
Table of Contents
BackCover
C++ Demystified
Introduction
Who Should Read this Book
What this Book Covers
How to Read this Book
Special Features
Contacting the Author
Chapter 1: How a C++ Program Works
What Is a Computer Program?
What Is a Programming Language?
Anatomy of a C++ Program
Translating the Code for the Computer
Using an IDE to Create and Run the " Hello World! " Project
Summary
Quiz
Chapter 2: Memory and Data Types
Memory
Data Types
Project: Determining the Size of Data Types
Summary
Quiz
Chapter 3: Variables
Declaring Variables
Assigning Values to Variables
Summary
Quiz
Chapter 4: Arithmetic Operators
Arithmetic Operators

The Change Machine Project
Summary
Quiz
Chapter 5: Making Decisions: if and switch Statements
Relational Operators
Flowcharting
The if Statement
The if / else Statement
The if /else if /else Statement
The switch Statement
Summary
Quiz
Chapter 6: Nested if Statements and Logical Operators
Nested if Statements
Logical Operators
Using the switch Statement with Logical Operators
Summary
Quiz
Chapter 7: The For Loop
Increment and Decrement Operators
The For Loop
Summary
Quiz
Chapter 8: While and Do While Loops
The While Loop
The Do While Loop
Summary
Quiz
Chapter 9: Functions
Defining and Calling a Function
Variable Scope and Lifetime

Sending Information to a Function
Returning a Value from a Function
Summary
Quiz
Chapter 10: Arrays
Declaring an Array
Initialization
Assigning and Displaying Array Values
Passing Arrays as Function Arguments
Summary
Quiz
Chapter 11: What's the Address? Pointers
Declaring a Pointer
Assigning a Value to a Pointer
Indirection Operator and Dereferencing
The Pointer as a Variable or a Constant
Pointer Arithmetic
Pointers as Function Arguments
Dynamic Memory Allocation
Returning Pointers from Functions
Summary
Quiz
Chapter 12: Character, C-String, and C++ String Class Functions
Reading a Character
Useful Character Functions
Useful C-String and C++ String Functions
Summary
Quiz
Chapter 13: Persistent Data: File Input and Output
Text vs. Binary Files
The fstream Standard Library

The File Access Life Cycle
Opening a File
Closing a File
Writing to a File
Reading from a File
File Stream Objects as Function Arguments
Summary
Quiz
Chapter 14: The Road Ahead: Structures and Classes
Your Reasons for Reading This Book?
Object-Oriented Programming
Structures
Classes
Summary
Quiz
Final Exam
Answers to Quizzes and Final Exam
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Final Exam

Index
Index_A
Index_B
Index_C
Index_D
Index_E
Index_F
Index_G
Index_H
Index_I
Index_K
Index_L
Index_M
Index_N
Index_O
Index_P
Index_R
Index_S
Index_T
Index_U
Index_V
Index_W
List of Figures
List of Tables

C++ Demystified: A Self-Teaching Guide
by Jeff Kent ISBN:0072253703

McGraw-Hill/Osborne © 2004

This hands-on, step-by-step resource will guide you
through each phase of C++ programming, providing you
with the foundation to discover how computer programs
and programming languages work.

Table of Contents
C++ Demystified
Introduction
Chapter 1 -How a C++ Program Works
Chapter 2 -Memory and Data Types
Chapter 3 -Variables
Chapter 4 -Arithmetic Operators
Chapter 5 -Making Decisions: if and switch Statements
Chapter 6 -Nested if Statements and Logical Operators
Chapter 7 -The For Loop
Chapter 8 -While and Do While Loops
Chapter 9 -Functions
Chapter 10 -Arrays
Chapter 11 -What’s the Address? Pointers
Chapter 12 -Character, C-String, and C++ String Class Functions
Chapter 13 -Persistent Data: File Input and Output
Chapter 14 -The Road Ahead: Structures and Classes
Final Exam
Answers to Quizzes and Final Exam
Index
List of Figures
List of Tables

Back Cover

If you’re looking for an easy way to learn C++ and want to
immediately start writing your own programs, this is the resource
you need. The hands-on approach and step-by-step instruction
guide you through each phase of C++ programming with easy-to-
understand language from start to finish.

Whether or not you have previous C++ experience, you’ll get an
excellent foundation here, discovering how computer programs and
programming languages work. Next, you’ll learn the basics of the
language—what data types, variables, and operators are and what
they do, then on to functions, arrays, loops, and beyond. With no
unnecessary, time-consuming material included, plus quizzes at the
end of each chapter and a final exam, you’ll emerge a C++ pro,
completing and running your very own complex programs in no
time.

About the Author

Jeff Kent is an Associate Professor of Computer Science at Los
Angeles Valley College in Valley Glen, California. He teaches a
number of programming languages, including Visual Basic, C++,
Java and, when he’s feeling masochistic, Assembler, but mostly he
teaches C++. He also manages a network for a Los Angeles law
firm whose employees are guinea pigs for his applications, and as
an attorney gives advice to young attorneys whether they want it
or not. He also has written several books on computer
programming, including the recent Visual Basic.NET A Beginner’s
Guide for McGraw-Hill/Osborne.

Jeff has had a varied career—or careers. He graduated from UCLA
with a Bachelor of Science degree in economics, then obtained a
Juris Doctor degree from Loyola (Los Angeles) School of Law, and
went on to practice law.

C++ Demystified
Jeff Kent

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London
 Madrid Mexico City Milan New Delhi San Juan
 Seoul Singapore Sydney Toronto

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please
contact McGraw-Hill/Osborne at the above address. For information on translations or
book distributors outside the U.S.A., please see the International Contact Information page
immediately following the index of this book.

Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 FGR FGR 01987654

ISBN 0-07-225370-3

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Editorial Director
Wendy Rinaldi

Project Editor
Lisa Wolters-Broder

Acquisitions Coordinator
Athena Honore

Technical Editor
Jim Keogh

Copy Editor
Mike McGee

Proofreader
Susie Elkind

Indexer
Irv Hershman

Composition
Apollo Publishing Services, Lucie Ericksen

Illustrators
Kathleen Edwards, Melinda Lytle

Cover Series Design
Margaret Webster-Shapiro

Cover Illustration
Lance Lekander

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our sources,
McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not guarantee the accuracy,
adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

About the Author

Jeff Kent is an Associate Professor of Computer Science at Los Angeles Valley College in
Valley Glen, California. He teaches a number of programming languages, including Visual
Basic, C++, Java and, when he’s feeling masochistic, Assembler, but mostly he teaches
C++. He also manages a network for a Los Angeles law firm whose employees are guinea
pigs for his applications, and as an attorney gives advice to young attorneys whether they
want it or not. He also has written several books on computer programming, including the
recent Visual Basic.NET A Beginner’s Guide for McGraw-Hill/Osborne.

Jeff has had a varied career—or careers. He graduated from UCLA with a Bachelor of
Science degree in economics, then obtained a Juris Doctor degree from Loyola (Los
Angeles) School of Law, and went on to practice law. During this time, when personal
computers still were a gleam in Bill Gates’s eye, Jeff was also a professional chess master,

earning a third-place finish in the United States Under-21 Championship and, later, an
international title.

Jeff does find time to spend with his wife, Devvie, which is not difficult since she also is a
computer science professor at Valley College. He also acts as personal chauffeur for his
teenaged daughter, Emily (his older daughter, Elise, now has her own driver’s license) and
in his remaining spare time enjoys watching international chess tournaments on the Internet.
His goal is to resume running marathons, since otherwise, given his losing battle to lose
weight, his next book may be Sumo Wrestling Demystified.

I would like to dedicate this book to my wife, Devvie Schneider Kent. There is not room
here to describe how she has helped me in my personal and professional life, though I do
mention several ways in the Acknowledgments. She also has been my computer
programming teacher in more ways than one; I wouldn’t be writing this and other computer
programming books if it wasn’t for her.

—Jeff Kent

Acknowledgments

It seems obligatory in acknowledgments for authors to thank their publishers (especially if
they want to write for them again), but I really mean it. This is my fourth book for McGraw-
Hill/Osborne, and I hope there will be many more. It truly is a pleasure to work with
professionals who are nice people as well as very good at what they do (even when what
they are good at is keeping accurate track of the deadlines I miss).

I first want to thank Wendy Rinaldi, who got me started with McGraw-Hill/Osborne back in
1998 (has it been that long?). Wendy was also my first Acquisitions Editor. Indeed, I got
started on this book through a telephone call with Wendy at the end of a vacation with my
wife, Devvie, who, being in earshot, and with an “are you insane” tone in her voice, asked
incredulously, “You’re writing another book?”

I also must thank my Acquisitions Coordinator, Athena Honore, and my Project Editor, Lisa
Wolters-Broder. Both were unfailingly helpful and patient, while still keeping me on track in
this deadline-sensitive business (e.g., “I’m so sorry you broke both your arms and legs;
you’ll still have the next chapter turned in by this Friday, right?”).

Mike McGee did the copyediting, together with Lisa. They were kind about my obvious
failure during my school days to pay attention to my grammar lessons. They improved what
I wrote while still keeping it in my words (that way, if something is wrong, it is still my fault).
Mike also indicated he liked some of my stale jokes, which makes him a friend for life.

Jim Keogh was my technical editor. Jim and I had a balance of terror going between us, in
that while he was tech editing this book, I was tech editing two books on which he was the
main author, Data Structures Demystified and OOP Demystified. Seriously, Jim’s

suggestions were quite helpful and added value to this book.

There are a lot of other talented people behind the scenes who also helped get this book
out to press, but, as in an Academy Awards speech, I can’t list them all. That doesn’t mean
I don’t appreciate all their hard work, because I do.

I truly thank my wife Devvie, who in addition to being my wife, best friend (maybe my only
one), and partner (I’m leaving out lover because computer programmers aren’t supposed to
be interested in such things), also was my personal tech editor. She is well-qualified for that
task, since she has been a computer science professor for 15 years, and also is a stickler
for correct English (yes, I know, you can’t modify the word “unique”). She made this a much
better book.

Finally, I would like to give thanks to my daughters, Elise and Emily, and my mom, Bea
Kent, for tolerating me when I excused myself from family gatherings, muttering to myself
about unreasonable chapter deadlines and merciless editors (sorry, Athena and Lisa). I also
should thank my family in advance for not having me committed when I talk about writing my
next book.

Introduction
C++ was my first programming language. While I’ve since learned others, I’ve always
thought C++ was the “best” programming language, perhaps because of the power it gives
the programmer. Of course, this power is a double-edged sword, being also the power to
hang yourself if you are not careful. Nonetheless, C++ has always been my favorite
programming language.

C++ also has been the first choice of others, not just in the business world because of its
power, but also in academia. Additionally, many other programming languages, including
Java and C#, are based on C++. Indeed, the Java programming language was written using
C++. Therefore, knowing C++ also makes learning other programming languages easier.

Why Did I Write this Book?
Not as a road to riches, fame, or beautiful women. I may be misguided, but I’m not
completely delusional.

To be sure, there are many introductory level books on C++. Nevertheless, I wrote this
book because I believe I bring a different and, I hope, valuable perspective.

As you may know from my author biography, I teach computer science at Los Angeles
Valley College, a community college in the San Fernando Valley area of Los Angeles,
where I grew up and have lived most of my life. I also write computer programs, but
teaching programming has provided me with insights into how students learn that I could
never obtain from writing programs. These insights are gained not just from answering
student questions during lectures. I spend hours each week in our college’s computer lab
helping students with their programs, and more hours each week reviewing and grading
their assignments. Patterns emerge regarding which teaching methods work and which
don’t, the order in which to introduce programming topics, the level of difficulty at which to
introduce a new topic, and so on. I joke with my students that they are my beta testers in
my never-ending attempt to become a better teacher, but there is much truth in that joke.

Additionally, my beta testers… err, students, seem to complain about the textbook no
matter which book I adopt. Many ask me why I don’t write a book they could use to learn
C++. They may be saying this to flatter me (I’m not saying it doesn’t work), or for the more
sinister reason that they will be able to blame the teacher for a poor book as well as poor
instruction. Nevertheless, having written other books, these questions planted in my mind
the idea of writing a book that, in addition to being sold to the general public, also could be
used as a supplement to a textbook.

Who Should Read this Book
Anyone who will pay for it! Just kidding, though no buyers will be turned away.

It is hardly news that publishers and authors want the largest possible audience for their
books. Therefore, this section of the introduction usually tells you this book is for you
whoever you may be and whatever you do. However, no programming book is for
everyone. For example, if you exclusively create game programs using Java, this book may
not be for you (though being a community college teacher I may be your next customer if
you create a space beasts vs. community college administrators game).

While this book is, of course, not for everyone, it very well may be for you. Many people
need or want to learn C++, either as part of a degree program, job training, or even as a
hobby. C++ is not the easiest subject to learn, and unfortunately many books don’t make
learning C++ any easier, throwing at you a veritable telephone book of complexity and
jargon. By contrast, this book, as its title suggests, is designed to “demystify” C++.
Therefore, it goes straight to the core concepts and explains them in a logical order and in
plain English.

What this Book Covers
I strongly believe that the best way to learn programming is to write programs. The
concepts covered by the chapters are illustrated by clearly and thoroughly explained code.
You can run this code yourself, or use the code as the basis for writing further programs
that expand on the covered concepts.

Chapter 1 gets you started. This chapter answers questions such as what is a computer
program and what is a programming language. It then discusses the anatomy of a basic
C++ program, including both the code you see and what happens “under the hood,”
explaining how the preprocessor, compiler, and linker work together to translate your code
into instructions the computer can understand. Finally, the chapter tells you how to use an
integrated development environment (IDE) to create and run a project.

Being able to create and run a program that outputs “Hello World!” as in Chapter 1 is a
good start. However, most programs require the storing of information of different types,
such as numeric and text. Chapter 2 first explains the different types of computer memory,
including random access memory, or RAM. The chapter then discusses addresses, which
identify where data is stored in RAM, and bytes, the unit of value for the amount of space
required to store information. Because information comes in different forms, this chapter
next discusses the different data types for whole numbers, floating point numbers and text.

The featured star of Chapter 3 is the variable, which not only reserves the amount of
memory necessary to store information, but also provides you with a name by which that
information later may be retrieved. Because the purpose of a variable is to store a value, a
variable without an assigned value is as pointless as a bank account without money.
Therefore, this chapter explains how to assign a value to a variable, either at compile time
using the assignment operator or at run time using the cin object and the stream extraction
operator.

As a former professional chess player, I have marveled at the ability of chess computers to
play world champions on even terms. The reason the chess computers have this ability is
because they can calculate far more quickly and accurately than we can. Chapter 4 covers
arithmetic operators, which we use in code to harness the computer’s calculating ability.

As programs become more sophisticated, they often branch in two or more directions
based on whether a condition is true or false. For example, while a calculator program
would use the arithmetic operators you learned about in Chapter 4, your program first
would need to determine whether the user chose addition, subtraction, multiplication, or
division before performing the indicated arithmetic operation. Chapters 5 and 6 introduce
relational and logical operators, which are useful in determining a user’s choice, and the if
and switch statements, used to direct the path the code will follow based on the user’s
choice.

When you were a child, your parents may have told you not to repeat yourself. However,
sometimes your code needs to repeat itself. For example, if an application user enters
invalid data, your code may continue to ask the user whether they want to retry or quit until
the user either enters valid data or quits. The primary subject of Chapters 7 and 8 are
loops, which are used to repeat code execution until a condition is no longer true. Chapter 7
starts with the for loop, and also introduces the increment and decrement operators, which
are very useful when working with loops. Chapter 8 completes the discussion of loops with
the while and do while loops.

Chapter 9 is about functions. A function is a block of one or more code statements. All of
your C++ code that executes is written within functions. This chapter will explain why and
how you should write your own functions. It first explains how to prototype and define a
function, and then how to call the function. This chapter also explains how you use
arguments to pass information from the calling function to a called function and a return
value to pass information back from the called function to a calling function. Passing by
value and by reference also are explained and distinguished. This chapter winds up
explaining variable scope and lifetime, and both explaining and distinguishing local, static,
and global variables.

Chapter 10 is about arrays. Unlike the variables covered previously in the book, which may
hold only one value at a time, arrays may hold multiple values at one time. Additionally,
arrays work very well with loops, which are covered in Chapters 7 and 8. This chapter also
distinguishes character arrays from arrays of other data types. Finally, this chapter covers
constants, which are similar to variables, but differ in that their initial value never changes
while the program is running.

Chapter 11 is about pointers. The term pointers often strikes fear in the heart of a C++
student, but it shouldn’t. As you learned back in Chapters 2 and 3, information is stored at
addresses in memory. Pointers simply provide you with an efficient way to access those
addresses. You also will learn in this chapter about the indirection operator and
dereferencing as well as pointer arithmetic.

Most information, including user input, is in the form of character, C-string, and C++ string
class data types. Chapter 12 shows you functions that are useful in working with these data
types, including member functions of the cin object.

Information is stored in files so it will be available after the program ends. Chapter 13
teaches you about the file stream objects, fstream, ifstream, and ofstream, and how to use
them and their member functions to open, read, write and close files.

Finally, to provide you with a strong basis to go to the next step after this introductory level
book, Chapter 14 introduces you to OOP, Object-Oriented Programming, and two
programming concepts heavily used in OOP, structures and classes.

A Quiz follows each chapter. Each quiz helps you confirm that you have absorbed the

basics of the chapter. Unlike quizzes you took in school, you also have an answers
appendix.

Similarly, this book concludes with a Final Exam in the first appendix, and the answers to
that also found in the second appendix.

How to Read this Book
I have organized this book to be read from beginning to end. While this may seem patently
obvious, my students often express legitimate frustration about books (or teachers) that, in
discussing a programming concept, mention other concepts that are covered several
chapters later or, even worse, not at all. Therefore, I have endeavored to present the
material in a linear, logical progression. This not only avoids the frustration of material that
is out of order, but also enables you in each succeeding chapter to build on the skills you
learned in the preceding chapters.

Special Features
Throughout each chapter are Notes, Tips, and Cautions, as well as detailed code listings.
To provide you with additional opportunities to review, there is a Quiz at the end of each
chapter and a Final Exam (found in the first appendix) at the end of this book. Answers to
both are contained in the following appendix.

The overall objective is to get you up to speed quickly, without a lot of dry theory or
unnecessary detail. So let’s get started. It’s easy and fun to write C++ programs.

Contacting the Author
Hmmm… it depends why. Just kidding. While I always welcome gushing praise and
shameless flattery, comments, suggestions, and yes, even criticism also can be valuable.
The best way to contact me is via e-mail; you can use jkent@genghiskhent.com (the domain
name is based on my students’ fond nickname for me). Alternately, you can visit my web
site, http://www.genghiskhent.com/. Don’t be thrown off by the entry page; I use this site
primarily to support the online classes and online components of other classes that I teach
at the college, but there will be a link to the section that supports this book.

I hope you enjoy this book as much as I enjoyed writing it.

mailto:jkent%40genghiskhent.com
http://www.genghiskhent.com/

Chapter 1: How a C++ Program Works

Overview
You probably interact with computer programs many times during an average day. When
you arrive at work and find out your computer doesn’t work, you call tech support. At the
other end of the telephone line, a computer program forces you to navigate a voicemail
menu maze and then tortures you while you are on perpetual hold with repeated insincere
messages about how important your call is, along with false promises about how soon you
will get through.

When you’re finally done with tech support, you decide to take a break and log on to your
now-working computer to do battle with giant alien insects from the planet Megazoid.
Unfortunately, the network administrator catches you goofing off using yet another computer
program which monitors employee computer usage. Assuming you are still employed, an
accounts payable program then generates your payroll check.

On your way home, you decide you need some cash and stop at an ATM, where a
computer program confirms (hopefully) you have enough money in your bank account and
then instructs the machine to dispense the requested cash and (unfortunately) deducts that
same amount from your account.

Most people, when they interact with computers as part of their daily routine, don’t need to
consider what a computer program is or how it works. However, a computer programmer
should know the answers to these and related questions, such as what is a programming
language, and how does a C++ program actually work? When you have completed this
chapter, you will know the answers to these questions, and also understand how to create
and run your own computer program.

What Is a Computer Program?
Computers are so widespread in our society because they have three advantages over us
humans. First, computers can store huge amounts of information. Second, they can recall
that information quickly and accurately. Third, computers can perform calculations with
lightning speed and perfect accuracy.

The advantages that computers have over us even extend to thinking sports like chess. In
1997, the computer Deep Blue beat the world chess champion, Garry Kasparov, in a chess
match. In 2003, Kasparov was out for revenge against another computer, Deep Junior, but
only drew the match. Kasparov, while perhaps the best chess player ever, is only human,
and therefore no match for the computer’s ability to calculate and remember prior games.

However, we have one very significant advantage over computers. We think on our own,
while computers don’t, at least not yet anyway. Indeed, computers fundamentally are far
more brawn than brain. A computer cannot do anything without step-by-step instructions
from us telling it what to do. These instructions are called a computer program, and of
course are written by a human, namely a computer programmer. Computer programs
enable us to harness the computer’s tremendous power.

What Is a Programming Language?
When you enter a darkened room and want to see what is inside, you turn on a light switch.
When you leave the room, you turn the light switch off.

The first computers were not too different than that light switch. These early computers
consisted of wires and switches in which the electrical current followed a path dependent on
which switches were in the on (one) or off (zero) position. Indeed, I built such a simple
computer when I was a kid (which according to my own children was back when dinosaurs
still ruled the earth).

Each switch’s position could be expressed as a number: 1 for the on position, 0 for the off
position. Thus, the instructions given to these first computers, in the form of the switches’
positions, essentially were a series of ones and zeroes.

Today’s computers, of course, are far more powerful and sophisticated than these early
computers. However, the language that computers understand, called machine language,
remains the same, essentially ones and zeroes.

While computers think in ones and zeroes, the humans who write computer programs
usually don’t. Additionally, a complex program may consist of thousands or even millions of
step-by-step machine language instructions, which would require an inordinately long
amount of time to write. This is an important consideration since, due to competitive market
forces, the amount of time within which a program has to be written is becoming
increasingly less and less.

Fortunately, we do not have to write instructions to computers in machine language.
Instead, we can write instructions in a programming language. Programming languages are
far more understandable to programmers than machine language because programming
languages resemble the structure and syntax of human language, not ones and zeroes.
Additionally, code can be written much faster with programming languages than machine
language because programming languages automate instructions; one programming
language instruction can cover many machine language instructions.

C++ is but one of many programming languages. Other popular programming languages
include Java, C#, and Visual Basic. There are many others. Indeed, new languages are
being created all the time. However, all programming languages have essentially the same
purpose, which is to enable a human programmer to give instructions to a computer.

Why learn C++ instead of another programming language? First, it is very widely used, both
in industry and in education. Second, many other programming languages, including Java
and C#, are based on C++. Indeed, the Java programming language was written using
C++. Therefore, knowing C++ makes learning other programming languages easier.

Anatomy of a C++ Program
It seems to be a tradition in C++ programming books for the first code example to output to
a console window the message “Hello World!” (shown in Figure 1-1).

Figure 1-1: C++ program outputting “Hello World!” to the screen

Note

The term “console” goes back to the days before Windows when the screen did
not have menus and toolbars but just text. If you have typed commands using
DOS or UNIX, you likely did so in a console window. The text “Press any key to
continue” immediately following “Hello World!” is not part of the program, but
instead is a cue for how to close the console window.

Unfortunately, all too often the “Hello World!” example is followed quickly by many other
program examples without the book or teacher first stopping to explain how the “Hello
World!” program works. The result soon is a confused reader or student who’s ready to say
“Goodbye, Cruel World.”

While the “Hello World!” program looks simple, there actually is a lot going on behind the
scenes of this program. Accordingly, we are going to go through the following code for the
“Hello World!” program line by line, though not in top-to-bottom order.
#include <iostream>
using namespace std;

int main(void)
{
 cout << "Hello World!";
 return 0;
}

Note The code a programmer writes is referred to as source code, which is saved in a
file that usually has a .cpp extension, standing for C++.

The main Function

As discussed in the “What Is a Programming Language?” section, the purpose of C++, or
any programming language, is to enable a programmer to write instructions for a computer.

Often, a task is too complex for just one instruction. Instead, several related instructions are
required.

A function is a group of related instructions, also called statements, which together perform
a particular task. The name of the function is how you refer to these related statements. In
the “Hello World!” program, main is the name of a function. A program may have many
functions, and in Chapter 9 I will show you how to create and use functions. However, a
program must have one main function, and only one main function. The reason is that the
main function is the starting point for every C++ program. If there was no main function, the
computer would not know where to start the program. If there was more than one main
function, the program would not know whether to start at one or the other.

Note The main function is preceded by int and followed by void in parentheses. We will
cover the meaning of both in Chapter 9.

The Function Body

Each of the related instructions, or statements, which belong to the main function are
contained within the body of that function. A function body starts with a left curly brace, {,
and ends with a right curly brace, }.

Each statement usually ends with a semicolon. The main function has two statements:
 cout << "Hello World!";
 return 0;

Statements are executed in order, from top to bottom. Don’t worry, the term “executed”
doesn’t mean the statement is put to death. Rather, it means that the statement is carried
out, or executed, by the computer.

cout

The first statement is
 cout << "Hello World!";

cout is pronounced “C-out.” The “out” refers to the direction in which cout sends a stream of
data.

A data stream may flow in one of two directions. One direction is input—into your program
from an outside source such as a file or user keyboard input. The other direction is output—
out from your program to an outside source such as a monitor, printer, or file.

cout concerns the output stream. It sends information to the standard output device. The
standard output device usually is your monitor, though it can be something else, such as a
printer or a file on your hard drive.

The << following cout is an operator. You likely have used operators before, such as the
arithmetic operators +, –, *, and /, for addition, subtraction, multiplication, and division,
respectively.

The << operator is known as the stream insertion operator. It inserts the information
immediately to its right—in this example, the text “Hello World!” into the data stream. The
cout object then sends that information to the standard output device—in this case, the
monitor.

Note
In Chapter 3, you will learn about the counterparts to the cout object and the <<
operator, the cin object, which concerns the input stream, and the >> operator
used with the cin object.

The return 0 Statement

The second and final statement returns a value of zero to the computer’s operating system,
whether Windows, UNIX, or another. This tells the operating system that the program
ended normally. Sometimes programs do not end normally, but instead crash, such as if
you run out of memory during the running of the program. The operating system may need
to handle this abnormal program termination differently than normal termination. That is why
the program tells the operating system that this time it ended normally.

The #include Directive

Your C++ program “knows” to start at the main function because the main function is part of
the core of the C++ language. We certainly did not write any code that told the C++
program to start at main.

Similarly, your C++ program seems to know that the cout object, in conjunction with the
stream insertion operator <<, outputs information to the monitor. We did not write any code
to have the cout object and the << operator achieve this result.

However, the cout object is not part of the C++ core language. Rather, it is defined
elsewhere, in a standard library file. C++ has a number of standard library files, each
defining commonly used objects. Outputting information to the monitor certainly is a
common task. While you could go to the trouble of writing your own function that outputs
information to the screen, a standard library file’s implementation of cout saves you the
trouble of “reinventing the wheel.”

While C++ already has implemented the cout object for you in a standard library file, you
still have to tell the program to include that standard library file in your application. You do
so with the #include directive, followed by the name of the library file. If the library file is a
standard library file, as opposed to one you wrote (yes, you can create your own), then the
file name is enclosed in angle brackets, < and >.

The cout object is defined in the standard library file iostream. The “io” in iostream refers to
input and output—“stream” to a stream of data. To use the cout object, we need to include
the iostream standard library file in our application. We do so with the following include
directive:
#include <iostream>

The include directive is called a preprocessor directive. The preprocessor, together with the
compiler and linker, are discussed later in this chapter in the section “Translating the Code
for the Computer.” The preprocessor directive, unlike statements, is not ended by a
semicolon.

Namespace

The final statement to be discussed in the Hello World! example is
using namespace std;

C++ uses namespaces to organize different names used in programs. Every name used in
the iostream standard library file is part of a namespace called std. Consequently, the cout
object is really called std::cout. The using namespace std statement avoids the need for
putting std:: before every reference to cout, so we can just use cout in our code.

Translating the Code for the Computer
While you now understand the “Hello World!” code, the computer won’t. Computers don’t
understand C++ or any other programming language. They understand only machine
language.

Three programs are used to translate your source code into an executable file that the
computer can run. These programs are, in their order of appearance:

1. Preprocessor

2. Compiler

3. Linker

Preprocessor

The preprocessor is a program that scans the source code for preprocessor directives such
as include directives. The preprocessor inserts into the source code all files included by the
include directives.

In this example, the iostream standard library file is included by an include directive.
Therefore, the preprocessor directive inserts the contents of that standard library file,
including its definition of the cout object, into the source code file.

Compiler

The compiler is another program that translates the preprocessed source code (the source
code after the insertions made by the preprocessor) into corresponding machine language
instructions, which are stored in a separate file, called an object file, having an .obj
extension. There are different compilers for different programming languages, but the
purpose of the compiler is essentially the same, the translation of a programming language
into machine language, no matter which programming language is involved.

The compiler can understand your code and translate it into machine language only if your
code is in the proper syntax for that programming language. C++, like other programming
languages, and indeed most human languages, has rules for the spelling of words and for
the grammar of statements. If there is a syntax error, then the compiler cannot translate
your code into machine language instructions, and instead will call your attention to the
syntax errors. Thus, in a sense, the compiler acts as a spell checker and grammar checker.

Linker

While the object file has machine language instructions, the computer cannot run the object
file as a program. The reason is that C++ also needs to use another code library, called the

run-time library, for common operations, such as the translation of keyboard input or the
ability to interact with external hardware such as the monitor to display a message.

Note

The run-time library files may already be installed as part of your operating
system. If not, you can download the run-time library files from Microsoft or
another vendor. Finally, if you install an IDE as discussed in the next section, the
run-time library files are included with the installation.

The linker is a third program that combines the object file with the necessary parts of the
run-time library. The result is the creation of an executable file with an .exe extension. The
computer runs this file to display “Hello World!” on the screen.

Using an IDE to Create and Run the “Hello World!” Project
You can use any plain-text editor such as Notepad to write the source code. You also can
download a free compiler, which usually includes a preprocessor and linker. You then can
compile and run your code from the command line. The command line may be, for
example, a DOS prompt at which you type a command that specifies the action you want,
such as compiling, followed by the name of the file you want to compile.

While there is nothing wrong with using a plain-text editor and command line tools, many
programmers, including me, prefer to create, compile, and run their programs in a C++
Integrated Development Environment, known by the acronym IDE. The term “integrated” in
IDE means that the text editor, preprocessor, compiler, and linker are all together under
one (software) roof. Thus, the IDE enables you to create, compile, and run your code using
one program rather than separate programs. Additionally, most IDEs have a graphical user
interface (GUI) that makes them easier for many to use than a command line. Finally, many
IDEs have added features that ease your task of finding and fixing errors in your code.

The primary disadvantage of using IDEs is you have to pay to purchase them (though there
are some free ones). They also require additional hard drive space and memory.
Nevertheless, I recommend obtaining an IDE since it enables you to focus on C++
programming issues without distractions such as figuring out the right commands to use on
the command line.

There are several good IDEs on the market. Microsoft’s, called Visual C++, can be
obtained separately or as part of Microsoft’s Visual Studio product. Borland offers C++
Builder, both in a free and commercial version. IBM has a VisualAge C++ IDE. There are a
number of others as well.

In this book, I will use Microsoft’s Visual C++ .NET 2003 IDE since I happen to have it.
However, most IDEs work essentially the same way, and your code will compile and run the
same no matter which IDE you use as long as you don’t use any library files custom to a
particular IDE. The standard library files we will be using, such as iostream, are the same in
all C++ IDEs.

Additionally, I am running the code on a Windows 2000 operating system. The results
should be similar on other operating systems, not just Windows operating systems, but
additional types of operating systems as well, such as UNIX.

Let’s now use the IDE to write the source code for the “Hello World!” project, and then
compile and run it.

Setting Up the “Hello World!” Project

Once you have purchased and installed Visual C++ .NET 2003, either as a standalone

application or as part of Visual Studio .NET 2003, you are now ready to start your first
project, which is to create and run the “Hello World!” application.

1. Start Visual C++.

2. Open the New Project dialog box shown in Figure 1-2 using the File | New |
Project menu command. (The values in the Name and Location fields will be set in
steps 5 and 6.)

Figure 1-2: Creating a New Project

3. In the left or list pane of the New Project dialog box, choose Visual C++ Projects
from the list of Project Types, and then the Win32 subfolder, as shown in Figure
1-2.

4. In the right or contents pane of the New Project dialog box, choose Win32
Console Project from the list of templates. The word console comes from the
application running from a console window. Win32 comes from the Windows 32-bit
operating system, such as Windows 9x, 2000, or XP.

5. In the Location field, using the Browse button, choose an existing folder under
which you will create the subfolder where you will put your project.

6. In the Name field, type the name you’ve chosen for your project. This will also be
the name of the subfolder created to store your project files. I suggest you use a
name that describes your project so you can locate it more easily later.

7. Click the OK button. This will display the Win32 Application Wizard, shown in
Figure 1-3.

Figure 1-3: Starting the Win32 Application Wizard

8. Click the Application Settings menu item on the left. The appearance of the Win32
Application Wizard then changes to that shown in Figure 1-4.

Figure 1-4: Win32 Application Wizard after choosing Application
Settings

9. Choose, if necessary, Console Application under Application Type (this is the
default) and Empty Project under Additional Options. Choosing Empty Project will
disable both checkboxes under Add Support For, which should be disabled
anyway.

Caution
Make sure you follow this step carefully, particularly choosing Empty
Project, which is not the default. Not configuring Application Settings
properly is a common mistake and may require you to start over.

10. Click the Finish button. Figure 1-5 shows the new subfolder HelloWorld and its
parent folder. These were the name and location chosen in steps 5 and 6.

Figure 1-5: Windows Explorer showing newly created subfolder and
files

You now have created a project for your application. The project is a shell for your
application, containing files that will support the creation and running of your application.
However, right now the project is empty of any code you have written, so it won’t do
anything. Accordingly, the next step is to start writing code.

Writing the Source Code

Visual C++ has a view of a project that is similar to Windows Explorer. That view is called
Solution Explorer, shown in Figure 1-6. If Solution Explorer is not already displayed, you can
display it with the menu command View | Solution Explorer.

Figure 1-6: Viewing your project with Solution Explorer

Solution Explorer has folders for both source and header files. The file in which the code for
the “Hello World!” application will be written is a source file. Source files have a .cpp
extension, cpp standing for C++. By contrast, the iostream file that is included by the
include directive is a header file. Header files have an .h extension—the h standing for
header.

We will use Solution Explorer to add a new source file to the project, after which we will
write code in that new source file.

You can use the following steps to add a new source file to the project:
1. Right-click Source Files in Solution Explorer. This will display a shortcut menu,

shown in Figure 1-7.

Figure 1-7: Source Files shortcut menu

2. Choose Add | Add New Item from the shortcut menu to add a new source to the
project. This will display the Add New Item dialog box, shown in Figure 1-8.

Figure 1-8: Adding a New Source File to your Project

Note If the source file already exists, you can add it to your project using the
Add | Add Existing Item shortcut menu item.

