initializers 217

▼

TABLE 9.10 Common Members of Queue<T>

Name Description

Peek Returns the element at the beginning of the queue without
removing it

TrimExcess Sets the capacity to the actual number of elements in the
queue, if that number is less than 90% of the current capacity

Try It Yourself

Working with Queue<T>
By following these steps, you implement an integer queue.

1. Create a new Console application.

2. In the Main method of the Program.cs file, declare an integer queue named

queue.

3. Add the values 1, 3, and 5 to the end of the queue by calling the Enqueue()

method.

4. Print the current beginning of the queue by calling the Peek() method.

5. Add the values 7, 9, and 11 to the queue.

6. Print the current beginning of the queue by calling the Dequeue() method and

then again by calling the Peek() method.

7. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 9.13.

Collection Initializers
Just as arrays provide array initialization syntax and objects provide object initializa-

tion syntax, collections also provide collection initialization syntax, in the form of a

collection initializer. If you look back through the exercises for this hour, you can

notice the use of collection initializers already.

▲

FIGURE 9.13
Results of
working with
Queue<T>

ptg

218 HOUR 9: Working with Arrays and Collections

Watch
Out!

Collection initializers enable you to specify one or more element initializers, which

enable you to initialize a collection that implements IEnumerable. Using a collection

initializer enables you to omit multiple calls to the Add method of the collection,

instead letting the compiler add the calls for you. An element initializer can be a

value, an expression, or an object initializer.

Collection Initializers Work Only with Add Methods
Collection initializers can be used only with collections that contain an Add
method. This means they cannot be used for collections such as Stack<T> and
Queue<T>.

The syntax for a collection initializer is similar to an array initializer. You must still

call the new operator but can then use the array initialization syntax to populate the

collection. Listing 9.3 shows the same example as Listing 9.2, but uses List<int>

and a collection initializer.

LISTING 9.3 Collection Initialization
class Program
{

static void Main()
{

List<int> list = new List<int>() {0, 2, 4, 6, 8 };
}

}

Collection initializers can also be more complex, enabling you to use object initializ-

ers for the element initializers, as shown in Listing 9.4.

LISTING 9.4 Complex Collection Initialization
class Program
{

static void Main()
{

List<Contact> list = new List<Contact>()
{

new Contact() { FirstName = “Scott”, LastName = “Dorman” },
new Contact() { FirstName = “Jim”, LastName = “Morrison” },
new Contact() { FirstName = “Ray”, LastName = “Manzarek” }

};

foreach(Contact c in list)
{

Console.WriteLine(c);
}

}
}

ptg

Collection Interfaces 219

By enabling object initializers inside a collection initializer, it becomes possible to use

collection initializers for any type of collection, including dictionaries, whose Add

method takes multiple parameters.

Collection Interfaces
If you look back over the common members and properties for all the different collec-

tions, you should notice some similarities and consistency in their public interfaces.

This consistency stems from a set of interfaces that these collection classes implement.

Some classes implement more interfaces than others do, but all of them implement at

least one interface.

The collection interfaces can be divided in to those that provide specific collection

implementation contracts and those that provide supporting implementations, such

as comparison and enumeration features. In the first group, those that provide spe-

cific collection behavior, there are just four interfaces:

. ICollection<T> defines the methods and properties for manipulating generic

collections.

. IList<T> extends ICollection<T> to provide the methods and properties for

manipulating generic collections whose elements can be individually accessed

by index.

. IDictionary<TKey, TValue> extends ICollection<T> to provide the methods

and properties for manipulating generic collections of key/value pairs in which

each pair must have a unique key.

. ISet<T> extends ICollection<T> to provide the methods and properties for

manipulating generic collections that have unique elements and provide set

operations.

The second group also contains only four interfaces, as follows:

. IComparer<T> defines a method to compare two objects. This interface is used

with the List<T>.Sort and List<T>.BinarySearch methods and provides a

way to customize the sort order of a collection. The Comparer<T> class provides

a default implementation of this interface and is usually sufficient for most

requirements.

. IEnumerable<T> extends IEnumerable and provides support for simple itera-

tion over a collection by exposing an enumerator. This interface is included for

parity with the non-generic collections, and by implementing this interface, a

generic collection can be used any time an IEnumerable is expected.

ptg

220 HOUR 9: Working with Arrays and Collections

. IEnumerator<T> also provides support for simple iteration over a collection.

. IEqualityComparer<T> provides a way for you to provide your own definition

of equality for type T. The EqualityComparer<T> class provides a default

implementation of this interface and is usually sufficient for most requirements.

Enumerable Objects and Iterators
If you look at the definitions given for IEnumerable<T> and IEnumerator<T>, you

notice that they are similar. These interfaces (and their non-generic counterparts)

comprise what is commonly referred to as the iterator pattern.

This pattern essentially enables you to ask an object that implements

IEnumerable<T>, otherwise known as an enumerable object, for an enumerator (an

object that implements IEnumerator<T>). When you have an IEnumerator<T>, you

can then enumerate (or iterate) over the data one element at a time.

For example, the code in Listing 9.5 shows a typical foreach statement that iterates

over the contents of an integer list, printing each value.

LISTING 9.5 A Simple foreach Statement
List<int> list = new List<int>() { 0, 2, 4, 6, 8 };
foreach(int i in list)
{

Console.WriteLine(i);
}

This code is actually translated by the compiler into something that looks approxi-

mately like the code shown in Listing 9.6.

LISTING 9.6 The Compiler Expanded foreach Statement
List<int> list = new List<int>() { 0, 2, 4, 6, 8 };
IEnumerator<int> iterator = ((IEnumerable<int>)list).GetEnumerator();
while (iterator.MoveNext())
{

Console.WriteLine(iterator.Current);
}

The GetEnumerator method is defined by the IEnumerable<T> interface (in fact, it’s

the only member defined by the interface) and simply provides a way for the enumer-

able object to expose an enumerator. It is the enumerator, through the MoveNext

method and Current property (defined by the IEnumerator<T> and IEnumerator

interfaces), that enables you to move forward through the data contained in the

enumerable object.

ptg

Enumerable Objects and Iterators 221

By the
Way

Why Two Interfaces?
By keeping a distinction between an enumerable object (IEnumerable<T>) and an
enumerator over that object (IEnumerator<T>), you can perform multiple itera-
tions over the same enumerable source. Obviously, you don’t want the iterations
interfering with each other as they move through the data, so you need two inde-
pendent representations (enumerators) providing you the current data element
and the mechanism to move to the next one.

Fortunately, all the generic collections (and the non-generic ones as well) implement

IEnumerable<T>, IEnumerable, IEnumerator<T>, and IEnumerator already, so you

can use them without the extra complexity of writing the iterator mechanism yourself.

What happens if you want your own class to offer similar behavior? You can cer-

tainly make your class implement IEnumerable<T> and then write your own

IEnumerator<T> derived class, but doing so isn’t necessary if you use an iterator.

This enables the compiler to do all the hard work for you.

An iterator is a method, property get accessor, or operator that returns an ordered

sequence of values all of which are the same type. The yield keyword tells the com-

piler the block it appears in is an iterator block. A yield return statement returns

each element, and a yield break statement ends the iteration. The body of such an

iterator method, accessor, or operator has the following restrictions:

. Unsafe blocks are not permitted.

. Parameters cannot be ref or out parameters.

. A yield return statement cannot be located anywhere within a try-catch

block. It can be located in a try block if it is followed by a finally block.

. A yield break statement can be located in either a try block or a catch

block, but not a finally block.

. A yield statement cannot be in an anonymous method.

Listing 9.7 shows code that would produce the same output as that shown in Listing

9.6 using an iterator instead.

LISTING 9.7 A Simple Iterator
class Program
{

static IEnumerable<int> GetEvenNumbers()
{

yield return 0;
yield return 2;

ptg

222 HOUR 9: Working with Arrays and Collections

yield return 4;
yield return 6;
yield return 8;

}

static void Main()
{

foreach(int i in GetEvenNumbers())
{

Console.WriteLine(i);
}

}
}

Iterators can do much more than simply yield values. As long as you abide by the

restrictions previously mentioned, iterators can have any degree of sophistication in

how they determine the values to yield. Listing 9.8 produces the same output as that

from Listing 9.7 but does so using a more complex iterator.

LISTING 9.8 A More Complex Iterator
class Program
{

static IEnumerable<int> GetEvenNumbers()
{

for (int i = 0; i <= 9; i++)
{

if (i % 2 == 0)
{

yield return i;
}

}
}

static void Main()
{

foreach(int i in GetEvenNumbers())
{

Console.WriteLine(i);
}

}
}

Summary
In this hour, you have learned how to work with large amounts of data using arrays

and collections. Arrays are the simplest type of collection and have direct language

support, whereas the other collection types, such as List<T> and Stack<T>, offer

more flexibility and enable you to create your own specialized collections. You also

learned how indexers enable your own classes to provide the same type of

ptg

223Q&A

index-based access that arrays and collections offer. Finally, you looked at the differ-

ent collection interfaces available and saw how you can easily declare and initialize

both arrays and collections using initializer syntax.

This completes your programming foundation. You now know the language syntax

and fundamentals of creating your own classes, structs, enums, and collections, and

how to manipulate string data and control program flow.

Q&A
Q. What is an array?

A. An array is a numerically indexed collection of objects that are all of the same

compile-time type.

Q. Are arrays in C# zero-based or one-based?

A. Arrays in C# use a zero-based indexing scheme.

Q. Can arrays in C# be resized?

A. Arrays in C# can be indirectly resized using the Array.Resize static method,

which creates a new array, if needed, and copying the values from the old

array to the new one.

Q. What is an indexer?

A. An indexer is a special type of property that enables a class to be indexed like

an array. Indexers are identified by signature rather than by name and must

be an instance member.

Q. What is the List<T> collection?

A. The List<T> collection is the most commonly used collection and is similar to

an array but is dynamically sized as needed.

Q. What is a dictionary?

A. A dictionary is a collection that does not enable duplicates that can provide a

mapping between a set of keys and a set of values.

ptg

224 HOUR 9: Working with Arrays and Collections

Q. What is the difference between HashSet<T> and SortedSet<T>?

A. HashSet<T> is equivalent to a mathematical set, whereas SortedSet<T> main-

tains a sorted order through insertion and removal of elements without affect-

ing performance. Both classes do not allow duplicate elements.

Q. What is the IEnumerable<T> interface?

A. IEnumerable<T> extends IEnumerable and provides support for simple itera-

tion over a collection by exposing an enumerator. This interface is included for

parity with the non-generic collections, and by implementing this interface, a

generic collection can be used any time an IEnumerable is expected.

Q. What are an array initializer and a collection initializer?

A. An array initializer and a collection initializer are a special syntax that

enables you to easily declare and initialize the contents of an array or collec-

tion. Array initializers enable you to omit the array type and simply provide

the values for the array. Collection initializers enable you to omit multiple calls

to the Add method of the collection by providing the values for each element in

the initializer.

Workshop

Quiz
1. How is memory for an array allocated?

2. What modifiers are allowed for an indexer?

3. When would you use Collection<T> instead of List<T>?

4. What object is returned when the elements of a dictionary are enumerated?

5. What operations are available on Stack<T> that modify state?

6. What interface does IDictionary<TKey, TValue> extend?

7. What is the difference between IComparer<T> and IEqualityComparer<T>?

8. Can collection initializers be used with collections whose Add method takes

more than one parameter?

ptg

225Workshop

Answers
1. Arrays are implicitly an instance of a System.Array object, so they are refer-

ence types, and the memory allocated to refer to the array itself is allocated on

the managed heap. However, the elements of the array are allocated based on

their own type.

2. The modifiers allowed for an indexer are new, virtual, sealed, override,

abstract, and a valid combination of the four access modifiers.

3. List<T> is not designed to be easily extended because there are no virtual

members that a derived class can override to modify behavior. Collection<T>

does have virtual members that can be overridden, so Collection<T> is pre-

ferred when you need to customize behavior of the collection.

4. When the elements of a dictionary are enumerated, the dictionary returns a

KeyValuePair<TKey, TValue> structure that represents a key and its associ-

ated value.

5. The Stack<T> class provides the Clear, Pop, and Push methods that remove all

elements, remove the top element, or insert an element.

6. IDictionary<TKey, TValue> extends the ICollection<T> interface.

7. IComparer<T> defines a method to compare two objects, whereas

IEqualityComparer<T> provides a way for you to provide your own definition

of equality for type T.

8. Yes, collection initializers can be used with collections whose Add method takes

more than one parameter.

Exercises
1. Add a new public class named PhotoCollection that derives from

ObservableCollection<IPhoto>. This class should have a string field

named directory, a public constructor that accepts a string parameter and

sets the field to the parameter value, and a public property named Path that

gets or sets the value of the directory field.

2. Add a private PhotoCollection field named photos and a read-only property

named Photos to the MainWindow class. In the constructor of the MainWindow

class, add a statement that will assign a new PhotoCollection instance to the

photos field.

ptg

This page intentionally left blank

ptg

227

HOUR 10

Handling Errors Using
Exceptions

What You’ll Learn in This Hour:
. Understanding Exceptions
. Using the Standard Exceptions
. Throwing Exceptions
. Handling Exceptions
. Rethrowing Caught Exceptions
. Overflow and Integer Arithmetic

As an application executes, it can encounter any number of possible error condi-

tions. C# handles these error conditions using exceptions, which encapsulate the

information about an error in a single class. Exceptions are intended to be used only

for failure reporting, so they provide a consistent way to report and respond to those

failures. Exceptions are not intended to provide a mechanism to control program

flow, reporting success conditions, or as a feedback mechanism. They are for report-

ing failures that occur during execution.

In many languages, particularly non-object-oriented languages, the standard mech-

anism for reporting failures is to use a return code. However, in an object-oriented

language, return codes aren’t always possible, depending on the context in which

the failure occurs. Return codes are also easily disregarded; when not, they introduce

a lot of complexity to properly handle all the possible failure locations.

In this hour, you learn about the exception handling mechanisms provided by C#;

you also learn how to throw and catch exceptions. You learn how to choose the right

type of exception to throw, what exceptions are available to you, including how to

ptg

228 HOUR 10: Handling Errors Using Exceptions

Did you
Know?

create your own custom exceptions, and finish by looking at some performance con-

siderations when using exceptions.

Understanding Exceptions
Exceptions provide a clear, concise, and safe way to represent failures that occur dur-

ing runtime and usually carry detailed information about the cause of the failure.

Some of this information includes the call stack trace, which shows the execution

path that would occur if the current block returned normally.

Exceptions are not meant to provide a way to handle anticipated errors, such as

those that could come from user actions or input. In those cases, it is far better to pre-

vent errors by validating the action or input for correctness. Exceptions are not pro-

tection against coding errors either. They might be caused by coding errors, but those

errors should be fixed rather than relying on exceptions.

An exception is handled when the application provides explicit code that is run

when the exception occurs. Consequently, an unhandled exception occurs when no

such code is found.

All exceptions derive from System.Exception. When managed code calls other

unmanaged code or external services, such as Microsoft SQL Server, and an error

condition occurs, the .NET runtime wraps that error condition in a

System.Exception derived exception.

RuntimeWrappedException

Languages such as C++ enable you to throw exceptions of any type, not just ones
derived from System.Exception. In those cases, the common language runtime
wraps those exceptions in a RuntimeWrappedException. This maintains compati-
bility between languages.

System.Exception provides several properties that provide detailed information

about the error that occurred:

. The most commonly used is the Message property, which provides the details

about the cause of an exception in a user-readable description. Typically, the

content of this property is a few sentences that describe the error in general terms.

. The StackTrace property contains the call stack trace, which can help deter-

mine where an error occurred. If debugging information is available during

runtime, the stack trace includes the name of the source file and the line num-

ber where the error occurred.

ptg

Understanding Exceptions 229

. The InnerException property is typically used when one exception is wrapped

in a new exception of a different type. The original exception is stored in the

InnerException property so that error-handling code can examine the origi-

nal information.

. The HelpLink property can contain a URL to a help file containing additional

detailed information about the exception.

. The Data property is an IDictionary (which is a non-generic version of a dic-

tionary) to hold arbitrary data in key/value pairs.

Using the Standard Exceptions
Although there are more than 200 public exception classes provided by.NET Frame-

work, approximately 15 of them are commonly used. The remaining exceptions gen-

erally derive from one of these standard exceptions.

The two primary base classes other than Exception are SystemException, which is

the base class for almost all runtime-generated exceptions and ExternalException,

which is for exceptions that occur in or are targeted at environments outside of the

runtime.

The Exception, SystemException, and ExternalException classes should only be

used as base classes for more specific derived exceptions, and you should avoid deriv-

ing your own exceptions directly from SystemException.

The remaining standard exceptions, shown in Table 10.1, make up a combination of

exceptions thrown by the runtime, which your own code should not throw, and those

that can, and should, be thrown from your own code.

TABLE 10.1 Standard Exceptions

Exception Type Description

IndexOutOfRangeException Thrown by the runtime only when an array or
collection is indexed improperly

NullReferenceException Thrown by the runtime only when a null
reference is dereferenced

AccessViolationException Thrown by the runtime only when invalid memory
is accessed

InvalidOperationException Thrown by members when in an invalid state

ArgumentException Base class for all argument exceptions

ptg

230 HOUR 10: Handling Errors Using Exceptions

If you are diligent about validating the parameters passed to your public methods,

you should throw ArgumentException, or one of its subtypes, when bad arguments

are passed.

You should use ArgumentNullException for those methods that receive a null argu-

ment when it is not expected; use ArgumentOutOfRangeException when the argu-

ment falls outside the acceptable range of values.

If a property or method call is not appropriate for the current state of the object,

you can throw an InvalidOperationException. This is different from

ArgumentException, which does not rely on object state to determine if it should

be thrown.

Validating Arguments
If it isn’t straightforward for the caller to determine when an argument is valid, you
should consider providing a method that allows them to check.

By the
Way

TABLE 10.1 Standard Exceptions

Exception Type Description

ArgumentNullException Thrown by methods that do not allow an
argument to be null

ArgumentOutOfRangeException Thrown by methods that verify that arguments
are in a given range

COMException Exception encapsulating COM HRESULT
information

SEHException Exception encapsulating Win32 structured
exception handling information

OutOfMemoryException Thrown by the runtime when there is not enough
memory to continue the execution of a program

StackOverflowException Thrown by the runtime when the execution stack
overflows because it contains too many nested
method calls, usually occurring from deep or
unbounded recursion

ExecutionEngineException Thrown by the runtime when an internal error
occurs in the execution engine of the common
language runtime

The remaining standard exceptions should be considered reserved exceptions. You

should avoid throwing these from your own code and deriving your own exceptions

from them.

Continued

ptg

Throwing Exceptions 231

System.Environment.FailFast

If your application encounters a situation in which it is unsafe to continue, you
should consider calling System.Environment.FailFast instead of throwing an
exception.

If continuing in such a situation causes a security risk, such as when a security
impersonation cannot be reverted, you should also consider calling FailFast.

Did you
Know?

You should perform argument checking to prevent an IndexOutOfRangeException

or NullReferenceException from occurring.

Throwing Exceptions
You throw an exception using the throw keyword. Because Exception is a class, you

must create an instance of it using the new keyword. The following code throws a

new Exception object:

throw new System.Exception();

When an exception is thrown, program execution immediately halts while the

exception propagates up the call stack, looking for an appropriate handler. If no

handlers are found, one of three things happens:

. If the exception occurred within a destructor, that destructor is aborted, and if

present, the destructor of the base class is called.

. If a static constructor or static field initializer is contained in the call stack, a

TypeInitializationException is thrown containing the original exception

in the InnerException property.

. If the start of the thread is reached, the thread is terminated. In most cases, this

means that if the exception reaches all the way to the Main() method without

finding a compatible handler, the application is terminated. This happens no

matter which thread the exception originated from.

Knowing when an exception should be thrown requires understanding the difference

between coding errors and execution errors. Coding errors can be avoided by chang-

ing your code, and there is no reason to handle these using exceptions. Coding errors

can be fixed at compile-time, and you can take steps to ensure they never occur at

runtime.

ptg

232 HOUR 10: Handling Errors Using Exceptions

An exception is thrown when an unexpected error condition is encountered. This typ-

ically occurs when a class member cannot perform what it is designed to do. These

execution errors cannot be completely avoided, no matter how many precautions you

might take in the code. Program execution errors can be handled programmatically

by your code. System execution errors are those that cannot be handled by your code.

Handling Exceptions
Handling exceptions uses exception objects and protected regions. Think of a

protected region as a special block of code designed to enable you to work with

exceptions. Almost any line of code can cause an exception, but most applications

don’t actually need to deal with these exceptions. You should handle an exception

only if there is something meaningful you can do as a result.

In C#, you declare a protected region, also known as a try block, using the try key-

word, with the statements being protected enclosed in braces. The associated handlers

appear after the closing brace of the protected region. A protected region must have

associated with it at least one of the following handlers:

. A finally handler, which executes whenever the protected region exits, even if

an exception was encountered. A protected region can have at most one finally

handler.

. A catch handler that is compatible with a specific exception or any one of its

subclasses. A protected region can have multiple catch handlers, but a specific

exception type can only be specified in a single handler.

When an exception occurs, the first protected region that contains the current instruc-

tion (the one that caused the exception) and has a matching catch handler block are

located. If the current method does not contain a match, the calling method is

searched, continuing until either a match is found or the top of the call stack is

reached, in which case the application terminates. If a match is found, program exe-

cution returns to the point of the exception, executes any finally handlers, and then

the catch handler is executed.

General Catch Handlers
You can also specify a catch handler using just the catch keyword, commonly
known as a general catch handler. Doing so, however, should be avoided.

In the .NET Framework 1.0 and 1.1 releases, situations existed in which unman-
aged code would throw an exception that wasn’t properly handled by the runtime.

By the
Way

ptg

Handling Exceptions 233

As a result, it wasn’t wrapped in a System.Exception derived exception and
couldn’t be caught by anything other than an empty catch block.

This issue was corrected in .NET 2.0 and now these exceptions are wrapped in a
RuntimeWrappedException (which inherits from System.Exception), so there is
no longer a need for this empty catch block.

Protected regions can be broken down into three patterns, depending on the handlers

they provide:

. Try-Catch—Provides one or more catch handlers only

. Try-Finally—Provides only a finally handler

. Try-Catch-Finally—Provides one or more catch handlers and a finally handler

When you specify a catch block, it is possible to provide only the exception type or

the exception type and an identifier, called the catch handler variable. The catch

handler variable defines a local variable within the scope of the catch handler,

enabling you to reference the exception object inside the catch block. Because the

catch handler variable is scoped to that specific catch handler, and only one catch

handler will execute, the same identifier can be used by multiple catch handlers.

However, you cannot use the same identifier as any of the method parameters or

other local variables.

Listing 10.1 shows the most common way to write a catch handler and uses a catch

handler variable.

LISTING 10.1 Declaring a Catch Handler
try
{

int divisor = Convert.ToInt32(Console.ReadLine());
int result = 3/divisor;

}
catch (DivideByZeroException ex)
{

Console.WriteLine(ex.Message);
}

If you have multiple nested try blocks, each with a possibly matching catch handler,

the order in which they are nested determines the order in which they execute. When

a compatible catch handler has been found, no other catch handlers are executed.

Listing 10.2 shows an example of catching multiple exceptions and shows how to

write a catch handler that does not use a catch handler variable.

ptg

234 HOUR 10: Handling Errors Using Exceptions

LISTING 10.2 Catching Multiple Exceptions
try
{

int divisor = Convert.ToInt32(Console.ReadLine());
int result = 3/divisor;

}
catch (DivideByZeroException)
{

Console.WriteLine(“Attempted to divide by zero”);
}
catch (FormatException)
{

Console.WriteLine(“Input was not in the correct format”);
}
catch (Exception)
{

Console.WriteLine(“General catch handler”);
}

If the try block in Listing 10.2 resulted in a DivideByZeroException, the output

would be ”Attempted to divide by zero”. If the try block resulted in a

FormatException, the output would be ”Input was not in the correct format”.

Any other exceptions would generate ”General catch handler” as the output.

However, if the catch blocks were rearranged so the general catch block came first,

the program would fail to compile.

Swallowing Exceptions
It is common to write catch blocks that do nothing more than log the error.
Although this is sometimes important, it can usually be done by the top-level
caller and does not need to occur for every function.

This leads to a problem known as “swallowing exceptions,” and occurs when you
catch an exception and either do nothing with it or don’t allow it to pass up the
chain. This can also lead to problems because you are effectively hiding the
exception and not doing anything with it, which can lead to intermittent problems
that will be hard to track.

The best way to look at this situation is that you should catch an exception only if
you have meaningful cleanup work that needs to be done as a result of the excep-
tion (such as closing files or database connections).

Watch
Out!

Remember, a catch handler executes only if an exception has occurred, so it should

not be used for cleanup activities. If you do need to perform any type of cleanup

activities, they should be done in a finally handler. This means that unless you can

legitimately take some action because of an exception, you should use the try-finally

pattern instead of the try-catch or try-catch-finally patterns.

ptg

Handling Exceptions 235

▼

FIGURE 10.1
Runtime excep-
tion generated
from the lack of
type-safety

FIGURE 10.2
Windows applica-
tion failure dia-
log checking for
solutions

Try It Yourself

Working with Exceptions
To see how you can work with exceptions by throwing and catching several different
exceptions, follow these steps.

1. Create a new Console application.

2. In the Program.cs file, implement the following functions:

private static void ThrowsException()
{

Console.WriteLine(“About to throw an InvalidOperationException”);
throw new InvalidOperationException();

}

private static void PrintString(string message)
{

if (message == null)
{

throw new ArgumentNullException(“message”);
}

Console.WriteLine(message);
}

3. In the Main method of the Program.cs file, call the ThrowsException method.

4. Run the application using Ctrl+F5. You see the console window initially, as

shown in Figure 10.1.

If you run Windows Vista or later, you might see the dialog shown in Figure 10.2.

ptg

236 HOUR 10: Handling Errors Using Exceptions

FIGURE 10.3
Runtime excep-
tion generated
from the lack of
type-safety

FIGURE 10.4
Windows applica-
tion failure dia-
log closing the
application

Visual C# 2010 Express edition does not support JIT Debugging, so after this

dialog completes, you see the exception information displayed, as shown in

Figure 10.3.

The information displayed is the exception information and indicates that this

was an unhandled exception of type System.InvalidOperationException. It

also displays the stack trace information, which includes the method call stack,

file name, and line numbers. This stack trace information helps you to identify

the location in your code where the exception occurred.

If you have one of the Visual Studio with MSDN editions installed, you see a

dialog, as shown in Figure 10.4, enabling you to close or debug the application.

5. If you press the Close program button, the console window should look like

Figure 10.3. If you press the Debug button, you see the Visual Studio Just-In-

Time Debugger dialog.

6. Run the application again using Ctrl+F5, but this time press the Debug button

when the dialog shown in Figure 10.3 appears. This displays the Visual Studio

Just-In-Time Debugger dialog, as shown in Figure 10.5.

If you press the Yes button, control returns to Visual Studio with the line on con-

taining the exception set to the current statement, as shown in Figure 10.6.

By clicking the View Detail link under Actions, you can see the details of the

exception, as shown in Figure 10.7.

ptg

Handling Exceptions 237

FIGURE 10.5
Visual Studio
Just-In-Time
Debugger dialog

FIGURE 10.6
Exception Assis-
tant

FIGURE 10.7
Exception
details dialog

7. Enclose the call to ThrowsException in a try/catch block that specifically

catches an InvalidOperationException assigning it to a catch handler

variable named ex. In the body of the catch handler, print out the value of the

Message property.

ptg

238 HOUR 10: Handling Errors Using Exceptions

FIGURE 10.8
Handling the run-
time exception

FIGURE 10.9
Multiple catch
handlers

8. Run the application using Ctrl+F5. You see the console window shown in

Figure 10.8.

Notice that this time, the application did not terminate, but instead displayed

the message associated with the exception.

9. Change the body of Main to the following:

try
{

PrintString(null);
}
catch (InvalidOperationException ex)
{

Console.WriteLine(ex.GetType().Name);
Console.WriteLine(ex.Message);

}
catch (ArgumentNullException ex)
{

Console.WriteLine(ex.GetType().Name);
Console.WriteLine(ex.Message);

}
catch (Exception ex)
{

Console.WriteLine(ex.GetType().Name);
Console.WriteLine(ex.Message);

}

10. Run the application using Ctrl+F5. You see the console window shown in

Figure 10.9.

11. Now change the order of the catch handlers so that the catch(Exception)

handler is first. You should notice that you immediately see two compiler errors

indicating that the additional two catch handlers will not be executed because

a previous handler catches the base exception type, as shown in Figure 10.10.

ptg

Rethrowing Caught Exceptions 239

▲

FIGURE 10.10
Multiple catch
handlers in the
wrong order

By the
Way

In general, you should avoid catching nonspecific exceptions, such as Exception,

SystemException, and ExternalException, in your code. You should also avoid

catching critical system exceptions, such as StackOverflowException or

OutOfMemoryException. With the exceptions of these types, usually little can be done

in response that is meaningful and catching them can hide runtime problems and

complicate debugging and troubleshooting processes.

Corrupted State Exceptions
Corrupted state exceptions are those exceptions that occur in a context outside
of your application, such as the OS kernel, and indicate that the integrity of the
running process might be in question. There are approximately 12 corrupted state
exceptions, which are different from regular exceptions.

The difference between a regular exception and a corrupted state exception is not
the type of exception, but the context in which it was thrown. By default, you can-
not catch a corrupted state exception using a catch block, even if you catch
Exception.

Rethrowing Caught Exceptions
If you do catch an exception for the purposes of logging or some other activity that

does not actually handle the exception condition, you should rethrow the exception.

Rethrowing an exception allows it to continue following the call stack, looking for an

appropriate catch handler.

Just as the throw keyword enables you to specify a new exception to be thrown (as

you saw in the previous section) it is also used to rethrow an exception.

To preserve the stack trace information, you should rethrow an exception using just

the throw keyword, even if your catch handler included a catch handler variable.

A subtle difference exists between the two rethrow approaches shown in Listing 10.3

that won’t be apparent until you try to debug the problem. That difference is in the

stack trace information sent with the exception.

ptg

240 HOUR 10: Handling Errors Using Exceptions

LISTING 10.3 Rethrowing Exceptions
try
{

// Some operation that results in an InvalidOperationException
}
catch (InvalidOperationException ex)
{

Console.WriteLine(“Invalid operation occurred”);
throw ex;

}
catch (Exception)
{

Console.WriteLine(“General catch handler”);
throw;

}

In the first approach, the catch handler for InvalidOperationException rethrows

the exception using throw ex, which causes the stack trace to be truncated below the

method that failed. This means that when you look at the stack trace, it looks as if

the exception originated in your code. This isn’t always the case, particularly if you

are bubbling up a CLR-generated exception (such as a SqlException).

This is a problem known as “breaking the stack,” because you no longer have the full

stack trace information. This happens because, in essence, you are creating a new

exception to throw.

By using throw by itself, as the catch handler for Exception does, you preserve the

stack trace information. You can confirm this by looking at the IL generated for these

two code blocks. This makes the difference obvious because in the first example, the

IL instruction called is throw, whereas in the second, the instruction called is

rethrow.

Wrapping Exceptions
You can also wrap a caught exception in a different exception and then throw that

new exception. This is most commonly used when the actual exception provides no

meaning or does not make sense in the context of a higher layer.

When you wrap an exception, you throw a new exception from your catch handler

and should always include the original exception as the inner exception. Because the

stack trace information is reset to the point of the new exception, including the inner

exception is the only way to see the original stack trace and exception details. Listing

10.4 shows the correct way to throw a wrapped exception.

ptg

Overflow and Integer Arithmetic 241

LISTING 10.4 Throwing a Wrapped Exception
try
{

// Some operation that can fail
}
catch (Exception ex)
{

throw new InvalidOperationException(“The operation failed”, ex);
}

Wrapping exceptions should be a rare occurrence, and should be carefully consid-

ered. If you have any doubt about whether an exception should be wrapped, don’t

wrap it. Wrapping exceptions can hide the method and location where the error actu-

ally occurred and can lead to a significant amount of time spent trying to debug the

problem. It can also make it harder for the callers to handle the exception because

now they not only have to handle the exception, but also your wrapped exception,

and extract the real exception from it to handle it.

Overflow and Integer Arithmetic
In Hour 2, “Understanding C# Types,” you learned that all the primitive numeric

data types have a fixed range. The minimum and maximum values of that range

can be accessed through the MinValue and MaxValue properties, respectively. As a

result, what would happen if you attempted to add 1 to int.MaxValue?

The answer to that question depends on the compiler settings used. The C# compiler

defaults to generating code that silently enables the overflow to occur, wrapping the

value to the largest negative value possible. In many cases, this behavior is accept-

able because the risk of it occurring is low.

The risk is so low compared to the high frequency of integer arithmetic operations

that occur the overhead of performing overflow checking on each operation would

cause performance considerations.

If you need to safeguard against silently overflowing integer arithmetic operations, or

otherwise want to control the overflow-checking behavior, you can use the checked

and unchecked keywords. These keywords provide explicit control because they over-

ride any compiler settings specified.

ptg

242 HOUR 10: Handling Errors Using Exceptions

The checked or unchecked keywords can be applied to a statement block, in which

all integer arithmetic directly inside the block is affected, as shown in Listing 10.5.

LISTING 10.5 Checked and Unchecked Blocks
int max = int.MaxValue;
checked
{

int overflow = max++;
Console.WriteLine(“The integer arithmetic resulted in an

➥OverflowException.”);
}

unchecked
{

int overflow = max++;
Console.WriteLine(“The integer arithmetic resulted in a silent overflow.”);

}

The keywords can also be applied to integer expressions, in which case the contained

expression is evaluated in either a checked or an unchecked context. The contained

expression must be enclosed by parentheses.

In Listing 10.6, line 2 always results in an OverflowException, whereas line 3 never

results in an OverflowException. Line 4, however, depends on the compiler settings

in place when the program was compiled.

LISTING 10.6 Checked and Unchecked Expressions
1. int x = int.MaxValue;
2. int a = checked(x + 1);
3. int b = unchecked(x + 1);
4. int c = x + 1;

Summary
In this hour, you learned about exceptions and learned how to use them in your

applications. Exceptions occur as the result of an unexpected error and can cause your

Watch
Out!

Checked and Unchecked
In a checked context, statements resulting in arithmetic overflow raise an excep-
tion. In an unchecked context, the overflow is ignored and the result is truncated.
Only certain numeric calculations are affected by a checked or unchecked context:
. Explicit conversions between integral types

. Expressions using the following operators:

++ –– –(unary) + – * /

ptg

243Workshop

application to crash if not handled correctly. It is important to catch exceptions only

at a point where some meaningful action can be taken as a result. You saw how the

C# compiler helps you to catch exceptions in the correct order, catching the most

derived exceptions first. Finally, you learned how to perform integer arithmetic in a

checked and unchecked manner, which helps prevent integer overflow from occurring.

Q&A
Q. When should you use exceptions?

A. Exceptions provide a clear, concise, secure, and safe way to represent failures

that occur during runtime and should be used when an unexpected error con-

dition is encountered, typically when a class member cannot perform what it is

designed to do.

Q. What is an unhandled exception?

A. An unhandled exception is one that occurs when the application has not pro-

vided explicit code to execute when that exception occurs.

Q. What is a try-catch block?

A. A try-catch block is a protected region that includes one or more exception

handlers.

Q. What is a try-finally block?

A. A try-finally block is a protected region that includes no exception handlers

and executes whenever the try block exits, even if an exception occurs.

Workshop

Quiz
1. What is the base class for all exceptions?

2. What is a RuntimeWrappedException?

3. Should ArgumentException (or any of its subclasses) or

InvalidOperationException be handled programmatically?

4. What is a corrupted state exception?

ptg

244 HOUR 10: Handling Errors Using Exceptions

5. What happens if an exception is thrown and a static constructor or static field

initializer is contained in the call stack?

6. When should you handle exceptions?

Answers
1. The base class for all exceptions is System.Exception.

2. When another language, such as C++, throws an exception that does not

derive from System.Exception, that exception is wrapped in a

RuntimeWrappedException to maintain compatibility between languages.

3. Typically ArgumentException, any of its subclasses, and

InvalidOperationException represent coding errors and are best corrected at

compile time rather than handling them programmatically in your application.

4. A corrupted state exception is one that occurs in a context outside of your

application and indicates that the integrity of the running process might be in

question. By default, it is not possible to catch a corrupted state exception.

5. If a static constructor or static field initializer is contained in the call stack, a

TypeInitializationException is thrown containing the original exception

in the InnerException property.

6. In general, you should handle an exception only at the closest point to where

you can perform some meaningful actions because of the exception. As a

result, you should use the try-finally pattern more often than the try-catch or

try-catch-finally patterns.

Exercise
1. Add the following code to the beginning of the Photo(Uri) constructor:

if (path == null)
{

throw new ArgumentNullException(“path”);
}

Wrap the if statement in a try-catch block. Use the following code for the

catch(InvalidOperationException) handler:

this.source = null;
this.Refresh();

2. Modify the ToString method so that if this.source is null, an empty string

is returned.

ptg

245

HOUR 11

Understanding Generics

What You’ll Learn in This Hour:
. Why You Should Use Generics
. Understanding Generic Type Parameters
. Constraints
. Default Values for Generic Types
. Using Generic Methods
. Creating Generic Classes
. Combining Generics and Arrays
. Variance in Generic Interfaces
. Working with Tuples

You have already seen how an object can refer to an instance of any class. This

enables you to create classes that operate on any data type. Several significant prob-

lems can occur with this approach. By working only with object, there is no way for

the class to restrict input to be only of a specific type. To perform meaningful opera-

tions on the data, it must be cast from object to a more well-defined type. This not

only adds complexity but also sacrifices type safety at compile-time.

Generics in C# solve this problem by enabling generalization that is type-safe at

compile-time by removing the need to cast or otherwise perform boxing and unbox-

ing conversions. Generics combine type safety, reusability, and efficiency in ways

non-generic classes can’t. The most common use for generics is with collections,

which you saw in Hour 9, “Working with Arrays and Collections;” however, you can

use generics to create your own custom generic types and methods.

In this hour, you learn how generics work and how to create your own generic types.

ptg

246 HOUR 11: Understanding Generics

Why You Should Use Generics
In Hour 9, you saw how to create an array of integer values. Because you explicitly

stated the data type for each element in the array was int, the compiler verified that

you were assigning only integer values to each element. You also operated on each ele-

ment using methods and operators defined for integer values. Imagine the code

required to find the minimum value of an arbitrary array of integers (see Listing 11.1).

LISTING 11.1 Finding the Minimum Value
public int Min(int[] values)
{

int min = values[0];
foreach (int value in values)
{

if (value.CompareTo(min) < 0)
{

min = value;
}

}

return min;
}

What would happen if you wanted this to work with any numeric type? Without

generics, you would need to write a different version of Min for each numeric type

with the only difference being the data type. Although that is certainly possible, it

introduces a lot of complexity and redundancy in your code.

Knowing that the IComparable interface defines a CompareTo method, you could

write this in a more generic way using objects. This would allow you to write the code

once yet still use it for an array of any numeric type, as shown in Listing 11.2.

LISTING 11.2 Finding the Minimum Value Using Objects
public object Min(object[] values)
{

IComparable min = (IComparable)values[0];
foreach (object value in values)
{

if (((IComparable)value).CompareTo(min) < 0)
{

min = (IComparable)value;
}

}

return min;
}

Unfortunately, although you gained by needing to write the code only once, you also

lost any type safety. In addition, an array of integers is not convertible to an array of

ptg

Why You Should Use Generics 247

▼

objects. Because this method works with objects, what happens when it is passed an

array that was defined like

object[] array = { 5, 3, “a”, “hello” };

This is legal because the array holds elements of type object and any value is

implicitly convertible to object.

Try It Yourself

Finding the Minimum Without Generics
By following these steps, you see how creating a generalized method without the
use of generics prevents type safety yet still compiles correctly. Keep Visual Studio
open at the end of this exercise because you will use this application later.

1. Create a new Console application.

2. In the Program.cs file, implement the two functions shown in Listings 11.1

and 11.2. Make sure you declare these methods as static.

3. Change both versions of Min so that the first line of each has a

Console.WriteLine to print out which method is executed.

4. In the Main method of the Program.cs file, declare and initialize an integer

array named array of five elements followed by a Console.WriteLine state-

ment to print the minimum value.

5. Run the application using Ctrl+F5, and make sure the output displays the cor-

rect minimum value for your array.

6. Change the declaration of array from int to long.

7. You should notice the call to Min has a red squiggly line, and two errors are

reported in the error window. This happens because there is no implementa-

tion of Min that takes a long[] as a parameter.

8. Change the declaration of array from long to object to remove the compiler

errors.

9. Run the application again using Ctrl+F5, and make sure the output displays

the correct minimum value for your array. (This should be the same value as

shown from step 4.)

10. Change the elements of array to the following:

{ 5, 3, “a”, “hello”, 1 };

ptg

248 HOUR 11: Understanding Generics

11. Run the application using Ctrl+F5, and observe that the output matches what

is shown in Figure 11.1.

Not only have you lost type safety, you are also performing n+1 conversion opera-

tions, where n is the number of elements in the array. As you might guess, the larger

the array, the more expensive this method becomes.

Using generics, this problem becomes simple. You gain the ability to write the code

only once without losing type safety or incurring multiple conversion operations.

Listing 11.3 shows the same Min method defined using generics. If you compare this

to the method defined in Listing 11.1, you can see that they are almost identical.

▲

where T : IComparable<T>
This constraint might be a bit confusing because it looks like there is a circular
dependency here. In fact, it’s actually straightforward and means that T must be a
type that can be compared to other T’s.

By the
Way

LISTING 11.3 Finding the Minimum Value Using Generics
public T Min<T>(T[] values) where T: IComparable<T>
{

T min = values[0];
foreach (T value in values)
{

if (value.CompareTo(min) < 0)
{

min = value;
}

}

return min;
}

FIGURE 11.1
Runtime excep-
tion generated
from the lack of
type-safety

The biggest difference is that the generic version uses a generic type parameter T,

specified by the <T> syntax, after the method name. The type parameter acts as a

placeholder for a real type supplied at compile time. In this example, we know that

ptg

▼

Why You Should Use Generics 249

Watch
Out!

any real type used in place of T must implement the IComparable<T> interface,

where the T of the interface is the type parameter of the generic method. This con-

strains, or limits, the type parameter to be any type that implements the interface.

C# Generics, C++ Templates, and Java Generics
Although C# generics, Java generics, and C++ templates all provide support for
parameterized types, several significant differences exist between them. The syn-
tax for C# generics is similar to that of Java and simpler than C++ templates.

All the type substitutions for C# generics occur at runtime, thereby preserving the
generic type information for instantiated objects. In Java, generics are a language-
only construction implemented only in the compiler in a technique known as type
erasure. As a result, the generic type information for instantiated objects is not
available at runtime. This is different than C++ templates that are expanded at
compile-time, generating additional code for each template type.

C# generics do not provide the same amount of flexibility as C++ templates and
Java generics in some cases. For example, C# generics do not support the idea
of a wildcard for the type parameter like Java generics. It is also not possible to
call arithmetic operators on a type parameter, as you can in C++ templates.

Try It Yourself

Finding the Minimum with Generics
To modify the code written in the previous exercise to use a generic version of the
Min function, follow these steps. If you closed Visual Studio, repeat the previous
exercise first.

1. In the Program.cs file, implement the generic function shown in Listing 11.3.

Make sure you declare this method as static and make the same change to add

as the first line a call to Console.Write to print out the method name.

2. Change the declaration of array so that it is int[] and change the elements to be

all numeric values again so that your program compiles and executes correctly.

3. Run the application using Ctrl+F5. Notice that you are still using the non-

generic strongly typed version of Min.

4. Change only the type of array so that it is long[].

5. Run the application again using Ctrl+F5. Notice that you are now using the

generic version of Min.

6. Change only the elements of array to the following:

{ 5, 3, “a”, “hello”, 1 };

ptg

250 HOUR 11: Understanding Generics

7. Run the application again. This time, instead of running and generating a run-

time exception, you receive two compiler errors saying that you cannot implic-

itly convert type ‘’string’ to ‘long’, as shown in Figure 11.2.

Understanding Generic Type Parameters
Just as methods have parameters and the values of those parameters at runtime are

arguments, generic types and methods also type parameters and type arguments.

Type parameters act as placeholders for a type argument supplied at compile time.

This is more than simple text replacement of the type parameter with the supplied

type. When a generic type or method is compiled, the CIL contains metadata identi-

fying it as having type parameters. At runtime, the JIT creates a constructed type with

the supplied type parameter substituted in the appropriate locations.

A generic type or method can have multiple type parameters separated by a comma

(,) in the type parameter specification. Several of the generic collection classes, such

as Dictionary<TKey, TValue>, and KeyValuePair<TKey, TValue>, use more than

one type parameter. The Tuple class, which we discuss a bit later, is also generic and

has up to eight type parameters.

Constraints
Constraints enable you to apply restrictions on the types used for the type arguments

at compile-time. These restrictions are specified using the where keyword, as you saw

in Listing 11.3. When you constrain a type parameter, the number of allowable oper-

ations and methods increase to those supported by the constrained type and all types

in its inheritance chain.

There are six possible constraints, as shown in Table 11.1.

▲

FIGURE 11.2
Compiler errors
generated enforc-
ing type-safety

TABLE 11.1 Generic Type Parameter Constraints

Constraint Description

where T : struct The type argument must be a value type,
except a Nullable value type.

where T : class The type argument must be a reference
type. This applies to any class, interface,
delegate, or array type.

ptg

Why You Should Use Generics 251

Constraints guarantee to the compiler that any operator or method called on a type

parameter will be supported. Type parameters that have no constraints are uncon-

strained type parameters and support only simple assignment and calling methods

supported by System.Object. In addition, the != and == operators cannot be used

with unconstrained type parameters because the compiler has no guarantee that they

are supported.

A single type parameter can have multiple constraints, and you can apply con-

straints to multiple parameters:

CustomDictionary<TKey, TValue>
where TKey : IComparable
where TValue : class, new()

Testing for Value Equality with Generics
Even if you apply the where T : class constraint, you should still avoid using
the == and != operators on the type parameter. These operators test for refer-
ence identity, not value equality.

This happens even if those operators are overloaded in the type because the
compiler knows only that T is a reference type. As a result, it can use only the
default operators defined on System.Object that are valid for all reference types.

The recommended way to test for value equality is to apply the
where T : IComparable<T> constraint and ensure that interface is

By the
Way

TABLE 11.1 Generic Type Parameter Constraints

Constraint Description

where T : new() The type argument must have a public
parameterless constructor and be a
concrete type. If used with other
constraints, the new() constraint must be
specified last.

where T : <base class name> The type argument must be or derive from
the specified base class.

where T : <interface name> There must be an identity or implicit
reference conversion from the type
argument to the stated type. The
constraining interface can be generic and
multiple interface constraints can be
specified.

where T : U The type argument must be, or derive from,
the argument supplied for U, which is
another generic type parameter.

ptg

252 HOUR 11: Understanding Generics

implemented in any class that will be used to construct the generic class. By
applying this constraint, you can use the CompareTo method to perform value
equality, as you saw in Listing 11.3.

A type parameter constraint is a generic type parameter used as a constraint for

another type parameter. Type parameter constraints are most commonly found when

a generic method has to constrain its type parameter to the type parameter of the

containing type, as shown in Listing 11.4. In this example, T is a type parameter con-

straint for the Add method that means Add accepts a List<U>, where any type substi-

tuted for U must be or derive from T.

LISTING 11.4 Type Parameter Constraints on a Method
public class List<T>
{

public void Add<U>(List<U> items) where U : T
{
}

}

Type parameter constraints can also be used with generic classes when you want to

enforce a relationship between two type parameters, as shown in Listing 11.5. In this

example, you state that Example has three type parameters (T, U, and V) such that any

type substituted for T must be, or derive from V, and that U and V are unconstrained.

LISTING 11.5 Type Parameter Constraints on a Class
public class Example<T, U, V> where T : V
{
}

Default Values for Generic Types
Remember, C# is a strongly typed language that requires definite assignment of a

variable before it can be used. To help simplify this requirement, every type has a

default value. Obviously, it isn’t possible for you to know ahead of time whether the

default value should be null, 0, or a zero-initialized struct. How then do you specify

the default value for a type T that can represent any type?

C# provides the default keyword, which represents the appropriate default value for

a type parameter based on the actual type specified. That means it returns null for

reference types and zero for all numeric value types. If the type argument is a struct,

each member of the struct is initialized to null or zero, as appropriate for the mem-

ber type. For nullable value types, it returns null.

ptg

Using Generic Methods 253

Using Generic Methods
Generic methods are no different from their non-generic relatives but are defined

using a set of generic type parameters rather than concrete types. A generic method is

a blueprint for a method generated at runtime. If you look back at Listing 11.3, you

have already used a generic method.

Generic Methods in Nongeneric Classes
Generic methods are not restricted to only generic classes. It is perfectly valid,
and fairly common, for a nongeneric class to include generic methods.

It is also possible for generic classes to include nongeneric methods, which have
full access to the type parameters of the generic class.

By the
Way

By using constraints on a generic method, you can make use of more specialized

operations the constraint guarantees will be available. The type parameters defined

by a generic class are available to both generic and non-generic methods. Because of

this, if a generic method defines the same type parameter as the containing class, the

argument supplied for the inner T hides the one supplied for the outer T and gener-

ates a compiler warning. If you need a method that uses different type arguments

than provided when the class was instantiated, you should provide a different identi-

fier for the type parameter, as shown in Listing 11.6.

LISTING 11.6 Type Parameter Hiding
class GenericClass<T>
{

void GenerateWarning<T>()
{
}

void NoWarning<U>()
{
}

}

When you call a generic method, you must provide a real data type for the type argu-

ments defined by that method. Listing 11.7 shows one way to call the Min<T> method

defined in Listing 11.3.

LISTING 11.7 Calling a Generic Method
public static class Program
{

static void Main()
{

int[] array = {3, 5, 7, 0, 2, 4, 6 };

ptg

254 HOUR 11: Understanding Generics

Console.WriteLine(Min<int>(array));
}

}

Although this is acceptable, it isn’t necessary in the majority of calls, thanks to type

inference. When you omit the type argument, the compiler attempts to discover, or

infer, the type based on the method arguments. Listing 11.8 shows the same call

using type inference.

LISTING 11.8 Calling a Generic Method Using Type Inference
public static class Program
{

static void Main()
{

int[] array = {3, 5, 7, 0, 2, 4, 6 };
Console.WriteLine(Min(array));

}
}

Because type inference relies on the method arguments, it cannot infer the type only

from a constraint or return value. This means you can’t use it with methods that

have no parameters.

For generic methods, the type parameters are part of the method signature. This

enables a generic method to be overloaded by declaring multiple generic methods

with the same formal parameter list but which differ by type parameter.

Type Inference and Overload Resolution
Type inference occurs at compile time and before the compiler tries to resolve over-
loaded method signatures. When type substitution occurs, it is possible for a non-
generic method and a generic method to have identical signatures. In such a case,
the most specific method will be used, which is always the non-generic method.

Creating Generic Classes
You have already seen generic classes in action when you looked at the different col-

lection types. Generic classes are most commonly used with collections because the

behavior of the collection is the same for any data type stored. Just as a generic

method is a blueprint for a method generated at runtime, a generic class is a blue-

print for a class constructed at runtime.

Did you
Know?

ptg

Creating Generic Classes 255

By the
Way

Not only are generic classes used within.NET Framework, you can create your own

generic classes as well. This is no different than creating a non-generic class, except

that you provide a type parameter rather than an actual data type.

Keep in mind a few important questions when you create your own generic types:

. What types should be type parameters? Generally, the more types you para-

meterize, the more flexibility your type has. There are practical limits on how

many type parameters should be used, however, because the readability of your

code can decrease as the number of type parameters increases.

. What constraints should be applied? There are multiple ways to determine this.

One is to apply as many constraints as possible that will still allow you to work

with the types you are expecting. Another is to apply as few constraints as possi-

ble so that the generic type is maximally flexible. Both approaches are valid, but

you can also take a more pragmatic approach of applying just the constraints

necessary to limit the class to implementing its defined purpose. For example, if

you know your generic class should work only with reference types, you would

apply the class constraint. This prevents your class from being used with value

types but enables you to use the as operator and check for null values.

. Should behavior be provided in base classes and subclasses? Generic classes

can be used as base classes, just like non-generic classes. As a result, the same

design choices apply here as they do with non-generic classes.

. Should generic interfaces be implemented? Depending on the type of generic

class you are designing, you might have to implement, and possibly create, one

or more generic interfaces. How your class will be used also determines which

interfaces, if any, are implemented.

Just as non-generic classes can inherit from either concrete or abstract non-generic

base classes, generic classes can also inherit from a non-generic concrete or abstract

base class. However, generic classes can also inherit from other generic classes.

Generic Structs and Interfaces
Structs can be generic as well and use the same syntax and type constraints as
classes. The only differences between a generic struct and a generic class are
the same differences for non-generic classes and structs.

Generic interfaces use the same type parameter syntax and constraints as
generic classes and follow the same rules as non-generic interface declarations.
The one notable exception is that the interfaces implemented by a generic type
remain unique for all possible constructed types. What this actually means is that
if, after type parameter substitution, two generic interfaces implemented by the

ptg

256 HOUR 11: Understanding Generics

same generic class would be identical, the declaration of that generic class is
invalid.

Although generic classes can inherit from non-generic interfaces, a generic inter-
face is the preferred choice for use with generic classes.

To understand inheritance with generic classes, you first need to understand the dif-

ference between an open and closed type. An open type is one that involves type

parameters. More specifically, it is a generic type that has not been supplied any type

arguments for its type parameters. A closed type, also called a constructed type, is a

generic type that is not open. (That is, it has been supplied a type argument for all its

type parameters.)

Generic classes can inherit from either an open type or a closed type. A derived class

can provide type arguments for all the type parameters on its base class, in which

case it is a constructed type. If the derived class provides no type arguments, it is an

open type. Although generic classes can inherit from closed or open type, non-generic

classes can inherit only from closed types; otherwise, there is no way for the compiler

to know what type argument should be used.

Some examples of inheriting from open and closed types are shown in Listing 11.9.

LISTING 11.9 Inheritance with Generics
abstract class Element { }

class Element<T> : Element { }

class BasicElement<T> : Element<T> { }

class Int32Element : BasicElement<int> { }

In this example, Element<T> derives from Element and is an open type.

BasicElement<T> derives from Element<T> and is an open type. Int32Element is a

constructed type because it derives from the constructed type BasicElement<int>.

However, a derived class can provide type arguments for some of the type parameters

on its base class, in which case it is an open constructed type. Think of an open con-

structed type as being somewhere in between an open type and a closed type; that is,

it has provided arguments for at least one type parameter, but also has at least one

type parameter for which an argument must still be provided before it is a con-

structed type.

Expanding on the example in Listing 11.9 to create an open type Element with two

type parameters T and K, the different possibilities for creating open constructed types

are shown in Listing 11.10.

ptg

Combining Generics and Arrays 257

LISTING 11.10 Inheriting from an Open Constructed Class
class Element<T, K> { }

class Element1<T> : Element<T, int> { }

class Element2<K> : Element<string, K> { }

If the open constructed type specifies constraints, the derived type is required to pro-

vide type arguments that meet those constraints. This can be done by specifying con-

straints itself. The constraints on the subclass can be the same constraints applied to

the base class, or they can be a superset of those constraints. Listing 11.11 shows an

example of inheriting from an open constructed class with constraints.

LISTING 11.11 Inheriting from a Constrained Open Constructed Class
class ConstrainedElement<T>

where T : IComparable<T>, new()

class ConstrainedElement1<T> : ConstrainedElement<T>
where T : IComparable<T>, new()

Finally, if a generic class implements an interface, all instances of that class can be

cast to the interface.