3. Generally, you will not change the Location field, which is the subfolder in which
the project files are stored. Type the name of the new source file in the Name
field. You do not need to type the .cpp extension; that extension will be appended
automatically since it is a source file. By typing hello, as shown in Figure 1-8, the
new file will be called hello.cpp.

4. When you are done, click the Open button. Figure 1-9 shows the new hello.cpp

file in Solution Explorer.

Figure 1-9: Solution Explorer showing the new .cpp file

Writing the code is easy. Double-click hello.cpp in Solution Explorer. As shown in Figure 1-
10, this will display the hello.cpp file, which at this point is blank.

Figure 1-10: The source file before typing code

Now just type your code. When finished, hello.cpp should appear as in Figure 1-11.

Figure 1-11: The source file after typing code

Caution

You also can use Notepad or any other text editor to write the code. How-
ever, do not use Microsoft Word or any other word processing program to
write your code. While a word processing program enables you to neatly
format your code, it does so using hidden formatting characters that the
compiler does not understand and will regard as syntax errors.

Save your work, such as by pressing the Save toolbar button. We’re now ready to compile.

Building the Project

You compile your code from the Build menu. You may compile your code from any one of
the following different menu choices:

Build | Solution

Rebuild | Solution

Build | HelloWorld

Rebuild | HelloWorld

HelloWorld is the name of your project. A solution may contain more than one project. Here
the solution contains only one project, so there is no practical difference between the
project and the solution.

Build means to compile changes from the last compilation (if there was one). Rebuild means
to start compilation from the beginning. Build therefore is usually faster, but Rebuild is used
when there have been extensive changes since the last compilation. As a practical matter, it
rarely makes a difference which one you choose.

Before we compile, make one change to the code, changing cout to Cout (capitalizing the
C). Then choose one of the four compilation options. A Task List window should display,

noting a build error, as shown in Figure 1-12. The error description in the Task List window
is “error C2065: ‘Cout’ : undeclared identifier.”

Figure 1-12: The Task List window showing a compilation error

Tip
If the description column is not wide enough to show the entire error description,
you can display the error description in a pop-up window by right-clicking the error
description and choosing Show Description Tooltip from the shortcut menu.

As explained in the earlier section on the Compiler, the compiler can understand your code
and translate it into machine language only if your code is in the proper syntax for that
programming language. As also explained there, C++ has rules for the spelling of words
and for the grammar of statements. If there is a violation of those rules, that is, a syntax
error, then the compiler cannot translate your code into machine language instructions, and
instead will call your attention to the syntax errors.

In C++, code is case sensitive. That is, a word capitalized is not the same as the word
uncapitalized. The correct spelling is cout; Cout is wrong. Since C++ does not know what
Cout is, you get the error message that it is an “undeclared identifier.”

While here the code is short, if your code is quite lengthy, it is not easy to spot where the
error is in the code. If you double-click the error in the Task List window, then a cursor will
blink at the line where Cout is, and an icon will display in the margin (as shown in Figure 1-
13).

Figure 1-13: The error highlighted in the code window

Now change Cout to cout, and then compile your code again. This time compilation should
be successful. Using Windows Explorer, you can now see in the Debug subfolder of your
HelloWorld project folder a file called hello.obj and another file called hello.exe. These are
the object and executable files previously discussed in the section “Translating the Code for
the Computer.” Accordingly, building the project involved the preprocessor, the compiler,
and the linker.

Running the Code

The final step is to run the code. You do so from the Debug menu. You may choose either
Debug | Start or Debug | Start Without Debugging. The difference is whether you wish to
use the debugger, an issue which we will discuss in a later chapter. Since we are not going
to use the debugger this time, choose Debug | Start Without Debugging as it is slightly
faster. The result is the console window displaying “Hello World!” (shown way back in
Figure 1-1).

Summary
Computers can store huge amounts of information, recall that information quickly and
accurately, and perform calculations with lightning speed and perfect accuracy. However,
computers cannot think by themselves, and need step-by-step instructions from us telling
them what to do. These instructions are called a computer program, written by a human
computer programmer in a programming language such as C++. A compiler, together with a
preprocessor and a linker, translates the computer program into machine language that a
computer understands.

We then analyzed a C++ program, which outputs “Hello World!” to the screen. The program
looks simple, but much is going on behind the scenes. We analyzed that code, line by line.
You then created and ran your own “Hello World!” C++ application.

Quiz
1. What is a computer program?

2. Name several advantages a computer has over humans in processing information?

3. What is a programming language?

4. Why is C++ a good programming language to learn?

5. What is a function?

6. How many main functions should a C++ program have?

7. What is a standard library file?

8. What is the purpose of an include directive?

9. What does a preprocessor do?

10. What does a compiler do?

11. What does a linker do?

Chapter 2: Memory and Data Types

Overview
After I wrote my first book, I expectantly waited every day for my mail, hoping to receive
requests for my autograph. The result was proof of the adage “be careful what you ask
for.” My mailbox was stuffed with numerous requests for my autograph. Alas, these
requests came from those who wanted to share my money, not my fame. My autograph
was requested on checks to pay my mortgage, credit cards, insurance, phone service,
electricity; well, you get the picture.

These companies who love sending me bills could not possibly keep track of their
thousands of customers by using pencil and paper. Instead, they use computer programs,
which harness the computer’s ability to store very large amounts of information and to
retrieve that stored information very quickly.

We use our memory to store and recall information. So do computers. However, a
computer’s memory is very different from ours. This chapter will explain how a computer’s
memory works.

Information, also called data, comes in different forms. Some data is numeric, such as the
amount of my gas bill. Other data is text, such as my name on my gas bill. The type of
data, whether numeric, text, or something else, quite logically is referred to as the “data
type.” The data type you choose will affect not only the form in which the data is stored, but
also the amount of memory required to store it. This chapter will explain the different data
types.

Memory
Computer programs consist of instructions and data. As discussed in Chapter 1,
instructions, written in a programming language such as C++ and then translated by the
compiler and linker into machine language, give the computer step-by-step directions on
what to do. The data is the information that is the subject of the program. For example, if
the user of your computer program wants a list of all students with a GPA of 4.0, the data
could be a list of all students and their GPAs. The program then would follow instructions to
determine and output the list of all students with a GPA of 4.0.

The computer program’s instructions and data have to be in the computer’s memory for the
program to work. This section will explain the different types of computer memory, as well
as how and where instructions and data are stored in computer memory.

Types of Memory

There are three principal memory locations on your computer.

The central processing unit (CPU)

Random access memory (RAM)

Persistent storage

Cache Memory

The CPU is the brains of the computer. You may have thought about the CPU when you last
considered purchasing a computer, since the CPU’s speed often is an important purchase
consideration. The faster the CPU’s speed, the faster your computer runs.

Note

A hertz, named after Heinrich Hertz, who first detected electromagnetic waves,
represents one cycle per second. CPU speed is measured in megahertz (MHz),
which represents one million cycles per second, or gigahertz (GHz), which
represents 1 billion cycles per second. For example, a CPU that runs at 800 MHz
executes 800 million cycles per second. Each computer instruction requires a
fixed number of cycles, so the CPU speed determines how many instructions per
second the CPU can execute.

The CPU, in addition to coordinating the computer’s operations, also has memory, called
cache memory. The CPU’s cache memory includes a segment called a register. This
memory is used to store frequently used instructions and data.

The CPU can access cache memory extremely quickly because it doesn’t have far to go;
the memory is right on the CPU. However, the amount of available cache memory is quite
small; there is only enough room for the most frequently used instructions and data. The

remainder of the instructions and data have to be stored somewhere else.

Random Access Memory

That somewhere else is random access memory, or RAM. You may also have considered
RAM when you last purchased a computer, since the more RAM a computer has, the more
programs it can run at one time, and the faster it runs.

The CPU can access RAM almost as quickly as cache memory. Additionally, the amount of
RAM available to store instructions and data is much larger than the amount of available
cache memory.

However, RAM, like cache memory, is temporary. Instructions and data contained in main
memory are lost once the computer is powered down. You may have had the unpleasant
experience of losing unsaved data when your computer powered off during a power failure,
or had to be rebooted.

Additionally, we would want the data to remain intact after the program ended, even if the
computer is rebooted or powered off. That is not possible with RAM.

Furthermore, your computer likely has many other programs, for e-mail, Internet, word
processing, and so on, that you may not be using right now, but you may want to use in the
future. Likewise, your computer also may have other data files, such as term papers,
letters, tax spreadsheets, e-mail messages, and so on, that you also may not be using right
now, but that you may want to use in the future. Accordingly, we need another memory
location, which unlike cache memory or RAM, is persistent—that is, it will persist even
though the computer is rebooted or turned off.

Persistent Storage

That other, persistent type of computer memory is called, naturally enough, persistent
storage. This usually is a hard drive, but also could be, among other devices, a CD-ROM or
DVD-ROM, floppy or zip disk, or optical drive. However, no matter what storage device is
used, persistent storage is lasting; instructions and data remain stored even when the
computer is powered down. Thus, your computer can be turned off for months, but when it
is turned on, the files you previously saved are still there.

Persistent storage, in addition to being lasting, also has a much larger capacity than RAM—
about one hundred to one thousand times larger.

Since persistent storage is lasting and has a very large capacity, it is used to store both
programs and data. For example, if you installed Microsoft Word on your computer, the
files for this program would be stored on your hard drive. If you then prepared documents
using that program, those documents likewise would be saved as files on your hard drive.

While persistent storage has the advantages of being lasting and having a large capacity, a
computer program cannot execute instructions located in persistent storage. The
instructions must be loaded from persistent storage into RAM. Similarly, a computer
program cannot manipulate data located in persistent storage. This data likewise must be
loaded from persistent storage into RAM.

Note
While beyond the scope of this chapter, persistent storage also can serve as a
backup to RAM, and when serving this purpose is called virtual memory or swap
space.

Generally, computer programs use RAM to store instructions and data, so RAM will be our
focus in discussing memory. However, much of the discussion of memory also may apply to
persistent storage. CPU cache memory is a different subject, discussed more in connection
with programming languages, such as assembly language, that are far closer to machine
language than is C++.

Addresses

When someone asks where you live, you may answer 1313 Mockingbird Lane. That is your
address.

Addresses are used to locate persons or places. Addresses usually follow a logical pattern.
For example, the addresses on one block may be from 1300 to 1399, the next from 1400 to
1499, and so on.

Locations in memory also are identified by address. These addresses often look quite
different than the street addresses we’re used to, since they usually are expressed as
hexadecimal (Base 16) numbers such as 0x8fc1. However, regardless of how the number is
written, as shown in Figure 2-1, memory addresses follow the same logical, sequential
pattern as do street addresses, one number coming after another.

Figure 2-1: Sequence of memory addresses

Note

Hexadecimal Numbers—We usually use numbers that are decimal, or Base 10,
in which each digit is between 0 and 9. By contrast, memory addresses usually
are expressed as hexadecimal, or Base 16, in which each digit is between 1 and
15. Since 10, 11, 12, 13, 14, and 15 are not single digits, 10 is expressed as a,
11 as b, 12 as c, 13 as d, 14 as e, and 15 as f. The number 16 in decimal is
expressed as 10 in hexadecimal.

Memory address numbers can be large values, and thus may be written more
compactly in hexadecimal than in decimal. For example, 1,000,000 in decimal is

f4240 in hexadecimal.

Converting between hexadecimal and decimal is explained next in the upcoming
section, “Converting Between Decimal and Binary or Hexadecimal.”

Bits and Bytes

While people live at street addresses, what is stored at each memory address is a byte.
Don’t worry, I have not misspelled Dracula’s favorite pastime.

As discussed in Chapter 1, early computers essentially were a series of switches, 1
representing on, 0 representing off. In computer terminology, a bit is either a 1 or a 0.

However, while a computer may think in bits, it cannot process information as small as a
single bit. Eight bits, or one byte, is the smallest unit of information that a computer can
process.

Accordingly, each address may store up to one byte of information, represented by a
sequence of up to eight ones and zeroes. Thus, just as a street address may be used to
locate the persons who live there, a memory address can be used to locate the one byte of
information that is stored there. Figure 2-2 shows a sequence of memory addresses, each
with a value.

Figure 2-2: A sequence of memory addresses, each with a byte value

Binary Numbering System

The information stored at a memory address, a series of ones and zeroes, probably has
little meaning to most of us. However, to a computer, a sequence of ones and zeroes is
quite meaningful.

For example, to my computer, I was born in the year 11110100000. Before you tell me
that’s impossible, I will tell you I was born in the year 1952. How could I have been born
both in the year 11110100000 and in the year 1952?

The numbers with which we usually work are decimal, or base 10. Each number in decimal
is represented by a digit between 0 and 9. 1952 is a decimal number.

The sequence of ones and zeroes in a byte also is a number, though it may not look like any
number you have ever seen. My birth year, expressed as the number 11110100000, is
binary, or base 2. Each number in binary is represented by a digit that is either 0 or 1.

The reason both decimal and binary numbers are involved in computer programming is
because both humans and computers are involved. While humans think in decimal numbers,
computers “think” in binary numbers.

Converting Between Decimal and Binary or Hexadecimal

You can write computer programs without knowing how to convert between binary and
decimal numbers. However, knowing how to do so is not difficult and may help your
understanding of what happens behind the scenes. If you are interested, read on!

Converting a number from binary to decimal is simple. Going from right to left, the rightmost
binary digit is multiplied by 20, or 1, the second binary digit from the right is multiplied by 21,
or 2, the third binary digit from the right is multiplied by 22, or 4, and so on, through all of the
binary digits. The results of each multiplication are added, and the result is the decimal
equivalent of the binary number. Table 2-1 shows this calculation for the binary equivalents
of the numbers 1 through 5 in decimal.

Table 2-1: Binary Equivalents of the Numbers 1 Through 5 in Decimal

Binary Calculation Decimal

0 0 × 20 = 0 × 1 = 0

1 1 × 20 = 1 × 1 = 1

10 (0 × 20) + (1 × 21) = 0 + 2 2

11 (1 × 20) + (1 × 21) = 1 + 2 3

100 (0 × 20) + (0 × 21) + (1 × 22) = 0 + 0 + 4 4

101 (1 × 20) + (0 × 21) + (1 × 22) = 1 + 0 + 4 5

Converting a number from decimal to binary is almost as easy. Let’s use 5 in decimal as an
example.

1. You find the largest power of 2 that can be divided into 5 with a quotient of 1. The
answer is 22, or 4.

2. Remember when converting from binary to decimal, the rightmost binary digit is
multiplied by 20, or 1, the second binary digit from the right is multiplied by 21, the
third binary digit from the right is multiplied by 22, and so on. Since the exponent is
2, a binary 1 goes into the third binary digit from the right, so the binary number
now is 1??, the ? representing each binary digit we still need to calculate.

3. When you divide 5 by 4, the remainder is 1. You next try to divide 1 by the next
lowest power of 2, 21, or 2. The quotient is 0, so a binary 0 goes into the second

binary digit from the right. The binary number now is 10?.

4. When you divide 1 by 2, the remainder is still 1. You next try to divide 1 by the
next lowest power of 2, 20, or 1. The quotient is 1, so a binary 1 goes into the
rightmost binary digit. The binary number now is 101, and we’re done.

You also can use the same techniques for converting between hexadecimal and decimal.
When converting from hexadecimal to decimal, multiply each hexadecimal digit (converting a
to 10, b to 11, and so on) by the appropriate power of 16. For example, 5c in hexadecimal
is (12 × 160) + (5 × 161), which is 12 + 80 or 92.

Conversely, when converting from decimal to hexadecimal, the highest power of 16 that can
be divided into 92 is 161, or 16. The quotient is 5, which goes into the second digit to the
right. The remainder is 12, which is c in hexadecimal. This goes into the rightmost digit,
resulting in the hexadecimal number 5c.

Data Types
The ones and zeroes that may be stored at a memory address may represent text, such as
my name, Jeff Kent. These ones and zeroes instead may represent a whole number, such
as my height in inches, 72, or a number with digits to the right of the decimal point, such as
my GPA in high school, which I’ll say was 3.75 (I honestly don’t remember, it was too long
ago). Alternatively, the ones and zeroes may represent either true or false, such as whether
I am a U.S. citizen.

Data comes in many forms, and is generally either numeric or textual. Additionally, some
numeric data uses whole numbers, such as 6, 0, or –7, while other numeric data uses
floating-point numbers, such as .6, 7.3, and –6.1.

There are different data types for each of the many forms of data. The data type you
choose will affect not only the form in which the data is stored, but also the amount of
memory required to store the data. Let’s now take a look at these different data types.

Whole Number Data Types

We deal with whole numbers all the time. Think of the answers to questions such as how
many cars are in the parking lot, how many classes are you taking, or how many brothers
and sisters do you have? Each answer involves a number, with no need to express any
value to the right of the decimal point. After all, who has 3.71 brothers and sisters?

Often, you don’t need a large whole number. What unfortunate student would be taking
754,361 classes at one time? However, sometimes the whole number needs to be large.
For example, if you are studying astronomy, the moon is approximately 240,000 miles from
Earth. Indeed, sometimes the whole number may need to be very, very large. Pluto’s
minimum distance from the Earth is about 2.7 billion miles.

Many times, the whole number won’t be negative. No matter how badly you do on a test,
chances are you won’t score below zero points. However, some whole numbers may be
below zero, such as the temperature at the North Pole.

Because of the different needs whole numbers may have to meet, there are several
different whole number data types (shown in Table 2-2). The listed sizes and ranges are
typical, but may vary depending on the compiler and operating system. In the sizeof
operator project later in this chapter, you will determine through code the size of different
data types on your compiler and operating system.

Table 2-2: Whole Number Data Types, Sizes, and Ranges

Data Type Size (in Bytes) Range

short 2 –32,768 to 32,767

unsigned short 2 0 to 65,365

int 4 –2,147,483,648 to 2,147,483,647

unsigned int 4 0 to 4,294,987,295

long 4 –2,147,483,648 to 2,147,483,647

unsigned long 4 0 to 4,294,987,295

Note

You may be wondering about the purpose of the long data type, since its size and
range is the same as an int in Table 2-2. However, as noted just before that
table, the actual size, and, therefore, range of a particular data type varies
depending on the compiler and operating system. On some combinations of
compilers and operating systems, short may be 1 byte, int may be 2 bytes, and
long may be 4 bytes.

Beginning programmers sometimes see information like that shown in Table 2-2 and panic
that they can’t possibly memorize all of it. The good news is you don’t have to. To be sure,
some memorization is necessary for almost any task. However, since there really is too
much information to memorize, programmers frequently resort to online help or reference
books. Believe me, I do.

Far more important to a programmer than rote memorization is to understand how and why
a program works as it does. Therefore, this section will go into some detail as to how data
types work. Some arithmetic necessarily is involved, but it is not difficult, and if you follow
the arithmetic, you will have a good understanding of data types that will help you in your
programming in the following chapters.

Unsigned vs. Signed Data Type

Table 2-2 lists three data types: short, int, and long. Each of these three data types has
either the word unsigned in front of it or nothing at all—as in unsigned short and short.

Unsigned means the number is always zero or positive, never negative. Signed means the
number may be negative or positive (or zero). If you don’t specify signed or unsigned, the
data type is presumed to be signed. Thus, signed short and short are the same.

Since an unsigned data type means its value is always 0 or positive, never negative, in
Table 2-2 the smallest value of an unsigned short is therefore zero; an unsigned short
cannot be negative. By contrast, the smallest value of a short is –32767, since a signed
data type may be negative, positive, or zero.

Size

Each of the whole number data types listed in Table 2-2 has a size. Indeed, all C++ data
types have a size. However, unlike people, the size of a data type is not expressed in
inches or in pounds (a sore subject for me), but in bytes.

Since a byte is the smallest unit of information that a computer can process, no data type
may be smaller than one byte. Most data types are larger than one byte; all the whole
number data types listed in Table 2-2 are. However, regardless of the size, the number of
bytes is always a whole number. You cannot have a data type whose size is 3.5 bytes
because .5 bytes, or 4 bits, is too small for the computer to process.

Generally, the number of bytes for a data type is the result of a power of 2 since computers
use a binary number system. Thus, typical data type sizes are 1 byte (20), 2 bytes (21),
four bytes (22), or eight bytes (23).

The size of a data type matters in two related respects: (1) the range of different values
that the data type may represent and (2) the amount of memory required to store the data
type.

Range

Range means the highest and lowest value that may be represented by a given data type.
For example, the range of the unsigned short data type is 0 to 65,365. These lowest and
highest values are not arbitrary, but instead can be calculated.

The number of different values that a data type can represent is 2n, n being the number of
bits in the data type. The size of a short data type is 2 bytes, or 16 bits. Therefore, the
number of different whole numbers that the short data type can represent is 216, which is
65,356.

However, the highest value that an unsigned short can represent is 65,355, not 65,356,
because the unsigned short data type starts at 0, not 1. Therefore, the highest number that
an unsigned data type may represent is 2n – 1; n again being the number of bits in the data
type, and the minus 1 being used because we are starting at 0, not 1.

Signed data types involve an additional issue. Since the range of a signed data type
includes negative numbers, there needs to be a way of determining if a number is positive
or negative. We determine if a decimal number is positive or negative by looking to see if
the number is preceded by a negative sign (–). However, a bit can be only 1 or 0; there is
no option for a negative sign in a binary number.

There are several different explanations in computer science for the representation of
negative numbers, such as signed magnitude, one’s complement, and two’s complement.
However, we don’t need to get into the complexities of these explanations.

For example, a signed short data type, like an unsigned short data type, can represent 216

or 65,356 different numbers. However, with a signed data type, these different numbers
must be split evenly between those starting at zero and going up, and those starting at zero
and going down. To do this, the two ranges would be 0 to 32,767 and –1 to –32,768. This
can be confirmed by Table 2-2, which shows the range of a signed data type as –32,768 to
32,767.

Another way of explaining the high and low numbers of the range of the signed short data
type is that one of the bits is used to store the sign, positive or negative. That leaves 15
bits. The highest number in the range is 215 – 1, or 32,767; the minus 1 being used because
we are starting at 0, not 1. The lowest number in the range is –(215), or –32,768; there’s no
minus 1 because we are starting at –1, not 0.

Storage

In binary, 65365 as an unsigned short is represented by sixteen ones: 1111111111111111.
You cannot fit 16 bits into a single memory address. A memory address can hold only 8
bits, or a byte. How then can you store this value in memory?

The answer is you need two memory addresses to store 65365 in decimal. This provides
two bytes of storage, sufficient to store this value. This is why the short data type requires
2 bytes of storage. Figure 2-3 shows how this value would be stored as a short data type.

Figure 2-3: Storage in memory of 65365 in decimal as an unsigned short data
type

The int data type requires 4 bytes of storage. Figure 2-4 shows how 65365 in decimal
would be stored as an unsigned int data type.

Figure 2-4: Storage in memory of 65365 in decimal as an unsigned int data
type

You may legitimately wonder why 65365 in decimal as an unsigned int data type requires
four bytes of storage when 65365 in decimal as an unsigned short data type requires only
two bytes of storage. In other words, if you specify int instead of short as the data type,
four bytes of storage will be reserved, even if you could store the number in less bytes. The
reason is that it is not known, when memory is reserved, what value will be stored there.
Additionally, the value could change. Accordingly, enough bytes of storage are reserved for

the maximum possible value of that data type.

Why Use a Smaller Size Data Type?

Given that an int can store a far wider range of numbers than a short, you also may be
wondering why you ever would use a short rather than an int. The answer is that the wider
range of an int comes at a price; it requires twice as much RAM as a short—four instead of
two bytes.

However, computers these days come with hundreds of megabytes of RAM, each
megabyte being 1,048,576 bytes; you still may wonder why you should care about two
measly extra bytes. If it was just 2 extra bytes, you wouldn’t care. However, if you are
writing a program for an insurance company that has one million customers, you won’t be
talking about 2 extra bytes, but instead 2 million extra bytes. Therefore, you should not just
reflexively choose the largest data type.

All this said, as a general rule, of the six whole number data types, you most often will use
int. However, it is good to know about the other choices.

Floating-Point Data Types

I was nearsighted my entire adult life until I had lasik surgery on my eyes. In this surgery,
the eye surgeon programs information that the laser used to reshape my eyeball by shaving
off very thin slices of my cornea, measuring only thousandths of an inch, in certain areas of
my eyeball, leaving untouched other areas, again only thousandths of an inch away.

Can you imagine my reaction if the eye surgeon had told me his philosophy was “close
enough for government work,” so he was using only whole numbers, ignoring any values to
the right of the decimal point? You next would have seen my silhouette through the wall
after I ran through it to escape. (Since I still go to my eye surgeon, who, by the way,
earned his way through college as a computer programmer, and it is not in my best interest
to get on his bad side, let me hasten to add that he was very precise and the surgery was
successful.)

Whole numbers work fine for certain information where fractions don’t apply. For example,
who would say they have 2 ¾ children? Whole numbers also work fine for certain
information where fractions do apply but are not important. For example, it would be
sufficient normally to say the location is 98 miles away; precision such as 98.177 miles
usually is not necessary.

However, other times fractions, expressed as numbers to the right of the decimal point, are
very important. My lasik surgery is an extreme example, but there are many other more
common ones. If you had a 3.9 GPA, you probably would not want the school to just forget
about the .9 and say your GPA was 3. Similarly, a bank that kept track of dollars but not
cents with deposits and withdrawals would, with potentially millions of transactions a day,

soon have very inaccurate information as to how much money it has, and its depositors
have.

Accordingly, there are floating-point data types that you can use when a value to the right of
the decimal point is important. The term floating point comes from the fact that there is no
fixed number of digits before and after the decimal point; that is, the decimal point can float.
Floating-point numbers also are sometimes referred to as real numbers.

Table 2-3 lists each of the floating-point number data types. As with the whole number data
types, the listed sizes and ranges are typical, but may vary depending on the compiler and
operating system.

Table 2-3: Floating-point Number Data Types, Sizes, and Ranges

Data Type Size (in Bytes) Range (in E notation)

float 4 ±3.4E-38 to ±3.4E38

double 8 ±1.7E-308 to ±1.7E308

long double 10 ±3.4E-4932 to ±3.4E4932

Note The size of a long double on many combinations of compilers and operating
systems may be 8 bytes, not 10.

Scientific and E Notations

The range column in Table 2-3 may not look like any number you have ever seen before.
That is because these are not usual decimal numbers, but instead numbers expressed in E
notation, the letter E standing for exponent.

The float data types can store very large numbers, such as (in decimal)
10000000000000000000000000000000000000, which could be a distance across the
universe. The float data types also can store very small numbers, such as
.00000000000000000000000000000000000001, which could be the diameter of a
subatomic particle.

Rather than having digits running across the page, the number can be expressed more
compactly. One way is with scientific notation, another is with E notation. Table 2-4 shows
how certain floating-point numbers are represented in both notations.

Table 2-4: Scientific and E Notation Representations of Floating Point Values

Decimal Notation Scientific Notation E Notation

123.45 1.2345 x 102 1.2345E2

0.0051 5.1 x 10-3 5.1E-3

1,200,000,000 1.2 x 109 1.2E9

In scientific notation, the number before the multiplication operator, called the mantissa,
always is expressed as having a single digit to the left of the decimal point, and as many
digits as necessary to the right side of the decimal point to express the number. The
number after the multiplication operator is a power of 10, which may be positive for very
large numbers or negative for very small fractions. The value of the expression is the
mantissa multiplied by the power of 10.

E notation is very similar to scientific notation. The only difference is the multiplication
operator, followed by 10 and an exponent, is replaced by an E followed by the exponent.

Storage of Floating-Point Numbers

Since only ones and zeroes can be stored in memory, complex codes, well beyond the
scope of this book, are required to store floating-point numbers. Even with complex codes,
a computer can only approximately represent many floating-point values. Indeed, in certain
programs the programmer has to take care to ensure that small discrepancies in each of a
number of approximations don’t accumulate to the point where the final result is wrong.

Note
Because mathematics with floating-point numbers requires a great deal of
computing power, many CPUs come with a chip specialized for performing
floating-point arithmetic. These chips often are referred to as math coprocessors.

Text Data Types

There are two text data types. The first is char, which stands for character. It usually is 1
byte, and can represent any single character, including a letter, a digit, a punctuation mark,
or a space.

The second text data type is string. The string data type may store a number of characters,
including this sentence, or paragraph, or page. The number of bytes required depends on
the number of characters involved.

Note

Unlike char and the other data types we have discussed, the string type is not a
data type built into C++. Instead, it is defined in the standard library file string,
which therefore must be included with an include directive (#include <string>) to
use the string data type. Chapter 1 covers the include directive, which in the
“Hello World!” program was #include <iostream>.

Storage of Character Values

There is a reason why the size of a character data type usually is 1 byte.

ANSI (American National Standards Institute) and ASCII (American Standards Committee
for Information Interchange) adopted for the English language a set of 256 characters,
which includes all alphabetical characters (upper- and lowercase), digits and punctuation
marks, and even characters used in graphics and line drawing. Each of these 256 different
characters is represented by a number between 0 and 255 that it corresponds to. Table 2-5
lists the ASCII values of commonly used characters.

Table 2-5: ASCII Values of Commonly Used Characters

Characters Values Comments

0 through 9 48–57 0 is 48, 9 is 57

A through Z 65–90 A is 65, Z is 90

a through z 97–122 a is 97, z is 122

Each of the 256 different values can be represented by different combinations of 8 bits, or
one byte. This is true because 28 equals 256. Thus, 00000000 is equal to 0, the smallest
ASCII value, and 11111111 is equal to 255, the largest ASCII value.

For example, the letter J has the ASCII code 74. The binary equivalent of 74 is 1001010.
Thus, 1001010 at a memory address could indicate the letter J.

Note

1001010 also could indicate the number 74; you wouldn’t know which value was
being represented unless you knew the data type associated with that memory
address. In the next chapter, you will learn about variables, which enable you to
associate a particular data type with a specific memory address.

Storage of Strings

The amount of memory required for a string depends on the number of characters in the
string. However, each memory address set aside for the string would store one character
of the string.

The bool Data Type

There is one more data type, bool. This data type has only two possible values, true and
false, and its size usually is one byte. The term “bool” is a shortening of Boolean, which is
usually used in connection with Boolean Algebra, named after the British mathematician,
George Boole.

The bool data type is mentioned separately since it does not neatly fit into either the
number or text categories. It could be regarded as a numeric data type in that zero is seen

as false, and one (or any other non-zero number) as true. While it may not seem intuitive
why zero would be false and one would be true, remember that computers essentially store
information in switches, where 1 is on, and 0 is off.

Project: Determining the Size of Data Types
As discussed in the previous Data Types section, the size of each data type depends on the
compiler and operating system you are using. In this project, you will find out the size of
each data type on your system by using the sizeof operator.

The sizeof Operator

The sizeof operator is followed by parentheses, in which you place a data type. It returns
the size in bytes of that data type.

For example, on my computer, the expression sizeof(int) returns 4. This means that on my
compiler and operating system, the size of an int data type is 4 bytes.

Changing the Source File of Your Project

Try creating and running the next program using the steps you followed in Chapter 1 to
create the “Hello World!” program. While you could start a new project, in this example, you
will reuse the project you used in Chapter 1. It is good to know both how to create a new
project and how to reuse an existing one.

1. Start Visual C++.

2. Use the File | Open Solution menu command to display the Open Solution dialog
box shown in Figure 2-5.

Figure 2-5: Opening the Existing Solution

3. Navigate to the folder where you saved the project (C:\temp\helloworld on my
computer) and find the solution file. It has the extension .sln, which stands for
solution. The solution file is helloworld.sln in Figure 2-5.

4. Open the solution file. This should open your project.

5. Display Solution Explorer using the View | Solution Explorer menu command, and
then click the Source Files folder to show the hello.cpp file, as depicted in Figure
2-6.

Figure 2-6: Showing the Existing Source File in Solution
Explorer

6. Right-click the hello.cpp file and choose Remove from the shortcut menu (shown in
Figure 2-7). Don’t worry, this will not delete the file, but instead simply remove it
from the project. You still will be able to use it later if you wish.

Figure 2-7: Remove option on Shortcut Menu

7. Right-click the Source Files folder and choose Add New Item from the shortcut
menu. This will display the Add New Item dialog box, shown in Figure 2-8.

Figure 2-8: Adding a New Source File to your Project

8. Don’t change the Location field, which holds the subfolder in which the project files
are stored. Type the name of the new source file in the Name field, such as
sizeof.cpp.

9. When you are done, click the Open button. Figure 2-9 shows the new sizeof.cpp
file in Solution Explorer.

Figure 2-9: Solution Explorer showing the new .cpp file

Double-click sizeof.cpp in Solution Explorer to display the sizeof.cpp file in the code editing
window. At this point, the sizeof.cpp is blank. In the next section, you will add code.

Code and Output

Write the following code in the source file you have created. I will explain the code in the
following sections.
#include <iostream>
using namespace std;

int main(void)
{
 cout << "Size of short is " << sizeof(short) << "\n";
 cout << "Size of int is " << sizeof(int) << "\n";
 cout << "Size of long is " << sizeof(long) << "\n";
 cout << "Size of float is " << sizeof(float) << "\n";
 cout << "Size of double is " << sizeof(double) << "\n";
 cout << "Size of long double is
 " << sizeof(long double) << "\n";
 cout << "Size of char is " << sizeof(char) << "\n";
 cout << "Size of bool is " << sizeof(bool) << "\n";
return 0;
}

Next, build and run the project, following the same steps you did for the “Hello World!”
Project in Chapter 1. The resulting output on my computer is
Size of short is 2
Size of int is 4
Size of long is 4
Size of float is 4
Size of double is 8
Size of long double is 8
Size of char is 1
Size of bool is 1

Note
The numbers displayed on your computer may be different, because the size of a
data type depends on the particular compiler and operating system you are using,
and yours may not be the same as mine.

Expressions

The line of code
 cout << "Size of int is " << sizeof(int) << "\n";

displays the following output:
Size of int is 4

In essence, the code sizeof(int) is replaced by 4 in the output.

The code sizeof(int) is called an expression. An expression is a code statement that has a
value, usually a value that has to be evaluated when the program runs. An example of an
expression is 4 + 4, which has a value, 8, that would be evaluated when the program runs.

When the code runs, the expression sizeof(int) is evaluated as having the value 4, which
then is outputted.

By contrast, the portion of the statement within double quotes, “Size of int is ,” is outputted
literally as “Size of int is 4.” There is no need for an evaluation. Instead, this is considered a
literal string. The term string refers to the data type, a series of characters, and the term
literal refers to the fact that the string is outputted literally, without evaluation. The string
“Hello World!” in the cout statement in Chapter 1 also was a literal string.

Outputting an Expression

The expression sizeof(int) is separated by the stream insertion operator (<<) from the literal
string “Size of int is .” If the code statement instead were
 cout << "Size of int is sizeof(int)\n";

then the output would be quite different:
Size of int is sizeof(int)

The reason is sizeof(int), being encased inside the double quotes, would be treated as a
literal string, not an expression, and therefore would not be evaluated, but instead displayed
as is.

Since “Size of int is” is a literal string and sizeof(int) is an expression, they need to be
differentiated before being inserted into the output stream. This differentiation is done by
placing a stream insertion operator between the literal string and the expression.

Note

The string “Size of int is” ends with a space between “is” and the following 4.
Without that space, the output would be “Size of int is4.” You, as the
programmer, have the responsibility to ensure proper spacing; C++ won’t do it for
you.

Escape Sequences

The string “\n” following the expression sizeof(int) is also a literal string, so it, too, is
separated by a stream insertion operator from the sizeof(int) expression. However, “\n” is a
special type of string called an escape sequence.

C++ has many escape sequences, though this may be the commonest one. This particular
escape sequence causes the cursor to go to the next line for further printing. Without it, all
the output would be on one line.

The “\n” in a string is not displayed literally by cout even though it is encased in double
quotes. The reason is that the backslash signals cout that this is an escape sequence.

Table 2-6 shows some of the most common escape sequences.

Table 2-6: Common Escape Sequences

Escape
Sequence Name What It does

\a Alarm Causes the computer to beep

\n newline Causes the cursor to go to the next line

\t Tab Causes the cursor to go to the next tab
stop

\\ Backslash Causes a backslash to be printed

\' Single quote Causes a single quote to be printed

\” Double quote Causes a single quote to be printed

Summary
A computer program’s instructions and data have to be in the computer’s memory for the
program to work. There are three principal memory locations on your computer: the central
processing unit (CPU), random access memory (RAM), and persistent storage. Computer
programs usually use RAM to store instructions and data.

Instructions and data are stored at addresses, represented by a sequential series of
numbers. A computer stores information in a series of ones and zeroes. Each one or zero is
a bit. However, a computer cannot process information as small as a single bit. Eight bits,
or one byte, is the smallest unit of information that a computer can process. Therefore,
each address stores one byte of information.

Some information is numeric; other data is textual. Each type of information is referred to as
a data type. The principal data type categories are whole numbers, floating-point numbers,
and text. However, all data types have in common a characteristic of size, which is the
number of bytes required to store information of that data type. A data type’s size also
determines its range, which is the highest and lowest number that can be stored by that
data type.

The size of a data type varies depending on the compiler and operating system. You may
use the sizeof operator to determine the size of a data type on your particular system.

Quiz
1. From which of the following types of memory can the CPU most quickly access

instructions or data: cache memory, RAM, or persistent storage?

2. Which of the following types of memory is not temporary: cache memory, RAM, or
persistent storage?

3. What is the amount of information that may be stored at a particular memory
address?

4. Is the size of a data type always the same no matter which computer you may be
working on?

5. What is meant by the range of a data type?

6. What is the difference between an unsigned and signed data type?

7. What decimal number is represented by 5.1E-3 in E notation?

8. What is an ASCII value?

9. What does the sizeof operator do?

10. What is a literal string?

11. What is an expression?

Chapter 3: Variables

Overview
Recently, while in a crowded room, someone yelled “Hey, you!” I and a number of other
people looked up, because none of us could tell to whom the speaker was referring. Had
the speaker instead yelled “Hey, Jeff Kent!,” I would have known he was calling me (unless
of course there happened to be another Jeff Kent in the room).

We use names to refer to each other. Similarly, when you need to refer in code to a
particular item of information among perhaps thousands of items of information, you do so
by referring to the name of that information item.

You name information by creating a variable. A variable not only gives you a way of
referring later to particular information, but also reserves the amount of memory necessary
to store that information. This chapter will show you how to create variables, store
information in them, and retrieve information from them.

Declaring Variables
You learned in Chapter 2 that the information a program uses while it is running first needs
to be stored in memory. You need to reserve memory before you can store information
there. You reserve memory by declaring a variable.

Declaring a variable not only reserves memory, but also gives you a convenient way of
referring to that reserved memory when you need to do so in your program. You also
learned in Chapter 2 that memory addresses have hexadecimal values such as 0012FED4.
These values are hard to remember. It is much easier to remember information that, for
example, relates to a test score by the name testScore. By declaring a variable, you can
refer to the reserved memory by the variable’s name, which is much easier to remember
and identify with the stored information than is the hexadecimal address.

While declaring a variable is relatively simple, requiring only one line of code, much is
happening behind the scenes. The program at the end of this section will show you how to
determine the address and size of the memory reserved by declaring a variable.

Syntax of Declaring Variables

You have to declare a variable before you can use it. Declaring a variable involves the
following syntax:
[data type] [variable name] ;

The data type may be any of the ones discussed in Chapter 2, including int, float, bool,
char, or string. The data type tells the computer how much memory to reserve. As you
learned in Chapter 2, different data types have different sizes in bytes. If you specify a data
type with a size (on your compiler and operating system) of 4 bytes, then the computer will
reserve 4 bytes of memory.

You choose the variable name; how you name a variable is discussed later in the section
“Naming the Variable.” The name is an alias by which you can refer in code to the area of
reserved memory. Thus, when you name a variable that relates to a test score testScore,
you can refer in code to the reserved memory by the name testScore instead of by a
hexadecimal value such as 0012FED4.

Finally, the variable declaration ends with a semicolon. The semicolon tells the compiler that
the statement has ended. You can declare a variable either within a function, such as main,
or above all functions, just below any include directives. Since for now our programs have
only one function, main, we will declare all variables within main. When our programs involve
more than one function, we will revisit the issue of where to declare variables.

The following statement declares in main an integer variable named testScore.
int main(void)

{
 int testScore;
 return 0;
}

Note
Unlike the code in Chapters 1 and 2, there is no include directive such as #include
<iostream> in this code because this code does not use cout or another function
defined in a standard library file.

You will receive a compiler error if you refer to a variable before declaring it. In the
following code, the reference to testScore will cause the compiler error “undeclared
identifier.”
int main(void)
{
 testScore;
 int testScore;
 return 0;
}

This compiler error will occur even though the variable is declared in the very next
statement. The reason is that the compiler reads the code from top to bottom, so when it
reaches the first reference to testScore, it has not seen the variable declaration.

This “undeclared identifier” compiler error is similar to the one in the “Hello World!” project in
Chapter 1 when we (deliberately) misspelled cout as Cout. Since testScore is not a name
built into C++, like main and int, the compiler does not recognize it. When you declare a
variable, then the compiler recognizes further references to the variable name as referring
to the variable that you declared.

Declaring Multiple Variables of the Same Data Type

If you have several variables of the same data type, you could declare each variable in a
separate statement.
 int testScore;
 int myWeight;
 int myHeight;

However, if the variables are of the same data type, you don’t need to declare each
variable in a separate statement. Instead, you can declare them all in one statement,
separated by commas. The following one statement declares all three integer variables:
 int testScore, myWeight, myHeight;

The data type int appears only once, even though three variables are declared. The reason

is that the data type qualifies all three variables, since they appear in the same statement
as the data type.

However, the variables must all be of the same data type to be declared in the same
statement. You cannot declare an int variable and a float variable in the same statement.
Instead, the int and float variables would have to be declared in separate statements.
 int testScore;
 float myGPA;

Naming the Variable

Variables, like people, have names, which are used to identify the variable so you can refer
to it in code. There are only a few limitations on how you can name a variable.

The variable name cannot begin with any character other than a letter of the
alphabet (A–Z or a–z) or an underscore (_). Secret agents may be named 007, but
not variables. However, the second and following characters of the variable name
may be digits, letters, or underscores.

The variable name cannot contain embedded spaces, such as My Variable, or
punctuation marks other than the underscore character (_).

The variable name cannot be the same as a word reserved by C++, such as main
or int.

The variable name cannot have the same name as the name of another variable
declared in the same scope. Scope is an issue that will be discussed in Chapter 8.
For present purposes, this rule means you cannot declare two variables in main with
the same name.

Besides these limitations, you can name a variable pretty much whatever you want.
However, it is a good idea to give your variables names that are meaningful. If you name
your variables var1, var2, var3, and so on, up through var17, you may find it difficult to later
remember the difference between var8 and var9. And if you find it difficult, imagine how
difficult it would be for a fellow programmer, who didn’t even write the code, to figure out
the difference.

In order to preserve your sanity, or possibly your life in the case of enraged fellow
programmers, I recommend you use a variable name that is descriptive of the purpose of
the variable. For example, testScore is descriptive of a variable that represents a test
score.

The variable name testScore is a combination of two names: test and score. You can’t have
a variable name with embedded spaces such as test score. Therefore, the two words are
put together, and differentiated by capitalizing the first letter of the second word. By the

convention I use, the first letter of a variable name is not capitalized.

Naming Conventions

A naming convention is simply a consistent method of naming variables. There are a number
of naming conventions. In addition to the one I described earlier, another naming convention
is to name a variable with a prefix, usually all lowercase and consisting of three letters, that
indicate its data type, followed by a word with its first letter capitalized, that suggests its
purpose. Some examples:

intScore Integer variable representing a score, such as on a test.

strName String variable representing a name, such as a person’s name.

blnResident Boolean variable, representing whether or not someone is a resident.

It is not particularly important which naming convention you use. What is important is that
you use one and stick to it.

The Address Operator

Declaring a variable reserves memory. You can use the address operator (&) to learn the
address of this reserved memory. The syntax is
&[variable name]

For example, the following code outputs 0012FED4 on my computer. However, the
particular memory address for testScore on your computer may be different than
0012FED4. Indeed, if I run this program again some time later, the particular memory
address for testScore on my computer may be different than 0012FED4.
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 cout << &testScore;
 return 0;
}

The address 0012FED4 is a hexadecimal (Base 16) number. As discussed in Chapter 2,
memory addresses usually are expressed as a hexadecimal number.

The operating system, not the programmer, chooses the address at which to store a
variable. The particular address chosen by the operating system depends on the data type
of the variable, how much memory already has been reserved, and other factors.

You really do not need to be concerned about which address the operating system chose
since your code will refer to the variable by its name, not its address. However, as you will
learn in Chapter 11 when we discuss pointers, the address operator can be quite useful.

Using the Address and sizeof Operators with Variables

The amount of memory reserved depends on a variable’s data type. As you learned in
Chapter 2, different data types have different sizes.

In Chapter 2, you used the sizeof operator to learn the size (on your compiler and operating
system) of different data types. You also can use the sizeof operator to determine the size
(again, on your compiler and operating system) of different variables.

The syntax for using the sizeof operator to determine the size of a variable is almost the
same as the syntax for using the sizeof operator to determine the size of a data type. The
only difference is that the parentheses following the sizeof operator refers to a variable
name rather than a data type name.

The following code outputs the address and size of two variables:
#include <iostream>
using namespace std;
int main(void)
{
 short testScore;
 float myGPA;
 cout << "The address of testScore is "
 << &testScore << "\n";
 cout << "The size of testScore is "
 << sizeof(testScore) << "\n";
 cout << "The address of myGPA is " << &myGPA << "\n";
 cout << "The size of myGPA is "
 << sizeof(myGPA) << "\n";
 return 0;
}

The output when I ran this program (yours may be different) is
The address of testScore is 0012FED4
The size of testScore is 2
The address of myGPA is 0012FEC8
The size of myGPA is 4

Figure 3-1 shows how memory is reserved for the two variables. Due to the different size of
the variables, the short variable, testScore, takes up two bytes of memory, and the float
variable, myGPA, takes up four bytes of memory.

Figure 3-1: Memory reserved for declared variables

As Figure 3-1 depicts, the addresses of the two variables are near each other. The
operating system often attempts to do this. However, this is not always possible, depending
on factors such as the size of the variables and memory already reserved. There is no
guarantee that two variables will even be near each other in memory.

In Figure 3-1, the value for both memory addresses is unknown. That is because we have
not yet specified the values to be stored in those memory locations. The next section shows
you how to do this.

Assigning Values to Variables
The purpose of a variable is to store information. Therefore, after you have created a
variable, the next logical step is to specify the information that the variable will store. This is
called assigning a value to a variable.

A variable can be assigned a value supplied by the programmer in code. A variable also can
be assigned a value by the user, usually via the keyboard, when the program is running.

You may use the assignment operator, which is discussed in the next section, to specify the
value to be stored in a variable. You use the cin object (discussed in the upcoming section
“Using the cin Object”) after the assignment operator, to obtain the user’s input, usually
from the keyboard, and then store that input in a variable.

Assignment Operator

You use the assignment operator to assign a value to a variable. The syntax is
[variable name] = [value];

The assignment operator looks like the equal sign. However, in C++ the = sign is not used
to test for equality; it is used for assignment. As you will learn in Chapter 5, in C++ the
equal sign is ==, also called the equality operator.

The variable must be declared either before, or at the same time, you assign it a value, not
afterwards. In the following example, the first statement declares the variable, and the
second statement assigns a value to that variable:
int testScore;
testScore = 95;

The next example concerns initialization, which is when you assign a value to a variable as
part of the same statement that declares that variable:
int testScore = 95;

However, the variable cannot be declared after you assign it a value. The following code will
cause the compiler error “undeclared identifier” at the line testScore = 95:
testScore = 95;
int testScore;

As mentioned earlier in the “Declaring Variables” section, this compiler error will occur even
though the variable is declared in the very next line because the compiler reads the code
from top to bottom, so when it reaches the line testScore = 95, it has not seen the variable
declaration.

The value assigned need not be a literal value, such as 95. The following code assigns to

one integer variable the value of another integer variable.
int a, b;
a = 44;
b = a;

The assignment takes place in two steps:

First, the value 44 is assigned to the variable a.

Second, the value of a, which now is 44, is assigned to the variable b.

You also can assign a value to several variables at once. The following code assigns 0 to
three integer variables:
int a, b, c;
a = b = c = 0;

The assignment takes place in three steps, from right to left:
1. The value 0 is assigned to the variable c.

2. The value of the variable c, which now is 0, is next assigned to the variable b.

3. The value of the variable b, which now is 0, is assigned to the variable a.

Finally, you can assign a value to a variable after it has already been assigned a value. The
word “variable” means likely to change or vary. What may change or vary is the variable’s
value. The following code demonstrates a change in the value of a variable that was
previously assigned a value:
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 testScore = 95;
 cout << "Your test score is " << testScore << "\n";
 testScore = 75;
 cout << "Your test score now is " << testScore << "\n";
 return 0;
}

The output is
Your test score is 95
Your test score now is 75

Assigning a “Compatible” Data Type

The value assigned to a variable must be compatible with the data type of the variable that
is the target of the assignment statement. Compatibility means, generally, that if the
variable that is the target of the assignment statement has a numeric data type, then the
value being assigned must also be a number.

The following code is an example of incompatibility. If it is placed in a program, it will cause
a compiler error.
 int testScore;
 testScore = "Jeff";

The description of the compiler error is “cannot convert from ‘const char [5]’ to ‘int’.” This is
the compiler’s way of telling you that you are trying to assign a string to an integer, which of
course won’t work; “Jeff” cannot represent an integer.

The value being assigned need not necessarily be the exact same data type as the variable
to which the value is being assigned. In the following code, a floating-point value, 77.83, is
being assigned to an integer variable, testScore. The resulting output is “The test score is
77.”
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 testScore = 77.83;
 cout << "The test score is " << testScore << "\n";
 return 0;
}

While the code runs, data is lost, specifically the value to the right of the decimal point. .83.
The fractional part of the number cannot be stored in testScore, that variable being a whole
number.

Overflow and Underflow

You may recall from Chapter 2 that the short data type has a range from –32768 to 32767.
You can run the following program to see what happens when you attempt to assign to a
variable a value that is compatible (here a whole number for a short data type) but that is
outside its range.
#include <iostream>
using namespace std;
int main(void)
{
 short testScore;

 testScore = 32768;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

The output is “Your test score is –32768.” That’s right, not 32768, but –32768.

This is an example of overflow. Overflow occurs when a variable is assigned a value too
large for its range. The value assigned, 32768, is 1 too large for the short data type.
Therefore, the value overflows and wraps around to the data type’s lowest possible value, –
32768.

Similarly, an attempt to assign to testScore 32769, which is 2 too large for the short data
type, would result in an output of –32767, an attempt to assign to testScore 32770, which is
3 too large for the short data type, would result in an output of –32766, and so on. Figure
3-2 illustrates how the overflow value is reached.

Figure 3-2: Overflow

The converse of overflow is underflow. Underflow occurs when a variable is assigned a
value too small for its range. The output of the following code is “Your test score is 32767.”
The value assigned, –32769, is 1 too small for the short data type. Therefore, the value
underflows and wraps around to the data type’s highest possible value, 32767.
#include <iostream>
using namespace std;
int main(void)
{
 short testScore;
 testScore = -32769;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

Similarly, an attempt to assign to testScore –32770, which is 2 too small for the short data
type, would result in an output of 32766, an attempt to assign to testScore –32771, which is
3 too small for the short data type, would result in an output of 32765, and so on. Figure 3-
3 illustrates how the underflow value is reached.

Figure 3-3: Underflow

Note
Floating-point variables, of the float or double data type, also may overflow or
underflow. However, the result depends on the compiler used, and may be a run-
time error stopping your program, or instead an incorrect result.

Using the cin Object

Thus far, the programmer has supplied the values that are assigned to variables. However,
most programs are interactive, asking the user to provide information, which the user then
inputs, usually via the keyboard.

In Chapter 1, we used the cout object to output information to a standard output, usually the
monitor. Now we will use the cin object to obtain information from standard input, which
usually is the keyboard. The cin object, like the cout object, is defined in the standard library
file <iostream>, which therefore must be included (with an include directive) if your code
uses cin.

The syntax of a cin statement is
cin >> [variable name];

The cin object is followed by >>, which is the stream extraction operator. It obtains the
input, usually from the keyboard, and assigns that input to the variable to its right.

Tip

Knowing when to use >> instead of << can be confusing. It may be helpful to
remember that the >> and << operators each point in the direction that data is
moving. For example in the expression cin >> var, data is moving from standard
input into the variable var. By contrast, in the expression cout >> var, the <<
indicates that data is moving from the variable var to standard output.

When your program reaches a cin statement, its execution halts until the user types
something at the keyboard and presses the ENTER key. Try running the following program.
You will see a blinking cursor until you type a number. Once you type a number and press
ENTER, the program will output “Your test score is” followed by the number you inputted.
For example, if you inputted 100, the output will be “Your test score is 100.”
#include <iostream>
using namespace std;
int main(void)

{
 int testScore;
 cin >> testScore;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

This program is not very user friendly. Unless the user happened to know what your
program did, they would not know what information is being asked of them. Accordingly, a
cin statement usually is preceded by a cout statement telling the user what to do. This is
called a prompt. The following code adds a prompt:
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 cout << "Enter your test score: ";
 cin >> testScore;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

The program input and output could be
Enter your test score: 78
Your test score is 78

Assigning a “Compatible” Data Type

As with the assignment operator, the value being assigned by the cin operator need not
necessarily be the exact same data type as that of the variable to which the value is being
assigned. In the previous program, entering a floating-point value, 77.83, at the prompt for
entry of the test score results in the following output: “The test score is 77.” Data is lost,
though, specifically the part of the number to the right of the decimal point. The cin
statement will not read the part of the number to the right of the decimal point because it
cannot be stored in a whole number variable.

However, the value being assigned by the cin operator must be compatible with the data
type of the variable to which the value is being assigned. In the preceding program, typing
“Jeff” at the prompt for entry of the test score results in the following output: “Your test
score is –858993460.”

Obviously, –858993460 is not a test score anyone would want. Less obvious is the reason
why that number is outputted.

The string literal “Jeff” cannot be assigned to an integer variable such as testScore.
Therefore, the cin operator will not assign “Jeff” to that integer variable. Therefore, when
the cout statement attempts to output the value of testScore, that variable has not yet been
assigned a value.

When testScore was declared, there was some value at its memory address left over from
programs previously run on the computer. The cout statement, when trying to output the
value of testScore, does the best it can and attempts to interpret this leftover value. The
result of that interpretation is –858993460.

Note

Compile Time vs. Run-Time Difference When Incompatible Data Types Are
Assigned—Earlier in this chapter, the attempt to assign “Jeff” to testScore
(testScore = “Jeff”;) resulted in a compiler error. Here, the attempt to assign
“Jeff” to testScore using a cin statement instead results in an incorrect value.
The reason that this time there is no compiler error is because the value the
user would input could not be known at compile time, but instead would be
known only at run time. Therefore, there would be no compile error, since at the
time of compilation there was no attempt to assign an incompatible value.

Inputting Values for Multiple Variables

If you are inputting values for several variables, you could input them one line at a time.
#include <iostream>
using namespace std;
int main(void)
{
 int myWeight, myHeight;
 string myName;
 cout << "Enter your name: ";
 cin >> myName;
 cout << "Enter your weight in pounds: ";
 cin >> myWeight;
 cout << "Enter your height in inches: ";
 cin >> myHeight;
 cout << "Your name score is " << myName << "\n";
 cout << "Your weight in pounds is " << myWeight << "\n";
 cout << "Your height in inches is " << myHeight << "\n";
 return 0;
}

The output of the program, with the input of “Jeff” for the name, 200 for the pounds, and 72
for the height, is
Enter your name: Jeff

Enter your weight in pounds: 200
Enter your height in inches: 72
Your name is Jeff
Your weight in pounds is 200
Your height in inches is 72

Instead of having separate prompts and cin statements for each variable, you can have one
cin statement assign values to all three variables. The syntax is
cin >> [first variable] >> [second variable] >>
 [third variable];

The same syntax would work when using one cin statement to assign values to four or more
variables. The variables are separated by the stream extraction operator >>.

When you use one cin statement to assign values to multiple variables, the user separates
each input by one or more spaces. The space tells the cin object that you have finished
assigning a value to one variable and the next input should be assigned to the next variable
in the cin statement. As before, the user finishes input by choosing the ENTER key.

The following program uses one cin statement to assign values to three variables:
#include <iostream>
using namespace std;
#include <string>
int main(void)
{
 int myWeight, myHeight;
 string name;
 cout << "Enter your name, weight in pounds and height
 in inches\n";
 cout << "The three inputs should be separated by a
 space\n";
 cin >> name >> myWeight >> myHeight;
 cout << "Your name is " << name << "\n";
 cout << "Your weight in pounds is " << myWeight << "\n";
 cout << "Your height in inches is " << myHeight << "\n";
 return 0;
}

The interaction between user input and the cin statement could be as follows:

The user would type “Jeff,” followed by a space.

The space tells the cin object that the first input has ended, so the cin object will
assign “Jeff” to the first variable in the cin statement, name.

The user would type 200, followed by a space.

The space tells the cin object the second input has ended, so the cin object will
assign 200 to the next variable in the cin statement, myWeight.

The user would type 200, and then press the ENTER key.

The ENTER key tells the cin object that the third and final input has ended, so the
cin object will assign 72 to the remaining variable in the cin statement, myHeight,
which completes execution of the cin statement.

The resulting program output would be
Enter your name, weight in pounds and height in inches
The three inputs should be separated by a space
Jeff 200 72
Your name is Jeff
Your weight in pounds is 200
Your height in inches is 72

Assigning a “Compatible” Data Type

The data types in the cin statement may be different. In this example, the data type of the
first variable is a string, whereas the data type of the second and third variables is an
integer.

What is important is that the order of the input matches the order of the data types of the
variables in the cin statement. The input order “Jeff,” 200, and 72 is assigned to the
variables in the order of their appearance in the cin statement, myName, myWeight, and
myHeight. Therefore, “Jeff” is assigned to the string variable myName, 72 to the integer
variable myWeight, and 200 to the integer variable myHeight.

The importance of the order of the input matching the order of the data types of the
variables in the cin statement is demonstrated by changing the order of the user’s input from
“Jeff,” 200, and 72, to 200, “Jeff,” and 72. The program output then would be
Enter your name, weight in pounds and height in inches
The three inputs should be separated by a space
200 Jeff 72
Your name is 200
Your weight in pounds is -858993460
Your height in inches is -858993460

While I would like to lose weight, –858993460 seems a bit extreme. Also, while it is
understandable why “Jeff” cannot be assigned to my weight, 72 was not assigned to my
height either.

The one output that is correct is the name. Any characters, including digits, can be part of a
string. Therefore, while 200 may be an unusual name to us, it is perfectly OK for cin, which
therefore assigns 200 to the string variable name.

Why –858993460 was outputted for myWeight also has been explained earlier in the
example in which the user entered “Jeff” at the prompt to enter a test score.

However, 72 would be a valid value for assignment to the integer variable myHeight. Why
then isn’t 72 the output for height?

The reason is that the next value for cin to assign is not 72, but instead “Jeff.” Since cin was
unable to assign “Jeff” to myWeight, the value “Jeff” remains next in line for assignment,
this time to the variable myHeight. Unfortunately, cin is unable to assign “Jeff” to myHeight
either, so the value of myHeight, like myWeight, also is outputted as –858993460.

Inputting Multiple Words into a String

Finally, cin will only take the first word of a string. If in the following program you input “Jeff
Kent” at the prompt, the output will be “Your name is Jeff” not “Your name is Jeff Kent.”
#include <iostream>
using namespace std;
#include <string>
int main(void)
{
 string name;
 cout << "Enter your name: ";
 cin >> name;
 cout << "Your name is " << name;
 return 0;
}

The reason why the value of name is outputted only as “Jeff,” omitting “Kent,” is that the cin
object interprets the space between “Jeff” and “Kent” as indicating that the user has
finished inputting the value of the name variable.

The solution involves using either the get or getline method of the cin object. These methods
will be covered in Chapter 10.

Overflow and Underflow

The consequences of an overflow or underflow of whole number variables is more
unpredictable with cin than with the assignment operator. Inputting either 32768, which is 1
more than the highest number in the range of a short data type, or –32769, 1 less than the
lowest number in that range, results on my computer in the output “Your test score is –
13108.”

#include <iostream>
using namespace std;
int main(void)
{
 short testScore;
 testScore = 32768;
 cout << "Your test score is " << testScore << "\n";
 return 0;
}

Summary
A variable serves two purposes. It provides you with a way of referring to particular
information, and also reserves the amount of memory necessary to store that information.

You must create a variable before you can start using it. You create a variable by declaring
it. You may declare multiple variables of the same type in one statement.

You can use the address operator, &, to determine the address of a variable, and the
sizeof operator to determine the size of a variable.

The purpose of a variable is to store information. Therefore, after you have created a
variable, the next logical step is to specify the information that the variable will store. This is
called assigning a value to a variable.

A variable can be assigned a value either by the programmer in code or by the user, usually
via the keyboard, when the program is running. You use the assignment operator to assign
a value supplied by code. You use the cin object to assign a value supplied by the user.

In the next chapter, you will learn how to use variables to perform arithmetic.

Quiz
1. What is the effect of declaring a variable?

2. Can you refer to a variable before declaring it as long as you declare it later?

3. Can you declare several variables in the same statement?

4. What is a “naming convention” with respect to variables?

5. What is the difference between the address and sizeof operators?

6. What is initialization?

7. What is overflow?

8. What is the consequence of using an assignment operator to assign a string value
to an integer variable?

9. Do you use the cin object for compile time or run-time assignment of values to
variables?

10. Can you use one cin statement to assign values to several variables of different
data types?

Chapter 4: Arithmetic Operators

Overview
When I went to elementary school, which as far as my kids are concerned was when
dinosaurs roamed the earth, I had to perform arithmetic calculations by hand or in my head.
There were no calculators, only slide rules. (Warning: You may date yourself by even
admitting you know what a slide rule is!)

When it was my kids’ turn to go to school, and I’d ask them to perform an arithmetic
calculation while going over their homework or tests, they would whip out a calculator.
When I asked them to perform the calculation by hand or in their head, they would look at
me with mixed amazement and pity and exclaim “Aw, Dad, no one does it that way
anymore.”

Maybe my kids were right. When I write computer programs, I don’t do it “that way”
anymore either. I let the fastest, most accurate calculator I own do the work: my computer.

Many computer programs need to perform calculations. Computers, in addition to being
able to store vast amounts of data, also can calculate far more quickly and accurately than
we can. Thus, you use arithmetic operators to harness your computer’s calculating ability,
something which we will explore in this chapter.

Arithmetic Operators
An operator is a symbol that represents a specific action. We have discussed and used
operators in prior chapters, including the assignment operator, =. C++ also supports
operators for arithmetic, specifically addition, subtraction, multiplication, and division.
Operators used for arithmetic are called, naturally enough, arithmetic operators. Table 4-1
summarizes them.

Table 4-1: Arithmetic Operators

Operator Purpose Example Result

+ Addition 5 + 2 7

- Subtraction 5 – 2 3

* Multiplication 5 * 2 10

/ Division (Quotient) 5 / 2 2

% Division (Remainder) 5 % 2 1

The % operator, also called the modulus operator, may look unfamiliar. It returns the
remainder in division, and will be explained in the “Division Operators” section later in this
chapter.

Arithmetic operators are binary operators because they operate on two operands, binary
being a reference to 2, and operand referring to each of the two values that is in the
arithmetic expression. For example, in the expression 5 + 2, the + sign is the operator, and
the 5 and 2 each is an operand.

Note

Not all operators are binary. For example, in the expression –3, the negative sign,
or negation operator, is a unary operator because it operates on only one
operand, which is the integer 3 in this example. There also are ternary operators,
which operate on 3 operands. However, all arithmetic operators involve two
operands—no more, no less.

The arithmetic operators work with negative as well as positive numbers, and, with the
exception of the modulus operator, floating point numbers (numbers with values to the right
of the decimal point) as well as whole numbers. The addition operator also works with
strings as well as with numbers.

This chapter will demonstrate each of the arithmetic operators in a working program which
tracks student enrollment in a course. The scenarios in the program are real world, based
on my experience teaching computer science at a community college in the San Fernando
Valley area of Los Angeles.

The Addition Operator

At the community college where I teach computer science, students often will pre-register,
enrolling in a course before the semester starts. However, some students will add a course
during the first few weeks of the semester.

The following program has two integer variables, total and added. The program first assigns
to total the value inputted by the user for the number of preregistered students. The
program then assigns to added the value inputted by the user for the number of students
adding the course. Afterward, the program uses the addition operator to add two operands,
total and added. The resulting sum is then assigned to total, which now reflects the number
of all students in the course, both preregistered and added. That sum then is outputted.
#include <iostream>
using namespace std;
int main(void)
{
 int total, added;
 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "Total number of students: " << total;
 return 0;
}

The input and output of the program could be
Enter number of registered students: 30
Enter number of students adding the course: 3
Total number of students: 33

Combined Assignment and Arithmetic Operator

New programmers sometimes are confused by statements such as total = total + added
because, in mathematics, a variable cannot equal itself plus another number. However, this
statement is not made in mathematics, but in C++ programming, in which the = operator is
not used for equality, but instead for assignment.

Nevertheless, there also is another way to express total = total + added:
 total += added;

To the compiler, it makes no difference whether you use total = total + added or total +=
added. However, many programmers prefer total += added, some because it looks more

elegant, others because it seems more readable, and still others for the practical reason
that it requires less typing.

This compact form of combining arithmetic and assignment operators is not limited to the
addition operator. As Table 4-2 shows, it also can be used with the other arithmetic
operators. In that table, it is assumed a is a previously declared integer variable.

Table 4-2: Combining Arithmetic and Assignment Operators

Statement Combining Operators

a = a + 2; a +=2;

a = a – 2; a –=2;

a = a * 2; a *=2;

a = a / 2; a /=2;

a = a % 2; a %=2;

Precedence Between Arithmetic and Assignment Operators

The statement total = total + added uses two operators, assignment and arithmetic. The
arithmetic operation has precedence over the assignment operation. This means the
addition is performed before the assignment. This makes more sense intuitively than the
other order. However, as I will explain in detail later in this chapter, precedence also arises
when more than one arithmetic operator is used in a statement, and there the correct order
is less intuitive.

Overflow and Underflow

Overflow and underflow applies to the results of addition. The range of the int data type on
my compiler and operating system is –2,147,483,648 to 2,147,483,647. Here is the result
of my class starting with a very large preregistration, 2,147,483,647, and then adding one
more student:
Enter number of preregistered students: 2147483647
Enter number of students adding the course: 1
Total number of students: -2147483648

While negative inputs make no sense in this program since you can’t have a negative
number of students enroll in or add a class, other programs may use negative numbers,
such as for below zero temperatures. Therefore, the following input uses negative numbers
to illustrate underflow with the addition operator.
Enter number of preregistered students: -2147483648
Enter number of students adding the course: -1

Total number of students: 2147483647

Adding Strings

While we think of addition as involving numeric operands, the addition operator also can be
used with string operands. The output of the following code is: “Your name is JeffKent.”
#include <iostream>
#include <string>
using namespace std;
int main(void)
{
 string firstName = "Jeff";
 string lastName = "Kent";
 cout << "Your name is " << firstName + lastName;
 return 0;
}

Adding two strings has the effect of appending the second string operand to the first string
operand. Appending means adding the contents of the second string to the end of the first
string.

While you can add numbers and numbers, or strings and strings, attempting to add a
number and a string will cause a compiler error. The addition operator may perform
arithmetic addition with two numeric operands, or appending with two string operands, but it
does not know how to add a numeric operand and a string operand.

The Subtraction Operator

At the community college where I teach, students leave the class as well as join it. Some of
the preregistered students never show up. Other students who show up later decide to
drop the course.

The following program builds on the one we used with the addition operator by adding one
integer variable, dropped for students who I dropped because they never showed up, or
who dropped themselves from the course. The dropped variable is assigned a value by the
user. The program then uses the subtraction operator to update total.
#include <iostream>
using namespace std;
int main(void)
{
 int total, added, dropped;
 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";

 cin >> added;
 total = total + added;
 cout << "How many students dropped? ";
 cin >> dropped;
 total -= dropped;
 cout << "Total number of students: " << total << endl;
 return 0;
}

The input and output of the program could be
Enter number of pre-registered students: 30
Enter number of students adding the course: 3
How many students dropped? 5
Total number of students: 28

In this example, we used the combined assignment and arithmetic operator –= in the
expression total –= dropped, rather than total = total – dropped. As explained with the
addition operator, either alternative will work the same way.

The effect of overflow and underflow are the same with the subtraction operator as with the
addition operator. However, unlike the addition operator, the subtraction operator will not
work with string operands.

The Multiplication Operator

Returning to my community college course example, all students who enroll in a course owe
a tuition of $72, even if they don’t show up or later drop the course.

The following program builds on the one we used with the addition operator by adding the
following statement:
cout << "Total tuition owed: $" << (total + dropped) * 72
 << endl;

The program now reads
#include <iostream>
using namespace std;
int main(void)
{
 int total, added, dropped;
 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;

 total = total + added;
 cout << "How many students dropped? ";
 cin >> dropped;
 total -= dropped;
 cout << "Total number of students: " << total << endl;
 cout << "Total tuition owed:
 $" << (total + dropped) * 72
 << endl;
 return 0;
}

The input and output of the program could be
Enter number of preregistered students: 30
Enter number of students adding the course: 3
How many students dropped? 5
Total number of students: 28
Total tuition owed: $2376

The variables total and dropped are added so that total reflects all students ever enrolled,
even if they are no longer in the class, because all students owe tuition even if they don’t
show up or later drop the course.

The effect of overflow and underflow are the same with the multiplication operator as with
the addition and subtraction operators. Unlike the addition operator, but like the subtraction
operator, the multiplication operator will not work with string operands.