Combining Generics and Arrays
In Hour 9, you learned that all single-dimensional arrays that have a lower bound of

zero automatically implement IList<T>. As a result, you can create a generic method

that iterates over the contents of an IList<T> that will work for any of the collection

types (because they all implement IList<T>) and any single-dimensional array.

Listing 11.12 shows an example of such a generic method.

LISTING 11.12 Printing Collection Items with a Generic Method
public static class Program
{

public static void PrintCollection<T>(IList<T> collection)
{

StringBuilder builder = new StringBuilder();
foreach(var item in collection)
{

builder.AppendFormat(“{0} “, item);
}

Console.WriteLine(builder.ToString());
}

ptg

258 HOUR 11: Understanding Generics

By the
Way

public static void Main()
{

int[] array = {0, 2, 4, 6, 8};
List<int> list = new List<int>() { 1, 3, 5, 7, 9 };
PrintCollection(array);
PrintCollection(list);

string[] array2 = { “hello”, “world” };
List<string> list2 = new List<string>() { “now”, “is”, “the”, “time” };
PrintCollection(array2);
PrintCollection(list2);

}
}

Variance in Generic Interfaces
Type variance refers to the ability to use a type other than the one originally speci-

fied. Covariance enables you to use a more-derived type than the one specified,

whereas contravariance enables you to use a less-derived type. C# supports covari-

ance for return types and contravariance for parameters.

The generic collections in C# are invariant, meaning you must use an exact match

of the formal type specified. As a result, it is not possible to substitute a collection con-

taining a more-derived type where a less-derived type is expected. For example, if you

have a collection of cars, you can’t treat it as a collection of police cars because it

might contain a car that is not a police car. Similarly, you can’t treat it as a collection

of vehicles because you could put a truck (which is clearly not a car) into a collection

of vehicles but not into a collection of cars.

Classes Implementing Generic Variant Interfaces
Classes implementing generic variant interfaces are always invariant.

The real problem here is that the collections are mutable. If you could restrict the col-

lection to a read-only subset of behavior, you can make it covariant, allowing a

sequence of cars to be treated as a sequence of vehicles with no problem.

In C#, an interface is variant if its type parameters are declared covariant or con-

travariant. Covariance and contravariance apply only when there is a reference con-

version between the two types. This means you can’t use variance with value types.

You also can’t use variance with ref or out parameters.

Several of the generic collection interfaces, shown in Table 11.2, support variance.

ptg

Combining Generics and Arrays 259

▼

TABLE 11.2 Generic Interfaces Supporting Variance

Interface Variance

IEnumerable<T> T is covariant.

IEnumerator<T> T is covariant.

IQueryable<T> T is covariant.

IGrouping<TKey, TElement> TKey and TElement are covariant.

IComparer<T> T is contravariant.

IEqualityComparer<T> T is contravariant.

IComparable<T> T is contravariant.

FIGURE 11.3
Printing the con-
tents of an array

FIGURE 11.4
Compiler errors

Try It Yourself

Exploring Variance
By following these steps, you explore how variance works by modifying the code
shown in Listing 11.12.

1. Create a new Console application and modify the content of Program.cs to

look as shown in Listing 11.12.

2. Run the application using Ctrl+F5, and observe that the output matches what is

shown in Figure 11.3.

3. Change PrintCollection<T> so that it is no longer a generic method and that

the type of collection is IEnumerable<object>.

4. You should immediately see the compiler errors shown in Figure 11.4.

5. Correct the two errors by commenting out the invalid lines of code. Remember,

variance doesn’t work for value types, which is the reason for the compiler errors.

ptg

260 HOUR 11: Understanding Generics

▲

FIGURE 11.5
Results of explor-
ing variance

6. Run the application again and observe that the output matches what is shown

in Figure 11.5.

Extending Variant Generic Interfaces
The compiler does not infer variance from the inherited interface, which requires

that you explicitly specify if the derived interface supports variance, as shown in

Listing 11.13.

LISTING 11.13 Extending a Generic Variant Interface
interface ICovariant<out T>
{
}

interface IInvariant<T> : ICovariant<T>
{
}

interface IExtendedCovariant<out T> : ICovariant<T>
{
}

Even though the IInvariant<T> interface and the IExtendedCovariant<out T>

interface both extend the same covariant interface, only IExtendedCovariant<out T>

is also covariant. You can extend contravariant interfaces in the same manner.

You can also extend both a covariant and a contravariant interface in the same

derived interface if it is invariant, as shown in Listing 11.14.

LISTING 11.14 Extending Both a Covariant and Contravariant Interface
interface ICovariant<out T>
{
}

interface IContravariant<in T>
{
}

interface IInvariant<T> : IContravariant<T>, ICovariant<T>
{
}

ptg

Working with Tuples 261

By the
Way

However, you cannot extend a contravariant interface with a covariant interface, or

the other way around, if the base interface is open, as shown in Listing 11.15.

Creating Your Own Variant Generic Interfaces
Just as you can define your own generic interfaces, you can define your own vari-
ant generic interfaces using the in and out keywords with the generic type
parameters.

The out keyword declares a generic type parameter as covariant, whereas the in
keyword declares a generic type parameter as contravariant. An interface can also
support both covariance and contravariance for different type parameters. Unlike
the ref and out keywords, which appear at both the declaration and calling site,
these keywords appear only in the interface declaration.

LISTING 11.15 Extending an Invariant Interface Contravariantly
// Generates a compiler error.
interface IInvalidVariance<in T> : ICovariant<T>
{
}

Working with Tuples
A tuple is a data structure having a specific number and sequence of values. Tuples

are commonly used to

. Represent a single set of data

. Provide easy access to a data set

. Easily return multiple values from a method

Although tuples are most frequently found in functional programming languages

such as F#, Ruby, or Python, the .NET Framework provides several Tuple classes rep-

resenting tuples containing from one to seven values. There is also an n-tuple class,

where n is any value greater than or equal to eight. This n-tuple class is slightly dif-

ferent from the one-to-seven-tuple classes in that the eighth component of the tuple

is another Tuple object that defines the rest of the remaining components.

ptg

▼

262 HOUR 11: Understanding Generics

▲

FIGURE 11.6
Results of work-
ing with tuples

Try It Yourself

Working with Tuples
To create a new Tuple<T1, T2> instance and access the values of that tuple, fol-
low these steps.

1. Create a new Console application.

2. Create a new method in the Program.cs file that returns a Tuple<int,

string>:

public static Tuple<int, string> GenerateTuple()
{

return Tuple.Create(1, “hello, world”);
}

3. In the Main method, enter the following code:

var t = GenerateTuple();
Console.WriteLine(t.GetType());
Console.WriteLine(“{0}:{1}”, t.Item1, t.Item2);

4. Run the application by pressing Ctrl+F5; you should see what is displayed in

Figure 11.6.

Summary
In this hour, you learned why generic programming is important and how it enables

you to solve problems in a way that is reusable no matter what data type is used.

You learned how type parameters work and how to constrain those type parameters

to provide restrictions on the allowable types.

You learned how to create your own generic classes, interfaces, and methods, includ-

ing the ability to create generic methods in nongeneric classes. Finally, you learned

how to explicitly specify the variance of a type parameter for a generic interface.

Generic programming, both by creating your own generic types and using the exist-

ing generic collections, is a flexible and powerful concept that enables you to still

have type safety while only having to write a single implementation.

ptg

263Q&A

Q&A
Q. What is the most common use of generics?

A. Generics are most commonly used in the collection classes and interfaces,

although you can use them for your own classes as well.

Q. What problems do using generics prevent?

A. Using generics enables you to write a single implementation that is type safe

and does not require boxing or unboxing operations.

Q. Are C# generics like Java generics or C++ templates?

A. Although the syntax is similar to both, the implementations are different. Java

generics are a language-only construction, and the generic type information is

not known at runtime. C++ templates are expanded at compile-time, which

generates additional code for each template type.

Q. What are type constraints?

A. Constraints enable you to apply restrictions on the types that can be used for

the type arguments at compile time and guarantee to the compiler that any

operator or method called on a type parameter will be supported.

Q. Can a non-generic class contain a generic method?

A. Yes, a generic method can be defined within either a generic or non-generic class.

Q. What is co- and contravariance for generic interfaces?

A. Variance is defined as the capability for two generic types to be made assign-

ment-compatible based solely on the known assignment compatibility of their

type arguments. Covariance enables interface methods to have more derived

return types than originally specified by the type parameters. Contravariance

enables interface methods to have argument types that are less derived than

originally specified by the type parameters.

ptg

264 HOUR 11: Understanding Generics

Workshop

Quiz
1. What is the correct way to test for value equality with generics?

2. What is a type parameter constraint?

3. What is a closed and open type?

Answers
1. The correct way to test for value equality using generics is to apply the

where T : IComparable<T> and use the CompareTo method to perform value

equality.

2. A type parameter constraint is when a generic parameter is used as the con-

straint for another generic parameter.

3. An open type is a generic type that has not been supplied any type arguments

for its type parameters. A closed type is a generic type that is not open (that is,

it has been supplied a type argument for all its type parameters).

Exercise
1. Add the following method to the ExifMetadata struct:

private static Nullable<T> QueryMetadata<T>(BitmapMetadata metadata, string query)
where T : struct

{
Nullable<T> result = new Nullable<T>();

if (metadata.ContainsQuery(query))
{

try
{

object queryResult = metadata.GetQuery(query);
if (queryResult.GetType() == typeof(T))
{

result = (T)queryResult;
}
else
{

try
{

result = (T)Convert.ChangeType(queryResult, typeof(T));
}

ptg

265Workshop

catch (InvalidCastException)
{

result = null;
}
catch (FormatException)
{

result = null;
}
catch (OverflowException)
{

result = null;
}

}
}
catch
{

result = null;
}

}

return result;
}

Replace the content of the constructor with the following code:

BitmapFrame frame = BitmapFrame.Create(imageUri,
➥BitmapCreateOptions.DelayCreation, BitmapCacheOption.None);
BitmapMetadata metadata = (BitmapMetadata)frame.Metadata;
this.cameraModel = metadata.CameraModel;
this.creationSoftware = metadata.ApplicationName;
this.dateTaken = metadata.DateTaken;
this.equipmentManufacturer = metadata.CameraManufacturer;

this.colorRepresentation = QueryMetadata<ushort>(metadata,
➥“System.Image.ColorSpace”);
this.exposureCompensation = QueryMetadata<decimal>(metadata,
➥“System.Photo.ExposureBias”);
this.exposureMode = QueryMetadata<ushort>(metadata, “System.Photo.ProgramMode”);
this.exposureTime = QueryMetadata<decimal>(metadata,
“System.Photo.ExposureTime”);
this.flashMode = QueryMetadata<ushort>(metadata, “System.Photo.Flash”);
this.focalLength = QueryMetadata<decimal>(metadata, “System.Photo.FocalLength”);
this.height = QueryMetadata<uint>(metadata, MetadataPaths.Height);
this.horizontalResolution = QueryMetadata<decimal>(metadata,
➥“System.Image.VerticalResolution”);
this.isoSpeed = QueryMetadata<ushort>(metadata, “System.Photo.ISOSpeed”);
this.lensAperature = QueryMetadata<decimal>(metadata, “System.Photo.FNumber”);
this.lightSource = QueryMetadata<ushort>(metadata, “System.Photo.LightSource”);
this.verticalResolution = QueryMetadata<decimal>(metadata,
➥“System.Image.HorizontalResolution”);
this.width = QueryMetadata<uint>(metadata, MetadataPaths.Width);

ptg

This page intentionally left blank

ptg

267

HOUR 12

Understanding Query
Expressions

What You’ll Learn in This Hour:
. Introducing LINQ
. Selecting, Filtering, Grouping, Ordering, and Joining Data
. Standard Query Operator Methods
. Expression Lambdas and Statement Lambdas

In Hour 9, “Working with Arrays and Collections,” you learned how applications

could work with data stored in collections. Applications also need to work with data

stored in other data sources, such as SQL databases or XML files, or even accessed

through a web service. Traditionally, queries against these different data sources

required different syntax and performed no type checking at compile time.

For example, consider a collection of customers. How would you search that collec-

tion for all customers with a specific job title? Using what you have learned so far,

you would need to write code that iterates over each item in the collection, examin-

ing the appropriate field and returning those items that match the job title for which

you are searching. What would happen if the source of your customer data were to

change and no longer be an in-memory collection but an XML file or data retrieved

from a web service call? You would most likely need to rewrite your search logic to

accommodate this new data source.

In this hour, you learn about LINQ and query expression expressions, which enable

you to write a single query that works correctly for any supported data source.

ptg

268 HOUR 12: Understanding Query Expressions

Introducing LINQ
Query expressions in the .NET Framework are part of a set of technologies called

Language Integrated Query (LINQ), which integrate query capabilities directly into

the C# language. Introduced in the .NET Framework 3.5, LINQ eliminates the lan-

guage mismatch commonly found between working with data and working with

objects by providing the same query language for each type of data source: SQL

databases, XML documents, web services, ADO.NET Datasets, and any collections

that support the IEnumerable or IEnumerable<T> interfaces.

LINQ enables a query to be a first-class language construct, just like arithmetic oper-

ations and control flow statements are first-class concepts in C#. Query expressions

in LINQ can query and transform data from any supported data source in a consis-

tent fashion by working with the common operations performed rather than focus-

ing on the structure.

The LINQ query syntax is similar to that of Structured Query Language (SQL)

queries, using some of the same keywords, and offers many of the same advantages.

You can freely change the structure of the underlying data being queried without

needing to change the query itself. Although SQL is designed to handle relational

data only, LINQ actually supports far more data structures.

Listing 12.1 shows a query against a collection of Contact objects. Assume for the

moment that the list has been populated as a result of calling GetContacts.

LISTING 12.1 A LINQ Query
class Contact
{

public int Id { get; set; }
public string Company { get; set; }
public string LastName { get; set; }
public string FirstName { get; set; }
public string Address { get; set; }
public string City { get; set; }
public string StateProvince { get; set; }

}

IEnumerable<Contact> contacts = GetContacts();

var result =
from contact in contacts
select contact.FirstName;

foreach(var name in result)
{

Console.WriteLine(name);
}

ptg

Introducing LINQ 269

This simple query illustrates the declarative syntax, also called the query compre-

hension syntax, supported by the C# language. This syntax enables you to write

queries using SQL-like query syntax, providing a great deal of flexibility and expres-

siveness. Although all the variables in a query expression are strongly typed, in most

cases you don’t need to provide the type explicitly because the compiler can infer it.

LINQ Query Syntax
If you are familiar with SQL, the query syntax used by LINQ will be familiar. The
most noticeable difference is that the from operator occurs before the select
operator, rather than after it as it does in SQL.

By the
Way

Selecting Data
Although the code shown in Listing 12.1 might look simple, a lot is actually going

on. The first thing you should notice is the use of an implicitly typed variable named

result, which is actually of type IEnumerable<string>. The result of the query

expression (the code on the right side of the assignment operator) is actually a query,

not the result of the query. The select clause returns an object that represents the

operation of projecting a result (the contact.FirstName values) from a sequence (the

contacts list). Because the results are strings, result must be an enumerable collec-

tion of strings. It does not actually retrieve the data at this time; rather, it simply

returns an enumerable collection that will fetch the data later.

This query literally says “select the FirstName field from each element, called

contact, in the data source specified by contacts”. You can think of the contact

variable specified in the from clause as being similar to the iteration variable of a

foreach statement. It corresponds to a read-only local variable scoped only to the

query expression. The in clause specifies the data source containing the elements to

be queried, and the select clause says to select only the contact.FirstName field for

each element during the iteration.

Although this syntax works well for selecting a single field, it is common to select

multiple fields or even to transform the data in some way, such as combining fields.

Fortunately, LINQ enables these scenarios as well, using similar syntax. You actually

have several options for performing these types of selections.

The first is simply to concatenate the fields in the select statement, thereby still

returning a single field, as shown in Listing 12.2.

LISTING 12.2 A LINQ Query Concatenating Data
var result =

from contact in contacts
select contact.FirstName + “ “ + contact.LastName;

ptg

▼

270 HOUR 12: Understanding Query Expressions

foreach(var name in result)
{

Console.WriteLine(name);
}

Obviously, this form of selection works only in a limited number of cases. A more

flexible approach is to return multiple fields, essentially returning a subset of data, as

shown in Listing 12.3.

LISTING 12.3 A LINQ Query Returning an Anonymous Type
var result =

from contact in contacts
select new
{

Name = contact.LastName + “, “ + contact.FirstName,
DateOfBirth = contact.DateOfBirth

};

foreach(var contact in result)
{

Console.WriteLine(“{0} born on {1}”, contact.Name, contact.DateOfBirth);
}

In this case, you are still returning an IEnumerable, but what is its type? If you look

at the select clause in Listing 12.3, you should notice it is returning a new type con-

taining the values from the contact.FirstName and contact.LastName fields. This

new type is actually an anonymous type containing properties named Name and

DateOfBirth. The type is anonymous because it doesn’t have a name. You did not

explicitly declare a new type that corresponds to the returned value; the compiler

generated it for you.

Anonymous Types
The ability to create anonymous types in this manner is central to the way LINQ
works and would not be possible without the type inference provided by var.

By the
Way

Try It Yourself

Selecting Data
To select data using select query statements, follow these steps. Keep Visual Stu-
dio open at the end of this exercise because you will use this application later.

1. Open the Hour12 solution in Visual Studio.

2. Open Program.cs and add a query that selects the LastName property for each

contact in the contacts collection.

ptg

Introducing LINQ 271

3. Write a foreach statement that prints the results of the query.

4. Run the application by pressing Ctrl+F5. The output should look similar to

Figure 12.1.

5. Write an additional query that selects in to the Name property of a new anony-

mous type the concatenation of LastName, FirstName.

6. Write a foreach statement that prints the results of the query.

7. Run the application by pressing Ctrl+F5. The output should look similar to

Figure 12.2.

Filtering Data
Selecting data is important, but selecting data in this way provides no option to

restrict what data is returned. Just as SQL provides a where clause, LINQ provides a

▲

FIGURE 12.1
Selecting data

FIGURE 12.2
Selecting data
using anony-
mous types

ptg▼

272 HOUR 12: Understanding Query Expressions

where clause that returns an enumerable collection containing elements that match

the specified criteria. Listing 12.4 applies a where clause to the query in Listing 12.3,

restricting the results to only those contacts where the value of StateProvince is

equal to “FL”.

LISTING 12.4 A Filtered LINQ Query
var result =

from contact in contacts
where contact.StateProvince == “FL”
select new { customer.FirstName, customer.LastName };

foreach(var name in result)
{

Console.WriteLine(name.FirstName + “ “ + name.LastName);
}

The where clause is applied first, resulting in an enumerable collection to which the

select clause is applied, resulting in an anonymous type containing the FirstName

and LastName properties.

Try It Yourself

Filtering Data
By following these steps, you learn how to write query statements that filter the
resulting data. If you closed Visual Studio, repeat the previous exercise first. Be
sure to keep Visual Studio open at the end of this exercise because you will use
this application later.

1. Modify both of the queries you previously wrote to include a where clause that

filters the result set to just contacts whose last name starts with “M.”

2. Run the application by pressing Ctrl+F5. The output should look similar to

Figure 12.3.

▲

FIGURE 12.3
Filtering data

ptg

Introducing LINQ 273

Grouping and Ordering Data
To support more complex scenarios, such as ordering or grouping the returned data,

LINQ provides the orderby and group clauses. You can order data in either ascend-

ing (smallest to largest) or descending (largest to smallest) order. Because ascending is

the default, you don’t need to specify it. Listing 12.5 shows the query from Listing

12.1 ordered by the LastName field.

LISTING 12.5 A LINQ Query Using OrderBy
var result =

from contact in contacts
orderby contact.LastName
select contact.FirstName;

foreach(var name in result)
{

Console.WriteLine(name);
}

You can order by multiple fields and can mix ascending and descending to create

rather sophisticated orderby statements, as shown in Listing 12.6.

LISTING 12.6 A LINQ Query Using a Complex OrderBy
var result =

from contact in contacts
orderby

contact.LastName ascending,
contact.FirstName descending

select customer.FirstName;

foreach(var name in result)
{

Console.WriteLine(name);
}

Grouping data follows a similar pattern, but the group clause takes the place of the

select clause. The difference when grouping data is that the result returned is an

IEnumerable of IGrouping<TKey, TElement> objects, which you can think of as a

list of lists. This requires two nested foreach statements to access the results.

Listing 12.7 shows the same query as in Listing 12.1, but this time groups by the first

character of the last name.

LISTING 12.7 A LINQ Query Using Group
var result =

from contact in contacts
group contact by contact.LastName[0];

ptg

▼

274 HOUR 12: Understanding Query Expressions

foreach(var group in result)
{

Console.WriteLine(“Last names starting with {0}”, group.Key);
foreach(var name in result)
{

Console.WriteLine(name);
}

Console.WriteLine();
}

If you need to refer to the result of a grouping operation, you can create an identifier

that can be queried further using the into keyword. This form of composability is a

query continuation.

Listing 12.8 performs the same query as Listing 12.7 but returns only those groups

that have more than three entries.

LISTING 12.8 A LINQ Query Using Group and Into
var result =

from contact in contacts
group contact by contact.LastName[0] into namesGroup
where namesGroup.Count() > 2
select namesGroup;

foreach(var group in result)
{

Console.WriteLine(“Last names starting with {0}”, group.Key);
foreach(var name in result)
{

Console.WriteLine(name);
}

Console.WriteLine();
}

Try It Yourself

Grouping and Ordering Data
To write query statements that perform grouping, ordering, and other aggregating
functions, follow these steps. If you closed Visual Studio, repeat the previous exer-
cise first. Be sure to keep Visual Studio open at the end of this exercise because
you will use this application later.

1. Write a new query that groups the contacts collection by the first character of

the last name.

2. Write a foreach statement that prints the grouping key and includes a nested

foreach statement that prints the last name of each contact in the group.

ptg

Introducing LINQ 275

3. Run the application by pressing Ctrl+F5. The output should look similar to

Figure 12.4.

Joining Data
LINQ also enables you to combine multiple data sources by joining them together on

one or more common fields. Joining data is important for queries against data

sources where their relationship cannot be followed directly. Unlike SQL, which sup-

ports joins using many different operators, join operations in LINQ are based on the

equality of their keys.

Expanding on the earlier examples that used only the Contact class, you need at

least two classes to perform join operations. The Contact class is shown again in

Listing 12.9, along with a new JournalEntry class. Continue the assumption that the

contacts list has been populated as a result of calling GetContacts and that the

journal list has been populated as a result of calling GetJournalEntries.

LISTING 12.9 The Contact and JournalEntry Classes
class Contact
{

public int Id { get; set; }
public string Company { get; set; }
public string LastName { get; set; }
public string FirstName { get; set; }
public string Address { get; set; }
public string City { get; set; }
public string StateProvince { get; set; }

}

▲

FIGURE 12.4
Grouping data

ptg

276 HOUR 12: Understanding Query Expressions

class JournalEntry
{

public int Id { get; set; }
public int ContactId { get; set; }
public string Description { get; set; }
public string EntryType { get; set; }
public DateTime Date { get; set; }

}

IEnumerable<Contact> contacts = GetContacts();
IEnumerable<JournalEntry> journal = GetJournalEntries();

The simplest join query in LINQ is the functional equivalent of an inner join in SQL

and uses the join clause. Unlike joins in SQL, which can use many different opera-

tors, joins in LINQ can use only an equality operator and are called equijoins.

Listing 12.10 shows a query against a list of Contact objects joined to a list of

JournalEntry objects using the Contact.ID and JournalEntry.ContactId fields as

the keys for the join.

LISTING 12.10 A LINQ Query Using Join
var result =

from contact in contacts
join journalEntry in journal
on contact.Id equals journalEntry.ContactId
select new
{

contact.FirstName,
contact.LastName,
journalEntry.Date,
journalEntry.EntryType,
journalEntry.Description

};

The join clause in Listing 12.10 creates a range variable named journalEntry,

which is of type JournalEntry, and then uses the equals operator to join the two

data sources.

LINQ also has the concept of a group join, which has no corresponding SQL query. A

group join uses the into keyword and creates results that have a hierarchical struc-

ture. Just as you did with the group clause, you need nested foreach statements to

access the results.

Order Is Important
When working with LINQ joins, order is important. The data source to be joined
must be on the left side of the equals operator and the joining data source must
be on the right. In this example, contacts is the data source to be joined and
journal is the joining data source.

Watch
Out!

ptg

Introducing LINQ 277

Fortunately, the compiler can catch these types of errors and generate a compiler
error. If you were to swap the parameters in the join clause, you would get the
following compiler error:

The name ‘journalentry’ is not in scope on the left side of ‘equals’.
Consider swapping the expressions on either side of ‘equals’.

Another important thing to watch out for is that the join clause uses the equals
operator, which is not the same as the equality (==) operator.

Listing 12.11 shows a query that joins contacts and journal and returns a result

grouped by contact name. Each entry in the group has an enumerable collection of

journal entries, represented by the JournalEntries property in the returned anony-

mous type.

LISTING 12.11 A LINQ Query Using a Group Join
var result =

from contact in contacts
join journalEntry in journal
on contact.Id equals journalEntry.ContactId
into journalGroups
select new
{

Name = contact.LastName + “, “ + contact.FirstName,
JournalEntries = journalGroups

};

Flattening Data
Although selecting and joining data often return results in the right shape, that hier-

archical shape can sometimes be cumbersome to work with. LINQ enables you to cre-

ate queries that instead return the flattened data, much the same way you would

when querying a SQL data source.

Suppose you were to change the Contact and JournalEntry classes so that a

List<JournalEntries> field named Journal is added to the Contact class and the

ContactId property is removed from the JournalEntry class, as shown in Listing 12.12.

LISTING 12.12 Revised Contact and JournalEntry Classes
class Contact
{

public int Id { get; set; }
public string Company { get; set; }
public string LastName { get; set; }
public string FirstName { get; set; }

ptg

278 HOUR 12: Understanding Query Expressions

public string Address { get; set; }
public string City { get; set; }
public string StateProvince { get; set; }
public List<JournalEntries> Journal;

}

class JournalEntry
{

public int Id { get; set; }
public string Description { get; set; }
public string EntryType { get; set; }
public DateTime Date { get; set; }

}

IEnumerable<Contact> contacts = GetContacts ();

You could then query the contacts collection using the following query to retrieve the

list of journal entries for a specific contact, as shown in Listing 12.13.

LISTING 12.13 A LINQ Query Selecting an Enumerable Collection
var result =

from contact in contacts
where contact.Id == 1
select contact.Journal;

foreach(var item in result)
{

foreach(var journalEntry in item)
{

Console.WriteLine(journalEntry);
}

}

Although this works and returns the results, it still requires nested foreach state-

ments to generate the proper results. Fortunately, LINQ provides a query syntax that

enables the data to be returned in a flattened manner by supporting selects from

more than one data source. The code in Listing 12.14 shows how this query would be

written so that only a single foreach statement is required by using multiple from

clauses.

LISTING 12.14 A LINQ Query Selecting Flattened Data
var result =

from contact in contacts
from journalEntry in contact.Journal
where contact.Id == 1
select journalEntry;

foreach(var journalEntry in result)
{

Console.WriteLine(journalEntry);
}

ptg

Standard Query Operator Methods 279

Standard Query Operator Methods
All the queries you have just seen use declarative query syntax; however, they could

have also been written using standard query operator method calls, which are actu-

ally extension methods for the Enumerable class defined in the System.Linq name-

space. The compiler converts query expressions using the declarative syntax to the

equivalent query operator method calls.

As long as you include the System.Linq namespace with a using statement, you can

see the standard query operator methods on any classes that implement the

IEnumerable<T> interface, as shown in Figure 12.5.

Although the declarative query syntax supports almost all query operations, there

are some, such as Count or Max, which have no equivalent query syntax and must be

expressed as a method call. Because each method call returns an IEnumerable, you

can compose complex queries by chaining the method calls together. This is what the

compiler does on your behalf when it compiles your declarative query expressions.

Listing 12.15 shows the same query from Listing 12.4 using method syntax rather

than declarative syntax, and the output from both will be identical. The Where

method corresponds to the where clause, whereas the Select method corresponds to

the select clause.

Declarative or Method Syntax
The choice of using the declarative syntax or the method syntax is entirely per-
sonal and depends on which one you find easier to read. No matter which one
you choose, the result of executing the query will be the same.

By the
Way

FIGURE 12.5
LINQ extension
methods in
IntelliSense

ptg

280 HOUR 12: Understanding Query Expressions

LISTING 12.15 A LINQ Query Using Method Syntax
var result = contacts.

Where(contact => contact.StateProvince == “FL”).
Select(contact => new { contact.FirstName, contact.LastName });

foreach(var name in result)
{

Console.WriteLine(name.FirstName + “ “ + name.LastName);
}

Lambdas
In Listing 12.15, you might have noticed that the arguments passed to the Where and

Select methods look different from what you have used before. These arguments

actually contain code rather than data types. In Hour 6, “Events and Event Han-

dling,” you learned about delegates, which enable a method to be passed as an argu-

ment to other methods, and about anonymous methods, which enable you to write

an unnamed inline statement block that can be executed in a delegate invocation.

The combination of these concepts is a lambda, which is an anonymous function

that can contain expressions and statements. Lambdas enable you to write code nor-

mally written using an anonymous method or generic delegate in a more convenient

and compact way.

Lambdas and Delegates
Because lambdas are a more compact way to write a delegate, you can use them
anywhere you would ordinarily have used a delegate. As a result, the lambda for-
mal parameter types must match the corresponding delegate type exactly. The
return type must also be implicitly convertible to the delegate’s return type.

Although lambdas have no type, they are implicitly convertible to any compatible
delegate type. That implicit conversion is what enables you to pass them without
explicit assignment.

By the
Way

Lambdas in C# use the lambda operator (=>). If you think about a lambda in the

context of a method, the left side of the operator specifies the formal parameter list,

and the right side of the operator contains the method body. All the restrictions that

apply to anonymous methods also apply to lambdas.

The argument to the Where method shown in Listing 12.15, contact =>

contact.StateProvince == “FL”, is read as “contact goes to contact.StateProvince

equals FL”.

ptg

Lambdas 281

Expression Lambdas

Captured and Defined Variables
Lambdas also have the capability to “capture” variables, which can be local vari-
ables or parameters of the containing method. This enables the body of the
lambda to access the captured variable by name. If the captured variable is a
local variable, it must be definitely assigned before it can be used in the lambda.
Captured parameters cannot be ref or out parameters.

Be careful, however, because variables that are captured by lambdas will not be eli-
gible for garbage collection until the delegate that references it goes out of scope.

Any variables introduced within the lambda are not visible in the outer containing
method. This also applies to the input parameter names, so you can use the
same identifiers for multiple lambdas.

Did you
Know?

When a lambda contains an expression on the right side of the operator, it is an

expression lambda and returns the result of that expression. The basic form of an

expression lambda is

(input parameters) => expressions

If there is only one input parameter, the parentheses are optional. If you have any

other number of input parameters, including none, the parentheses are required.

Just as generic methods can infer the type of their type parameter, lambdas can infer

the type for their input parameters. If the compiler cannot infer the type, you can

specify the type explicitly. Listing 12.16 shows different forms of expression lambdas.

LISTING 12.16 Example Expression Lambdas
x => Math.Pow(x, 2)

(x, y) => Math.Pow(x, y)

() => Math.Pow(2, 2)

(int x, string s) => s.Length < x

If you consider the expression portion of an expression lambda as the body of a

method, an expression lambda contains an implicit return statement that returns

the result of the expression.

Expression Lambdas Containing Method Calls
Although most of the examples in Listing 12.16 used methods on the right side
of the operator, if you create lambdas that will be used in another domain, such

Watch
Out!

ptg

▼

282 HOUR 12: Understanding Query Expressions

as SQL Server, you should not use method calls because they have no meaning
outside the boundary of.NET Framework common language runtime.

Try It Yourself

Working with Expression Lambdas
By following these steps, you learn how to use expression lambdas with the LINQ
query methods. If you closed Visual Studio, repeat the previous exercise first.

1. Modify the declarative query expressions you wrote in the previous exercises to

use the corresponding standard query method.

2. Run the application by pressing Ctrl+F5. The output should match the output

from the previous exercises.

Statement Lambdas
A lambda that has one or more statements enclosed by curly braces on the right side

is a statement lambda. The basic form of a statement lambda is

(input parameters) => { statement; }

Like expression lambdas, if there is only one input parameter, the parentheses are

optional; otherwise, they are required. Statement lambdas also follow the same rules

of type inference.

Although expression lambdas contain an implicit return statement, statement

lambdas do not. You must explicitly specify the return statement from a statement

lambda. The return statement causes only the implicit method represented by the

lambda to return, not the enclosing method. Listing 12.17 shows different forms of

statement lambda.

LISTING 12.17 Example Statement Lambdas
(x) => { return x++; };

CheckBox cb = new CheckBox();
cb.CheckedChanged += (sender, e) =>
{

MessageBox.Show(cb.Checked.ToString());
};

Action<string> myDel = n =>
{

string s = n + “ “ + “World”;
Console.WriteLine(s);

};

myDel(“Hello”);

▲

ptg

Deferred Execution 283

Did you
Know?

A statement lambda cannot contain a goto, break, or continue statement whose

target is outside the scope of the lambda itself. Similarly, normal scoping rules pre-

vent a branch into a nested lambda from an outer lambda.

Predefined Delegates
Although lambdas are an integral component of LINQ, they can be used anywhere

you can use a delegate. As a result, the .NET Framework provides many predefined

delegates that can be used to represent a method that can be passed as a parameter

without requiring you to first declare an explicit delegate type.

Because delegates that return a Boolean value are common, the .NET Framework

defines a Predicate<in T> delegate, which is used by many of the methods in the

Array and List<T> classes.

Although Predicate<T> defines a delegate that always returns a Boolean value, the

Func family of delegates encapsulate a method that has the specified return value

and 0 to 16 input parameters.

Because Predicate<T> and the Func delegates all have a return type, the family of

Action delegates represent a method that has a void return type. Just like the Func

delegates, the Action delegates also accept from 0 to 16 input parameters.

Deferred Execution
Unlike many traditional data query techniques, a LINQ query is not evaluated until

you actually iterate over it. One advantage of this approach, called lazy evaluation,

is that it enables the data in the original collection to change between when the

query is executed and the data identified by the query is retrieved. Ultimately, this

means you will always have the most up-to-date data.

Even though LINQ prefers to use lazy evaluation, any queries that use any of the

aggregation functions must first iterate over all the elements. These functions, such as

Count, Max, Average, and First, return a single value and execute without using an

explicit foreach statement.

Deferred Execution and Chained Queries
Another advantage of deferred execution is that it enables queries to be effi-
ciently chained together. Because query objects represent queries, not the results
of those queries, they can easily be chained together or reused without causing
potentially expensive data fetching operations.

ptg

284 HOUR 12: Understanding Query Expressions

You can also force immediate evaluation, sometimes called greedy evaluation, by

placing the foreach statement immediately after the query expression or by calling

the ToList or ToArray methods. You can also use either ToList or ToArray to cache

the data in a single collection object.

Summary
LINQ takes the best ideas from functional languages such as Haskell and other

research languages and brings them together to introduce a way to query data in a

consistent manner, no matter what the original data source might be, using a simple

declarative or method-based syntax. By enabling queries to be written in a source-

agnostic fashion, LINQ enables access to a wide variety of data sources, including

databases, XML files, and in-memory collections.

Using syntax similar to that used by SQL queries, the declarative syntax of LINQ

enables a query to be a first-class language construct, just like arithmetic operations

and control flow statements. LINQ is actually implemented as a set of extension

methods on the IEnumerable<T> interface, which accept lambdas as a parameter.

Lambdas, in the form of expression or statement lambdas, are a compact way to

write anonymous delegates.

When you first start with LINQ, you don’t need to use lambdas extensively, but as

you become more familiar with them, you will find that they are extremely powerful.

Q&A
Q. What is LINQ?

A. LINQ is a set of technologies that integrates query capabilities directly into the

C# language and eliminates the language mismatch commonly found

between working with data and working with objects by providing the same

query language for each supported data source.

Q. What is a lambda expression?

A. A lambda expression represents a compact and concise way to write an anony-

mous delegate and can be used anywhere a traditional delegate can be used.

ptg

285Workshop

Workshop

Quiz
1. Is there a difference between the declarative and method syntax for LINQ?

2. When is a LINQ query executed?

3. What is the underlying delegate type for lambda expressions?

Answers
1. The choice of using the declarative syntax or the method syntax is entirely per-

sonal and depends on which one you find easier to read. No matter which one

you choose, the result of executing the query will be the same.

2. By default, LINQ utilizes deferred execution of queries. This means that the

query is not actually executed until the result is iterated over using a foreach

statement.

3. Lambda expressions are inherently typeless, so they have no underlying type;

however, they can be implicitly converted to any compatible delegate type.

Exercises
1. Modify the Search_Click method of the MainWindow class of the AddressBook

project so that it sets this.DataContext to the result of a query over the

contacts collection. This query should select any elements of the collection

where the FirstName or LastName property contains the value in

this.searchCriteria.Text.

2. Modify the Search_Click method so that it will also query using the selected

category if the searchCategory check box is checked.

ptg

This page intentionally left blank

ptg

PART III

Working with Data

HOUR 13: Using Files and Streams 289

HOUR 14: Working with XML 311

HOUR 15: Working with Databases 329

ptg

This page intentionally left blank

ptg

289

HOUR 13

Using Files and Streams

What You’ll Learn in This Hour:
. Files and Directories
. Reading and Writing Data
. Binary Files
. Buffered Streams
. Text Files

In Hour 9, “Working with Arrays and Collections,” and Hour 12, “Understanding

Query Expressions,” you learned how applications could work with data stored in

collections and how to query and manipulate that data. Although these are common

activities, many applications need to store or retrieve data from files on a disk.

The .NET Framework treats files as a stream of data. A stream is a sequential flow of

packets of data, represented as bytes. Data streams have an underlying storage

medium, typically called a backing store, which provides a source for the stream.

Fortunately, the .NET Framework makes working with files and directories easier by

the File, Directory, and Path classes provided by.NET Framework.

The System.IO namespace contains all the classes you need to work with both

buffered and unbuffered streams. Buffered streams enable the operating system to

create its own internal buffer that it uses to read and write data in whatever incre-

ments are most efficient.

In this hour, you learn how to work with files, using the File, Directory, and Path

classes to explore and manage the file system and for reading and writing files. You

also learn how you can use the Stream class, or any of its derived classes, to perform

more complex read and write operations.

ptg

290 HOUR 13: Using Files and Streams

Files and Directories
You can think of a file as a sequence of bytes having a well-defined name and a per-

sistent backing store. Files are manipulated through directory paths, disk storage,

and file and directory names. The .NET Framework provides several classes in the

System.IO namespace that make working with files easy.

Working with Paths
A path is a string that provides the location of a file or directory, and can contain

either absolute or relative location information. An absolute path fully specifies a

location, whereas a relative path specifies a partial location. When using relative

paths, the current location is the starting point when locating the file specified.

Current Location
Every process has a process-wide “current location,” which is usually, but not
always, the location where the process executable was loaded.

By the
Way

The Path class provides static methods that perform operations on path strings in a

cross-platform manner. Although most Path class members don’t interact with the

file system, they do validate that the specified path string contains valid characters.

Table 13.1 shows the commonly used methods.

TABLE 13.1 Commonly Used Methods of the Path Class

Method Description

ChangeExtension Changes the extension

Combine Combines strings into a path

GetDirectoryName Gets the directory name of the specified
path

GetExtension Gets the extension of the specified path

GetFileName Gets the filename and extension of the
specified path

GetFileNameWithoutExtension Gets the filename without the extension of
the specified path

GetPathRoot Gets the root directory of the specified
path

GetRandomFileName Gets a random name

ptg

Files and Directories 291

Special Directories
The Windows operating system includes many “special” folders frequently used by

applications. Typically, the operating system sets these folders; however, a user can

also explicitly set them when installing a version of Windows. As a result, many

might not have the same location or name on any given machine.

The most appropriate way to find these “special” directories, such as the Windows

directory, is to use the Environment.GetFolderPath method. This method accepts

one of the Environment.SpecialFolder enumeration values indicating the special

folder whose path you want to retrieve.

Some of the common Environment.SpecialFolder values are shown in Table 13.2.

TABLE 13.1 Commonly Used Methods of the Path Class

Method Description

GetTempFileName Creates a unique randomly named
temporary file and returns the full path to
that file

GetTempPath Gets the path to the temporary folder

TABLE 13.2 Common Environment.SpecialFolder Values

Member Description

ApplicationData The directory that serves as a common
repository for application-specific data for
the current roaming user.

CommonApplicationData The directory that serves as a common
repository for application-specific data that
is used by all users.

LocalApplicationData The directory that serves as a common
repository for application-specific data that
is used by the current, nonroaming user.

CommonDocuments The file system directory that contains
documents common to all users. This
special folder is valid for Windows NT
systems, Windows 95, and Windows 98
systems with shfolder.dll installed.

Desktop The logical Desktop rather than the
physical file system location.

ptg

292 HOUR 13: Using Files and Streams

The DirectoryInfo and FileInfo classes
The DirectoryInfo and FileInfo classes both derive from the FileSystemInfo

class, which contains the methods common to file and directory manipulation and

can represent either a file or a directory. When a FileSystemInfo is instantiated, the

directory or file information is cached, so you must refresh it using the Refresh

method to ensure current information.

The DirectoryInfo class contains instance members that provide a number of prop-

erties and methods for performing common operations such as copying, moving, cre-

ating, and enumerating directories. The commonly used methods and properties of

the DirectoryInfo class are listed in Table 13.3.

TABLE 13.2 Common Environment.SpecialFolder Values

Member Description

DesktopDirectory The directory used to physically store file
objects on the desktop. Do not confuse
this directory with the desktop folder itself,
which is a virtual folder.

MyDocuments The My Documents folder. This member is
equivalent to Personal.

Personal The directory that serves as a common
repository for documents.

System The System directory.

Windows The Windows directory or SYSROOT. This
corresponds to the %windir% or
%SYSTEMROOT% environment variables.

TABLE 13.3 Commonly Used DirectoryInfo Members

Member Description

Create Creates a directory

Creates a subdirectory on the specified path

Delete Deletes the current directory, optionally deleting
all files and subdirectories

EnumerateDirectories Gets an enumerable collection of directory
information in the current directory

EnumerateFiles Gets an enumerable collection of file
information in the current directory

ptg

Files and Directories 293

Listing 13.1 shows how the DirectoryInfo class might perform some common

operations.

LISTING 13.1 Using the DirectoryInfo Class
public class DirectoryInfoExample
{

public static void Main()
{

string tempPath = Path.GetTempFileName();

DirectoryInfo directoryInfo = new DirectoryInfo(tempPath);
try
{

if (directoryInfo.Exists)
{

Console.WriteLine(“The directory already exists.”);
}
else
{

directoryInfo.Create();
Console.WriteLine(“The directory was successfully created.”);
directoryInfo.Delete();
Console.WriteLine(“The directory was deleted.”);

}
}
catch (IOException e)
{

Console.WriteLine(“An error occurred: {0}”, e.Message);
}

}
}

TABLE 13.3 Commonly Used DirectoryInfo Members

Member Description

EnumerateFileSystemInfos Gets an enumerable collection of file and
directory information in the current directory

Indicates if the current directory exists on disk

FullName Gets the full path of the current directory

MoveTo Moves the current directory, including all files
and subdirectories, to a new location

Name Gets the name of the current directory

Parent Gets the parent directory for the current
directory

Refreshes the cached directory information

Root Gets the root portion of the path

ptg

294 HOUR 13: Using Files and Streams

The FileInfo class contains instance members that provide a number of properties and

methods for performing common file operations such as copying, moving, creating,

and opening files. The commonly used methods and properties are listed in Table 13.4.

TABLE 13.4 Commonly Used FileInfo Members

Member Description

AppendText Creates a StreamWriter for appending text to the
current file

Gets or sets the attributes of the current file

CopyTo Copies the current file to a new file

Create Creates a file

CreateText Creates or opens a file for writing text

Delete Deletes the current file

Directory Gets the parent directory

DirectoryName Gets the name of the parent directory

Exists Determines if the current file exists on disk

Extension The extension of the current file

FullName Gets the full path of the current file

IsReadOnly Gets or sets a value that determines if the current file is
read only

Length The size of the current file

MoveTo Moves the current file to a new location

Name Gets the name of the current file

Open Opens a file

OpenRead Opens an existing file for reading

OpenText Opens an existing text file for reading

OpenWrite Opens an existing file for writing

Refresh Refreshes the cached file information

Replace Replaces the contents of the specified file with the
contents of the current file

ptg

▼

Files and Directories 295

Listing 13.2 shows how the FileInfo class might perform some common operations.

LISTING 13.2 Using the FileInfo Class
public class FileInfoExample
{

public static void Main()
{

string tempFile = Path.GetTempFileName();

FileInfo fileInfo = new FileInfo(tempFile);
try
{

if (!fileInfo.Exists)
{

using (StreamWriter writer = fileInfo.CreateText())
{

writer.WriteLine(“Line 1”);
writer.WriteLine(“Line 2”);

}
}

fileInfo.CopyTo(Path.GetTempFileName());
fileInfo.Delete();

}
catch (IOException e)
{

Console.WriteLine(“An error occurred: {0}”, e.Message);
}

}
}

Streams Are Disposable
You should be sure to dispose of the stream when you finish using it by calling
the Close method. You can also wrap the streams in a using statement, which is
the preferred way to ensure the stream is closed correctly.

By the
Way

Try It Yourself

Working with the DirectoryInfo and FileInfo Classes
To see how the DirectoryInfo and FileInfo classes can be used, follow these
steps. Keep Visual Studio open at the end of this exercise because you will use
this application later.

1. Create a new Console application.

2. In the Main method of the Program.cs file, create a new DirectoryInfo

instance on the C:\Windows\Web\Wallpaper directory. Use the following code

to retrieve this folder path:

ptg

296 HOUR 13: Using Files and Streams

Path.Combine(
Environment.GetFolderPath(Environment.SpecialFolder.Windows),
“Web”,
“Wallpaper”)

3. In a try-catch statement, enumerate only the directories using the

EnumerateDirectories method and display the full name of each directory

using a foreach statement. The catch handler should catch an

UnauthorizedAccessException and print the Message of the exception.

4. Run the application using Ctrl+F5. The output should look similar to what is

shown in Figure 13.1. (This is what you should see if you run on Windows 7.

Earlier versions of Windows might provide different results.)

5. Modify the foreach statement from step 3 to enumerate all the files matching

the pattern “*.jpg” and print both the filename and the creation date using a

nested foreach statement.

6. Run the application again using Ctrl+F5. The output should look similar to

what is shown in Figure 13.2. (Again, this is what you should see if you run

Windows 7. Earlier versions of Windows might provide different results.)

▲

FIGURE 13.1
Results of
working with
DirectoryInfo

FIGURE 13.2
Results of
working with
FileInfo

ptg

Files and Directories 297

The Directory and File Classes
If you don’t want to create an instance of a DirectoryInfo or FileInfo class, you

can use the Directory or File class instead. These classes provide only static meth-

ods for performing the same directory and file operations provided by the

DirectoriyInfo and FileInfo classes.

The commonly used methods of the Directory class are shown in Table 13.5.

Listing 13.3 shows the same operations from Listing 13.1, but using the Directory

class instead of the DirectoryInfo class.

TABLE 13.5 Commonly Used Methods of the Directory Class

Method Description

CreateDirectory Creates all the directories in the specified
path

Delete Deletes the specified directory

EnumerateDirectories Gets an enumerable collection of directory
names in the specified path

EnumerateFiles Gets an enumerable collection of
filenames in the specified path

EnumerateFileSystemEntries Gets an enumerable collection of the
names of all files and subdirectories in the
specified path

Exists Indicates if the specified path exists on
disk

GetCurrentDirectory Gets the current working directory

GetDirectoryRoot Gets the volume information, root
information, or both, for the specified path

GetLogicalDrives Gets the names of the logical drives on the
current computer

GetParent Gets the parent directory of the specified
path

Move Moves a file or a directory, including all
files and subdirectories, to a new location

ptg

298 HOUR 13: Using Files and Streams

TABLE 13.6 Commonly Used Methods of the File Class

Method Description

AppendAllLines Appends lines to a file and then closes the file

AppendAllText Appends the specified strings to a file, creating the file if it
doesn’t already exist

AppendText Creates a StreamWriter for appending text to the
current file

Copy Copies an existing file to a new file

LISTING 13.3 Using the Directory Class
public class DirectoryInfoExample
{

public static void Main()
{

string tempPath = Path.GetTempFileName();

try
{

if (Directory.Exists(tempPath))
{

Console.WriteLine(“The directory already exists.”);
}
else
{

Directory.CreateDirectory(path);
Console.WriteLine(“The directory was successfully created.”);
Directory.Delete(path);
Console.WriteLine(“The directory was deleted.”);

}
}
catch (IOException e)
{

Console.WriteLine(“An error occurred: {0}”, e.Message);
}

}
}

One significant difference between the Directory and DirectoryInfo classes is the

EnumerateFiles, EnumerateDirectories, and EnumerateFileSystemEntries

methods. In the Directory class, these methods return an IEnumerable<string> of

just directory and filenames, whereas in the DirectoryInfo class, they return an

IEnumerable<FileInfo>, IEnumerable<DirectoryInfo>, and

IEnumerable<FileSystemInfo>, respectively.

The commonly used methods of the File class are shown in Table 13.6, and Listing

13.4 shows the same operations used in Listing 13.2, but using the File class instead

of the FileInfo class.

ptg

Files and Directories 299

TABLE 13.6 Commonly Used Methods of the File Class

Method Description

Create Creates a file

CreateText Creates or opens a file for writing text

Delete Deletes the specified file

Determines if the specified file exists on disk

GetAttributes Gets the attributes of the specified file

Move Moves the specified file to a new location

OpenRead Opens an existing file for reading

OpenText Opens an existing text file for reading

OpenWrite Opens an existing file for writing

ReadAllBytes Opens a binary file, reads the contents into a byte array, and
then closes the file

ReadAllLines Opens a text file, reads all the lines into a string array, and then
closes the file

ReadAllTest Opens a test file, reads all the lines into a string, and then
closes the file

ReadLines Reads the lines of a file

Replace Replaces the contents of the specified file with the contents of
another file

SetAttributes Sets the attributes of the specified file

Writes the specified bytes to a new file and then closes the file

WriteAllLines Writes one or more strings to a new text file and then closes
the file

WriteAllText Writes a string to a new file and then closes the file

LISTING 13.4 Using the File Class
public class FileExample
{

public static void Main()
{

string tempFile = Path.GetTempFileName();

try
{

if (!File.Exists(tempFile))
{

using (StreamWriter writer = File.CreateText(tempFile))
{

ptg

300 HOUR 13: Using Files and Streams

▼

▲

writer.WriteLine(“Line 1”);
writer.WriteLine(“Line 2”);

}
}

File.Copy(tempFile, Path.GetTempFileName());
File.Delete(tempFile);

}
catch (IOException e)
{

Console.WriteLine(“An error occurred: {0}”, e.Message);
}

}
}

Try It Yourself

Working with the Directory and File Classes
By following these steps, you learn how to work with the Directory and File
classes. If you closed Visual Studio, repeat the previous exercise first. Be sure to
keep Visual Studio open at the end of this exercise because you will use this appli-
cation later.

1. Modify the call to EnumerateDirectories to call the method on Directory of

the same name, enumerating over the C:\Windows\Web\Wallpaper directory.

Use the following code to retrieve this folder path:

Path.Combine(
Environment.GetFolderPath(Environment.SpecialFolder.Windows),
“Web”,
“Wallpaper”)

2. Modify the nested foreach statement to call Directory.EnumerateFiles.

Because this returns a path string rather than a FileInfo, you also need to

modify the statement that prints the filename and creation time to get the file-

name from the resulting path string and use the appropriate static method on

the File class to retrieve the creation date and time.

3. Run the application using Ctrl+F5. The output should match the output gener-

ated from step 6 of the previous exercise.

Reading and Writing Data
Working with the data contained in files (by either reading or writing) uses streams,

represented by the Stream class. All stream-based classes provided by the .NET

Framework derive from this class. The commonly used members of the Stream class

are shown in Table 13.7.

ptg

Reading and Writing Data 301

TABLE 13.7 Commonly Used Members of the Stream Class

Member Description

CanRead Indicates if the current stream supports reading

CanWrite Indicates if the current stream supports writing

Close Closes the current stream

CopyTo Copies the contents of the current stream into another stream

Flush Clears all buffers and writes any buffered data to the backing
store

Read Reads a sequence of bytes from the current stream

Write Writes a sequence of bytes to the current stream

Binary Files
When you aren’t certain about the content of a file, it is usually best to treat it as a

binary file, which is simply a stream of bytes. To read data from a binary file, you

use the static OpenRead method of the File class, which returns a FileStream:

FileStream input = File.OpenRead(Path.GetTempFileName());

You can then use the Read method on the resulting FileStream to read data into a

buffer that you provide. A buffer is simply an array of bytes that holds the data

returned by the Read method. You pass the buffer, the number of bytes to read, and

an offset into the buffer at which data then will be stored. The Read method reads the

number of bytes specified from the backing store into the buffer and returns the total

number of bytes actually read:

byte[] buffer = new byte[1024];
int bytesRead = input.Read(buffer, 0, 1024);

Of course, reading from a stream isn’t the only operation you can perform. Writing

binary data to a stream is also a common activity and is accomplished in a similar

manner. You first open a binary file for writing using the OpenWrite method of the

File class and then use the Write method on the resulting FileStream to write a

buffer of data to the backing store. The Write method is passed the buffer containing

the data to write, the offset into the buffer at which to start reading, and the number

of bytes to write:

FileStream output = File.OpenWrite(Path.GetTempFileName());
output.Write(buffer, 0, bytesRead);

ptg

302 HOUR 13: Using Files and Streams

▼

Listing 13.5 shows a complete example of reading data from one binary file and

writing it to another. This example continues to read and write bytes until the Read

method indicates that it has read no more bytes by returning 0.

LISTING 13.5 Binary Reads and Writes
public class BinaryReaderWriter
{

const int BufferSize = 1024;

public static void Main()
{

string tempPath = Path.GetTempFileName();
string tempPath2 = Path.GetTempFileName();

if (File.Exists(tempPath))
{

using (FileStream input = File.OpenRead(tempPath))
{

byte[] buffer = new byte[BufferSize];
int bytesRead;

using (FileStream output = File.OpenWrite(tempPath2))
{

while ((bytesRead = input.Read(buffer, 0, BufferSize)) > 0)
{

output.Write(buffer, 0, bytesRead);
}

}
}

}
}

}

Try It Yourself

Binary Reads and Writes
To perform binary reads and writes using the File and FileStream classes, follow
these steps.

1. Open the BinaryReadWrite project in Visual Studio.

2. Open Program.cs by double-clicking the file.

3. The Main method already contains some code, including an if statement simi-

lar to the one shown in Listing 13.5. Modify the statement block of the if state-

ment to read from the file indicated in the fileName field and write to a tem-

porary file. Use the code shown in Listing 13.5 as a guide.

ptg

Reading and Writing Data 303

▲

FIGURE 13.3
Results of per-
forming binary
reads and writes

4. Modify the while statement to increment the bufferCounter field after each

Write.

5. Run the application using Ctrl+F5. The output should look similar to what is

shown in Figure 13.3.

6. Modify the value of BufferSize and run the application again using Ctrl+F5.

Observe how different values of BufferSize change the total number of buffers

required.

Buffered Streams
Using the basic FileStream from the previous example, you needed to provide the

buffer used for reading and the size of that buffer. In many cases, it might be more

efficient for you to let the operating system determine the number of bytes to read.