Precedence Between Arithmetic Operators

The statement we added has two arithmetic operators, for addition and multiplication. The
order in which the two arithmetic operations are performed makes a difference. If addition
is performed first, 28 + 5, and then the sum, 33, is multiplied by 72, the result is 2376.
However, if multiplication is performed first, 5 * 72, and then the product, 360, is added to
28, the result would be 388.

C++ has rules, called precedence, for determining which operation is performed first.
Precedence was discussed earlier in this chapter in the section on the addition operator
concerning the precedence of arithmetic operators over the assignment operator. However,
here the issue is precedence between arithmetic operators.

Table 4-3 lists the precedence between arithmetic operators.

Table 4-3: Precedence of Arithmetic Operators

Precedence Operator

Highest – (unary negation)
Middle * / %

Lowest + –

When there is more than one operator in a row in Table 4-3, those operators have equal
precedence. Thus, the multiplication operator and the two division operators have equal
precedence. Similarly, the addition and subtraction operators have equal precedence.

Table 4-4 shows the results of applying precedence to several arithmetic expressions. We
have not reviewed the division operators yet, but in the examples in Table 4-4 the / operator
works exactly as it does in arithmetic.

Table 4-4: Precedence in Action

Expression Result

2 + 3 * 4 14, not 20

8 / 2 – 1 3, not 8

C++ also has rules called associativity for determining which operation is performed first
when two operators have equal precedence. Table 4-5 describes those rules.

Table 4-5: Associativity of Arithmetic Operators

Operator Associativity

(unary negation) Right to left

* / % Left to right

+ – Left to right

Therefore, the result of the expression 8 / 2 * 4 is 16, not 1, because division, being the
leftmost operator, is performed first.

However, there are times when you want to override the default precedence. For example,
in our program, in calculating tuition, the default precedence would be to multiply dropped
by 72, after which the product would be added to total. However, we want to change the
order of operations so that dropped is first added to total, and the sum then multiplied by
72.

You can override the default precedence with parentheses. This is done in the statement:
cout << "Total tuition owed: $" << (total + dropped) * 72
 << endl;

Expressions in parentheses are done first. As a result of the parentheses, the expression
(total + dropped) * 72 is evaluated so that dropped is first added to total, and the sum is
then multiplied by 72.

Division Operators

Addition, subtraction, and multiplication each have one operator. However, division has two.
The / operator gives you the quotient, while the % (or modulus operator) gives you the
remainder.

Quotient and remainder, along with dividend and divisor, are terms that I first learned in
elementary school and then did not use very much again until many years later. If you are
rusty on your arithmetic terminology like I was, this example may help. In the problem 7
divided by 2, 7 is the dividend and 2 is the divisor. The result of this division is that 3 is the
quotient and 1 is the remainder.

The Division Operator

The division operator returns the quotient. However, the value of the quotient depends on
whether at least one of the operands is a floating point data type.

For example, the value of 10 / 4 is 2.5. However, in C++, the value is 2 because, when both
operands are an integer or other whole number data type, then the result is an integer as
well, and the remainder is not part of the quotient. This is true even if the result is assigned
to a floating point variable. The output of the following program is 10 / 4 = 2.
#include <iostream>
using namespace std;
int main(void)
{
 int firstOp = 10, secondOp = 4;
 float result = firstOp / secondOp;
 cout << firstOp << " / " << secondOp << " = " << result;
 return 0;
}

However, the value of 10.0 / 4 is 2.5 in C++. When at least one of the operands is a floating
point data type, and 10.0 would be interpreted as floating point, then the result is a floating
point as well. The output of the following program is 10 / 4 = 2.5 because we changed the
data type of firstOp from int to float:
#include <iostream>
using namespace std;
int main(void)
{

 float firstOp = 10, result;
 int secondOp = 4;
 result = firstOp / secondOp;
 cout << firstOp << " / " << secondOp << " = " << result;
 return 0;
}

Going back to the first example, if you want the result of the division of two integer variables
to be a float, then you have to cast one of the variables to a float. A cast does not change
the data type of the variable, just the data type of the value of the variable during the
completion of the operation. You cast the variable by putting the desired data type in front
of it in an expression, and placing either the desired data type or the variable in
parentheses. This is how the first example could be changed to make the result of integer
division a float:
#include <iostream>
using namespace std;
int main(void)
{
 int firstOp = 10, secondOp = 4;
 float result = (float) firstOp / secondOp;
 cout << firstOp << " / " << secondOp << " = " << result;
 return 0;
}

All of the following expressions would work
float result = (float) firstOp / secondOp;
float result = float (firstOp) / secondOp;
float result = firstOp / (float) secondOp;
float result = firstOp / float (secondOp);

However, in some programs you may want integer division so that the quotient will ignore
the fractional value. The Change Machine project later in the chapter is an example.

Let’s now put this into practice with the student enrollment program. In the last modification
to this program, tuition was calculated based on all students who ever enrolled in the
course, even if they no longer were in the course. The addition to the program calculates
and displays the average tuition per student still enrolled. An integer variable tuition is
added to store the total tuition collected, which is calculated using the expression (total +
dropped) * 72. The average tuition per student still enrolled then is calculated and displayed
with the statement:
cout << "Average tuition per enrolled student: $"
 << (float)
 tuition / total;

The code now reads
#include <iostream>
#include <string>
using namespace std;
int main(void)
{
 int total, added, dropped, tuition;
 cout << "Enter number of preregistered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "How many students dropped? ";
 cin >> dropped;
 total -= dropped;
 cout << "Total number of students: " << total << endl;
 tuition = (total + dropped) * 72;
 cout << "Total tuition owed: $" << tuition << endl;
 cout << "Average tuition per enrolled student: $"
 << (float) tuition / total;
 return 0;
}

The input and output could be
Enter number of preregistered students: 30
Enter number of students adding the course: 3
How many students dropped? 5
Total number of students: 28
Total tuition owed: $2376
Average tuition per enrolled student: $84.8571

The casting of one of the operands to a float is necessary. Otherwise, the average tuition
would be $84 instead of $84.8571.

The Modulus Operator

The modulus operator also involves division, but returns only the remainder. For example,
the result of 7 % 2 is not the quotient, 3, but the remainder, 1.

The modulus operator works only with whole number operands. The result of an attempt to
use it with a floating point operand is undefined. The result often is a compiler error, but this
is compiler dependent.

The modulus operator will be used in the Change Machine project later in this chapter.

Caution Whether you use the / or the % operator, you cannot divide by zero. The
result is an error.

Exponents

C++, unlike some other programming languages, does not have an exponent operator.
Instead, it has a built-in function named pow, which is defined in the standard library cmath.
The name pow is shorthand for power, since with exponents one number is raised to the
power of another.

The pow function has two arguments. The first argument is the number that is being raised
to a certain power. The second argument is the power the first argument is being raised to.
Therefore, the expression pow (4, 2) would be used to raise 4 to the power of 2, the result
being 16.

While in the example 4 to the power of 2, the result is a whole number, the pow function
returns a double data type. Floating point numbers also can be raised to a power, resulting
in another floating point number. Additionally, whole numbers can be raised to a negative
power, which also may result in a floating point number.

The pow function is useful for solving math problems. The formula for the area of a circle is
area = pr2. Assuming a value of p of 3.14159, two double variables area and radius, and
that radius has already been assigned a value, the code for determining the circle’s area is
area = 3.14159 * pow(radius, 2);

The following program calculates the area of a circle based on a radius inputted by the
user.
#include <iostream>
#include <cmath>
using namespace std;
int main(void)
{
 double radius, area;
 cout << "Enter radius of circle: ";
 cin >> radius;
 area = 3.14159 * pow(radius, 2);
 cout << "The area is " << area << endl;
 return 0;
}

The input and output could be
Enter radius of circle: 6
The area is 113.097

The Change Machine Project
My mother was not above using a change machine to distract cranky or mischievous young
grandchildren. The youngsters poured hundreds of pennies into the top of the machine, and
watched with fascination (fortunately, youngsters are easily fascinated) as the machine
sorted the pennies into amounts of change that could be taken to the bank and exchanged
for dollars, quarters, and bigger loot. The youngsters were motivated as well as fascinated,
since guess who got to keep the quarters?

Program Description

This program will ask the user to input the number of pennies. You may assume the user
will input a positive whole number. The code then will output the number of dollars, quarters,
dimes, nickels, and pennies. The input and output could be
Enter number of pennies to make change for: 387
Dollars: 3
Quarters: 3
Dimes: 1
Nickels: 0
Pennies: 2

The next section will reproduce the code, and the section following will explain the code.
However, as a programming challenge, first try to write the code yourself. If you can, great!
If not, no problem; you still will learn more from the code and the explanation if you first try
to write this program.

As a hint (you don’t have to look), here are the first three lines of code in main:
 int total, dollars, quarters, dimes, nickels, leftover;
 cout << "Enter number of pennies to make change for: ";
 cin >> total;

The variable total will be assigned the total number of pennies entered by the user. The
variable dollar will be assigned the number of dollars in the pennies, 3 in the preceding
sample run for 387 total pennies. The variables quarters, dimes, and nickels will be
assigned the number of quarters, dimes, and nickels in the change, 3, 1, and 0,
respectively, in the previous sample run for 387 total pennies. The variable leftover
ultimately will be assigned the number of pennies in the change (2 in the prior sample run for
387 total pennies), but also will be used for other purposes. Of course, you could write this
program with a few more, or a few less, variables.

The Code

There is more than one way to write this program. Here is how I wrote it:

#include <iostream>
#include <string>
using namespace std;
int main(void)
{
 int total, dollars, quarters, dimes, nickels, leftover;
 cout << "Enter number of pennies to make change for: ";
 cin >> total;
 dollars = total / 100;
 leftover = total % 100;
 quarters = leftover / 25;
 leftover %= 25;
 dimes = leftover / 10;
 leftover %= 10;
 nickels = leftover / 5;
 leftover %= 5;
 cout << "Dollars: " << dollars << endl;
 cout << "Quarters: " << quarters << endl;
 cout << "Dimes: " << dimes << endl;
 cout << "Nickels: " << nickels << endl;
 cout << "Pennies: " << leftover << endl;
 return 0;
}

The Algorithm

You learned in Chapter 1 that in a computer program a computer programmer gives
instructions to a computer. These instructions are in a programming language such as C++.
However, before you can write code, you need to formulate the instructions in English or
whatever other language you think in.

An algorithm, pronounced “Al Gore rhythm,” is a step-by-step logical procedure for solving a
problem. You frequently will need to create and implement algorithms. Implementing
algorithms in your code is computer programming. Creating algorithms is a skill that can be
developed from any field that requires analytical thinking, including, but not limited to,
mathematics as well as computer programming.

Let’s say you were given a number of pennies, such as 387, and you had to determine, in
your head, how many dollars, quarters, dimes, nickels, and pennies to give as change. How
would you do it?

A logical approach is to start with dollars. There are 100 pennies in a dollar. If 387 is
divided by 100, the quotient is the number of dollars in the pennies: 3.

One problem is that 387 divided by 100 could be 3.87, not 3. However, as discussed earlier
in this chapter in the “Division Operators” section, when an integer is divided by an integer,
then the result always is an integer unless one of the integer operands first is cast to a
float. We want the result of the division to be an integer, so we will not cast either of the
integer operands to a float.

Since the beginning number of pennies (387) is stored in the integer variable total, if total is
divided by 100, also regarded as an integer, the quotient is the number of dollars in the
pennies, 3.
 dollars = total / 100;

After you take out 300 pennies (3 dollars) from the pile of 387 pennies, 87 pennies are left
over. 87 is the remainder of the division total / 100. We obtain this remainder with the
modulus operator, and assign it to the integer variable leftover:
 leftover = total % 100;

Next, you follow the same procedure to determine the number of quarters in the 87 pennies
left over. The only differences are that the divisor is 25 instead of 100 and the number of
pennies left is represented by leftover instead of total.
 quarters = leftover / 25;
 leftover %= 25;

The same process is followed for determining the number of dimes and nickels:
 dimes = leftover / 10;
 leftover %= 10;
 nickels = leftover / 5;
 leftover %= 5;

The number of pennies left over after division by 5 cannot be converted into higher change.
Accordingly, there is no need for further division. There also is no need for a separate
variable for pennies because leftover stores the number of pennies left.

All that remains is to output the values of the variables representing the dollars, quarters,
dimes, nickels, and pennies.

This method of solving the problem by dividing the total number of pennies by the number of
pennies in a dollar, storing the quotient in a variable holding the number of dollars, and
dividing the remainder by the number of pennies in a quarter and so on, is an algorithm. We
will be discussing many algorithms in this book.

Summary
Many computer programs need to perform calculations. Computers, in addition to being
able to store vast amounts of data, also can calculate far faster and more accurately than
we can. You use arithmetic operators to harness the computer’s calculating ability.

C++ supports arithmetic operators for addition, subtraction, multiplication, and division.
While addition, subtraction, and multiplication each have one operator, division has two. The
/ operator gives you the quotient, while the % (or modulus operator) gives you the
remainder.

The arithmetic operators all work with whole number operands. All but the modulus operator
also work with floating number operands. The addition operator also works with string
operands, appending one string to another.

C++, unlike some other programming languages, does not have an exponent operator.
Instead, it has a built-in function named pow which is defined in the standard library cmath.

In the next chapter, you will learn about relational and logical operators and control
structures, which enable your program to take different actions depending on choices the
user makes while the program is running.

Quiz
1. Which of the four arithmetic operations has more than one operator?

2. Which of the arithmetic operators can operate on string as well as numeric
operands?

3. Which of the arithmetic operators cannot have a floating point operand?

4. Which of the arithmetic operators cannot have a zero as a second operand?

5. Assuming total is a variable, how else could you express in code total = total + 2?

6. What is the result of 2 + 3 * 4?

7. What is the result of the expression 8 / 2 * 4?

8. What is the result of the expression 10 / 4?

9. What operator or function do you use to raise a number to a certain power?

10. What is an algorithm?

Chapter 5: Making Decisions: if and switch Statements

Overview
The famous poem “The Road Not Taken” by Robert Frost begins: “Two roads diverged in a
yellow wood, and sorry I could not travel both.” This poem illustrates that life, if nothing
else, presents us with choices.

Similarly, computer programs present their users with choices. So far, for the sake of
simplicity, the flow of each program has followed a relatively straight line, taking a
predetermined path from beginning to end. However, as programs become more
sophisticated, they often branch in two or more directions based on a choice a user makes.
For example, when I am buying books online, I am presented with choices such as adding
another item to my shopping cart, recalculating my total, or checking out. The program does
something different if I add another item to my shopping cart rather than check out.

The program determines the action it takes by comparing my choice with the various
alternatives. That comparison is made using a relational operator. There are relational
operators to test for equality, inequality, whether one value is greater (or less) than another,
and other comparisons.

The code then needs to be structured so different code executes depending on which
choice was made. This is done using either the if statement or the switch case statement,
both of which we’ll discuss in this chapter.

We’ll also discuss flowcharting, which enables you to visually depict the flow of a program.
Flowcharting becomes increasingly helpful as we transition from relatively simple programs
that flow in a straight line to more complex programs that branch in different directions.

Relational Operators
We make comparisons all the time, and so do programs. A program may need to determine
whether one value is equal to, greater than, or less than another value. For example, if a
program calculates the cost of a ticket to a movie in which children less than 12 get in free,
it needs to find out if the customer’s age is less than 12.

Programs compare values by using a relational operator. Table 5-1 lists the relational
operators supported by C++:

Table 5-1: Relational Operators

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

Relational Expressions

Like the arithmetic operators discussed in the last chapter, the relational operators are
binary—that is, they compare two operands. A statement with two operands and a
relational operator between them is called a relational expression.

The result of a relational expression is a Boolean value, depicted as either true or false.
Table 5-2 lists several relational expressions, using different relational operators and their
values.

Table 5-2: Relational Expressions and Their Values

Relational Expression Value

4 == 4 true

4 < 4 false

4 <= 4 true

4 > 4 false

4 != 4 false

4 == 5 false

4 < 5 true

4 <= 5 true

4 >= 5 false

4 != 5 true

Table 5-2 uses operands that have literal values. A literal value is a value that cannot
change. 4 is a literal value, and cannot have a value other than the number 4.

Operands may also be variables (which were discussed in Chapter 3). The following
program outputs the results of several variable comparisons.
#include <iostream>
using namespace std;
int main(void)
{
 int a = 4, b = 5;
 cout << a << " > " << b << " is " << (a > b) << endl;
 cout << a << " >= " << b << " is " << (a >= b) << endl;
 cout << a << " == " << b << " is " << (a == b) << endl;
 cout << a << " <= " << b << " is " << (a <= b) << endl;
 cout << a << " < " << b << " is " << (a < b) << endl;
 return 0;
}

The program’s output is
4 > 5 is 0
4 >= 5 is 0
4 == 5 is 0
4 <= 5 is 1
4 < 5 is 1

In the output, 0 is false and 1 is true. 0 is the integer value of Boolean false, while 1 is the
usual integer value of Boolean true. As you may recall from Chapter 1, early computers
consisted of wires and switches in which the electrical current followed a path that
depended on which switches were in the on position (corresponding to the value one) or the
off position (corresponding to the value zero). The on position corresponds to Boolean true,
the off position to Boolean false.

Caution
While the usual integer value of logical true is 1, any non-zero number may be
logical true. Therefore, in a Boolean comparison, do not compare a value to 1,
compare it to true.

The data types of the two operands need not be the same. For example, you could change
the data type of the variable b in the preceding program from an int to a float and the
program still would compile and provide the same output. However, the data types of the
two operands need to be compatible. As you may recall from Chapter 3, compatibility
means, generally, that if one of the variable operands in the relational expression is a
numeric data type, then the expression’s other variable operand must also be a numeric
data type.

For example, the program would not compile if you changed the data type of the variable b
in the preceding program from an int to a string.

Precedence

Relational operators have higher precedence than assignment operators and lower
precedence than arithmetic operators. Table 5-3 lists precedence among relational
operators.

Table 5-3: Precedence of Relational Operators

Precedence Operator

Highest > >= < <=

Lowest == !=

Operators in the same row have equal precedence. The associativity of relational operators
of equal precedence is from left to right.

Flowcharting
A program, like a river, flows from beginning to end. Programmers may find it helpful, both
in writing code and in understanding someone else’s code, to visually depict the flow of the
program. After all, as the adage goes, a picture is worth a thousand words. The ability to
visualize the flow of a program becomes even more helpful as we transition from relatively
simple programs that flow in a straight line to more complex varieties that branch in different
directions based on the value of a relational expression.

Programmers use a flowchart to visually depict the flow of a program. Flowcharts use
standardized symbols prescribed by the American National Standard Institute (ANSI), which
prescribes other standards we will be using in this book. These flowcharting symbols
represent different aspects of a program, such as the start or end of a program, user input,
how it displays on a monitor, and so on. These symbols are joined by arrows and other
connectors which show the connections between different parts of the program and the
direction of the program flow. Figure 5-1 shows several commonly used flowchart symbols.
Others will be introduced later in this book as they are used.

Figure 5-1: Commonly used flowchart symbols

The following program from Chapter 4 can be depicted with a flowchart. As you may recall,
this program first assigns to the integer variable total the value inputted by the user for the
number of preregistered students. The program then assigns to the integer variable added
the value inputted by the user for the number of students adding the course. The program
then uses the addition operator to add two operands, total and added. The resulting sum is
then assigned to total, which now reflects the total number of students in the course, both
preregistered and added. That sum then is outputted.
#include <iostream>
using namespace std;
int main(void)
{

 int total, added;
 cout << "Enter number of pre-registered students: ";
 cin >> total;
 cout << "Enter number of students adding the course: ";
 cin >> added;
 total = total + added;
 cout << "Total number of students: " << total;
 return 0;
}

Figure 5-2 shows a flowchart of this program.

Figure 5-2: Flowchart of the program adding preregistered and added
students

This program was relatively linear. By contrast, the following programs will branch in
different directions based on the value the user inputs. We will use flowcharts in later
sections of this chapter to help explain how different code executes depending on the result
of comparisons with the user’s input.

The if Statement
The if statement is used to execute code only when the value of a relational expression is
true. The syntax of an if statement is
if (Boolean value)
 statement;

Both lines together are called an if statement. The first line consists of the if keyword
followed by an expression, such as a relational expression, that evaluates to a Boolean
value, true or false. The relational (or other Boolean) expression must be in parentheses,
and should not be terminated with a semicolon.

The next line is called a conditional statement. As you may recall from Chapter 1, a
statement is an instruction to the computer, directing it to perform a specific action. The
statement is conditional because it executes only if the value of the relational expression is
true. If the value of the relational expression is false, then the conditional statement is not
executed—meaning, it’s essentially skipped.

The following program, which tests if a whole number entered by the user is even,
illustrates the use of an if statement.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a whole number: ";
 cin >> num;
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 return 0;
}

If the user enters an even number, then the program outputs that the number is even.
Enter a whole number: 16
The number is even

However, if the user enters an odd number, then there is no output that the number is even.
Enter a whole number: 17

Figure 5-3 is a flowchart of this program. This flowchart has one new symbol: a diamond.
It’s used to represent the true/false statement being tested.

Figure 5-3: Flowchart of a program that determines whether a number is
even

Let’s now analyze how the program works. You may find the flowchart a helpful visual aid in
following this textual explanation.

The program first prompts the user to enter a number. It then stores that input in the integer
variable num.

The program next evaluates the relational expression num % 2 == 0, which is enclosed in
parentheses following the if keyword. That expression involves two operators, the
arithmetic modulus operator (%) and the relational equality operator (===). Since arithmetic
operators have higher precedence than relational operators, the expression num % 2 will
be evaluated first, with the result then compared to zero.

A number is even if, when divided by two, the remainder equals zero. You learned in
Chapter 4 that the modulus operator will return the remainder from integer division.
Accordingly, the expression num % 2 will divide the number entered by the user by two,
and return the remainder. That remainder then will be compared to zero using the relational
equality operator.

If the relational expression is true, which it would be if the number inputted by the user is
even, then the conditional statement executes, outputting “The number is even.” If the
relational expression is false, which it would be if the number inputted by the user is odd,
then the conditional statement is skipped, and it will not execute.

Indenting

It is good practice to indent the conditional statement.
 if (num % 2 == 0); // don't put a semicolon here!
 cout << "The number is even" << endl;

While the compiler doesn’t care whether you indent or not, indentation makes it easier for
you, the programmer, to see that the statement is conditional.

Common Mistakes

During several years of teaching C++ in an introductory programming class, I have noticed
several common mistakes in the writing of if statements. Some of these mistakes may
result in compiler errors and therefore are easy to spot. However, other mistakes are
harder to pick out since they do not cause an error, either at compile time or run-time, but
instead give rise to illogical results.

Don’t Put a Semicolon after the Relational Expression!

The first common mistake is to place a semicolon after the relational expression:
 if (num % 2 == 0); // don't put a semicolon here!
 cout << "The number is even" << endl;

Since the compiler generally ignores blank spaces, the following if statement would be the
same, and better illustrates visually the problem:
 if (num % 2 == 0)
 ; // don't put a semicolon here!
 cout << "The number is even" << endl;

No compiler error will result. The compiler will assume from the semicolon that it is an
empty statement. An empty statement does nothing, and though it is perfectly legal in C++,
and indeed sometimes has a purpose, here it is not intended.

One consequence will be that the empty statement will execute if the relational expression
is true. If this comes about, nothing will happen. So far, there is no harm done.

However, there is an additional consequence, an illogical result. The cout statement “The
number is even” will execute whether or not the relational expression is true. In other words,
even if an odd number is entered, the program will output “The number is even.”
Enter a whole number: 17
The number is even

The reason the cout statement will execute whether or not the relational expression is true
is that the cout statement no longer is part of the if statement. Unless you use curly braces
as explained in the next section, only the first statement following the if keyword and
relational expression is conditional. That first conditional statement is the empty statement,
by virtue of the semicolon following the if expression.

Curly Braces Needed for Multiple Conditional Statements

As just discussed, unless you use curly braces (explained later in this section), only the first
statement following the if keyword and relational expression is conditional. For example, in
the following code, only the first cout statement is conditional. The second cout statement is

not, so it will execute whether the relational expression is true or false:
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 cout << "And the number is not odd" << endl;

Note The indentation tells the programmer which statement is conditional and which is
not. The compiler ignores indentation.

Thus, if the user enters an odd number such as 17, the cout statement “The number is
even” will not display because the relational expression is false. However, the following
statement “And the number is not odd” will display because that statement does not belong
to the if statement.
Enter a whole number: 17
And the number is not odd

If you want more than one statement to be part of the overall if statement, you must encase
these statements in curly braces:
 if (num % 2 == 0)
 {
 cout << "The number is even" << endl;
 cout << "And the number is not odd" << endl;
 }

Now the second cout statement will execute only if the if expression is true.

Forgetting these curly braces when you want multiple statements to be conditional is
another common syntax error.

Don’t Mistakenly Use the Assignment Operator!

The third most common syntax error is to use the assignment operator instead of the
relational equality operator because the assignment operator looks like an equal sign:
 if (num % 2 = 0) // wrong operator!
 cout << "The number is even" << endl;

The result is that the if expression will not evaluate as the result of a comparison. Instead, it
will evaluate the expression within the parentheses as the end result of the assignment, with
a non-zero value being regarded as true, a zero value being regarded as false.

Note Some compilers will treat this mistake as a compiler error.

The if / else Statement
One problem with the program that tests whether a number is even is that there is no output
if the number is odd. While there is a conditional statement if the relational expression is
true, there is no corresponding conditional statement (cout << “The number is odd”) if the
relational expression is false.

The solution is to add an else part to the if statement. The result is an if / else statement.
The syntax of an if / else statement is
if (relational expression)
 conditional statement;
else
 conditional statement;

Accordingly, the program may be modified to add an else part to the if statement:
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a whole number: ";
 cin >> num;
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 else
 cout << "The number is odd" << endl;
 return 0;
}

Run this code. If the inputted number is even, then the output once again is “The number is
even.” However, if the number is now odd, instead of no output, the output is “The number
is odd.”
Enter a whole number: 17
The number is odd

Figure 5-4 uses a flowchart to illustrate this program.

Figure 5-4: Flowchart of program output if number is even or odd

Conditional Operator

This program could be rewritten using the conditional operator.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a whole number: ";
 cin >> num;
 cout << "The number is " << (num % 2 == 0 ? "even" :
 "odd") << endl;
 return 0;
}

The syntax of the conditional operator is
[Relational expression] ? [statement if true] :
[statement if false]

In this example, the relational expression is num % 2 == 0. If the value of the relational
expression is true, then the output is “even.” However, if the value of the relational
expression is false, then the output is “odd.”

The conditional operator requires three operands, the relational expression and the two
conditional statements. Therefore, it is considered a ternary operator.

Common Mistakes

Just as with the if statement, I noticed several common syntax mistakes with the else
statement while teaching C++ in introductory programming classes.

No else Without an if

You can have an if expression without an else part. However, you cannot have an else part
without an if part. The else part must be part of an overall if statement. This requirement is
logical. The else part works as “none of the above”; without an if part there is no “above.”

As a consequence, placing a semicolon after the Boolean expression following the if
keyword will result in a compiler error. Since curly braces are not used, the if statement
ends after the empty statement created by the incorrectly placed semicolon. The cout
statement “The number is even” is not part of the if statement. Consequently, the else part
is not part of the if statement, and therefore will be regarded as an else part without an if
part.
 if (num % 2 == 0); // don't put a semicolon here
 cout << "The number is even" << endl;
 else (num % 2 == 1)
 cout << "The number is odd" << endl;

Don’t Put a Relational Expression after the else Keyword!

Another common mistake is to place a relational expression in parentheses after the else
keyword. This will not cause a compiler or run-time error, but it will often cause an illogical
result.
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 else (num % 2 == 1)
 cout << "The number is odd" << endl;

The program will not compile, and the cout statement following the else expression will be
highlighted with an error description such as “missing ‘;’ before identifier ‘cout’.”

Actually, the error description is misleading. There is nothing wrong with the cout statement.
Instead, no relational expression should follow the else keyword. The reason is that the else
acts like “none of the above” in a multiple choice test. If the if expression is not true, then
the conditional statements connected to the else part execute.

Don’t Put a Semicolon after the Else!

Another common mistake is to place a semicolon after the else expression. This too will not
cause a compiler or run-time error, but often will cause an illogical result.

For example, in the following code, the cout statement “The number is odd” will output even
if the number that’s input is even.
 if (num % 2 == 0)
 cout << "The number is even" << endl;
 else; // don't put a semicolon here!
 cout << "The number is odd" << endl;

The result of inputting an even number will be
Enter a whole number: 16
The number is even
The number is odd

The cout statement “The number is odd” will execute whether or not the relational
expression is true because the cout statement no longer is part of the if statement. Unless
you use curly braces as explained already in connection with the if statement, only the first
statement following the else keyword is conditional. That first, conditional statement is the
empty statement by virtue of the semicolon following the if expression. Therefore, the cout
statement “The number is odd” is not part of the if statement at all.

Curly Braces Are Needed for Multiple Conditional Statements

As with the if expression, if you want more than one conditional statement to belong to the
else part, then you must encase the statements in curly braces. For example, in the
following code fragment, the cout statement “This also belongs to the else part” will always
display whether the number is even or odd since it does not belong to the if statement.
if (num % 2 == 0)
 cout << "The number is even" << endl;
else
 cout << "The number is odd" << endl;
cout << "This also belongs to the else part";

The sample input and output could be
Enter a whole number: 16
The number is even
This also belongs to the else part

Encasing the multiple conditional statements in curly braces solves this issue.
if (num % 2 == 0)
 cout << "The number is even" << endl;
else
{
 cout << "The number is odd" << endl;
 cout << "This also belongs to the else part";
}

The if /else if /else Statement
The program we used to illustrate the if/else statement involved only two alternatives.
Additionally, these alternatives were mutually exclusive; only one could be chosen, not both.
A whole number is either even or odd; it can’t be both and there is no third alterative. There
are many other examples of only two mutually exclusive alternatives. For example, a person
is either dead or alive, male or female, child or adult.

However, there are other scenarios where there are more than two, mutually exclusive
alternatives. For example, if you take a test, your grade may be one of five types: A, B, C,
D, or F. Additionally, these grades are mutually exclusive; you can’t get an A and a C on the
same test.

Since you can have only one if expression and only one else expression in an if statement,
you need another expression for the third and additional alternatives. That expression is
else if.

You use the if / else if / else statement when there are three or more mutually exclusive
alternatives. The if / else if / else statement has an if part and an else part, like an if/else
statement. However, it also has one or more else if parts.

Note While the if part is required, the else part is not. Without it, the statement would
be named an if / else if statement.

The else if part works similarly to an if expression. The else if keywords are followed by a
relational expression. If the expression is true, then the conditional statement or statements
“belonging” to the else if part execute. Otherwise, they don’t.

While an if statement may include only one if part and one else part, it may include multiple
else if parts.

The following program shows the if /else if /else statement in action in a program that
determines your grade based on your test score.
#include <iostream>
using namespace std;
int main(void)
{
 int testScore;
 cout << "Enter your test score: ";
 cin >> testScore;
 if (testScore >= 90)
 cout << "Your grade is an A" << endl;
 else if (testScore >= 80)
 cout << "Your grade is a B" << endl;

 else if (testScore >= 70)
 cout << "Your grade is a C" << endl;
 else if (testScore >= 60)
 cout << "Your grade is a D" << endl;
 else
 cout << "Your grade is an F" << endl;
 return 0;
}

Here are several sample runs, each separated by a dotted line:
Enter your test score: 77
Your grade is a C

Enter your test score: 91
Your grade is an A

Enter your test score: 55
Your grade is an F

Figure 5-5 uses a flowchart to illustrate this program.

Figure 5-5: Flowchart depiction of grading program

In this program, if your test score is 90 or better, then the conditional statement belonging
to the if part executes, displaying that you received an A. The relational expressions of each
of the following else if parts also are true; if your score is 90 or better, it also is 80 or
better, 70 or better, and so on. However, in an if / else if / else statement, only the
conditional statements in the first part whose relational expression is true will execute; the
remaining parts are skipped.

Common Syntax Errors

The common syntax errors for the if part discussed earlier in this chapter apply to the else if
part also. Don’t put a semicolon after the relational expression, and multiple conditional
statements must be enclosed in curly braces.

Additionally, just as you cannot have an else part without a preceding if part, you cannot
have an else if part without a preceding if part. However, you may have an if part and one
or more else if parts without an else part. The downside in omitting the else part is you will
not have code to cover the “none of the above” scenario in which none of the relational
expressions belonging to the if part and else if parts is true.

The switch Statement
The switch statement is similar to an if /else if /else statement. It evaluates the value of an
integer expression and then compares that value to two or more other values to determine
which code to execute.

The following program shows a switch statement in action in a program that determines
your average based on your grade:
#include <iostream>
using namespace std;
int main(void)
{
 char grade;
 cout << "Enter your grade: ";
 cin >> grade;
 switch (grade)
 {
 case 'A':
 cout << "Your average must be between 90 - 100"
 << endl;
 break;
 case 'B':
 cout << "Your average must be between 80 - 89"
 << endl;
 break;
 case 'C':
 cout << "Your average must be between 70 - 79"
 << endl;
 break;
 case 'D':
 cout << "Your average must be between 60 - 69"
 << endl;
 break;
 default:
 cout << "Your average must be below 60" << endl;
 }
 return 0;
}

Here are several sample runs, each separated by a dotted line:
Enter your grade: C
Your average must be between 70 - 79

Enter your grade: A
Your average must be between 90 - 100

Enter your grade: F
Your average must be below 60

Figure 5-6 uses a flowchart to illustrate this program.

Figure 5-6: Flowchart depiction of the grade determination program

Let’s now analyze the program.

The switch keyword evaluates an integer expression, grade. While grade is a character
variable, every character has a corresponding integer value.

Earlier in this chapter, we discussed flowchart symbols prescribed by the American National
Standard Institute (ANSI), and mentioned that ANSI also prescribes other standards that
we will be using in this book. One of those other standards is the ANSI character set, which
includes 256 characters, each having an integer value between 0 and 255. These values
also are called ASCII values, since values 0 to 127 of the ANSI character set are the same
as in the ASCII (American Standard Code for Information Interchange) character set.

Table 5-4 lists the ANSI/ASCII values for commonly used characters. Note that digits also
can be characters, and that the ANSI/ASCII value of an uppercase character is different
than the value of the corresponding lowercase character.

Table 5-4: Selected ANSI/ASCII Values

Character Value

0 48

9 57

A 65

Z 90

a 97

z 122

Each case keyword is followed by an integer expression that must be constant, that is, it
cannot change in value during the life of the program. Therefore, a variable cannot follow a
case keyword. In this program, the constant is a character literal, such as A, B, and so on.
Each character’s ANSI value is an integer value, and the integer expression is followed by a
colon.

Caution
A common mistake is to follow the integer expression not with a colon but with
a semicolon, which is typically used to terminate statements. This will cause a
compiler error.

The default keyword serves the same purpose as an else part in an if /else if /else
statement, and therefore is not followed by an integer expression.