The BufferedStream class enables the operating system to create its own internal

buffer and fill it using whatever increments it thinks are most efficient. It still fills a

buffer you provide in the increment you provide, but that buffer is filled from the

internal buffer not directly from the backing store. To create a buffered stream, you

construct a new BufferedStream instance from another Stream, as shown in Listing

13.6, which shows the code from the previous example using BufferedStream

instances for the input and output streams.

LISTING 13.6 Buffered Reads and Writes
public class BufferedReaderWriter
{

const int BufferSize = 1024;

public static void Main()
{

string tempPath = Path.GetTempFileName();
string tempPath2 = Path.GetTempFileName();

if (File.Exists(tempPath))
{

using (BufferedStream input = new
➥BufferedStream(File.OpenRead(tempPath)))

ptg

304 HOUR 13: Using Files and Streams

{
byte[] buffer = new byte[BufferSize];
int bytesRead;

using (BufferedStream output = new
➥◗BufferedStream(File.OpenWrite(tempPath2)))

{
while ((bytesRead = input.Read(buffer, 0, BufferSize)) > 0)
{

output.Write(buffer, 0, bytesRead);
}

}
}

}
}

}

Text Files
Using the Read and Write methods on the Stream class works not only for binary

files but also for text files, which are files containing nothing but text data. The

problem is that you read and write a byte array rather than strings, which isn’t con-

venient. To make working with text files easier, the .NET Framework provides the

StreamReader and StreamWriter classes.

Although StreamReader provides a Read method that reads one character at a time

from the backing store, it also provides a ReadLine method that reads a line of char-

acters as a string. A line is defined as a sequence of characters followed by a line feed

(“\n”), a carriage return (“\r”), or a carriage return-line feed (“\r\n”). If the end of

the input stream is reached, ReadLine returns null; otherwise, it returns the line of

characters, excluding the terminating characters. To write text data, you can use the

WriteLine method of the StreamWriter class.

Listing 13.7 shows an example of reading and writing text data.

LISTING 13.7 Reading and Writing Text Data
public class TextReaderWriter
{

public static void Main()
{

string tempPath = Path.GetTempFileName();
string tempPath2 = Path.GetTempFileName();

if (File.Exists(tempPath))
{

using (StreamReader reader = File.OpenText(tempPath))
{

string buffer = null;

ptg

Reading and Writing Data 305

▼

using (StreamWriter writer = new StreamWriter(tempPath2))
{

while ((buffer = reader.ReadLine()) != null)
{

writer.WriteLine(buffer);
}

}
}

}
}

}

Try It Yourself

Buffered Reads and Writes
To perform text reads and writes using the File, StreamReader, and
StreamWriter classes, follow these steps.

1. Open the TextReadWrite project in Visual Studio.

2. Open Program.cs by double-clicking the file.

3. The Main method already contains some code, including an if statement simi-

lar to the one shown in Listing 13.3. Modify the statement block of the if state-

ment to read and write to the file indicated in the fileName field. Use the code

shown in Listing 13.7 as a guide.

4. Modify the while statement to increment the bufferCounter field after each

Write.

5. Run the application using Ctrl+F5. The output should look similar to what is

shown in Figure 13.4.

Reading and Writing Data Using the File Class
Because reading and writing data, whether it is text or binary, from files is a com-

mon task, the File class provides several methods that make this even more conven-

ient than working directly with streams.

▲

FIGURE 13.4
Results of per-
forming buffered
reads and writes

ptg

306 HOUR 13: Using Files and Streams

To read or write binary data, you can use the ReadAllBytes and WriteAllBytes

methods, respectively. These methods open the file, read or write the bytes, and then

close the file. The code shown in Listing 13.8 performs the same actions as Listing

13.5 using the ReadAllBytes and WriteAllBytes methods.

LISTING 13.8 Binary Reads and Writes Using the File Class
public class BinaryReaderWriterFile
{

public static void Main()
{

string tempPath = Path.GetTempFileName();
string tempPath2 = Path.GetTempFileName();

if (File.Exists(tempPath))
{

byte[] data = File.ReadAllBytes(tempPath);
File.WriteAllBytes(tempPath2, data);

}
}

}

Reading and writing text data is just as easy using the ReadAllLines and

ReadAllText methods for reading and the WriteAllLines and WriteAllText meth-

ods for writing. The ReadAllLines method reads all the lines from the file into a

string array, where each line is a new element in the array, whereas the ReadAllText

reads all the lines into a single string.

The WriteAllLines method writes each element of a string array to a file, whereas

the WriteAllText method writes the contents of a string to the file. Both of these cre-

ate a new file or overwrite the file if it already exists. To append text to an existing

file, you can use the AppendAllLines or AppendAllText methods. If you need to

open a stream, you can use the AppendText method.

The code shown in Listing 13.9 performs the same actions as Listing 13.7 using the

ReadAllLines and WriteAllLines methods.

LISTING 13.9 Using ReadAllLines and WriteAllLines
public class TextReaderWriterFile
{

public static void Main()
{

string tempPath = Path.GetTempFileName();
string tempPath2 = Path.GetTempFileName();

if (File.Exists(tempPath))
{

string[] data = File.ReadAllLines(tempPath);
File.WriteAllLines(tempPath2, data);

}
}

}

ptg

307Q&A

The one drawback to using ReadAllLines, or even ReadAllText, is that the entire

file must first be read into memory. To resolve this issue and return an

IEnumerable<string> collection, you can use the ReadLines method. Because this

method returns an IEnumerable<string>, you can start to enumerate the returned

collection immediately, before the whole collection is returned. The code shown in

Listing 13.10 performs the same actions as Listing 13.9 using the File.ReadLines

method.

LISTING 13.10 Using WriteAllLines and ReadLines
public class TextReaderWriterFile
{

public static void Main()
{

string tempPath = Path.GetTempFileName();
string tempPath2 = Path.GetTempFileName();

if (File.Exists(tempPath))
{

File.WriteAllLines(tempPath, File.ReadLines(tempPath2));
}

}
}

Summary
In this hour, you learned how to work with streams to read and write text and binary

files. Although you focused only on using the FileStream and StreamWriter

classes, the mechanisms used for reading and writing using FileStream is essentially

the same for any Stream derived class.

You also learned how.NET Framework makes working with files, directories, and

string paths simple through the File, Directory, FileInfo, DirectoryInfo, and

Path classes.

Q&A
Q. What is a stream?

A. A stream is a sequential flow of packets of data represented as bytes. Data

streams have an underlying storage medium, typically called a backing store,

which provides a source for the stream.

ptg

308 HOUR 13: Using Files and Streams

Q. What is the difference between a relative path and an absolute path?

A. An absolute path fully specifies a location, whereas a relative path specifies a

partial location. When using relative paths, the current location is the starting

point when locating the file specified.

Q. What is the FileSystemInfo class used for?

A. The FileSystemInfo class contains methods common to file and directory

manipulation and can represent either a file or directory. It is the base class for

the DirectoryInfo and FileInfo classes.

Q. How is the Directory class different from the DirectoryInfo class?

A. The Directory class provides only static methods, whereas the DirectoryInfo

class provides only instance methods and caches the information retrieved for

the specified directory.

Q. What is the difference between a binary file and a text file?

A. A binary file is simply as a stream of bytes, whereas a text file is known to con-

tain only text data.

Workshop

Quiz
1. How do the Path class members interact directly with the file system?

2. What method should be used on a FileSystemInfo instance to update the

cached information it contains?

3. What is the difference between the EnumerateDirectories method on the

DirectoryInfo and Directory classes?

4. What is the return type of the File.OpenRead method?

5. What is the return type of the File.OpenText method?

6. What is the difference between the File.ReadAllLines method and the

File.ReadLines method?

ptg

309Workshop

Answers
1. Most Path class members don’t interact with the file system; they do, however,

validate that the specified path string contains valid characters.

2. The FileSystemInfo class contains a Refresh method that should be used to

update the cached file or directory information.

3. The DirectoryInfo.EnumerateDirectories returns an

IEnumerable<DirectoryInfo>, whereas Directory.EnumerateDirectories

returns an IEnumerable<string>.

4. The File.OpenRead method returns a FileStream opened to the specified file

for reading only.

5. The File.OpenText method returns a StreamReader opened to the specified

text file.

6. File.ReadAllLines must read the entire file into memory and returns a string

array containing the lines whereas File.ReadLines returns an

IEnumerable<string> enabling you to start enumerating the collection before

the entire file is read.

Exercises
1. Modify the PhotoCollection class, replacing the directory field with a field

named directoryInfo whose data type is a DirectoryInfo class. Change the

Path property so that the get accessor returns the value of the FullName prop-

erty and the set accessor creates a new DirectoryInfo instance from value

after validating that value is not null or an empty string.

2. Add a private method named Update, which performs the following actions:

a. Clears the collection.

b. If directoryInfo.Exists is true, enumerate over all files in the direc-

tory whose extension is “.jpg” and add a new Photo instance to the col-

lection. This code should be in a try-catch block that catches a

DirectoryNotFoundExcpetion. The catch handler should contain the

following code:

System.Windows.MessageBox.Show(“No Such Directory”);

ptg

This page intentionally left blank

ptg

311

HOUR 14

Working with XML

What You’ll Learn in This Hour:
. Understanding the XML DOM
. Using LINQ to XML
. Selecting and Querying XML
. Modifying XML

Although working with text files is common and made easier through the classes

provided by the System.IO namespace, these classes do not enable you to easily

work with and manipulate structured text in the form of XML. XML, which stands for

Extensible Markup Language, is a simple and flexible text format that enables the

exchange of data in a platform-independent manner.

The use of XML as a data exchange format is prevalent not just in the .NET Frame-

work, but in other Microsoft products as well. The .NET Framework uses it for web

services through SOAP and Windows Communication Foundation (WCF), as the file

format for Windows Presentation Foundation (WPF) and Silverlight Extensible Appli-

cation Markup Language (XAML) files, the file format for Windows Workflow Foun-

dation (WF) files, and as part of ADO.NET.

Even though XML is text-based and readable by humans, there must be a way to

programmatically manipulate the XML. This is accomplished using an XML parser.

The .NET Framework provides two XML parsers. One is a stream-based parser that

reads the XML stream as it goes; the other is a tree-based parser that must read the

entire stream into memory before constructing the tree.

In this hour, you learn about the different XML classes provided by the .NET Frame-

work, and how to use them to create and manipulate XML files.

ptg

312 HOUR 14: Working with XML

Understanding the XML DOM
For you to programmatically read and manipulate an XML document, it must be

represented in memory through the XML Document Object Model (DOM). The DOM

provides a common and structured way XML data is represented in memory and is

most commonly used for reading XML data into memory to change its structure, add

or remove elements, or modify the data contained in an element.

An example XML document is shown in Listing 14.1 and the corresponding DOM

structure is shown in Figure 14.1.

LISTING 14.1 XML Data
<books>

<book>
<title>Sams Teach Yourself Visual C# 2010 in 24 Hours</title>
<isbn-10>0-672-33101-2</isbn-10>
<author>Dorman</author>
<price currency=”US”>39.99</price>
<publisher>

<name>Sams Publishing</name>
<state>IN</state>

</publisher>
</book>

</books>

In Figure 14.1, each circle represents an element in the XML data. The lighter circle

represents the document root, or starting, element. The document root node is the

top-level node containing the document itself. All nodes except the document root

have a single parent node, which is the node directly above them. When nodes have

Sams Publishing0-672-33101-2Dorman

books

book

author isbn-10 pricepublisher

statename

title

currency

Sams Teach Yourself Visual
C# 2010 in 24 Hours

US

39.99IN

FIGURE 14.1
XML DOM
representation

ptg

Using LINQ to XML 313

the same parent node, such as the author, isbn-10, publisher, price, and title nodes,

they are child nodes, or descendent nodes, of that parent. Nodes all at the same

level are sibling nodes.

Using LINQ to XML
LINQ to XML exposes the XML DOM through LINQ extension methods that enable

you to manipulate and query XML documents that have been loaded into memory.

All the classes needed to create and manipulate XML documents using LINQ to XML

are contained in the System.Xml.Linq namespace. The most commonly used classes

are shown in Figure 14.2.

XDocument

The XDocument class represents an XML document instance. Unless you need to spec-

ify document type declarations, processing instructions (used by the XML parser), or

top-level comments, you rarely interact with an XDocument instance. Instead, you

should use the XElement class.

XElement and XAttribute
The XElement class, which represents an XML element, is one of the most commonly

used classes and provides many useful methods and properties used for creating, mod-

ifying, and querying the XML data. An XML attribute is a name-value pair associated

with an XML element, represented by the XAttribute class. Unlike elements, they are

XObject

XNode XAttribute

XContainer

XElement XDocument

Object

XName XNamespace

FIGURE 14.2
LINQ to XML
object model

ptg

314 HOUR 14: Working with XML

not nodes in the XML tree. Because attributes are simply name-value pairs associated

with an element, they must have a name that is unique only to that element.

The XElement class contains a list of the attributes for that element. The most com-

monly used properties of the XAttribute class are NextAttribute and

PreviousAttribute, which are useful for browsing the sequence of attributes on an

element.

The code to create the XML from Listing 14.1 using XElement instances is shown in

Listing 14.2.

LISTING 14.2 Creating XML Using LINQ to XML
XElement document = new XElement(“books”,

new XElement(“book”,
new XElement(“title”, “Sams Teach Yourself Visual C# 2010 in 24 Hours”),
new XElement(“isbn-10”, “0-672-33101-2”),
new XElement(“author”, “Dorman”),
new XElement(“price”, new XAttribute(“currency”, “US”), 39.99M),
new XElement(“publisher”,

new XElement(“name”, “Sams Publishing”),
new XElement(“state”, “IN”))));

In contrast, using the standard DOM approach, supported by the classes in the

System.Xml namespace, is shown in Listing 14.3.

LISTING 14.3 Creating XML Using XML DOM
XmlDocument document = new XmlDocument();

XmlElement booksElement = document.CreateElement(“books”);
XmlElement bookElement = document.CreateElement(“book”);

XmlElement titleElement = document.CreateElement(“title”);
titleElement.InnerText = “Sams Teach Yourself Visual C# 2010 in 24 Hours”;
XmlElement isbn10Element = document.CreateElement(“isbn-10”);
isbn10Element.InnerText = “0-672-33101-2”;
XmlElement authorElement = document.CreateElement(“author”);
authorElement.InnerText = “Dorman”;
XmlElement priceElement = document.CreateElement(“price”);
priceElement.InnerText = “39.99”;

XmlAttribute currenceyAttribute = document.CreateAttribute(“currency”);
currenceyAttribute.Value = “US”;

priceElement.Attributes.Append(currenceyAttribute);

XmlElement publisherElement = document.CreateElement(“publisher”);
XmlElement publisherNameElement = document.CreateElement(“name”);
publisherNameElement.InnerText = “Sams Publishing”;
XmlElement publisherStateElement = document.CreateElement(“state”);
publisherStateElement.InnerText = “IN”;

booksElement.AppendChild(bookElement);
bookElement.AppendChild(titleElement);
bookElement.AppendChild(isbn10Element);

ptg

Using LINQ to XML 315

bookElement.AppendChild(authorElement);
bookElement.AppendChild(priceElement);
bookElement.AppendChild(publisherElement);

publisherElement.AppendChild(publisherNameElement);
publisherElement.AppendChild(publisherStateElement);

document.AppendChild(booksElement);

As you can see, the code in Listing 14.3 is almost three times as long and is much

more difficult to read and understand. In addition, if you look at the declaration of

the price element in Listing 14.2, you can set the value as a decimal directly, whereas

the same code in Listing 14.3 must set the value as a string. This difference becomes

important when you retrieve the value. Both the XElement and XAttribute classes

enable you to read their contents using a direct cast to the desired type. If the conver-

sion specified by the direct cast fails, it throws a FormatException.

SetElementValue and SetAttributeValue
Using the constructor syntax shown in Listing 14.2 is not the only way to create
XML. You can also use the SetElementValue and SetAttributeValue methods
provided by the XElement class.

These methods make it easy to maintain a list of name-value pairs as a set of
children elements or attributes, allowing you to add, modify, or delete pairs. If the
name provided does not already exist as a child element or attribute, it will be
created for you; otherwise, its value will be changed to the value you specified. If
the value is null, the element or attribute is removed. When modifying or remov-
ing child elements or attributes, the first one with the specified name is modified
or removed.

The following code shows how to create the same XML as produced in Listing
14.2, but uses the SetElementValue and SetAttributeValue methods:

XElement document = new XElement(“books”,
new XElement(“book”,

new XElement(“publisher”)));

XElement bookElement = document.Element(“book”);
XElement publisherElement = document.Element(“publisher”);

bookElement.SetElementValue(“title”,
➥“Sams Teach Yourself Visual C# 2010 in 24 Hours”);
bookElement.SetElementValue(“isbn-10”, “0-672-33101-2”);
bookElement.SetElementValue(“author”, “Dorman”);
bookElement.SetElementValue(“price”, 39.99M);
bookElement.Element(“price”).
➥SetAttributeValue(“currency”, “US”);

publisherElement.SetElementValue(“name”, “Sams Publishing”);
publisherElement.SetElementValue(“state”, “IN”);

By the
Way

ptg

▼

316 HOUR 14: Working with XML

Try It Yourself

Creating XML Documents
By following these steps, you see how to use the LINQ to XML classes to create
XML documents. Keep Visual Studio open at the end of this exercise because you
will use this application later.

1. Create a new Console application.

2. In the Main method of the Program.cs file, implement the code in Listing 14.2.

3. Write a statement that will print the content of the XElement created in step 2.

4. Run the application using Ctrl+F5. The output should look like Figure 14.3.

▲

FIGURE 14.3
Creating XML
documents

Listing 14.4 shows two ways you could retrieve the value of the price element.

LISTING 14.4 Retrieving the Value of an XElement Using a Direct Cast
decimal price = (Decimal)(document.Element(“book”).Element(“price”));
price = (Decimal)document.XPathSelectElement(“//price”);

By the
Way

XML Character Encoding
The XElement and XAttribute classes automatically handle encoding and
decoding text that contains invalid XML characters. Given the following statement

XElement comments = new XElement(“comments”,
“This line contains special characters <node> & </node>”);

the result is automatically encoded as follows:

<comments>This line contains special characters <node> &
</node></comments>

When the value is retrieved, it is automatically decoded.

ptg

Using LINQ to XML 317

XName and XNamespace
An XML name represents the name of an element or attribute in an XML document

and consists of two parts: an XML namespace and a local name. An XML namespace

enables you to uniquely qualify the names of elements and attributes to help avoid con-

flicts between different parts of an XML document. When you have declared an XML

namespace, you can select a local name that is unique only within that namespace.

When using XML namespaces, you make use of XML prefixes, allowing you to create

a shortcut for an XML namespace. Although XML prefixes can make the XML docu-

ment more readable, they add complexity because they depend on their context to

have meaning. The .NET Framework provides the XNamespace class to represent XML

namespaces.

The XName class represents the local name. Throughout LINQ to XML, wherever an

XML name is required, an XName is used. Fortunately, XName contains an implicit con-

version from string, so you rarely work directly with an XName. Every XName contains

an XNamespace. If the element is not in a namespace, the XNamespace is

XNamespace.None.

XML Namespaces
XML namespace declarations have the same syntax as XML attributes, so it is
common to think of them as attributes even though they are not. LINQ to XML
represents namespaces in the XML tree as attributes to simplify the programming
interface. If you need to determine if an attribute is actually a namespace decla-
ration, you can use the IsNamespaceDeclaration property.

By the
Way

The code in Listing 14.5 shows creating the same XML from Listing 14.2 using a

namespace.

LISTING 14.5 Creating XML with a Namespace Using LINQ to XML
XNamespace ns = “http://www.w3.org/1999/xhtml”;
XElement document = new XElement(ns + “books”,

new XElement(ns + “book”,
new XElement(ns + “title”,

➥“Sams Teach Yourself Visual C# 2010 in 24 Hours”),
new XElement(ns + “isbn-10”, “0-672-33101-2”),
new XElement(ns + “author”, “Dorman”),
new XElement(ns + “price”, new XAttribute(“currency”, “US”), 39.99M),
new XElement(ns + “publisher”,

new XElement(ns + “name”, “Sams Publishing”),
new XElement(ns + “state”, “IN”))));

This produces the XML shown in Listing 14.6.

ptg

318 HOUR 14: Working with XML

LISTING 14.6 XML Data
<books xmlns=”http://www.w3.org/1999/xhtml”>

<book>
<title>Sams Teach Yourself Visual C# 2010 in 24 Hours</title>
<isbn-10>0-672-33101-2</isbn-10>
<author>Dorman</author>
<price currency=”US”>39.99</price>
<publisher>

<name>Sams Publishing</name>
<state>IN</state>

</publisher>
</book>

</books>

Even though the LINQ to XML classes automatically handle namespace declarations,

it might be necessary to control how the namespace is represented in the XML data by

providing a namespace prefix. This can be accomplished by explicitly defining the pre-

fix to use for the namespace by including an xmlns attribute, as shown in Listing 14.7.

LISTING 14.7 Creating XML with a Namespace Prefix Using LINQ to XML
XNamespace ns = “http://www.w3.org/1999/xhtml”;
XElement document = new XElement(ns + “books”,

new XAttribute(XNamespace.Xmlns + “ns”, ns),
new XElement(ns + “book”,

new XElement(ns + “title”,
➥“Sams Teach Yourself Visual C# 2010 in 24 Hours”),

new XElement(ns + “isbn-10”, “0-672-33101-2”),
new XElement(ns + “author”, “Dorman”),
new XElement(ns + “price”, new XAttribute(“currency”, “US”), 39.99M),
new XElement(ns + “publisher”,

new XElement(ns + “name”, “Sams Publishing”),
new XElement(ns + “state”, “IN”))));

This produces the XML shown in Listing 14.8.

LISTING 14.8 XML Data with a Namespace Prefix
<ns:books xmlns:ns=”http://www.w3.org/1999/xhtml”>

<ns:book>
<ns:title>Sams Teach Yourself Visual C# 2010 in 24 Hours</title>
<ns:isbn-10>0-672-33101-2</isbn-10>
<ns:author>Dorman</author>
<ns:price currency=”US”>39.99</price>
<ns:publisher>

<ns:name>Sams Publishing</name>
<ns:state>IN</state>

</ns:publisher>
</ns:book>

</ns:books>

When you work with a document that uses namespaces, you usually access the name-

spaces through the URI and not through the namespace prefix. This allows you to work

ptg

▼

Selecting and Querying XML 319

with the fully qualified name, also called the expanded name, which has the form

{namespacename}name

For example, the expanded name for the title element from Listing 14.6 is

{http://www.w3.org/1999/xhtml}title

Atomization
XNamespace objects are atomized, which means that if two objects have exactly
the same URI, they will share the same instance. Although it is possible to use
the expanded name when creating an XElement or XAttribute instance, doing
so has potential performance implications. Each time a string containing an
expanded name is encountered, the string must be parsed to find the atomized
namespace and name.

By the
Way

Try It Yourself

Working with XML Namespaces
To modify the code you wrote in the previous exercise to work with an XML name-
space, follow these steps. If you closed Visual Studio, repeat the previous exercise
first. Be sure to keep Visual Studio open at the end of this exercise because you
will use this application later.

1. Add a new statement that declares an XNamespace instance that defines a

namespace of http://www.w3.org/TR/html4.

2. Modify the statements you previously wrote to include the namespace you just

declared with a namespace prefix of ns and include the namespace as part of

the element names.

3. Run the application using Ctrl+F5. The output should look like Figure 14.4.

Selecting and Querying XML
When you have an XML document represented in memory through an XElement

instance, you almost always need to select or query information. All classes that

derive from XNode provide methods and properties for navigating directly to specific

nodes in the XML tree.

▲

FIGURE 14.4
Creating XML
documents with
namespaces

http://www.w3.org/TR/html4

ptg

320 HOUR 14: Working with XML

The FirstNode and LastNode properties return the first and last child node, respec-

tively, whereas the NextNode and PreviousNode properties enable you to move for-

ward and backward through the collection of nodes. The Parent property enables

you to navigate directly to the parent node.

Listing 14.9 shows an example of using these navigation properties with a simplified

version of the XML presented in Listing 14.1.

LISTING 14.9 Using the Navigation Properties of XElement
XElement document = new XElement(“book”,

new XElement(“title”, “Sams Teach Yourself Visual C# 2010 in 24 Hours”),
new XElement(“isbn-10”, “0-672-33101-2”),
new XElement(“author”, “Dorman”),
new XElement(“price”, new XAttribute(“currency”, “US”), 39.99M));

Console.WriteLine(document.LastNode);
Console.WriteLine(document.FirstNode);
Console.WriteLine(document.LastNode.Parent);
Console.WriteLine(document.LastNode.PreviousNode);
Console.WriteLine(document.FirstNode.NextNode);

XElement also provides the FirstAttribute and LastAttribute properties, which

return the first and last attribute associated with the XElement they are invoked from.

If the element contains no attributes, both of these properties will return null; if the

element contains only one attribute they both return the same value. When you have

retrieved the first or last attribute, you can use the NextAttribute and

PreviousAttribute properties to move forward and backward through the collection

of attributes.

Although these properties are convenient, they do not offer much flexibility. If you

think of every node in the XML tree being a sequence of nodes, it would be possible to

use the same LINQ queries you used in Hour 12, “Understanding Query Expressions.”

This is entirely possible because each collection of nodes is an IEnumerable<T>

instance.

Listing 14.10 shows how to perform a simple LINQ query against the XElement cre-

ated from Listing 14.2.

LISTING 14.10 A LINQ Query over an XElement
foreach (var o in document.Elements().

Where(e => (string)e.Element(“author”) == “Dorman”))
{

Console.WriteLine(o);
}

The code shown in Listing 14.10 makes use of the Elements method to return an

IEnumerable<XElement> sequence of all child elements of the current XElement.

ptg

▼

Selecting and Querying XML 321

In this case, all the child elements are returned; however, if a name were provided as

an argument, only those child elements with the same name would be returned.

LINQ to XML and XPath Queries
When using the traditional XML DOM classes provided in System.XML, you must
use XPath queries to select node collections or single nodes. In LINQ to XML, this
is no longer necessary but is supported through a set of extension methods pro-
vided by the System.Xml.XPath namespace.

These extension methods are
. CreateNavigator—Creates an XPathNavigator for an XNode.

. XPathEvaluate—Evaluates an XPath expression, returning an object con-
taining the result of the expression.

. XPathSelectElement—Selects an XElement using an XPath expression.

. XPathSelectElements—Selects a collection of elements using an
XPath expression.

By the
Way

The lambda expression provided to the Where method restricts the resulting sequence

to those containing an author element whose value is equal to the string “Dorman”.

The Element method is used to return the first XElement whose name corresponds to

the name provided.

Selecting attributes is just as easy through the Attributes and Attribute method.

The Attribute method returns the single attribute whose name corresponds to the

name provided, or null if no matching attribute is found. The Attributes method

returns an IEnumerable<XAttribute> sequence of attributes for the current

XElement. Although the Attributes method can accept a name as an argument, it

always returns either an empty collection if a matching attribute is not found or a

collection of one because attributes must be uniquely named within each element.

Try It Yourself

Selecting XML
By following these steps, you see how to select specific elements using LINQ to XML.
If you closed Visual Studio, repeat the previous exercise first. Be sure to keep Visual
Studio open at the end of this exercise because you will use this application later.

1. Replace the statement that prints the content of the XElement instance from

the previous exercise with the code shown in Listing 14.10. Be sure to change

the name of the element you are querying to include the XNamespace.

2. Run the application using Ctrl+F5. The output should look like Figure 14.5.

ptg

322 HOUR 14: Working with XML

3. Modify the XElement instance to load data, using the Load method, from the

file named books.xml.

4. Modify the foreach statement to print only the title for all book elements.

5. Run the application again using Ctrl+F5. The output should look like Figure 14.6.

Putting all this together, it becomes possible to perform rather complex queries that

can return XML that has been reshaped, or converted from one structural representa-

tion to another.

For example, the XML shown in Listing 14.11 can be reshaped to what is shown in

Listing 14.12.

LISTING 14.11 Source XML
<books>
<book title=”Sams Teach Yourself Visual C# 2010 in 24 Hours” author=”Dorman” />
<book title=”.NET Common Language Runtime Unleashed” author=”Burton” />
<book title=”ASP.NET 2.0 Unleashed” author=”Walther” />
<book title=”ASP.NET 3.5 Unleashed” author=”Walther” />
<book title=”C# 3.0 Unleashed: With the .NET Framework 3.5” author=”Mayo” />
<book title=”C# Unleashed” author=”Mayo” />

</books>

LISTING 14.12 Destination XML
<books>
<author name=”Dorman”>
<book title=”Sams Teach Yourself Visual C# 2010 in 24 Hours”/>

</author>
<author name=”Burton”>
<book title=”.NET Common Language Runtime Unleashed” />

</author>

▲

FIGURE 14.5
Selecting XML
using a LINQ
query

FIGURE 14.6
Selecting XML

ptg

Modifying XML 323

<author name=”Walther”>
<book title=”ASP.NET 2.0 Unleashed” />
<book title=”ASP.NET 3.5 Unleashed” />

</author>
<author name=”Mayo”>
<book title=”C# 3.0 Unleashed: With the .NET Framework 3.5” />
<book title=”C# Unleashed” />

</author>
</books>

When using the LINQ to XML query shown in Listing 14.13, assume it has already

been loaded into an XElement named books.

LISTING 14.13 Transforming the Source XML Using a LINQ Query
XElement booksByAuthor = new XElement(“books”,

from book in books.Elements(“book”)
group book by (string)book.Attribute(“author”) into author
select new XElement(“author”, new XAttribute(“name”, (string)author.Key),

from book in author
select new XElement(“book”,

new XAttribute(“title”, (string)book.Attribute(“title”)))));

Modifying XML
Although creating and selecting XML is important, it is equally important to modify

that XML. This can be accomplished quite easily using methods provided by XNode

and its derived classes. When modifying XML, the technique used to navigate to the

node being changed influences when the modification occurs. When using the prop-

erties shown in the beginning of the previous section (such as FirstNode or

LastNode), the result occurs at the time you invoke it. If you remove or replace a

node, the action is taken immediately within the XML tree held in memory. When

using queries over XML, the modification methods are applied to the query expres-

sion result at the time the query is enumerated. This follows the default LINQ behav-

ior of deferred query execution.

Earlier you saw how the SetElementValue and SetAttributeValue methods can be

used to add a new element or attribute, remove an element or attribute, or change

the value of an existing element or attribute. You can also use the SetValue method

to change the value of the current element or attribute. The code shown in Listing

14.14 uses SetValue to change the content of the price element.

LISTING 14.14 Using SetValue
XElement books = XElement.Load(“books2.xml”);
XElement book = books.Elements(“book”).
➥FirstOrDefault(b => (string)b.Element(“author”) == “Dorman”);
book.Element(“price”).SetValue(34.99);

ptg

324 HOUR 14: Working with XML

Replacing data is just as simple and uses the ReplaceAll, ReplaceAttributes,

ReplaceNodes, or ReplaceWith methods. The ReplaceAll method replaces all chil-

dren nodes and attributes of the current element, whereas the ReplaceAttributes

and ReplaceNodes methods replace all the attributes and all the children nodes,

respectively.

ReplaceWith and Children Nodes
The ReplaceWith method will replace only the current element with the new ele-
ment. If the element you are replacing has any children, those children will not
automatically be included as children of the new element.

Watch
Out!

The ReplaceWith method replaces only the current element with the element speci-

fied. The code shown in Listing 14.15 completely replace the price element with a

new one using the ReplaceWith method.

LISTING 14.15 Using ReplaceWith
XElement books = XElement.Load(“books2.xml”);
XElement book = books.Elements(“book”).
➥FirstOrDefault(b => (string)b.Element(“author”) == “Dorman”);
book.Element(“price”). ReplaceWith(new XElement(“price”, 34.99));

To remove the current element or attribute, use the Remove method. To remove all

attributes associated with the current element, use the RemoveAttributes method.

To remove all children nodes, use the RemoveNodes method. To remove both children

nodes and attributes from the current element, use the RemoveAll method. The code

shown in Listing 14.16 removes the book element that contains an author element

whose value is equal to “Dorman”.

LISTING 14.16 Using Remove
XElement books = XElement.Load(“books2.xml”);
books.Elements(“book”).
➥FirstOrDefault(b => (string)b.Element(“author”) == “Dorman”). Remove();

Finally, adding new elements uses the Add, AddAfterSelf, AddBeforeSelf, or

AddFirst methods. The Add method adds the provided content as child nodes to the

current element, whereas AddFirst adds the content as the first child. The

AddAfterSelf and AddBeforeSelf methods add the content as a sibling node after

or before the current node, respectively. The code shown in Listing 14.17 adds a new

child element to the book element.

ptg

▼

Modifying XML 325

LISTING 14.17 Using Add
XElement books = XElement.Load(“books2.xml”);
XElement book = books.Elements(“book”).
➥FirstOrDefault(b => (string)b.Element(“author”) == “Dorman”);
book.Add(new XElement(“summary”, ““));

Try It Yourself

Modifying XML
To modify the XML from the previous exercise using LINQ to XML, follow these
steps. In this exercise, you explore how to modify XML. If you closed Visual Studio,
repeat the previous exercise first.

1. After the foreach statement you wrote in step 4 of the previous exercise, add a

new foreach statement that inserts an empty summary child element as the

first element of each book element.

2. Add a new child element of books named publisher, which includes the fol-

lowing children elements:

. <name>Sams Publishing</name>

. <state>IN</state>

3. Move the book elements from the root books element to a books child element

of publisher.

4. Run the application using Ctrl+F5. The output should look like Figure 14.7.

▲

FIGURE 14.7
Results of modi-
fying XML

ptg

326 HOUR 14: Working with XML

Summary
In this hour, you learned how to work with XML data using LINQ to XML. You learned

how the XElement class enables you to create XML documents and how the

XNamespace class simplifies working with XML namespaces. Next, you learned how to

select and query XML using both properties and methods provided by the XNode

derived classes and using the declarative LINQ query syntax. Finally, you learned how

to modify XML by removing, replacing, and creating new elements and attributes.

Q&A
Q. What is the XML Document Object Model (DOM)?

A. The DOM provides a common and structured way XML data is represented in

memory and is most commonly used for reading XML data into memory to

change its structure, add or remove elements, or modify the data contained in

an element.

Q. What is the document root node?

A. The document root node is the top-level node containing the document itself.

Q. What are child and sibling nodes?

A. When nodes have the same parent node, they are child nodes of that parent.

Nodes that are all at the same level are sibling nodes.

Q. What is the XElement class?

A. The XElement class represents an XML element and is the most commonly used

because it can represent an entire document or an element within a document.

Workshop

Quiz
1. What three operations can SetElementValue perform?

2. Is it possible to explicitly define a namespace prefix for an xml namespace?

3. Do the XElement and XAttribute classes handle XML character encoding and

decoding?

ptg

327Workshop

Answers
1. The SetElementValue method enables you to add a new child element,

change the value of an existing child element, or delete a child element. If the

name provided does not already exist as a child element, it will be created for

you; otherwise, the value of the child element will be changed to the value you

specified. If the value is null, the child element is removed. When modifying or

removing child elements or attributes, the first one with the specified name is

modified or removed.

2. Yes, a namespace prefix can be specified by including an xmlns attribute.

3. Yes, the XElement and XAttribute classes automatically handle encoding and

decoding text that contains invalid XML characters.

Exercises
1. Add a Save method to the Contact class of the AddressBook project that saves

the current instance to a file as XML.

2. Add a static Load method to the Contact class that loads the given XML file

and creates a new Contact instance from it.

ptg

This page intentionally left blank

ptg

Prerequisites 329

HOUR 15

Working with Databases

What You’ll Learn in This Hour:
. Understanding ADO.NET
. Working with LINQ to DataSet
. Working with LINQ to SQL

Interacting with a database is something that many applications need to do. A

database is simply a repository of data, much like a text file or an XML file. As you

might imagine, using files in this manner to store data isn’t always the best

approach. As a result, most applications make use of a relational database, which

organizes data into tables, rows, and records. Each table is organized into rows, and

each row represents a single record. Rows are further organized into columns, and

each row in a table has the same column structure.

The .NET Framework provides a rich set of classes for database interaction through

ADO.NET, which is a library of objects specifically designed to simplify writing appli-

cations that use databases, and LINQ to ADO.NET.

In this hour, you briefly learn ADO.NET and LINQ to ADO.NET.

Prerequisites
All the examples and exercises in this hour require you to have SQL Server or SQL

Server Express (2005 or higher) installed. If you have already installed Visual Studio

2010 Premium or Ultimate, SQL Server 2008 Express should already be installed. If

not, you can install SQL Server 2008 Express from the DVD included with this book.

When SQL Server Express (or SQL Server) has been installed, you need to install the

AdventureWorks sample database. These examples use the AdventureWorksLT

ptg

330 HOUR 15: Working with Databases

version of the OLTP database, which you can install from

http://msftdbprodsamples.codeplex.com/.

Understanding ADO.NET
The ADO.NET library is a rich framework enabling you to build applications that

can retrieve and update information in relational databases. In keeping with the

ideals of language and platform independence, ADO.NET is built upon the idea of

data providers. Each database system that ADO.NET supports (such as SQL Server,

Oracle, and DB2) has a data provider that implements the mechanisms for connect-

ing to a database, executing queries, and updating data. Because each provider

implements the same interfaces, you can write code that is independent of the under-

lying database.

One of the primary classes in ADO.NET is the DataSet, which represents a portion of

the database. A DataSet does not require a continuous connection to the database,

enabling you to work in a disconnected manner. To update the database and the

DataSet, you periodically reconnect the DataSet to its parent database and perform

any updates required.

ADO.NET Data Providers
An ADO.NET data provider encapsulates the logic needed for connecting to a data-
base, executing commands, and retrieving results. It provides a lightweight layer
between the underlying data source and your application code.

The .NET Framework currently ships with five data providers, each in their own
namespace:
. Data Provider for SQL Server (System.Data.SqlClient)

. Data Provider for OLE DB (System.Data.OleDb)

. Data Provider for ODBC (System.Data.Odbc)

. Data Provider for Oracle (System.Data.OracleClient)

. EntityClient Provider (System.Data.EntityClient)

Even though SQL Server and Oracle both support OLE DB, you should use the
specific SQL Server or Oracle providers because they are optimized for those
database systems.

By the
Way

To accomplish all this, the DataSet must represent database tables and the relation-

ships between those tables. The collection of database tables is available through the

Tables property, with each table represented as a DataTable instance. The

http://msftdbprodsamples.codeplex.com/

ptg

Understanding ADO.NET 331

By the
Way

Relations property is a collection of DataRelation instances, with each

DataRelation representing a relationship between two tables.

A DataTable is most commonly created as a result of a query against the database

and represents an actual table in that database. Each column in the database table is

represented as a DataColumn, exposed through the Columns property of DataTable.

The DataTable also contains a Rows property, which returns a DataRow object for

each actual row of the database table.

If you think of a DataSet as an abstraction of the database, you need a way to bridge

the gap between the DataSet and the underlying database. This is done with a

DataAdapter, which is used to exchange data between a data source and a DataSet,

primarily through the Fill and Update methods. The benefit this provides is that a

DataSet can represent tables from multiple databases.

Read-Only Access Using a Data Reader
Both a DataSet and a DataAdapter enable two-way interaction with the data-
base, allowing you to both read and write data. If you only need to read data,
which is common, you can create a DbDataReader, or one of its derived classes
like SqlDataReader, instead. The simplest way to create a DataReader is to use
the ExecuteReader method available from DbCommand.

A DbDataReader provides connected, forward-only, read-only access to a collec-
tion of tables, often referred to as a fire hose cursor. (The name “fire hose cur-
sor” is due to the similarities of accessing data in a fast, forward-only, continuous
stream of data and the fast, forward-only, continuous stream of water through a
fire hose.)

As a result, they are lightweight objects and are ideally suited for filling controls
with data and then breaking the database connection.

Finally, you need to represent a connection to the data source through a

DbConnection and a database command (such as a SQL statement or stored proce-

dure) through a DbCommand. After a DbConnection is created, it can be shared with

many different DbCommand instances.

Each data provider typically provides customized subclasses of DbConnection and

DbCommand specific to that database system. For example, the Data Provider for SQL

Server provides the SqlConnection and SqlCommand classes.

Required References
To use ADO.NET, you need to ensure that the project has a reference to the
System.Data assembly and that the correct namespace for the data provider you
use is included.

Watch
Out!

ptg

332 HOUR 15: Working with Databases

Listing 15.1 shows how to execute a query using ADO.NET and the classes provided

by the Data Provider for SQL Server.

LISTING 15.1 A Simple ADO.NET Query
using (SqlConnection connection = new SqlConnection())
{

connection.ConnectionString = @”Integrated Security=SSPI;
➥database=AdventureWorksLT2008;server=(local)\SQLEXPRESS”;

try
{

using (SqlCommand command = new SqlCommand())
{

command.Connection = connection;
command.CommandText = @”SELECT *

FROM [AdventureWorksLT2008].[SalesLT].[Customer]
WHERE [CompanyName] = ‘A Bike Store’”;

connection.Open();
SqlDataReader reader = command.ExecuteReader();
while (reader.Read())
{

Console.WriteLine(“{0} {1} {2}”,
reader.GetString(2),
reader.GetString(3),
reader.GetString(5));

}

connection.Close();
}

}
catch (SqlException e)
{

Console.WriteLine(“An error occurred: {0}”, e.Message);
}

}

To ensure that the database command and connection instances are disposed of prop-

erly and that the connection is closed, it is best to place them in a using statement.

Connection Pooling
Most of the data providers also provide support for connection pooling. You can
think of the connection pool as a set of available database connections. When an
application requires a connection, the provider extracts the next available connec-
tion from the pool. When the application closes the connection, it is returned to
the pool, ready for the next application that needs a connection.

As a result, you should not keep a connection longer than you need to. Instead,
open a connection when you need it and then close it as soon as you finish using it.

By the
Way

ptg

Understanding LINQ to ADO.NET 333

▼

▲

FIGURE 15.1
Results of work-
ing with ADO.NET

Try It Yourself

Working with ADO.NET
To use the ADO.NET Data Provider for SQL to insert a record and then query a
table, use the following steps.

1. Create a new Console application.

2. Include the System.Data.SqlClient namespace with a using directive.

3. In the Main method of the Program.cs file, implement the code shown in

Listing 15.1.

4. Just before the second using statement (that declares a SqlCommand instance),

write a using statement that creates a SqlCommand to insert a record into the

database. Instead of calling the ExecuteReader method on command, use the

ExecuteNonQuery method because the SQL statement does not return any

data. Use the following text for the CommandText property:

@”INSERT INTO [AdventureWorksLT2008].[SalesLT].[Customer]
(NameStyle, Title, FirstName, LastName, CompanyName, PasswordHash,
PasswordSalt, ModifiedDate)
VALUES (0, ‘Mr.’, ‘Scott’, ‘Dorman’, ‘A Bike Store’, ‘aaaaa’, ‘aaa’,
‘“ + DateTime.Now.ToString(“G”) + “‘)”;

5. Run the application using Ctrl+F5. The output should look like what is shown

in Figure 15.1.

Understanding LINQ to ADO.NET
LINQ to ADO.NET is actually three separate technologies that enable you to interact

with relational databases. Figure 15.2 shows how the LINQ to ADO.NET technologies

relate to each other, the other LINQ-enabled data sources, and the higher-level pro-

gramming languages such as C#.

Working with LINQ to DataSet
LINQ to DataSet builds upon the existing ADO.NET architecture and enables you to

build queries over data stored in a DataSet easily and quickly. It is not meant to

ptg

334 HOUR 15: Working with Databases

.NET Language Integrated Query

.NET Languages

LINQ Enabled Data Sources

LINQ to ADO.NET Technologies

LINQ

LINQ to
Objects

LINQ to
DataSet

LINQ to
SQL

LINQ to
Entities

LINQ to
XML

FIGURE 15.2
LINQ to ADO.NET

To use LINQ to DataSet, you must first populate the DataSet. After data has been

loaded, you can begin querying it using the same techniques you have already

learned with LINQ to Objects (Hour 12, “Understanding Query Expressions”) and

LINQ to XML (Hour 14, “Working with XML”). These queries can be performed

against a single table in the DataSet or against multiple tables using the Join and

GroupJoin query operators.

Listing 15.2 is functionally equivalent to the query shown in Listing 15.1 using a

LINQ to DataSet query instead. This code first creates a SqlDataAdapter and then

fills the DataSet instance with data. This code is necessary with both ADO.NET and

LINQ to DataSet. However, by using the AsEnumerable extension method on the

DataTable, you can execute standard LINQ queries against the data.

LISTING 15.2 A Simple LINQ to DataSet Query
string connectionString = @”Integrated Security=SSPI;
➥database=AdventureWorksLT2008;server=(local)\SQLEXPRESS”;

string selectSQL = @”SELECT * FROM [AdventureWorksLT2008].[SalesLT].[Customer]”;

SqlDataAdapter adapter = new SqlDataAdapter(selectSQL, connectionString);
DataSet ds = new DataSet();
adapter.Fill(ds);
foreach (var customer in ds.Tables[0].AsEnumerable().
➥Where(row => row.Field<string>(“CompanyName”) == “A Bike Store”))
{

Console.WriteLine(“{0} {1} {2}”,
customer.Field<string>(“Title”),
customer.Field<string>(“FirstName”),
customer.Field<string>(“LastName”));

}

GO TO .
Hour 24,
“Next Steps:
Silverlight,
Powershell, and
Entity Frame-
work,” for more
information on
LINQ to Entities
and the Entity
Framework.

replace ADO.NET in an application but to enable you to write queries using the

LINQ syntax and fills the void left by the limited query capabilities of the DataSet.

ptg

Understanding LINQ to ADO.NET 335

Watch
Out!

Just as LINQ to XML added XML-specific extensions, LINQ to DataSet also adds sev-

eral DataSet specific extensions. These extensions make it easier to query over a set

of DataRow objects, enabling you to compare sequences of rows or directly access the

column values of a DataRow.

Required References
To use LINQ to DataSet, you need to ensure that the project has references to the
following assemblies:
. System.Core

. System.Data

. System.Data.DataSetExtensions

. System.Data.Common or System.Data.SqlClient, depending on how you
connect to the database

You also need to include the System.Linq and System.Data namespaces.

LINQ to SQL
LINQ to SQL enables you to write queries directly against SQL databases using the

same query syntax you use for an in-memory collection or any other LINQ data

source. Although ADO.NET maps the database to a conceptual data model, repre-

sented by a DataSet, LINQ to SQL maps directly to an object model in your applica-

tion code. When your application executes, the LINQ syntax queries are translated by

LINQ to SQL into SQL language queries that are then sent to the database to be exe-

cuted. When the results are returned, LINQ to SQL translates them back to data

model objects.

To use LINQ to SQL, you must first create the object model that represents the data-

base. There are two ways to do this:

. The Object Relational Designer (O/R Designer), which is part of Visual Studio

2010, provides a rich user interface for creating the object model from an exist-

ing database. The O/R Designer supports only SQL Server Express, SQL Server

2000, 2005, and 2008 databases.

. The SQLMetal command-line tool, which should be used for large databases, or

databases that the O/R Designer does not support.

When you decide how you will generate the object model, you need to decide what

type of code you want to generate. Using the O/R Designer, you can generate C#

ptg

336 HOUR 15: Working with Databases

By the
Way

Watch
Out!

source code that provides attribute-based mapping. If you use the SQLMetal com-

mand-line tool, you can also generate an external XML file containing the mapping

metadata.

Creating the Object Model
There is actually a third way to create the object model, in which you use the code
editor to write the object model by hand. This is not recommended because it can
be error prone, especially when creating the object model to represent an existing
database.

You can use the code editor to modify or refine the code generated by to Object
Relational Designer or the SQLMetal command-line tool.

When you have the object model created, you can then use it in your applications by

writing LINQ queries. The code in Listing 15.3 shows a complete example from defin-

ing the DataContext to executing the query and observing the results, and produces

the same result as the code shown in Listing 15.1 and Listing 15.2.

LISTING 15.3 A Simple LINQ to SQL Query
DataContext dataContext = new DataContext(@”Integrated Security=SSPI;
➥database=AdventureWorksLT2008;server=(local)\SQLEXPRESS”);

Table<Customer> customers = dataContext.GetTable<Customer>();
IQueryable<Customer> query =

from customer in customers
where customer.CompanyName == “A Bike Store”
select customer;

foreach(Customer customer in query)
{

Console.WriteLine(“{0} {1} {2}”,
customer.Title,
customer.FirstName,
customer.LastName);

}

Required References
To use LINQ to SQL, you need to ensure that the project has references to the fol-
lowing assemblies:
. System.Core

. System.Data.Linq

You also need to include the System.Linq and System.Data.Linq namespaces.

You must first establish the connection between your object model and the database,

done through a DataContext. You then create a Table<T> class that acts as the table

you will query. Although not actually the case, you can think of the DataContext as

ptg

Understanding LINQ to ADO.NET 337

▼

FIGURE 15.3
Add Item Dialog

FIGURE 15.4
O/R Designer

being similar to a DBConnection and Table<T> as being similar to a DataTable. You

then define and subsequently execute your query.

Try It Yourself

Working with LINQ to SQL
By following these steps, you use the O/R Designer and LINQ to SQL to insert a
record and then query a table.

1. Create a new Console application.

2. Include the System.Data.Linq namespace with a using directive.

3. Use the O/R Designer to create the object model. To do this, add a new item to

your project by selecting LINQ to SQL Classes, as shown in Figure 15.3. Name

the file AdventureWorksLT.

4. In the resulting editor, click the Server Explorer link to display the Visual Studio

Server Explorer tool window, as shown in Figure 15.4.

5. In the Server Explorer window, shown in Figure 15.5, add a new Data

Connection.

6. When the Add Connection dialog, shown in Figure 15.6, displays, click the

Change button to select Microsoft SQL Server as the data source.

ptg

338 HOUR 15: Working with Databases

FIGURE 15.5
Server Explorer

FIGURE 15.6
Add Connection
Dialog

FIGURE 15.7
Add Connection
Dialog for SQL
Server

7. The Add Connection dialog should now look as shown in Figure 15.7. Be sure

to set the Server name and database name fields as shown, and click the OK

button.

ptg

Understanding LINQ to ADO.NET 339

FIGURE 15.8
An expanded
data connection

FIGURE 15.9
O/R Designer
displaying a table

8. Expand the connection that was just added to view the available tables, as

shown in Figure 15.8.

9. Select the Customer table and drag it on to the AdventureWorksLT.dbml editor

window, as shown in Figure 15.9. This creates the entity class that represents

the Customer table.

10. In the Main method of the Program.cs file, implement the code shown in

Listing 15.3.

11. Run the application using Ctrl+F5. The output should look like what is shown

in Figure 15.10.

ptg

340 HOUR 15: Working with Databases

▲

FIGURE 15.10
Results of run-
ning a query

Selecting data, also known as projection, is accomplished simply by writing a LINQ

query and then executing it. LINQ to SQL also enables you to add, modify, or delete

data in the database. Whenever you make changes using LINQ to SQL, you are mod-

ifying only the local cache. The changes you have made are not sent to the database

until you call the SubmitChanges method on the DataContext instance.

To add a new record to the database, you simply create a new instance of the appro-

priate data model object, calling the InsertOnSubmit method of the Table<T>

instance. The code in Listing 15.4 shows an example of adding a new Customer

record to the Customers table, and is equivalent to the code you wrote earlier to

insert a new record using ADO.NET.

LISTING 15.4 Adding a New Record
DataContext dataContext = new DataContext(@”Integrated Security=SSPI;
➥database= AdventureWorksLT2008;server=(local)\SQLEXPRESS”);

Table<Customer> customers = dataContext.GetTable<Customer>();

Customer customer = new Customer();
customer.NameStyle = true;
customer.Title = “Mr.”
customer.FirstName = “Scott”;
customer.LastName = “Dorman”;
customer.PasswordHash = “aaaaa”;
customer.PasswordSalt = “aaaa”;
customer.ModifiedDate = DateTime.Now;
customers.InsertOnSubmit(customer);

dataContext.SubmitChanges();

Updating an existing entity simply requires you to retrieve the specific object from

the database using a LINQ to SQL query and then modifying its properties, as shown

in Listing 15.5.

ptg

Understanding LINQ to ADO.NET 341

LISTING 15.5 Updating a Record
DataContext dataContext = new DataContext(@”Integrated Security=SSPI;
➥database= AdventureWorksLT2008;server=(local)\SQLEXPRESS”);

Table<Customer> customers = dataContext.GetTable<Customer>();

Customer customer =
(from customer in customers
where customer.LastName == “Dorman”
select customer).First();

customer.Title = “Mr.”;

dataContext.SubmitChanges();

Deleting an item is also just as simple because you remove the item from its contain-

ing collection using the DeleteOnSubmit method and then call SubmitChanges.

Listing 15.6 shows an example of deleting a record from the database.

LISTING 15.6 Deleting a Record
DataContext dataContext = new DataContext(@”Integrated Security=SSPI;
➥database= AdventureWorksLT2008;server=(local)\SQLEXPRESS”);

Table<Customer> customers = dataContext.GetTable<Customer>();

IQueryable<Customer> query =
from customer in customers
where customer.LastName == “Dorman”
select customer;

if (query.Count() > 0)
{

customers.DeleteOnSubmit(query.First());
}

dataContext.SubmitChanges();

Defining a Custom DataContext
In all the preceding examples, you used the DataContext class provided by LINQ to

SQL. The GetTable method enables you to instantiate any entity class even if that

table is not contained in the underlying database the DataContext is connected to. It

is only while your program is executing that you can discover this problem. As a

result, it is recommended that you create specialized DataContext classes specific to

the database you will use.

ptg

342 HOUR 15: Working with Databases

To create a derived DataContext class, you simply inherit from DataContext and

then provide the various Table<T> collections as public members. Listing 15.7 shows

a strongly typed DataContext class for the AdventureWorksLT database and how it

would be used in a simple query.

LISTING 15.7 A Custom DataContext
public partial class AdventureWorksLT : DataContext
{

public Table<Customer> Customers;
public Table<Order> Orders;

public AdventureWorksLT (string connection) : base(connection) { }
}

AdventureWorksLT dataContext = new AdventureWorksLT(@”Integrated Security=SSPI;
➥database=AdventureWorks;server=(local)\SQLEXPRESS”);

IQueryable<Customer> query =
from customer in dataContext.Customers
customer.CompanyName == “A Bike Store”
select customer;

foreach(Customer customer in query)
{

Console.WriteLine(“{0} {1} {2}”,
customer.Title,
customer.FirstName,
customer.LastName);

}

Summary
In this hour, you learned how ADO.NET and the LINQ to ADO.NET technologies

make it easy to work with databases. You learned the basics of working with

ADO.NET and then built upon that to see how LINQ to DataSets enable you to add

complex queries over the data in a DataSet. You then learned how LINQ to SQL

enables you to create an object model that represents your database, enabling you to

easily query, add, update, and remove data from the database. Finally, you saw how

easy it is to create custom data contexts for use with LINQ to SQL.

Q&A
Q. What is a relational database?

A. A relational database is simply a repository of data that is organized into

tables, rows, and records.

ptg

343Workshop

Q. What is ADO.NET?

A. The ADO.NET library is a rich framework enabling you to easily build applica-

tions that can retrieve and update information in relational databases.

Q. Does ADO.NET require a constant connection to the database?

A. No, most of the ADO.NET classes are designed so that they do not require a

continuous connection to the database, enabling you to work in a discon-

nected manner. The DataReader class and any derived classes do require a

constant connection to the database.

Q. What is LINQ to ADO.NET?

A. LINQ to ADO.NET is actually three separate technologies that enable you to

interact with relational databases: LINQ to DataSet, LINQ to SQL, and LINQ to

Entities.

Q. What is a LINQ to SQL object model?

A. A LINQ to SQL object model directly represents, or maps, objects in your appli-

cation to objects (tables) in the underlying database.

Q. Can LINQ to SQL be used to update data?

A. Yes, LINQ to SQL can be used to update data. It can also be used to add new

data or delete existing data.