The integer expression following the switch keyword is evaluated and compared with the
integer constant following each case keyword, from top to bottom. If there is a match—that
is, the two integers are equal—then the statements belonging to that case are executed.
Otherwise, they are not. Thus, the statements belonging to a case are conditional, just as
are statements in an if, else if, or else part. However, unlike an if /else if /else statement,
multiple conditional statements belonging to a case do not need to be enclosed in curly
braces.

Differences Between switch and if /else if /else Statements

While a switch statement is similar to an if /else if /else statement, there are important
differences.

One difference is that in an if /else if /else statement, the comparison following the if part
may be independent of the comparison following an else if part. The following example,
while perhaps a bit silly, is illustrative of this concept:
if (apples == oranges)
 do this;
else if (sales >= 5000)
 do that;

By contrast, in a switch statement, the constant integer expression following a case
keyword must be compared with the value following the switch keyword, and nothing else.
The next chapter on logical operators discusses other differences between switch and if

/else if /else statements. However, two differences can be discussed now. One is
commonly known as “falling through.” The other concerns ranges of numbers.

Falling Through

In an if /else if /else statement, each part is separate from all the others. By contrast, in a
switch statement (once a matching case statement is found), unless a break statement is
reached, execution “falls through” to the following case statements that execute their
conditional statements without checking for a match. For example, if you removed the break
statements from the program, you could have the following sample run:
Enter your grade: A
Your average must be between 90 – 100
Your average must be between 80 - 89
Your average must be between 70 - 79
Your average must be between 60 - 69
Your average must be below 60

This “falling through” behavior is not necessarily bad. In the following modification of the
grade program, the falling-through behavior permits the user to enter a lowercase grade in
addition to an uppercase grade.
#include <iostream>
using namespace std;
int main(void)
{
 char grade;
 cout << "Enter your grade: ";
 cin >> grade;
 switch (grade)
 {
 case 'a':
 case 'A':
 cout << "Your average must be between 90 - 100"
 << endl;
 break;
 case 'b':
 case 'B':
 cout << "Your average must be between 80 - 89"
 << endl;
 break;
 case 'c':
 case 'C':
 cout << "Your average must be between 70 - 79"
 << endl;

 break;
 case 'd':
 case 'D':
 cout << "Your average must be between 60 - 69"
 << endl;
 break;
 default:
 cout << "Your average must be below 60" << endl;
 }
return 0;
}

Another example occurs in the following program. Since the “D” (for deluxe) option includes
the feature in the “L” (for leather) option, case ‘D’ deliberately falls through the case ‘L.’
#include <iostream>
using namespace std;
int main(void)
{
 char choice;
 cout << "Choose your car\n";
 cout << "S for Standard\n";
 cout << "L for Leather Seats\n";
 cout << "D for Leather Seats + Chrome Wheels\n";
 cin >> choice;
 cout << "Extra features purchased\n";
 switch (choice)
 {
 case 'D':
 cout << "Chrome wheels\n";
 case 'L':
 cout << "Leather seats\n";
 break;
 default:
 cout << "None selected\n";}
 return 0;
}

The sample run could be
Choose your car
S for Standard
L for Leather Seats
D for Leather Seats + Chrome Wheels
D

Extra features purchased
Chrome wheels
Leather seats

Ranges of Numbers

Another difference between switch and if/else ifelse statements concerns the handling of
ranges of numbers. For example, earlier in this chapter we used an if /else if /else
statement to output the user’s grade based on the test score that was input by the user.
The issued grade was an A if the test score was between 90 and 100, a B if the test score
was between 80 and 89, and so on. The if /else if /else statement in that program was
 if (testScore >= 90)
 cout << "Your grade is an A" << endl;
 else if (testScore >= 80)
 cout << "Your grade is a B" << endl;
 else if (testScore >= 70)
 cout << "Your grade is a C" << endl;
 else if (testScore >= 60)
 cout << "Your grade is a D" << endl;
 else
 cout << "Your grade is an F" << endl;

By contrast, a case statement cannot be followed by an expression such as testScore >=
90 because the case statement keyword has to be followed by an integer constant.
Instead, a case statement would be necessary for each possible test score. The following
code fragment shows only the code for an A or B grade to avoid the code example being
unduly long, but the code for a C or D grade would be essentially a repeat (an F grade
would be handled with the default keyword).
 switch (testScore)
 {
 case 100:
 case 99:
 case 98:
 case 97:
 case 96:
 case 95:
 case 94:
 case 93:
 case 92:
 case 91:
 case 90:
 cout << "Your grade is an A";
 break;

 case 89:
 case 88:
 case 87:
 case 86:
 case 85:
 case 84:
 case 83:
 case 82:
 case 81:
 case 80:
 cout << "Your grade is an A";
 break;
 }

This code example illustrates that the switch statement is more cumbersome than the if
/else if /else structure in dealing with ranges of numbers.

Summary
Computer programs usually do not take a preordained path from beginning to end. Instead,
different code executes based on choices made by the user. Relational operators are used
to compare the user’s choice with various alternatives. The if, if/else, if /else if /else, and
switch statements are used to structure the code so different code executes depending on
which choice was made. You also learned about flowcharts, which help make programs
more understandable by visually depicting the program components and flow.

In this chapter, only one comparison was made at a time. However, sometimes more than
one comparison needs to be made. For example, you are eligible to vote in the U.S. only if
you are a citizen and are at least 18 years old. You cannot vote unless both are true.
However, you may get into a movie free if you are either a senior citizen (65 years or older)
or a child (12 or under). Thus, you get in free if either is true. In the next chapter, you will
learn about how to use logical operators to combine comparisons.

Quiz
1. How many operands are in a relational expression?

2. What is the purpose of a flowchart?

3. What is the data type of the expression following the if keyword?

4. In an if /else if /else statement, which part must you have one, but only one, of?

5. In an if /else if /else statement, which part may you have more than one of?

6. In an if /else if /else statement, which part may you omit?

7. In a switch statement, what is the required data type of expression following the
switch keyword?

8. In a switch statement, may an expression of the character data type follow the
switch keyword?

9. In a switch statement, may the expression following a case keyword be a
variable?

10. Which keyword in a switch statement corresponds to the else keyword in an if
/else if /else statement?

Chapter 6: Nested if Statements and Logical Operators

Overview
Chapter 5 began with the opening words of the famous poem “The Road Not Taken” by
Robert Frost: “Two roads diverged in a yellow wood, and sorry I could not travel both.”

Not to be a poetry critic, but often there are more than two roads.

In Chapter 5, we evaluated only one Boolean expression at a time, and chose which of the
two roads our code would travel down depending on whether the expression was true or
false. However, sometimes two (or more) Boolean expressions need to be evaluated to
determine the path the code will travel.

For example, you are eligible to vote only if you are a citizen and you are at least 18 years
old. You cannot vote unless both conditions are true. Other times with Boolean expressions,
you are testing if either of two comparisons is true. For example, you may get into a movie
free if you are either a senior citizen (65 years or older) or a child (12 or under). Thus, you
get in free if either condition is true.

This chapter will cover two different approaches to evaluating two Boolean expressions to
determine which code should execute. The first approach nests one if statement inside
another. The second approach introduces another type of operator: logical operators.

Nested if Statements
An if statement may appear inside another if statement. When this is done, the inner if
statement is said to be “nested” inside the outer if statement.

You can nest if statements to determine if both of two Boolean expressions are true, or if
either of the expressions is true.

Testing if Both Boolean Expressions Are True

The following program shows the use of nested if statements in determining if both of two
Boolean expressions are true. If the user’s input is that they are at least 18 years old and a
citizen, the program outputs that they are eligible to vote. Otherwise, the program outputs
that they are not eligible to vote.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 char choice;
 bool citizen;
 cout << "Enter your age: ";
 cin >> age;
 cout << "Are you a citizen (Y/N): ";
 cin >> choice;
 if (choice == 'Y')
 citizen = true;
 else
 citizen = false;
 if (age >= 18)
 if(citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";
 else
 cout << "You are not eligible to vote";
 return 0;
}

The following are several sample runs, each separated by ===:
Enter your age: 18
Are you a citizen (Y/N): Y
You are eligible to vote

===
Enter your age: 18
Are you a citizen (Y/N): N
You are not eligible to vote
===
Enter your age: 17
Are you a citizen (Y/N): Y
You are not eligible to vote
===
Enter your age: 17
Are you a citizen (Y/N): N
You are not eligible to vote
===

Figure 6-1 depicts a flowchart of this program.

Figure 6-1: Flowchart of the voting eligibility program

The nested if portion of the program is
 if (age >= 18)
 if(citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";
 else
 cout << "You are not eligible to vote";

Note
The statement if(citizen == true) could be rewritten as if(citizen). The parentheses
following the if keyword requires only an expression that evaluates to a Boolean
value. Since citizen is a Boolean variable, it evaluates to a Boolean value without
the need for any comparison.

The if/else structure comparing whether the user is a citizen is nested within the if/else
structure comparing whether the user is at least 18 years old. By this nesting, the
comparison of whether the user is a citizen is made only if the user is at least 18 years old.
This approach is logical, since if the user is not at least 18 years old, they will not be eligible
to vote even if they are a citizen.

The if / else structure comparing whether the user is a citizen is referred to as the “inner” if /
else structure. The if / else structure comparing whether the user is at least 18 years old is
referred to as the “outer” if / else structure.

The entire inner if / else structure (comparing whether the user is a citizen) is nested within
the if part of the outer if / else structure (comparing whether the user is at least 18 years
old). You also can nest an if / else structure (or an if structure, or an if /else if /else
structure) within the else if or else part of an outer if else/if else if else/if else structure.

This program illustrates a good use of nested if statements. It would be difficult to rewrite
this program using an if / else if / else structure without nested if statements. However, later
in this chapter we will cover another, equally good alternative: logical operators.

Testing if Either Boolean Expression Is True

The following program shows the use of the nested if statements in determining if either of
two Boolean expressions are true. If the user’s input indicates that they are either no more
than 12 years old or at least 65 years old, the program outputs that their admission is free.
Otherwise, the program outputs that they have to pay.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 cout << "Enter your age: ";
 cin >> age;
 if (age > 12)
 if (age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";
 else
 cout << "Admission is free";

 return 0;
}

The following shows several sample runs:
Enter your age: 12
Admission is free
===
Enter your age: 13
You have to pay
===
Enter your age: 65
Admission is free

Figure 6-2 depicts a flowchart of this program.

Figure 6-2: Flowchart of the movie admission program

The nested if portion of the program is
 if (age > 12)
 if (age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";
 else
 cout << "Admission is free";

The inner if/else structure, comparing whether the user is at least 65 years old, is nested
within the outer if/else structure, comparing whether the user is over 12 years old. By this
nesting, the comparison of whether the user is at least 65 years old is made only if the user
is over 12 years old. This approach is logical, since if the user is no more than 12 years old,
they will be admitted free (and also could not possibly be 65 years or older).

This program also could have been written using the following if / else if / else structure in

place of the nested if statements:
 if (age <= 12)
 cout << "Admission is free";
 else if (age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";

Each of these two alternatives, the nested if statements and the if / else if / else structure,
have disadvantages. Nesting one if statement inside another by its very nature may be
somewhat difficult to write and understand. However, the if / elseif/else if / else structure
has the disadvantage of repeating the same cout statement for both the if and else if parts.
While this is just one line of repetitive code in this program, in more complex programs the
repetitive code could be many lines long.

C++ has a third and perhaps better alternative, the use of logical operators, which we will
discuss next.

Logical Operators
C++ has logical operators that enable you to combine comparisons in one if or else if
statement. Table 6-1 lists the logical operators supported by C++ and describes what each
does.

Table 6-1: Logical Operators

Operator Name What It Does

&& And
Connects two relational expressions. Both
expressions must be true for the overall
expression to be true.

|| Or
Connects two relational expressions. If either
expression is true, the overall expression is
true.

! Not
Reverses the “truth” of an expression, making a
true expression false, and a false expression
true.

The && Operator

The && operator also is known as the logical And operator. It is a binary operator; it takes
two Boolean expressions as operands. It returns true only if both expressions are true. If
either expression is false, the overall expression is false. Of course, if both expressions are
false, the overall expression is false. Table 6-2 illustrates this.

Table 6-2: The Logical And Operator

Expression #1 Expression #2 Expression #1 && Expression #2

true true true

true false false

false true false

false false false

The following program shows the use of the logical And operator in determining whether the
user is eligible to vote, the criteria being that the user must be at least 18 years old and a
citizen.
#include <iostream>
using namespace std;

int main(void)
{
 int age;
 char choice;
 bool citizen;
 cout << "Enter your age: ";
 cin >> age;
 cout << "Are you a citizen (Y/N): ";
 cin >> choice;
 if (choice == 'Y')
 citizen = true;
 else
 citizen = false;
 if (age >= 18 && citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";
 return 0;
}

The following are several sample runs, separated by ===:
Enter your age: 18
Are you a citizen (Y/N): Y
You are eligible to vote
===
Enter your age: 18
Are you a citizen (Y/N): N
You are not eligible to vote
===
Enter your age: 17
Are you a citizen (Y/N): Y
You are not eligible to vote
===
Enter your age: 17
Are you a citizen (Y/N): N
You are not eligible to vote

The part of the program that uses the logical And operator is
 if (age >= 18 && citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";

The comparison age >= 18 is referred to as the left part of the expression since it is to the
left of the logical And operator. Similarly, the comparison citizen == true is referred to as
the right part of the expression because it is to the right of the logical And operator.

If the user’s age is at least 18 years, then the program makes the second comparison,
whether the user is a citizen. If the user’s age is not at least 18 years of age, the second
comparison is not even made before the else part is executed. The reason is to avoid
wasting CPU time, since if the left expression is false, the overall expression is false
regardless of the result of the evaluation of the right expression.

Because the second comparison of whether the user is a citizen is made only if the user’s
age is at least 18, the flowchart in Figure 6-1 of this program using nested if statements
also applies to this program using the logical And operator.

The || Operator

The || operator is also known as the logical Or operator. Like the logical And operator, the
logical Or operator also is a binary operator, taking two Boolean expressions as operands.
It returns true if either expression is true. It returns false only if both expressions are false.
Of course, if both expressions are true, the overall expression is true. Table 6-3 illustrates
this.

Table 6-3: The Logical Or Operator

Expression #1 Expression #2 Expression #1 || Expression #2

true true true

true false true

false true true

false false false

The following program shows the use of the logical Or operator in determining whether you
get into a movie free, the criteria being that the user must be either no more than 12 or at
least 65 years old.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 cout << "Enter your age: ";
 cin >> age;
 if (age <= 12 || age >= 65)

 cout << "Admission is free";
 else
 cout << "You have to pay";
 return 0;
}

The following shows several sample runs:
Enter your age: 12
Admission is free
===
Enter your age: 18
You have to pay
===
Enter your age: 65
Admission is free

The part of the program that uses the logical Or operator is
 if (age <= 12 || age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";
 return 0;

As with the logical And operator, the comparison age <= 12 is referred to as the left part of
the expression and the comparison age >= 65 is referred to as the right part of the
expression.

If the user’s age is over 12 years, then the program makes the second comparison,
whether the user is at least 65 years of age. If the user is no more than 12 years of age,
the second comparison is not even made before the else part is executed. The reason, as
with the logical And operator, once again is to avoid wasting CPU time, since if the left
expression is true, the overall expression is true regardless of the result of the evaluation of
the right expression.

Because the second comparison of whether the user is at least 65 years old is made only if
the user’s age is over 12, the flowchart in Figure 6-2 of this program using nested if
statements also applies to this program using the logical Or operator.

The ! Operator

The ! operator also is known as the logical Not operator. My daughters have been using the
logical Not operator for years, telling me “Dad, you look just like Tom Cruise … not!”

The logical Not operator inverts the value of the Boolean expression, returning false if the

Boolean expression is true, and true if the Boolean expression is false. Table 6-4 illustrates
this.

Table 6-4: The Logical Not Operator

Expression !Expression

true true

false true

Unlike the logical And and Or operators, the logical Not operator is a unary operator; it
takes only one Boolean expression, not two.

The following program shows the use of the logical Not operator, combined with the logical
And operator, in determining whether you get into a movie for free.
#include <iostream>
using namespace std;
int main(void)
{
 int age;
 cout << "Enter your age: ";
 cin >> age;
 if (!(age > 12 && age < 65))
 cout << "Admission is free";
 else
 cout << "You have to pay";
 return 0;
}

This program is almost identical to the one used to illustrate the logical Or operator. The
only difference is that the statement
 if (age <= 12 || age >= 65)

is replaced by the statement
 if (!(age > 12 && age < 65))

Note

This change is an illustration of DeMorgan’s law, which is a rule of inference
pertaining to the logical And, Or, and Not operators that are used to distribute a
negative to a conjunction or disjunction. In this book, it is only referred to and not
covered, but in case you hear DeMorgan’s law mentioned in a programming class
or another book, you heard it here first!

The Not operator permits you to state a Boolean expression a different way that may be

more intuitive for you. In this example, expressing the condition for free admission as being
that the age is not between 13 and 64 may be more intuitive than expressing that condition
as being that the age is either no more than 12 or 65 or over.

Precedence

Table 6-5 lists precedence, from highest to lowest, among logical operators and between
them and the relational operators.

Table 6-5: The Precedence of Logical and Relational Operators

Operator (from highest to lowest)

!

Relational operators (>, >=, <, <=, ==. !=)

&&

||

Precedence and the Logical Not Operator

Since the logical Not operator has a higher precedence than the relational operators, the
program used to illustrate the logical Not operator uses an extra set of parentheses.
 if (!(age > 12 && age < 65))

Had the extra set of parentheses been omitted as follows, the result would always be that
the user has to pay. Thus, admission would never be free regardless of the age.
 if (!age > 12 && age < 65)

The reason why the user always has to pay regardless of age is that since the logical Not
operator has a higher precedence than the relational operators, the logical Not operator
operates on age, not the expression age > 12 && age < 65. If age is non-zero, then !age is
zero. Since 0 is not greater than 12, the left part of the logical And expression is false, so
the overall expression is false.

The result of the user always having to pay regardless of age is the same even if age is
zero. If age is zero, then !age is logical true, the integer equivalent of which usually is 1.
Since 1 is not greater than 12, once again the left part of the logical And expression is false,
so the overall expression is false.

Precedence and the Logical And and Or Operators

In contrast to the logical Not operator, the logical And and Or operators rank lower in
precedence than the relational operators. Therefore, parentheses normally are not

necessary to separate the logical And and Not operators from the relational operators. For
example, the following two statements (the first taken from the program that illustrated the
logical And operator) are equivalent.
 if (age >= 18 && citizen == true)
 if ((age >= 18) && (citizen == true))

However, parentheses are necessary when logical And and Or operators are used together
in one statement and you want the Or done before the And since the logical And operator
has higher precedence than the logical Or operator. This issue often arises when you have
more than two Boolean expressions.

For example, assume the voting rules were changed so legal residents (represented by the
Boolean variable resident having a value of true) as well as citizens who are at least 18
years old could vote. Given that assumption, the statement
 if (resident == true || citizen == true && age >= 18)

would be the same as the following since the logical And operator has higher precedence
than the logical Or operator.
 if (resident == true || (citizen == true && age >= 18))

In this expression, a resident under 18 years old would be able to vote. The reason is that
even if the expression (citizen == true && age >= 18) is false, as long as resident is true,
the overall expression is true, since with a logical Or operator only one of the two Boolean
expressions needs to be true for the overall expression to be true.

A resident under 18 years old being able to vote is not a correct result for this program. To
avoid this logic error, parentheses would be necessary, so the logical Or operation is
performed first.
 if ((resident == true || citizen == true) && age >= 18)

Using the switch Statement with Logical Operators
The switch statement was discussed at some length in Chapter 5. However, so far in this
chapter it has been conspicuous by its absence.

In Chapter 5, we discussed how the switch statement was cumbersome when dealing with
a range of numbers. The reason was that the case keyword cannot be followed by a range
of numbers because it must instead be followed by a single integer constant.

However, the switch statement may be used with expressions that use the logical And or Or
operator. The reason is that these expressions have only one of two possible values, true
or false. True and false are both constants; the value of true is always true and the value of
false is always false. While true and false are Boolean values, each has a corresponding
integer value: 1 and 0. Therefore, the case keyword may be followed by true or false, just
as in Chapter 5 where the case keyword can be followed by a character since a character
has a corresponding integer ANSI or ASCII value.

For example, earlier in this chapter the logical And operator was used in the following if/else
structure in determining whether the user is eligible to vote, the criteria being that the user
must be at least 18 years old and a citizen.
 if (age >= 18 && citizen == true)
 cout << "You are eligible to vote";
 else
 cout << "You are not eligible to vote";

The corresponding switch statement is
 switch (age >= 18 && citizen == true)
 {
 case true:
 cout << "You are eligible to vote";
 break;
 case false:
 cout << "You are not eligible to vote";
}

Also earlier in this chapter, the logical Or operator was used in the following if/else structure
in determining whether the user gets into a movie free, the criteria being that the user must
be either under 18 or at least 65 years old.
 if (age <= 12 || age >= 65)
 cout << "Admission is free";
 else
 cout << "You have to pay";

The corresponding switch statement is
switch (age <= 12 || age >= 65)
{
 case true:
 cout << "Admission is free";
 break;
 case false:
 cout << "You have to pay";
}

These examples illustrate that the switch statement can be employed as an alternative to an
if / else or if / else if /else structure in programs that evaluate Boolean expressions using
logical operators. However, it is not common for the switch statement to be employed in
this manner because, with Boolean expressions, there are always just two alternatives, true
and false, and switch statements generally are used when there are many more alternatives
than two.

Summary
In Chapter 5, we evaluated only one Boolean expression at a time to determine which of
two alternative blocks of code should execute. However, often two (or more) Boolean
expressions need to be evaluated to determine which block of code should execute. In the
example in which you are eligible to vote only if the user is a citizen and at least 18 years
old, both Boolean expressions must be true in order for the program to output that the user
is eligible to vote. In another example, in which you get into a movie free if the user is either
a senior citizen (65 years or older) or a child (12 or under), the program outputs that the
user gets into the movie free if either Boolean expression is true.

This chapter covered two different approaches of evaluating two Boolean expressions to
determine which code should execute. The first approach nested one if statement inside
another. The second approach introduced three logical operators. The logical && (And)
operator is used when both Boolean expressions must be true. The logical || (Or) operator
is used when either Boolean expression must be true. Finally, the logical ! (Not) operator
inverts the value of a Boolean expression, from true to false, or false to true.

Finally, this chapter showed how you can use the switch statement as an alternative to an if
/ else or if / else if /else structure in programs that evaluate Boolean expressions using
logical operators.

Quiz
1. Can you use nested if statements as an alternative to the logical And and Or

operators?

2. Can an if statement be nested in the else if or else part of an if / else if / else
statement, or just the if part?

3. For which of the logical operators do both Boolean expressions have to be true for
the overall Boolean expression to be true?

4. For which of the logical operators do both Boolean expressions have to be false
for the overall Boolean expression to be false?

5. Which of the logical operators reverses the “truth” of a Boolean expression,
making a true expression false and a false expression true?

6. Assuming resident is a Boolean variable, is if(resident) the same as if(resident ==
true)?

7. Which of the logical operators is a unary rather than binary operator?

8. Which of the logical operators has a higher precedence than the relational
operators?

9. Which logical operator has a higher precedence, And or Or?

10. Can a Boolean value of either true or false be used following the case keyword in
a switch statement?

Chapter 7: The For Loop

Overview
Parents customarily remind their children not to repeat themselves. Indeed, parents often
illustrate another saying (“Do as I say, not as I do”) by continually repeating that reminder.

This is my nifty way of introducing the idea that, in the world of computers, sometimes you
want your code to repeat itself, too. For example, if the user enters invalid data, you may
want to ask the user whether they want to retry or quit. If they retry and still enter invalid
data, you again would ask the user whether they want to retry or quit. This process keeps
repeating until the user either enters valid data or quits.

You use a loop to repeat the execution of code statements. A loop in C++ is a structure
that repeats the execution of code until a condition becomes false. In the preceding
example, the condition is that the data is invalid and the user wants to retry, thus the
repeating code is the prompt asking the user whether they want to retry or quit.

This chapter will show you how to use one type of loop: the for loop. However, before
discussing the for loop, I’ll show you how to use increment and decrement operators, which
are used in for and other types of loops. The next chapter will then show you how to use
two other kinds of loops: the while loop and the do while loop.

Increment and Decrement Operators
Increment means to increase a value by one. Conversely, decrement means to decrease a
value by one. C++ has an increment operator that you can use to increase a value by one
and a decrement operator that you can use to decrease a value by one. This section will
show you how to use both, something that will be useful in the next section on the for loop,
which uses increment and decrement operators.

The Increment Operator

In the following program, the statement num += 1 increases the value of the integer
variable num, which was initialized to the value 2, by 1, so the output will be 3.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num += 1;
 cout << num;
 return 0;
}

Another way to accomplish the same result is by using the increment operator, ++. The
increment operator is unary—that is, it operates on one operand. That operand generally is
a whole number variable, such as an int. We can use the increment operator simply by
changing the program we just ran by replacing the statement num += 1 with the statement
num++:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num++;
 cout << num;
 return 0;
}

The same output would occur if you substituted the statement ++num for num++:
#include <iostream>
using namespace std;
int main(void)
{

 int num = 2;
 ++num;
 cout << num;
 return 0;
}

Placing the ++ before the variable num is called prefix incrementing—the “pre” indicating
that the increment operator precedes its operand. Placing the ++ before the variable num is
called postfix incrementing—the “post” indicating that the increment operator follows its
operand.

In this example, it makes no difference to the output of the program whether you use prefix
or postfix incrementing. The reason is that the statement ++num has only one operator; the
same is true of the statement num++. However, there is a difference between prefix and
postfix incrementing when the statement has more than one operator. This is discussed
later in this chapter in the section “The Difference Between Prefix and Postfix.”

The Decrement Operator

In the following program, the statement num –= 1 decreases the value of the integer
variable num, which was initialized to the value 2, by 1, so the output will be 1.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num -= 1;
 cout << num;
 return 0;
}

Another way to accomplish the same result is by using the decrement operator, --. The
decrement operator, like the increment operator, is unary, operating on one operand which
generally is a whole number variable, such as an int. We can use the decrement operator
simply by changing the program we just ran and replacing the statement num –= 1 with the
statement num--:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 num--;
 cout << num;

 return 0;
}

The same output would occur if you substituted the statement --num for num--:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 --num;
 cout << num;
 return 0;
}

As with the increment operator, placing the -- before the variable num is called prefix
decrementing, while placing the -- after the variable num is called postfix decrementing.

Also, as with the example of the increment operator, in this example it makes no difference
to the output of the program whether you use prefix or postfix decrementing because the
statement --num (or num--) has only one operator. However, as discussed in the next
section, “The Difference Between Prefix and Postfix,” there is a difference between prefix
and postfix decrementing (or incrementing) when the statement has more than one
operator.

The Difference Between Prefix and Postfix

The following program is similar to the previous program that illustrated the increment
operator.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 cout << num++;
 return 0;
}

However, instead of two statements:
 num++;
 cout << num;

This program uses one statement:
 cout << num++;

There are two operators in this cout statement: the increment operator ++ and the stream
insertion operator <<. The issue is one of precedence; which operation occurs first.

The output of this program is 2. The reason is that when an increment or decrement
operator is postfix, that operation is the last to occur. Therefore, the output of num occurs
first while the variable’s value is still 2, and then the value of num is incremented from 2 to
3.

Now, change the line:
 cout << num++;

to the line:
 cout << ++num;

so the program now reads
#include <iostream>
using namespace std;
int main(void)
{
 int num = 2;
 cout << ++num;
 return 0;
}

This time, the output of this program is 3 instead of 2. The reason is that when an increment
or decrement operator is prefix, that operation is the first to occur. Therefore, num first is
incremented from 2 to 3 before the value of num is outputted.

The distinction between prefix and postfix also arises frequently with arithmetic operators.
In the following code fragment, the value of result is 15, not 18, because op2 is
incremented from 5 to 6 after the multiplication and assignment occurs.
int op1 = 3, op2 = 5, result;
result = op1 * op2++;

If prefix incrementing instead were used, as in the following code fragment, the value of
result is 18, not 15, because op2 is incremented from 5 to 6 before the multiplication and
assignment occurs.
int op1 = 3, op2 = 5, result;
result = op1 * ++op2;

The distinction between prefix and postfix arises as well with relational operators. In the
following code fragment, the output is 1 (the integer representation of Boolean true)
because the integer variable num is compared to 5 for equality before num is incremented

from 5 to 6.
int num = 5;
cout << (num++ == 5);

If prefix incrementing instead were used, as in the following code fragment, then the output
would be 0 (the integer representation of Boolean false) because the integer variable num
is incremented from 5 to 6 before it is compared to 5 for equality.
int num = 5;
cout << (++num == 5);

The increment and decrement operators generally are not used by themselves, but in
conjunction with loops. The next section covers one type of loop: the for loop.

The For Loop
If you wanted to output the numbers between 1 and 10, you could write a program such as
the following:
 #include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 cout << num++;
 return 0;
}

However, you could write the same program with far less code by using a for loop:
#include <iostream>
using namespace std;
int main(void)
{
 for (int num = 1; num <= 10; num++)
 cout << num << " ";
 return 0;
}

The difference between the two programs becomes more pronounced if you change the
specification from outputting the numbers between 1 and 10 to outputting the numbers
between 1 and 100. I won’t rewrite the first program because it would take up too many
pages; suffice it to say, you would have to add 90 more cout statements. However, the
same program using a for loop would be:
#include <iostream>
using namespace std;
int main(void)
{
 for (int num = 1; num <= 100; num++)

 cout << num << " ";
 return 0;
}

Indeed, by using the for loop, the same code could output the numbers between 1 and 1000
or even 1 and 10000; you just would need to change the 100 in the code to 1000 or 10000.

The for loop is one of three types of loops; the other two (while and do while) will be
covered in the next chapter. A loop is a structure that repeats the execution of code until a
condition becomes false. Each repetition is called an iteration.

In the example that printed out the numbers between 1 and 10, the output of the value of
num was repeated as long as the condition—the value of num being less than or equal to
10—remained true. There were ten iterations of this loop; that is, the current value of num
was outputted ten times.

The Syntax of the For Loop

Let’s discuss the syntax of the for loop. The for keyword is followed by parentheses that
contain three expressions that will be discussed in a moment. This line of code is followed
by one or more statements.

The three expressions contained in the parentheses following the for keyword are
separated by semicolons; there is no semicolon after the third expression since no
expression follows it.

The first expression usually is used to initialize the value of a variable, typically referred to
as a counter, to provide that variable with a starting value. In this example, the integer
variable num is initialized to the starting value of 0. This initialization is the first action
performed by the loop, and is only performed once.

The second expression is the condition, which must be true for the code inside the loop to
execute. In this example, the condition is whether the current value of num is less than or
equal to 10.

The third expression usually is used to update the value of the counter. In this example, the
integer variable num is incremented. This expression executes at the end of each iteration,
and only executes if the condition was true at the beginning of the iteration.

Note
Postfix incrementing was used in this example and generally is employed by
convention. However, the result would be the same if prefix incrementing were
used, as only one operator is involved in this expression.

Therefore, the order of execution in the first iteration of the loop is
1. The integer variable num is initialized to 1.

2. The current value of num, 1, is compared to 10.

3. Since the comparison is true, the current value of num, 1, is outputted.

4. The value of num is incremented, becoming 2.

The order of execution in the second iteration of the loop is
1. The current value of num, 2, is compared to 10.

2. Since the comparison is true, the current value of num, 2, is outputted.

3. The value of num is incremented, becoming 3.

Note that the initialization that occurred during the first iteration of the loop did not occur
during the second iteration of the loop. As discussed previously, initialization occurs only
once, in the first iteration of the loop.

This order of execution in the second iteration of the loop repeats during the third and
following executions of the loop, each time incrementing the value of num through the tenth
iteration of the loop, which executes in the following order:

1. The current value of num, 10, is compared to 10.

2. Since the comparison is true (10 is less than or equal to 10), the current value of
num, 10, is outputted.

3. The value of num is incremented, becoming 11.

In the next iteration of the loop, the current value of num, 11, is compared to 10. Since the
comparison is false (11 is not less than or equal to 10), the for loop ends. The code inside
the for loop does not execute, the value of num is not incremented, and the code following
the for loop executes. In this example, the code following the for loop is the return 0
statement, so the program ends.

Note

The preceding examples used the increment operator. However, you also can use
the decrement operator. Changing the parentheses following the keyword to (int
num = 10; num >= 1; num--) would result in the numbers between 1 and 10 being
outputted in reverse. Note that the relational operator is changed from >= to <=.

In the example of outputting the numbers between 1 and 10, only one statement belonged
to the for loop. However, as with the if structure, if more than one statement belongs to the
for loop, then the statements must be contained within curly braces.
 for (int num = 1; num <= 10; num++)
 {
 cout << num << " ";
 cout << "Next loop ";

 }

Also, as with the if structure, the statement or statements following the for keyword and
parentheses will not execute if the parentheses are followed by a semi-colon since that
would be interpreted as an empty statement. Accordingly, in the following code fragment,
the only number that would output is 11:
 for (int num = 1; num <= 10; num++);
 cout << num << " ";

The reason the output would be 11 is that the loop continues, and the empty statement
executes, until the condition fails when num is 11. The cout statement is not part of the for
loop, so it executes when the for loop completes, outputting 11, the value of num after the
loop finishes.

The expressions do not need be inside the parentheses following the for loop. In the
following program, num is initialized before the for loop, and is incremented inside the body
of the loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 for (; num <= 10;)
 {
 cout << num << " ";
 num++;
 }
 return 0;
}

Even though initialization and incrementing are not done within the parentheses, two
semicolons are nevertheless within the parentheses to separate where the three
expressions would be. While an expression may be empty, the semicolon nevertheless is
necessary.

Beware the Infinite Loop

In the preceding program, if the statement num++ was omitted, the loop would never stop:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;

 for (; num <= 10;)
 {
 cout << num << " ";
 }
 return 0;
}

The reason is that the condition num <= 10 would never become false since num would
start at 0 and its value would never change because the statement num++ was omitted.

This loop that never stops executing is called an infinite loop. Usually, it manifests itself by a
character or characters appearing in rapid succession in your console window, with the
application never ending.

You would not intend an infinite loop in your code, but mistakes do happen; I have made this
mistake a lot more than once. If it happens to you, don’t panic. You can use the CTRL-
BREAK keyboard combination to end the program. Knowing you have encountered an
infinite loop, you then can correct the code error that caused it.

A Factorial Example

So far, use of the for loop has been relatively trivial, counting numbers in ascending or
descending order. However, the for loop can be used for more sophisticated programs.

The following program calculates the factorial of a number inputted by the user. A factorial
is the product of all the positive integers from 1 to that number. For example, the factorial of
3 is 3 * 2 * 1, which is 6, while the factorial of 5 is 5 * 4 * 3 * 2 * 1, which is 120.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, total = 1;
 cout << "Enter a number: ";
 cin >> num;
 cout << "The factorial of " << num << " is ";
 for (int counter = 1; counter <= num; counter++)
 total *= counter;
 cout << total;
 return 0;
}

Input and output could be
Enter a number: 4
The factorial of 4 is 24

Breaking Out of a Loop

We previously used the break keyword in a switch statement. You also can use the break
keyword in a for loop. The break keyword is used within the code of a for loop, commonly
within an if / else structure. If the break keyword is reached, the for loop terminates, even
though the condition still is true.