Workshop

Quiz
1. What are the ADO.NET data providers that ship with the .NET Framework?

2. What references are required to use LINQ to DataSet?

3. What references are required to use LINQ to SQL?

4. What is the benefit to creating a custom DataContext class?

ptg

344 HOUR 15: Working with Databases

Answers
1. The .NET Framework currently ships with five data providers, which support

SQL Server, Oracle, any OLE DB-compliant database, any ODBC-compliant

database, and the Entity Data Model (which is part of the Entity Framework).

2. LINQ to DataSet requires references to the following assemblies:

. System.Core

. System.Data

. System.Data.DataSetExtensions

. System.Data.Common or System.Data.SqlClient

3. LINQ to DataSet requires references to the following assemblies:

. System.Core

. System.Data.Linq

4. Creating a custom DataContext helps to ensure that you can only access tables

defined by the underlying database by providing the various Table<T> collec-

tions as public members.

Exercise
There are no exercises for this chapter.

ptg

PART IV

Building an Application Using
Visual Studio

HOUR 16: Debugging in Visual Studio 347

HOUR 17: Building a Windows Application 363

HOUR 18: Using Data Binding and Validation 385

HOUR 19: Building a Web Application 407

ptg

This page intentionally left blank

ptg

347

HOUR 16

Debugging in Visual Studio

What You’ll Learn in This Hour:
. Commenting Your Code
. Compiler and Runtime Errors
. Debugging in Visual Studio
. Visualizing Data

At the end of Hour 1, “The .NET Framework and C#,” you learned that Visual Studio

is a complete integrated development environment actually made up of many differ-

ent tools. Up until now, you have primarily used only the code editor and compiler

tools within Visual Studio. There is one additional set of tools equally as important:

the debugging tools, collectively called the Visual Studio debugger.

These tools enable you to inspect your applications internal state as it is running.

Some of the tasks the debugger enables you to perform follow:

. Examining your code

. Controlling the execution of your application

. Evaluating and modifying variables

. Seeing the variable contents when an exception occurs

In this hour, you learn the basics of working with the Visual Studio debugger and

how it can be used to help you locate and correct application flaws, or bugs. All the

debugging tools can be accessed through the Debug menu in Visual Studio, includ-

ing the different debugger windows and dialogs that enable you to see and modify

information about your application.

ptg

348 HOUR 16: Debugging in Visual Studio

By the
Way

Commenting Your Code
Although commenting your code isn’t actually a feature of the Visual Studio debug-

ger, it is one of the simplest ways to reduce bugs from the start. Good comments

make it easier to understand what the code is doing and, more important, why it is

doing it a particular way. Comments are meant to be read by programmers and

should be clear and precise. A comment that is hard to understand or incorrect isn’t

much better than having had no comment at all.

XML Comments
Another form of comment that you should get in the habit of using are XML com-
ments. An XML comment generally starts with three forward slashes (///) on
each line. Everything after those slashes must be valid and well-formed XML. The
simplest XML comment looks like

/// <summary>
/// This is a summary comment, typically describing what a
/// method or property does in one or two short sentences.
/// </summary>

These comments are most often used to create documentation for your code
using external tools such as SandCastle. Another nice feature of XML comments
is that the Visual Studio code editor automatically uses them to generate Intel-
liSense tooltips for your own code.

XML comments can also be delimited by starting with the /** character
sequence and ending with */.

A comment is simply text ignored by the C# compiler. Comments are actually

removed from the code text during compilation, so there is no impact to perform-

ance. For the compiler to recognize text as a comment, they must start with two for-

ward slashes (//). Everything to the right of the slashes, and including the slashes, is

a comment. This means that a comment can be on a line by itself, like this:

// This is a full line comment.

It can also appear at the end of a line of code, typically called an end-of-line com-

ment, like this:

string name; // The name should include both first and last names.

Delimited Comments
C# also supports a comment style made popular by the C programming language,
which requires only a starting (/*) and ending (*/) comment character sequence;
everything in between (including the start and end character sequence) is treated
as a comment.

By the
Way

ptg

Compiler and Runtime Errors 349

Although this comment style can be used for single-line comments, it is more
commonly used for multiline comments. For example, a multiline comment using
this style would be written as follows:

/* This is the start of a comment that spans
* multiple lines but does not require the
* characters at the start of each line. */

The Visual C# editor automatically starts each line following the first one with a
single asterisk (*) character. Multiline comments can also be easily accomplished
by adding the // characters to each line.

Adding clear and precise comments to your code means that you don’t have to rely

on memory to understand the “what” and “why” of a section of code. This is most

important when you look at that code later on, or someone else must look at your

code. Because comments become part of the textual content of your code, they should

follow good writing principles in addition to being clearly written.

To write a good comment, you should do your best to document the purpose of the

code (the why, not how) and indicate the reasoning and logic behind the code as

clearly as possible. Ideally, comments should be written at the same time as you write

the code. If you wait, you probably won’t go back and add them.

Compiler and Runtime Errors
Errors can occur at any time in your application, including when you write the code.

These errors are compiler or build errors, and actually prevent the compiler from suc-

cessfully compiling your code into an assembly. Runtime errors occur when your

application is actually executing in the form of exceptions and are the errors the

Visual Studio debugger enables you to locate and diagnose.

One basic rule for integer division is you cannot divide a number by zero. If you

attempt to do this at compile time, you see a compiler error, as in Figure 16.1.

To easily find the location of the compiler error, you can double-click the entry in the

error list to go directly to that line in the code.

Unit Tests
Although well-commented code can help with code maintenance, an effective
way to both document and verify the functionality of your code is to write unit
tests.

There are a variety of unit test frameworks, including the MSTest framework
included with Visual Studio. No matter which unit testing framework you choose,

By the
Way

ptg

350 HOUR 16: Debugging in Visual Studio

Most likely, this isn’t actually what was intended. Instead, you want to divide by a

user-provided divisor, as shown in Listing 16.1. This code retrieves a value provided

by the user, converts it to an integer value, and then uses it as the divisor.

LISTING 16.1 Dividing Using a User-Provided Divisor
static void Main(string[] args)
{

string input = Console.ReadLine();
int divisor = Convert.ToInt32(input);
int x = 10 / divisor;
Console.WriteLine(x);

}

Although this code compiles and runs without any errors, what happens if the divisor

entered is zero or, even worse, not numeric at all?

If you are running outside of Visual Studio, your application will crash with one of

two possible unhandled exceptions:

. System.DivideByZeroException: Attempted to divide by zero.

. System.FormatException: Input string was not in a correct format.

Debugging in Visual Studio
If you run inside Visual Studio, however, you get the ability to debug the application

at the point the exception occurred, as shown in Figure 16.2.

the basic premise is similar. You write a unit test separate from your main code
that tests a single “unit” (typically a method or property) to ensure that the
method reliably produces the correct results under all possible conditions.

Unit tests also enable you to make code changes with confidence that those
changes have not changed the expected behavior or result.

FIGURE 16.1
Compiler error
shown in the
error list

ptg

Debugging in Visual Studio 351

FIGURE 16.2
Visual Studio
Debugger break-
ing on an excep-
tion

Breaking on Exceptions
Having your application break on all exceptions might not be the desired behavior
during a debugging session. This behavior is configurable, allowing you to break
only on certain exceptions, break only on unhandled exceptions, and a few other
options.

You can access these settings through the Exceptions choice on the Debug menu.

By the
Way

The Visual Studio debugger suspended (commonly called breaking) program execu-

tion at the point the DivideByZeroException occurred. The line that contains the

exception is highlighted, by default, in yellow, and the gray bar on the left of the code

editor (called the margin) contains a yellow arrow indicating the execution point.

The Exception Assistant, shown in detail in Figure 16.3, also appears and shows the

type of exception, the exception message, troubleshooting tips, and corrective actions.

In this case, the Exception Assistant indicates that you attempted to divide by zero

and there are no corrective actions.

In addition to the Exception Assistant, Visual Studio includes a number of tools that

help you identify and eliminate program errors; the primary ones are as follows:

. Variable windows

. DataTips

ptg

352 HOUR 16: Debugging in Visual Studio

Variable Windows
Variable windows display the name, value, and data type of variables while you

debug. Although seeing the current value of a variable is helpful when you debug,

modifying the value of a variable is even more helpful. Fortunately, the variable win-

dows enable you to do just that. By double-clicking in the value column, or using the

Edit Value context menu, you can edit the value of that variable. When a value has

been modified, it appears in red, as shown in Figure 16.4.

Visual C# Express provides two variable windows: the Locals window and the Watch

window. These windows appear below the code editor while you debug and can be

accessed using the Debug Windows menu.

Visual Studio with MSDN Editions
If you are using one of the Visual Studio with MSDN editions, you have a few extra
capabilities not found in the Visual C# Express edition.

In addition to the Locals and Watch windows, you also have an Autos window,
which displays variables used in the current and preceding line of code. Like the
Locals window, the debugger also automatically populates the Autos window.

Although the Watch window allows you to examine many variables or expressions,
the Quick Watch dialog enables you to examine a single variable or expression at
a time and is useful for quickly seeing a single value or large data structure.

You also have multiple Watch windows, four of them actually, instead of just one.

By the
Way

FIGURE 16.4
Locals Window
after editing a
value

FIGURE 16.3
Exception
Assistant

. Immediate window

. Breakpoints

. Execution control

ptg

Debugging in Visual Studio 353

The Locals window, shown in Figure 16.5, displays all the local variables that are cur-

rently in scope.

The Watch window enables you to enter expressions directly. The simplest expression

you can enter is a variable name; however, the debugger accepts most valid language

expressions. The expression evaluator does not accept lambdas or LINQ query syntax

expressions. To evaluate an expression in the Watch window, you can do the following:

. Click on the Name column in an empty row and enter the variable name or

expression.

. Drag a variable or expression from the code editor to an empty row.

. Use the Add Watch context menu from the selected expression.

Expressions with Side Effects
Expressions that change data are said to have side effects. When you enter such
an expression into the watch window, the side effect occurs each time the expres-
sion is evaluated by the Watch window. If you are not aware that the expression
has side effects, this can lead to unexpected results.

When an expression is known to have side effects, it is evaluated only the first
time you enter it. Subsequent evaluations are disabled; however, you can override
this behavior by clicking the update icon (which resembles two green arrows cir-
cling in opposite directions within a green circle) that appears next to the value.

The debugger automatically calls property get accessors to display results, so
properties with side effects can cause unwanted behavior during debugging. In
fact, the debugger assumes that property getters follow the best practices, which
means they are as follows:

1. Fast

2. Side-effect free

3. Never throw exceptions

Watch
Out!

FIGURE 16.5
Locals window

ptg

354 HOUR 16: Debugging in Visual Studio

When an expression has been added to the watch window, it remains there until you

remove it. If the expression is no longer in scope, it displays in a disabled state.

When the Watch window displays a dynamic object, a special “Dynamic View” node

is added that shows the members of the dynamic object but does not enable editing

the values.

Using DataTips
You can also view the current value using a DataTip, which is one of the more con-

venient ways for viewing information about variables and objects in your program

while you are debugging. By placing the mouse pointer over the variable in a source

editor while you debug, the DataTip displays, as shown in Figure 16.6. Just as you

can in the Locals window, you can edit the value by clicking on the DataTip.

By default, DataTips are transient and disappear when you move the mouse cursor

away from the variable. DataTips can also be pinned, as shown in Figure 16.7, to a

specific location in the source file by clicking the Pin to source icon (the pushpin on

the right side of the DataTip).

Although DataTips are visible only during a debugging session, pinned DataTips dis-

play a pushpin icon in the margin of the editor that you can place the mouse cursor

over to view the value from the last debugging session, as shown in Figure 16.8.

By clicking the “Unpin from source” icon, you can float the DataTip above any open

windows. A pinned or floating DataTip will be visible in the same location for any

subsequent debugging sessions, including after restarting Visual Studio.

GO TO .
Hour 21,
“Dynamic Types
and Language
Interoperability,”
for more infor-
mation on
dynamic types.

FIGURE 16.6
DataTip

FIGURE 16.7
A pinned DataTip

FIGURE 16.8
A pinned DataTip
while editing

ptg

Debugging in Visual Studio 355

Sharing DataTips
You can also export DataTips to an XML file to share with other developers work-
ing on the same project.

To export DataTips, click Export DataTips on the Debug menu, navigate to the
location where you want to save the XML file, provide a name for the file, and click
OK. To import DataTips, click Import DataTips on the Debug menu and select the
appropriate XML file.

Did you
Know?

Using the Immediate Window
The Immediate window enables you to evaluate expressions, execute statements,

print variable values, and many other actions. The Immediate window also supports

specific Visual Studio commands in addition to allowing you to execute language

statements.

For example, to display the value of the divisor variable at the time the exception

occurred, you could enter the following statements in the Immediate window:

>Debug.Print divisor
>? divisor
? divisor
divisor

The result of each of these commands is shown in Figure 16.9. You can use the Up

and Down arrow keys to cycle through previously entered commands.

Understanding Breakpoints
When debugging an application using the Visual Studio debugger, your application

is either executing (running) or in break mode. Break mode occurs when the debug-

ger breaks the program execution as the result of an exception, a user-defined break-

point, or manually breaking the execution. Most of the debugger features are avail-

able only when your application is in break mode.

FIGURE 16.9
Immediate
window

ptg

356 HOUR 16: Debugging in Visual Studio

To manually break the execution of your program, you can use Break All from the

Debug menu. This causes the debugger to stop the execution of all programs running

under the debugger.

As the name implies, a breakpoint tells the debugger that your application should

break execution at a certain point. When a breakpoint is set, the line is shown in red by

default, and a solid red circle displays in the editor margin, as shown in Figure 16.10.

There are multiple ways to set a breakpoint. To set a breakpoint on an entire line, you

can click the margin next the line of code, place the mouse cursor over the line of

code and use the Insert Breakpoint context menu option, or place the caret (the text

cursor represented by the vertical bar) in the line of code and press the F9 key.

After a breakpoint has been set, your application will break at that location every

time it is run under a debugger. When you no longer want the breakpoint set, you

can remove it by clicking the breakpoint symbol in the margin. You can also place

the mouse cursor over the line of code containing the breakpoint and use the Delete

Breakpoint context menu option, or place the caret (the text cursor represented by the

vertical bar) in the line of code and press the F9 key.

Sometimes, however, you only want to disable a breakpoint. To do this, you can right-

click the breakpoint symbol in the margin or place the mouse cursor over the line of

code containing the breakpoint, and use the Disable Breakpoint context menu

option. You can also place the caret in the line of code and press the Ctrl+F9 keys. A

disabled breakpoint, shown in Figure 16.11, is displayed with a red outlined circle in

the editor margin and a red border around the line containing the breakpoint.

Visual Studio with MSDN Editions
If you use one of the Visual Studio with MSDN editions, you have a few extra
breakpoint capabilities not found in the Visual C# Express edition.

The most apparent one is the ability to create a tracepoint. A tracepoint is a
breakpoint, which, by default, does not break program execution but instead per-
forms a custom action. Tracepoints are most commonly used for printing mes-
sages when your program reaches a certain point.

In addition to tracepoints, you can also place restrictions on when a breakpoint
will actually cause the debugger to break program execution by applying a

By the
Way

FIGURE 16.10
An enabled
breakpoint

FIGURE 16.11
A disabled
breakpoint

ptg

Debugging in Visual Studio 357

condition. The debugger evaluates the condition expression when the breakpoint
is reached. If the condition is satisfied, the debugger breaks program execution; if
not, the program continues to execute. Closely related to conditions, you can also
indicate that the breakpoint should occur after it has been hit a certain number of
times. By default, execution breaks every time a breakpoint is hit.

Finally, you can use the Breakpoints window to display all the current breakpoints
and tracepoints. The Breakpoints window also enables you to label a breakpoint
or a group of breakpoints. Labels are useful when you want to mark a related
group of breakpoints.

To reenable a breakpoint, right-click the breakpoint symbol in the margin or place

the mouse cursor over the line of code containing the breakpoint and use the Enable

Breakpoint context menu option. You can also place the caret in the line of code and

press the Ctrl+F9 keys.

Controlling Program Execution
When an application is in break mode, one of the most common debugging proce-

dures is to execute code one line at a time. The Visual Studio debugger provides four

ways to do this:

. Step Into

. Step Over

. Step Out

. Step Into Specific

Step Into and Step Over both instructs the debugger to execute the next line of code.

The only difference is that if the line contains a function, Step Over executes the

entire function and stops at the first line outside the function. Step Into halts at the

first line of code inside the function.

When you are inside a function call and want to return to the calling function, you

can use Step Out, which resumes execution until the function returns and then breaks

at the first line outside the function.

Sometimes Step Into or Step Over isn’t enough, particularly when you have nested

function calls. Instead, you want to step into a specific function call at a certain nest-

ing level. To do this, you can use the Step Into Specific context menu, which allows

you to choose the function you want to step into.

The currently executing line is shown highlighted in yellow, by default, with a yellow

arrow symbol in the margin, as shown in Figure 16.12.

ptg

358 HOUR 16: Debugging in Visual Studio

The Step Into, Step Over, Step Out, and Step Into Specific actions all move “forward”

in your program execution one line at a time. Sometimes, when you have started

debugging you want to execute to a certain point and then break again. You can do

this by finding the desired line, adding a new breakpoint and then continuing execu-

tion with the F5 key.

However, this isn’t always necessary. You can also continue execution until it reaches

the current cursor location. To do this, right-click on a line in the source code editor,

and choose the Run To Cursor context menu.

Using the Call Stack Window
Although executing code and working with variables while debugging is certainly

powerful, sometimes it is important to know where you have been as well. This infor-

mation can be viewed through the Call Stack window, shown in Figure 16.13, which

displays the name of each function on the stack and the programming language it

was written in.

Again, just as in the code editor, a yellow arrow indicates the stack frame containing

the current execution point. The information shown in the Locals and Watch win-

dows are from this frame. By double-clicking another row in the call stack, or right

clicking on another row and choosing Switch To Frame on the context menu, you can

change context to another frame on the stack. A green arrow indicates the frame that

has the current context and the line of code executed in that frame is highlighted in

green, as shown in Figure 16.14.

Switching Call Stack Frames
When you switch to another call stack frame, the current execution point remains
in the original frame. When you continue execution or perform one of the Step
actions, execution continues from the original frame, not the frame you selected.

Watch
Out!

FIGURE 16.12
The current exe-
cution point

FIGURE 16.13
The Call Stack
window

ptg

Visualizing Data 359

FIGURE 16.14
Switching to
another call
stack frame

Setting the Next Statement
Although switching context to another stack frame is useful, sometimes it is necessary

to re-execute a line that has previously executed or even skip over sections of code.

This can be accomplished by manually setting the next statement to be executed.

You can do this by moving the yellow arrow up or down to indicate the next state-

ment. You can also place the mouse cursor over the desired line of and use the Set

Next Statement context menu.

Setting the Next Statement
When you set the next execution statement, you cause the program to jump
directly to that location. This means that any instructions between the old and
new execution points are not executed. It also means that if the execution point
moves backward, any intervening instructions are not undone.

It is also not possible to move the next statement to another function or scope,
because doing so usually results in call-stack corruption ultimately causing a run-
time error to occur.

Watch
Out!

Visualizing Data
Seeing the value of a variable while debugging is useful, and as data structures

become more complex, this ability becomes ever more powerful. Unfortunately, some-

times a value is better understood when seen using a manner that is more appropri-

ate for its data type or value. For example, a string containing HTML is certainly

ptg

360 HOUR 16: Debugging in Visual Studio

more easily understand if the data is viewed as it would appear in a web browser, and

a string containing XML is more easily understood when you can visually see the

XML structure.

Visual Studio includes five standard visualizers:

. Text, HTML, and XML visualizers, which all work with string objects

. WPF Tree visualizer, for displaying the properties of a WPF object’s visual tree

. Dataset visualizer, which works for DataSet, DataView, and DataTable objects

Visualizers
Many additional visualizers are available for you to download. Installing a new
visualizer is as simple as copying the files to the following location:
My Documents\Visual Studio 2010\Visualizers

By the
Way

When a data type has a visualizer available, you see a Magnifying Glass icon in the

DataTip (as shown in Figure 16.15), variables window, or the QuickWatch dialog. By

clicking the magnifying glass, you are presented a menu of the available visualizers;

choosing one displays the value of the variable in the specified visualizer window.

Summary
In this hour, you learned the basics of how to use the Visual Studio debugging tools

to diagnose and help fix application runtime errors. You learned about the impor-

tance of providing meaningful code comments and the differences between compile

time and runtime errors.

Finally, you learned about the different tools the Visual Studio debugger makes avail-

able, including the variable windows and the Immediate window. You also learned

how you can control program execution and set breakpoints to stop program execu-

tion at specific locations.

FIGURE 16.15
Debugger visual-
izers

ptg

361Workshop

Q&A
Q. What is the purpose of a breakpoint?

A. A breakpoint suspends the execution of your application at a specific point.

Q. What is the difference between the Locals window and the Autos window?

A. The Locals window displays variables that are local to the current scope, typi-

cally the currently executing procedure or function. The Autos window displays

variables only for the currently executing and the preceding statement.

Workshop

Quiz
1. What characters are used to indicate a single line comment?

2. What does the yellow arrow in the code editor margin or call stack window

indicate?

3. Can the value of a variable be modified while debugging?

Answers
1. Two forward slash (//) characters are used to indicate a single-line comment.

2. The yellow arrow indicates the next statement to be executed.

3. Yes, the value of a variable can be modified through the Locals, Autos, Watch,

and Immediate windows. It can also be modified through a DataTip.

Exercise
1. Implement the code shown in Figure 16.1, but modifying it to use the

Int32.TryParse method instead of directly calling Convert.ToInt32. Also

modify the Divide method so that it includes a try-catch block that displays a

friendly message if a DivideByZero exception is caught.

ptg

This page intentionally left blank

ptg

363

HOUR 17

Building a Windows
Application

What You’ll Learn in This Hour:
. Understanding WPF
. Creating a WPF Application
. Styling the Layout

Now that you have completed the first three parts of this book, you should be famil-

iar with the .NET Framework and C# language. You have learned the fundamental

differences between reference and value types, including how to create your own

types. You learned about language features, such as extension methods, automatic

properties, lambdas, events, and exceptions. You now know how to create and query

collections of data and work with files and directories in the file system, XML, and

databases. In short, you should now have all the essential language skills necessary

to create complex applications that take advantage of the user interface libraries

provided by the .NET Framework.

Although the NET Framework provides two different class libraries for developing Win-

dows applications, the Windows Forms and Windows Presentation Foundation (WPF)

libraries, WPF provides a much more complete and unified model for building rich

Windows applications. In this hour, you learn how to build a basic WPF application.

You see how to do this visually using the visual design tools and through Extensible

Application Markup Language (XAML). Finally, you learn about styling your applica-

tion using WPF visual styles to build an application that can be easily customized.

ptg

364 HOUR 17: Building a Windows Application

Understanding WPF
Windows Presentation Foundation (WPF) provides a unified programming model

enabling you to build Windows applications that incorporate user interface ele-

ments, media, and documents. WPF, however, goes beyond just user interfaces. It is a

next-generation presentation system enabling you to create a wide range of visually

rich standalone and browser-hosted applications. At the center of WPF is a resolu-

tion-independent vector-based rendering engine designed to take advantage of mod-

ern graphics hardware. WPF is part of the .NET Framework and most of the types you

need are located in the System.Windows namespace.

Working with Markup and Code-Behind
If you have previously developed ASP.NET applications, the idea of markup and code-

behind should already be familiar. In a WPF application, you use a markup language

to implement the appearance of the application; you implement the behavior using a

programming language, such as C#, “behind” the markup. This enables a clean sepa-

ration between appearance and behavior, providing the following benefits:

. Reduced development and maintenance cost.

. Development is more efficient, allowing the application’s appearance to be cre-

ated simultaneously with other developers who are implementing the applica-

tion’s behavior.

. Multiple design tools can create and share the markup.

Markup
WPF uses Extensible Application Markup Language (XAML), which is an XML-based

compositional markup language. Because XAML is XML-based, the user interface

(UI) you compose with it is assembled in an element tree, which is a hierarchy of

nested elements. The element tree provides a logical way to create and manage the

user interface.

Figure 17.1 shows a simple WPF application written completely in XAML. Specifically,

the XAML defines a window and a button using the Window and Button elements,

respectively, and then sets various attributes to specify the text, sizes, and so on.

FIGURE 17.1
“Hello World”
in WPF

ptg

Understanding WPF 365

The XAML necessary is shown in Listing 17.1.

LISTING 17.1 Simple XAML
<Window x:Class=”WpfApplication1.MainWindow”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Hello World” Height=”162” Width=”328”>

<Grid Height=”111” Width=”303”>
<Button Content=”Hello, world from WPF!”

Margin=”82,37,93,32”
Name=”button1”
Height=”42”
HorizontalAlignment=”Center”
VerticalAlignment=”Center” />

</Grid>
</Window>

The x:Class Attribute
The x:Class attribute specifies the name of the class, not the name of the file
that contains the class. If you rename the class using the built-in refactoring sup-
port, Visual Studio updates the XAML, but it won’t change the actual filename. If
you rename the file, Visual Studio will not automatically rename the class. To help
avoid confusion, your filenames and class names should always match.

Watch
Out!

Code-Behind
Although this simple application contains a button, it isn’t very functional. The

application provides no behavior that responds to user interactions, such as respond-

ing to events, calling business logic, or accessing data. This behavior is generally

implemented in code associated with the markup, known as code-behind.

You can respond to the Click event of the button by adding the following attribute to

the Button element:

Click=”button1_Click”

This simply creates the association in the markup between the event and a method in

the code-behind file. The actual code-behind required is shown in Listing 17.2. In this

example, the code-behind implements a class named MainWindow that derives from

the Window class. The x:Class attribute in the markup associates the markup with its

code-behind class. A default public constructor that calls InitializeComponent is

also automatically generated for you. The button1_Click method implements the

event handler for the button’s Click event.

ptg

366 HOUR 17: Building a Windows Application

FIGURE 17.2
Handling the
button’s Click
event

LISTING 17.2 Code-Behind Class
public partial class MainWindow : Window
{

public MainWindow()
{
InitializeComponent();

}

private void button1_Click(object sender, RoutedEventArgs e)
{

MessageBox.Show(“You clicked the button!”);
}

}

Figure 17.2 shows the result when the button is clicked.

Applications
The types and services required for packaging your XAML-based content and deliver-

ing it to users as an application are part of what WPF calls the application model.

Through the application model, you can create both standalone and browser-hosted

applications.

Because standalone applications and browser-hosted applications are often complex

and require application-scoped services, such as shared properties and startup man-

agement, WPF provides the Application class. Just like other WPF-based resources,

the Application class is made up of markup and code-behind. Listing 17.3 shows the

XAML that makes up the Application markup for the =application from Listing 17.1.

LISTING 17.3 Application XAML
<Application x:Class=”WpfApplication1.App”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
StartupUri=”MainWindow.xaml”>

<Application.Resources> </Application.Resources>
</Application>

ptg

Understanding WPF 367

You already saw an example of a standalone application in the previous section.

These applications use the Window class to create windows and dialogs that are

accessed through menus, toolbars, and other UI elements. The primary purpose of a

window is to host and display content, such as media, XAML pages, web pages, and

documents.

Browser-hosted applications, also known as XAML browser applications (XBAPs), use

pages (from the Page class) and page functions (from the PageFunction<T> class).

With XBAPs, you can navigate between pages using hyperlinks. Because XBAPs are

hosted in a browser (Internet Explorer 6 or later), they use a partial-trust security

sandbox to enforce restrictions similar to those imposed on HTML-based applications.

XBAPs can run under a full-trust sandbox, but users are prompted with a security

warning dialog, enabling them to decide if they want to run the application.

Understanding WPF Layouts
Creating a user interface requires you to arrange controls by location and size, form-

ing a layout that must adapt to changes in window size and display settings. WPF

provides a robust layout and rendering system that handles these complexities for

you. The layout system is based on relative positioning rather than fixed positioning

and manages the interactions between controls to determine the layout. WPF pro-

vides several layout controls for you, and you can extend the layout system with your

own customized layout controls. The default layout controls follow:

. Canvas—You can think of a Canvas layout as an artist’s canvas. All child con-

trols of a Canvas must provide their own layout. Canvas should be used with

caution because it provides no inherit layout characteristics and uses exact

positioning. The layout system provided by a Canvas is similar to that of Win-

dows Forms or other layout systems that use exact x and y coordinates to posi-

tion controls.

. DockPanel—The child controls are aligned to the edges of the panel. By default,

the last control of a DockPanel fills the remaining space.

. Grid—The child controls are positioned by rows and columns, much like a

table.

. StackPanel—The child controls are stacked either vertically or horizontally.

. WrapPanel—The child controls are arranged in a left-to-right order and

wrapped to the next line when there are more controls than will display in the

space provided. A WrapPanel also supports a top-to-bottom order, in which

ptg

368 HOUR 17: Building a Windows Application

FIGURE 17.3
A DockPanel
Layout

controls are wrapped to the next column when there are more controls than

will display in the available space.

Figure 17.3 shows an example of using a DockPanel. The XAML for this layout is

shown in Listing 17.4.

LISTING 17.4 XAML Creating a Layout Using DockPanel
<Window x:Class=”WpfApplication1.Layouts”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Title=”Layouts” Height=”182” Width=”272”>

<Grid>
<DockPanel>

<Border DockPanel.Dock=”Top” BorderThickness=”1” BorderBrush=”Black”>
<TextBlock Height=”35”>Dock = “Top”</TextBlock>

</Border>
<Border DockPanel.Dock=”Bottom” BorderThickness=”1” BorderBrush=”Black”>

<TextBlock Height=”31” >Dock = “Bottom”</TextBlock>
</Border>
<Border DockPanel.Dock=”Left” BorderThickness=”1” BorderBrush=”Black”>

<TextBlock Width=”93” >Dock = “Left”</TextBlock>
</Border>
<Border BorderThickness=”1” BorderBrush=”Black”>

<TextBlock>Fill</TextBlock>
</Border>

</DockPanel>
</Grid>

</Window>

Like all WPF elements, layouts can be nested inside each other, allowing you to create

complex layouts.

Using Graphics, Animation, and Media
WPF provides a flexible and rich graphics environment featuring resolution- and

device-independent graphics, improved precision, advanced graphics and animation

ptg

Understanding WPF 369

support, and support for hardware acceleration. All graphics measurements in WPF

use pixels (1/96th of an inch), no matter what the actual screen resolution might be.

WPF provides support for

. 2-D shapes, like rectangles and ellipses

. 2-D geometries to create custom shapes

. 2-D effects, such as gradients, painting with videos, rotation, and scaling

. 3-D rendering, which integrates with 2-D graphics enabling you to show 2-D

images rendered onto 3-D shapes

In addition to the 2-D and 3-D graphics capabilities, WPF also provides animation

support. This enables you to make controls grow, shake, spin, or fade, creating

unique and interesting transition effects.

WPF directly supports using media, such as images, video, and audio, to convey

information. Many controls, including an Image control, implicitly know how to dis-

play images. Audio and video are both supported through the MediaElement control,

which is powerful enough to be the basis for a custom media player.

Understanding Text, Typography, and Documents
High-quality text rendering and manipulation is supported through OpenType font

support and ClearType enhancements. WPF also has intrinsic support for working with

flow documents, fixed documents, and XML Paper Specification (XPS) documents.

Flow documents optimize viewing and readability by dynamically reflowing content

as the window size and display settings change. Fixed documents can be used when a

precise presentation is required, such as in desktop publishing applications. XPS is an

open, cross-platform document format, and support for XPS documents in WPF is

built on the support for fixed documents.

Data Binding
Data binding in WPF is handled through a sophisticated and flexible binding engine

that enables you to bind a control (the target) to data (the source). This binding

engine provides a simple and consistent way to present and interact with data. Many

controls have built-in support for displaying single data items or collections of data

items, and controls can be bound to a variety of data sources, including .NET objects

and XML. The data binding support in WPF is so powerful that many things that

were previously only possible in code are now possible directly in XAML.

ptg

370 HOUR 17: Building a Windows Application

FIGURE 17.4
New Project
dialog

Creating a WPF Application
In the rest of this hour, you start creating a photo viewer application by creating a

new project, laying out the form, and adding controls.

First, create a new WPF Application project using the New Project dialog, as shown in

Figure 17.4. In the Name field, enter PhotoViewer.

Just as it does with Console applications, Visual Studio creates a solution and project

for you. This time, instead of displaying the generated C# class file, Visual Studio dis-

plays the visual designer for the application’s main window, the Controls toolbox,

and the Properties window. Figure 17.5 shows what Visual Studio should look like

after having just created the project.

The visual designer for XAML-based user interfaces is split into two sections. By

default, the top half shows the visual representation of the layout and the bottom

half shows the XAML. You can make changes in both portions, and changes made in

one will be reflected in the other. Figure 17.6 shows a more detailed view of the XAML

designer.

You can easily switch between the XAML and Design panes, including swapping them,

using the tabs and the Swap Panes button (shown circled), as shown in Figure 17.7.

You can also change the orientation of the panes, switching between a horizontal

(which is the default) or vertical layout, and collapse the XAML pane entirely using

the buttons on the right side of the Design and XAML tabs, as shown in Figure 17.8.

At the bottom of the editing window is the selected element outline, as shown in

Figure 17.9. This shows you visually what element you have selected (shown in bold)

and the path of visual elements that contain the currently selected element.

ptg

Creating a WPF Application 371

FIGURE 17.5
Visual Studio
after creating a
WPF application

FIGURE 17.6
Detailed view of
the XAML editing
surface

FIGURE 17.7
Design and
XAML tabs

ptg

372 HOUR 17: Building a Windows Application

FIGURE 17.8
XAML pane
Orientation
buttons

FIGURE 17.9
Selected ele-
ment outline

FIGURE 17.10
Document outline

FIGURE 17.11
Properties
window

The button on the far left displays a tree-oriented view, called the document outline,

showing all the visual elements in the window and their relationships to each other

(see Figure 17.10). In this example, the document outline is not interesting because

the window has no other elements. However, when you start adding controls and cre-

ating complex layouts, the document outline and selected element outline both

become helpful for navigating through your layout.

If you look at the XAML generated by Visual Studio, the x:Class attribute specifies

the fully qualified name of the class that implements the window. In this case, the

class is MainWindow in the PhotoViewer namespace. The window Title, Width, and

Height are also specified. These can be changed directly in the XAML or using the

Properties window, as shown in Figure 17.11.

ptg

Creating a WPF Application 373

FIGURE 17.12
Creating a row
visually

FIGURE 17.13
Column
Definitions
Property

The xmlns namespace attributes define the schemas used by WPF. These schemas

include definitions for all the controls and other items you can incorporate into a

WPF application.

Change the window title to be WPF Photo Viewer, either through the Properties win-

dow or directly in the XAML.

Creating the Layout
You are now ready to start creating the layout for the photo viewer application. If you

look at the XAML again, you notice that the Window already includes a child element

named Grid. In this case, the Grid doesn’t explicitly define any rows or columns, so it

is a 1x1 table. For the photo viewer application, you need a grid structure containing

two rows and two columns.

If you click on the large area of whitespace in the Design tab, click on the blank line

between the Grid element in the XAML, or click the Grid in the document outline,

the Grid becomes the selected element. You can visually design the table structure

using the mouse by moving the mouse cursor over the blue-shaded edge of the grid in

the Design pane. This displays a light blue guideline across the grid showing where

the row or column will be created. When the guideline is in the correct place, you can

click the left mouse button to create the row or column. An example of what this

would look like is shown in Figure 17.12.

You can also edit the structure using the ColumnDefinitions and RowDefinitions

properties of the Grid through the Properties window, as shown in Figure 17.13.

This displays a Collection Editor dialog, shown in Figure 17.14, enabling you to easily

add rows and columns and configure their properties at the same time. Using the col-

lection editor is generally the easiest, particularly if you are adding a lot of rows or

columns. In fact, if you need to change anything about an existing row or column

you must do so using either the Collection Editor or directly in the XAML.

ptg

374 HOUR 17: Building a Windows Application

FIGURE 17.14
Collection Editor

By the
Way

No matter if you visually create the row and column definitions or use the Collection

Editor, they both make changes to the XAML. This means that you can also edit the

XAML directly to create the row and column definitions. If you have already created

your rows and columns, make sure the generated XAML looks like that shown in

Listing 17.5. Otherwise, add the row and column definitions shown in that listing in

between the Grid element in the XAML.

LISTING 17.5 Grid Row and Column Definitions
<Grid.RowDefinitions>

<RowDefinition Height=”Auto” />
<RowDefinition Height=”*”/>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition Width=”250” />

</Grid.ColumnDefinitions>

Height and Width Sizing
Everything in WPF is rendered in a resolution-independent manner using pixels as
the unit of measurement. Although width and height are normally thought of as
just numeric values, WPF has some special values it understands as well.

By providing an actual numeric value, you are telling WPF that the width or height
should be exactly that size. However, if you want WPF to automatically distribute
space evenly based on content, you should enter a value of Auto.

To distribute rows or columns proportionally (using the remaining space if there
are also fixed or auto-sized rows or columns), you can use what is called star siz-
ing. To use star sizing, you specify the asterisk symbol (*) as the value. When
using star sizing, you can indicate a weighting value that controls how much of
the available space is given to that element. For example, a row using * for height
would receive one times the available space, and a row using 2* would receive
two times the available space.

ptg

Creating a WPF Application 375

Watch
Out!

Now that you have the frame of the layout constructed, you need to start adding con-

trols to it. For the photo viewer application to display images, it needs to know what

folder on the file system should be shown. To do that, add the XAML in Listing 17.6

as a child element to the Grid, just below the row and column definitions. This cre-

ates a DockPanel located in column 0 of row 0 that contains a button and two labels.

Remember, by default, the last child element of a DockPanel automatically fills the

remaining space.

LISTING 17.6 Creating a DockPanel
<DockPanel Grid.ColumnSpan=”2” Margin=”10”>

<Button DockPanel.Dock=”Right” Width=”Auto”>Browse...</Button>
<Label DockPanel.Dock=”Left” Margin=”0,0,0,0”>Path:</Label>
<Label Name=”ImagesDirectory” Margin=”0,0,10,0” />

</DockPanel>

Next, add an event handler for the button’s Click event. The easiest way to do this is

by double-clicking the button or double-clicking the Click event listed in the Events

tab of the Properties window for the selected button. This creates both the event han-

dler method in the code-behind file and the associated attribute in the XAML. You

can also do this manually, which would require editing both the XAML and the code-

behind file.

In the event handler method, you want to display a dialog that enables the user to

select a folder. After they select a folder, you want to display that folder path in the

label named ImagesDirectory.

The ShowDialog(IWin32Window) Method
Almost all the System.Windows.Forms dialogs have a ShowDialog method that
accepts an IWin32Window as an owner. This enables them to display in a modal
fashion and know who the owning window is. Unfortunately, WPF applications
don’t have an underlying IWin32Window for you to use.

Included in the PhotoViewer application is a class named WPFInteropExtensions
that includes an extension method of ShowDialog that enables you to achieve the
same result as ShowDialog(Win32Window). To use this extension method, you
need to ensure that the PhotoViewer.Utilities namespace is included.

To do this, you need to add a reference to the System.Windows.Forms assembly and

a using directive for the System.Windows.Forms namespace. You can then create a

new instance of the FolderBrowserDialog class and call the ShowDialog method. If

the result of ShowDialog is DialogResult.OK, display the selected path.

Use the code in Listing 17.7 for the body of the event handler.

ptg

376 HOUR 17: Building a Windows Application

Did you
Know?

By the
Way

LISTING 17.7 Event Handler Method Body
using (FolderBrowserDialog folderBrowser = new FolderBrowserDialog())
{

folderBrowser.ShowNewFolderButton = false;
if (folderBrowser.ShowDialog(this) == System.Windows.Forms.DialogResult.OK)
{

this.ImagesDirectory.Content = folderBrowser.SelectedPath;
}

}

e.Handled = true;

Because FolderBrowserDialog inherits from IDisposable, you want to ensure that

any resources are released when you are done using it, so it is wrapped in a using

statement. By setting the ShowNewFolderButton to false, you are telling the dialog

that it should not display the New Folder button.

The Name Attribute in XAML
You can refer to the Label control in this fashion because you provide a value for
its Name attribute in the XAML. Behind the scenes, the compiler actually gener-
ated code in a partial class containing a field representing the Label control.

Routed Events
A routed event is one that can invoke handlers on multiple listeners in an element
tree, not just on the element that raised the event. Because of the compositional
nature of WPF and WPF enabling users to interact with more than just traditional
user interface elements, many events in WPF are routed events. Following are
three different strategies used to route events:
. Bubbling, in which event handlers on the event source are invoked. The

event then routes to successive parent elements until the root of the tree
is reached.

. Direct, in which only event handlers on the event source are invoked. This is
analogous to the way events in Windows Forms applications behave.

. Tunneling, in which event handlers on the event source are invoked. The
event then routes to successive parent elements until the root of tree is
reached or one of the elements specifically indicates the event has been
handled and no other event handlers should respond to the event.

The if statement tests the result of the ShowDialog method to determine if it is equal

to System.Windows.Forms.DialogResult.OK, and if so, sets the content of the label

to the value of the SelectedPath property.

Run the application using F5. When the window appears, click the Browse button to

display the folder browser dialog, select a folder, and click OK. You should see the

ptg

Creating a WPF Application 377

Watch
Out!

FIGURE 17.15
Photo Viewer
after having cho-
sen a directory

FIGURE 17.16
A data bound
tooltip

path to the folder you chose displayed after the Path label. The window should look

similar to the one shown in Figure 17.15.

As you might imagine, displaying a long path name truncated like that is not ideal.

What if you wanted to display a tooltip with the full path? Fortunately, the Label

control has a ToolTip property for doing just that.

In many applications, you would need to set the text content for the tooltip in code,

presumably at the same time the content for the label is set. However, in WPF, you

can bind the content of the tooltip to the content of the label directly in the XAML.

This enables the association between the two controls to be declarative rather than

programmatic. To create the binding, add the following attribute to the ImageDirec-

tory Label:

ToolTip=”{Binding Path=Content, RelativeSource={RelativeSource Self}}”

This attribute tells the ToolTip property that it should retrieve its content from the

Content property (the Path) of the same control it is declared in (the

RelativeSource Self).

Now run the application again and select the same folder as you did before. When

you hover the mouse over the displayed path, a tooltip, as shown in Figure 17.16, will

now display showing the full path.

Debugging XAML Bindings
The data-binding capabilities of XAML are powerful and enable you to write appli-
cations that contain little C# code that you have written. Behind the scenes, the
compiler is generating code on your behalf to make the bindings work.

ptg

378 HOUR 17: Building a Windows Application

FIGURE 17.17
The completed
MainWindow.xaml

Although this is a huge benefit, because the code executing is compiler-gener-
ated, it can be difficult to diagnose problems when the bindings fail to work cor-
rectly.

You are now ready to add the rest of the controls for the layout. The left side of the win-

dow contains a ListBox control that displays the photos and a Slider control,

enabling you to resize the images displayed in the list box. The right side of the win-

dow contains a StackPanel consisting of a series of Label controls to display the prop-

erties about the selected photo. The completed layout should look like Figure 17.17.

The XAML required for this is shown in Listing 17.8.

LISTING 17.8 XAML for the Remaining Layout
<DockPanel Grid.Row=”1” Grid.Column=”0” Margin=”5,0,7,5”>

<DockPanel DockPanel.Dock=”Bottom” Margin=”5”>
<Label DockPanel.Dock=”Left”>Zoom:</Label>
<Slider Name=”ZoomSlider” Margin=”10,0,0,0” Orientation=”Horizontal”

Minimum=”80” Maximum=”320” Value=”160” TickFrequency=”80”
TickPlacement=”BottomRight” SmallChange=”5” LargeChange=”20” />

</DockPanel>
<GroupBox>

<ScrollViewer VerticalScrollBarVisibility=”Auto”
HorizontalScrollBarVisibility=”Disabled”>
<ListBox IsSynchronizedWithCurrentItem=”True” Name=”PhotosListBox”

Margin=”5” SelectionMode=”Extended” ItemsSource=”{Binding}”

ptg

Styling the Layout 379

SelectedIndex=”0”>
</ListBox>

</ScrollViewer>
</GroupBox>

</DockPanel>

<GridSplitter Grid.Column=”1” Grid.RowSpan=”2” HorizontalAlignment=”Left”
VerticalAlignment=”Stretch” Width=”15” Background=”Transparent”
ShowsPreview=”True” />

<GroupBox Grid.Column=”1” Grid.Row=”1” Margin=”7,0,5,5”>
<ScrollViewer VerticalScrollBarVisibility=”Auto”

HorizontalScrollBarVisibility=”Disabled”>
<StackPanel>

<Label>Source:</Label><Label Content=”{Binding Path=Source}” />
<Label>Size:</Label><Label/>
<Label>Date Image Taken:</Label><Label/>
<Label>Camera Manufacturer:</Label><Label/>
<Label>Camera Model:</Label><Label/>
<Label>Creation Software:</Label><Label/>
<Label>Lens Aperture:</Label><Label/>
<Label>Focal Length:</Label><Label/>
<Label>ISO Speed:</Label><Label/>
<Label>Exposure Time:</Label><Label/>
<Label>Exposure Mode:</Label><Label/>
<Label>Exposure Compensation:</Label><Label/>
<Label>White Balance Mode:</Label><Label/>
<Label>Color Representation:</Label><Label/>

</StackPanel>
</ScrollViewer>

</GroupBox>

Although this might seem like a lot of work to create a user interface that isn’t very

functional at the moment, it has several significant advantages over more tradi-

tional user interface development. The simplest, yet probably most significant, is that

you can deliver the XAML file to a graphics-oriented person who can apply styles

and other visual resources to make the application stand out while you can continue

developing the core functionality of the application. As long as the underlying user

interface controls aren’t changed, the designer and the developer can both continue

working without impacting the other.

Styling the Layout
Styling a layout can actually mean a variety of different things, each with varying

degrees of complexity. On one end of the spectrum is simply applying colors, back-

ground images, and various other visual elements directly to the controls. On the

other end is creating complete style sheets (similar to Cascading Style Sheets [CSS] for

web development) and data templates that can transform controls with an entirely

new look.

ptg

380 HOUR 17: Building a Windows Application

Every WPF Window and Application can contain resources that define the style and

data templates. Resources defined in a Window are placed in a Window.Resources

element and are local only to that window. If you need resources available to the

entire application, they can be placed in the Application.Resources element in

your App.xaml file.

Because style and data templates can become rather large, WPF also supports the

idea of resource dictionaries. A resource dictionary is simply a XAML file containing

style and data templates within a ResourceDictionary element. To include a

resource dictionary, you simply add a ResourceDictionary element to either

Window.Resources or Application.Resources and provide it the XAML file con-

taining the resources.

For example, looking at the user interface for the photo viewer application, you

might want to provide simple gradient shading. Without using styles, all the proper-

ties you set would have to be repeated for each label. However, by making a style

template, you can create the style once and then apply it to each label. As long as

the key name of the style doesn’t change, you can change the style definition with-

out having to change any of the XAML that might be using it.

The PhotoViewer project already contains a resource dictionary named

Resources.xaml, but it is not included in the Application.Resources. Add it to the

Application.Resources, as shown in Listing 17.9.

LISTING 17.9 App.xaml with a Resource Dictionary
<Application x:Class=”PhotoViewer.App”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
StartupUri=”MainWindow.xaml”>

<Application.Resources>
<ResourceDictionary Source=”Resources.xaml”/>

</Application.Resources>
</Application>

This resource dictionary already includes several style templates. Some of them will

be automatically applied just by including the resource dictionary because they

apply to any instance of a particular control. The style defined for GroupBox is an

example of this.

Listing 17.10 shows a simple style that can be applied to each of the heading labels

in the StackPanel control.

ptg

Summary 381

FIGURE 17.18
The restyled
application

LISTING 17.10 A Style for Label Controls
<Style x:Key=”MetadataHeader” TargetType=”{x:Type Label}”>

<Setter Property=”Background”>
<Setter.Value>

<LinearGradientBrush StartPoint=”0,0.5” EndPoint=”1,0.5” >
<LinearGradientBrush.GradientStops>

<GradientStop Offset=”0.5”
Color=”{x:Static SystemColors.ControlDarkDarkColor}” />

<GradientStop Offset=”2” Color=”Transparent” />
</LinearGradientBrush.GradientStops>

</LinearGradientBrush>
</Setter.Value>

</Setter>
<Setter Property=”Foreground”

Value=”{StaticResource {x:Static SystemColors.ControlTextColor}}” />
<Setter Property=”FontWeight” Value=”Bold” />

</Style>

The x:Key attribute defines the name of the style. You use this name when applying

it to user interface elements in your XAML files. The TargetType defines the type

name of the class the style will be applied to. In Listing 17.10, you define a style

named MetadataHeader that will be applied to any instances of the Label type. This

style defines a linear gradient for the background property, and sets the text fore-

ground color and font weight. To apply this style, add the following attribute to each

of the Label controls for the headers in the StackPanel:

Style=”{StaticResource MetadataHeader}”

If you run the application again, you should see the new styles, as shown in

Figure 17.18.

Summary
In this hour, you had a quick overview of Windows Presentation Foundation and

what it enables you to do. You created a simple WPF application and added code to

ptg

382 HOUR 17: Building a Windows Application

respond to user events. Finally, you learned how to create styles for your application,

completely changing the look with relative ease.

At this point, the application works and looks good but doesn’t actually do anything

yet. You learn how to put the remaining pieces together in the next hour when you

learn about the data-binding capabilities provided by WPF in more detail.

Q&A
Q. What is Windows Presentation Foundation?

A. Windows Presentation Foundation (WPF) is a presentation technology that pro-

vides a unified programming model enabling you to build Windows applica-

tions that incorporate user interface elements, media, and documents.

Q. What is the benefit to developing with the Markup and Code-Behind style?

A. This enables a clean separation between appearance and behavior, providing

the following benefits:

a. Reduced development and maintenance cost.

b. Development is more efficient, allowing the application’s appearance to

be created simultaneously with other developers who are implementing

the application’s behavior.

c. Multiple design tools can be used to create and share the markup.

Workshop

Quiz
1. What is star sizing for rows and columns in a Grid?

2. What is a routed event?

ptg

383Workshop

Answers
1. To distribute rows or columns proportionally (using the remaining space if

there are also fixed or auto-sized rows or columns), you can use what is called

star sizing. To use star sizing, you specify the asterisk symbol (*) as the value.

When using star sizing, you can indicate a weighting value that controls how

much of the available space is given to that element. For example, a row using

* for height would receive one times the available space, and a row using 2*

would receive two times the available space.

2. A routed event is one that can invoke handlers on multiple listeners in an ele-

ment tree, not just on the element that raised the event.

Exercise
There are no exercises for this chapter.

ptg

This page intentionally left blank

ptg

385

HOUR 18

Using Data Binding and
Validation

What You’ll Learn in This Hour:
. Understanding Data Binding
. Converting Data
. Binding to Collections
. Working with Data Templates
. Validating Data

In the previous hour, you learned how to create a Windows Presentation Foundation

(WPF) application and saw how WPF enables you to cleanly separate the user inter-

face portion of an application from the business logic. You learned how to handle

events raised by the user interface so that your application does something other

than look nice. Although controlling user input can be accomplished through careful

user interface design, it is also common to validate that input to ensure the informa-

tion entered is correct. In addition to accepting and validating user input, applica-

tions typically need to display data to the user—for either informational purposes or

so the user can modify the data. In WPF applications, this is most easily accom-

plished using data binding.

You have already used the data-binding capabilities of WPF in the AddressBook and

PhotoViewer applications. In fact, a large portion of both applications uses binding,

not just binding controls, to back-end data but also binding properties of controls to

properties of other controls.

In this hour, you learn more about how to use the data-binding capabilities of WPF

and how to validate user-entered data to ensure it matches the business rules speci-

fied by the application requirements.

ptg

386 HOUR 18: Using Data Binding and Validation

Understanding Data Binding
The data-binding capabilities in WPF enable applications to present and interact

with data in a simple and consistent manner. You can bind elements to data from a

variety of sources, including CLR objects and XML. Data binding enables you to

establish a connection between user interface controls and business logic. If the data

provides the necessary notifications and the binding has the necessary settings, when

the data changes the user interface elements bound to it will automatically reflect

those changes. In addition, data binding also enables the underlying data source to

be automatically updated to reflect changes made to it through the user interface.

As shown in Figure 18.1, you can think of data binding as the bridge between a bind-

ing target and a binding source. Most bindings have the following four components:

. Binding target object

. Target property

. Binding source object

. Path to the value in the binding source object to use

The binding target must always be a DependencyObject, which represents an object

that participates in the dependency property system. All the user interface objects

provided by WPF are derived from UIElement, which, in turn, is derived from

DependencyObject. The target property must also be a dependency property, which

is a property backed by a DependencyProperty object. Fortunately, most UIElement

properties are dependency properties and, other than read-only ones, support data

binding by default.

Looking again at Figure 18.1, you can see that a binding can go from the source to

the target (OneWay), the target to the source (OneWayToSource), or both (TwoWay):

. In OneWay binding, changes to the source property automatically update the

target and are typically used when the control bound is implicitly read-only.

DependencyObject

Binding Target Binding Source

Binding Object

Dependency
Property

Object

Property
OneWay
TwoWay

OneWayToSource

FIGURE 18.1
Data binding con-
ceptual diagram

ptg

Understanding Data Binding 387

. In TwoWay binding, changes to either the source or the target property update

the other and are typically used in editable forms or other fully interactive

interfaces. Most properties default to OneWay binding; however, some (such as

properties of user-editable controls, such as the Text property of a TextBox)

default to TwoWay binding.

. In OneWayToSource, changes to the target property automatically update the

source. You can think of this as the reverse of OneWay binding.

. There is also a OneTime binding mode, which causes the source property only

to initialize the target. When this occurs, subsequent changes do not update

the target.

For bindings that are TwoWay or OneWaytoSource to update the source property, they

listen for changes in the target property. To know when the source should be

updated, bindings use the UpdateSourceTrigger property. When the

UpdateSourceTrigger value is PropertyChanged, the source property is updated as

soon as the target property changes. If the value is LostFocus, the source property is

updated only when the target property loses focus in the user interface. For most

dependency properties, the default value for the UpdateSourceTrigger property is

PropertyChanged. Some, such as the Text property of a TextBox, default to

LostFocus.

Creating a Binding
In the previous hour, you wrote an event handler that directly set the Content prop-

erty of a Label control (refer to Listing 17.7 in Chapter 17). Although the code you

wrote works, a few important pieces are missing. If you were to change the event

handler to the code shown in Listing 18.1, the Label would no longer display the

path. Clearly, this isn’t the desired behavior.

LISTING 18.1 Creating a Binding
using (FolderBrowserDialog folderBrowser = new FolderBrowserDialog())
{

folderBrowser.ShowNewFolderButton = false;
if (folderBrowser.ShowDialog(this) == System.Windows.Forms.DialogResult.OK)
{

this.photos.Path = folderBrowser.SelectedPath;
}

}

e.Handled = true;

One option would be to set both the photos.Path property and the

ImagesDirectory.Content property to the same value. A better option would be to

ptg

388 HOUR 18: Using Data Binding and Validation

use the data-binding capabilities of WPF so that any time the photos.Path property

changed the ImagesDirectory.Content property would automatically reflect that

change.

This is accomplished easily by adding the following attribute to the XAML for the

ImagesDirectory Label:

Content=”{Binding Path=Path}”

This attribute tells the Label that the Content property is bound to some object that

has a property named Path.

Next, you need to modify the set accessor of the Path property so that it provides a

notification when its value changes. You can do this by adding the following line just

after setting the directoryInfo field:

this.OnPropertyChanged(new PropertyChangedEventArgs(“Path”));

The INotifyPropertyChanged Interface
Because the PhotoCollection class derives from ObservableCollection<T>,
it already includes the necessary
System.ComponentModel.INotifyPropertyChanged interface.

This interface defines a single public event: the PropertyChanged event.

You can use this interface in your own classes as well. Typically, you would imple-
ment the necessary event and an event handler similar to what is shown here:

protected virtual void OnPropertyChanged(PropertyChangedEventArgs e)
{

if (this.PropertyChanged != null)
{

this.PropertyChanged(this, e);
}

}

Any property that should notify when its value has changed would call the
OnPropertyChanged method.

Did you
Know?

If you look closely, you notice that the source object is not specified; but the source

object is one of the four required components. In fact, without a binding source speci-

fied, the binding would actually do nothing.

How does this work? When the binding engine encounters a binding that has not

specified a source, it looks upward through the hierarchy of visual elements looking

for a DataContext. When it finds a DataContext, it uses that as the binding source.

ptg

Understanding Data Binding 389

In this case, you want to set the DataContext to an object that has already been

instantiated. Modify the App.xaml file so that it looks as shown in Listing 18.2.

LISTING 18.2 Application XAML
<Application x:Class=”PhotoViewer.App”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
Startup=”OnApplicationStartup”>

<Application.Resources> </Application.Resources>
</Application>

Then, in the App.xaml.cs, add the event handler method, as shown in Listing 18.3.

LISTING 18.3 The OnApplicationStartup Event Handler
void OnApplicationStartup(object sender, StartupEventArgs args)
{

MainWindow mainWindow = new MainWindow();
mainWindow.Show();
this.MainWindow.DataContext = mainWindow.Photos;

}

In addition to setting the DataContext, you can also specify the binding source by

setting the Source property of the binding. You can also use the ElementName prop-

erty, which is useful when you want to bind to other elements in your application.

When you specify the binding as part of a control template or a style, the

RelativeSource property is useful as well.

Try It Yourself

Adding Data Binding to the PhotoViewer Application
By following these steps, you add data binding to the PhotoViewer application.

1. If you haven’t already done so, modify the App.xaml and App.xaml.cs files to

look as shown in Listing 18.2 and Listing 18.3, respectively.

2. Modify the Button_Click event handler to what is shown in Listing 18.1.

3. In MainWindow.xaml, add a binding for the Content property of the

ImagesDirectory label so that it is bound to the Path property of

mainWindow.Photos.

4. For each of the Label controls in the details StackPanel, add a binding for the

Content property to the appropriate property of the Photo class. The Label

▼

ptg

390 HOUR 18: Using Data Binding and Validation

controls that specify the headers do not need any bindings and can help you

decide the property you should use as the binding source. (Don’t worry about

providing a binding for the Size; you do so in the next section.)

5. Run the application and select a directory containing images. You should see

the images displayed in the list on the left and the metadata details displayed

on the right. As you select different images, the details should change.

Converting Data
When you ran the application, you might have noticed that some of the photo

details do not look as user friendly as they could. For example, the exposure time dis-

plays as a decimal value and any of the metadata details backed by enumerations

simply show the named value. The data-binding capabilities in WPF enable you to

change, or convert, the value from one side of the binding to something the other

side of the binding can accept. Figure 18.2 shows how data conversion fits into the

binding picture.

Although WPF provides many standard default converters (for example, to convert

between a Color and a Brush), there are times when it is necessary to create your

own converter:

. The data needs to be displayed differently based on culture, such as currency or

calendar date/time values.

. The data needs to be displayed differently than it is stored to make it more

readable, such as displaying decimal values as fractions.

. The data is bound to multiple controls or multiple properties of controls and

each need to display the data in a different way.

. The data used is intended to change some other value, such as an image source

or text style.

▲

DependencyObject

Dependency
Property

Object

PropertyConversion

Binding Target Binding Source

Binding Object

FIGURE 18.2
Data conversion
conceptual
diagram

ptg

Converting Data 391

To create your own converter, you implement the IValueConverter interface. The

Convert method performs data conversion from source to target, whereas the

ConvertBack method performs data conversion from target to source. Listing 18.4

shows a custom converter for the exposure time that converts between a decimal

value and a string value showing the decimal represented as a fraction.

LISTING 18.4 Exposure Time Converter
public class ExposureTimeConverter : IValueConverter
{

public object Convert(object value, Type targetType, object parameter,
➥CultureInfo culture)

{
object result = DependencyProperty.UnsetValue;

if (value != null)
{

decimal exposure = (decimal)value;

exposure = Decimal.Round(1 / exposure);
result = String.Format(“1/{0} sec.”, exposure.ToString());

}

return result;
}

public object ConvertBack(object value, Type targetTypes, object parameter,
➥CultureInfo culture)

{
object result = DependencyProperty.UnsetValue;

if (value != null)
{

string exposure = ((string)value).Substring(2);
result = (1 / Decimal.Parse(exposure));

}

return result;
}

}

When you have created the converter, you can add it as a resource in the XAML file,

as shown here. This assumes an XML namespace er that maps to the CLR name-

space in which ExposureTimeConverter is defined:

<er:ExposureTimeConverter x:Key=”ExposureTimeConverterReference” />

Finally, you can use the converter in your own bindings by adding it to the binding in

the XAML. The following shows the binding for the exposure time Label using the

new converter:

<Label Content=”{Binding Path=Metadata.ExposureTime,
Converter={StaticResource ExposureTimeConverterReference}}” />

ptg

392 HOUR 18: Using Data Binding and Validation

A converter that implements IValueConverter can convert only a single value.

Although this is sufficient for many converters, it is sometimes necessary to produce a

final value from multiple source properties, or even multiple source objects. For

example, the PhotoViewer application displays the size of the image, but the Photo

class does not contain a Size property. It does contain a Width and a Height prop-

erty that can be used to display the size. To create a converter that works with multi-

ple values, you create a class that implements the IMultiValueConverter. Listing

18.5 shows an example of a multivalue converter. In a production application, you

should ensure that the conversions are robust in the face of exceptions. To keep the

example simple, this exception handling code has been omitted.

LISTING 18.5 Size Multivalue Converter
public class PhotoSizeConverter : IMultiValueConverter
{

public object Convert(object[] values, Type targetType, object parameter,
➥CultureInfo culture)

{
if (values[0] == null || values[1] == null)
{

return String.Empty;
}
else if (values[0] == DependencyProperty.UnsetValue ||

values[1] == DependencyProperty.UnsetValue)
{

return String.Empty;
}
else
{

return String.Format(“{0}x{1}”, values[0], values[1]);
}

}

public object[] ConvertBack(object value, Type[] targetTypes,
➥object parameter, CultureInfo culture)

{
if ((string)value == String.Empty)
{

return new object[2];
}
else
{

string[] sSize = new string[2];
sSize = ((string)value).Split(‘x’);

object[] size = new object[2];
size[0] = UInt32.Parse(sSize[0]);
size[1] = UInt32.Parse(sSize[1]);
return size;
}

}
}

ptg

Converting Data 393

Adding a multivalue converter as a resource in XAML is done the same way as for a

single-value converter, however using it as part of a binding is different. Rather than

using a simple binding, as you have been doing, you need to use a MultiBinding

instead. A MultiBinding enables you to bind a property of the target to a list of source

properties and get back a single value. Because a MultiBinding is made up of indi-

vidual Binding elements, each binding can have their own converters if necessary.

Listing 18.6 shows how to use the PhotoSizeConverter in XAML.

LISTING 18.6 Using a Multivalue Converter
<Label>

<Label.Content>
<MultiBinding Converter=”{StaticResource PhotoSizeConverterReference}”>

<Binding Path=”Metadata.Width”/>
<Binding Path=”Metadata.Height”/>

</MultiBinding>
</Label.Content>

</Label>

The order in which the individual Binding elements appear in the MultiBinding is

the order those values are stored in the array passed to the Convert method.

Converters, whether they are single or multivalue, are culture-aware. The Convert

and ConvertBack methods both have a culture parameter that can be used to

change the conversion based on cultural information.

The Convert and ConvertBack methods also have a parameter named parameter,

which can be used to change the conversion. This parameter enables the flexibility of

using a single converter that can produce different formats based on the value of the

converter parameter argument.

The ConverterParameter Property
The ConverterParameter property of a MultiBinding is not a
DependencyProperty, so you can’t bind it. If you need an
IMultiValueConverter to behave differently based on the value of some other
source property, you need to find an alternative way of providing that value. One
simple option is to include that value as the last binding element in the list.

Watch
Out!

For example, if you were to create a NameConverter for use in the AddressBook appli-

cation that can display a contact’s first and last names in different formats, based on

the DisplayAsStyle enumeration, the XAML might look like Listing 18.7.

ptg

394 HOUR 18: Using Data Binding and Validation

▼

▲

LISTING 18.7 Using a Converter Parameter
<TextBlock>

<TextBlock.Text>
<MultiBinding Converter=”{StaticResource nameConverter}”

ConverterParameter=”LastNameFirstName”>
<Binding Path=”FirstName”/>
<Binding Path=”LastName”/>

</MultiBinding>
</TextBlock.Text>

</TextBlock>

Try It Yourself

Creating and Using Converters
To create additional data converters and modify the bindings to make use of them
in the PhotoViewer application, follow these steps.

1. If you haven’t already done so, add the converters shown in Listing 18.4 and

Listing 18.5 to the PhotoViewer application.

2. Add converters for the exposure mode, flash mode, lens aperture, and focal

length. The ConvertBack method on all these should return

Binding.DoNothing, which instructs the binding engine to take no action. For

the exposure mode and flash mode converters, the Convert method should

return a “friendly” name representing the enumeration value. Lens aperature

values are typically expressed in terms of “f-stop” values, so the Convert

method for the lens aperture converter should return the value formatted

as String.Format(“f/{0:##.0}”, value). The Convert method for the

focal length converter should return the value formatted as

String.Format(“{0} mm”, value).

3. Modify the Resources.xaml file to add the converters as resources.

4. Modify the MainWindow.xaml file to add the appropriate converter to the Label

elements, as needed. Remember, for the Size converter, you need to use a

MultiBinding.

5. Run the application and select a directory containing images. As you select

images, the details should change and display using the converters.

ptg

Binding to Collections 395

Binding to Collections
Up until now, you have been working with bindings to single objects. How then is the

list box that shows the files from the selected directory bound? This is bound to a col-

lection of objects, specifically the instance of the PhotoCollection you created in the

MainWindow class in Hour 9, “Working with Arrays and Collections.” Typically, you

would use an ItemsControl (such as a ListBox, ListView, or TreeView) to display

collections, binding the ItemsSource property to the collection instance. By default,

the ItemsSource property supports OneWay binding.

Listing 18.8 shows the XAML used by the PhotoViewer application to do this.

LISTING 18.8 Binding an ItemsControl
<ListBox

Name=”PhotosListBox”
Margin=”5”
SelectionMode=”Extended”
SelectedIndex=”0”
IsSynchronizedWithCurrentItem=”True”
ItemsSource=”{Binding}”
Style=”{StaticResource PhotoListBoxStyle}”>

</ListBox>

The code shown in Listing 18.8 makes use of the empty binding syntax {Binding},

which causes the ListBox to make use of the DataContext from its parent. Because

the path has been left out, the ItemsSource property is bound to the entire object.

Working with Collection Views
When you have bound the ItemsControl to a collection, you can use collection

views to sort, filter, or group the data. A collection view is a layer over the binding

source collection and enables you to navigate and display data based on sort, filter,

or group queries without changing the underlying collection. Because views don’t

change the underlying collection, you can create multiple views that refer to the

same source enabling you to display the same data in different ways.

When you bind directly to a collection, you are actually binding to a default view cre-

ated by WPF for that collection. This default view is shared by all bindings to the

same collection. If you need access in the code-behind file to the default view, you can

use the static CollectionViewSource.GetDefaultView method.

ptg

396 HOUR 18: Using Data Binding and Validation

By the
Way

TABLE 18.1 Default Views

Source Collection Type Collection View Type Notes

IEnumerable An internal type based on
CollectionView

Cannot group items

IList ListCollectionView

IBindingList BindingListCollectionView

Implementing Collections
If you want a collection to be usable by the data binding engine so that insertions
or deletions automatically update the UI elements, the collection must implement
the System.Collections.Specialized.INotifyCollectionChanged interface.
This interface defines the CollectionChanged event that should be raised when-
ever the collection changes.

WPF provides the ObservableCollection<T> class, which you are using as the
base class for the PhotoCollection class, which already implements the
INotifyCollectionChanged interface. Unless you have an advanced scenario
and want to implement your own collection for use in data binding, you should
consider using ObervableCollection<T>.

To fully support transferring values, each object in the collection that supports
bindable properties must also implement the INotifyPropertyChanged interface.

By the
Way

The default views created for the different source collection types are shown in

Table 18.1.

Sorting
Collection views enable you to apply an order to the data or change the default order

based on comparison criteria you supply. Because collection views are a client-based

view of the data and do not make any changes to the underlying collection, sorting

can be applied or removed without having to requery the collection content.

Creating a CollectionViewSource
You can also create a view directly in XAML using the CollectionViewSource,
which is an XAML proxy of a class that inherits from CollectionView, as
shown here:

<Window.Resources>
<CollectionViewSource x:Key=”view”

Source=”{Binding Source={x:Static Application.Current},
Path=Contacts}” />

</Window.Resources>

This creates a new resource named view, which is bound to the Contacts collec-
tion of the current application object.

ptg

Binding to Collections 397

By the
Way

Listing 18.9 shows how to add sorting to a collection view.

LISTING 18.9 Changing the Sort Order on a View
// This assumes that view has already been instantiated somewhere else
// and that the objects contained in the view have a property named
// LastName.

// Clear any existing SortDescriptions that may have been added. You
// only need to do this if you are changing the sorting.
view.SortDescriptions.Clear();

// Add a new sort which will sort the LastName property ascending.
view.SortDescriptions.Add(
➥new SortDescription(“LastName”, ListSortDirection.Ascending));

The SortDescription Structure
The propertyName parameter of the SortDescription structure supports refer-
encing nested properties through a “dot” notation. For example, to create a
SortDescription for the Contact.XfnRelationships.Me property, you would
use the following for the propertyName parameter value:
”XfnRelationships.Me”

When you are sorting on a property whose data type is an enumeration, the order
of the items is the same as in the enumeration declaration.

Grouping
All collection views, except for the internal class used for viewing IEnumerable collec-

tions, support grouping capabilities. This enables the user to partition the data into

logical groups. Groups can be explicit, in which case they are determined by the user,

or are implicit, where the groups are generated dynamically based on the data.

Listing 18.10 shows how to add grouping to a collection view.

LISTING 18.10 Adding Grouping on a View
// This assumes that view has already been instantiated somewhere else
// and that the objects contained in the view have a property named
// LastName.

// Clear any existing GroupDescriptions that may have been added.
view.GroupDescriptions.Clear();

PropertyGroupDescription groupDescription = new PropertyGroupDescription();
groupDescription.PropertyName = “LastName”;
view.GroupDescriptions.Add(groupDescription);

ptg

398 HOUR 18: Using Data Binding and Validation

Filtering
Filtering changes the data displayed by the view without changing the underlying

collection. Think of filtering as generating subsets of data. Filtering involves the use of

a delegate to perform the actual filtering.

To add filtering to the AddressBook application that displays all contacts whose last

name starts with the letter “D”, implement a method as shown in Listing 18.11.

LISTING 18.11 Method Used for Filtering
private void NameFilter(object sender, FilterEventArgs e)
{

Contact contact = e.Item as Contact;
if (contact != null)
{

e.Accepted = contact.LastName.StartsWith(“D”);
}
else
{

e.Accepted = false;
}

}

If you use one of the CollectionView classes directly, you would set the callback

using the Filter property. However, if you use a CollectionViewSource, you need

to add the event handler, as shown here:

view.Filter += new FilterEventHandler(NameFilter);

Current Item Pointers
Because WPF always binds to a collection using a view, all bindings to collections

have a current item pointer. This is true whether you use the collection’s default view

or you specify your own view. Sorting operations preserve the current item pointer on

the last item selected, but the collection view is restructured around it. For example, if

the selected item were at the beginning of the list before sorting, it might be some-

where in the middle of the list afterward. If a filter is applied and the selected item

remains in the view after the filtering has occurred, it continues to be the selected

item; otherwise, the first item of the filtered view becomes the current item. The slash

(/) character in a Path value indicates the current item of the view.

Listing 18.12 shows some bindings and assumes that the data context is a collec-

tion view.

ptg

Working with Data Templates 399

LISTING 18.12 Binding to the Current Item
// Bind to the entire collection.
<Label Content=”{Binding}” />

// Bind to the current item in the collection.
<Label Content=”{Binding Path=/}” />

// Bind to the LastName property of the current item in the collection.
<Label Content=”{Binding Path=/LastName}” />

When elements, such as a Label, that do not support an ItemsSource property are

bound to a collection view, they automatically bind to the current item of that view.

CollectionViewSource objects automatically synchronize the currently selected item,

but if the ItemsControl were not bound to a CollectionViewSource, you would

need to set the IsSynchronizedWithCurrentItem property to true for this to work.

As you might imagine, the current item pointer is also useful for creating master-

detail style bindings in which one section of the user interface shows the entire collec-

tion, perhaps in a summary or condensed manner, and another shows the full details

of the current item.

Working with Data Templates
At the end of the last hour, you learned how to style your application by completely

changing how a control looks. These visual styles change only the appearance of the

control; they do not specify how that control visualizes data. To change how data is

visualized by a control, you use a DataTemplate. This is particularly useful when

binding an ItemsControl, such as a ListBox, to a collection.

Without a DataTemplate, the ItemsControl calls ToString when trying to display

the objects in the collection. Although you could override ToString to provide a

meaningful string representation, that isn’t always the best approach (or might not

be possible). The solution is to define a DataTemplate, which enables you to change

the visual structure used by the ItemsControl to display the data.

Listing 18.13 shows the DataTemplate used by the PhotoViewer application so that

the ListBox control displays a thumbnail of the image instead of the filename.

ptg

400 HOUR 18: Using Data Binding and Validation

LISTING 18.13 Defining a DataTemplate
<DataTemplate DataType=”{x:Type er:Photo}”>

<Grid VerticalAlignment=”Center” HorizontalAlignment=”Center” Margin=”6”>
<!— Drop Shadow —>
<Border HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”

CornerRadius=”4” Background=”#44000000”>
<Border.RenderTransform>

<TranslateTransform X=”5” Y=”5” />
</Border.RenderTransform>
<Border.BitmapEffect>

<BlurBitmapEffect Radius=”8” />
</Border.BitmapEffect>

</Border>
<!— Image Template —>
<Border Padding=”4” Background=”White” BorderBrush=”#22000000”

BorderThickness=”1”>
<StackPanel Orientation=”Vertical”>

<Image Source=”{Binding Image.Thumbnail}” />
<Label Content=”{Binding Metadata.DateTaken}”>

<Label.ToolTip>
Only JPeg images...

</Label.ToolTip>
</Label>

</StackPanel>
</Border>

</Grid>
</DataTemplate>

In this case, the DataTemplate specified a value for the DataType property. This is

similar to the TargetType property of a Style and indicates that the DataTemplate

should be used by any control displaying an object of that type.

You could also have specified the x:Key property, in which case you would need to

explicitly associate the template with the control. Listing 18.14 shows such an associ-

ation, assuming the DataTemplate has an x:Key property whose value is

photoTemplate.

LISTING 18.14 Associating a DataTemplate
<ListBox

ItemsSource=”{Binding}”
ItemTemplate=”{StaticResource photoTemplate}”>

Validating Data
If your application accepts user input, and most do, you probably have a need to val-

idate that input against business rules to ensure the user entered the expected infor-

mation. In WPF, validation checks can be based on type, range, format, or some

other application-specific requirements and are part of the data-binding engine.

ptg

Validating Data 401

By the
Way

To add validation checks, you associate ValidationRules with your Binding, as

shown in Listing 18.15.

LISTING 18.15 Associating ValidationRules with a Binding
<TextBox Name=”LastName”>

<TextBox.Text>
<Binding Path=”LastName” UpdateSourceTrigger=”PropertyChanged”>

<Binding.ValidationRules>
<ExceptionValidationRule />

</Binding.ValidationRules>
</Binding>

</TextBox.Text>

As you can see, the ValidationRules property takes a collection of ValidationRule

objects. The ExceptionValidationRule is a built-in validation rule that checks for

exceptions thrown during the update of the binding source. If the source object imple-

ments the IDataError interface, you can use the built-in DataErrorValidationRule

to check for errors raised by the IDataError implementation.

ValidatesOnException and ValidatesOnDataErrors
As an alternative to explicitly including the ExceptionValidationRule, you can
set the ValidatesOnExceptions property to true. Similarly, you can set the
ValidatesOnDataErrors property to true rather than explicitly including the
DataErrorValidationRule.

To provide your own application-specific validation rules, you derive a new class from

the ValidationRule class and implement the Validate method. Listing 18.16 shows

a validation rule for the AddressBook application that can validate phone numbers.

LISTING 18.16 A Custom ValidationRule
class PhoneNumberValidationRule : ValidationRule
{

public override ValidationResult Validate(object value,
➥CultureInfo cultureInfo)

{
string stringValue = value.ToString();
string pattern = @”^(\+?\d+)\s\(\d{3}\)\s(\w{7}|\w{3}\-\w{4})(\s[xX]\w+)?$”;

if (String.IsNullOrWhiteSpace(stringValue) ||
Regex.IsMatch(stringValue, pattern))

{
return ValidationResult.ValidResult;

}
else
{

return new ValidationResult(false,
➥“Value is not a valid phone number.”);

}
}

}

ptg

402 HOUR 18: Using Data Binding and Validation

The UpdateSourceTrigger Property
When the UpdateSourceTrigger value is PropertyChanged, as it is in Listing
18.15, the binding engine updates the source value on every keystroke. This also
means that every rule in the ValidationRules collection will be checked on
every keystroke.

Watch
Out!

Although determining that the user has entered an invalid value is the primary use

for data validation, you can also provide visual feedback that the value is invalid. To

do this, you should first define a ControlTemplate, which defines the visual and

structural appearance of the control. For example, Listing 18.17 defines a

ControlTemplate that places a reddish colored asterisk symbol in front of the con-

trol containing the error.

LISTING 18.17 A Custom ControlTemplate
<ControlTemplate x:Key=”validationTemplate”>

<DockPanel>
<TextBlock Foreground=”FireBrick” FontSize=”18”>*</TextBlock>
<AdornedElementPlaceholder />

</DockPanel>
</ControlTemplate>

The AdornedElementPlaceholder element indicates where the actual control con-

taining the error will be placed.

To use this ControlTemplate, you set the Validation.ErrorTemplate property of

the UIElement to a custom ControlTemplate, as shown in Listing 18.18.

LISTING 18.18 Setting the Validation.ErrorTemplate Property
<TextBox Name=”PhoneNumber”

Validation.ErroTemplate=”{StaticResource validationTemplate}”>
<TextBox.Text>

<Binding Path=”PersonalInformation.HomePhone”
UpdateSourceTrigger=”PropertyChanged”>
<Binding.ValidationRules>

<ExceptionValidationRule />
<ab:PhoneNumberValidationRule />

</Binding.ValidationRules>
</Binding>

</TextBox.Text>

If you don’t specify an ErrorTemplate, a default template will be used. This default

template defines a red border around the adorned control.

ptg

Summary 403

▼

▲

Element Validation Rule

First Name EmptyStringValidationRule

Last Name EmptyStringValidationRule

Home Phone PhoneNumberValidationRule

Mobile Phone PhoneNumberValidationRule

Work Phone PhoneNumberValidationRule

Pager PhoneNumberValidationRule

Fax PhoneNumberValidationRule

Try It Yourself

Validating Input
To add validation rules to the AddressBook application, follow these steps.

1. Add the validation rule shown in Listing 18.16 to the AddressBook application.

2. Add a new validation rule to the AddressBook application named

EmptyStringValidationRule that validates that the object to validate is not

an empty string.

3. Add the ControlTemplate shown in Listing 18.17 to the Window.Resources

element of the ContactEditor.xaml file.

4. Modify the ContactEditor.xaml file so that the bindings for the following ele-

ments set the Validation.ErrorTemplate property and include the indicated

validation rule:

5. Run the application and press the Add Contact toolbar button to display the

ContactEditor form. Enter some invalid data and observe that the visual rep-

resentation of the fields that are invalid changes to the one defined by the

ControlTemplate.

Summary
In this hour, you learned about data binding in WPF and added bindings to the Pho-

toViewer application to make it more complete. From there, you learned how data

converters can change the value from one side of the binding to something the other

side of the binding will accept. You then learned about binding to collections and

ptg

404 HOUR 18: Using Data Binding and Validation

learned how collection views enable you to sort, group, or filter your data without

affecting the underlying collection. You learned that data templates enable you to

change the structural representation of how a control displays data, which is particu-

larly useful when binding to collections. Finally, you learned how validation works

with data binding by writing some custom validation rules and making use of them

in the AddressBook application.

Q&A
Q. What are the four components of a binding?

A. A binding is made up of a binding target object, a target property, a binding

source object, and a path to the value in the binding source object.

Q. What is a OneWayToSource binding?

A. A OneWayToSource binding changes the source property automatically when-

ever the target property changes.

Q. What is a data converter?

A. A data converter is a class that implements either IValueConverter or

IMultiValueConverter and enables you to convert a value between different

values going in either direction through a binding.

Q. Why are collection views useful?

A. Collection views enable you to create multiple independent views over the

same source collection, which can be filtered, grouped, or sorted without affect-

ing the underlying collection.

Q. What is a data template used for?

A. A data template enables you to change how data is displayed by a control.

Q. Does WPF provide any built-in validation rules?

A. Yes, WPF provides the ExceptionValidationRule, which checks for

exceptions thrown during the update of the binding source, and the

DataErrorValidationRule to check for errors raised by a control that

implements the IDataError interface.

ptg

405Workshop

Workshop

Quiz
1. What happens when the binding engine encounters a binding that has not

specified a source?

2. Can the ConverterParameter property of a MultiBinding get its value from

another binding?

3. Does WPF bind directly to collections?

4. What class do you inherit from to provide custom validation rules?

5. What is the AdornedElementPlaceholder element in a control template?

Answers
1. When the binding engine encounters a binding that has not specified a source,

it looks upward through the hierarchy of visual elements looking for a

DataContext. When it finds a DataContext, it uses that as the binding source.

2. Because the ConverterParameter property of a MultiBinding is not a

DependencyProperty, you can’t bind it.

3. Even though you might specify a binding directly to a collection, WPF actually

binds to the default CollectionView for that collection.

4. To provide a custom validation rule, you must derive from ValidationRule.

5. The AdornedElementPlaceholder element in a control template indicates

where the control being adorned will be placed.

Exercise
There are no exercises for this chapter.

ptg

This page intentionally left blank

ptg

407

Watch
Out!

HOUR 19

Building a Web Application

What You’ll Learn in This Hour:
. Understanding Web Application Architecture
. Working with ASP.NET
. Creating a Web Application
. Understanding Data Validation

Up until now, you have focused on building applications that run on the desktop.

These applications enable you to use the full richness of the Windows platform in

your applications. They also pose potential deployment concerns because these

applications typically must be installed on the end user’s computer. Although tech-

nologies such as ClickOnce ease these issues, there are times when building such an

application is not the most appropriate choice.

Visual C# Express Edition
If you use Visual C # 2010 Express, you cannot build web applications. Instead,
you need to install the Visual Web Developer 2010 Express. If you use one of the
Visual Studio with MSDN editions, you already have everything you need to build
web applications.

In this hour, you learn about an alternative to creating rich desktop applications

using web applications and ASP.NET Framework. You explore the different classes

provided by the .NET Framework that enable you to create web applications and see

how the architecture of a web application is different from that of traditional desktop

applications.

ptg

408 HOUR 19: Building a Web Application

Understanding Web Application
Architecture
Web applications reside on web servers and are accessed through a web browser, such

as Internet Explorer. These applications can be highly distributed, such that the appli-

cation and database reside in one physical location but are accessed worldwide over

the Internet or a corporate wide-area network. Even today, despite the advances in

computer hardware, network bandwidth is still a scarce resource that should be con-

sumed sparingly.

Running an application distributed over any network can suffer when network perform-

ance degrades. Ultimately, you are dependent upon any number of network switches,

servers, and routers sending requests from a web browser to your web application.

Communication between a web browser and a web application uses Hypertext Trans-

fer Protocol (HTTP). Typically, a web server, such as Internet Information Services (IIS),

understands how to read HTTP requests hosts web applications. When that request

has been received and processed, the server sends an HTTP response back to the

client. Most HTTP responses consist of a Hypertext Markup Language (HTML) page

that the web browser knows how to translate, or render, into a visual representation.

Due to the request/response nature of HTTP communication, it is commonly referred

to as a connectionless protocol. A connection is established only long enough to send

a response or receive a request; other than that, there is no active connection between

the browser and the server.

Working with ASP.NET
To help make building web applications easier, and in keeping with the overall

theme of “making the simple things easier and the difficult things possible,”

Microsoft developed the ASP.NET web application framework. This is the successor to

Microsoft’s Active Server Pages (ASP) technology and is built on the common lan-

guage runtime, enabling you to write ASP.NET applications using any programming

language that targets the .NET Framework.

Applications built using ASP.NET can use the more traditional web forms or the

ASP.NET MVC Framework. The ASP.NET MVC Framework is an application frame-

work that utilizes the model-view-controller pattern. This hour provides an overview

of building applications using the traditional web forms model.

An application built using Web Forms uses one or more pages that are contained in

ASPX files. These ASPX files describe the user interface using HTML and other markup

defining server-side web controls and user controls. The application logic, written

ptg

Working with ASP.NET 409

using C#, is contained in a code-behind file. This code-behind file typically has the

same name as the ASPX file with a .cs extension. This arrangement should sound

familiar because it is similar to the model used by WPF.

A simple ASP.NET page is shown in Listing 19.1, which is the web application equiv-

alent to the “Hello, world” application you wrote in Hour 1, “The .NET Framework

and C#.”

LISTING 19.1 HelloWorld.aspx
<%@ Page

Title=”Hello, world”
CodeFile=”HelloWorld.aspx.cs”
Inherits=”HelloWorldWeb.HelloWorld”

%>

<html>
<body>

<form id=”form1” runat=”server”>
</form>

</body>
</html>

As you can see, the page in Listing 19.1 is not very exciting. It contains a Page direc-

tive that specifies the following:

. Code-behind file (CodeFile)

. Class from which the page derives (Inherits)

. Page title displayed by the web browser (Title)

All ASP.NET pages must include an HTML form element that specifies

runat=”server” that is included within <html> and <body> tags.

The accompanying code-behind file is shown in Listing 19.2.

LISTING 19.2 HelloWorld.aspx.cs
namespace HelloWorldWeb
{

public partial class HelloWorld : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Response.Write(“Hello, world from the Web.”);
}

}
}

The output of this simple web application is shown in Figure 19.1.

ptg

410 HOUR 19: Building a Web Application

FIGURE 19.1
Hello, world from
the web

The Page class supports several events that you can handle, the most common of

which are shown in Table 19.1.

Developing Web Applications Without IIS
You do not need to have Internet Information Services (IIS) installed to develop
and test web applications. Visual Studio 2010 (all editions) includes a built-in
web server that will be used when you run the application. For hosting product
web applications, you should still use IIS.

By the
Way

Just as WPF provides the App.xaml for application level events and code, ASP.NET

applications provide a Global.asax. Table 19.2 shows the common events handled

by Global.asax.

TABLE 19.1 Common Page Event Handlers

Event Handler Method Name Description

Page_Load Occurs when the server control is loaded into the
page object

Page_LoadComplete Occurs at the end of the load stage

Occurs at the beginning of page initialization

Page_PreLoad Occurs before the page Load event

Page_PreRender Occurs after the page is loaded but prior to
rendering

Page_PreRenderComplete Occurs before the page content is rendered

Page_Unload Occurs when the server control is unloaded from
memory

ptg

Creating a Web Application 411

Creating a Web Application
In the rest of this hour, you create a web-based photo viewer application by creating

a new project, laying out the form, and adding controls.

First, create a new ASP.NET Web Application project using the New Project dialog, as

shown in Figure 19.2. In the Name field, enter PhotoViewWeb.

Just as it does with desktop applications, Visual Studio creates a solution and project

for you. This time, instead of displaying the generated C# class file or XAML designer,

Visual Studio displays the code editor for the applications default.aspx page and the

Properties window. Figure 19.3 shows what Visual Studio should look like after having

just created the project.

This editing surface is similar to the one used by the WPF XAML editor. The editor for

ASPX pages can show you the source markup, the visual representation of the layout,

or a split view showing both. By default, the editor shows the source markup. You can

make changes in either view, and changes made in one will be reflected in the other.

TABLE 19.2 Common Global.asax Event Handlers

Event Handler Method Name Description

Application_Start Used to set up the application environment
and is only called when the application first
starts

Session_Start Occurs when any new user access the
website

Application_BeginRequest Occurs as the first event in the HTTP
execution chain when responding to a
request

Application_AuthenticateRequest Occurs when a security module has
established the identity of the user

Application_Error Occurs when an unhandled exception is
thrown

Session_End Occurs when a user’s session ends or
times out. The default timeout is 20
minutes after the user leaves the site

Application_End Used to clean up the application
environment when the application ends

ptg

412 HOUR 19: Building a Web Application

FIGURE 19.3
Visual Studio
after creating a
web application

Figure 19.4 shows a more detailed view of the ASPX editor.

You can easily switch between the ASPX and Design panes, including the split view,

using the tabs, as shown in Figure 19.5.

At the bottom of the editing window is the selected element outline, as shown in

Figure 19.6. This shows you visually what element you have selected (shown in a

light yellow highlight) and the path of visual elements that contain the currently

selected element.

If you look at the ASPX generated by Visual Studio, the Page directive specifies the

code-behind file and the class that implements the web form. In this case, the code

FIGURE 19.2
New Project dia-
log

ptg

Creating a Web Application 413

FIGURE 19.4
Detailed view of
the ASPX editing
surface

FIGURE 19.5
Design and
Source tabs

FIGURE 19.6
Selected ele-
ment outline

file is named Default.aspx.cs and the class is PhotoViewWeb._Default. The page

Title is also specified. Any of the attributes defined by the Page directive, HTML ele-

ments, or ASP.NET controls can be changed directly in the ASPX or using the Proper-

ties window, shown in Figure 19.7.

FIGURE 19.7
Properties
window

ptg

414 HOUR 19: Building a Web Application

Master Pages
You can think of the concept behind master pages as being similar to the mail
merge capability in many word-processing applications. The child page uses the
ContentPlaceHolder controls mapped to the placeholders defined in the master
page, which defines the rest of the page. When a request is made, ASP.NET
merges the output of the child page with that of the master page and sends the
merged content to the user.

By the
Way

Figure 19.8 shows the project structure in more detail, showing a master page named

Site.Master that has been created for you.

If you look again at the Page directive shown in Figure 19.4, you see that it defines

the associated master page. Web forms do not need to be associated with a master

page, but if they are, content can be placed only within the content controls mapped

FIGURE 19.8
Web application
project structure

Change the page title to Web Photo Viewer, either through the Properties window or

directly in the ASPX.

Creating the Layout
You are now ready to start creating the layout for the application. If you look at the

ASPX again, you notice that the page already includes two content controls. These

content controls are part of a template engine provided by ASP.NET. This template

engine utilizes the idea of master pages, which define a structure and layout that can

be used throughout the site. Master pages have placeholder controls, identified by an

<asp:ContentPlaceHolder> element, which denote where dynamic content can be

placed. A web application can make use of multiple master pages, and master pages

can also be nested.

ptg

Creating a Web Application 415

to the content placeholders of the master page. If you were to try to add text outside

one of those content controls, the web application generates an error at runtime, as

shown in Figure 19.9.

The default page for the application should display a list of photo albums, as shown

in Figure 19.10.

FIGURE 19.9
Parser error

FIGURE 19.10
Web Photo
Viewer Default
Page

ptg

416 HOUR 19: Building a Web Application

The necessary HTML, which would be included in the MainContent placeholder, is

shown in Listing 19.3.

LISTING 19.3 Markup for the PhotoViewerWeb Layout
<asp:DataList ID=”albums” runat=”server” RepeatDirection=”Horizontal”
RepeatColumns=”3” CssClass=”groupbox” Height=”100%”>
<ItemTemplate>

<table>
<tr>

<td>

</td>
<td>

<asp:HyperLink runat=”server” ID=”albumLink” />

<asp:Label runat=”server” ID=”albumCount” />

</td>
</tr>

</table>
</ItemTemplate>

</asp:DataList>

Styling the Layout
Styling a layout can be accomplished using a Cascading Style Sheet (CSS) file, called a

stylesheet, or through inline styles declared directly on each element. Inline styles

have the benefit of being declared along with the element but cannot be easily shared.

CSS files enable you to define styles globally that can be shared by multiple pages.

When styling an element using inline styles, you add a style attribute to each ele-

ment that contains the CSS properties and values you set. For example, to style the

first table cell (the td element) of the second table row (the tr element) so that it has

a border, you can use the following:

style=”border: thick solid #E5EBD8;”

This defines an inline style that sets the border width to “thick,” the border style to

“solid,” and the border color to “#E5EBD8.”

If you look at Figure 19.8 again, you notice a Styles folder. By default, when you cre-

ate a new web application project, the Site.Master page already includes a

stylesheet named site.css. You can modify this stylesheet, replace it with one of

your own or add an additional stylesheet by providing another stylesheet link in the

Site.Master page, as shown in Listing 19.4.

ptg

Creating a Web Application 417

LISTING 19.4 Including a Stylesheet Link in a Master Page
<head runat=”server”>

<link href=”Styles/PhotoViewer.css” rel=”stylesheet” type=”text/css” />
</head>

You could also include additional stylesheets only for a specific child page by includ-

ing it in the HeadContent ContentControl, as shown in Listing 19.5.

LISTING 19.5 Including a Stylesheet Link in a Child Page
<asp:Content ID=”HeaderContent” runat=”server” ContentPlaceHolderID=”HeadContent>

<link href=”Styles/PhotoViewer.css” rel=”stylesheet” type=”text/css” />
</asp:Content >

CSS stylesheets enable you to define styles that will be applied to any element. These

styles are the broadest type of style you can define and use element selectors. You can

also define classes that apply to specifically named elements using ID selectors.

Applying styles to an element using element or ID selectors is automatic.

You can also define CSS classes that are applied only to elements that specifically

include the class through their class attribute. The benefit to CSS classes is that you

can provide multiple classes (separated by a space) to the class attribute. If you

want to apply a CSS class to an ASP.NET web control, use the CssClass attribute

instead.

The HTML shown in Listing 19.3 already includes the necessary CssClass attribute to

style DataList control. When you apply the stylesheet, either to the master page or

directly to the child page, the page renders using the styles defined.

The complete PhotoViewer.css file is shown in Listing 19.6.

LISTING 19.6 The PhotoView.css File
.groupbox
{

border: thick solid #E5EBD8;
border-collapse:separate!important;

}

.dropshadow
{

border-top: 1px solid #220000;
border-left: 1px solid #220000;
border-bottom: 4px solid #440000;
border-right: 4px solid #440000;

}

.metadata-header
{

background-color: #CDCDCD;
}

ptg

418 HOUR 19: Building a Web Application

#MainContent_albums td span
{

font-style:italic;
}

The declarations in the stylesheet starting with a dot (.) are CSS class definitions. The

last style defined uses a combination of an ID selector and element selectors. This

style indicates that it will be applied to any span elements that are children of any

table cell (td element) in an element whose ID is MainContent_album.

Use Stylesheets Instead of Inline Styles
Even though you can use inline styles instead of defining your CSS in a separate
file (and can even mix them), you should use stylesheets as much as possible.

Inline styles are somewhat limited because you cannot easily build up styles,
apply the same style to all instances of a certain element or to any element, or
apply a style to an element with a specific name.

CSS stylesheets help to make your web application markup more maintainable
and enable you to easily modify styles, even swapping stylesheets entirely to com-
pletely change the look of your web application.

By the
Way

Understanding Data Binding
ASP.NET supports both one-way and two-way data binding in a way that is similar,

although more limited, to that of WPF. The data-binding expressions are contained

within <%# and %> delimiters and use either the Eval (one-way) or Bind (two-way)

function. These expressions are resolved when the DataBind method of a control or

Page class is called.

To make the page shown in Listing 19.3 useful, you need to provide text for the Label

control and both text and a navigation URL for the HyperLink control. This can eas-

ily be accomplished through data binding. The default page represents an album

viewer and needs to be bound to an album collection. In the Page_Load method of

Default.aspx.cs, add the code shown in Listing 19.7.

LISTING 19.7 Page_Load Method of Default.aspx.cs
albums.DataSource = new AlbumCollection(
➥Path.Combine(Request.PhysicalApplicationPath, “Albums”));
albums.DataBind();

The first line creates a new AlbumCollection instance. The

Request.PhysicalApplicationPath property represents the physical path on the

ptg

Creating a Web Application 419

web server that contains the web application. The second line tells the ASP.NET run-

time engine to actually perform the binding. Now you need to add the binding

expressions to the user interface controls, as shown in Listing 19.8.

LISTING 19.8 Adding Binding Expressions
<asp:HyperLink runat=”server” ID=”hlItem”

NavigateUrl=’<%# Eval(“Name”, “viewalbum.aspx?id={0}”) %>’
Text=’<%# Eval(“Name”) %>’ />

<asp:Label runat=”server” ID=”lbItem”
Text=’<%# Eval(“Count”, “{0} pictures”) %>’ />

The Eval method takes the name of a data field in the current data item and, option-

ally, a formatting string used to display the data. This formatting string uses the

same formatting syntax as the String.Format method. Notice that you don’t specify

the container (or data context) of the binding. That’s because the Eval method uses

the naming container, which is generally the smallest part of the data-bound control

that contains a whole record. As a result, you can use only Eval for binding expres-

sions inside templates of a data-bound control like a DataList.

Embedded ASP.NET Code Blocks
The <% %> tags indicate embedded code blocks, which is server code that exe-
cutes during the page’s render stage. If the Page directive includes the Language
attribute, the embedded code must be written using the indicated language. The
common types of embedded code block follow:
. <% %>—The simplest form of embedded code block that can contain any

code

. <%@ %>—Directives

. <%# %>—Data binding expressions

. <%= %>—Used to write text data to the page, the equivalent of
<% Response.Write() %>

. <%-- %>—Server-side comments

By the
Way

If you need to use data binding in another control, you can still do so by using the

DataBinder.Eval method directly. In fact, the binding expressions you just saw inter-

nally call DataBinder.Eval and pass Container.DataItem, which refers to the cur-

rent data item of the current data container, as the first parameter.

You could rewrite the binding expression for the Label control as shown here:

<%# DataBinder.Eval(Container.DataItem, “Count”, “{0} pictures”) %>

ptg

420 HOUR 19: Building a Web Application

Using the Bind method is similar and uses the same syntax as the Eval method. The

difference is that Bind establishes a two-way binding, enabling you to also update the

source control.

Understanding Data Validation
Just as desktop applications enable you to validate user input, web applications do as

well. However, to perform data validation for web applications, you have a choice of

where that validation occurs—either at the server or at the client. Server-side valida-

tion is best used when the validation logic is complex or can be performed only on

the server, such as validating data against a database.

Performing server-side validation is similar to the way you perform validation in a

desktop application. You add event handlers to the necessary events, such as the

TextChanged event of a TextBox control, to perform any required validation. How-

ever, for server-side validation to execute, the page (and all its data) must be sent to

the server, validated, and then a response sent back to the client.

Server-Side Validation and Security
If there is a possibility of a security impact with the input data, it is important to
perform server-side validation even if you are also performing client-side validation.

You should not trust the client to always pass well-formed data because a poten-
tial attacker might have written their own client that bypasses your client-side vali-
dation.

By the
Way

Client-side validation involves the use of validation controls that intelligently gener-

ate client-side JavaScript and Dynamic HTML (DHTML) code (for older browsers, the

validator controls generate server-side code). ASP.NET provides the following valida-

tion controls:

. RequiredFieldValidator—Can be used to ensure the user has entered data

into the control.

. CompareValidator—Compares the data entered with a constant value, the

value of a property of another control, or a value retrieved from a database.

. RangeValidator—Checks the data entered to ensure that it falls either inside

or outside of a given range of values.

. RegularExpressionValidator—Determines if the entered data matches a

specified regular expression. If the data entered is empty, validation always

succeeds.

ptg

Understanding Data Validation 421

TABLE 19.3 Common Validation Control Properties

Name Description

ControlToValidate The ID of the input control that the validation control will
evaluate.

Display The display behavior for the validation control. The accepted
values are

. None—Validation control is never displayed (most
commonly used in combination with a
ValidationSummary control).

. Static—Validation control displays an error message if
validation fails and space is allocated for the error
message even if the control passes validation.

. Dynamic—Validation control displays an error message
if validation fails and space is allocated for the error
message only if the control passes validation.

ErrorMessage The message to display in the ValidationSummary control if
validation fails. If the Text property is not also set, this text is
also displayed in the validation control when validation fails.

Text The message to display in the validation control when
validation fails. If this is not set, the ErrorMessage value
is used.

. CustomValidator—Enables you to define your own custom validation

logic.

Each validation control performs only a single, well-defined validation, but you can

combine multiple validation controls to perform validations that are more compli-

cated. When a validation control determines that a control contains invalid data, it

displays the supplied error message next to the control.

You can also use a ValidationSummary control, allowing you to summarize the

error messages from all validation controls on a page in a list, bulleted list, or single

paragraph.

The commonly used properties of validation controls are shown in Table 19.3.

ptg

422 HOUR 19: Building a Web Application

Listing 19.9 shows a simple ASPX page that uses some of the validation controls.

LISTING 19.9 Using Validation Controls
<%@ Page Language=”C#” AutoEventWireup=”True” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html>
<head>

<title>Validation Controls</title>
</head>
<body>

<form id=”Form1” runat=”server”>
<h3>Validator Example</h3>
Enter a number from 1 to 30:
<asp:TextBox ID=”TextBox1” runat=”server” />

<asp:RequiredFieldValidator

ID=”RequiredFieldValidator1”
ControlToValidate=”TextBox1”
Display=”None” ErrorMessage=”You must enter a value.”
runat=”server” />

<asp:RegularExpressionValidator
ID=”RegularExpressionValidator1”
ControlToValidate=”TextBox1”
Display=”None” ValidationExpression=”\d+”
ErrorMessage=”You must enter a numeric value.”
runat=”server” />

<asp:RangeValidator
ID=”Range1”
ControlToValidate=”TextBox1”
Display=”None”
MinimumValue=”1”
MaximumValue=”30”
Type=”Integer”
ErrorMessage=”The value must be from 1 to 30”
runat=”server” />

<p />
<asp:ValidationSummary runat=”server” />
<p />
<asp:Button ID=”Button1” Text=”Submit” runat=”server” />

</form>
</body>

</html>

Figure 19.11 shows this simple validator example after having entered invalid data.

ptg

423Q&A

FIGURE 19.11
Validator
example

Summary
In this hour, you learned about building web applications, including how to apply

styles, data binding, and validation. As you can see, although there are many simi-

larities between building web applications and WPF desktop applications, there are

also many differences. Although many developers are familiar with both types of

application, most tend to specialize in one or the other.

Q&A
Q. What is a web form?

A. A web form is an ASPX page that describes the user interface markup using

HTML and, typically, a code-behind file.

Q. What is the Global.asax file used for?

A. The Global.asax file provides application-level events and code for web appli-

cations, much the same way the App.xaml file does for WPF applications.

Q. How are web applications styled?

A. Web applications can be styled using Cascading Style Sheets (CSS).

ptg

424 HOUR 19: Building a Web Application

Workshop

Quiz
1. What is a master page?

2. Do web forms always need to be associated with a master page?

3. How do you specify data binding expressions in a web form?

Answers
1. You can think of the concept behind master pages as being similar to the mail

merge capability in many word-processing applications. The child page uses

the ContentPlaceHolder controls mapped to the placeholders defined in the

master page, which defines the rest of the page. When a request is made,

ASP.NET merges the output of the child page with that of the master page and

sends the merged content to the user.

2. No, web forms can be created that are not associated with a master page.

3. Data binding expressions are contained within <%# and %> delimiters and use

either the Eval (one-way) or Bind (two-way) functions. These expressions are

resolved when the DataBind method of a control or Page class is called.

Exercise
There are no exercises for this chapter.

ptg

PART V

Diving Deeper

HOUR 20: Programming with Attributes 427

HOUR 21: Dynamic Types and Language Interoperability 439

HOUR 22: Memory Organization and Garbage Collection 451

HOUR 23: Understanding Threads, Concurrency,
and Parallelism 461

HOUR 24: Next Steps: Silverlight, PowerShell, and
Entity Framework 479

ptg

This page intentionally left blank

ptg

427

HOUR 20

Programming with
Attributes

What You’ll Learn in This Hour:
. Understanding Attributes
. Working with the Common Attributes
. Using Custom Attributes
. Accessing Attributes at Runtime

In Hour 1, “The .NET Framework and C#,” you learned that C# supports component-

oriented programming by enabling you to create assemblies that are self-contained,

self-documenting, redistributable units of code. Metadata specifies how the types,

properties, events, methods, and other code elements relate to one another. Attributes

enable you to add additional metadata to an assembly, providing a way of associat-

ing declarative information with your code. Attributes are compiled and stored in the

resulting CIL and can be accessed at runtime.

The .NET Framework provides and uses attributes for many different purposes. You

saw one example of attributes in Hour 5, “Creating Enumerated Types and Struc-

tures,” when you learned about flags enumerations. Attributes also describe security,

describe how to serialize data, limit optimizations by the JIT compiler, and control

the visibility of properties and methods during application development, among

many other things. To add your own custom metadata, you use custom attributes

that you create.

In this hour, you learn more about attributes—how to use them, create your own cus-

tom attributes, and access them at runtime.

ptg

428 HOUR 20: Programming with Attributes

Understanding Attributes
Although attributes can be added to almost any code declaration, including assem-

blies, classes, methods, properties, and fields, many are valid only on certain code

declarations. For example, some attributes are valid only on methods, whereas

others are valid only on type declarations.

Attribute Names
Although it is considered a best practice for all attribute names to end with the
word “Attribute” so that they can be easily distinguished from other types, you
don’t need to specify the “Attribute” suffix when using them in code. For example,
[Flags] is equivalent to [FlagsAttribute]. The actual class name for the
attribute is FlagsAttribute.

Did you
Know?

To place an attribute on a code declaration, you place the name of the attribute

enclosed in square brackets ([]) immediately before the declaration to which it is

applied. For example, the System.IO.FileShare enumeration shown in Listing 20.1

has the FlagsAttribute applied.

LISTING 20.1 Using the FlagsAttribute
[Flags]
public enum FileShare
{

None = 0,
Read = 0x001,
Write = 0x002,
ReadWrite = 0x003,
Delete = 0x004,
Inheritable = 0x010,

}

A code declaration can have multiple attributes, and some attributes can be specified

more than once for the same declaration, as shown in Listing 20.2.

LISTING 20.2 Additional Attribute Usage
[Conditional(“DEBUG”), Conditional(“EXAMPLE”)]
void Method() { }

void TestMethod([In][Out] string value) { }
void TestMethod2([In, Out] string value) { }

When you apply an attribute to a code declaration, you, in effect, are calling one of

the constructors of the attribute class. This means that you can provide parameters to

the attribute, as shown by the ConditionalAttribute from Listing 20.2.

ptg

Understanding Attributes 429

Named Attribute Parameters
The named parameters used by attributes are not the same as the named param-
eters you learned about in Hour 3, “Understanding Classes and Objects the C#
Way.” When used with attributes, they are really more like object initializers (which
you also learned about in Hour 3); they actually correspond to public read-write
properties of the attribute, easily allowing you to set the property value.

By the
Way

Parameters defined by a constructor are called positional parameters because they

must be specified in a defined order and cannot be omitted. Attributes also make use

of named parameters, which are optional and can be specified in any order. Posi-

tional parameters must always be specified first. For example, the attributes shown in

Listing 20.3 are all equivalent.

LISTING 20.3 Attribute Parameters
[DllImport(“kernel32.dll”)]
[DllImport(“kernel32.dll”, SetLastError = false, ExactSpelling = true)]
[DllImport(“kernel32.dll”, ExactSpelling = true, SetLastError = false)]

Although an attribute normally applies to the element it precedes, you can also

explicitly identify the target to which it applies. For example, you can identify

TABLE 20.1 Attribute Targets

Target Applies to

assembly Entire assembly

module Current assembly module

field Class field

event Event

method Method, property get accessor, or property set accessor

param Method or property set accessor parameter

property Property

return Return value of a method, indexer property, or property get
accessor

type Struct, class, interface, or enum

The type of code declaration to which an attribute is applied is called the target.

Table 20.1 shows the possible target values.

ptg

430 HOUR 20: Programming with Attributes

whether an attribute applies to a method, its parameter, or its return value, as shown

in Listing 20.4.

LISTING 20.4 Attribute Parameters
[CustomAttribute]
string Method()
{

return String.Empty;
}

[method: CustomAttribute]
string Method()
{

return String.Empty;
}

[return: CustomAttribute]
string Method()
{

return String.Empty;
}

Working with the Common Attributes
The .NET Framework defines many attributes that you can use in your own applica-

tions. The most common ones are the Obsolete attribute, the Conditional attribute,

and the set of global attributes.

The Obsolete Attribute
The Obsolete attribute indicates that a code declaration should no longer be used

and causes the compiler to generate a warning or error, depending on how the attrib-

ute is configured. This attribute can be used with no parameters, but it is recom-

mended to supply an explanation and indicate if a compiler warning or error should

be generated. Listing 20.5 shows an example of using the Obsolete attribute.

LISTING 20.5 Obsolete Attribute
public class Example
{

[Obsolete(“Consider using OtherMethod instead.”, false)]
public string Method()
{

return String.Empty;
}

ptg

Working with the Common Attributes 431

public string OtherMethod()
{

return “Test”;
}

}

The Conditional Attribute
The Conditional attribute indicates that a code declaration is dependent on a pre-

processor conditional compilation symbol, such as DEBUG, and can be applied to a

class or a method. The compiler uses this attribute to determine if the call is included

or left out. If the conditional symbol is present during compilation, the call is

included; otherwise, it is not. If the Conditional attribute is applied to a method, the

method must not have a return value. Listing 20.6 shows an example of using the

Conditional attribute.

LISTING 20.6 Conditional Attribute
public class Example
{

[Conditional(“DEBUG”)]
public void DisplayDiagnostics()
{

Console.WriteLine(“Diagnostic information.”);
}

public string Method()
{

return “Test”;
}

}

The Conditional attribute can also be applied to custom attributes, in which case

the attribute adds metadata information only if the compilation symbol is defined.

The #if and #endif Preprocessor Symbols
Using the Conditional attribute is similar to using the #if and #endif pre-
processor symbols but can provide a cleaner alternative that leads to fewer bugs.
The class shown in Listing 20.6 using #if/#endif instead of the Conditional
attribute is shown here.

By the
Way

ptg

432 HOUR 20: Programming with Attributes

public class Example
{
#if DEBUG

public void DisplayDiagnostics()
{

Console.WriteLine(“Diagnostic information.”);
}

#endif

public string Method()
{

return “Test”;
}

}

Although you can mix the Conditional attribute and the #if/#endif preproces-
sor symbols, you need to be very careful if you do so. Removing code using
#if/#endif occurs earlier in the compilation process and may cause the com-
piler to be unable to compile the Conditional method.

Global Attributes
Although most attributes apply to specific code declarations, some apply to an entire

assembly or module. These attributes appear in the source code after any using direc-

tives but before any code declarations (such as class or namespace declarations).

Assembly Manifest
The assembly manifest contains the data that describes how the elements in the
assembly are related, including version and security information. The manifest is
typically included with the compiled file.