For example, in the following program, the user is given three tries to guess a number
(which happens to be 3) between 1 and 10. However, if the user guesses the number on
their first or second try, it would be pointless to ask them again to guess the number.
Accordingly, if the user guesses the number, the break statement is used to break out of
the loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, secret = 3;
 cout << "Guess a number between 1 and 10\n";
 cout << "You have 3 tries\n";
 for (int counter = 1; counter <= 3; counter++)
 {
 cout << "Enter the number now: ";
 cin >> num;
 if (num == secret)
 {
 cout << "You guessed the secret number!";
 break;
 }
 }
 cout << "Program over";
 return 0;
}

Here are two sample inputs and outputs. In the first one, the user tried three times without
guessing correctly. In the second one, the user guessed correctly on their second try, so
there was no third iteration of the loop due to the break keyword.
Guess a number between 1 and 10
You have 3 tries
Enter the number now: 2
Enter the number now: 4
Enter the number now: 6
Program over

Guess a number between 1 and 10
You have 3 tries
Enter the number now: 2
Enter the number now: 3
You guessed the secret number!
Program over

While the break keyword is part of the C++ language, I recommend you use it sparingly.
Normally, the for loop has one exit point, the condition when it becomes false. However,
when you use one or more break statements, the for loop has multiple exit points. This
makes your code more difficult to understand, and can result in logic errors.

In the following program, the logical && (And) operator is an alternative to using the break
keyword.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, secret = 3;
 cout << "Guess a number between 1 and 10\n";
 cout << "You have 3 tries\n";
 bool keepgoing = true;
 for (int counter = 1; counter <= 3 && keepgoing == true;
 counter++)
 {
 cout << "Enter the number now: ";
 cin >> num;
 if (num == secret)
 {
 cout << "You guessed the secret number!";
 keepgoing = false;
 }
 }
 cout << "Program over";
 return 0;
}

Before leaving the discussion of the break keyword, one additional use of it (in conjunction
with the parentheses following the for keyword being empty of all three expressions)
deserves mention simply because you may encounter it. The following program is a variant
of the one that outputs numbers between 1 and 10 with the first and third expressions inside
the parentheses being empty because num is initialized before the for loop and incremented
inside the body of the loop. In this program, the second expression—the condition—is
missing as well. Instead, the break keyword inside the if/else structure substitutes for that

condition.
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 for (;;)
 {
 if (num > 10)
 break;
 else
 {
 cout << num << " ";
 num++;
 }
 }
 return 0;
}

Without the break keyword, the for loop would be infinite due to the lack of a second
expression. Again, however, I do recommend against this use of the break keyword, and
point it out simply because other programmers believe differently—thus, you’re likely to
encounter it at some point in time.

The Continue Keyword

You also can use the continue keyword in a for loop. The continue keyword, like the break
keyword, is used within the code of a for loop, commonly within an if/else structure. If the
continue statement is reached, the current iteration of the loop ends, and the next iteration
of the loop begins.

For example, in the following program, the user is charged $3 an item, but not charged for a
“baker’s dozen.” In other words, every 13th item is free—in other words, the user is charged for only a dozen

items, instead of 13.

#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 for (int counter = 1; counter <= num; counter++)
 {

 if (counter % 13 == 0)
 continue;
 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;
}

Here are three sample inputs and outputs, illustrating that the price for 12 or 13 items is the
same, but on the 14th item the user again is charged an additional $3. The reason why the
code charges the user no additional price for the 13th item is that the continue statement is
reached, preventing three dollars from being added to the total.
How many items do you want to buy: 12
Total for 12 items is $36

How many items do you want to buy: 13
Total for 13 items is $36

How many items do you want to buy: 14
Total for 14 items is $39

While the continue keyword is part of the C++ language, I recommend, as I do with the
break keyword, that you use it sparingly. Normally, each iteration of a for loop has one end
point. However, when you use a continue statement, each iteration has multiple end points.
This makes your code more difficult to understand, and can result in logic errors.

In the following program, the logical ! (Not) operator is an alternative to using the continue
keyword.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 bool keepgoing = true;
 for (int counter = 1; counter <= num; counter++)
 {
 if (! (counter % 13 == 0))
 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;

}

Note You also could use the relational != (not equal) operator, changing the if
statement to if (counter % 13 != 0).

Nesting For Loops

You can nest a for loop just as you can nest if statements. For example, the following
program prints five rows of ten X characters:
#include <iostream>
using namespace std;
int main(void)
{
 for (int x = 1; x <= 5; x++)
 {
 for (int y = 1; y <= 10; y++)
 cout << "X";
 cout << '\n';
 }
 return 0;
}

The for loop for (int x = 1; x <= 5; x++) is the outer for loop. The for loop for (int y = 1; y
<= 10; y++) is the inner for loop.

With nested for loops, for each iteration of the outer for loop, the inner for loop goes
through all its iterations. By analogy, in a clock, minutes are the outer loop, seconds the
inner loop. In an hour, there are 60 iterations of minutes, but for each iteration of a minute,
there are 60 iterations of seconds.

In the rows and columns example, for the first iteration of the outer for loop, the inner for
loop goes through all ten of its iterations, printing ten X characters and one new line
character. Then, for the next iteration of the outer for loop, the inner for loop again goes
through all ten of its iterations, again printing ten X characters and one new line character.
The same thing happens on the third, fourth, and fifth iterations of the outer for loop,
resulting in five rows of ten X characters.

While nested for loops can be used to print rows and columns for tables, they also have
other uses. For example, the following program prompts the user for the total number of
salespersons as well as the number of sales per salespersons, and has the user input each
sale of each salesperson, and then afterward displays the average sale for each
salesperson. The number of iterations of the outer for loop will be the number of
salespersons. The number of iterations of the inner for loop will be the number of sales per
salesperson.

#include <iostream>
using namespace std;
int main(void)
{
 int persons, int numSales;
 cout << "Enter number of salespersons: ";
 cin >> persons;
 cout << "Enter number of sales per salesperson: ";
 cin >> numSales;
 for (int x = 1; x <= persons; x++)
 {
 int sale, total = 0;
 float average;
 for (int y = 1; y <= numSales; y++)
 {
 cout << "Enter sale " << y << " for salesperson "
 << x <<": ";
 cin >> sale;
 total += sale;
 }
 average = (float) total / numSales;
 cout << "Average sales for salesperson #" << x
 << " is " << average << endl;
 }
 return 0;
}

The input and output could be
Enter number of salespersons: 2
Enter number of sales per salesperson: 3
Enter sale 1 for salesperson 1: 4
Enter sale 2 for salesperson 1: 5
Enter sale 3 for salesperson 1: 7
Average sales for salesperson #1 is 5.33333
Enter sale 1 for salesperson 2: 8
Enter sale 2 for salesperson 2: 3
Enter sale 3 for salesperson 2: 4
Average sales for salesperson #2 is 5

Note If you place a break or continue keyword in the inner loop, it will affect only that
inner loop, and have no effect on the outer loop.

Summary
You use a loop to repeat the execution of code statements. A loop is a structure that
repeats the execution of code until a condition becomes false.

You learned in this chapter how to use one type of loop: the for loop. However, before
discussing the for loop, I showed you how to use increment and decrement operators,
which are used in for and other types of loops. I then explained the difference between
prefix and postfix when using the increment and decrement operators.

You also learned in this chapter how to use the break keyword to prematurely terminate a
for loop and the continue keyword to prematurely terminate the current iteration of the loop.
You then learned how to use the logical operators as an alternative to the break and
continue keywords. You also learned about nesting one for loop inside another.

The for loop generally is used when the loop will execute a fixed number of times. However,
sometimes the number of times a loop will execute is unpredictable, depending on user
input during runtime. For example, in a data entry application, you may want a loop that,
upon entry of invalid data, asks the user whether they want to retry or quit, and if they want
to retry, gives the user another opportunity to enter data. The number of times this loop
may execute is unpredictable, since it will keep repeating until the user either enters valid
data or quits.

The next chapter will show you how to use two other types of loops, the while loop and the
do while loop, that work better than a for loop when the number of times a loop will execute
is unpredictable.

Quiz
1. What does the increment operator do?

2. What does the decrement operator do?

3. Which occurs first, decrementing or the outputting of the value of num, in the
statement cout << --num?

4. What is an iteration?

5. What is the usual purpose of the first expression in the parentheses following the
for keyword?

6. What is the purpose of the second expression in the parentheses following the for
keyword?

7. What is the usual purpose of the third expression in the parentheses following the
for keyword?

8. Can one or more of the expressions in the parentheses following the for keyword
be empty?

9. What is the purpose of the break keyword in a for loop?

10. What is the purpose of the continue keyword in a for loop?

11. If you were going to use nested for loops to print rows and columns, which for
loop would print the columns—inner or outer?

Chapter 8: While and Do While Loops

Overview
The for loop generally is used when the loop will iterate a fixed number of times. However,
sometimes the number of times a loop will iterate is unpredictable, depending on user input
during runtime. For example, in a data entry application, you may want a loop that, upon
entry of invalid data, asks the user whether they want to retry or quit, and if they want to
retry, gives the user another opportunity to enter data. The number of times this loop may
iterate is unpredictable, since it will keep repeating until the user either enters valid data or
quits.

This chapter will show you how to use the while loop, which is a better choice than a for
loop when the number of times a loop will iterate is unpredictable.

While the total number of loop iterations may be unpredictable, there often are situations in
which the loop will iterate at least once. An example is a loop that displays a menu with
various choices, including exiting the program. In this menu example, the menu always
displays at least once; the user cannot choose to exit before being given that choice. In
such situations, a do while loop, which this chapter will show you how to use, is a better
choice than a while loop.

The While Loop
The while loop is similar to a for loop in that both have the typical characteristics of a loop:
the code inside each continues to iterate until a condition becomes false. The difference
between them is in the parentheses following the for and while keywords.

The parentheses following the for keyword consists of three expressions, initialization,
condition, and update. By contrast, the parentheses following the while keyword consists
only of the condition; you have to take care of any initialization and update elsewhere in the
code.

This difference is illustrated by the following program that outputs the numbers between 1
and 10. Chapter 7 included the following program that outputs the numbers between 1 and
10 using the for loop.
#include <iostream>
using namespace std;
int main(void)
{
 for (int num = 1; num <= 10; num++)
 cout << num << " ";
 return 0;
}

The same program using the while loop could be
#include <iostream>
using namespace std;
int main(void)
{
 int num = 1;
 while (num <= 10)
 {
 cout << num << " ";
 num++;
 }
 return 0;
}

Note

The two statements in the body of the while loop could have been combined into
one statement, cout << num++. Two statements are used instead to make this
example easier to understand by eliminating the precedence issue in the one
statement between the stream insertion and increment operators.

With the while loop, the integer variable num had to be declared and initialized before the

loop since this cannot be done inside the parentheses following the while keyword. Further,
num was updated inside the code of the loop using the increment operator. This update
also can be done inside the parentheses following the while keyword as shown by an
example later in this section.

The update of the variable is particularly important with the while loop. Without that update,
the loop would be infinite. For example, in the following excerpt from this program, if num is
not incremented, the loop would be infinite. The value of num would not change from 1, so
the condition num <= 10 always would remain true.
 int num = 1;
 while (num <= 10)
 cout << num << " ";

Forgetting to update the value of the variable you are using in the condition is a common
mistake with a while loop. Forgetting the update is less common with a for loop because
that update is the usual purpose of the third expression in the parentheses following the for
keyword.

Otherwise, the syntax rules discussed in Chapter 7 concerning the for loop apply equally to
the while loop. For example, if more than one statement belongs to the while loop, then the
statements must be contained within curly braces. That is why in the program that outputs
the numbers between 1 and 10 using the while loop, the two statements in the body of the
while loop are contained within curly braces.
 while (num <= 10)
 {
 cout << num << " ";
 num++;
 }

In the program we just analyzed, the update of the value of num was done within the body
of the loop. The update could also be done within the condition itself:
#include <iostream>
using namespace std;
int main(void)
{
 int num = 0;
 while (num++ < 10)
 cout << num << " ";
 return 0;
}

Updating the counter within the condition requires two changes from the previous code.
First, the value of num has to be initialized to 0 instead of to 1 because the increment inside

the parentheses during the first iteration of the loop would change that variable’s value to 1.
Second, the relational operator in the condition is < rather than <= because the value of
num is being incremented before it is outputted.

Updating the counter within the condition raises the question: Given the condition num++ <
10, which comes first, the comparison or the increment? Since the increment is postfix, the
answer is the comparison.

The counter also could be updated within the condition using a prefix increment. However,
then the condition should be ++num <= 10 to obtain the desired output.

As with the for loop, the statement or statements following the while keyword and
parentheses will not execute if the parentheses is followed by a semicolon, as that would be
interpreted as an empty statement. Test yourself on this; what would be the output if we
placed a semicolon after the while condition as in the following code fragment?
 while (num <= 10);
 cout << num++ << " ";

The only number that would output is 11. The reason is that the loop continues, and the
empty statement executes, until the condition fails when num is 11, at which time the
statement following the loop executes and the value of num (11) is outputted.

Comparison of for and while Loops

The practical difference between the for and while loops is not apparent in a program with a
predictable number of iterations, such as the program we have been discussing thus far that
outputs the numbers between 1 and 10. Rather, a while loop is a superior choice to a for
loop in a program where the number of iterations is unpredictable, depending on user input
during runtime.

For example, in the following program, the program asks the user to enter a positive
number, and in a loop continues that request until the user does so. The number of times
this loop may execute is unpredictable. It may never execute if the user enters a positive
number the first time, or it may execute many times if it takes the user several tries to enter
a positive number.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 cout << "Enter a positive number: ";
 cin >> num;
 while (num <= 0)
 {

 cout << "Number must be positive; please retry: ";
 cin >> num;
 }
 cout << "The number you entered is " << num << " ";
 return 0;
}

Here is some sample input and output:
Enter a positive number: 0
Number must be positive; please retry: -1
Number must be positive; please retry: 3
The number you entered is 3

This program would be more difficult to write with a for loop. While it could be done, the for
loop is designed for situations in which the number of iterations is predictable.

Using the break Keyword

Even though the while loop is a better choice than a for loop for this program, which
requires the user to enter a positive number, there are two problems with this program: one
minor and one major.

The minor problem is that there is some repetition of code; the user is requested both
before and inside the loop to enter a positive number. A do while loop, which is explained in
the following section, avoids this repetition, but repeats other code (there are tradeoffs in
loops as well as in life).

The major problem is that the user is trapped inside the loop until they enter a positive
number. That is not a good programming design. While the user should be required to enter
good data if they are going to enter any data at all, they should have the option, when told
the data entered was not valid, of quitting the data entry.

The following modification of the program uses the break keyword to provide the user with
the option of quitting the data entry:
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 cout << "Enter a positive number: ";
 cin >> num;
 while (num <= 0)
 {

 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;
 if (choice == 'Y')
 {
 cout << "Enter number: ";
 cin >> num;
 }
 else
 break;
 }
 cout << "The number you entered is " << num << " ";
 return 0;
}

Here is some sample input and output when the user eventually enters a positive number:
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter number: -1
Number must be positive; try again (Y/N): Y
Enter number: 3
The number you entered is 3

Here is some sample input and output when the user does not enter a positive number but
instead decides to quit:
Enter a positive number: -2
Number must be positive; try again (Y/N): N
The number you entered is -2

Flags

The flags modification is an improvement because the user no longer is trapped inside the
loop until they enter a positive number, but instead has the option of quitting data entry.
However, the second sample input and output, in which the user quits data entry, illustrates
a problem. The final cout statement outputs the number entered, even if the number is
invalid data.

Ideally, we would only want to output the data if it were valid. If the data were not valid,
then we would want to output that fact instead. However, the code thus far does not enable
us to differentiate whether the while loop ended because the user entered valid data or
because the user decided to quit after entering invalid data.

In Chapter 7, I recommended that you use the break keyword sparingly because it created
multiple exit points for the for loop, making your code more difficult to understand and

increasing the possibility of logic errors. That advice also applies to the while loop. I
recommended then, and recommend now, as an alternative the use of a logical operator.
The following program modification adopts that alternative.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 bool quit = false;
 cout << "Enter a positive number: ";
 cin >> num;
 while (num <= 0 && quit == false)
 {
 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;
 if (choice != 'Y')
 {
 cout << "Enter number: ";
 cin >> num;
 }
 else
 quit = true;
 }
 if (quit == false)
 cout << "The number you entered is " << num << " ";
 else
 cout << "You did not enter a positive number";
 return 0;
}

Here is some sample input and output when the user eventually enters a positive number:
Enter a positive number: -3
Number must be positive; try again (Y/N): Y
Enter number: 3
The number you entered is 3

Here is some sample input and output when the user does not enter a positive number but
instead decides to quit. This time the final output is not of the number entered, but rather
that the user did not enter a positive number:
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter number: -1

Number must be positive; try again (Y/N): N
You did not enter a positive number

This program modification, in addition to using the logical && operator, uses a Boolean
variable named quit. This Boolean variable is used as a flag. A flag is a Boolean variable
whose value indicates whether a condition exists.

In this program, the while loop continues to loop as long as the data entered is invalid and
the user wants to keep going. Accordingly, the while keyword is followed by two conditions,
joined by the logical && operator.

Note

A common programming mistake in a while condition using a logical operator is to
use && when you should use || or vice versa. While the logical && operator may
seem the obvious choice in this example, the correct choice in other situations
may be less intuitive. For example, if you want to loop while a number is not
between 1 and 10, would the loop be while (num < 1 && num > 10) or while (num
< 0 || num > 10)? The answer is the latter; the condition always would be false
using the && operator since a number cannot be both less than 1 and greater
than 10. If you wanted to use the && operator, the condition instead would be
while (num >= 1 && num <= 10).

The first condition is if num <= 0. If this expression is false, the data is valid, so the issue of
whether the user wants to quit does not arise. Accordingly, the second condition, whether
quit is true, is not even evaluated. As discussed in Chapter 7, with a logical && operator,
the right expression is evaluated only if the left expression is true. Therefore, the while loop
ends with the value of quit being false, its initialized value, and code execution continues
with the if / else statement following the while loop.

However, if num <= 0 is true, then the data is invalid, and the second condition, whether
quit is true, is evaluated.

The value of quit may be true under either of two possibilities. The first possibility is that this
is the user’s first attempt to enter data and the data was invalid. In this case, the user has
not yet been asked whether they want to quit. It is assumed they don’t, so they have the
opportunity to answer whether they want to retry. Therefore, the quit variable is initialized to
the value of false when it is declared.

The second possibility is that this is the user’s second or later attempt to enter data and the
data was invalid. In this case, the user has already been asked whether they want to quit,
so the value of quit is based on the user’s answer.

If the value of quit is false, the while loop continues. However, if the user wants to quit, then
the right expression quit == false will be false because the value of quit is true. Therefore,
the while loop ends with the value of quit being true, and code execution continues with the
if / else statement following the while loop.

At some point (hopefully) the while loop will end, either because the user has entered a
valid number or has not and decided to quit trying. Code execution then continues with the if
/ else statement following the while loop.

The value of quit being false necessarily indicates that the user entered valid data, because
if they were still trying to do so, the loop would not have ended. Conversely, the value of
quit being true necessarily indicates that the user entered invalid data.

Accordingly, we use the value of quit in the if /else statement after the while loop to
differentiate whether the while loop ended because the user entered valid data or instead
decided to quit after entering invalid data.

Thus, inside the while loop, quit is a flag whose value indicates whether the user wants to
try again, and after the while loop ends, quit is a flag whose value indicates whether the
user entered valid data.

While (true)

In Chapter 7, we discussed the use of the for loop with the omission of the condition that is
the second expression, such as for (; ;). There, an infinite loop was avoided by using the
break keyword inside the loop. While I did not recommend this use of the for loop, I
mentioned it because you may encounter it as programmers do use the for loop this way.

Similarly, programmers sometimes make the condition of the while loop always true, such
as while (true) or while (1), and break out of the while loop with, you guessed it, the break
keyword. Here is an example that is a modification of the program we have been using that
asks the user to enter a positive number.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 bool quit = false;
 while (true)
 {
 cout << "Enter a positive number: ";
 cin >> num;
 if (num > 0)
 break;
 else
 {
 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;

 if (choice != 'Y')
 {
 quit = true;
 break;
 }
 }
 }
 if (quit == false)
 cout << "The number you entered is " << num << " ";
 else
 cout << "You did not enter a positive number";
 return 0;
}

The one advantage of this modification is that it renders unnecessary having to prompt the
user both before and inside the loop to enter a positive number. However, the use of the
while (true) syntax has the disadvantage of making your code less readable because the
condition that stops the loop cannot be discerned from the parentheses following the while
keyword. The do while loop (explained later in this chapter) avoids this disadvantage and
would be a preferable choice.

The continue Keyword

You can use the continue keyword in a while loop just as you can in a for loop. As
discussed in Chapter 7, the continue keyword, like the break keyword, is used within the
code of a loop, commonly within an if / else structure. If the continue statement is reached,
the current iteration of the loop ends, and the next iteration of the loop begins.

Chapter 7 demonstrated the use of the continue keyword in a program in which the user is
charged $3 an item, but not charged for a “baker’s dozen,” so every 13th item is free—that
is, the user is only charged the price for a dozen items, even though they receive 13. The
following is a modification of that program using a while loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter = 0, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 while (counter++ < num)
 {
 if (counter % 13 == 0)
 continue;

 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;
}

Note The % (modulus) operator is used if the remainder is 0, 13, or a multiple of 13
items.

While this use of the continue keyword certainly works, as I cautioned in Chapter 7, you
should use it (as well as the break keyword) sparingly. Normally, each iteration of a for loop
has one end point. However, when you use a continue statement, each iteration has multiple
end points. This makes your code more difficult to understand, and can result in logic
errors.

I suggested in Chapter 7, in an example using the for loop, that you could use the logical !
(Not) operator as an alternative to using the continue keyword. Here is how you could do so
using the while loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num, counter = 0, total = 0;
 cout << "How many items do you want to buy: ";
 cin >> num;
 bool keepgoing = true;
 while (counter++ < num)
 {
 if (! (counter % 13 == 0))
 total += 3;
 }
 cout << "Total for " << num << " items is $" << total;
 return 0;
}

Note You also could use the relational != (not equal) operator, changing the if
statement to if (counter % 13 != 0).

Nesting While Loops

In Chapter 7, I showed you how you can nest one for loop inside another. Similarly, you can
nest one while loop inside another. You also can nest a while loop inside of a for loop, or a
for loop inside of a while loop.

Chapter 7 demonstrated nested for loops with a program that prints 5 rows of 10 X
characters. The following is a modification of that program using nested while loops.
#include <iostream>
using namespace std;
int main(void)
{
 int x = 0;
 while (x++ < 5)
 {
 int y = 0;
 while (y++ < 5)
 cout << "X";
 cout << '\n';
 }
 return 0;
}

The variable y, used as a counter in the inner while loop, needs to be reinitialized in the
outer while loop. The variable y could be declared outside the loops, but it needs to be
assigned (or reassigned) the value of zero inside the outer loop since the inner loop goes
through all of its iterations for each iteration of the outer loop.

Since each loop has a predictable number of iterations, using nested for loops is somewhat
simpler than using nested while loops. However, both work.

The Do While Loop
The do while loop is similar to the while loop. The primary difference is that with a do while
loop the condition is tested at the bottom of the loop, unlike a while loop where the condition
is tested at the top. This means that a do while loop will always execute at least once,
whereas a while loop may never execute at all if its condition is false at the outset.

Syntax

The syntax of a do while loop is
do {
 statement(s);
} while (condition);

The do keyword starts the loop. The statement or statements belonging to the loop are
enclosed in curly braces. After the close curly brace, the while keyword appears, followed
by the condition in parentheses, terminated by a semicolon.

A Do While Loop Example

The following program is a modification of the one earlier in this chapter that used a while
loop to continue to prompt the user to enter a positive number until the user either did so or
quit, and then either outputted the positive number or a message that the user did not enter
a positive number. This modification uses a do while loop instead of a while loop.
#include <iostream>
using namespace std;
int main(void)
{
 int num;
 char choice;
 bool quit = false;
 do {
 cout << "Enter a positive number: ";
 cin >> num;
 if (num <= 0)
 {
 cout << "Number must be positive; try again (Y/N): ";
 cin >> choice;
 if (choice != 'Y')
 quit = true;
 }
 } while (num <= 0 && quit == false);
 if (quit == false)

 cout << "The number you entered is " << num << " ";
 else
 cout << "You did not enter a positive number";
 return 0;
}

The following are sample inputs and outputs. The first one has the user successfully enter a
positive number the first time.
Enter a positive number: 4
The number you entered is 4

The next sample input and output has the user enter a positive number after two
unsuccessful tries.
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter a positive number: -1
Number must be positive; try again (Y/N): Y
Enter a positive number: 4
The number you entered is 4

The final sample input and output has the user quit after two unsuccessful tries.
Enter a positive number: 0
Number must be positive; try again (Y/N): Y
Enter a positive number: -1
Number must be positive; try again (Y/N): N
You did not enter a positive number

Comparison of the Do While and While Loop

The preceding program, which used the do while loop, did not need to prompt the user both
before and inside the loop to enter a number as did the corresponding program that used
the while loop. However, this program using the do while loop repeats the num <= 0
condition inside the loop, whereas the corresponding program that used the while loop did
not need to do that.

As a general rule, I prefer a do while loop over a while loop in those situations in which the
loop must execute at least once before a condition may be tested, simply because under
these circumstances it seems illogical to test the condition prematurely on the first iteration
of the loop. As you may recall, in the program variation that used the while loop, the value
of quit could be true in the loop condition under either of two possibilities, one being it was
the user’s first attempt to enter data so the user has not yet been asked whether they want
to quit, and the other being it was the user’s second or later attempt to enter data and the
user answered that they wanted to quit. By contrast, using the do while loop eliminates the

first possibility.

The preceding program, in which the user had to enter a number, whether that number is
positive or not, is an example of the situation in which the loop must execute at least once
before a condition may be tested. Another common example of this situation is when a
menu is displayed. Assume the program displays a menu such as the following:
Menu
====
1. Add an entry
2. Edit an entry
3. Delete an entry
4. Exit

If the user chooses options 1, 2, or 3, the program performs the indicated operation (add,
edit, or delete) and then again displays the menu for the user’s next choice. If the user
chooses option 4, the program ends.

In this menu example, the menu always displays at least once; the user cannot choose to
exit before being given that choice. Accordingly, a do while loop normally is preferable to a
while loop when choosing a loop to display a menu.

Scope

With a do while loop, it is important that a variable used in the condition following the while
keyword not be declared inside the loop.

In the program that demonstrated the do while loop, the variables num and quit were
declared before the loop:
 int num;
 char choice;
 bool quit = false;
 do {
 // statements
 } while (num <= 0 && quit == false);

These variables could not be declared inside the do while loop, as in the following code
excerpt, because the code would not compile. The parentheses following the while keyword
is highlighted, and the compiler error is that num and quit are undeclared identifiers.
 char choice;
 do {
 int num;
 bool quit = false;
 // more statements

 } while (num <= 0 && quit == false);

The reason why this alternative will not compile concerns variable scope.

As you know from Chapter 3, a variable must be declared before it can be referred to in
code. Once a variable is declared, it may be referred to wherever in the code it has scope.

Thus far, variables have been declared in main, just after the open curly brace which begins
the body of the main function. This gives these variables scope until the close curly brace,
which ends the body of the main function. Since thus far our programs have had only one
function, main, as a practical matter, the variables, once declared, could be referred to
throughout the entire program.

In this example, however, the variables num and quit are declared after the open curly
brace that begins the body of the do while loop. That means their scope is limited to the
area between that open curly brace and the close curly brace that ends the body of the do
while loop. This area between an open and close curly brace also is referred to as a block.

The while keyword and the parentheses that follow it are outside the body of the do while
loop, or put another way, after the close curly brace that ends the body of the do while
loop. Since the variables num and quit were declared within the body of the do while loop,
they do not have scope outside the body of the loop where the while parentheses are
located. Therefore, these variables are regarded as undeclared when referred to within
those parentheses.

This issue arises far more often with the do while loop than with the for or while loops. With
for or while loops, the condition precedes the body of the loop, so any variables used in the
condition necessarily would be declared before the loop or, in the case of the for loop,
within the parentheses following the for keyword. By contrast, since the condition of a do
while loop comes after the body of the loop, it is an easy mistake to declare the variables
used in the condition before it, in the body of the loop.

This is our first discussion of the variable scope issue. However, it is by no means our last.
This issue is not limited to the do while loop. It arises frequently when we start adding other
functions to our programs, as we will do in upcoming chapters.

Summary
Chapter 7 introduced the first of several loops: the for loop. The for loop works well in
situations where the loop will iterate a fixed number of times.

Often, however, the number of times a loop will iterate is unpredictable since the number of
iterations depends on user input during runtime. One example discussed in this chapter is a
data entry application in which the loop, upon entry of invalid data, asks the user whether
they want to retry or quit, and if they want to retry, gives the user another opportunity to
enter data. The number of times this loop may iterate is unpredictable, since it will keep
repeating until the user either enters valid data or quits.

This chapter showed you how to use the while loop, which works better than a for loop
when the number of times a loop will execute is unpredictable. While the parentheses
following the for keyword consists of three expressions, initialization, condition, and update,
the parentheses following the while keyword consists only of the condition; you have to take
care of initialization and update elsewhere in the code.

There also are situations in which, while the number of times this loop may execute is
unpredictable, the loop will execute at least once. An example discussed in this chapter is a
loop that displays a menu with various choices, including exiting the program. In this menu
example, the menu always displays at least once; the user cannot choose to exit before
being given that choice. In such situations, a do while loop is a better choice than a while
loop. This chapter showed you how to use a do while loop, and introduced the issue of
variable scope.

So far, all of our programs have had only one function, main. While all programs must have
a main function, a C++ program may have additional functions. As programs get more
sophisticated, it is helpful not to put all the code in main, but instead to allocate the code
among different functions. The next chapter will show you how to add and use additional
functions.

Quiz
1. Which of the three loops—for, while, or do while—executes at least once?

2. Which of the three loops—for, while, or do while—is the best choice when the
number of iterations is predictable?

3. Is the parenthetical expression following the while keyword for initialization,
condition or update?

4. May the parenthetical expression following the while keyword be true, such as
while (true)?

5. Can the parenthetical expression following the while keyword combine two
expressions?

6. What is the purpose of the break keyword in a while loop?

7. What is the purpose of the continue keyword in a while loop?

8. What is a flag?

9. If you were going to use nested while loops to print rows and columns, which for
loop would print the rows, inner or outer?

10. Does a variable declared inside the body of a do while loop have scope in the
parenthetical expression following the while keyword?

Chapter 9: Functions

Overview
A function is a group of statements that together perform a task. So far, our programs have
had one function, main. Additionally, at times we have used functions defined in a standard
library, such as the pow function in the cmath library, used to raise a number to a certain
power.

No program needs more than a main function. However, as you write more complex and
sophisticated programs, you may find your main function becoming extremely long.

Neither the compiler nor the runtime cares if your main function is short or long. However,
you should care. A main function that continues for pages is difficult to understand or fix if
errors arise.

By analogy, this book is several hundred pages long. It would be harder to understand if
each chapter was not divided into sections. This book would be still harder to understand if
it consisted of only one, very long chapter. By dividing this book’s content into chapters, and
each chapter into sections, this book is easier to understand.

Similarly, you can divide up your code into separate functions. How you divide up your code
among different functions is up to you, but logically the division usually is so each function
performs a specific task.

For example, in a program that performs arithmetic calculations, one function obtains user
input, another function performs the calculation, and a third function performs output of the
result. This is analogous to how a book is divided up into chapters and sections. Each
chapter explores a different subject. One chapter focuses on variables, another (this one)
on functions.

There are advantages to dividing your code into separate functions in addition to making
your code easier to understand. For example, if a function performs a specific task, such as
sending output to a printer, which is performed several times in a program, you only need to
write once in a function the code necessary to send output to the printer, and then call that
function each time you need to perform that task. Otherwise, the code necessary to send
output to the printer would have to be repeated each time that task was to be performed.

Hopefully, I have persuaded you that organizing your code into separate functions can be
useful. I will now show you how to do it.

Defining and Calling a Function
Implementing any function in addition to main involves two steps:

1. Defining the function

2. Calling the function

The explanation of these steps uses terminology we have not discussed before, so that
terminology is reviewed first.

Terminology of a Function

Let’s look at a simple program with one function, main:
#include <iostream>
using namespace std;
int main ()
{
 cout << "Hello world!";
 return 0;
}

The first line, int main (), is the function header. Unlike a statement, the function header is
not followed by a semicolon.

The function header consists of a return type, a function name, and an argument list. The
data type int preceding main is the return type, main is the function name, and the
parentheses, empty in this example but not always, contains the argument list.

A function header always is followed by an open curly brace, which begins the function
body. The function body ends with a close curly brace. There may be other open and curly
braces between the open curly brace that begins the function body and the close curly
brace that ends it, such as to enclose multiple statements that belong to an if statement or
a loop.

The function body consists of one or more statements. In this example, the function body
consists of two statements. The last statement, return 0, is a return statement. The function
body must contain a return statement unless the return type is void, in which case the return
statement is optional.

The function header and body together are referred to as the function definition. A function
cannot execute until it is first defined. Once defined, a function executes when it is called.

Normally, a function is called through code. The main function is the exception. The main
function is called automatically when your program begins to run.

The next sections will explain how to define your own function and then call it.

Defining a Function

Let’s take our “Hello World” example and divide the code into two functions, main and a
printMessage function that outputs “Hello world!” The comments (beginning with //) indicate
the beginning and end of the definition of the printMessage function and where that function
is called.
#include <iostream>
using namespace std;

// begins definition of printMessage function
void printMessage (void)
{
 cout << "Hello world!";
}
// ends definition of printMessage function
int main ()
{
 printMessage(); // calls printMessage function
 return 0;
}

The printMessage function is defined first. The void keyword preceding the function name
printMessage means that this function does not return a value. The void keyword in
parentheses following the function name means this function has no arguments. The
parentheses also could be left empty, such as after main; empty parentheses following the
function name in a function header is the same as placing the void keyword within the
parentheses. Which syntax you choose is a matter of taste; one is no better or worse than
the other.

The body of the printMessage function has one statement, which outputs “Hello world!” The
function body does not need to contain an explicit return statement because, since the
return type is void, the return statement is implied. However, you may include an explicit
return statement. If you did, then the printMessage function would read
void printMessage (void)
{
 cout << "Hello world!";
 return;
}

Calling a Function

Unless the printMessage function is called, it is the programming equivalent of the tree that
falls in the forest without anyone seeing or hearing it; it is there in the program, but it
doesn’t do anything. The printMessage function is called in main with the line:
 printMessage();

In this example, printMessage is the called function, since it is the function being called
from main. The empty parentheses indicate that no arguments are being passed to this
function. I will show you later in this chapter how to pass arguments, as well as how to use
return values.