By the
Way

Typically, global attributes are placed in an AssemblyInfo.cs file, but they can

appear in multiple files if those files are compiled in a single compilation pass. The

common global attributes are shown in Table 20.2.

TABLE 20.2 Global Attributes

Attribute Purpose

Assembly Identity Attributes

AssemblyName Full name of the assembly

AssemblyVersion Version of the assembly

AssemblyCulture Culture the assembly supports

AssemblyFlags Indicates if multiple copies of the assembly can
coexist

ptg

Using Custom Attributes 433

Using Custom Attributes
If you need to provide custom metadata for your own applications, you can create

custom attributes by defining an attribute class that derives from Attribute, either

directly or indirectly.

For example, you can define a custom attribute that contains the Team Foundation

Server Work Item number associated with a code change, as shown in Listing 20.7.

LISTING 20.7 Creating a Custom Attribute
[AttributeUsage(AttributeTargets.All, Inherited = false, AllowMultiple = true)]
public sealed class WorkItemAttribute : System.Attribute
{

private int workItemId;

public WorkItemAttribute(int workItemId)
{

this.workItemId = workItemId;
}

TABLE 20.2 Global Attributes

Attribute Purpose

Informational Attributes

AssemblyProduct Specifies a product name for the assembly

AssemblyTrademark Specifies a trademark for the assembly

AssemblyInformationalVersion Specifies an information version for the
assembly

Specifies a company name for the assembly

AssemblyCopyright Specifies a copyright for the assembly

AssemblyFileVersion Specifies a version number for the Windows file
version resource

CLSCompliant Indicates if the assembly is CLS-compliant

Assembly Manifest Attributes

AssemblyTitle Specifies a title for the assembly manifest

AssemblyDescription Specifies a description for the assembly
manifest

AssemblyConfiguration Specifies the configuration for the assembly
manifest

AssemblyDefaultAlias Specifies a friendly default alias for the
assembly manifest

ptg

434 HOUR 20: Programming with Attributes

public int WorkItemId
{

get
{

return this.workItemId;
}

}

public string Comment
{

get;
set;

}
}

The custom attribute has a single public constructor whose parameters form the

attributes positional parameters. Any public read-write fields or properties—in this

case, the Comment property—become named parameters. Finally, the

AttributeUsage attribute indicates that the WorkItem attribute is valid on any dec-

laration, that it can be applied more than once, and that it is not automatically

applied to derived types.

You can then use this attribute as shown in Listing 20.8.

LISTING 20.8 Applying a Custom Attribute
[WorkItem(1234,
Comment = “Created a test class to show how attributes can be used.”)]

public class Test
{

[WorkItem(5678, Comment = “Changed property to use auto-property syntax.”)]
public int P
{

get;
set;

}
}

Accessing Attributes at Runtime
Adding metadata to your application through attributes doesn’t do much if you

can’t access that information at runtime. The .NET Framework provides access to the

runtime type information, including metadata provided by attributes, through a

process called reflection. Because attributes provide metadata, the code associated

with an attribute is not actually executed until the attributes are queried.

Retrieving custom attributes is easy using the Attribute.GetCustomAttribute

method. Listing 20.9 shows an example of accessing the custom attribute defined in

Listing 20.7 and the simple class defined in Listing 20.8 at runtime. Figure 20.1

shows the output of Listing 20.9.

ptg

Accessing Attributes at Runtime 435

LISTING 20.9 Accessing a Single Attribute at Runtime
public class Program
{

public static void Main(string[] args)
{

WorkItemAttribute attribute =
Attribute.GetCustomAttribute(typeof(Test), typeof(WorkItemAttribute))
as WorkItemAttribute;

if (attribute != null)
{

Console.WriteLine(“{0}: {1}”, attribute.WorkItemId, attribute.Comment);
}

}
}

Attribute.GetCustomAttribute returns a single attribute. If multiple attributes of

the same type defined on the code element exist or you need to work with multiple

attributes of different types, you can use the Attribute.GetCustomAttributes

method to return an array of custom attributes. You can then enumerate the result-

ing array, examining and extracting information from the array elements, as shown

in Listing 20.10.

LISTING 20.10 Accessing Multiple Attributes at Runtime
public class Program
{

public static void Main(string[] args)
{

var workItems = from attribute in
Attribute.GetCustomAttributes(typeof(Test)).
OfType<WorkItemAttribute>()
select attribute;

foreach (var attribute in workItems)
{

Console.WriteLine(“{0}: {1}”, attribute.WorkItemId,
➥attribute.Comment);

}
}

}

FIGURE 20.1
Output of
retrieving a
single attribute
at runtime

ptg

436 HOUR 20: Programming with Attributes

Summary
Attributes provide a simple yet powerful way to add metadata to your applications.

They are used throughout the .NET Framework for calling unmanaged code, describ-

ing COM properties for classes, methods, and interfaces, describing which class mem-

bers should be serialized for persistence, specifying security requirements, and con-

trolling JIT compiler optimizations, just to name a few.

In this hour, you learned about attributes, including some of the common attributes

provided by the .NET Framework. You then created your own custom attribute and

learned how to retrieve that attribute and access its values at runtime.

Q&A
Q. What is an attribute?

A. An attribute is a class that is used to add metadata to a code element.

Q. What are positional attribute parameters?

A. Positional attribute parameters are parameters required by the attribute and

must be provided in a specific order. They are defined by the attributes con-

structor parameters.

Q. How do you define a custom attribute?

A. A custom attribute is defined by creating a class that derives from Attribute.

Workshop

Quiz
1. Can the Obsolete attribute generate compiler errors?

2. Does the Conditional attribute affect compilation?

3. What are two methods that can retrieve custom attributes at runtime?

ptg

437Workshop

Answers
1. Yes, the Obsolete attribute can generate a compiler error if the second posi-

tional parameter is set to true.

2. Yes, the Conditional attribute can affect compilation. If the conditional sym-

bol specified in the attribute parameters is not present, the call to the method is

not included.

3. Two methods to retrieve custom attributes at runtime are

Attribute.GetCustomAttribute and Attribute.GetCustomAttributes.

Exercise
There are no exercises for this chapter.

ptg

This page intentionally left blank

ptg

Using Dynamic Types 439

HOUR 21

Dynamic Types and
Language Interoperability

What You’ll Learn in This Hour:
. Using Dynamic Types
. Understanding the DLR
. Interoperating with COM
. Reflection Interoperability

In Hour 1, “The .NET Framework and C#,” you learned that the fourth primary com-

ponent of the .NET Framework is the dynamic language runtime, or DLR. The DLR is

built on top of the common language runtime (CLR) and provides the language serv-

ices for dynamic languages such as IronRuby and IronPython. Although the C# lan-

guage has always allowed you to write code that would interact with dynamic lan-

guages—for example, calling a method defined in a JavaScript object—the syntax

necessary to do so was far from simple. That syntax also changed depending on the

particular dynamic language you were targeting.

With the help of the DLR, C# can provide simple and consistent language syntax for

interacting with dynamic languages. In this hour, you learn about dynamic types

and learn how you can use them to interoperate with dynamic languages.

Using Dynamic Types
A dynamic type, indicated by the dynamic keyword, is one whose operations bypass

the compile-time type checking provided by the C# compiler. Instead, these opera-

tions are resolved at runtime. Bypassing the static type checking simplifies access to

ptg

440 HOUR 21: Dynamic Types and Language Interoperability

▼

By the
Way

COM APIs, such as the Office API, and to dynamic languages, such as IronPython

and JavaScript.

The dynamic keyword indicates the type of a property, field, indexer, parameter,

return value, or local variable. It can also be the destination type of an explicit con-

version or as the argument to the typeof operator.

Dynamic Types
Even though the term “dynamic types” is used throughout this hour, there is actu-
ally only a single “dynamic” type, just as there is a single “object” type. When
used in this hour, “dynamic types” refers to different types that are treated as
being of type dynamic.

Although it might seem contradictory, a variable of dynamic type is statically typed

at compile time to be of type dynamic and, in most situations, behaves as if it were

an object. When the compiler encounters a dynamic type, it assumes it can support

any operation. If the code isn’t valid, the errors will be caught only at runtime.

Try It Yourself

Exploring Dynamic Types
To see how dynamic types behave at compile time and run-time, follow these steps.

1. Create a new Console application in Visual Studio.

2. Add a new class named SimulatedDynamic that looks as shown here:

class SimulatedDynamic
{

public SimulatedDynamic() { }
public void Method1(string s)
{

Console.WriteLine(s);
}

}

3. Modify the Main method of the Program class by adding the statements

shown here:

SimulatedDynamic c1 = new SimulatedDynamic();
c1.Method1(3);

4. Try to compile the application. You should receive the compiler errors shown in

Figure 21.1.

5. Change the first statement you entered in step 3 so that c1 is typed to be

dynamic.

ptg

Using Dynamic Types 441

By the
Way

▲

FIGURE 21.1
Error messages

6. Run the application by pressing Ctrl+F5. You should notice that the application

now compiles but throws a runtime exception, as shown in Figure 21.2.

7. Change the second statement so that the argument passed is the string “3”

rather than the integer value 3.

8. Run the application again by pressing Ctrl+F5 and observe that the output

matches what is shown in Figure 21.3.

When you first tried to compile the application you just wrote, the compiler deter-

mined that the method you were attempting to execute did not exist because c1 was

statically typed to be of type SimulatedDynamic. However, when you changed its

static type to be of type dynamic, the compiler no longer performed the type checking,

causing the runtime exception to occur.

Determining Dynamic Types at Runtime
At compile time, a dynamic variable is compiled as an object type, and the com-
piler ensures that metadata about what each statement is attempting to do is
stored. At runtime, this information is examined, and any statement that is not
valid causes a runtime exception.

When the runtime encounters a “dynamic” type (which is actually just an object
type with the additional metadata indicating it should be evaluated dynamically), it

FIGURE 21.2
RuntimeBinder
Exception

FIGURE 21.3
Output of
exploring
dynamic types

ptg

442 HOUR 21: Dynamic Types and Language Interoperability

uses the runtime type of the object to determine what the actual type should be.
In step 6 of the previous exercise, the runtime type of the method argument is
System.Int32. This caused the runtime to attempt to resolve a method with the
following signature:
void Method1(int)

Because such a method does not exist in the type SimulatedDynamic, a runtime
exception is thrown. However, in step 8, the runtime attempts to resolve a
method with the signature
void Method1(string)

that does exist.

Conversions
The result of most dynamic operations is another dynamic object. However, conver-

sions exist between dynamic objects and other types, easily enabling you to switch

between dynamic and non-dynamic behavior.

An implicit conversion exists between all the predefined data types and dynamic,

which means that all the following statements shown in Listing 21.1 are valid.

LISTING 21.1 Implicit Conversion with Dynamic Types
dynamic d1 = 42;
dynamic d2 = “The quick brown fox”;
dynamic d3 = DateTime.Now;

int s1 = d1;
string s2 = d2;
DateTime s3 = d3;

Dynamic Conversions
The implicit conversions that exist are dynamic conversions that, like all dynamic
operations, are resolved at runtime. You should be careful and not mix dynamic
and nondynamic conversions. For example, trying to assign d3 to s1 would result
in a runtime exception.

Watch
Out!

Dynamic Overload Resolution
Because the actual type of a value of dynamic type is not known until runtime, if one

or more method parameters are specified to be dynamic, the method might not be

resolved until runtime. The compiler first attempts normal overload resolution, and,

if an exact match is found, that is the overload that is used. This means that if more

than one method resolves to match the same runtime types and the runtime cannot

ptg

Using Dynamic Types 443

determine how to resolve that ambiguity, the method resolution fails with an

ambiguous match exception.

Consider the code shown in Listing 21.2.

LISTING 21.2 A Class with Dynamic Methods
class MethodResolution
{

public void M(int i) { }
public void M(int i, dynamic d) { }
public void M(dynamic d, int i) { }
public void M(dynamic d1, dynamic d2) { }

}

The following code will fail at runtime, as shown in Figure 21.4.

dynamic m = new MethodResolution();
m.M(42, 7);

This method call is ambiguous because both arguments have a runtime type of

System.Int32. When the runtime attempts to resolve method M, it sees these methods

as if they were defined in Listing 21.3.

LISTING 21.3 Dynamic Methods for Method Resolution
class MethodResolution
{

public void M(int i) { }
public void M(int i, object d) { }
public void M(object d, int i) { }
public void M(object d1, object d2) { }

}

Given that list of overloads, none of them are the best match because each matches

better on one argument than the other. Because the method cannot be resolved, a

runtime error is thrown,

FIGURE 21.4
Ambiguous
method call
exception at
runtime

ptg

444 HOUR 21: Dynamic Types and Language Interoperability

Understanding the DLR
For C# to work with dynamic types, it makes use of the DLR, which is a runtime envi-

ronment that sits on top of the CLR and provides language services and support for

dynamic languages. This enables dynamic languages the same level of language

interoperability enjoyed by the statically typed languages and introduces dynamic

objects to those languages. Figure 21.5 shows the basic architecture of the DLR and

shows how it fits with the rest of the .NET Framework.

In a similar way to ADO.NET data providers, the DLR uses binders that encapsulate

the language semantics and specify how operations are performed. This not only

enables a consistent syntax but also enables statically typed languages to use the

services provided by the DLR.

The language binders make use of LINQ expression trees to perform operations. To

support this, the DLR extends LINQ expression trees to include control flow, assign-

ment, and other language-specific nodes. Any location in code where you perform an

operation on a dynamic object is considered a dynamic call site, and the DLR caches

the metadata of the dynamic types involved and information about the operation

being performed. If the operation is subsequently performed, the information is

retrieved from the cache, improving performance.

Finally, to support interoperability with other languages, the DLR provides the

IDynamicMetaObjectProvider interface and the DynamicObject and

ExpandoObject classes.

Understanding IDynamicMetaObjectProvider
The IDynamicMetaObjectProvider interface represents a dynamic object. If you
have advanced scenarios for defining how dynamic objects behave, you should
create your own implementation of IDynamicMetaObjectProvider; otherwise,
you should derive from DynamicObject or use ExpandoObject.

By the
Way

If you need an object that enables you to dynamically add or remove members at

runtime, you can create an instance of an ExpandoObject. Instances of an

ExpandoObject can be shared between any languages that support the DLR. For

Common Language Runtime (CLR)

BinderDynamic Language Runtime (DLR)

IronRuby IronPython C# Visual Basic .NET

Office

JavaScript

Silverlight

FIGURE 21.5
DLR architecture

ptg

Understanding the DLR 445

example, you can create an instance in C# and use it as an argument to an Iron-

Python function. Listing 21.4 shows a simple example of using an ExpandoObject to

dynamically add a new property.

LISTING 21.4 Working with an ExpandoObject
dynamic expando = new ExpandoObject();

expando.ExampleProperty = “This is a dynamic property.”;
Console.WriteLine(expando.ExampleProperty);
Console.WriteLine(expando.ExampleProperty.GetType());

Figure 21.6 shows the output from the code shown in Listing 21.4.

If you need to define specific operations for your class when it is used dynamically,

you can derive your class from DynamicObject. Just as with an ExpandoObject

instance, any languages supporting the DLR can share an instance of a derived

DynamicObject type.

The code in Listing 21.5 shows a dynamic dictionary that enables you to access dic-

tionary values by key as if they were actual properties. It overrides the TrySetMember

and TryGetMember methods to provide this dynamic syntax.

LISTING 21.5 Creating a Custom Dynamic Object
public class CustomDictionary : DynamicObject
{

Dictionary<string, object> internalDictionary =
new Dictionary<string, object>();

public int Count
{

get
{

return internalDictionary.Count;
}

}

public override bool TryGetMember(GetMemberBinder binder, out object result)
{

return this.internalDictionary.TryGetValue(binder.Name.ToLower(),
➥out result);

}

FIGURE 21.6
Output of
using an
ExpandoObject

ptg

▼

446 HOUR 21: Dynamic Types and Language Interoperability

public override bool TrySetMember(SetMemberBinder binder, object value)
{

this.internalDictionary[binder.Name.ToLower()] = value;
return true;

}
}

Listing 21.6 shows how this new dictionary might be used.

LISTING 21.6 Using a Custom Dynamic Object
public class Program
{

static void Main(string[] args)
{

dynamic contact = new CustomDictionary();
contact.FirstName = “Ray”;
contact.LastName = “Manzarek”;

Console.WriteLine(contact.FirstName + “ “ + contact.LastName);
}

}

The output from the code shown in Listing 21.6 is shown in Figure 21.7.

Try It Yourself

Creating a Custom Dynamic Type
To implement a custom dynamic dictionary and see how to use it at run time, follow
these steps.

1. Create a new Console application in Visual Studio.

2. Add a new class named CustomDictionary that looks like Listing 21.5.

3. Modify the Main method of the Program class so it looks like Listing 21.6.

4. Run the application by pressing Ctrl+F5. The output should match what is

shown in Figure 21.7.

5. Change the first statement you entered in step 3 so that c1 is typed to be

dynamic.

FIGURE 21.7
Output of using
a custom
dynamic object

ptg

Interoperating with COM 447

6. Add additional “properties” to the contact class and output them in

Console.WriteLine statements.

7. Run the application again by pressing Ctrl+F5 and observe that the output

changes to show the additional properties added.

Interoperating with COM
Although the .NET Framework has always enabled you to interoperate with COM,

particularly with the Office COM APIs, the DLR simplifies the code you have to write

considerably. Because many COM methods return types as object, the dynamic type

enables you to easily treat them as dynamic objects instead.

To interoperate with COM APIs, you make use of a Primary Interop Assembly (PIA),

which forms a bridge between the unmanaged COM API and the managed .NET

application. To do this, you add a reference to the PIA in your Visual Studio project,

allowing your application access to the types defined. When the reference has been

added, you can choose to embed only those types actually used by your application.

▲

Embedded Primary Interop Assemblies
Because each PIA must contain a managed equivalent for every type, interface,
enumeration, and so on defined in the COM API, some, such as the Office PIAs,
can be quite large.

Only embedding the interop types used by your application can help reduce the
size of your deployment and does not require the PIAs to be deployed at all. This
also allows you to avoid a lot of the complexity of working with COM APIs by treat-
ing the object occurrences in the COM signatures as dynamic instead.

By the
Way

The code in Listing 21.7 shows a simple example of how to open a Microsoft Word

document using COM interop.

LISTING 21.7 COM Interop Without Dynamic Types
public static Main(string[] args)
{

object missing = System.Reflection.Missing.Value;
object readOnly = false;
object isVisible = true;
object fileName = “SampleDocument.docx”;

Microsoft.Office.Interop.Word.ApplicationClass wordApp =
new Microsoft.Office.Interop.Word.ApplicationClass();

wordApp.Visible = true;

ptg

448 HOUR 21: Dynamic Types and Language Interoperability

Document doc = wordApp.Documents.Open(ref fileName, ref missing,
ref readOnly, ref missing, ref missing, ref missing, ref missing,
ref missing, ref missing, ref missing, ref missing, ref isVisible,
ref missing, ref missing, ref missing, ref missing);

doc.Activate();
}

Compare that to the code shown in Listing 21.8, which performs the same actions

but uses dynamic instead. This code also makes use of named parameters and

implicit typing, showing how all these features come together, allowing you to write

succinct code that is both easy to read and easy to maintain.

LISTING 21.8 COM Interop with Dynamic Types
public static Main(string[] args)
{

var wordApp = new Microsoft.Office.Interop.Word.ApplicationClass();
wordApp.Visible = true;
string fileName = “SampleDocument.docx”;

Document doc = wordApp.Documents.Open(fileName, ReadOnly: true, Visible: true);
doc.Activate();

}

Reflection Interoperability
Taking this a step further, suppose you wanted to invoke the Multiply method of a

Calculator object. If the Calculator object was defined in C#, you could do this

easily, as shown in Listing 21.9.

LISTING 21.9 Invoking a Method in a C# Object
var calculator = GetCalculator();
int sum = calculator.Multiply(6, 7);

If you didn’t know the Calculator object was written in .NET, or needed to use reflec-

tion because the compiler couldn’t determine that the object implemented a

Multiply method, you would need to use code like that shown in Listing 21.10.

LISTING 21.10 Invoking a Method Reflectively
object calculator = GetCalculator();
Type type = calculator.GetType();
object result = type.InvokeMember(“Multiply”, BindingFlags.InvokeMethod, null,
➥calculator, new object[] { 6, 7 });
int sum = Convert.ToInt32(result);

ptg

449Q&A

As you can see, this is not nearly as simple. However, by utilizing dynamic types, the

code becomes that shown in Listing 21.11.

LISTING 21.11 Invoking a Method Dynamically
dynamic calculator = GetCalculator();
int sum = calculator.Multiply(6, 7);

If the Calculator object were defined in a dynamic language such as IronPython,

the same code shown in Listing 21.11 could still be used. The only differences would

be in the implementation of the GetCalculator method, which would need to create

an instance of the IronPython runtime and load the appropriate file, as shown in

Listing 21.12.

LISTING 21.12 Getting a Dynamic Object from IronPython
dynamic GetCalculator()
{

ScriptRuntime pythonRuntime = Python.CreateRuntime();
return pythonRuntime.UseFile(“calculator.py”);

}

Summary
Including the Dynamic Language Runtime (DLR) greatly expands the number of

languages the .NET Framework can support. It also enables statically typed lan-

guages such C# to easily access objects defined in a dynamic language. Using

dynamic types allows you to access dynamic objects using code syntax that is essen-

tially the same as you would use if the object were statically defined.

In this hour, you learned the basics of using dynamic types, including how to use

ExpandoObject and create your own custom dynamic objects by deriving from

DynamicObject. After exploring the basic architecture of the DLR, you then learned

how to use dynamic types when working with COM APIs, such as the Office COM

API, and objects defined in other languages, such as IronPython.

Q&A
Q. What is a dynamic type?

A. A dynamic type is one whose operations bypass the compile-time type check-

ing and instead are resolved at runtime.

ptg

450 HOUR 21: Dynamic Types and Language Interoperability

Q. What is the benefit of ExpandoObject?

A. ExpandoObject enables you to create an instance of an object that enables you

to dynamically add or remove members at runtime.

Q. Can you create your own dynamic objects?

A. Yes, you can create your own dynamic object by deriving from DynamicObject

or implementing IDynamicMetaObjectProvider.

Q. What are the benefits of embedding primary interop assembly types?

A. Embedding only the interop types used by your application can help reduce

the size of your deployment and does not require the PIAs to be deployed at all.

This also allows you to avoid a lot of the complexity of working with COM

APIs by treating the object occurrences in the COM signatures as dynamic

instead.

Workshop

Quiz
1. What is the static compile-time type of a dynamic type?

2. What LINQ functionality does the DLR use to perform dynamic operations?

Answers
1. A dynamic type is statically typed at compile time to be of type dynamic.

2. The DLR language binders utilize LINQ expression trees to perform dynamic

operations.

Exercise
There are no exercises for this chapter.

ptg

451

HOUR 22

Memory Organization and
Garbage Collection

What You’ll Learn in This Hour:
. Memory Organization
. Garbage Collection
. Understanding the IDisposable Interface
. Using the Dispose Pattern
. Declaring and Using Finalizers

In Hour 1, “The .NET Framework and C#,” you learned that one of the benefits pro-

vided by the .NET Framework is automatic memory management. This helps you cre-

ate applications that are more stable by preventing many common programming

errors and enables you to focus your time on the business logic your application

requires. Even with automatic memory management, it is still important to under-

stand how the garbage collector interacts with your program and the types you create.

You briefly learned about value and reference types in Hour 2, “Understanding C#

Types.” The simple definition for a value type presented was that a value type is

completely self-contained and copied “by value.” A reference type, on the other

hand, contains a reference to the actual data. Because variables of a value type

directly contain their data, it is not possible for operations on one to affect the other.

It is possible for two variables of a reference type to refer to the same object, allowing

operations on one variable to affect the other.

In this hour, you learn some of the fundamentals of how memory is organized in the

CLR, how the garbage collector works, and how.NET Framework provides mecha-

nisms for deterministic finalization.

ptg

452 HOUR 22: Memory Organization and Garbage Collection

Memory Organization
To better understand how types work, you need to have a basic understanding of the

two mechanisms the CLR uses to store data in memory: the stack and the heap.

Figure 22.1 shows a conceptual view of stack and heap memory.

The simplest way to think of stack memory is that it is organized like a stack of

plates in a restaurant. The last plate placed on the stack is the first one removed. This

is also known as a Last-In, First-Out (LIFO) queue. Stack memory is used by the .NET

Framework to store local variables (except for the local variables used in iterator

blocks or those captured by a lambda or anonymous method) and temporary values.

You can think of stack memory as providing cheap garbage collection because the

lifetime of variables placed on the stack is well known.

Heap memory, however, is more like a wall of empty slots. Each slot can indicate if it

is already full or if it is no longer used and ready to be recycled. When a slot has

been filled, its contents can be replaced only with something that is the same type as

it originally contained. A slot can be reused (and have its type changed) only when it

has been recycled.

Garbage Collection
A type defined by a class is a reference type. When you create an instance of a refer-

ence type using the new operator, the runtime actually performs several actions on

your behalf. The two primary actions that occur follow:

1. Memory is allocated and zero-initialized.

2. The constructor for the class is executed to initialize the allocated memory.

At this point, your object is initialized and ready to be used. Because the runtime

allocated the memory on your behalf, it is reasonable to expect that it also

Stack Memory Heap Memory

FIGURE 22.1
Stack and heap
memory

ptg

Understanding IDisposable 453

deallocates that memory at some undetermined future point in time. The responsibil-

ity for deallocating memory falls to the garbage collector.

The simple view of how the garbage collector works is that when it runs, the follow-

ing actions occur:

1. Every instance of a reference type is assumed to be “garbage.”

2. The garbage collector determines which instances are still accessible. These

types are considered “live” and are marked to indicate they are still reachable.

3. The memory used by the unmarked reference types is deallocated.

4. The managed heap is then compacted (by moving memory) to reduce frag-

mentation and consolidate the used memory space. As the “live” objects are

moved, the mark is cleared in anticipation of the next garbage collection cycle.

Object Lifetime
Every object instance has a lifetime, which is the length of execution time an
object is pointed to by a valid reference. As long as an object has at least one
valid reference, it cannot be destroyed. By creating more references to an object,
you can potentially extend its lifetime.

By the
Way

Understanding IDisposable
Because memory deallocation occurs at an unspecified point in time, the .NET Frame-

work provides a mechanism, through the IDisposable interface, that enables you to

provide explicit cleanup behavior before the memory is reclaimed. This interface pro-

vides a way to perform deterministic resource deallocation. It also provides a consis-

tent pattern that types needing to control resource allocation can utilize.

Listing 22.1 shows the definition of the IDisposable interface, which provides a sin-

gle public method named Dispose.

LISTING 22.1 The IDisposable Interface
public interface IDisposable
{

void Dispose();
}

Types that implement this interface, commonly called disposable types, give the code

using that type a way to indicate that the type is eligible for garbage collection. If the

type has any unmanaged resources it maintains, calling Dispose should immedi-

ptg

454 HOUR 22: Memory Organization and Garbage Collection

ately release those unmanaged resources; however, calling the Dispose method does

not actually cause the instance to be garbage collected.

The using Statement
Even if a type implements IDisposable, there is no way for the .NET Framework to

ensure that you have actually called the Dispose method. This problem is com-

pounded when you consider the implications of an exception occurring. If an excep-

tion occurs, there is a possibility that, depending on how the calling code is written,

the disposable type will never get the opportunity to actually perform its cleanup.

From Hour 10, “Handling Errors Using Exceptions,” you learned that you could place

the calling code in a try-finally block where the call to the Dispose method is placed

in the finally handler. Although this is the correct implementation, it can be easy to

get incorrect (particularly when you need to nest multiple protected regions) and can

lead to code that is hard to read.

To alleviate these problems, C# provides the using statement. You saw examples of

the using statement in Hour 13, “Using Files and Streams.” The using statement pro-

vides a clean and simple way to indicate the intended lifetime of an object and

ensures the Dispose method is called when that lifetime ends.

The syntax for the using statement is

using (resource-acquisition) embedded-statement

When the compiler encounters a using statement, it actually generates code similar

to what is shown in Listing 22.2.

LISTING 22.2 Compiler Generated Expansion for the using Statement
{

DisposableObject x = new DisposableObject();

try
{

// use the object.
}
finally
{

if (x != null)
{

((IDisposable)x).Dispose();
}

}
}

ptg

Using the Dispose Pattern 455

There are a few subtle, but important, things to note in this expansion. The first is the

outermost enclosing braces. This defines a scope that contains the expansion but,

more specifically, helps ensure that the variable defined in the using statement is

accessible only from within that defined scope. The second is that the local variable

declared for the resource acquisition is read-only and that it is a compile time error to

modify this variable from within the using block statement. Finally, because the

compiler explicitly casts the object to the IDisposable interface (to ensure that it is

calling the correct Dispose method), the using statement can be used only with types

that implement the IDisposable interface.

Using the Dispose Pattern
To implement the dispose pattern, you provide an implementation of the

IDisposable interface. However, implementing the IDisposable interface is actually

only part of the pattern. The complete dispose pattern, in the context of the Contact

class, is shown in Listing 22.3.

When Should You Implement the Dispose Pattern?
Typically, you should only implement the dispose pattern if
. You control unmanaged resources directly.
. You control other disposable resources directly.

Did you
Know?

LISTING 22.3 Basic Dispose Pattern
public class Contact : IDisposable
{

private bool disposed;

public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)
{

if (!this.disposed)
{

if (disposing)
{

// Release only managed resources here.
}

// Release only unmanaged resource here.
this.disposed = true;

}
}

}

ptg

456 HOUR 22: Memory Organization and Garbage Collection

The public Dispose method should always be implemented as shown. The order of

the two calls is important and shouldn’t be changed. This order ensures that

GC.SuppressFinalize is called only if the Dispose operation completes successfully.

When Dispose calls Dispose(true), the call might fail, but later on the garbage col-

lector can call Dispose(false). In reality, these are two different calls that can exe-

cute different portions of the code, so even though Dispose(true) fails,

Dispose(false) might not.

All your resource cleanup should be contained in the Dispose(bool disposing)

method. If necessary, you should protect the cleanup by testing the disposing

parameter. This should happen for both managed and unmanaged resources. The

Dispose(bool disposing) runs in two distinct scenarios:

. If disposing is true, the method has been called directly or indirectly by a

user’s code. Managed and unmanaged resources can be disposed.

. If disposing is false, the method has been called by the runtime from inside

the finalizer, and you should not reference other objects. Only unmanaged

resources can be disposed.

The benefit of using the dispose pattern is that it provides a way for users of the type

to explicitly indicate that they are done using that instance and that its resources

should be released.

Declaring and Using Finalizers
The dispose pattern is not the only way the .NET Framework enables you to perform

explicit resource cleanup before the objects memory is reclaimed. The other way is

using a finalizer, which is a special method called automatically after an object

becomes inaccessible. It is important to realize that the finalizer method will not be

called until the garbage collector realizes the object is unreachable.

A finalizer method looks like the default constructor for a class except the method

name is prefixed with the tilde (~) character. Listing 22.4 shows how you would

implement a finalizer for the Contact class.

LISTING 22.4 Implementing a Finalizer
public class Contact : IDisposable
{

private bool disposed;

public Contact()
{
}

ptg

Declaring and Using Finalizers 457

~Contact()
{

Dispose(false);
}

public void Dispose()
{

Dispose(true);
GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)
{

if (!this.disposed)
{

if (disposing)
{

// Release only managed resources here.
}

// Release only unmanaged resource here.
this.disposed = true;

}
}

}

There are several important rules about declaring and using finalizers:

. The exact time and order of when a finalizer executes is undefined.

. The finalizer method runs on the GC thread, not the application’s main thread.

. Finalizers apply only to reference types.

. You cannot specify an access modifier for a finalizer method.

. You cannot provide parameters to a finalizer method.

. You cannot overload or override a finalizer method.

. You cannot call a finalizer method directly in your own code; only the garbage

collector can call a finalizer method.

Although finalizers are typically used when you want to provide some assurance that

resources will be released even if the calling code does not call Dispose, it is not nec-

essary to provide a finalizer just because you implement the dispose pattern. How-

ever, if you do implement a finalizer, be sure to also implement the dispose pattern.

ptg

458 HOUR 22: Memory Organization and Garbage Collection

Finalizers
Finalizers are actually difficult to write correctly because many of the normal
assumptions you can make about the state of the runtime environment are not
true during object finalization.

Making your class finalizable means that it cannot be garbage collected until after
the finalizer has run, which means your class survives at least one extra garbage
collection cycle. In addition, if not written carefully, finalizer methods have the pos-
sibility of creating a new reference to the instance being finalized, in which case
the instance is alive again.

Watch
Out!

Summary
The .NET Framework does an excellent job at handling memory allocation and deal-

location on your behalf, enabling you to focus on the business logic required by your

application. It is, however, beneficial to have at least a basic understanding of how

the .NET Framework manages memory and, more important, what mechanisms it

provides to enable you to influence that management.

In this hour, you learned about the different ways the .NET Framework manages

memory, through the managed heap and the stack. You saw how the using state-

ment enables you to ensure a disposable object has its Dispose method called and

how to implement the IDisposable interface in your own classes through the dis-

pose pattern.

Q&A
Q. What are the two mechanisms the CLR uses to store data in memory?

A. The CLR uses stack and heap memory to store data.

Q. What is object lifetime?

A. Every object instance has a lifetime, which is the length of execution time an

object is pointed to by a valid reference.

Q. What is one purpose of the IDisposable interface?

A. The IDisposable interface is intended to provide a way to perform determinis-

tic resource deallocation. It also provides a consistent pattern that types which

need to control resource allocation can utilize.

ptg

459Workshop

Q. Can the using statement be used with types that do not implement
IDisposable?

A. No, the IDisposable interface is required because the compiler-generated

expansion of the using statement casts the object to the interface to ensure

that the correct implementation of the Dispose method is called.

Q. When should you implement the dispose pattern?

A. Typically you should only implement the dispose pattern if

. You control unmanaged resources directly.

. You control other disposable resources directly.

Q. If you implement IDisposable, should you also implement a finalizer?

A. No, just because you implement the IDisposable interface does not mean that

you should also implement a finalizer. However, if you do implement a final-

izer, you should also implement the IDisposable interface.

Workshop

Quiz
1. What are the two primary actions that occur on your behalf when using the

new operator?

2. Does calling Dispose immediately cause the disposable object to be garbage

collected?

3. What is the implication on garbage collection of implementing a finalizer?

Answers
1. The two primary actions that occur are

a. Memory is allocated.

b. The constructor for the class is executed to initialize the allocated memory.

ptg

460 HOUR 22: Memory Organization and Garbage Collection

2. No, calling Dispose does not cause the object to be immediately garbage col-

lected. It can, however, cause the object to immediately release any unman-

aged resources it maintains.

3. Making your class finalizable means that it cannot be garbage collected until

after the finalizer has run, which means your class survives at least one extra

garbage collection cycle. In addition, if not written carefully, finalizer methods

have the possibility of creating a new reference to the instance being finalized,

in which case the instance is alive again.

Exercise
There are no exercises for this chapter.

ptg

461

HOUR 23

Understanding Threads,
Concurrency, and
Parallelism

What You’ll Learn in This Hour:
. Understanding Threads and Threading
. Concurrency and Synchronization
. Understanding the Task Parallel Library
. Working with Parallel LINQ
. Potential Pitfalls

So far, all the applications you have written, and most software that exists today,

were designed for single-threaded execution. This is mainly because the program-

ming model of single-threaded execution reduces complexity and is easier to code.

However, as processor technology continues to evolve from single-core to multicore

architectures, it is more common for applications to begin taking advantage of the

benefits of multiple threads and multiple cores. Unfortunately, using multiple threads

and cores brings with it an entirely new set of problems and complexity. The .NET

Framework, through the parallel computing platform, simplifies the task of writing

applications that can take advantage of multiple threads and cores. This platform

forms the basis of the multi-threading capabilities provided by the .NET Framework,

such as the managed thread pool, and includes parallel implementations of the com-

mon loop instructions, LINQ to Objects, and new thread-safe collections.

In this hour, you learn the basics of writing multithreaded applications and how the

parallel computing platform enables you to write efficient and scalable code that

takes advantage of multiple processors in a natural and simple way.

ptg

462 HOUR 23: Understanding Threads, Concurrency, and Parallelism

Understanding Threads and Threading
The Windows operating system (and most modern operating systems) separates dif-

ferent running applications into processes; a process can have one or more threads

executing inside it. Threads form the basic unit of work to which the operating sys-

tem can allocate processor time. A thread maintains its own exception handlers, a

scheduling priority, and a way to save its context until it is scheduled.

The Windows operating system supports a threading strategy called preemptive

multitasking, which creates the effect of simultaneous execution of multiple threads

from multiple processors. To do this, the operating system divides the available

processor time across each of the threads that need it, sequentially allocating each

thread a slice of that time. When a thread’s time slice elapses, it is suspended, and

another thread resumes running. When this transfer, known as a context switch,

occurs, the context of the preempted thread is saved so that when it resumes, it can

continue execution with the same context. On a multiprocessor system, the operat-

ing system can take advantage of having multiple processors and schedule more

threads to execute more efficiently, but the basic strategy remains the same.

The .NET Framework further expands processes into application domains (repre-

sented through the AppDomain class), which are lightweight managed subprocesses.

A single process might have multiple application domains, and each application

domain might have one or more managed threads (represented by the Thread class).

Managed threads are free to move between application domains in the same process,

which means you might have one thread moving among several application

domains or multiple threads executing in a single application domain.

Using multiple threads is the most powerful technique available to increase the

responsiveness of your application by allowing it to process data and respond to user

input at almost the same time. For example, you can use multiple threads to do the

following:

. Communicate to a web server or database

. Perform long-running or complex operations

. Allow the user interface to remain responsive while performing other tasks in

the background

This same application, when run on a computer with multiple processors, could also

exhibit dramatic performance improvements without requiring modification.

There is, however, a trade-off. Threading consumes operating system resources to

store the context information required by processes, application domains, and

ptg

Concurrency and Synchronization 463

threads. The more threads you create, the more time the processor must spend keep-

ing track of those threads. Controlling code execution and knowing when threads

should be destroyed can be complex and can be a source of frequent bugs.

Concurrency and Synchronization
A simple definition for concurrency is simultaneously performing multiple tasks

that can potentially interact with each other. Because of this interaction, it is possible

for multiple threads to access the same resource simultaneously, which can lead to

problems such as deadlocking and starvation.

A deadlock refers to the condition when two or more threads are waiting for each

other to release a resource (or more than two threads are waiting for resources in a

circular chain). Starvation, similar to a deadlock, is the condition when one or more

threads are perpetually denied access to a resource.

Thread Safety
Thread safety refers to protecting resources from concurrent access by multiple
threads. A class whose members are protected is called thread-safe.

By the
Way

Because of these potential concurrency problems, when multiple threads can access

the same resource, it is essential that those calls be synchronized. This prevents one

thread from being interrupted while it is accessing that resource. The common lan-

guage runtime provides several different synchronization primitives that enable you

to control thread interactions. Although many of the synchronization primitives

share characteristics, they can be loosely dividing into the following three categories:

. Locks

. Signals

. Interlocked operations

Working with Locks
What would happen if multiple threads attempted to access the same resource simul-

taneously? Imagine this resource is an instance of a Stack<int>. Without any type of

protection, multiple threads could manipulate the stack at the same time. If one

thread attempts to peek at the top value at the same time another thread is pushing

a new value, what is the result of the peek operation?

ptg

464 HOUR 23: Understanding Threads, Concurrency, and Parallelism

Locks protect a resource by giving control to one thread at a time. Locks are generally

exclusive, although they need not be. Non-exclusive locks are often useful to allow a

limited number of threads access to a resource. When a thread requests access to a

resource that is locked, it goes to sleep (commonly referred to as blocking) until the

lock becomes available.

Exclusive locks, most easily accomplished using the lock statement, control access to

a block of code, commonly called a critical section. The lock statement is best used

to protect small blocks of code that do not span more than a single method. The syn-

tax of the lock statement is

lock (expression)
embedded-statement

The expression of a lock statement must always be a reference type value.

Lock Expressions to Avoid
You should not lock on a public type, using lock(typeof(PublicType)), or
instances of a type, using lock(this). If outside code also attempts to lock on
the same public type or instance, it could create a deadlock.

Locking on string literals, using lock(“typeName”), is also problematic due to
the string interning performed by the CLR. Because only a single instance is
shared across the assembly, placing a lock on a string literal causes any location
where that string is accessed to also be locked.

The best practice is to define a read-only private or private static object on which
to lock.

Watch
Out!

Listing 23.1 shows an example of using locks to create a thread-safe increment and

decrement operation.

LISTING 23.1 The lock Statement
public class ThreadSafeClass
{

private int counter;
private static readonly object syncLock = new object();

public int Increment()
{

lock(syncLock)
{

return this.counter++;
}

}

ptg

Concurrency and Synchronization 465

public int Decrement()
{

lock(syncLock)
{

return this.counter--;
}

}
}

The Monitor class also protects a resource through the Enter, TryEnter, and Exit

methods, and can be used with the lock statement to provide additional functionality.

The Enter method enables a single thread access to the protected resource at a time.

If you want the blocked thread to give up after a specified interval, you can use the

TryEnter method instead. Using TryEnter can help detect and avoid potential

deadlocks.

Monitor and lock
Although the Monitor class is more powerful than the simple lock statement, it
is prone to orphaned locks and deadlocks. In general, you should use the lock
statement when possible.

The lock statement is more concise and guarantees a correct implementation of
calling the Monitor methods because the compiler generates the expansion on
your behalf.

The compiler expands the lock statement shown in Listing 23.1 to the code
shown here:

bool needsExit = false;
try
{

System.Threading.Monitor.Enter(syncLock, ref needsExit);
this.counter = value;

}
finally
{

if (needsExit)
{

System.Threading.Monitor.Exit(syncLock);
}

}

By making use of a try-finally block, the lock statement helps ensure that the
lock will be released even if an exception is thrown.

Watch
Out!

A thread uses the Wait method from within a critical section to give up control of the

resource and block until the resource is available again. The Wait method is typically

used in combination with the Pulse and PulseAll methods, which enables a thread

that is about to release a lock or call Wait to put one or more threads into the ready

queue so that they can acquire the lock.

ptg

466 HOUR 23: Understanding Threads, Concurrency, and Parallelism

SpinLock
If you hold a lock for a short period, you might want to use a SpinLock instead of
Monitor. Rather than blocking when it encounters a locked critical section,
SpinLock simply spins in a loop until the lock becomes available. When used
with locks held for more than a few tens of cycles, SpinLock performs just as
well as Monitor but uses more CPU cycles.

By the
Way

Using Signals
If you need to allow a thread to communicate an event to another, you cannot use

locks. Instead you need to use synchronization events, or signals, which are objects

having either a signaled or unsignaled state. Threads can be suspended by waiting

on an unsignaled synchronization event and can be activated by signaling the event.

There are two primary types of synchronization event. Automatic reset events, imple-

mented by the AutoResetEvent class, behave like amusement park turnstiles and

enable a single thread through the turnstile each time it is signaled. These events

automatically change from signaled to unsignaled each time a thread is activated.

Manual reset events, implemented by the ManualResetEvent and

ManualResetEventSlim classes, on the other hand, behave more like a gate; when

signaled, it is opened and remains open until it is closed again.

By calling one of the wait methods, such as WaitOne, WaitAny, or WaitAll, the

thread waits on an event to be signaled. WaitOne causes the thread to wait until a

single event is signaled, whereas WaitAny causes it to wait until one or more of the

indicated events are signaled. On the other hand, WaitAll causes the thread to wait

until all the indicated events have been signaled. To signal an event, call the Set

method. The Reset method causes the event to revert to an unsignaled state.

Interlocked Operations
Interlocked operations are provided through the Interlocked class, which contains

static methods that can be used to synchronize access to a variable shared by multi-

ple threads. Interlocked operations are atomic, meaning the entire operation is one

unit of work that cannot be interrupted, and are native to the Windows operating sys-

tem, so they are extremely fast.

Interlocked operations, when used with volatile memory guarantees (provided

through the volatile keyword on a field), can create applications that provide

powerful nonblocking concurrency; however, they do require more sophisticated,

low-level programming. For most purposes, simple locks are the better choice.

ptg

Understanding the Task Parallel Library 467

Other Synchronization Primitives
Although the lock statement and Monitor and SpinLock classes are the most com-

mon synchronization primitives, the .NET Framework provides several other synchro-

nization primitives. A detailed explanation of the remaining primitives is beyond the

scope of this book, but you will be introduced to the basic concepts of each one.

Mutex
If you need to synchronize threads in different processes or across application

domains, you can use a Mutex, which is an abbreviated form of the term “mutually

exclusive.” A global mutex is called a named mutex because it must be given a

unique name so that multiple processes can access the same object.

Reader-Writer Locks
A common multithreaded scenario is one in which a particular thread, typically

called the writer thread, changes data and must have exclusive access to the resource.

As long as the writer thread is not active, any number of reader threads can access

the resource. This scenario can be easily accomplished using the

ReaderWriterLockSlim class, which provides the EnterReaderLock and

EnterWriterLock methods to acquire and release the lock.

Semaphore
A semaphore enables only a specified number of threads access to a resource. When

that limit is reached, additional threads requesting access wait until a thread releases

the semaphore. Like a mutex, a semaphore can be either global or local and can be

used across application domains. Unlike Monitor, Mutex, and

ReaderWriterLockSlim, a semaphore can also be used when one thread acquires the

semaphore and another thread releases it.

Understanding the Task Parallel Library
The preferred way to write multithreaded and parallel code is using the Task Parallel

Library (TPL). The TPL simplifies the process of adding parallelism and concurrency

to your application, allowing you to be more productive. Rather than requiring you

to understand the complexities of scaling processes to most efficiently use multiple

processors, the TPL handles that task for you.

ptg

468 HOUR 23: Understanding Threads, Concurrency, and Parallelism

Understanding Concurrency
Even though the TPL simplifies writing multithreaded and parallel applications, not
all code is suited to run in parallel. It still requires you to have an understanding
of basic threading concepts, such as locking and deadlocks, to use the TPL effec-
tively.

Watch
Out!

Data Parallelism
When the same operation is performed concurrently on elements in a source collec-

tion (or array), it is referred to as data parallelism. Data parallel operations partition

the source collection so that multiple threads can operate on different segments con-

currently. The System.Threading.Tasks.Parallel class supports data parallel oper-

ations through the For and ForEach methods, which provide method-based parallel

implementations of for and foreach loops, respectively.

Listing 23.2 shows a traditional foreach statement followed by the corresponding

Parallel.ForEach.

LISTING 23.2 Comparison of foreach and Parallel.ForEach
List<string> source = new List<string>();

foreach(var item in source)
{

Process(item);
}

System.Threading.Tasks.Parallel.ForEach(source, item => Process(item));

Using Parallel.For or Parallel.ForEach, you write the loop logic in much the

same way as you would write a traditional for or foreach loop. The TPL handles the

low-level work of creating threads and queuing work items.

Because Parallel.For and Parallel.ForEach are methods, you can’t use the break

and continue statements to control loop execution. To support these features, several

overloads to both methods enable you to stop or break loop execution, among other

things. These overloads use helper types to enable this functionality, including

ParallelLoopState, ParallelOptions and ParallelLoopResult,

CancellationToken, and CancellationTokenSource.

Thread-Safe Collections
Whenever multiple threads need to access a collection, that collection must be

made thread-safe. The collections provided in the System.Collection.Concurrent

ptg

Understanding the Task Parallel Library 469

namespace are specially designed thread-safe collection classes that should be used in

favor of their generic counterparts.

Thread-Safe Collections
Although these collection classes are thread-safe, this simply means that they
won’t produce undefined results when used from multiple threads. However, you
still need to pay attention to locking and thread-safety concerns.

For example, using ConcurrentStack, you have no guarantee that the following
code would succeed:

if (!stack.IsEmpty)
{

stack.Pop();
}

Even in this example, you still need to lock the stack instance to make sure that
no other thread can access it between the IsEmpty check and the Pop operation,
as shown here:

lock(syncLock)
{

if (!stack.IsEmpty)
{

stack.Pop();
}

}

Watch
Out!

The concurrent collection classes are shown in Table 23.1.

TABLE 23.1 Concurrent Collections

Class Description

BlockingCollection<T> Provides blocking and bounding
capabilities for thread-safe collections
that implement
IProducerConsumerCollection<T>

ConcurrentBag<T> Represents a thread-safe, unordered
collection of objects

ConcurrentDictionary<TKey, TValue> Represents a thread-safe collection of key-
value pairs

ConcurrentQueue<T> Represents a thread-safe first in-first out
(FIFO) collection

ConcurrentStack<T> Represents a thread-safe last in-first out
(LIFO) collection

ptg

470 HOUR 23: Understanding Threads, Concurrency, and Parallelism

Task Parallelism
You can think of a task as representing an asynchronous operation. You can easily

create and run implicit tasks using the Parallel.Invoke method, which enables you

to run any number of arbitrary statements concurrently, as shown here:

Parallel.Invoke(() => DoSomeWork(), () => DoSomeOtherWork());

Parallel.Invoke accepts an array of Action delegates, each representing a single

task to perform. The simplest way to create the delegates is to use lambda expressions.

As Listing 23.3 shows, you can also explicitly create and run a task by instantiating

the Task or Task<TResult> class and passing the delegate that encapsulates the code

the task executes.

LISTING 23.3 Explicitly Creating New Tasks
class Program
{

public static void Main(string[] args)
{

var task = new Task(() => Console.WriteLine(“Hello from a task.”));
task.Start();
Console.WriteLine(“Hello from the calling thread.”);

}
}

Figure 23.1 shows the output of the simple console application from Listing 23.3.

If the task creation and scheduling do not need to be separated, the preferred method

is to use the Task.Factory.StartNew method, as shown in Listing 23.4.

TABLE 23.1 Concurrent Collections

Class Description

OrderablePartioner<TSource> Represents a particular manner of splitting
an orderable data source into multiple
partitions

Partioner Provides common partitioning strategies
for arrays, list, and enumerables

Partitioner<TSource> Represents a particular manner of splitting
a data source into multiple partitions

FIGURE 23.1
Output of creat-
ing tasks

Continued

ptg

Understanding the Task Parallel Library 471

LISTING 23.4 Creating Tasks Using Task.Factory
Task<double>[] tasks = new Task<double>[2]
{

Task.Factory.StartNew(() => Method1()),
Task.Factory.StartNew(() => Method2())

};

Waiting on Tasks
To wait for a task to complete, the Task class provides a Wait, WaitAll, and WaitAny

method. The Wait method enables you to wait for a single task to complete, whereas

the WaitAll and WaitAny methods enable you to wait for any or all of an array of

tasks to complete.

The most common reasons for waiting on a task to complete are as follows:

. The main thread depends on the result of the work performed by the task.

. You need to handle exceptions that might be thrown from the task. Any excep-

tions raised by a task will be thrown by a Wait method, even if that method

was called after the task completed.

Listing 23.5 shows a simple example of waiting for an array of tasks to complete

using the Task.WaitAll method.

LISTING 23.5 Waiting on Tasks
Task[] tasks = new Task[2]
{

Task.Factory.StartNew(() => Method1()),
Task.Factory.StartNew(() => Method2())

};

Task.WaitAll(tasks);

Handling Exceptions
When a task raises exceptions, they are wrapped in an AggregateException and

propagated back to the thread that joins with the task. The calling code (that is, the

code that waits on the task or attempts to access the task’s Result property) would

handle the exceptions by using the Wait, WaitAll, WaitAny method or the Result

property. Listing 23.6 shows one way in which you might handle exceptions in a task.

LISTING 23.6 Handling Exceptions in a Task
var task1 = Task.Factory.StartNew(() =>
{

throw new InvalidOperationException();
});

ptg

472 HOUR 23: Understanding Threads, Concurrency, and Parallelism

try
{

task1.Wait();
}
catch (AggregateException ae)
{

foreach (var e in ae.InnerExceptions)
{

if (e is InvalidOperationException)
{

Console.WriteLine(e.Message);
}
else
{

throw;
}

}
}

If you don’t use the TPL for your multithreaded code, you should handle exceptions

in your worker threads. In most cases, exceptions occurring within a worker thread

that are not handled can cause the application to terminate. However, if a

ThreadAbortException or an AppDomainUnloadedException is unhandled in a

worker thread, only that thread terminates.

AggregateException and InnerExceptions
It is recommended that you catch an AggregateException and enumerate the
InnerExceptions property to examine all the original exceptions thrown. Not
doing so is equivalent to catching the base Exception type in nonparallel code.

By the
Way

Working with Parallel LINQ (PLINQ)
Parallel LINQ is a parallel implementation of LINQ to Objects with additional opera-

tors for parallel operations. By utilizing the Task Parallel Library, PLINQ queries can

scale in the degree of concurrency and can increase the speed of LINQ to Objects

queries by more efficiently using the available processor cores.

The System.Linq.ParallelEnumerable class provides almost all the functionality

for PLINQ. Table 23.2 shows the common PLINQ operators.

TABLE 23.2 Common ParallelEnumerable Operators

Operator Description

AsParallel() The entry point for PLINQ, indicating that the rest of the
query should be parallelized if possible

AsSequential() Specifies that the rest of the query should be run
sequentially (nonparallel)

ptg

Potential Pitfalls 473

To create a PLINQ query, you invoke the AsParallel() extension method on the

data source, as shown in Listing 23.7.

LISTING 23.7 A Simple PLINQ Query
var source = Enumerable.Range(1, 10000);
var evenNums = from num in source.AsParallel()

where Compute(num) > 0
select num;

Potential Pitfalls
At this point, you might be tempted to take full advantage of the TPL and parallelize

all your for loops, foreach loops, and LINQ to Objects queries; but don’t. Paralleliz-

ing query and loop execution introduces complexity that can lead to problems that

aren’t common (or even possible) in sequential code. As a result, you want to carefully

evaluate each loop and query to ensure that it is a good candidate for parallelization.

When deciding whether to use parallelization, you should keep the following guide-

lines in mind:

. Don’t assume parallel is always faster. It is recommended that you always

measure actual performance results before deciding to use PLINQ. A basic rule

of thumb is that queries having few source elements and fast user delegates are

unlikely to speed up.

. Don’t over-parallelizing the query by making too many data sources parallel.

This is most common in nested queries, where it is typically best to parallelize

only the outer data source.

. Don’t make calls to nonthread-safe methods and limit calls to thread-safe

methods. Calling non-thread-safe methods can lead to data corruption, which

TABLE 23.2 Common ParallelEnumerable Operators

Operator Description

AsOrdered() Specifies that PLINQ should preserve the ordering of the
source sequence for the rest of the query or until the
order is changed

ForAll() Invokes the specified action for each element in the
source sequence in parallel

Aggregate() Applies an accumulator (aggregate) function over a
sequence in parallel

ptg

474 HOUR 23: Understanding Threads, Concurrency, and Parallelism

might or might not go undetected. Calling many thread-safe methods (includ-

ing static thread-safe methods) can lead to a significant slowdown in the

query. (This includes calls to Console.WriteLine. The examples use this

method for demonstration purposes, but you shouldn’t use it in your own

PLINQ queries.)

. Do use Parallel.ForAll when possible instead of foreach or

Parallel.ForEach, which must merge the query results back into one thread

to be accessed serially by the enumerator.

. Don’t assume that iterations of Parallel.ForAll, Parallel.ForEach, and

Parallel.For will actually execute in parallel. As a result, you shouldn’t write

code that depends on parallel execution of iterations for correctness.

. Don’t write to shared memory locations, such as static variables or class fields.

Although this is common in sequential code, doing so from multiple threads

can lead to race conditions. You can help prevent this by using lock state-

ments, but the cost of synchronization can actually hurt performance.

. Don’t execute parallel loops on the UI thread because doing so can make your

application’s user interface nonresponsive. If the operation is complex enough

to require parallelization, it should offload that operation to be run on a back-

ground thread using either the BackgroundWorker component or by running

the loop inside a task instance (commonly started by calling

Task.Factory.StartNew).

Summary
Creating applications that efficiently scale to multiple processors can be quite chal-

lenging, can add additional complexities to your application logic, and can introduce

bugs, in the form of deadlocks or other race conditions, which can be difficult to find.

The Task Parallel Library in the.NET Framework provides an easy way to handle the

low-level details of thread management and provides a high level of abstraction for

working with tasks and queries in a parallel manner. The managed thread pool used

by the .NET Framework for many tasks (such as asynchronous I/O completion, timer

callbacks, System.Net socket connections, and asynchronous delegate calls) uses the

task and threading capabilities provided by the Task Parallel Library.

ptg

475Q&A

Q&A
Q. What is the benefit of the Task Parallel Library?

A. The Task Parallel Library simplifies the process of adding parallelism and con-

currency to your application, enabling you to be more productive by focusing

on your application logic rather than requiring you to understand the com-

plexities of scaling processes to most efficiently use multiple processors.

Q. What is an application domain?

A. An application domain is a lightweight managed subprocess.

Q. What are some common reasons for using multiple threads?

A. Some common reasons for using multiple threads follow:

a. Communicate to a web server or database

b. Perform long-running or complex operations

c. Allow the user interface to remain responsive while performing other

tasks in the background

Q. What is concurrency?

A. Concurrency is simultaneously performing multiple tasks that can potentially

interact with each other.

Q. What are locks?

A. Exclusive locks protect a resource by giving control to one thread at a time.

Non-exclusive locks enable access to a limited number of threads at a time.

Q. What is the benefit of using one of the collections provided in the
System.Collection.Concurrent namespace?

A. The collections provided in the System.Collection.Concurrent namespace

are specially designed thread-safe collection classes and should be used in

favor of their generic counterparts when writing multithreaded applications.

Q. What is Parallel LINQ (PLINQ)?

A. PLINQ is a parallel implementation of LINQ to Objects with additional opera-

tors for parallel operations.

ptg

476 HOUR 23: Understanding Threads, Concurrency, and Parallelism

Workshop

Quiz
1. What is a deadlock?

2. What are the three categories of synchronization primitives provided by the

.NET Framework?

3. How is the lock statement in C# expanded by the compiler?

4. Why should you not lock on a string literal?

5. What are the three primary methods provided by the Parallel class?

Answers
1. A deadlock refers to the condition when two or more threads are waiting for

each other to release a resource, or more than two threads are waiting for a

resource in a circular chain.

2. The synchronization primitives provided by the .NET Framework can be loosely

divided into the following categories:

A. Locks

B. Signals

C. Interlocked operations

3. The lock statement is expanded by the compiler to the following code:

bool needsExit = false;
try
{

System.Threading.Monitor.Enter(syncLock, ref needsExit);
this.counter = value;

}
finally
{

if (needsExit)
{

System.Threading.Monitor.Exit(syncLock);
}

}

ptg

477Workshop

4. Locking on string literals is problematic due to the string interning performed

by the CLR. Because only a single instance is shared across the assembly, plac-

ing a lock on a string literal causes any location where that string is accessed

to also be locked.

5. The Parallel class provides the For and ForEach methods for executing par-

allel loops and the Invoke method for executing tasks in parallel.

Exercise
There are no exercises for this chapter.

ptg

This page intentionally left blank

ptg

Understanding the Entity Framework 479

HOUR 24

Next Steps: Silverlight,
PowerShell, and Entity
Framework

What You’ll Learn in This Hour:
. Understanding the Entity Framework
. Introducing PowerShell
. Silverlight

The .NET Framework continues to evolve and more technologies are being written or

revised to make use of the capabilities it provides. These innovations include

Microsoft Silverlight, PowerShell, and the Entity Framework, to name just a few. In

this hour, you learn about some of these technologies and how they might be used in

your own applications.

Understanding the Entity Framework
Earlier you learned about ADO.NET and how LINQ to SQL can be used to develop

applications that interact with databases. The Entity Framework extends the basic

capabilities of ADO.NET to support developing data-centric applications.

Traditionally, when developing data-centric applications, not only must you model

the database tables, relations, and business logic, but also work directly with the data-

base to store and retrieve data. Although LINQ to SQL helps solve some of these prob-

lems, the Entity Framework enables you to work at a higher level of abstraction by

creating a domain model that defines the entities and relationship being modeled.

ptg

480 HOUR 24: Next Steps: Silverlight, PowerShell, and Entity Framework

The Entity Framework then translates this domain model, commonly called a

conceptual model, to data source-specific commands. This approach enables you to

develop your application without being concerned about dependencies on a particu-

lar data source.

When the domain model has been defined, the Entity Framework then maps rela-

tional tables, columns, and foreign key constraints to classes in the logical model.

This approach enables a great deal of flexibility to define and optimize the logical

model. The classes generated are partial classes, enabling you to extend them easily.

To access or modify data through the Entity Framework, you execute queries against

the conceptual model to return objects through one of the following methods:

. LINQ to Entities provides LINQ support for querying directly against the con-

ceptual model. Both the Entity Framework and LINQ can then use the objects

returned from a LINQ to Entities query.

. Entity SQL, which is a data source-independent version of SQL that works

directly with the conceptual model.

. Query builder methods, which enable you to create Entity SQL queries using a

similar syntax to the LINQ extension methods.

To make creating entity models easier, Visual Studio 2010 includes the Entity Data

Model Designer, shown in Figure 24.1. The model shown in Figure 24.1 was created

from the AdventureWorksLT database you used in Hour 15, “Working with Databases.”

FIGURE 24.1
Entity data
model designer

ptg

Understanding the Entity Framework 481

By the
WayEntityClient Data Provider

Because the Entity Framework is built on top of the traditional ADO.NET services,
it includes the EntityClient data provider that is responsible for translating the
entity queries into their data source-specific versions and translating entity data
into their object equivalents.

It is also possible to use the EntityClient provider like any other ADO.NET data
provider, enabling you to execute Entity SQL queries that return the data using a
data reader.

This designer enables you to visually create and modify the entities, mappings, asso-

ciations, and inheritance of your models.

It is divided into the following components:

. The visual design surface

. The mapping details window, which enables you to view and edit mappings

. The model browser window, which displays the conceptual and logical models

in a tree view

The easiest way to get started using the Entity Framework is to add a new ADO.NET

Entity Data Model item to your project. This starts the Entity Data Model Wizard,

which enables you to generate an entity data model from an existing database or by

creating an empty data model.

When the data model has been created, you can then easily perform queries against

the data context using LINQ to Entities, as shown in Listing 24.1. This query selects

the first 10 records from the Products table and displays the product name. The Entity

Data Model Wizard created the AdventureWorksLT2008_DataEntites and Product

classes.

The results of running this query are shown in Figure 24.2.

FIGURE 24.2
Selecting the top
10 products

ptg

482 HOUR 24: Next Steps: Silverlight, PowerShell, and Entity Framework

LISTING 24.1 Querying Using LINQ to Entities
using (AdventureWorksLT2008_DataEntities context =

new AdventureWorksLT2008_DataEntities())
{

IQueryable<Product> productsQuery = (from product in context.Products
select product).Take(10);

Console.WriteLine(“Product Names:”);
foreach (var prod in productsQuery)
{

Console.WriteLine(prod.Name);
}

}

Introducing PowerShell
PowerShell is a command-line scripting technology that is built on the .NET Frame-

work. Although most commonly used by IT professionals, such as system administra-

tors, it is becoming more common for server applications (such as Microsoft

Exchange) to provide administrative capabilities through PowerShell in addition to

the traditional graphical interfaces.

A PowerShell command is called a cmdlet (pronounced command-let), which is sim-

ply a single function command-line tool that is built into the shell. You can think of

cmdlets as being equivalent to complete command line applications. Cmdlets can be

used individually but offer the most flexibility and functionality when they are com-

bined with other cmdlets.

A simple PowerShell script to show the first 10 processes running on the local com-

puter is shown in Figure 24.3.

This script makes use of two different cmdlets that are combined into a pipeline. The

get-process cmdlet returns all the running processes on the local computer. That

output is then passed as input to the select cmdlet, which returns the first 10 items.

FIGURE 24.3
Running a Power-
Shell script

ptg

Silverlight 483

Because PowerShell is built on the .NET Framework, it enables you to create new

cmdlets using C#. For example, Listing 24.2 shows a custom cmdlet that mimics the

built-in get-process cmdlet.

LISTING 24.2 Creating a Custom Cmdlet
[Cmdlet(VerbsCommon.Get, “Procs”, SupportsShouldProcess = true)]
public GetProcesCmdlet : PSCmdlet
{

protected override void ProcessRecord()
{

WriteObject(Systme.Diganostics.Process.GetProcesses(), true);
}

}

Silverlight
Although the style sheet and code-behind capabilities offered by ASP.NET enable you

to create complex web applications, they do not enable you to create applications

with the same richness as desktop applications or applications that can be run in an

offline mode.

Silverlight is a cross-platform, cross-browser, and cross-device technology giving you

the power and richness of a windows application with the ease and flexibility of dis-

tribution offered by web applications. Unlike traditional web-based applications, Sil-

verlight applications can work on either the web or the desktop without additional

code or runtime environments and can also be run “out of the browser,” enabling

them to be installed as if they were local applications.

Silverlight uses the same XAML-based rendering technologies as WPF and shares the

same visual design editor in Visual Studio. This enables you to leverage your desktop

application development skills to create web applications.

Silverlight also enables you to go beyond the browser, providing support for “toast”

notification windows, offline digital rights management (DRM), and many other fea-

tures. For applications that run in a trusted environment, Silverlight applications can

read and write files in certain user directory (such as Documents, Pictures, Music, and

Videos) and run other desktop applications.

Silverlight CLR
Although Silverlight runs on top of the .NET Framework, to support the capability
to run on multiple platforms and multiple browsers, it uses a customized version
of the common language runtime known as the Silverlight CLR.

Watch
Out!

ptg

484 HOUR 24: Next Steps: Silverlight, PowerShell, and Entity Framework

Although many of the capabilities of the CLR are provided, certain things, such as
non-generic collections, the ASP.NET runtime, the Windows Forms classes, and
network synchronization APIs, are not provided.

Summary
Through the course of this book, you have learned the fundamentals of the C# pro-

gramming language. From those fundamentals, you learned advanced concepts

such as working with files, streams, and XML data, and learned how to query data-

bases. You then used those skills to create a Windows and web application. After

that, you were introduced to parallel programming with the Task Parallel Library,

how to interact with dynamic languages, and how to interoperate with other lan-

guages and technologies, such as COM and the Windows API.

Although you have reached the end of this book, your career as a C# developer is just

beginning. I encourage you to continue learning and expanding your knowledge just

as the .NET Framework and the C# programming language continue to evolve.

ptg

Symbols

+ (addition operator), 47

= (assignment operator), 47

/* */ (comments), 348-349

// (comments), 348

&& (conditional And operator), 50

|| (conditional OR operator), 50

- - (decrement operator), 48-49

/ (division operator), 48

== (equals operator), 50

\’ (escape sequence), 169

\” (escape sequence), 169

\\ (escape sequence), 169

^ (exclusive OR operator), 50

> (greater than operator), 50

(>=) (greater than or equals

operator), 50

++ (increment operator), 48

incrementing a value listing,

48

sample application, 49

=> (lambda operator), 280

< (less than operator), 50

(<=) (less than or equals

operator), 50

& (logical AND operator), 50

| (logical OR operator), 47

% (modulus operator), 48

* (multiplication operator), 48

! (not operator), 51

!= (not equals operator), 50

?? (null-coalescing operator), 54

. regular expression

metacharacter, 188

? regular expression

metacharacter, 188

$ regular expression

metacharacter, 188

* regular expression

metacharacter, 188

() regular expression

metacharacter, 188

[] regular expression

metacharacter, 188

[^] regular expression

metacharacter, 188

^ regular expression

metacharacter, 188

| regular expression

metacharacter, 188

+ regular expression

metacharacter, 188

; (semicolons), 19

- (subtraction operator), 48

/// (XML comments), 348

Index

ptg

A

\a escape sequence, 169

Abs method (BigInteger type), 46

absolute paths, 290

AbsoluteUri method (Uri class), 44

abstract classes, 104-105

interface combinations, 107

listing, 104-105

sample application, 105

abstractions, 65

access modifiers

rules, 68

supported, 69

accessibility

access modifiers

rules, 68

supported, 69

default, 68

defined, 68

explicit declaration, 69

accessing

attributes at runtime, 434

multiple attributes, 435

single attributes, 434-435

web applications, 408

AccessViolationException, 229

Add method

collection initializers, 218

Dictionary<TKey, TValue>

class, 209

HashSet<T> class, 212

SortedSet<T> class, 212

SortedDictionary<TKey,

TValue> class, 210

SortedList<TKey,

TValue>/class, 210

TimeSpan type, 42

XML elements, 324-325

AddAfterSelf method, 324

AddBeforeSelf method, 324

AddDays method, 42

AddFirst method, 324

AddHours method, 42

addition operator (+), 48

additive operators, 47

AddMinutes method, 42

AddMonths method, 42

AddressChangedEventArgs class,

140-141

AddYears method, 42

ADO.NET, 330

connection pooling, 332

data providers, 330

data source connections, 331

DataSet class, 330, 331

queries, 332

read-only database access,

331

required references, 331

sample application, 333

Aggregate() operator, 473

AND

conditional operator (&&), 50

logical operator (&), 50

animation (WPF), 369

anonymous methods (event

handlers), 136

anonymous types (LINQ queries),

270

Append method, 177

AppendAllLines method, 298

AppendAllText method, 298

AppendFormat method, 177

AppendText method

File class, 298

FileInfo class, 294

Application class, 366

application model (WPF),

366-367

browser-hosted applications,

367

standalone applications, 367

applications

ADO.NET, 333

arithmetic operators, 49

array indexing, 197-198

base class members,

overriding, 103

binary files, 302-303

break statements, 160-161

classes

abstract classes, 105

creating, 71

inheritance, 99

Collection<T> class, 206-207

collections, deriving, 208

constructor chaining, 100

continue statements,

161-162

custom dynamic types,

creating, 446-447

custom indexers, 201-203

data validation, 403

debugging, 351

breaking on exceptions,

351

compiler errors, 349

DataTips, 354-355

Exception Assistant,

351-352

expression side effects,

353-354

runtime errors, 349

user-provided divisors,

350

variable windows,

352-354

dictionaries, 211-212

Directory class, 300

DirectoryInfo class, 295-296

do statements, 155

dynamic types, 440-441

error messages, 441

486

\a escape sequence

ptg

output, 441

runtime exceptions, 441

enumerations, 116-117

events, publishing/raising,

140-141

exception handling, 235-239

console window, 235

Exception assistant, 237

Exception details dialog,

237

JIT Debugger dialog, 237

JIT Debugging support,

236

multiple catch handlers in

wrong order, 239

multiple exceptions, 238

runtime exception, 238

stack trace information,

236

Visual Studio with MSDN

editions, 236

Windows Vista or later

dialog, 235

expression lambdas, 282

File class, 300

FileInfo class, 295-296

flag enumerations, 118-119

foreach statements, 159

generic variant interfaces,

259-260

array contents, printing,

259

compiler errors, 259

results, 260

Hello world

class declaration, 29

default code, 28-29

directives, 28-29

namespace declaration,

29

running, 30

text, displaying, 29

if statements, 150

integer minimum values,

finding

with generics, 249-250

without generics, 247-248

integer stacks, implementing,

216

interfaces, 108

LINQ queries

filtering data, 272

grouping data, 274-275

ordering data, 274-275

selecting data, 270-271

LINQ to SQL, 337-340

Add Connection dialog,

338

Add Item dialog, 337

expanded data

connection, 339

O/R Designer, 337

O/R Designer displaying

table, 339

results, 340

Server Explorer, 338

List<T> class, 205-206

logical/relational operators,

51

managed, 8-9

methods, 78

named arguments, 81

nullable types, 55

operator overloading,

123-124

optional parameters, 81

polymorphism, 99

predefined types, 40-41

properties, 74

queues, 217

scope and declaration space

comparison, 68

sets, 214-215

standalone, 367

for statements, 157-158

strings

comparisons, 174

modifying, 175

substrings, creating, 172

switches, 152-153

text files, reading and writing,

305

tuples, 262

value type conversions, 58

web. See web applications

web-based photo viewer

application

ASPX editor, 413

CSS, 416-418

data binding, 418-420

default page, 415

HTML, 416

layout, creating, 414-416,

414-415

layout styling, 416-418

New Project dialog, 412

Properties window, 413

selected element outline,

413

Visual Studio, viewing,

412

while statements, 154

WPF, creating, 370

Collection Editor, 373-374

completed layout,

378-379

controls, adding, 375

directories, choosing, 377

document outline, 372

event handlers, 375-376

grid row/column

definitions, 374

grid rows/columns,

creating, 373

New Project dialog, 370

How can we make this index more useful? Email us at indexes@samspublishing.com

applications

487

ptg

Properties window, 372

routed events, 376

selected element outline,

372

ShowDialog extension

method, 375

sizing grid rows/columns,

374

structure, editing, 373

tooltips, displaying, 377

Visual Studio, viewing,

371

XAML bindings, debugging,

377-378

XAML designer, 371

XAML/Design tabs,

371-372

XAML written, 364

layout styling. See WPF,

layout styling

XML

documents, creating,

316, 319

modifications, 325

selecting, 321-322

architecture

DLR, 444

web applications, 408

ArgumentException, 229, 230

ArgumentNullException, 230

ArgumentOutOfRangeException,

230

arguments

checking, 231

named, 80

listing, 80

sample application, 81

optional parameters, 79

order, 80

positional, 80

validating, 230

arithmetic methods

DateTime type, 42

standard mathematical

operations, 48

arithmetic operators, 47-48

increment/decrement, 48

incrementing a value listing,

48

overflow, 241

checked/unchecked

blocks, 242

checked/unchecked

expressions, 242

sample application, 49

standard mathematical

operations, 48

Array class, 200

arrays, 196

Array class, 200

C# versus C, 196

five integer values, creating,

196

generic combinations,

257-258

indexing, 197-198

initializers, 198-200

listing, 198-199

multidimensional arrays,

199-200

single-dimensional arrays,

199

integers. See integers

jagged rectangular, 197

lists, compared, 203

multidimensional, 197

parameter, 75

size, 196

syntax, 196

AsOrdered() operator, 473

AsParallel() operator, 472

ASP.NET, 408-411

ASPX files, 409

CSS, 416-418

applying, 417-418

applying to elements, 417

child page links, 417

classes, 417

inline styles, compared,

418

master page links, 417

data binding, 418-420

embedded code blocks,

419

expressions, 418, 419

formatting strings, 419

text/navigation URL for

controls, 418-419

data validation

client-side validation,

420-421

server-side validation, 420

validation controls,

420-422

Validator example, 422

event handlers

Global.asax, 411

Page, 410

Hello world application,

409-410

code listing, 409

code-behind file, 409

output, 410

Page directive, 409

master pages, 414-415

MVC Framework, 408

web-based photo viewer

application, 411

ASPX editor, 413

default page, 415

HTML, 416

layout, creating, 414-416

layout styling, 416-418

488

applications

ptg

New Project dialog, 412

Properties window, 413

selected element outline,

413

Visual Studio, viewing,

412

ASPX files, 409

assembly identity attributes, 432

assembly manifest, 432

assembly manifest attributes, 433

AsSequential() operator, 472

assignment operators, 47-48

=, 47

compound, 48, 49

incrementing a value listing,

48

sample application, 49

atomization (XML namespaces),

319

Attribute method, 321

attributes, 428

applying, 428

applying multiple, 428

class, 417

Conditional, 431-432

CssClass, 417

custom, 433

applying, 434

creating, 433-434

retrieving at runtime,

434-435

#endif preprocessor symbol,

431-432

Flags, 118

global, 432-433

assembly identity, 432

assembly manifest,

432, 433

common, 433

informational, 433

#if preprocessor symbols,

431-432

Name, 376

names, 428

Obsolete, 430-431

parameters, 428

listing, 429

named, 429

positional, 429

runtime access, 434

multiple attributes, 435

single attributes, 434-435

targets

identifying, 430

listing of, 429

x:Class, 365

XML

adding, 324-325

changing values, 323

removing, 324

replacing data, 324

selecting, 321

values, changing, 323

Attributes method

FileInfo class, 294

XML attributes, selecting, 321

automatic memory management.

See garbage collection

automatic properties

declaring, 71

disadvantage, 72

automatic reset events, 466

AutoResetEvent class, 466

B

\b escape sequence, 169

base class members

hiding, 101

overriding, 101-103

sealing, 103

BCL (Base Class Libraries), 14, 120

BigInteger type, 45-46

listing, 46

methods, 46

binary files, reading and writing,

301-303

listing, 302

ReadAllBytes method, 306

sample application, 302-303

WriteAllBytes method, 306

BinarySearch method, 200

BlockingCollection<T> class, 469

bool type, 37, 38

Boolean values, 38

boxing operations, 56

break statements, 152, 160-161

listing, 160

sample application, 160-161

breaking on exceptions, 351

breaking the stack, 240

breakpoints, 355-357

disabling, 356

enabling, 356

reenabling, 357

setting, 356

Visual Studio MSDN edition

features, 356-357

browser-hosted applications, 367

buffered streams, 303-304

BufferedStream class, 303

button Click event, 133-134

byte type, 37

C

C#

creators, 344

evolution, xvi

inspirations, 18

language features, 18

How can we make this index more useful? Email us at indexes@samspublishing.com

C#

489

ptg

C++ templates, 249

calculated properties

creating, 73

declaring, 73

Call Stack window, 358-359

calling methods, 76

camel casing, 23

CancelEventArgs class, 138

CanRead method, 301

CanWrite method, 301

Capacity method

lists, 203

SortedDictionary<TKey,

TValue> class, 210

SortedList<TKey,

TValue>/class, 210

Capture class, 189

Cascading Style Sheet. See CSS

case-sensitivity

identifiers, 23

strings, 173

catch handlers, 232-233

declaring, 233

variables, 233

chaining

constructors, 83, 84, 100

LINQ queries, 283

ChangeExtension method, 290

char type, 37

characters

encoding, 316

escape sequences, 168-169

CIL (common intermediate

language), 9

class attribute, 417

class keyword, 65

class library (.NET Framework).

See Framework class library

classes

abstract, 104-105

interface combinations,

107

listing, 104-105

sample application, 105

accessibility

access modifiers, 68, 69

default, 68

defined, 68

explicit declaration, 69

AddressChangedEventArgs,

140-141

Application, 366

Array, 200

AutoResetEvent, 466

BufferedStream, 303

CancelEventArgs, 138

Collection<T>

methods/properties, 206

sample application,

206-207

virtual methods, 207

CollectionViewSource, 396

concurrent collection,

469-470

Console, 29

constants, 70

Contact

creating, 71

default constructors, 82

dispose pattern, 455

extension methods, 88

LINQ query data,

flattening, 277-278

LINQ query data, joining,

275-276

properties application, 74

creating, 71

CSS, 417

DataContext, 341-342

DataSet, 330

database tables, 331

populating, 334

DateTime, 88

declaration space

defined, 67

listing, 66

scope comparison

application, 68

statement blocks, 66

declaring, 29

defining, 64, 65

derived, 99-100

Dictionary<TKey, TValue>,

209

Directory

DirectoryInfo class,

compared, 298

listing, 297-298

methods, 297

sample application, 300

DirectoryInfo, 292-293

Directory class, compared,

298

listing, 293

methods, 293

sample application,

295-296

downcasting, 97

DynamicObject, 444

encapsulation, 64-65

EventArgs, 137

Exception, 228-229

ExpandObject, 444, 445

ExternalException, 229

fields

constant-like behavior,

creating, 70

default values, 69

defined, 69

sample application, 71

File, 297

listing, 299-300

methods, 298-299

sample application, 300

490

C++ templates

ptg

FileInfo, 292

listing, 295

methods, 294

sample application,

295-296

generic

creating, 254-255

inheritance, 256-257

interface implementation,

257

type parameter

constraints, 252

variant interfaces, 258

HashSet<T>, 212-213

inheritance, 92-103

class hierarchies,

designing, 96

derived classes, 94-95

designing, 103

implementation, 96

interfaces, 106

member hiding, 101

member overriding,

101-103

multiple, 94

sample application, 99

sealing members, 103

trust but verify philosophy,

98

instantiating, 81-82

Interlocked, 466

JournalEntry

LINQ query data,

flattening, 277-278

LINQ query data, joining,

275-276

LinkedList<T>, 204

List<T>, 205-206

ManualResetEvent, 466

ManualResetEventSlim, 466

methods

calling, 76

declaring, 74-75

defined, 74

extension, 87-88

as input, 76

overloading, 76-77

sample application, 78

signatures, 77

static, 75

parameters. See

parameters

Monitor, 465

nested, 85-86

object initializers, 88-89

Parallel, 468

ParallelEnumerable, 472

partial, 86

Path, 290-291

Program, 29

properties

automatic, 71, 72

calculated, 73

declaring, 71-72

defined, 71

operations, 73

read-only, 73

sample application, 74

set accessor, 72

write-only, 73

Queue<T>, 216-217

ReaderWriterLockSlim, 467

ReadOnlyCollection<T>,

208-209

regular expressions, 189

scope

declaration space

comparison application,

68

defined, 66

listing, 66

nesting and hiding, 66-67

statement blocks, 66

switches, 152

variables, 20

visibility, 66

SortedDictionary<TKey,

TValue>, 210-211

SortedList<TKey, TValue>,

210-211

SortedSet<T>, 212-213

SpinLock, 466

Stack<T>

methods, 215

sample application, 216

static, 86-87

Stream, 300-301

StreamReader, 304-305

StreamWriter, 304-305

String, 171, 175

StringBuilder, 177

Append/AppendFormat

methods, 177

capacity, 178

listing, 177

structures, compared,

119-120, 125-126

SystemException, 229

Task, 471

tuples, 261

upcasting, 97

Uri, 44-45

methods, 44

properties, 45

UriBuilder, 45

WPFInteropExtensions, 375

XAttribute, 314

XDocument class, 313

XElement, 314

navigation properties, 320

SetAttributeValue method,

315

How can we make this index more useful? Email us at indexes@samspublishing.com

classes

491

ptg

SetElementValue method,

315

values, retrieving, 316

XName, 317

XNamespace, 317-319

XNode, 319-320

clauses

group, 273-274

join, 276

orderby, 273

Clear method

Array class, 200

Dictionary<TKey, TValue>

class, 209

HashSet<T> class, 212

Queue<T> class, 216

SortedDictionary<TKey,

TValue> class, 210

SortedList<TKey, TValue>

class, 210

SortedSet<T> classes, 212

Stack<T> class, 215

ClearItems method, 207

CLI (common language

infrastructure), 14

Click events, 133-134

client-side validation, 420-421

Close method, 301

CLR (common language runtime),

8-9

common intermediate

language, 9

CTS (common type system),

9-10

memory management, 12-13

virtual execution system, 9-12

CLS (common language

specification), 11, 38-39

cmdlets, 482

custom, creating, 483

get-process, 482

select, 482

code

comments, 348

benefits, 349

delimited, 348-349

syntax, 348

writing, 349

XML, 348

debugging

breaking on exceptions,

351

compiler errors, 349

DataTips, 354-355

Exception Assistant,

351-352

expression side effects,

353-354

runtime errors, 349

user-provided divisors,

350

variable windows,

352-354

XAML bindings, 377-378

listings. See listings

maintainable, 64

unit tests, 349-350

code-behind, 365-366

coding errors, 231

Collection Editor dialog, 373-374

collection views, 395-396

current item pointers, 398-

399

default, 396

filtering data, 398

grouping, 397

sorting, 396-397

Collection<T> class

methods/properties, 206

sample application, 206-207

virtual methods, 207

collections, 203

binding to collections, 395

collection views, 395-396

current item pointers,

398-399

filtering data, 398

grouping data, 397

INotifyCollectionChanged

interface, 396

INotifyPropertyChanged

interface, 396

photo viewer application

example, 395

sorting data, 396-397

Collection<T> class, 206-207

methods/properties, 206

sample application,

206-207

virtual methods, 207

concurrent collection classes,

469-470

deriving, 208

dictionaries, 209-212

Dictionary<TKey, TValue>

class, 209

sample application,

211-212

sorting elements,

210-211

generic, 203

initializers, 217-218

Add method, 218

complex, 218-219

listing, 218

syntax, 218

interfaces, 218-220

specific collection

behaviors, 219

supporting

implementations,

219-220

lists

arrays, compared, 203

capacity, 203

LinkedList<T> class, 204

492

classes

ptg

List<T> class application,

205-206

List<T> class methods/

properties, 204

non-generic, 203

queues, 215

Queue<T> class, 216-217

sample application, 217

ReadOnlyCollection<T> class,

208-209

sets, 212

class methods, 213

classes, 212

sample application,

214-215

stacks, 215-216

integer, implementing, 216

Stack<T> class, 215

thread-safe, 469-470

CollectionViewSource class, 396

ColumnDefinitions property, 373

COM interoperability, 447

with dynamic types example,

448

Primary Interop Assemblies,

447

without dynamic types

example, 447-448

Combine method, 290

COMException, 230

command section (Visual Studio

Start page), 26

comments (code), 348

benefits, 349

delimited, 348-349

syntax, 348

writing, 349

XML, 348

common intermediate language

(CIL), 9

common language infrastructure

(CLI), 14

common language runtime.

See CLR

common language specification,

11, 38-39

common type system. See CTS

Compare method

string comparisons, 173

Uri class, 44

CompareOrdinal method, 173

CompareTo method

Guid type, 44

string comparisons, 173

CompareValidator control, 420

compiler errors, 349

complex collection initializers,

218-219

complex iterators, 222

component-oriented

programming, 18, 65

composite formatting (strings),

186-187

listings, 187

syntax, 186-187

compound assignment operator,

48

incrementing a value listing,

48

sample application, 49

concatenation (strings), 176

concurrency

deadlocks, 463

defined, 463

starvation, 463

concurrent collection classes,

469-470

ConcurrentBag<T> class, 469

ConcurrentDictionary<TKey,

TValue> class, 469

ConcurrentQueue<T> class, 469

ConcurrentStack<T> class, 469

Conditional attribute, 431-432

conditional operators, 47, 52

AND, 50

right-associative, 52

short-circuit evaluation, 52

syntax, 52

types, 52

connection pooling, 332

console applications

ADO.NET, 333

arithmetic operators, 49

array indexing, 197-198

base class members,

overriding, 103

class inheritance, 99

classes, creating, 71

custom dynamic types,

creating, 446-447

custom indexers, 201-203

dictionaries, 211-212

DirectoryInfo class, 295-296

dynamic types, 440-441

error messages, 441

output, 441

runtime exceptions, 441

enumerations, 116-117

exception handling, 235-239

console window, 235

Exception assistant, 237

Exception details dialog,

237

JIT Debugger dialog, 237

JIT Debugging support,

236

multiple catch handlers in

wrong order, 239

multiple exceptions, 238

runtime exception, 238

stack trace information,

236

How can we make this index more useful? Email us at indexes@samspublishing.com

console applications

493

ptg

Visual Studio with MSDN

editions, 236

Windows Vista or later

dialog, 235

FileInfo class, 295-296

generic variant interfaces,

259-260

array contents, printing,

259

compiler errors, 259

results, 260

Hello world

class declaration, 29

default code, 28-29

directives, 28-29

namespace declaration,

29

running, 30

text, displaying, 29

integer minimum values,

finding

with generics, 249-250

without generics, 247-248

integer stacks, implementing,

216

LINQ to SQL, 337-340

Add Connection dialog,

338

Add Item dialog, 337

expanded data

connection, 339

O/R Designer, 337

O/R Designer displaying

table, 339

results, 340

Server Explorer, 338

List<T> class, 205-206

logical/relational operators,

51

methods, 78

nullable types, 55

operator overloading,

123-124

polymorphism, 99

predefined types, 40-41

properties, 74

queues, 217

scope and declaration space

comparison, 68

sets, 214-215

substrings, 172

tuples, 262

value type conversions, 58

Console class, 29

console window, 29

constants

declaring, 21, 22

defined, 21, 70

magic numbers, 21-22

values, 70

variables, compared, 21

constraints

generic methods, 253

generic type parameters,

250-252

class listing, 252

listing of, 251

method listing, 252

multiple, 251

value equality testing,

251-252

constructors

chaining, 83-84, 100

default, 82

derived classes, 99-100

overloading, 82-83

specialized, 82-83

static, 85

structures, 124-125

Contact class

creating, 71

default constructors, 82

dispose pattern, 455

extension methods, 88

LINQ query data,

flattening, 277-278

joining, 275-276

properties application, 74

Contains method

HashSet<T> class, 212

Queue<T> class, 216

ReadOnlyCollection<T> class,

208-209

SortedSet<T> class, 212

Stack<T> class, 215

string comparisons, 173

ContainsKey method

Dictionary<TKey, TValue>

class, 209

SortedDictionary<TKey,

TValue> class, 210

SortedList<TKey, TValue>

class, 210

ContainsValue method

Dictionary<TKey, TValue>

class, 209

SortedDictionary<TKey,

TValue> class, 210

SortedList<TKey, TValue>

class, 210

contextual keywords, 24

continue statements, 161-162

listing, 161

sample application, 161-162

contravariance

generic interfaces, 258

interfaces, extending,

260-261

control flow statements

iteration statements, 153

do, 154-155

for, 155-158

foreach, 158-159

while, 153-154

494

console applications

ptg

jump statements, 159

break, 160-161

continue, 161-162

return, 162

selection statements, 148

if, 148-150

switches, 150-153

controls

adding to WPF applications,

375

validation, 420-422

ASPX page, 422

combining, 421

error messages,

summarizing, 421

listing of, 420-421

properties, 421

ControlToValidate property, 421

conversion operators, 122

conversions

boxing/unboxing operations,

56

dynamic, 442

value types to reference

types, 54

boxing/unboxing

operations, 56

explicit conversions, 57

implicit conversions, 56

sample application, 58

Convert method, 391, 393

ConvertBack method, 393

ConverterParameter property,

393

Copy method, 298

CopyTo method

FileInfo class, 294

Stream class, 301

corrupted state exceptions, 239

Count method

Dictionary<TKey, TValue>

class, 209

HashSet<T> class, 212

Queue<T> class, 216

ReadOnlyCollection<T> class,

208-209

SortedDictionary<TKey,

TValue> class, 210

SortedList<TKey, TValue>

class, 210

SortedSet<T> class, 212

Stack<T> class, 215

covariance, 258, 260, 261

Create method

DirectoryInfo class, 292

File class, 299

FileInfo class, 294

CreateDirectory method, 297

CreateNavigator method, 321

CreateSubdirectory method, 292

CreateText method

File class, 299

FileInfo class, 294

CSS (Cascading Style Sheet),

ASP.NET applications, 416-418

applying, 417-418

applying to elements, 417

child page links, 417

classes, 417

inline styles, compared, 418

master page links, 417

CssClass attribute, 417

CTS (common type system), 9-10

CLS (common language

specification), 11

type safety, 10

culture parameter, 393

current item pointers, 398-399

custom attributes, 433

applying, 434

creating, 433-434

retrieving at runtime, 434-435

custom cmdlets, creating, 483

custom dynamic types

creating, 445-446

functionality, 446

custom format strings, 183-186

DateTime instance listing,

183-186

specifiers, 183-186

custom indexers, creating,

201-203

custom validation rules, 401

CustomValidator control, 421

D

\d regular expression

metacharacter, 188

\D regular expression

metacharacter, 188

data binding (ASP.NET), 418-420

embedded code blocks, 419

expressions, 418-419

formatting strings, 419

text/navigation URL for

controls, 418-419

data binding (WPF), 369, 386

binding to collections, 395

collection views, 395-396

current item pointers,

398-399

filtering data, 398

grouping data, 397

INotifyCollectionChanged

interface, 396

INotifyPropertyChanged

interface, 396

photo viewer application

example, 395

sorting data, 396-397

components, 386

How can we make this index more useful? Email us at indexes@samspublishing.com

data binding (WPF)

495

ptg

creating, 387

data converters, 390

adding to XAML file, 391

creating, 390-391

culture-aware, 393

multivalue, 392-393

multivalue with Converter

parameter, 394

photo viewer application,

394

event handlers, 389

OneTime, 387

OneWay, 386

OneWayToSource, 387

photo viewer application,

389-390

source object, 388-389

source property, updating,

387

target objects, 386

target properties, 386

TwoWay, 387

validating data, 400-403

AddressBook application,

403

custom validation rules,

401

validation checks, adding,

401

visual feedback, 402

XAML application code, 389

data converters (WPF data

binding), 390

adding to XAML file, 391

creating, 390-391

culture-aware, 393

multivalue, 392-393

multivalue with Converter

parameter, 394

photo viewer application, 394

data hiding, 64-65

data parallelism, 468

ForEach method example,

468

guidelines, 473-474

loop execution, controlling,

468

Parallel class, 468

thread-safe collections,

469-470

Data property, 229

data providers

ADO.NET, 330

EntityClient, 481

data templates, 399-400

associating with controls, 400

defining, 399-400

data validation, 400-403

AddressBook application, 403

custom validation rules, 401

validation checks, adding,

401

visual feedback, 402

web applications, 420

client-side, 420-421

server-side, 420

validation controls,

420-422

Validator example, 422

databases

ADO.NET, 330

connection pooling, 332

data providers, 330

data source connections,

331

DataSet class, 330-331

queries, 332

required references, 331

sample application, 333

LINQ to ADO.NET, 333

LINQ to DataSet, 333-335

LINQ to SQL. See LINQ to

SQL

prerequisites, 329-330

read-only access, 331

records

adding, 340

deleting, 341

updating, 340-341

DataContext class, 341-342

DataSet class, 330

database tables, 331

populating, 334

DataTips, 354-355

floating, 354

pinning, 354

sharing, 355

date and time values

DateTime type, 39-42

arithmetic methods, 42

properties, 41-42

TimeSpan type, 42-43

Date property, 41

dateOfBirth field, 71

DateOfBirth property, 74

DateTime class, 88

DateTime type, 39-42

arithmetic methods, 42

properties, 41-42

Day property, 41

DayOfWeek property, 41

Days enumeration

as flag enumeration, 118-119

implementing, 116-117

Days method, 42

deadlocks, 463

debugging code

errors

compiler, 349

runtime, 349

user-provided divisors,

350

Visual Studio debugger, 350

breaking on exceptions,

351

496

data binding (WPF)

ptg

breakpoints, 355-357

Call Stack window,

358-359

compiler errors, 349

DataTips, 354-355

Exception Assistant,

351-352

expression side effects,

353-354

Immediate window, 355

MSDN edition features,

352

next statements, 359

runtime errors, 349

stepping through code,

357-358

variable windows,

352-354

visualizers, 350-360

XAML bindings, 377-378

decimal type, 37, 38

declaration space

defined, 67

listing, 66

scope comparison

application, 68

statement blocks, 66

declaration statements, 22

declaring

accessibility, 69

arrays, 196

calculated properties, 73

catch handlers, 233

classes, 29

constants, 21-22

default constructors, 82

implicit/explicit conversions,

122

indexers, 201

inheritance, 106

methods, 74-75

namespaces, 29

optional parameters, 78

properties, 71-72

protected regions, 232

structures, 120

variables, 20, 22

XML namespaces, 317

decrement operator (- -), 48, 49

defaults

accessibility, 68

collection views, 396

constructors, 82

values53, 69

deferred execution, 283

delegates, 132

ElapsedEventHandler,

132-133

event publishing, 136

predefined, 283

replacing with lambdas, 280

Delete method

Directory class, 297

DirectoryInfo class, 292

File class, 299

FileInfo class, 294

deleting

database records, 341

string characters, 175

XML elements/attributes,

324

delimited comments, 348-349

Dequeue method, 216

derived classes, constructors,

99-100

designing classes

hierarchies, 96

inheritance, 103

dictionaries, 209-212

Dictionary<TKey, TValue>

class, 209

resource, 380

sample application, 211-212

sorting elements, 210-211

Dictionary<TKey, TValue> class,

209

directives

Hello world application, 28-29

paths

Path class, 290-291

relative, 290

directories

Directory class

DirectoryInfo class,

compared, 298

listing, 297-298

methods, 297

sample application, 300

DirectoryInfo class, 292-293

Directory class, compared,

298

listing, 293

methods, 293

sample application,

295-296

paths, 290-291

special, 291-292

finding, 291

SpecialFolder values,

291-292

Directory class

DirectoryInfo class,

compared, 298

listing, 297-298

methods, 297

sample application, 300

Directory method, 294

DirectoryInfo class, 292-293

Directory class, compared,

298

listing, 293

methods, 293

sample application, 295-296

How can we make this index more useful? Email us at indexes@samspublishing.com

DirectoryInfo class

497

ptg

DirectoryName method, 294

Display property, 421

disposable types, 454

Dispose method

disposable types, 454

dispose pattern, 456

dispose pattern

benefits, 456

Contact class example, 455

Dispose method, 456

implementing, 455

division operator (/), 48

DivRem method, 46

DLR (dynamic language runtime),

8, 16, 444

architecture, 444

custom dynamic types, 446

creating, 445-447

functionality, 446

dynamic operations, defining,

445

ExpandObject class, 445

IDynamicMetaObjectProvider,

444

interoperability support, 444

language binders, 444

do statements, 154-155

listing, 155

sample application, 155

syntax, 154

DockPanel, creating, 375

document support (WPF), 369

DOM (Document Object Model),

XML, 312-313

creating XML, 314-315

XPath queries, 321

double type, 37, 38

downcasting, 97

dynamic keyword, 440

dynamic language runtime.

See DLR

dynamic languages, 9

dynamic types, 39, 439

COM interoperability, 447

conversions, 442

custom

application, 446-447

creating, 445-446

functionality, 446

dynamic keyword, 439

methods, invoking, 449

overload resolution, 442-443

runtime, 441-442

sample application, 440-441

variables, 440

DynamicObject class, 444

E

Ecma International, 14

ElapsedEventHandler delegate,

132-133

embedded ASP.NET code

blocks, 419

Empty method, 44

empty strings, 170-171

testing, 170

whitespace characters,

170-171

encapsulation, 64-65

#endif preprocessor symbol,

431-432

EndsWith method, 173

Enqueue method, 216

Enter method, 465

EnterReaderLock method, 467

EnterWriterLock method, 467

Entity Data Model Designer,

480-481

Entity Data Model Wizard, 481

Entity Framework, 479-480

conceptual model queries,

480

data models, creating, 481

Entity Data Model Designer,

480-481

Entity Data Model Wizard,

481

EntityClient data provider, 481

querying, 481-482

EntityClient data provider, 481

enum keyword, 114

EnumerateDirectories method

Directory class, 297

DirectoryInfo class, 292

EnumerateFiles method

Directory class, 297

DirectoryInfo class, 292

EnumerateFileSystemEntries

method, 297

EnumerateFileSystemInfos

method, 293

enumerations, 114, 220

Days

as flag enumeration,

118-119

implementing, 116-117

defining, 114

flag, 117-119

Flags attribute, 118

listing, 117-118

sample application,

118-119

values, combining, 118

listing, 114-115

multiple named values, 115

operations, 116

sample application, 116-117

underlying types, 116

values

commas, 114

numeric, 115-116

498

DirectoryName method

ptg

equality operators, 47

equals operator (==), 47

ErrorMessage property, 421

errors

compiler, 349

runtime, 349

EscapeUriString method, 44

EventArgs class, 137

events

delegates, 132

handlers,

anonymous methods, 136

attaching to events,

132-133

Global.asax, 411

Page, 410

raising events, 139

WPF applications, adding,

375-376

WPF data binding, 389

multithreading, 140

post-events, 138

pre-events, 138

PropertyChanged, 388

publishing, 132, 136-138

custom data, sending,

137

custom EventArgs derived

class, 137

delegate types, 136

field-like syntax, 137

property-like syntax, 138

sample application,

140-141

raising, 139-141

event handlers, 139

method names, 140

property-like syntax, 140

sample application,

140-141

routed, 376

subscribing, 132

anonymous methods, 136

button Click event

example, 133-134

event handlers, attaching,

132-133

method group inference,

133

user interface control

published, 135-136

synchronization, 466

unsubscribing, 136

evolution

C#, xvi

.NET Framework, 344

Exception Assistant, 351-352

Exception class, 228-229

exceptions, 228

arguments

checking, 231

validation, 230

ArgumentException, 230

ArgumentNullException, 230

ArgumentOutOfRange

Exception, 230

breaking on exceptions, 351

corrupted state, 239

Exception class, 228-229

ExternalException class, 229

handling, 232

catch handler variables,

233

catch handlers, 232-233

catch handlers, declaring,

233

cleanup activities, 234

corrupted state

exceptions, 239

critical system exceptions,

avoiding, 239

finally handler, 232

multiple exceptions,

catching, 233-234

nonspecific exceptions,

avoiding, 239

protected regions,

232-233

sample application,

235-239

swallowing exceptions,

234

InvalidOperationException,

230

rethrowing, 239-240

breaking the stack, 240

listings, 240

RuntimeWrappedException,

228

standard, 229-230

swallowing, 234

SystemException class, 229

tasks, handling, 471-472

throwing, 231

no handlers, 231

timing, 231

unexpected error conditions,

232

wrapping, 240-241

ExceptWith method, 212

exclusive locks, 464

exclusive OR operator (^), 50

ExecutionEngineException, 230

Exists method

Array class, 200

Directory class, 297

DirectoryInfo class, 293

File class, 299

FileInfo class, 294

expanded names (XML

namespaces), 319

ExpandObject class, 444-445

explicit conversions, 57, 122

How can we make this index more useful? Email us at indexes@samspublishing.com

explicit conversions

499

ptg

explicit interface implementation,

109

explicit keyword, 122

Exposure Time converter, 391

expressions

ASP.NET data binding, 418-419

defined, 19

lambdas, 281-282

examples, 281

method calls, 282

sample application, 282

regular, 187

classes, 189

compatibility, 187

metacharacters, 188

string validation, 189-190

substring matches, 190

side effects, 353-354

for statements, 156

extending

generic variant interfaces,

260-261

interfaces, 106

Extensible Application Markup

Language. See XAML

Extensible Markup Language. See

XML

extension methods, 87-88, 294

ExternalException class, 229

extracting substrings, 171

F

\f escape sequence, 169

fall through (classes), 152

fields, 20

constant-like behavior,

creating, 70

dateOfBirth field, 71

default values, 53, 69

defined, 69

firstName, 70

lastName, 70

listing, 20-21

public, 126

read-only, 21

sample application, 71

File class, 297

listing, 299-300

methods, 298-299

sample application, 300

FileInfo class, 292

listing, 295

methods, 294

sample application, 295-296

files, 290

ASPX, 409

binary, reading and writing,

301-303, 306

listing, 302

ReadAllBytes method, 306

sample application, 302-

303

WriteAllBytes method, 306

File class, 297

listing, 299-300

methods, 298-299

sample application, 300

FileInfo class, 292

listing, 295

methods, 294

sample application, 295-

296

paths, 290-291

absolute, 290

Path class, 290-291

relative, 290

text, reading and writing,

304-307

filtering

collection views, 398

LINQ queries, 271-272

finalizers, 456

implementing, 456-457

rules, 457

writing, 458

finally handlers, 232

Find method, 200

FindAll method, 200

finding special directories, 291

FirstAttribute property, 320

firstName field, 70

FirstName property, 74

FirstNode property, 319-320

flag enumerations, 117-119

Flags attribute, 118

listing, 117-118

sample application, 118-119

values, combining, 118

Flags attribute, 118

FlagsAttribute attribute, 428

flattening LINQ query data,

277-278

Contact class and

JournalEntry class listing,

277-278

enumerable collections, 278

listing, 278

float type, 37

Flush method, 301

for statements, 155-158

expressions, 156

infinite loops, 156

initializer, 156

sample application, 157-158

syntax, 156

while statements, compared,

156-157

ForAll() operator, 473

ForEach method

Array class, 200

data parallelism, 468

500

explicit interface implementation

ptg

foreach statements, 158-159

iteration variables, 158

listing, 158

sample application, 159

syntax, 158

formatting

composite formatting,

186-187

types, 178

Fragment property, 45

Framework class library, 8, 13

available types, 13

Base Class Libraries, 14

functional areas, 14

namespaces, 14-16

common, 15-16

type names, 15

FromDays method, 42

FromHours method, 42

FromMilliseconds method, 43

FromMinutes method, 43

FromSeconds method, 43

FullName method

declaring, 73

DirectoryInfo class, 293

FileInfo class, 294

G

garbage collection, 452

dispose pattern, 455

benefits, 456

Contact class example,

455

Dispose method, 456

implementing, 455

finalizers, 456

implementing, 456-457

rules, 457

writing, 458

IDisposable interface, 453

.NET Framework, 12-13

using statement, 454

compiler generated code,

454-455

syntax, 454

generics

array combinations, 257-258

C++ templates, compared,

249

classes

creating, 254-255

inheritance, 256-257

interface implementation,

257

collections, 203

integer minimum values,

finding

with generics application,

249-250

with generics code listing,

248-249

objects, 246-247

without generics

application, 247-248

without generics code

listing, 246

interfaces, 255-256, 258-261

Java generics, compared, 249

methods, 253

calling, 253-254

constraints, 253

nongeneric classes, 253

printing array items

example, 257-258

type inference, 254

type parameter hiding,

253

type parameters, 254

structures, 255

type parameters, 250

constraints, 250-252

default values, 252

multiple, 250

type safety, 247

value equality, 251-252

get accessors (indexers), 201

GetAttributes method, 299

GetCurrentDirectory method, 297

GetCustomAttribute method,

434-435

GetDirectoryName method, 290

GetDirectoryRoot method, 297

GetEnumerator method, 220

GetExtension method, 290

GetFileName method, 290

GetFileNameWithoutExtension

method, 290

GetFolderPath method, 291-292

GetLogicalDrives method, 297

GetParent method, 297

GetPathRoot method, 290

get-process cmdlet, 482

GetRandomFileName method,

290

GetTempFileName method, 291

GetTempPath method, 291

global attributes, 432-433

assembly identity, 432

assembly manifest, 432-433

common, 433

informational, 433

Global.asax event handlers, 411

globally unique identifiers

(GUIDs), 43-44

goto statements, 159

graphics (WPF), 369

greater than operator (>), 50

greater than or equals operator

(>=), 50

How can we make this index more useful? Email us at indexes@samspublishing.com

greater than or equals operator

501

ptg

GreatestCommonDivisor method,

46

Group class, 189

group clause (LINQ queries),

273-274

group joins (LINQ queries),

276-277

grouping

collection views, 397

LINQ query data, 273

listings, 273-274

sample application,

274-275

GUIDs (globally unique

identifiers), 43-44

H

handlers

events

anonymous methods, 136

attaching to events,

132-133

Global.asax, 411

Page, 410

raising events, 139

routed events, 376

WPF applications, adding,

375-376

WPF data binding, 389

exceptions, 232

catch handler variable,

233

catch handlers, 232-233

catch handlers, declaring,

233

cleanup activities, 234

corrupted state

exceptions, 239

critical system exceptions,

avoiding, 239

finally handler, 232

multiple exceptions,

catching, 233-234

nonspecific exceptions,

avoiding, 239

protected regions,

232-233

sample application,

235-239

swallowing exceptions,

234

tasks, 471-472

HashSet<T> class, 212-213

heap memory, 452

Hello world application

ASP.NET, 409-410

code listing, 409

code-behind file, 409

output, 410

Page directive, 409

class declaration, 29

default code, 28-29

directives, 28-29

namespace declaration, 29

running, 30

text, displaying, 29

HelpLink property, 229

hiding

base class members, 101

scopes, 66-67

Host property, 45

Hour property, 41

Hours method, 43

HTTP (Hypertext Transfer

Protocol), 408

I

I (logical OR operator), 50

ICollection<T> interface, 219

IComparable<T> interface, 248

IComparer<T> interface, 219

identifiers

case-sensitivity, 23

keywords

common, 23-24

contextual, 24

names, 23

rules, 21

IDictionary<TKey, TValue>

interface, 219

IDisposable interface, 453

IDynamicMetaObjectProvider

interface, 444

IEmergencyVehicle interface, 108

IEnumerable<T> interface, 219

IEnumerator<T> interface, 220

IEqualityComparer<T> interface,

220

#if preprocessor symbol, 431-432

if statements, 148-150

cascading, 149

mismatched else problem,

149

nesting, 148

sample application, 150

syntax, 148

IIS (Internet Information

Services), 410

IList<T> interface, 219

Immediate window (Visual Studio

debugger), 355

implementation inheritance, 96

implicit conversions

conversion operators, 122

dynamic, 442

predefined types, 56

502

GreatestCommonDivisor method

ptg

implicit keyword, 122

IMultiValueConverter interface,

392

increment operator (++), 48

incrementing a value listing,

48

sample application, 49

indexers, 200

arrays, 197-198

custom, creating, 201-203

declaring, 201

get/set accessors, 201

modifiers, 201

properties, compared, 201

signatures, 201

IndexOf method

ReadOnlyCollection<T> class,

208-209

substrings, 172

IndexOutOfRangeException, 229

infinite loops, 156

informational attributes, 433

inheritance

classes, 92-103

class hierarchies,

designing, 96

derived classes, 94-95

designing, 103

generic, 256-257

member hiding, 101

member overriding,

101-103

multiple, 94

sample application, 99

sealing members, 103

trust but verify philosophy,

98

collections, 218-219

implementation, 96

interfaces, 106, 108

initializers

arrays, 198-200

listing, 198-199

multidimensional arrays,

199-200

single-dimensional arrays,

199

collections, 217-218

Add method, 218

listing, 218

syntax, 218

structures, 125

InnerException property, 229

INotifyCollectionChanged

interface, 396

INotifyPropertyChanged interface,

388, 396

InsertItem method, 207

InsertOnSubmit method, 340

installing visualizers, 360

instance variables, 20

instantiating classes, 81-82

int type, 37

integers

arithmetic operations,

overflow, 241

checked/unchecked

blocks, 242

checked/unchecked

expressions, 242

BigInteger type, 45-46

dividing, 48

incrementing/decrementing,

48

minimum values, finding

with generics application,

249-250

with generics code listing,

248-249

objects, 246-247

without generics

application, 247-248

without generics code

listing, 246

stacks, implementing, 216

interfaces, 105-109

abstract class combinations,

107

collections, 218-220

specific collection

behaviors, 219

supporting

implementations,

219-220

contracts, compared, 105

declaring, 106

explicit implementation, 109

extending, 106

generic, 255-257

generic variant, 258-261

class implementation, 258

contravariance, 258

covariance, 258

extending, 260-261

listing of, 258-259

sample application,

259-260

IComparable<T>, 248

IDisposable, 453

IDynamicMetaObjectProvider,

444

IMultiValueConverter, 392

inheritance, 106, 108

INotifyCollectionChanged, 396

INotifyPropertyChanged, 388

IValueConverter, 391

sample application, 108

Interlocked class, 466

interlocked operations, 466

internal accessibility, 69

How can we make this index more useful? Email us at indexes@samspublishing.com

internal accessibility

503

ptg

Internet Information Services

(IIS), 410

interoperability

COM, 447

with dynamic types

example, 448

Primary Interop

Assemblies, 447

without dynamic types

example, 447-448

reflection, 448-449

invoking methods

dynamically, 449

invoking methods in C#,

448

invoking methods

reflectively, 448

IronPython dynamic

objects, 449

IntersectWith method, 212

InvalidOperationException, 229,

230

Invoke method, 470

invoking methods

C#, 448

dynamically, 449

reflectively, 448

IronPython dynamic objects, 449

ISet<T> interface, 219

IsEven method, 46

IsFile method, 44

IsNamespaceDeclaration

property, 317

IsNullOrEmpty method, 170

IsNullOrWhiteSpace method,

170-171

IsOne method, 46

IsProperSubsetOf method, 213

IsProperSupersetOf method, 213

IsReadOnly method, 294

IsSubsetOf method, 213

IsSupersetOf method, 213

IsZero method, 46

iteration statements, 153

do, 154-155

listing, 155

sample application, 155

syntax, 154

for, 155-158

expressions, 156

infinite loops, 156

initializer, 156

sample application,

157-158

syntax, 156

while statements,

compared, 156-157

foreach, 158-159

iteration variables, 158

listing, 158

sample application, 159

syntax, 158

while, 153-154

listing, 154

sample application, 154

for statements, compared,

156-157

syntax, 153

iteration variables, 158

iterators, 220

complex, 222

foreach statement listings,

220

iterators, 215

listing, 221-222

multiple iterations over same

source, 221

ordered sequence of values,

221

IValueConverter interface, 391

J

jagged rectangular arrays, 197

Java generics, 249

JIT (Just-in-Time) compiler, 12

JIT Debugger dialog, 237

join clause (LINQ query data), 276

Join method, 176-177

joining

LINQ query data, 275-277

Contact class and

JournalEntry class

listing, 275-276

equals operator, 277

group joins, 276-277

join clause, 276

ordering, 276-277

strings, 176-177

JournalEntry class (LINQ query

data)