The order of execution is as follows:
1. Execution always starts with the main function.

2. The first statement in main, printMessage(), is executed.

3. Execution next shifts to the printMessage function, and begins with the first
statement in that function, which outputs “Hello world!”

4. After the printMessage function completes executing, execution returns to the
main function with the next unexecuted statement, return 0, which completes the
main function.

Figure 9-1 shows the order of execution graphically.

Figure 9-1: Order of execution of the Hello World Program

Prototyping

Since execution always starts with main, it seems more logical to place the main function
first, ahead of the printMessage function, such as in the following example:
#include <iostream>
using namespace std;

int main ()
{

 printMessage();
 return 0;
}
void printMessage (void)
{
 cout << "Hello world!";
}

However, this code will not compile. The call in main to printMessage() will be highlighted,
with the compiler error message being “undeclared identifier.”

The reason for this compiler error is that when the compiler, going from top to bottom in
your code, encounters a function call, it must already know of the function’s name, return
type, and arguments. This was not a problem when the printMessage function was defined
above the main function. However, when the printMessage function was defined below the
main function, when the compiler encounters the call in main to printMessage(), it does not
yet know of the printMessage function’s name, return type, and arguments.

One solution to this problem is to define all functions above main. However, this may make
your code difficult to read. A program’s execution always starts with main, regardless of
the order in which functions are defined. In a program with many functions, the main
function often acts as a “switchboard,” calling one function after another. Therefore, viewing
the main function can provide an excellent overview of the order of events. Burying the main
function beneath numerous other functions requires someone reviewing your code to hunt
for main to obtain that overview. Additionally, in complex programs in which one function
calls another function which calls still another function, the order in which to define these
functions to avoid a compiler error can be confusing.

The solution of preference is to prototype each function, except main, which does not have
to be prototyped since it is required by every program. The following program shows how
to prototype the printMessage function in the Hello World program:
#include <iostream>
using namespace std;
void printMessage(void); // this is the prototype!

int main ()
{
 printMessage();
 return 0;
}
void printMessage (void)
{
 cout << "Hello world!";
}

The prototype is above all function definitions. This ensures that the compiler, compiling the
code from top to bottom, will encounter the prototype before any function.

The prototype is similar to a function header. The primary difference is that it has a
semicolon at the end because it is a statement. By contrast, a function header must not be
followed by a semicolon.

Note

There are other differences between the prototype and the function header when,
unlike here, the parentheses following the function name includes one or more
arguments. Those differences will be discussed in the section “Sending
Information to a Function” later in this chapter.

Variable Scope and Lifetime
Thus far, all variables have been defined at the top of the main function. In programs where
the only function is main, those variables can be accessed throughout the entire program
since main is the entire program. However, once we start dividing up the code into separate
functions, issues arise concerning variable scope and lifetime.

The issue of variable scope was introduced in Chapter 8 in connection with the do while
loop. The issue of variable lifetime is new.

Local Variables

You can call the same function multiple times. The following program attempts to call the
printMessage function in a loop until the user decides to stop, and each time outputs the
number of times the printMessage function has been called. The goal is that the first time
the printMessage function is called, the output will be “This function called 1 times” (pardon
the bad grammar), the second time the printMessage function is called, the output will be
“This function called 2 times” and so on.
#include <iostream>
using namespace std;
void printMessage(void);

int main ()
{
 int times = 0;
 char choice;
 do {
 cout << "Enter Q to quit, any other character to continue: ";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();
 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{
 times++;
 cout << "This function called " << times << " times\n";
}

This code will not compile. The reference to the string variable times in the printMessage

function will be highlighted, the error message being that this variable is an “undeclared
identifier.”

The reason for the compiler error is that the scope of the variable times is limited to the
main function in which it was declared. The issue of variable scope was discussed in
Chapter 8 in connection with the do while loop. You cannot refer to a variable outside the
scope in which it was declared. A variable’s scope is within the curly braces in which it was
declared. Therefore, the scope of the variable times is limited to the main function. Stated
another way, the variable times is a local variable, in this case local to the main function.
An attempt to access a local variable outside of the function in which it was declared results
in a compiler error.

This compiler error can be fixed by moving the declaration of times into the printMessage
function as in the following program:
#include <iostream>
using namespace std;
void printMessage(void);

int main ()
{
 char choice;
 do {
 cout << "Enter Q to quit, any other character to continue: ";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();
 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{
 int times = 0;
 times++;
 cout << "This function called " << times << " times\n";
}

Here is some sample input and output:
Enter Q to quit, any other character to continue: X
This function called 1 times
Enter Q to quit, any other character to continue: Y
This function called 1 times

Enter Q to quit, any other character to continue: Z
This function called 1 times
Enter Q to quit, any other character to continue: Q
Input stopped

While this program compiles, the output is not exactly what we wanted. The variable times
in the printMessage function does not “remember” the previous times that function was
called.

Variables, like people, have a lifetime. A person’s lifetime begins at birth. A variable’s
lifetime begins when it is declared. A person’s lifetime ends with death. A variable’s lifetime
ends when it goes out of scope.

The variable times is local to the printMessage function since it was declared in that
function. Being a local variable, each time the printMessage function is called, the variable
times is created, and each time the printMessage function ends, the variable times is
destroyed. Accordingly, the variable times the second time the printMessage function is
called is not a continuation of the variable times that was created the first time the
printMessage function was called. Rather, the variable times starts all over again each time
the printMessage function is called.

There are two alternative methods to having the value of a variable persist between function
calls. One is to make the variable global rather than local. The other is to keep the variable
local but make it static. These alternatives are covered next.

Global Variables

A variable may be global instead of local. The term global means that the variable has
scope throughout the program. Since the variable has scope throughout the program, its
lifetime does not end until the program ends.

To make a variable global, it must be declared above all function definitions, generally with
function prototypes. The following program makes only one change from the previous one.
The declaration of the variable times is moved from inside main to above main, making
times a global variable.
#include <iostream>
using namespace std;
void printMessage(void);
int times;

int main ()
{
 times = 0;
 char choice;

 do {
 cout << "Enter Q to quit, any other character to continue: ";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();
 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{
 times++;
 cout << "This function called " << times << " times\n";
}

Here is some sample input and output:
Enter Q to quit, any other character to continue: X
This function called 1 times
Enter Q to quit, any other character to continue: Y
This function called 2 times
Enter Q to quit, any other character to continue: Z
This function called 3 times
Enter Q to quit, any other character to continue: Q
Input stopped

This is the output we wanted!

Perhaps because of the ease of using global variables to solve the issue of the scope and
lifetime of the times variable, beginning programmers often make all variables global so they
can access these variables anywhere and anytime in their program. This is not a good idea.

While the good news is that a global variable can be accessed throughout your program,
this also is the bad news. The fact that a global variable can be accessed and changed
anywhere in your program makes it more difficult to determine why, for example, a global
variable has an invalid value than if the variable’s scope was far more limited. This is simply
because the more limited a variable’s scope, the less places there are in the code that
might affect its value.

Therefore, global variables can make it more difficult to fix problems with your programs.
For this reason, some programmers, and programming teachers, go to the extreme and
pronounce that “all global variables are evil.” I’m not sure I would go that far, but I would
recommend that you not use global variables unless you have a very good reason to do so,
since there usually are better alternatives. One alternative, a static local variable, is

examined next.

Static Local Variables

Up until now a variable’s lifetime was dictated by its scope. Since a local variable’s scope
was limited to the function in which it was declared, the local variable’s lifetime ended when
that function ended. Since a global variable had scope throughout a program, the global
variable’s lifetime did not end until the entire program ended.

A static local variable is different. A static local variable has the scope of a local variable but
the lifetime of a global variable. This may seem counter-intuitive, so to illustrate let’s modify
the printMessage function we have been working with.

A static local variable is declared exactly like a local variable, within a function rather than
above all functions as with a global variable. The difference between the declaration of a
static local variable and a nonstatic, or automatic, local variable is that a static local variable
is declared with the static keyword, and usually also with a starting value. Thus, in the
following program, instead of the declaration
 int times;

the declaration is
 static int times = 0;

Here is the program in its entirety:
#include <iostream>
using namespace std;
void printMessage(void);

int main ()
{
 char choice;
 do {
 cout << "Enter Q to quit, any other character to continue: ";
 cin >> choice;
 if (choice == 'Q')
 cout << "Input stopped";
 else
 printMessage();
 } while (choice != 'Q');
 return 0;
}
void printMessage (void)
{

 static int times = 0;
 times++;
 cout << "This function called " << times << " times\n";
}

Here is some sample input and output:
Enter Q to quit, any other character to continue: X
This function called 1 times
Enter Q to quit, any other character to continue: Y
This function called 2 times
Enter Q to quit, any other character to continue: Z
This function called 3 times
Enter Q to quit, any other character to continue: Q
Input stopped

This output also is correct. Let’s now analyze how the program works.

The first time the printMessage function is called, the variable times is declared, and
initialized to zero, by the statement:
 static int times = 0;

The variable times then is incremented and outputted, resulting in the output:
This function called 1 times

So far, this is the same as when times was an automatic local variable rather than a static
local variable. The difference is that when the printMessage function ends, times, being a
static local variable, is not destroyed. That variable and its value remain in memory.

The next (second) time the printMessage function is called, the statement declaring and
initializing variable times is not executed because that variable, being static, still exists from
the first time the printMessage function was called. Further, the value of the times variable
at the end of the first call of the printMessage function, 1, remains in memory. That value
then is incremented to 2, and outputted, so the output to the second call of the
printMessage function is
This function called 2 times

Accordingly, we were able to persist the value of the times variable between function calls
by making that variable either global or static local. The difference was that as a static local
variable the scope of times still was limited to the printMessage function, as opposed to
having scope throughout the program if it were a global variable. This more limited scope
would make it easier to fix your program if the value of the times variable were incorrect
somewhere in your code.

Sending Information to a Function
The printMessage function in the Hello World program outputs “Hello world!” It does not
need any further information to do its job.

Let’s make the printMessage function more useful so that it does not always output “Hello
world” but instead outputs whatever message we ask it to. Of course, the printMessage
function is not a mind reader; we need to tell it the message we want it to output.

Let’s try to write a program in which the user enters in main the string to be outputted, that
user input is stored in a string variable str, and then the printMessage function attempts to
output the value of that str variable. One approach is to make the variable str global so it
can be accessed in both the main and printMessage functions:
#include <iostream>
#include <string>
using namespace std;
void printMessage();
string str;

int main ()
{
 cout << "Enter a string: ";
 cin >> str;
 printMessage();
 return 0;
}
void printMessage ()
{
 cout << "You inputted " << str;
}

Note

With a string variable, a statement cin >> str does not compile unless you include
the <string> standard library. Additionally, the cin object and the stream insertion
operator (>>) will only accept the input of a string variable up to the first
embedded white space. Therefore, if the input were “Jeff Kent,” the output still
would be only “Jeff.” In Chapter 10, we will cover the getline function, which will
work with string input that has embedded spaces.

Here is some sample input and output:
Enter a string: Jeff
You inputted Jeff

While this works, as discussed in the previous section, global variables can make it more

difficult to fix problems with your programs. There is a better alternative here, involving
passing arguments.

As discussed earlier in this chapter, the parentheses following the function name in the
function header contain the function’s arguments. Arguments are information that is provided
to a function so that it may perform its task.

As also discussed earlier, some functions don’t need further information to do their job, such
as the printMessage function in the Hello World program, which simply outputs “Hello
world!” It does not need any further information to do its job.

However, when we want to modify the printMessage function so that it does not always
output “Hello world!” but instead outputs whatever message we ask it to, we need to tell it
the message we want it to output. We can do so by passing the function an argument that
specifies the message.

This chapter will discuss two ways of passing arguments, by value and by reference. A third
way, passing arguments by address, will be covered after we discuss pointers in Chapter
11.

Passing Arguments by Value

The following is a modification of the program that uses the printMessage function to output
a message. This time, the content of the message to be output is passed to the
printMessage function as an argument:
#include <iostream>
#include <string>
using namespace std;
void printMessage(string);

int main ()
{
 string str;
 cout << "Enter a string: ";
 cin >> str;
 printMessage(str);
 return 0;
}
void printMessage (string s)
{
 cout << "You inputted " << s;
}

Here is some sample input and output:

Enter a string: Jeff
You inputted Jeff

The Function Prototype and Header

Both the function prototype and the function header have one argument, of the string data
type. However, the function prototype’s argument just has the argument’s data type (string),
whereas the function header’s argument has both a data type and an argument name
(string s).

The function prototype may include an argument name as well as data type, as in:
void printMessage(string someArg);

However, that argument is called a dummy argument because it serves no purpose.

By contrast, the function header’s argument must include an argument name as well as a
data type. The purpose of that argument name in the function header’s argument is
explained next.

Using the Function Argument

The following code calls the printMessage function:
 printMessage(str);

The string variable str, whose value previously was assigned by user input, is passed as an
argument to the printMessage function. The value of str then is passed to the string variable
s, which is the argument name in the function header of the printMessage function:
void printMessage (string s)

The string variable s then is used in the body of the printMessage function to output the
message:
 cout << "You inputted " << s;

Figure 9-2 shows how the value of the argument of the function call is passed to the
argument in the function header and then used in the body of the called function.

Figure 9-2: The passing of the function argument

The function header must include an argument name as well as a data type so the value
which is being passed by the function call, stored in str in main, may be stored in a variable
that can be used in the printMessage function. Otherwise, the value passed would have no
place to be stored for use in the printMessage function.

The argument name in the function header can be the same as the name of the variable
passed in the function argument:
printMessage(str);
void printMessage (string str)

Even if so, the str in main is a separate variable from the str in printMessage. Nevertheless,
I recommend, to avoid confusion, using different names in the program.

Using Multiple Function Arguments

The program we just discussed used one function argument. However, a function may have
two or even more function arguments.

The following modification of the printMessage function uses two arguments, one for the
first name and one for the last name:
#include <iostream>
#include <string>
using namespace std;
void printMessage(string, string);

int main ()
{
 string name1, name2;
 cout << "Enter first name: ";
 cin >> name1;
 cout << "Enter last name: ";
 cin >> name2;
 printMessage(name1, name2);
 return 0;
}
void printMessage (string firstName, string lastName)
{
 cout << "Your name is " << firstName << " " << lastName << endl;
}

Here is some sample input and output:
Enter first name: Jeff
Enter last name: Kent

Your name is Jeff Kent

The order of arguments in the function call must correspond to the order of the arguments in
the function header. The function call and the function header here are
printMessage(first, last);
void printMessage (string firstName, string lastName)

The first variable in the function call is name1. Therefore, the value of name1 in main is
copied into the first variable in the printMessage function header, firstName. Similarly, since
the second variable in the function call is name2, the value of name2 in main is copied into
the second variable in the printMessage function header, lastName.

If the arguments in the function call were reversed, as in:
printMessage(last, first);

then the sample input and output instead would be
Enter first name: Jeff
Enter last name: Kent
Your name is Kent Jeff

In this example, not paying careful attention to the correspondence between the order of
arguments in the function call and the order of the arguments in the function header resulted
in my name being outputted backwards. However, the consequences of a lack of
correspondence between the order of arguments in the function call and the order of the
arguments in the function header is more drastic when the multiple function arguments have
different data types.

In the following program, the first argument, the person’s name, is a string, whereas the
second argument, the person’s age, is a different data type, an integer.
#include <iostream>
#include <string>
using namespace std;
void printMessage(string, int);

int main ()
{
 string name;
 int age;
 cout << "Enter name: ";
 cin >> name;
 cout << "Enter age: ";
 cin >> age;
 printMessage(name, age);

 return 0;
}
void printMessage (string theName, int theAge)
{
 cout << "Your name is " << theName
 << " and your age is " << theAge << endl;
}

Here is some sample input and output (fortunately the program has no way to verify my
age):
Enter first name: Jeff Kent
Enter age: 21
Your name is Jeff Kent and your age is 21

The function call and the function header here are
printMessage(name, age);
void printMessage (string theName, int theName)

The first argument of the printMessage function expects a string, so it is critical that the first
argument in the function call is a string. Similarly, the second argument of the printMessage
function expects an integer, so it is critical that the second argument in the function call is an
integer. If the arguments in the function call were reversed, as in:
printMessage(age, name);

then the consequence would not be illogical output as in the prior example, but instead a
compiler error “cannot convert parameter 1 from ‘int’ to ‘string’.” This is because the
compiler was expecting from the function prototype that the first argument (or parameter)
would be a string, not an int.

Passing Arguments by Reference

Passing arguments by value is fine when you don’t want to change their value in the called
function. The printMessage function did not change the value of its arguments; it simply
outputted them.

However, sometimes the intent of a function is to change the value of the argument passed
to it. Consider the following example, in which the doubleIt function is supposed to double
the value of the argument passed to it:
#include <iostream>
using namespace std;
void doubleIt(int);

int main ()

{
 int num;
 cout << "Enter number: ";
 cin >> num;
 doubleIt(num);
 cout << "The number doubled in main is " << num << endl;
 return 0;
}
void doubleIt (int x)
{
 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is "
 << x << endl;
}

Here is some sample input and output:
Enter number: 3
The number to be doubled is 3
The number doubled in doubleIt is 6
The number doubled in main is 3

As the sample input and output reflects, the value of num was not changed by the doubling
of its counterpart argument in the doubleIt function.

The reason the value of num was not changed in main is that a copy of it was passed to
doubleIt. The change was made to the copy, but the original, the variable num in main, was
not affected by the doubling of the copy. The logic is the same as if I gave you a copy of
this page, which you then proceeded to rip up. The original I kept would be unaffected.

In order for the called function to change the value in main of a variable passed to it, the
variable must be passed by reference. The variable in the called function is called a
reference variable. The reference variable is not a copy of the variable in main. Instead,
the reference variable is an alias for the variable in main. You may recall from television that
an alias is another name a person may use, such as James Bond’s alias of 007. However,
whether you refer to him as James Bond or 007, you are still referring to the same person.

In order to pass a variable by reference, the data type in the argument, both in the function
header and in the prototype, is followed by an ampersand. Yes, this is the same
ampersand that is used as the address operator. Here, however, the ampersand is used in
a different context.

The following program passes the variable to be doubled by reference:
#include <iostream>

using namespace std;
void doubleIt(int&);

int main ()
{
 int num;
 cout << "Enter number: ";
 cin >> num;
 doubleIt(num);
 cout << "The number doubled in main is " << num << endl;
 return 0;
}
void doubleIt (int& x)
{
 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is " << x << endl;
}

Here is some sample input and output:
Enter number: 3
The number to be doubled is 3
The number doubled in doubleIt is 6
The number doubled in main is 6

There were only two changes. The prototype and function header for doubleIt when the
argument is passed by value is
void doubleIt(int);
void doubleIt (int x)

By contrast, the prototype and function header for doubleIt when the argument is passed by
reference each includes the ampersand following the data types:
void doubleIt(int&);
void doubleIt (int& x)

However, the function call is the same whether the variable is passed by value or by
reference; there is no ampersand in either case. Whether the program passes an argument
in a function call by value or by reference is dictated by the function’s prototype.

You can pass multiple values by reference as well as by value. Indeed, you can pass some
values by reference and others by value. You pass by reference those values you need to
change, and you pass by value those values you are not changing.

Note
There is another difference between passing by value and passing by reference.
You can pass by value expressions and constants (constants are covered in
Chapter 10) as well as variables. However, you can only pass variables by
reference.

For example, in the following program the function addNumbers has three arguments. The
first two arguments are the numbers to be added, and are passed by value. The third
argument will be the sum of the two numbers and will be passed by reference, since its
value is being changed in the called function:
#include <iostream>
using namespace std;
void addNumbers(int, int, int&);

int main ()
{
 int firstNum, secondNum, sum = 0;
 cout << "Enter first number: ";
 cin >> firstNum;
 cout << "Enter second number: ";
 cin >> secondNum;
 addNumbers (firstNum, secondNum, sum);
 cout << firstNum << " + " << secondNum << " = " << sum;
 return 0;
}
void addNumbers (int x, int y, int& z)
{
 z = x + y;
}

Here is some sample input and output:
Enter first number: 3
Enter first number: 6
3 + 6 = 9

Returning a Value from a Function
Arguments are used to pass values to a called function. A return value can be used to pass
a value from a called function back to the function that called it.

For example, in the previous program the function addNumbers had three arguments, the
first two being the numbers to be added, the third being their sum. The following program
modifies the previous one by eliminating the third argument, but adding a return value to the
function:
#include <iostream>
using namespace std;
int addNumbers(int, int);

int main ()
{
 int firstNum, secondNum, sum = 0;
 cout << "Enter first number: ";
 cin >> firstNum;
 cout << "Enter second number: ";
 cin >> secondNum;
 sum = addNumbers (firstNum, secondNum);
 cout << firstNum << " + " << secondNum << " = " << sum;
 return 0;
}
int addNumbers (int x, int y)
{
 return x + y;
}

The sample input and output may be the same as in the previous program:
Enter first number: 3
Enter first number: 6
3 + 6 = 9

The return value is added by indicating its data type, here an int, in front of the function
name in both the function prototype and header:
int addNumbers(int, int);
int addNumbers (int x, int y)

The function call is on the right side of the assignment operator. To the left of the
assignment operator is a variable of the same data type as the return value of the function.
The concept is that the return value from the function call is assigned to the variable sum on
the left side of the assignment operator.

 sum = addNumbers (firstNum, secondNum);

The body of the called function has the return keyword followed by a value of the data type
compatible with the function prototype and header, here int. The function’s return value is
the value that follows the return keyword, here the sum of the two arguments:
 return x + y;

That sum of x + y then is assigned to the variable sum in main.

Figure 9-3 shows the order of execution graphically.

Figure 9-3: The order of execution of the return value of a function

It is common that a function returning a value is called on the right side of an assignment
operator with a variable on the left side of the assignment operator to capture the return
value. However, this is not required. In the program, the variable sum was not necessary.
Instead of the lines
 sum = addNumbers (firstNum, secondNum);
 cout << firstNum << " + " << secondNum << " = " << sum;

the return value could have been displayed as:
 cout << firstNum << " + " << secondNum << " = "
 << addNumbers (firstNum, secondNum);

The only difference is that once this cout statement completes, the return value of the
function cannot be used in later statements since it was not stored in a variable. In this
program, that is not a problem because the return value is not used again. However, if you
are going to use a return value more than once, it’s generally a good idea to store that
return value in a variable. This is typically done by calling the function on the right side of an
assignment operator with a variable on the left side of the assignment operator to capture
the return value.

While multiple values can be passed to a function as arguments, at this point, multiple
values cannot be returned from functions using the data types we have covered so far. This
will change when we cover arrays in the next chapter, and structures and classes in later
chapters.

Summary
A function is a group of statements that together perform a task. While no program needs
more than a main function, as you write more complex and sophisticated programs, your
code will be easier to write, understand, and fix if you divide the code up among different
functions, each function performing a specific task.

You implement a function in addition to main by first defining it and then calling it. A function
definition consists of a function header and a function body. The function header consists of
a return type, a function name, and an argument list. The function header always is followed
by an open curly brace, which begins the function body. The function body ends with a
close curly brace and contains one or more statements, generally ending with a return
statement. Additionally, unless the function is defined above where it is called, it must be
prototyped.

In programs where the only function is main, all variables defined at the top of that function
necessarily can be accessed throughout the entire program. However, once we start
dividing up the code into separate functions, issues arise concerning variable scope and
lifetime. A variable’s scope determines where it can be referred to in the code. A variable’s
lifetime determines when it is destroyed. A local variable’s scope and lifetime is limited to
the function in which it was declared. By contrast, a global variable’s scope and lifetime are
throughout the entire program. Finally, a static local variable’s scope is limited to the
function in which it was declared like a local variable, but its lifetime lasts throughout the
entire program like a global variable.

You can pass information to a function by using arguments, and pass arguments by value or
by reference. You can also pass a variable argument by value when you don’t intend any
change to that variable in the called function to affect that variable’s value in the calling
function. Conversely, you pass a variable argument by reference when you intend a change
to that variable in the called function to affect that variable’s value in the calling function. The
order and data type of the arguments in the function prototype must correspond to the
order and data type of the arguments in the function header. Similarly, the order and data
type of the arguments in the function call must correspond to the order and data type of the
arguments in the function header.

While arguments are used to pass values to a called function, a return value can be used to
pass a value from a called function back to the function that called it. However, while
multiple values can be passed to a function as arguments, multiple values cannot be
returned from functions.

So far, the variables we’ve used have only been able to hold one value at a time. In the next
chapter, we’ll discuss a type of variable that can hold multiple values simultaneously.

Quiz
1. What is the difference between variable scope and lifetime?

2. Must a function other than main be prototyped?

3. Is a function required to have at least one argument?

4. Can a function have more than one argument?

5. What is the effect on a variable in main if it is passed by value to another function
which changes the argument corresponding to that variable?

6. What is the effect on a variable in main if it is passed by reference to another
function which changes the argument corresponding to that variable?

7. Must a function have a return value?

8. Can a function have more than one return value?

9. May a function have neither a return value nor any arguments?

10. May a function have both a return value and arguments?

Chapter 10: Arrays

Overview
The variables we have worked with so far can hold only one value at a time. For example, if
you declare an integer variable named testScore to represent a student’s test score, that
variable can hold only one test score.

The fact that the variable testScore can hold only one test score is not a problem so long as
that student only takes one test. However, if the same student takes another test, or
another student takes the same test, where do you store the second test score? If you
store the second score in testScore, then you lose the ability to retrieve the first score from
the variable testScore, since that variable can hold only one test score at a time.

Therefore, if you wanted to keep track of, for example, 100 test scores, your code might
look like this:
 int testScore1;
 int testScore2;
 int testScore3;
 int testScore4;
 int testScore5;
 int testScore6;
 int testScore7;
 int testScore8;
 int testScore9;
 int testScore10;
 // declare testScore11 through testScore99
 int testScore100;

Yikes! That’s a lot of code to write. Wouldn’t it be easier just to declare 1 variable that can
hold 100 values, like this:
 int testScore[100];

The good news is you can do exactly that, using an array! An array enables you to use a
single variable to store many values. The values are stored at consecutive indexes, starting
with zero and then incrementing by one for each additional element of the array.

Using 1 array variable to store 100 values has many advantages over having to declare 100
separate variables that can hold only 1 value each. In addition to being a lot less code to
write, it is far easier to keep track of 1 variable than 100. Furthermore, and more important,
as I will show you in this chapter, you can use a loop to access each consecutive element in
an array, whereas this is not possible with three separate variables.

Declaring an Array
An array is a variable. Therefore, like the other variables we have covered so far, an array
must be declared before it can be used.

The syntax for declaring an array is almost identical to the syntax for declaring integers,
characters, or other variables. For example, you would declare an integer variable
testScore as follows:
 int testScore;

By contrast, you would declare an array of three test scores this way:
 int testScore[3];

This declaration contains an array of integers. You instead could declare an array of floats,
characters, or strings in the following manner:
 float GPA [5];
 char grades[7];
 string names[6];

While an array may be one of several data types, all the values in a particular array must be
of the same data type. You cannot have an array in which some elements are floats, others
are strings, still others are integers, and so on.

The declaration of both a single variable and an array of variables begins with the data type
followed by a variable name and ending with a semicolon. The only difference between
declaring a variable that holds a single value and an array is that, when declaring an array,
the variable name is followed by a number within square brackets. That number is the
array’s size declarator.

Note
There is one exception to the necessity of having a size declarator. As discussed
later in this chapter in the section on “Initialization,” the square brackets may be
empty if you initialize the array when you declare it.

The purpose of the size declarator is to tell the computer how much memory to reserve.
The size declarator, combined with the data type of the array, determines how much
memory to reserve.

As you may recall from Chapter 3, the declaration of a variable reserves memory for the
number of bytes required by the data type of that variable, that number of bytes depending
on the particular operating system and compiler. For example, if an integer variable required
4 bytes on your operating system and compiler, then declaring the integer variable
testScore would reserve 4 bytes. If instead you declared an array of three integer variables,
then the amount of memory reserved by that declaration would be 12 bytes, 4×3.

Tip

You should give careful consideration to the number of elements in an array before
you declare the array since you can’t resize an array in the middle of a program in
the event the array is too small or unnecessarily large. Sometimes, the number of
elements is obvious; an array of the days in a week will have seven elements.
However, other times the number of elements is not intuitive. In those
circumstances, you should err on the side of declaring too many rather than too
few elements. The reason is that the consequence of declaring too many elements,
wasted memory, is less severe than the consequence of declaring too few
elements, the inability to store values in the array.

Constants

Each of the size declarators used in the previous section was a literal. A literal is a value
that is written exactly as it is meant to be interpreted. For example, the number 3 is a literal.
Its value cannot be anything other than 3. You can’t change the number 3 to have some
different value. Accordingly, the number 3 may be used in the following program as the size
declarator:
#include <iostream>
using namespace std;
int main ()
{
 int testScore[3];
 return 0;
}

The size declarator may not be a variable. The following program attempts, unsuccessfully,
to use a variable numTests in declaring the size of an array:
#include <iostream>
using namespace std;
int main ()
{
 int numTests;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int testScore[numTests];
 return 0;
}

The result is a compiler error. The compiler will flag the declaration of the array (int
testScore[numTests]) and complain that a constant expression was expected.

Note
It is possible to declare the size of an array with a variable if you use a different
array declaration technique, dynamic memory allocation, which is covered in

Chapter 11.

The term constant is new. A constant is a name that represents the same value throughout
a program. That value may be any one you specify. This is different than mathematical
constants such as PI, which correspond to a given value.

A constant is the converse of a variable, while a variable is a name that may represent
different values during the execution of a program. However, the value of a constant cannot
change during the execution of a program.

Note
While neither a literal nor a constant changes its value during the execution of a
program, they are not the same. While a constant is a name that represents a
value, a literal is not a name, but instead the value itself.

You may use a constant instead of a literal as a size declarator. The size declarator in the
following program uses a constant for the value 3 rather than the literal 3.
#include <iostream>
using namespace std;
int main ()
{
 const int numTests = 3;
 int testScore[numTests];
 return 0;
}

Going back to the definition of a constant, a name that represents the same value
throughout a program, the name is numTests, and it represents the value 3.

The syntax for declaring a constant is similar to, but not the same as, a syntax for declaring
a variable. Each requires a data type (here int) and a variable name (here numTests) and
ends in a semicolon. However, there are two differences.

First, the declaration of a constant must begin with the const keyword. This tells the
compiler that you are declaring a constant instead of a variable.

Second, the declaration terminates by assigning the constant a value. You also may assign
a variable a value when you are declaring it; you learned in Chapter 3 this is called
initialization. However, assigning a variable a value when you declare it is optional. On the
other hand, assigning a constant a value when you are declaring it is mandatory; the
declaration of the constant will not compile if you don’t, the compiler error being that a
constant object must be initialized. The reason is, since you cannot assign a value of a
constant after you declare it, the only time you can assign a value to a constant is when you
declare it.

The declaration of a constant does reserve memory just as does the declaration

Note of a variable. The difference is that with a constant the value stored at the
memory address cannot change during the life of the program.

The following program illustrates that you cannot assign a value of a constant after you
declare it:
#include <iostream>
using namespace std;
int main ()
{
 const int numTests = 3;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int testScore[numTests];
 return 0;
}

The result is a compiler error. The compiler will flag the attempt to assign a value to the
constant (cin >> numTests) and complain that the stream extraction operator >> cannot
have a right-hand operand that is a constant. This is simply another way of saying you can’t
assign a value to a constant after you declare it.

The following program modifies the previous one by assigning the user input to a variable
(so far so good) and then attempting to assign that variable to the constant (not good):
#include <iostream>
using namespace std;
int main ()
{
 const int numTests = 3;
 int num;
 cout << "Enter the number of test scores:";
 cin >> num;
 numTests = num;
 int testScore[numTests];
 return 0;
}

Once again, the result is a compiler error. The compiler will flag the attempt to assign a
value to the constant (numTests = num); the error message will be different than in the
previous example, that “l-value specifies const object.” The 1 in “l-value” is a small L, not the
number one, and refers to the value to the left of the assignment operator. This again is
another way of saying you can’t assign a value to a constant after you declare it.

While you can use a constant instead of a literal array to declare the size of an array, the

question remains: why would you go to the trouble of doing so? The reason is that in your
code you may need to often refer to the size of the array, not only when declaring it, but
also, as shown later in this chapter, when assigning values to, and displaying them from, the
array. However, the needs of the program may require you to modify the code to change
the size of the array, usually to make it larger. For example, if as a teacher I change my
policy from giving three tests to giving five tests, I need to change the size of the testScore
array from three to five. If I use the literal number 3, I have to find that number each time it
is referred to in the program and change it to 5. Not only is this time-consuming, but the
potential exists that I could miss a reference I needed to change. By contrast, if I use a
constant, such as const int numTests = 3, then all I need to do is change the 3 to 5 in that
one place, and I’m done.

You may be thinking, “Wait a second, you just told me earlier in this chapter that you can’t
resize an array.” Yes, you cannot resize an array while the program is running. However,
you can change the size of the array in the code, and then recompile the program.

Constants have many uses in addition to signifying the size of an array, and those uses will
be covered in this and further chapters of this book.

Array Index

The entire array has only one name. However, you need to be able to refer to individual
elements of the array. You can refer to the individual elements of the array by their position
within the array. This position is referred to as an index or subscript. I will use the term
index in this book, but both terms are used, and are equally correct.

The first index in an array is always 0. There are no exceptions. The last index in an array is
always 1 less than the number of elements in the array; again, with no exceptions.

The fact that the first index in an array is 0 instead of 1 is explained by the concept of an
offset. An offset refers to a value added to a base address to produce a second address.

Figure 10-1 may be helpful in illustrating how offsets work with arrays. This figure shows
graphically the result of declaring a three-element integer array such as int testScore[3].
The base address of an array is the address where the array begins. In Figure 10-1, the
base address of the testScore array is 101.

Figure 10-1: Indices of a three-element integer array

The address of the first element of the array in Figure 10-1, 101, is the same as the base

address of the array itself. Therefore, the value that would be added to the base address of
the array to obtain the address of the first element of the array is 0, which is the index of
the first element of the array.

The address of the second element of the array is the base address of the array, 101, plus
1 times the size of the data type of the array, 4, which is 101 + (1 × 4), or 105. Similarly,
the address of the third element of the array is the base address of the array, 101, plus 2
times the size of the data type of the array, 4, which is 101 + (2 × 4), or 109.

Thus, the address of any element of the array is the base address of the array plus the
offset, and in turn the offset is determined by the index of the array multiplied by the size of
the array’s data type.

Note We will revisit addresses and offsets in the next chapter on pointers.

Since the first index in an array must always be 0, the last index in an array must always be
1 less than the number of elements in the array. If you were counting three numbers,
starting at 1, the last element would be number 3. However, if you are starting at 0 instead
of 1, then the last number would be 2, not 3.

Caution

A common beginning programming mistake is to assume the index of the last
element of the array is equal to the number of elements in the array. As you
will learn later in this chapter, this can result in (depending on the compiler)
run-time errors or unpredictable results, neither of which is good.

At this point, we have not assigned a value to any of the elements of the array. The value of
each element likely will be some strange number such as –858993460. As discussed in
Chapter 3, the program does its best to interpret whatever value is at a given memory
address, perhaps left over from some other program, but the resulting output often makes
little sense.