flattening, 277-278

joining, 275-276

jump statements, 159

break, 160-161

listing, 160

sample application, 160

continue, 161-162

listing, 161

sample application,

161-162

return, 162

Just-in-Time compilations, 12

K

Keys method, 209

keywords

class, 65

common, 23-24

504

Internet Information Services (IIS)

ptg

contextual, 24

dynamic, 440

enum, 114

explicit, 122

implicit, 122

this, 83

throw, 231, 239

try, 232

L

labels

control styles, 380-381

switch-sections, 151

lambdas, 280

delegate replacement, 280

expression, 281-282

examples, 281

method calls, 282

sample application, 282

operators, 47, 280

statement, 282-283

variables, capturing, 281

language binders (DLR), 444

Language Integrated Query. See

LINQ

LastAttribute property, 320

Last-In, First-Out (LIFO), 452

LastIndexOf method, 172

lastName field, 70

LastName property, 74

LastNode property, 319-320

layouts

ASP.NET applications,

414-416

master pages, 414-415

styling, 416-418

photo viewer application

Collection Editor, 373-374

completed, 378-379

controls, adding, 375

directories, choosing, 377

event handlers, 375-376

grid row/column

definitions, 374

grid rows/columns,

creating, 373

ShowDialog extension

method, 375

sizing grid rows/columns,

374

structure, editing, 373

tooltips, displaying, 377

WPF, 367-368

default layout controls,

367-368

DockPanel example, 368

WPF styling, 379

label control styles,

380-381

resource dictionaries, 380

style/data template

resources, 380

lazy evaluation, 283

Length property

FileInfo class, 294

StringBuilder class, 178

strings, 171

less than operator (<), 50

less than or equals operator (<=),

50

lifetime

objects, 453

variables, 20

LIFO (Last-In, First Out), 452

LinkedList<T> class, 204

LINQ (Language Integrated

Query), 268

LINQ queries

chaining, 283

Contact object collection

listing, 268

data selection, 269-271

anonymous types, 270

concatenating data,

269-270

sample application,

270-271

deferred execution, 283

filtering data, 271-272

flattening data, 277-278

Contact class and

JournalEntry class

listing, 277-278

enumerable collections,

278

listing, 278

grouping data, 273-274

listings, 273-274

sample application,

274-275

joining data, 275-277

Contact class and

JournalEntry class

listing, 275-276

equals operator, 277

group joins, 276-277

join clause, 276

order, 276-277

lambdas, 280

delegate replacement,

280

expression, 281-282

lambda operator, 280

statement, 282-283

variables, capturing, 281

lazy evaluation, 283

ordering data, 273

listings, 273

sample application,

274-275

predefined delegates, 283

query comprehension syntax,

269

How can we make this index more useful? Email us at indexes@samspublishing.com

LINQ queries

505

ptg

SQL syntax, compared, 269

standard query operator

methods, 279-280

syntax, 268

XElement class, 320-321

LINQ to ADO.NET, 333

LINQ to DataSet, 333-335

queries, 334

required references, 335

LINQ to SQL, 335-342

adding database records,

340

DataContext class,

341-342

deleting database records,

341

object model, creating,

335-336

projection, 340

queries, 336

required references, 336

sample application,

337-340

updating database

records, 340-341

LINQ to DataSet, 333-335

queries, 334

required references, 335

LINQ to SQL, 335-342

database records

adding, 340

deleting, 341

updating, 340-341

DataContext class, 341-342

object model, creating,

335-336

projection, 340

queries, 336

required references, 336

sample application, 337-340

Add Connection dialog,

338

Add Item dialog, 337

expanded data

connection, 339

O/R Designer, 337, 339

results, 340

Server Explorer, 338

LINQ to XML, 313

character encoding, 316

creating XML, 314

modification application, 325

namespaces

atomization, 319

creating XML, 317-318

declaring, 317

expanded names, 319

prefixes, 318

sample application, 319

selecting XML, 321-322

SetAttributeValue method,

315

SetElementValue method,

315

source XML, transforming,

323

XAttribute class, 314

XDocument class, 313

XElement class, 314, 316

XML documents, creating,

316

XName class, 317

XNamespace class, 317-319

XPath queries, 321

Lippert, Eric, xv-xvi

List<T> class application,

205-206

listings

abstract class, 104-105

Add method, 325

ADO.NET query, 332

array initializers, 198-199

ASP.NET

binding expressions,

adding, 419

child page stylesheet

links, 417

CSS styles, applying,

417-418

Hello world application,

409

master page stylesheet

links, 417

Page_Load method, 418

validation controls, 422

attributes

Conditional, 431-432

FlagsAttribute attribute,

428

multiple attributes, 428

Obsolete, 430-431

parameters, 429

runtime access, 435

target identification, 430

BigInteger type, 46

binary files, reading and

writing, 302, 306

binding to collections, 395

break statements, 160

buffered streams, 303-304

calculated properties,

declaring, 73

classes versus structures,

125-126

code-behind class, 365-366

collection initializers, 218

collection views

current item pointers, 399

filtering, 398

grouping, 397

sorting, 397

COM interoperability

with dynamic types, 448

without dynamic types,

447-448

complex collection initializers,

218-219

506

LINQ queries

ptg

complex iterators, 222

constructor chaining, 84

continue statements, 161

creating XML, 314-315

custom attributes

applying, 434

creating, 433-434

custom cmdlets, creating,

483

custom dynamic types

creating, 445-446

functionality, 446

data bindings, creating, 387

data parallelism, ForEach

method, 468

data templates

associating with controls,

400

defining, 400

database records

adding, 340

deleting, 341

updating, 340-341

DataContext class, 342

default constructors,

declaring, 82

derived class constructors,

99-100

Directory class, 297-298

DirectoryInfo class, 293

dispose pattern, 455

do statements, 155

DockPanel, creating, 375

dynamic types

implicit conversions, 442

overload resolution, 443

empty strings

testing, 170

whitespace characters,

170-171

Entity Framework, querying,

481-482

enumerations, 114-116

event publishing

custom EventArgs derived

class, 137

field-like syntax, 137

property-like syntax, 138

events

raising, 139

subscribing, 132-133

exception handling

catch handlers, declaring,

233

multiple exceptions,

catching, 233-234

ExpandObject class, 445

Exposure Time converter, 391

fields, 20-21

File class, 299-300

FileInfo class, 295

finalizers, implementing,

456-457

flag enumerations, 117-118

foreach statements, 158

foreach statement iterator,

220

generic class inheritance, 256

open constructed classes,

257

open constructed classes

with constraints, 257

generic methods

calling, 253-254

type inference, 254

type parameter hiding,

253

generic type parameter

constraints

classes, 252

methods, 252

generic variant interfaces

covariant/contravariant,

extending, 260, 261

extending, 260

grid row/column definitions,

374

IDisposable interface, 453

if statements

cascading, 149

nesting, 148

implementation inheritance,

96

incrementing a value, 48

integer arithmetic operations

checked/unchecked

blocks, 242

checked/unchecked

expressions, 242

integer minimum values,

finding

with generics, 248-249

objects, 246-247

without generics code

listing, 246

invoking methods

C#, 448

dynamically, 449

reflectively, 448

iterators, 221-222

label control styles, 380-381

lambdas

expression, 281

statement, 282-283

LINQ queries

against XElement class,

320-321

Contact object collection,

268

data selection, 269-270

enumerable collections,

278

filtering data, 272

How can we make this index more useful? Email us at indexes@samspublishing.com

listings

507

ptg

flattening data, 277-278

group joins, 277

grouping data, 273-274

joining data, 275-276

ordering data, 273

standard query operator

methods, 280

LINQ to DataSet query, 334

LINQ to SQL query, 336

lock statement, 464-465

methods

declaring, 74-75

overloading, 77

multiple interface inheritance,

108

multivalue converters

adding to XAML, 393

Converter parameter, 394

size example, 392

named arguments, 80

null-coalescing operator, 54

object initializers, 88-89

optional parameters, 79

overloading constructors, 83

photo viewer application

layout, 378-379

PLINQ query, 473

printing array items with

generic method, 257-258

read-only fields, 21

Remove method, 324

ReplaceWith method, 324

reshaped XML, returning,

322-323

resource dictionaries, 380

rethrowing exceptions, 240

scope and declaration space,

66

SetValue method, 323

source XML, transforming,

323

strings

composite formatting, 187

concatenation, 176

custom format strings,

183-186

joining and splitting,

176-177

literals, 169

standard format, 181

StringBuilder class, 177

ToString method,

overriding, 182

validation, 190

substrings, creating, 171-172

switches, 151-152

tasks

creating, 470-471

exception handling,

471-472

waiting to complete, 471

text files, reading and writing,

304-305, 307

ToString method, overriding,

178-179

trust but verify philosophy, 98

UriBuilder class, 45

using statement, 454

validating data

custom validation rules,

401

validation checks, adding,

401

visual feedback, 402

web-based photo viewer

application, 416

while statements, 154

WPF

application event

handlers, 375-376

data binding, 389

wrapping exceptions, 241

XAML, 365

XML, creating

DOM, 312

LINQ to XML, 314

namespace prefixes, 318

namespaces, 317-318

XML tree node navigation,

320

lists

arrays, compared, 203

capacity, 203

LinkedList<T> class, 204

List<T> class

application, 205-206

methods/properties, 204

literals

strings

character escape

sequences, 168-169

listing, 169

verbatim, 168-169

values, 21-22

local variables, 20

LocalPath method, 44

Locals window, 352-353

lock statement, 464

Enter/TryEnter methods, 465

listing, 464-465

lock expressions to avoid,

464

Monitor class, 465

locks, 463-466

exclusive, 464

lock statement, 464

Enter/TryEnter methods,

465

expressions to avoid, 464

listing, 464-465

Monitor class, 465

SpinLock class, 466

Wait method, 465

508

listings

ptg

logical operators, 50-51

AND (&), 47

listing of, 51

OR (|), 47

rules, 51

sample application, 51

XOR, 47

long type, 37

loops

infinite, 156

statements. See iteration

statements

M

magic numbers, 21-22

Main function, 29

maintainable code, 64

MakeRelativeUri method, 44

managed applications, 8-9

managed code, 8, 17

managed threads, 462

managing memory. See memory

management

manipulating strings, 171

manual reset events, 466

ManualResetEvent class, 466

ManualResetEventSlim class, 466

markup, 364-365

master pages (ASP.NET), 414-415

Match class, 189

MatchCollection class, 189

Max method

BigInteger type, 46

HashSet<T> class, 212

SortedSet<T> class, 212

memory management

automatic, 12-13

dispose pattern, 455

benefits, 456

Contact class example,

455

Dispose method, 456

implementing, 455

finalizers, 456

implementing, 456-457

rules, 457

writing, 458

garbage collection, 453

heap, 452

IDisposable interface, 453

stack, 452

using statement, 454

compiler generated code,

454-455

syntax, 454

Message property, 228

method group inference, 133

methods

Add

collection initializers, 218

XML elements, 324-325

AddAfterSelf, 324

AddBeforeSelf, 324

AddFirst, 324

anonymous, 136

Append, 177

AppendFormat, 177

arithmetic, 42

Array class, 200

Attribute, 321

Attributes, 321

BigInteger type, 46

calling, 76

Collection<T> class, 206-207

Compare, 173

CompareOrdinal, 173

CompareTo, 173

Contains, 173

Convert, 391, 393

ConvertBack, 393

declaring, 74-75

defined, 74

Dictionary<TKey, TValue>

class, 209

Directory class, 297

DirectoryInfo class, 293

Dispose

disposable types, 454

dispose pattern, 456

EndsWith, 173

Enter, 465

EnterReaderLock, 467

EnterWriterLock, 467

event raiser, 140

extension, 87-88

File class, 298-299

FileInfo class, 294

finalizers, 456

implementing, 456-457

rules, 457

writing, 458

ForEach

Array class, 200

data parallelism, 468

generic, 253

calling, 253-254

constraints, 253

nongeneric classes, 253

printing array items

example, 257-258

type inference, 254

type parameters, 254

type parameters,

constraints, 252

type parameters, hiding,

253

GetCustomAttribute, 434-435

GetEnumerator, 220

How can we make this index more useful? Email us at indexes@samspublishing.com

methods

509

ptg

GetFolderPath, 291-292

Guid type, 40-44

HashSet<T> class, 213

IndexOf, 172

as input, 76

InsertOnSubmit, 340

Invoke, 470

invoking

C#, 448

dynamically, 449

reflectively, 448

IsNullOrEmpty, 170

IsNullOrWhiteSpace, 170-171

Join, 176-177

LastIndexOf, 172

List<T> class, 204

onPropertyChanged, 388

overloading, 76-77

example listing, 77

return types, 77

signatures, 77

PadLeft, 175

PadRight, 175

Page_Load, 418

parameters, 75-76

output, 76

reference, 76

value, 75

optional. See optional

parameters

Path class, 290-291

Queue<T> class, 216-217

ReadOnlyCollection<T> class,

208-209

Remove

string characters, 175

XML elements/attributes,

324

RemoveAttributes, 324

RemoveNodes, 324

Replace, 175

ReplaceAll, 324

ReplaceAttributes, 324

ReplaceNodes, 324

ReplaceWith, 316-324

sample application, 78

Search, 78-79

SetAttributeValue, 315

SetElementValue, 315

SetValue, 323

ShowDialog, 375

signatures, 77

SortedDictionary<TKey,

TValue> class, 210-211

SortedList<TKey, TValue>

class, 210-211

SortedSet<T> class, 213

Stack<T> class, 215

standard query operator,

279-280

StartNew, 471

StartsWith, 173

static, 75

Stream class, 301

string comparisons, 173-174

structures, 120

TimeSpan type, 43

ToLowerInvariant, 174

ToString, 170

overriding, 178-179, 182

type formatting, 178-179

ToUpperInvariant, 174

Trim, 175

TrimEnd, 175

TrimStart, 175

TryEnter, 465

Uri class, 44

VerifyEmailAddress

calling, 76

declaring, 74-75

Wait, 465

Task class, 471

thread signals, 466

WaitAll, 471

WaitAny, 471

XPath namespace, 321. See

also properties

Milliseconds method, 43

Min method

BigInteger type, 46

HashSet<T> class, 212

SortedSet<T> class, 212

MinusOne method, 46

Minute property, 41

Minutes method, 43

mismatched else problem, 149

modifying

indexers, 201

strings, 174-175

XML, 323

adding elements, 324-325

changing data, 323

removing

elements/attributes,

324

replacing data, 324

sample application, 325

modulus operator (%), 48

Monitor class, 465

Month property, 41

Move method

Directory class, 297

File class, 299

MoveTo method

DirectoryInfo class, 293

FileInfo class, 294

multidimensional arrays, 197

multiple exceptions, catching,

233-234

multiple inheritance, 94, 108

multiple threads, 462

multiplication operator (*), 48

multiplicative operators, 47

multithreading events, 140

510

methods

ptg

multivalue converters, 392-393

adding to XAML, 393

Converter parameter, 394

size example, 392

mutable strings

appending data, 177

characters, replacing, 178

data, adding/deleting, 178

StringBuilder class, 177

capacity, 178

listing, 177

mutex (thread synchronization),

467

N

\n escape sequence, 169

{n} regular expression

metacharacter, 188

{n, } regular expression

metacharacter, 188

Name attribute, 376

Name method

DirectoryInfo class, 293

FileInfo class, 294

?<name> regular expression

metacharacter, 188

?‘name’ regular expression

metacharacter, 188

named arguments, 80

listing, 80

sample application, 81

named parameters, 429

names

attributes, 428

expanded, 319

identifiers, 23

XML, 317

namespaces

declaring, 29

Framework class library, 14-16

common, 15-16

type names, 15

System, 15

System.Collections.Generic, 15

System.Data, 15

System.Diagnostics, 15

System.Globalization, 15

System.Linq, 16

System.Net, 16

System.ServiceModel, 16

System.Text, 16

System.Web, 16

System.Windows, 16

System.Windows.Controls, 16

System.Windows.Forms, 16

System.Xml, 16

XML, 317

atomization, 319

creating XML, 317-318

declaring, 317

expanded names, 319

prefixes, 318

sample application, 319

XPath, 321

navigating XML tree nodes

LINQ queries against

XElement class, 320-321

properties

XElement, 320

XNode, 319-320

nesting

classes, 85-86

if statements, 148

scopes, 66-67

.NET Framework

class library, 8, 13

available types, 13

Base Class Libraries, 14

functional areas, 14

namespaces, 14-16

CLR (common language

runtime)

common intermediate

language, 9

CTS (common type

system), 9-10

memory management,

12-13

virtual execution system,

9-12

CLS (common language

specification), 11, 38-39

components, 8

CTS (common type system),

9-10

CLS (common language

specification), 11

type safety, 10

dynamic language runtime.

See DLR

evolution, 344

functions, 484

JIT (Just-in-Time) compiler, 12

LINQ (Language Integrated

Query), 268

managed applications, 8-9

managed code/unmanaged

code, 8

parallel computing platform,

8, 16-17

Silverlight version, 203

New Project dialog box, 27-28

NewGuid method, 44

next statements, 359

NextAttribute property, 320

NextNode property, 319-320

nodes (XML tree, navigating)

LINQ queries against

XElement class, 320-321

How can we make this index more useful? Email us at indexes@samspublishing.com

nodes (XML tree, navigating)

511

ptg

properties

XElement, 320

XNode, 319-320

non-generic collections, 203

not equals operator (!=), 50

not operator (!), 51

Now property, 41

{n,m} regular expression

metacharacter, 188

null types, 53

nullable types

defined, 54

null-coalescing operators, 54

sample application, 55

syntax, 54

values, 54

null-coalescing operator (??), 54

null-coalescing operators, 47

NullReferenceException, 229

?‘number’ regular expression

metacharacter, 188

?<number> regular expression

metacharacter, 188

O

\o escape sequence, 169

object initializers, 88-89

object type, 38-39

object-oriented programming, 18

benefits, 64

encapsulation, 64-65

polymorphism, 95

object lifetime, 453

Obsolete attribute, 430-431

OnApplicationStartup event

handler, 389

One method, 46

OneTime data binding, 387

OneWay data binding, 386

OneWayToSource data binding,

387

onPropertyChanged method, 388

Open method, 294

OpenRead method

File class, 299, 301

FileInfo class, 294

OpenText method

File class, 299

FileInfo class, 294

OpenWrite method

File class, 299, 301

FileInfo class, 294

operators

additive, 47

arithmetic, 47-48

increment/decrement, 48

incrementing a value

listing, 48

sample application, 49

standard mathematical

operations, 48

assignment, 47-48

=, 47

compound, 48

incrementing a value

listing, 48

sample application, 49

conditional, 47, 52

right-associative, 52

short-circuit evaluation, 52

syntax, 52

types, 52

conditional

AND (&&), 50

OR (||), 50

conversion, 122

defined, 47

enumerations, 116

equality, 47

exclusive OR operator (^), 50

increment/decrement, 48

incrementing a value listing,

48

integer arithmetic operations,

overflow, 241-242

lambda, 47, 280

logical, 50-51

AND (&), 50

listing of, 51

OR (|), 47

rules, 51

sample application, 51

XOR, 47

multiplicative, 47

not (!), 51

null-coalescing, 47

overloading, 120-122

language support, 121

listing of, 121

sample application,

123-124

symmetrical groups,

121-122

PLINQ, 473

precedence, 47

primary, 47

relational, 47, 49, 51

shift, 47

type testing, 47

unary, 47

optional parameters, 78-79, 81

arguments, 79

declaring, 78

disadvantage, 79

listing, 79

required, compared, 79

unmanaged programming

interfaces, 79

OR

conditional operator (||), 50

exclusive operator (^), 50

logical operator (|), 47

512

nodes (XML tree, navigating)

ptg

OrderablePartioner<TSource>

class, 470

orderby clause, 273

ordering

arguments, 80

LINQ joins, 276-277

LINQ query data, 273

listings, 273

sample application,

274-275

OutOfMemoryException, 230

output parameters, 76

overflowing integer arithmetic

operations, 241

checked/unchecked blocks,

242

checked/unchecked

expressions, 242

Overlaps method, 213

overloading

constructors, 82-83

dynamic types, 442-443

methods, 76-77

example listing, 77

return types, 77

signatures, 77

operators, 120-122

language support, 121

listing of, 121

sample application,

123-124

symmetrical groups,

121-122

overriding

base class members,

101-103

ToString method, 178-179,

182

P

padding strings, 175

PadLeft method, 175

PadRight method, 175

Page event handlers, 410

Page_Load method, 418

Parallel class, 468

parallel computing platform (.NET

Framework), 8, 16-17

Parallel LINQ. See PLINQ

ParallelEnumerable class, 472

parallelism. See data parallelism

data, 468

ForEach method example,

468

guidelines, 473-474

loop execution, controlling,

468

Parallel class, 468

thread-safe collections,

469-470

tasks, 469-472

exception handling,

471-472

guidelines, 473-474

Invoke method, 470

task creation, 470-471

waiting on tasks, 471

parameters, 75-76

arguments

order, 80

positional, 80

named. See named

arguments

arrays, 75

attributes, 428

listing, 429

named, 429

positional, 429

culture, 393

generic type, 250

constraints, 250-252

default values, 252

multiple, 250

optional, 78-79, 81

arguments, 79

declaring, 78

disadvantage, 79

listing, 79

required, compared, 79

unmanaged programming

interfaces, 79

output, 76

reference, 76

required, 79

value, 75

Parent method

DirectoryInfo class, 293

XNode class, 319-320

Parse method, 44

partial classes, 86

Partitioner class, 470

Partitioner<TSource> class, 470

Pascal casing, 23

Password property, 45

Path class, 290-291

Path property, 45

paths, 290-291

absolute, 290

Path class, 290-291

relative, 290

Peek method

Queue<T> class, 217

Stack<T> class, 215

photo viewer application

data binding, adding, 389-390

data converters, 394

document outline, 372

label control styles, 380-381

layout

Collection Editor, 373-374

completed, 378-379

How can we make this index more useful? Email us at indexes@samspublishing.com

photo viewer application

513

ptg

controls, adding, 375

directories, choosing, 377

event handlers, 375-376

grid row/column

definitions, 374

grid rows/columns,

creating, 373

ShowDialog extension

method, 375

sizing grid rows/columns,

374

structure, editing, 373

tooltips, displaying, 377

New Project dialog, 370

Properties window, 372

resource dictionaries, 380

selected element outline, 372

Visual Studio, viewing, 371

web-based, 411

ASPX editor, 413

CSS, 416-418

data binding, 418-420

default page, 415

HTML, 416

layout, creating, 414-416

layout styling, 416-418

New Project dialog, 412

Properties window, 413

selected element outline,

413

Visual Studio, viewing,

412

XAML designer, 371-372

PhotoSizeConverter, 393

PIAs (Primary Interop

Assemblies), 447

PLINQ (Parallel LINQ), 472

defined, 472

operators, 473

queries, creating, 473

pointer types, 36

polymorphism, 95, 99

Pop method, 215

Port property, 45

positional arguments, 80

positional parameters, 429

post-events, 138

PowerShell, 482

cmdlets, 482

custom, creating, 483

get-process, 482

select, 482

running processes script, 482

precedence (operators), 47

predefined delegates, 283

predefined types, 37-38

bool, 37

byte, 37

char, 37

CLS-compliance, 38-39

decimal, 37

double, 37

float, 37

implicit conversions, 56

int, 37

long, 37

object, 38-39

sample applications, 40-41

sbyte, 37

short, 37

string, 38

uint, 37

ulong, 38

preemptive multitasking, 462

pre-events, 138

PreviousAttribute property, 320

PreviousNode property, 319-320

Primary Interop Assemblies

(PIAs), 447

primary operators, 47

private accessibility, 69

Program class, 29

projects, 26

creating, 27-28

New Project commands,

27

New Project dialog box,

27-28

saving, 30

viewing, 26

properties

automatic

declaring, 71

disadvantage, 72

calculated

creating, 73

declaring, 73

Capacity, 203

Collection<T> class, 206

ColumnDefinitions, 373

ConverterParameter, 393

DateOfBirth, 74

DateTime type, 41-42

declaring, 71-72

defined, 71

Exception class, 228-229

FirstAttribute, 320

FirstName, 74

FirstNode, 319-320

FullName,

indexers, compared, 201

IsNamespaceDeclaration,

317

LastAttribute, 320

LastName, 74

LastNode, 319-320

Length, 171, 178

List<T> class, 204

NextAttribute, 320

NextNode, 319-320

operations, 73

Parent, 319-320

PreviousAttribute, 320

514

photo viewer application

ptg

PreviousNode, 319-320

read-only, 73

Relations, 331

sample application, 74

set accessor, 72

structures, 126

Tables, 331

TimeSpan type, 43

UpdateSourceTrigger

ValidationRules collection,

402

WPF data binding, 387

Uri class, 45

UriBuilder class, 45

ValidatesOnDataErrors, 401

ValidatesOnExceptions, 401

validation controls, 421

ValidationRules, 401

write-only, 73. See also

methods

PropertyChanged event, 388

protected accessibility, 69

protected regions (exception

handling)

declaring, 232

patterns, 233

public accessibility, 69

public field structures, 126

publishing events, 132, 136-138

custom data, sending, 137

custom EventArgs derived

class, 137

delegate types, 136

field-like syntax, 137

property-like syntax, 138

sample application, 140-141

Push method, 215

Q

queries

ADO.NET, 332

Entity Framework, 481-482

Entity Framework conceptual

model, 480

LINQ to DataSet, 334

LINQ to SQL, 336

PLINQ, 473

XPath, 321

queries (LINQ)

chaining, 283

Contact object collection

listing, 268

data selection, 269-271

anonymous types, 270

concatenating data,

269-270

sample application,

270-271

deferred execution, 283

filtering data, 271-272

flattening data, 277-278

Contact class and

JournalEntry class

listing, 277-278

enumerable collections,

278

listing, 278

grouping data, 273-274

listings, 273-274

sample, 274-275

joining data, 275-277

Contact class and

JournalEntry class

listing, 275-276

equals operator, 277

group joins, 276-277

join clause, 276

order, 276-277

lambdas, 280

delegate replacement,

280

expression, 281-282

lambda operator, 280

statement, 282-283

variables, capturing, 281

lazy evaluation, 283

ordering data, 273

listings, 273

sample application,

274-275

predefined delegates, 283

query comprehension syntax,

269

SQL syntax, compared, 269

standard query operator

methods, 279-280

syntax, 268

XElement class, 320-321

XML

LINQ queries, 320-321

reshaped XML, returning,

322-323

XPath queries, 321

Queue<T> class, 216-217

queues, 215

Queue<T> class, 216-217

sample application, 217

R

\r escape sequence, 169

raising events, 139-141

event handlers, 139

method names, 140

property-like syntax, 140

sample application, 140-141

RangeValidator control, 420

How can we make this index more useful? Email us at indexes@samspublishing.com

RangeValidator control

515

ptg

Read method

binary files, 301

Stream class, 301

StreamReader class, 304-305

ReadAllBytes method

binary files, 306

File class, 299

ReadAllLines method

File class, 299

text files, 306

ReadAllText method

File class, 299

text files, 306

ReaderWriterLockSlim class, 467

reading

binary files, 301-303

listing, 302

ReadAllBytes method, 306

sample application,

302-303

buffered streams, 303-304

read-only database access,

331

text files, 306-307

ReadLines method

File class, 299

text files, 307

read-only fields, 21

read-only properties, 73

ReadOnlyCollection<T> class,

208-209

Recent Projects list (Visual Studio

Start page), 26

records (databases)

adding, 340

deleting, 341

updating, 340-341

reference parameters, 76

reference types, 19, 36

categories, 36

value type conversions, 54

boxing/unboxing

operations, 56

explicit conversions, 57

implicit conversions, 56

sample application, 58

value types, compared, 19

reflection interoperability,

448-449

invoking methods

C#, 448

dynamically, 449

reflectively, 448

IronPython dynamic objects,

449

Refresh method

DirectoryInfo class, 293

FileInfo class, 294

Regex class, 189

regular expressions, 187

classes, 189

compatibility, 187

metacharacters, 188

string validation, 189-190

substring matches, 190

RegularExpressionValidator

control, 420

relational operators, 47, 49, 51

Relations property, 331

relative paths, 290

Remainder method, 46

Remove method

Dictionary<TKey, TValue>

class, 209

HashSet<T>/SortedSet<T>

classes, 213

SortedDictionary<TKey,

TValue> class, 210

SortedList<TKey, TValue>

class, 210

string characters, 175

XML elements/attributes,

324

RemoveAttributes method, 324

RemoveItem method, 207

RemoveNodes method, 324

RemoveWhere method, 213

Replace method

File class, 299

FileInfo class, 294

string characters, 175

ReplaceAll method, 324

ReplaceAttributes method, 324

ReplaceNodes method, 324

ReplaceWith method, 324

required parameters, 79

RequiredFieldValidator control,

420

reshaped XML, returning,

322-323

Resize method, 200

resource cleanup

dispose pattern

benefits, 456

Contact class example,

455

Dispose method, 456

implementing, 455

finalizers, 456

implementing, 456-457

rules, 457

writing, 458

resource dictionaries, 380

rethrowing exceptions, 239-240

breaking the stack, 240

listing, 240

return statements, 162

return types, 77

Reverse method, 213

Root method, 293

516

Read method

ptg

routed events, 376

rules

access modifiers, 68

custom validation rules, 401

finalizers, 457

identifiers, 21

logical operators, 51

string comparisons, 173

runtime environments

common language runtime

common intermediate

language, 9

CTS (common type

system), 9-10

memory management,

12-13

virtual execution system,

9-12

dynamic language runtime, 8,

16

runtime errors, 349

S

\s regular expression

metacharacter, 188

\S regular expression

metacharacter, 188

safety

threads, 463

types, 247

saving

projects, 30

solutions, 30

sbyte type, 37

Scheme property, 45

scope

declaration space comparison

application, 68

defined, 66

listing, 66

nesting and hiding, 66-67

statement blocks, 66

switches, 152

variables, 20

visibility, 66

Search method, 78-79

Seconds method, 43

SEHException, 230

select cmdlet, 482

selecting

LINQ query data, 269-271

anonymous types, 270

concatenating data,

269-270

sample application,

270-271

XML

attributes, 321

LINQ to XML, 321-322

selection statements, 148

if, 148-150

cascading, 149

mismatched else problem,

149

nesting, 148

sample application, 150

syntax, 148

switches, 150-153

expression values, 151

fall through, 152

listing, 151

sample application,

152-153

scope, 152

sections, 151

syntax, 150-151

semaphores, 467

semicolons (;), 19

server-side validation, 420

set accessors

indexers, 201

properties, 72

SetAttributes method, 299

SetAttributeValue method, 315

SetElementValue method, 315

SetEquals method, 213

SetItem method, 207

sets, 212

class methods, 213

classes, 212

sample application, 214-215

SetValue method, 323

sharing DataTips, 355

shift operators, 47

short type, 37

short-circuit evaluation, 52

ShowDialog method, 375

Sign method, 46

signals, 466

signatures

indexers, 201

methods, 77

Silverlight, 203, 483-484

size

arrays, 196

WPF application grid

rows/columns, 374

Solution Explorer, 26

solutions, 26

saving, 30

viewing, 26

SortDescription structure, 397

SortedDictionary<TKey, TValue>

class, 210-211

SortedList<TKey, TValue> class,

210-211

SortedSet<T> class, 212-213

sorting collection views, 396-397

special directories, 291-292

finding, 291

SpecialFolder values, 291-292

How can we make this index more useful? Email us at indexes@samspublishing.com

special directories

517

ptg

specialized constructors, 82-83

SpinLock class, 466

splitting strings, 176-177

Stack<T> class

methods, 215

sample application, 216

stack memory, 452

StackOverflowException, 230

stacks, 215-216

breaking, 240

integer, implementing, 216

Stack<T> class, 215

StackTrace property, 228

standalone applications, 367

standard exceptions, 229-230

standard format strings, 179-182

Days enumeration value

listing, 181

specifiers

defining, 181-182

listing of, 179-181

ToString method, overriding,

182

standard query operator

methods, 279-280

star sizing, 374

starting

Solution Explorer, 26

Visual Studio, 25-26

command section, 26

Recent Projects list, 26

tabbed content area, 26

StartNew method, 471

StartsWith method, 173

starvation, 463

statements

blocks, 19, 66

control flow. See control flow

statements

declaration, 22

defined, 19

goto, 159

iteration, 153

do, 154-155

for, 155-158

foreach, 158-159

while, 153-154

jump, 159

break, 160-161

continue, 161-162

return, 162

lambdas, 282-283

lock, 464

Enter/TryEnter methods,

465

listing, 464-465

lock expressions to avoid,

464

Monitor class, 465

next, 359

selection, 148

if, 148-150

switches, 150-153

styles, 19

using, 454

compiler generated code,

454-455

syntax, 454

whitespace, 19

static classes, 86-87

static constructors, 85

static methods, 75

static variables, 20

Stream class, 300-301

StreamReader class, 304-305

streams

buffered, 303-304

disposing, 295

Stream class, 300-301

StreamWriter class, 304-305

String class, 171-175

StringBuilder class, 177

Append/AppendFormat

methods, 177

capacity, 178

listing, 177

strings, 38, 168

case, 173-174

characters, deleting, 175

comparisons, 173-174

Compare method, 173

CompareOrdinal method,

173

CompareTo method, 173

Contains method, 173

EndsWith method, 173

rules, 173

sample application, 174

StartsWith method, 173

composite formatting,

186-187

listing, 187

syntax, 186-187

concatenation, 176

custom format, 183-186

DateTime instance listing,

183-186

specifiers, 183-186

empty, 170-171

testing, 170

whitespace characters,

170-171

interning, 168

joining, 176-177

literals

character escape

sequences, 168-169

listing, 169

verbatim, 168-169

modifying, 174-175

mutable

appending data, 177

characters, replacing, 178

data, adding/deleting, 178

518

specialized constructors

ptg

StringBuilder class,

177-178

StringBuilder class listing,

177

number of characters, 171

padding, 175

regular expressions, 187

classes, 189

compatibility, 187

metacharacters, 188

string validation, 189-190

substring matches, 190

splitting, 176-177

standard format, 179-182

Days enumeration value

listing, 181

specifiers, 179-182

ToString method,

overriding, 182

String class, 171

ToString method, 170

type formatting, 178

validation, 189-190

zero-based counting, 172

structures

classes, compared, 119-120,

125-126

common, 120

constructors, 124-125

conversion operators, 122

custom default constructors,

125

declaring, 120

defined, 119

generic, 255

initializing, 125

methods, 120

operator overloading,

120-122

language support, 121

listing of, 121

sample application,

123-124

symmetrical groups,

121-122

properties, 126

public fields, 126

SortDescription, 397

subscribing, events, 132

anonymous methods, 136

button Click event example,

133-134

event handlers, attaching,

132-133

method group inference, 133

user interface control

published, 135-136

substrings, 171-172

creating, 171-172

extracting, 171

IndexOf/LastIndexOf

methods, 172

regular expression matches,

190

Subtract method, 43

subtraction operator (-), 48

swallowing exceptions, 234

switches, 150-153

expression values, 151

fall through, 152

listing, 151

sample application, 152-153

scope, 152

sections, 151

syntax, 150-151

symmetric operator overload

groups, 121-122

SymmetricExceptWith method,

213

synchronizing threads, 463

interlocked operations, 466

locks, 463-466

mutex, 467

reader-writer locks, 467

semaphores, 467

signals, 466

System namespace, 15

System.Collections.Generic

namespace, 15

System.Data namespace, 15

System.Diagnostics namespace,

15

System.Environment.FailFast

namespace, 231

SystemException class, 229

System.Globalization namespace,

15

System.IO namespace, 15

System.Linq namespace, 16

System.Net namespace, 16

System.Security namespace, 16

System.ServiceModel

namespace, 16

System.Text namespace, 16

System.Web namespace, 16

System.Windows namespace, 16

System.Windows.Controls

namespace, 16

System.Windows.Forms

namespace, 16

System.Xml namespace, 16

T

\t escape sequence, 169

tabbed content area (Visual

Studio Start page), 26

Tables property, 331

targets (attributes)

identifying, 430

listing of, 429

How can we make this index more useful? Email us at indexes@samspublishing.com

targets (attributes)

519

ptg

Task class, 471

Task Parallel Library. See TPL

tasks

creating

explicitly, 470

StartNew method, 471

parallelism, 469-472

exception handling,

471-472

guidelines, 473-474

Invoke method, 470

task creation, 470-471

waiting on tasks, 471

waiting to complete, 471

templates, 399-400

associating with controls, 400

defining, 399-400

ternary operators. See conditional

operators

testing

empty strings, 170

unit tests, 349-350

value equality with generics,

251-252

text

console window, displaying,

29

WPF, 369

text files, reading and writing,

306-307

ReadAllLines method, 306

ReadAllText method, 306

ReadLines method, 307

ReadLine method, 304-305

sample application, 305

WriteAllLines method, 306-307

WriteAllText method, 306-307

WriteLine method, 304-305

Text property, 421

this keyword, 83

threads, 462

concurrency problems, 463

data parallelism, 468

ForEach method example,

468

loop execution, controlling,

468

Parallel class, 468

thread-safe collections,

469-470

disadvantages, 463

managed, 462

multiple, 462

preemptive multitasking, 462

safety, 463

synchronizing, 463

interlocked operations,

466

locks, 463-466

mutex, 467

reader-writer locks, 467

semaphores, 467

signals, 466

task parallelism, 469-472

exception handling,

471-472

Invoke method, 470

task creation, 470-471

waiting on tasks, 471

TPL. See TPL

throw keyword, 231, 239

throwing exceptions, 231

no handlers, 231

rethrowing, 239-240

breaking the stack, 240

listing, 240

timing, 231

wrapped, 240-241

TimeOfDay property, 41

TimeSpan type, 42-43

Today property, 41

ToLowerInvariant method, 174

tooltips, displaying, 377

ToString method, 170

overriding, 178-179, 182

type formatting, 178-179

TotalDays method, 43

TotalHours method, 43

TotalMilliseconds method, 43

TotalMinutes method, 43

TotalSeconds method, 43

ToUpperInvariant method, 174

TPL (Task Parallel Library), 467

data parallelism, 468

ForEach method example,

468

loop execution, controlling,

468

Parallel class, 468

thread-safe collections,

469-470

parallelization guidelines,

473-474

PLINQ

defined, 472

operators, 473

queries, creating, 473

task parallelism, 469-472

exception handling,

471-472

Invoke method, 470

task creation, 470-471

waiting on tasks, 471

tracepoints, 356-357

Trim method, 175

TrimEnd method, 175

TrimExcess method

HashSet<T> class, 213

Queue<T> class, 217

SortedDictionary<TKey,

TValue> class, 211

520

Task class

ptg

SortedList<TKey, TValue>

class, 211

SortedSet<T> class, 213

Stack<T> class, 215

TrimStart method, 175

trust but verify philosophy, 98

try keyword, 232

TryCreate method, 44

TryEnter method, 465

TryGetValue method, 211

TryParse method, 44

tuples, 261

classes, 261

sample application, 262

TwoWay data binding, 387

type parameters (generics), 250

constraints, 250-252

default values, 252

multiple, 250

types

anonymous, 270

BigInteger, 45-46

listing, 46

methods, 46

categories, 36-37

comparison, 19

DateTime, 39-42

arithmetic methods, 42

properties, 41-42

default values, 53

defined, 19

disposable, 454

dynamic, 39, 440

COM interoperability, 448

conversions, 442

custom, creating, 445-447

dynamic keyword,

439-440

methods, invoking, 449

overload resolution,

442-443

runtime, 441-442

sample application,

440-441

variables, 440

enumerations, 114

Days, 116-117

defining, 114

flag enumerations,

117-119

listing, 114-115

multiple named values,

115

numeric values, 115-116

operations, 116

sample application,

116-117

underlying types, 116

values, 114

formatting, 178

Guid, 43-44

inference, 254

null, 53

nullable

defined, 54

null-coalescing operator,

54

sample application, 55

syntax, 54

values, 54

pointers, 36

predefined, 36-38

bool, 37-38

byte, 37

char, 37

CLS-compliance, 38-39

decimal, 37-38

double, 37-38

float, 37

implicit conversions, 56

int, 37

long, 37

object, 38-39

sample applications,

40-41

sbyte, 37

short, 37

string, 38

uint, 37

ulong, 38

ushort, 38

reference, 19, 36

categories, 36

value type conversions, 54

safety, 247

testing operators, 47

TimeSpan, 42-43

unified type system, 37

URIs

Uri class, 44-45

UriBuilder class, 45

value, 19, 36, 58

var, 39

variant, 39

void, 39

U

uint type, 37

ulong type, 38

unary operators, 47

unboxing operations, 56

underlying types, 116

unexpected error conditions, 232

unified type system, 37

uniform resource identifiers. See

URIs

UnionWith method, 213

unit tests, 349-350

unmanaged code, 8

unsubscribing, events, 136

How can we make this index more useful? Email us at indexes@samspublishing.com

unsubscribing, events

521

ptg

upcasting, 97

UpdateSourceTrigger property

ValidationRules collection,

402

WPF data binding, 387

updating database records,

340-341

Uri class, 44-45

methods, 44

properties, 45

Uri property, 45

UriBuilder class

listing, 45

properties, 45

URIs (uniform resource

identifiers), 44-45

UserName property, 45

using statement, 454

compiler generated code,

454-455

syntax, 454

UtcNow property, 42

\uxxxx escape sequence, 169

\uxxxxxxxx escape sequence, 169

V

\v escape sequence, 169

ValidatesOnDataErrors property,

401

ValidatesOnExceptions property,

401

validation, 400-403

AddressBook application, 403

arguments, 230

controls, 420-422

ASPX page, 422

combining, 421

error messages,

summarizing, 421

listing of, 420-421

properties, 421

custom validation rules, 401

strings, 189-190

validation checks, adding,

401

visual feedback, 402

web applications, 420

client-side, 420-421

server-side, 420

validation controls,

420-422

Validator example, 422

ValidationRules property, 401

ValidationSummary control, 421

value parameters, 75

value types, 19, 36

bool, 37-38

byte, 37

char, 37

converting to reference types,

54

boxing/unboxing

operations, 56

explicit conversions, 57

implicit conversions, 56

sample application, 58

decimal, 37-38

double, 37-38

float, 37

int, 37

long, 37

null, 53

nullable

defined, 54

null-coalescing operator,

54

sample application, 55

syntax, 54

values, 54

reference types, compared,

19

sbyte, 37

short, 37

switch expressions, 151

uint, 37

ulong, 38

values

constants, 70

date and time values. See

date and time values

default, 53

enumerations

commas, 114

multiple named values,

115

numeric, 115-116

flag enumerations, 118

generic types, 252

GUIDs, 40-44

incrementing/decrementing,

48

integer minimum, finding

with generics code listing,

248-249

objects, 246-247

with generics application,

249-250

without generics

application, 247-248

without generics code

listing, 246

integers, 45-46

literal, 21-22

nullable types, 54

URIs

Uri class, 44-45

UriBuilder class, 45

XML elements/attributes,

323

522

upcasting

ptg

Values method, 209

var type, 39

variable windows (Visual Studio

debugger), 352-354

Locals window, 352-353

Watch window, 352-353

variables

capturing, 281

catch handlers, 233

constants, compared, 21

declaring, 20, 22

default values, 53

defined, 20

dynamic types, 440

fields. See fields

instance, 20

iteration, 158

lifetime, 20

local, 20

scope, 20

space, 20

static, 20

variance (generic interfaces), 258-

261

class implementation, 258

contravariance, 258

covariance, 258

extending, 260-261

listing of, 258-259

sample application, 259-260

variant type, 39

verbatim string literals, 168-169

VerifyEmailAddress method

calling, 76

declaring, 74-75

VES (virtual execution system),

9-12

virtual methods, 207

Visual Studio

benefits, 24

debugger, 350

breaking on exceptions,

351

breakpoints, 355-357

Call Stack window,

358-359

compiler errors, 349

DataTips, 354-355

Exception Assistant,

351-352

expression side effects,

353-354

Immediate window, 355

MSDN edition features,

352

next statements, 359

runtime errors, 349

user-provided divisors,

350

stepping through code,

357-358

variable windows,

352-354

visualizers, 350-360

editions, 25

features, 24

overview, 24

projects, 26, 30

Solution Explorer, 26

solutions, 26, 30

Start page, 25-26

command section, 26

Recent Projects list, 26

tabbed content area, 26

visualizers, 350-360

void type, 39

W

\w regular expression

metacharacter, 188

\W regular expression

metacharacter, 188

Wait method, 465

Task class, 471

thread signals, 466

WaitAll method, 471

WaitAny method, 471

waiting on tasks, 471

Watch window, 352-353

web applications

accessing, 408

architecture, 408

ASP.NET, 408-411

ASPX files, 409

client-side validation,

420-421

CSS, 416-418

data binding, 418-420

embedded code blocks,

419

Global.asax event

handlers, 411

Hello world application,

409

master pages, 414-415

MVC Framework, 408

Page event handlers, 410

server-side validation, 420

validation controls,

420-422

web-based photo viewer

application. See web-

based photo viewer

data validation, 420

client-side, 420-421

server-side, 420

validation controls,

420-422

Validator example, 422

HTTP, 408

IIS, 410

How can we make this index more useful? Email us at indexes@samspublishing.com

web applications

523

ptg

performance, 408

Visual C# Express edition,

407

web-based photo viewer

application, 411

ASPX editor, 413

CSS, 416-418

data binding, 418-420

default page, 415

HTML, 416

layout, creating, 414-416

layout styling, 416-418

New Project dialog, 412

Properties window, 413

selected element outline, 413

Visual Studio, viewing, 412

while statements, 153-154

listing, 154

sample application, 154

for statements, compared,

156-157

syntax, 153

whitespace

empty strings, 170-171

statements, 19

windows

Call Stack, 358-359

console, 29

Immediate, 355

variable, 352-354

Locals window, 352-353

Watch window, 352-353

WPF (Windows Presentation

Foundation), 364

animation, 369

application model, 366-367

browser-hosted

applications, 367

standalone applications,

367

applications, creating, 370

Collection Editor, 373-374

completed layout, 378-

379

controls, adding, 375

directories, choosing, 377

document outline, 372

event handlers, 375-376

grid row/column

definitions, 374

grid rows/columns,

creating, 373

New Project dialog, 370

Properties window, 372

routed events, 376

selected element outline,

372

ShowDialog extension

method, 375

sizing grid rows/columns,

374

structure, editing, 373

tooltips, displaying, 377

Visual Studio, viewing,

371

XAML bindings, debugging,

377-378

XAML designer, 371-372

binding to collections, 395

collection views, 395-396

current item pointers,

398-399

filtering data, 398

grouping data, 397

INotifyCollectionChanged

interface, 396

INotifyPropertyChanged

interface, 396

photo viewer application

example, 395

sorting data, 396-397

code-behind, 365-366

data binding, 369, 386

components, 386

creating, 387-389

event handler, 389

OneTime, 387

OneWay, 386

OneWayToSource, 387

photo viewer application,

389-390

source object, 388-389

source property, updating,

387

target objects, 386

target properties, 386

TwoWay, 387

XAML application code,

389

data converters, 390

adding to XAML file, 391

creating, 390-391

culture-aware, 393

multivalue, 392-393

multivalue with Converter

parameter, 394

photo viewer application,

394

data templates, 399-400

associating with controls,

400

defining, 399-400

document support, 369

elements, nesting, 368

graphics, 369

layouts, 367-368

default layout controls,

367-368

DockPanel example, 368

label control styles,

380-381

resource dictionaries, 380

524

web applications

ptg

style/data template

resources, 380

markup, 364-365

text, 369

validating data, 400-403

AddressBook application,

403

custom validation rules,

401

validation checks, adding,

401

visual feedback, 402

WPFInteropExtensions class, 375

wrapping exceptions, 240-241

Write method

binary files, 301

Stream class, 301

WriteAllBytes method

binary files, 306

File class, 299

WriteAllLines method

File class, 299

text files, 306-307

WriteAllText method

File class, 299

text files, 306-307

WriteLine method, 304-305

write-only properties, 73

writing

binary files, 301-303

listing, 302

sample application,

302-303

WriteAllBytes method, 306

buffered streams, 303-304

code comments, 349

finalizers, 458

text files, 306-307

WriteAllLines method,

306-307

WriteAllText method,

306-307

WriteLine method,

304-305

unit tests, 349-350

X

XAML (Extensible Application

Markup Language), 364-365

bindings, debugging, 377-378

CollectionViewSource class,

396

data converters, adding, 391

designer, 371

Name attribute, 376

photo viewer application

layout, 378-379

XAttribute class, 314

XBAPs (XAML browser

applications), 367

x:Class attribute, 365

XDocument class, 313

XElement class, 314

navigation properties, 320

SetElementValue/SetAttribute

Value methods, 315

values, retrieving, 316

XML (Extensible Markup

Language), 309

attributes, selecting, 321

comments, 348

DOM, 312-313

creating XML, 314-315

XPath queries, 321

elements/attributes

adding, 324-325

removing, 324

replacing data, 324

values, changing, 323

LINQ to XML, 313

character encoding, 316

creating XML, 314

modification application,

325

selecting XML, 321-322

SetElementValue/SetAttrib

uteValue methods, 315

source XML, transforming,

323

XAttribute class, 314

XDocument class, 313

XElement class, 314

XElement values,

retrieving, 316

XML documents, creating,

316

XName class, 317

XNamespace class,

317-319

XPath queries, 321

namespaces. See LINQ to

XML, namespaces

modifying, 323

names, 317

namespaces, 317

atomization, 319

creating XML, 317-318

declaring, 317

expanded names, 319

prefixes, 318

sample application, 319

reshaped, returning, 322-323

selecting with LINQ to XML,

321-322

tree nodes, navigating

LINQ queries against

XElement class,

320-321

How can we make this index more useful? Email us at indexes@samspublishing.com

XML (Extensible Markup Language)

525

ptg

XElement properties, 320

XNode class properties,

319-320

XName class, 317

XNamespace class, 317-319

XNode class, 319-320

XOR logical operator, 47

XPath namespace, 321

XPath queries, 321

XPathEvaluate method, 321

XPathSelectElements method,

321

Y

Year property, 42

Z

Zero method, 46

526

XML (Extensible Markup Language)

	Table of Contents
	Introduction
	Audience and Organization
	Conventions Used in This Book
	Closing Thoughts

	Part I: C# Fundamentals
	HOUR 1 The .NET Framework and C#
	The .NET Framework
	The C# Language
	Visual Studio 2010
	Writing Your First Program
	Q&A
	Workshop

	HOUR 2 Understanding C# Types
	Types
	Predefined Types
	Operators
	Default Values
	Null and Nullable Types
	Casting and Conversion
	Q&A
	Workshop

	HOUR 3 Understanding Classes and Objects the C# Way
	Object-Oriented Programming
	Component-Oriented Programming
	Classes in C#
	Scope and Declaration Space
	Nested Classes
	Partial Classes
	Static Classes
	Object Initializers
	Q&A
	Workshop

	HOUR 4 Inheritance, Interfaces, and Abstract Classes
	Inheritance and Polymorphism
	Abstract Classes and Members
	Interfaces
	Q&A
	Workshop

	HOUR 5 Creating Enumerated Types and Structures
	Enumerated Types
	Structures
	Q&A
	Workshop

	HOUR 6 Events and Event Handling
	Understanding Events
	Subscribing and Unsubscribing
	Publishing an Event
	Raising an Event
	Q&A
	Workshop

	Part II: Programming in C#
	HOUR 7 Controlling Program Flow
	Selection Statements
	Iteration Statements
	Jump Statements
	Q&A
	Workshop

	HOUR 8 Using Strings and Regular Expressions
	Strings
	Mutable Strings Using StringBuilder
	Type Formatting
	Regular Expressions
	Q&A
	Workshop

	HOUR 9 Working with Arrays and Collections
	Arrays
	Indexers
	Generic Collections
	Collection Initializers
	Collection Interfaces
	Enumerable Objects and Iterators
	Q&A
	Workshop

	HOUR 10 Handling Errors Using Exceptions
	Understanding Exceptions
	Throwing Exceptions
	Handling Exceptions
	Rethrowing Caught Exceptions
	Overflow and Integer Arithmetic
	Q&A
	Workshop

	HOUR 11 Understanding Generics
	Why You Should Use Generics
	Using Generic Methods
	Creating Generic Classes
	Combining Generics and Arrays
	Working with Tuples
	Q&A
	Workshop

	HOUR 12 Understanding Query Expressions
	Introducing LINQ
	Standard Query Operator Methods
	Lambdas
	Deferred Execution
	Q&A
	Workshop

	Part III: Working with Data
	HOUR 13 Using Files and Streams
	Files and Directories
	Reading and Writing Data
	Q&A
	Workshop

	HOUR 14 Working with XML
	Understanding the XML DOM
	Using LINQ to XML
	Selecting and Querying XML
	Modifying XML
	Q&A
	Workshop

	HOUR 15 Working with Databases
	Understanding ADO.NET
	Understanding LINQ to ADO.NET
	Q&A
	Workshop

	Part IV: Building an Application Using Visual Studio
	HOUR 16 Debugging in Visual Studio
	Commenting Your Code
	Compiler and Runtime Errors
	Debugging in Visual Studio
	Visualizing Data
	Q&A
	Workshop

	HOUR 17 Building a Windows Application
	Understanding WPF
	Creating a WPF Application
	Styling the Layout
	Q&A
	Workshop

	HOUR 18 Using Data Binding and Validation
	Understanding Data Binding
	Converting Data
	Binding to Collections
	Working with Data Templates
	Validating Data
	Q&A
	Workshop

	HOUR 19 Building a Web Application
	Understanding Web Application Architecture
	Working with ASP.NET
	Creating a Web Application
	Understanding Data Validation
	Q&A
	Workshop

	Part V: Diving Deeper
	HOUR 20 Programming with Attributes
	Understanding Attributes
	Working with the Common Attributes
	Using Custom Attributes
	Accessing Attributes at Runtime
	Q&A
	Workshop

	HOUR 21 Dynamic Types and Language Interoperability
	Using Dynamic Types
	Understanding the DLR
	Interoperating with COM
	Reflection Interoperability
	Q&A
	Workshop

	HOUR 22 Memory Organization and Garbage Collection
	Memory Organization
	Garbage Collection
	Understanding IDisposable
	Using the Dispose Pattern
	Declaring and Using Finalizers
	Q&A
	Workshop

	HOUR 23 Understanding Threads, Concurrency, and Parallelism
	Understanding Threads and Threading
	Concurrency and Synchronization
	Understanding the Task Parallel Library
	Working with Parallel LINQ (PLINQ)
	Potential Pitfalls
	Q&A
	Workshop

	HOUR 24 Next Steps: Silverlight, PowerShell, and Entity Framework
	Understanding the Entity Framework
	Introducing PowerShell
	Silverlight

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