Note

If the array variable is declared globally rather than locally, then each element is
initialized to a default value, 0 for numeric data types and the null character for a
character array. However, I already have given you my lecture against global
variables.

You can assign values to an array after you declare it, and later in this chapter I will show
you how. However, it is also possible to assign values to an array at the same time that you
declare it, as I will show you in the very next section.

Initialization
As first discussed in Chapter 3, initialization is when you assign a value to a variable in the
same statement in which you declare that variable. By contrast, assignment is when you
assign a value to a variable in a statement after the one in which you declare that variable.

We will discuss assigning values to an array later in this chapter in the section “Assigning
and Displaying Array Values.” This section covers initialization of an array.

You have two alternative methods of initializing an array. The first alternative is explicit
array sizing, in which the square brackets contain a numerical constant that explicitly
specifies the size of the array. The second alternative is implicit array sizing, in which the
square brackets are empty and the size of the array is indicated implicitly by the number of
elements on the right side of the assignment operator.

Explicit Array Sizing

The following are examples of explicit array sizing:
 int testScore[3] = { 74, 87, 91 };
 float milesPerGallon[4] = { 44.4, 22.3, 11.6, 33.3};
 char grades[5] = {'A', 'B', 'C', 'D', 'F' };
 string days[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"};

The syntax of initialization, with both explicit and implicit array sizing, is that the array
declaration, such as int testScore[3], is followed by an assignment operator and then,
enclosed in curly braces, the values to be assigned to each array element, in order, are
separated by commas. For example, in the following statement, the value of the first
element of the array (testScore[0]) would be 74, the value of the second element of the
array 87, and the value of the third element of the array 91.
 int testScore[3] = { 74, 87, 91 };

The number of elements on the right-hand side of the assignment operator cannot be
greater than the number within the square brackets. Thus, the following statement will not
compile, the error message being “too many initializers.”
float milesPerGallon[4] = { 44.4, 22.3, 11.6, 33.3, 7.4}; // won't compile

You do not have to assign values to each element of the array; the number of elements on
the right-hand side of the assignment operator may be less than the number within the
square brackets:
float milesPerGallon[4] = { 44.4, 22.3, 11.6};

If you do not initialize all of the elements of an array, the uninitialized elements have a

default value that depends on the data type of the array. For example, the default value is 0
for an integer array, 0.0 for a float array, and the null character, ‘\0’, for a character array.

Note The null character is discussed later in this chapter in the section “Initializing a
Character Array.”

Additionally, if you leave an element uninitialized, all elements that follow it must be
uninitialized. You can’t, for example, alternate initializing and not initializing array elements.
For example, the following statement won’t compile:
float milesPerGallon[4] = { 44.4, , 11.6, 33.3}; // won't compile

Implicit Array Sizing

The following are examples of implicit array sizing:
 int testScore[] = { 74, 87, 91 };
 float milesPerGallon[] = { 44.4, 22.3, 11.6, 33.3};
 char grades[] = {'A', 'B', 'C', 'D', 'F' };
 string days[7] = {"Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"};

The first array, testScore, allocates memory for three integers. Since the square brackets
are blank, the compiler allocates memory based on the number of elements to the right side
of the assignment statement.

Similarly, the second array, milesPerGallon, allocates memory for four floats, the third
array, grades, allocates memory for five characters, and the fourth array, days, allocates
memory for seven strings.

The compiler only allocates memory based on the number of elements to the right side of
the assignment statement if the square brackets are empty. Otherwise, memory is
allocated based on the number in the square brackets. Thus, in the following example, the
declaration of the array testScore would allocate memory for five integers even though only
three integers are in the initialization statement because memory allocation is determined by
the number within the square brackets. As discussed in the previous section, the fourth and
fifth elements of the array would be initialized to a default value, 0.
int testScore[5] = { 74, 87, 91 };

However, you must tell the compiler one way or the other how much memory to allocate.
Therefore, when declaring an array, you cannot have both empty square brackets and no
initialization, as in the following example:
int testScore[];

The compiler error message will be that the array is of unknown size. This of course is a

problem since the computer has no way of knowing how much memory to allocate for the
array.

Initializing a Character Array

As the previous section showed, you can initialize a character array using the same syntax
as you would to initialize an array of another data type such as an integer or a float.
However, as you will see in this chapter, there are some important differences between
character arrays and arrays of numeric data types. This section will show you the first
difference.

The following two initializations of a character array to my first name are different in syntax
but identical in effect:
 char name[] = {'J', 'e', 'f', 'f', '/0' };
 char name = "Jeff";

The latter syntax usually is preferred by programmers simply because it is easier to type.

The character ‘\0’ is the escape sequence for a null character. The 0 in ‘\0’ is a zero, not a
big letter o. The zero corresponds to the ASCII value of the null character.

Chapter 2 introduced escape sequences, starting with ‘\n’, the newline character, which
causes the cursor to go to the next line for further printing. The ‘\n’ in a string is not
displayed literally by cout because the backslash signals cout that ‘\n’ is an escape
sequence.

The null character has a different purpose, which is to signal cout when to end the output of
a character array. For example, the following program outputs, as expected, “Jeff”:
#include <iostream>
using namespace std;
int main ()
{
 char name[] = {'J', 'e', 'f', 'f', '/0' };
 cout << name;
 return 0;
}

The result would be the same if the alternate syntax of char name = “Jeff’ was used to
initialize the character array.

By contrast, the following program outputs “Jeff¦¦¦¦+ ?.”
#include <iostream>
using namespace std;
int main ()

{
 char name[] = {'J', 'e', 'f', 'f'};
 cout << name;
 return 0;
}

The strange characters after “Jeff” (which may differ when you run the program) sometimes
are referred to as “garbage characters.” However, that really is not a fair or accurate
description. What really is happening is that cout keeps outputting the values at each
succeeding address after the end of the array until it reaches a value that it interprets as a
null character. As discussed earlier in this chapter, the program does its best to interpret
whatever value is at a given memory address, perhaps left over from some other program,
but the resulting output often makes little sense. In general, “garbage characters” are ASCII
representations of integers stored in a memory address.

All this does not mean that the last element of a character array always should be a null
character. When each element of a character array is separate from the other, such as a
separate grade for each test, there is no need to use a null character. However, if the
character array elements are related, such as a character array representing a person’s
name, then usually the last element should be a null character. The syntax of char name =
“Jeff” accomplishes that, automatically inserting a null character as the fifth element of the
array.

Finally, the alternate syntax of char name = “Jeff” is quite similar to how you initialize a
string data type:
 char name[] = "Jeff";
 string name = "Jeff";

Indeed, a character array that ends with a null character often is referred to colloquially as
a string. However, a character array that ends with a null character is not thereby converted
to a string data type; it is still a character array. Indeed, there is no guarantee that a
compiler’s implementation of the string data type will result in the last character of a true
string being a null character.

Thus, while character arrays and strings have many similarities, they are not the same.
There are important differences. One is you cannot safely assume that a string ends with a
null character. Other differences will be discussed later in this chapter in the sections on the
cin Object’s get and getline member functions.

Constant Arrays

You can create arrays that are constants. For example, the following array contains the
number of days in each month (for February, we assume a non–leap year).
 const int daysInMonth [] = { 31, 28, 31, 30, 31, 30,

 31, 31, 30, 31, 30, 31 };

Using a constant array here is a good choice since the number of days in each month will
not change.

You must use initialization when creating a constant array, just as you must use initialization
when creating a constant variable. Since you cannot change the values later, you must
specify the values when you create the constant.

When to Use Initialization

C++ gives you the option of just declaring an array, with the values of the array elements
unassigned, and initializing an array, assigning values to some or all of the array elements.

Initialization usually is the better choice when you know in advance some or all of the array
element values, but it is not limited to that scenario. Initialization sometimes is used to
provide each array element with an initial default value. For example, we might initialize
each element of the testScore array to –1 as a signal that no test score has yet been
assigned. The number –1 is a better choice for this purpose than 0 since a student could
get a zero on a test, but not a –1.

However, initializing to a default value can be cumbersome when there are many array
elements. Additionally, when you don’t know in advance the array values, such as for test
scores, you may decide against initializing for a default value. Further, even if you do use
initialization, you may later want to change the values of some or all of the array elements.
Accordingly, you need to know how to assign values to an array. You also will want to
display array values. The next section shows you how.

Assigning and Displaying Array Values
The following program shows how to assign values to an array, one element at a time. The
assignment starts with the first index, 0, and ends with the last index, 2, which is one less
than the number of elements, 3. The program then outputs the array values, one at a time.
#include <iostream>
using namespace std;
int main ()
{
 int testScore[3];
 cout << "Enter test score #1: ";
 cin >> testScore[0];
 cout << "Enter test score #2: ";
 cin >> testScore[1];
 cout << "Enter test score #3: ";
 cin >> testScore[2];
 cout << "Test score #1: " << testScore[0] << endl;
 cout << "Test score #2: " << testScore[1] << endl;
 cout << "Test score #3: " << testScore[2] << endl;
 return 0;
}

Some sample input and output could be:
Enter test score #1: 77
Enter test score #2: 91
Enter test score #3: 84
Test score #1: 77
Test score #2: 91
Test score #3: 84

However, this one-element-at-a-time approach has no advantage over the following
program, which does not use an array at all, but just three separate variables:
#include <iostream>
using namespace std;
int main ()
{
 int testScore1, testScore2, testScore3;
 cout << "Enter test score #1: ";
 cin >> testScore1;
 cout << "Enter test score #2: ";
 cin >> testScore2;
 cout << "Enter test score #3: ";

 cin >> testScore3;
 cout << "Test score #1: " << testScore1 << endl;
 cout << "Test score #2: " << testScore2 << endl;
 cout << "Test score #3: " << testScore3 << endl;
 return 0;
}

The advantage of an array over using separate variables is the ability to use a loop. This is
shown by the following program:
#include <iostream>
using namespace std;
int main ()
{
 int testScore[3];
 for (int i = 0; i < 3; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 for (i = 0; i < 3; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << testScore[i] << endl;
 }
 return 0;
}

Better yet, you can use a constant instead of an integer literal for the number of array
elements:
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 for (i = 0; i < MAX; i++)
 {
 cout << "Test score #" << i + 1 << ": "

 << testScore[i] << endl;
 }
 return 0;
}

This example illustrates an advantage of using constants rather than literals for the size
declarator. Assume I wrote this program to keep track of a student’s test grades at a time
when my policy is to give three tests during a semester. However, later I change my policy
to giving five tests during a semester. Since I used a constant as a size declarator, I only
need to make one code change, which is to initialize the constant MAX to 5 instead of 3. In
contrast, had I instead used the numeric literal 3 as the size declarator, I have to find that
number each time it is referred to in the program, once in the array declaration, and once
each in the two for loops. This means only three changes, but in a more complex program
the number could be much higher. Not only is this time-consuming, but the potential exists
that I could miss a reference to 3 which I needed to change to 5.

In this example, the constant MAX is global. However, making the constant MAX global is
not contrary to my recommendation in Chapter 9 against making variables global. The
primary reason for my recommendation against global variables is that a global variable
may be changed from anywhere in the program, making it more difficult to trace—for
example, why such a variable has an incorrect value. By contrast, the value of a constant
cannot be changed at all. Consequently, the reason for the recommendation that a variable
should not be global simply does not apply to a constant. Therefore, global constants, as
opposed to global variables, are relatively common.

However, whether you use a constant or an integer literal for the number of array elements,
you must take care not to go beyond the bounds of the array. The following program
demonstrates a common programming mistake.
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i <= MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ":";
 cin >> testScore[i];
 }
 for (i = 0; i <= 3; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << testScore[i] << endl;
 }

 return 0;
}

This program is the same as the previous program, expect that the relational operator in the
condition of each for loop has been changed from < to <=. The result is an attempt to
access index 3 of the array. The problem, of course, is that there is no such index in a
three-element array; the last index is 2. The result depends on the particular compiler and
operating system, varying from weird output to run-time errors to the computer locking up,
but the result is never good.

Using the cin and cout Objects with Arrays

You can assign values to a character array using the same technique as you used in the
previous section to assign values to an integer array:
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 char grades[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter grade for test #" << i + 1 << ":";
 cin >> grades[i];
 }
 return 0;
}

This technique is a logical choice when each element of the array is separate from the
other, such as a separate grade for each test. However, sometimes the character array
elements are related, such as a character array representing a person’s name.

As discussed previously in this chapter in connection with initialization, there are important
differences between character arrays and arrays of numeric data types. Another difference
is the ability to use the cin object and the stream extraction operator >> to assign a value to
all elements of a character array, and the cout object and the stream insertion operator <<
to display the values of all elements of a character array. This is demonstrated by the
following program:
#include <iostream>
using namespace std;
int main ()
{
 char name[80] = {'J', 'e', 'f', 'f', '/0' };

 cout << "Enter your name: ";
 cin >> name;
 cout << "Your name is " << name;
 return 0;
}

Some sample input and output could be
Enter your name: Jeff
Your name is Jeff

This approach has the advantage of not requiring two loops for input and display,
respectively. The assignment takes place in one step with the cin object and the stream
extraction >> operator. Similarly, the display takes place in one step with the cout object
and the stream insertion << operator.

Using the cout Object with Numeric Arrays

You can use the cout object and the stream insertion << operator with a numeric array
rather than a character array without experiencing a compiler or run-time error, but you will
likely not get the result you expect. The following program modifies a previous one by,
instead of using a second loop to display test scores, attempting to display the test scores
in one step with the cout object and the stream insertion << operator.
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 cout << "The test scores are: " << testScore;
 return 0;
}

Some sample input and output could be
Enter test score #1: 76
Enter test score #2: 84
Enter test score #3: 91
The test scores are: 0012FECC

What happened is that the value of the name of the array is the base address of the array.
Therefore, the output of cout << testScore is the base address of the testScore array,
which happens to be the hexadecimal address 0012FECC.

This explains why you obtain an address rather that array values when you use the stream
insertion operator << with a numeric array. However, it does not explain why you obtain
array values rather than an address when you use the stream insertion operator << with a
character array. After all, the name of a character array, like the name of a numeric array,
is a constant whose value is the base address of the array.

The answer simply is that the C++ programming language treats the stream extraction
operator >> differently with a character array than with a numeric array. When so used, the
character array name is not interpreted as a constant whose value is the base address of
the array, but rather the starting point for display. This is just another example of the
differences between character arrays and numeric arrays.

Using the cin Object with Numeric Arrays … Not!

While you can use the cout object and the stream insertion operator << with numeric arrays
as well as character arrays (albeit with different results), you can use the cin object and the
stream extraction operator >> only with a character array. You cannot use the cin object
and the stream extraction operator >> with numeric arrays. This is demonstrated by the
following program:
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 cin >> testScore;
 return 0;
}

The result is a compiler error. The compiler will highlight the statement cin >> testScore and
complain that the stream extraction operator >> cannot have a right-hand operand that is an
integer array.

This compiler error may sound familiar. Previously in this chapter, an attempt to use the
stream extraction operator to assign a value to the constant, such as cin >> numTests
when numTests was an integer constant, resulted in a compiler error, the message being
that the stream extraction operator >> cannot have a right-hand operand that is a constant.

This is essentially the same problem. As you will learn more about in Chapter 11, the name
of the integer array, testScore, is a constant whose value is the base address of the array.

While this explains why you can’t use the stream extraction operator >> with an integer
array, you may now be wondering why you can use the stream extraction operator >> with
a character array since the name of a character array, like the name of an integer array, is
a constant whose value is the base address of the array. The answer is essentially the
same as the one to the similar question in the preceding section regarding the stream
insertion operator <<. The C++ programming language supports use of the stream
extraction operator >> with a character array. When so used, the character array name is
not interpreted as a constant whose value is the base address of the array. This is just
another example of how the C++ programming language treats character arrays differently
than arrays of other data types.

The cin Object’s getline Function

The following program from the previous section worked fine when the input had no
embedded spaces, such as “Jeff.”
#include <iostream>
using namespace std;
int main ()
{
 char name[80] = {'J', 'e', 'f', 'f', '/0' };
 cout << "Enter your name: ";
 cin >> name;
 cout << "Your name is " << name;
 return 0;
}

However, examine the following sample input and output:
Enter your name: Jeff Kent
Your name is Jeff

We examined this same issue in Chapter 3 with the following program, which used a string
variable instead of a character array:
#include <iostream>
using namespace std;
#include <string>
int main(void)
{
 string name;
 cout << "Enter your name: ";
 cin >> name;
 cout << "Your name is " << name;
 return 0;
}

The explanation in Chapter 3 of why the value of name is outputted only as “Jeff”, omitting
“Kent”, is that the cin object interprets the space between “Jeff” and “Kent” as indicating
that the user has finished inputting the value of the name variable. The solution is to use the
getline function of the cin object.

Note

The cin object also has a get function that would solve this issue. The only
difference between the two is that the get function reads the user’s input up to,
but not including, the newline character (the ENTER key that terminates input,
whereas the getline function reads the user’s input up to and including the newline
character. This difference makes the getline function easier to use than the get
function when working with character arrays. The get function usually is used with
single characters, not character arrays.

The getline function of the cin object is overloaded. By overloaded I do not mean
overworked. Rather, the term overloaded when used in connection with the function means
the function may be called more than one way, each way differing by the number, data
type, or order of arguments.

The following program uses the getline function to read the user’s input and assign that
input to the character array:
#include <iostream>
using namespace std;
int main ()
{
 char name[80] = {'J', 'e', 'f', 'f', '/0' };
 cout << "Enter your name: ";
 cin.getline(name, 80);
 cout << "Your name is " << name;
 return 0;
}

Now, as shown by the following sample input and output, you can input a string such as
“Jeff Kent” that includes an embedded space:
Enter your name: Jeff Kent
Your name is Jeff

The first argument is the name of the character array into which the input will be stored. The
second argument is one more than the number of characters that will be read from standard
input, here the keyboard. Since the second argument is 80, the number of characters that
will be read from standard input is 79, the 80th character saved for the null character. Since
the declared size of the character array in this example is 80, and one element is needed
for the null character, that leaves 79 characters for user input.

Another variant of the overloaded getline function has three arguments, such as in the
following example:
 cin.get(name, 80, '\n');

The third argument is the character that should terminate the reading in of input if it is
encountered before the number of characters specified in the second argument. Here the
third argument is the newline character, created when the user presses the ENTER key.
Since the pressing of the ENTER key will end input anyway, the third argument of ‘\n’ often
is superfluous. However, you could use another character as the third argument if it fits the
needs of your program.

You cannot use the get or getline functions of the cin object with strings. Instead, you use
the standalone getline function. By standalone, I mean the getline function is not called with
a preceding cin and a dot (cin.getline) as in the case of character arrays.

The following code fragment shows how to use the getline function with a string:
 String name;
 getline(cin, name);

The first argument is the cin object. The second argument is the string into which the input
will be stored. Since you do not have to specify the size of a string, there is no argument
limiting the number of characters for input.

Passing Arrays as Function Arguments
Previously in this chapter, we used the following program to demonstrate how loops are
effective in assigning and displaying array values:
#include <iostream>
using namespace std;
const int MAX = 3;
int main ()
{
 int testScore[MAX];
 for (int i = 0; i < MAX; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> testScore[i];
 }
 for (i = 0; i < MAX; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << testScore[i] << endl;
 }
 return 0;
}

Now we are going to make this program more modular by writing one function to assign
values to the array, and another function to display values from the array, rather than doing
all that work in the main function.
#include <iostream>
using namespace std;
void assignValues(int[], int);
void displayValues(int[], int);
const int MAX = 3;

int main ()
{
 int testScore[MAX];
 assignValues(testScore, MAX);
 displayValues(testScore, MAX);
 return 0;
}

void assignValues(int tests[], int num)
{
 for (int i = 0; i < num; i++)

 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> tests[i];
 }
}

void displayValues(int scores[], int elems)
{
 for (int i = 0; i < elems; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << scores[i] << endl;
 }
}

The assignValues function is used to assign values to the array. The displayValues function
is used to display values from the array.

Each function has two arguments. The first argument is the array. The second argument is
the number of elements in the array. Each function loops through the array, its first
argument, using as an index limit the number of elements in the array, the second argument.

Since the first argument is not just an integer, but an array of integers, the argument is
specified with brackets, [], signifying that what is being passed is an array.

Note You do not, and should not, put a number in the square brackets in the argument
list of either the prototype or the function header.

There is one remaining question. The assignValues function changes the values in the array
in main that was passed as its argument. As discussed in Chapter 9, for that to happen, the
argument should be passed by reference rather than value. However, the array is not
passed by reference.

Actually, Chapter 9 mentioned a third way of passing arguments: by address. Passing by
address works the same way as passing by reference in that the called function can change
in the calling function the value of a variable passed to it. As discussed previously in this
chapter, the value of the name of an array is the base address of the array. Thus, in a
function call such as assignValues(testScore, MAX), in which the first argument is the array
name, the first argument is being passed by address. There will be much more on passing
by address in Chapter 11.

Summary
The variables we have worked with before this chapter could hold only one value at a time.
In this chapter, you learned about an array, which permits you to use a single variable to
store many values. The values are stored at consecutive indexes, starting with zero and
then incrementing by one for each additional element of the array.

The data type of an array may be integer, float, or character. However, a particular array
cannot contain integers, floats, and characters. All the elements of an array must be of the
same data type.

You need to declare an array before you can use it. The syntax for declaring an array is
almost identical to the syntax for declaring integer, character, or other variables. The only
difference between declaring a single scalar variable and an array of scalar variables is
that, when declaring an array, the variable name is followed by a number within square
brackets. That number is the array’s size declarator.

The size declarator must be a literal or a constant. A literal is a value that is written exactly
as it is meant to be interpreted. A constant is a name that represents the same value
throughout a program. You learned in this chapter how to declare and use a constant.

You also can create an array through initialization. Initialization is when you assign a value to
a variable in the same statement in which you declare that variable, as contrasted to
assignment, which is when you assign a value to a variable in a statement after the one in
which you declare that variable.

You have two alternative methods of initializing an array. The first alternative is explicit
array sizing, in which the square brackets contain a numerical constant that explicitly
specifies the size of the array. The second alternative is implicit array sizing, in which the
square brackets are empty and the size of the array is indicated implicitly by the number of
elements on the right side of the assignment operator.

You learned in this chapter how to assign values to an array using a loop. You also learned
how to use the cin object’s get and getline functions to assign values to a character array.

Finally, you learned how to pass an array as a function argument. When you do so, the
argument is being passed by address.

Quiz
1. Can a particular array contain integers, floats, and characters?

2. What is the number of the starting index of an array?

3. What is the number of the ending index of an array?

4. What is the difference between initialization and assignment?

5. What are the two alternative methods of initializing an array?

6. What is the purpose of the null character?

7. What is the value of the name of an array?

8. Should the last element of a character array always be a null character?

9. What is the difference between the get and getline functions of the cin object?

10. When you pass an array name as a function argument, are you passing it by
value, reference, or address?

Chapter 11: What’s the Address? Pointers

Overview
My parents told me when I was a child that it was not polite to point. However, each
semester I teach my computer programming students how to point. No, I am not trying to
promote rude behavior. Rather, I am teaching my students about pointers, which “point” to
another variable or constant.

You yourself may have acted as a pointer in the past. Have you ever been asked where
someone lives? If that house was nearby, you may have pointed it out.

The pointer performs a similar function. A pointer points to another variable or constant. Of
course, the pointer does not point with an arm and fingers as you would. Rather, the
pointer’s value is the address of the variable or constant to which it points. Indeed, you may
have done something similar. If you were asked where someone lives and that house was
not close enough to physically point out, you instead may have provided an address by
which the house could be located.

Pointers have had a reputation among programming students for being difficult to learn. I
think that reputation is overblown; pointers are not difficult if you take the time to understand
what they do. In any event, difficult or not, it is important to learn about pointers. Some C++
tasks are performed more easily with pointers, and other C++ tasks, such as dynamic
memory allocation, cannot be performed without them.

So, on that note, let’s now learn how to create and work with pointers.

Declaring a Pointer
Like any variable or constant, you must declare a pointer before you can work with it. The
syntax of declaring a pointer is almost the same as declaring a variable which stores a
value rather than an address. However, the meaning of the pointer’s data type is quite
different than the meaning of the data type of a variable which stores a value rather than an
address.

Syntax of a Pointer Declaration

The syntax of declaring a pointer is almost the same as the syntax of declaring the variables
we have worked with in previous chapters. The following statement declares an integer
pointer variable:
 int* iPtr;

The asterisk you use to declare a pointer is the same asterisk that you use for
multiplication. However, in this statement the asterisk is being used in a declaration, so in
this context it is being used to designate a variable as a pointer. Later in this chapter, we
will use the asterisk for a third purpose, as an indirection operator.

Note

It is common in C++ for a symbol to have different meanings depending on the
context. For example, an ampersand (&) in an argument list means you are
passing an argument by reference, whereas an ampersand in front of a variable
name is the address operator.

The integer pointer variable also can be declared with the asterisk preceding the variable
name instead of following the data type:
 int *iPtr;

Either alternative syntax is equally correct because the compiler generally ignores white
spaces between an operator and a variable name, constant name, or number. Indeed, the
following pointer declaration also works:
 int*ptr;

My preference is the first example, in which the asterisk follows the data type and is
separated by a white space from the variable name, since (in my opinion) it best signifies
that the variable is a pointer. However, all three syntax variations are correct. In any of
these variations, the only difference between declaring a pointer variable and a variable
which stores a value rather than an address is the asterisk between the data type and the
pointer name.

The Meaning of Pointer Data Types

While the syntax of declaring a pointer is almost the same as declaring the variables and
constants which store a value rather than an address, the meaning of the data type in the
declaration of a pointer is different than in the declaration of those other variables and
constants.

With the variables we have worked with previously, the data type in the variable declaration
describes the type of data that can be stored in that variable. Thus, the value of an integer
variable or constant is an integer, the value of a character variable or constant is a
character, and so forth.

However, with a pointer, the data type in the declaration means something different, namely
the data type of another variable (or constant) whose memory address is the value of the
pointer. In other words, the value of an integer pointer must be the address of an integer
variable or constant, the value of a float pointer must be the address of a float variable or
constant, and so forth.

The actual data type of the value of all pointers, whether integer, float, character, or
otherwise, is the same, a long hexadecimal number that represents a memory address. The
only difference between pointers of different data types is the data type of the variable or
constant that the pointer points to. This is demonstrated by the following program, which
uses the sizeof operator to show that the sizes of pointers of different data types are the
same (a long data type uses 4 bytes on my operating system and compiler) even though
the different data types (int, float, char) are not all the same size:
#include <iostream>
using namespace std;

int main ()
{
 int* iPtr;
 float* fPtr;
 char *cPtr;
 cout << "The size of iPtr is " << sizeof(iPtr) << endl;
 cout << "The size of fPtr is " << sizeof(fPtr) << endl;
 cout << "The size of cPtr is " << sizeof(cPtr) << endl;
 return 0;
}

The output is therefore:
The size of iPtr is 4
The size of fPtr is 4
The size of cPtr is 4

Otherwise, a pointer is similar to the variables or constants we have studied previously. A
pointer itself may be a variable or a constant, and like other variables or constants, it is also

stored at a memory address. What distinguishes a pointer is that its value is the memory
address of another variable or constant.

Assigning a Value to a Pointer
This section will explain how you assign a value to a pointer. Though, before I explain how,
perhaps I should explain why.

Why You Should Not Try to Use an Unassigned Pointer

Back in elementary school we were taught a verse: “I shot an arrow into the air, where it
lands, I don’t care.” Looking back, I wonder why young children were taught this verse. It
may rhyme, but its message is really not appropriate for little ones. However, when you
declare a pointer but then use it without first assigning it a value, you are, alas, doing the
programming equivalent of that verse.

The following program declares a pointer and then attempts to output its value without first
assigning it a value:
#include <iostream>
using namespace std;

int main ()
{
 int* iPtr;
 cout << "The value of iPtr is " << iPtr << endl;
 return 0;
}

The result, depending on your compiler and operating system, may be a compiler error, a
runtime error, or a computer that locks up. Regardless, attempting to use a declared
pointer without first assigning it a value is not a good idea.

As you may recall from previous chapters, when you declare a variable and then attempt to
output its value without first assigning it a value, the result is a so-called “garbage value”
that makes little sense. The reason for this result is that the computer attempts to interpret
whatever value is left over from previous programs at the address of the variable.

When the variable is a pointer, that leftover value is interpreted as another memory
address, which the pointer then tries to access when you attempt to use it. There are a
number of memory address ranges that you are not permitted to access programmatically,
such as those reserved for use by the operating system. If the leftover value is interpreted
as one of those prohibited addresses, the result is an error.

Null Pointers

If it is too early in your code to know which address to assign to the pointer, then you first
assign the pointer NULL, which is a constant with a value of zero defined in several

standard libraries, including iostream. The following program does so:
#include <iostream>
using namespace std;

int main ()
{
 int* iPtr;
 iPtr = NULL;
 cout << "The value of iPtr is " << iPtr << endl;
 return 0;
}

Note You also could use initialization instead of declaration followed by assign-ment,
thus combining the first two statements in main to int* iPtr = NULL.

The resulting output is
The address of x using iPtr is 00000000

A pointer that is assigned NULL is called a null pointer.

On most operating systems, programs are not permitted to access memory at address 0
because that memory is reserved by the operating system. You may now be thinking: “Wait
a minute! He just told me how bad it was to risk having pointers point to memory addresses
reserved by the operating system. Now he’s having us do that on purpose.” However, the
memory address 0 has special significance; it signals that the pointer is not intended to
point to an accessible memory location. Thus, if it is too early in your code to know which
address to assign to a pointer, you should first assign the pointer to NULL, which then
makes it safe to access the value of a pointer before it is assigned a “real” value such as
the address of another variable or constant.

Assigning a Pointer the Address of a Variable or Constant

Let’s now assign a pointer a “real” value, the address of another variable or constant. To do
so, you need to access the address of the variable or constant before you can assign that
address to the pointer. You use the address operator, covered in Chapter 3, to accomplish
this task.

The following program shows how to use the address operator to assign the address of a
variable to a pointer. This program also demonstrates that the value of a pointer is the
same as the address to which the pointer points.
#include <iostream>
using namespace std;

int main ()
{
 int num = 5;
 int* iPtr = #
 cout << "The address of x using &num is " << &num << endl;
 cout << "The address of x using iPtr is " << iPtr << endl;
 return 0;
}

The output on my computer (the following addresses likely will be different on yours) is
The address of x using &num is 0012FED4
The address of x using iPtr is 0012FED4

Figure 11-1 shows graphically how the pointer points to the integer variable.

Figure 11-1: Pointer pointing to an integer variable

Indirection Operator and Dereferencing
The primary use of a pointer is to access and, if appropriate, change the value of the
variable that the pointer is pointing to. In the following program, the value of the integer
variable num is changed twice.
#include <iostream>
using namespace std;

int main ()
{
 int num = 5;
 int* iPtr = #
 cout << "The value of num is " << num << endl;
 num = 10;
 cout << "The value of num after num = 10 is "
 << num << endl;
 *iPtr = 15;
 cout << "The value of num after *iPtr = 15 is "
 << num << endl;
 return 0;
}

The resulting output is
The value of num is 5
The value of num after num = 10 is 10
The value of num after *iPtr = 15 is 15

The first change should be familiar, by the direct assignment of a value to num, such as
num = 10. However, the second change is accomplished a new way, using the indirection
operator:
 *iPtr = 15;

The indirection operator is an asterisk, the same asterisk that you used to declare the
pointer or to perform multiplication. However, in this statement the asterisk is not being
used in a declaration or to perform multiplication, so in this context it is being used as an
indirection operator.

Note
As mentioned earlier in this chapter, this is another example of a symbol having
different meanings in the C++ programming language depending on the context in
which it was used.

The placement of the indirection operator before a pointer is said to dereference the
pointer. Indeed, some texts refer to the indirection operator as the dereferencing operator.

The value of a dereferenced pointer is not an address, but rather the value at that address
—that is, the value of the variable that the pointer points to.

For example, in the preceding program, iPtr’s value is the address of num. However, the
value of iPtr dereferenced is the value of num. Thus, the following two statements have the
same effect, both changing the value of num:
 num = 25;
 *iPtr = 25;

Similarly, a dereferenced pointer can be used in arithmetic expressions the same as the
variable to which it points. Thus, the following two statements have the same effect:
 num *= 2;
 *iPtr *= 2;

In these examples, changing a variable’s value using the indirection operator rather than
through a straightforward assignment seems like an unnecessary complication. However,
there are instances covered later in this chapter, such as looping through an array using a
pointer, or using dynamic memory allocation, in which using the indirection operator is
helpful or even necessary.

The Pointer as a Variable or a Constant
A pointer may be a variable or a constant. Let’s examine both possibilities.

Pointer as a Variable

The preceding program had the pointer pointing to one integer variable. However, a pointer
variable, being a variable, can point to different variables at different times in the program.
In the following program, the value of the pointer is changed to point to two different integer
variables.
#include <iostream>
using namespace std;

int main ()
{
 int num1 = 5, num2 = 14;
 int* iPtr = &num1;
 cout << "The value of num1 is " << num1 << endl;
 *iPtr *= 2;
 cout << "The value of num1 after *iPtr *= 2 is "
 << *iPtr << endl;
 iPtr = &num2;
 cout << "The value of num2 is " << num2 << endl;
 *iPtr /= 2;
 cout << "The value of num after *iPtr /= 2 is "
 << *iPtr << endl;
 return 0;
}

The resulting output is therefore:
The value of num1 is 5
The value of num1 after *iPtr *= 2 is 10
The value of num2 is 14
The value of num after *iPtr /= 2 is 7

The Array Name as a Constant Pointer

While the pointer may be a variable, it also may be a constant. Indeed, in the previous
chapter we actually discussed a constant pointer: the name of an array.

As you may recall from Chapter 10, the value of the name of an array is the base address
of the array, which also is the address of the first element of an array. Thus, in the following
program, both testScore and &testScore[0] have the same value.

#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 cout << "The address of the array using testScore is "
 << testScore << endl;
 cout << "The address of the first element of the array "
 "using &testScore[0] is " << &testScore[0] << endl;
 cout << "The value of the first element of the array "
 "using *testScore is " << *testScore << endl;
 cout << "The value of the first element of the array "
 "using testScore[0] is " << testScore[0] << endl;
 return 0;
}

The resulting output is
The address of the array using testScore is 0012FECC
The address of the first element of the array using &testScore[0] is 0012FECC
The value of the first element of the array using *testScore is 4
The value of the first element of the array using testScore[0] is 4

Similarly, if you dereference the name of an array, its value is the same as the value of the
first element of the array. Therefore, in the preceding program, both *testScore and
testScore[0] have the same value.

However, you cannot change the value of the name of the array. For example, a statement
such as testScore++ would result in a compiler error, the error message being “++ needs l-
value.” As you may recall from Chapter 10, the term l-value refers to the value to the left of
the assignment operator. This error message is another way of saying you can’t increment
a constant because that would be changing the value of a constant after you declare it.

Pointer Arithmetic
The value of a pointer, even though it is an address, is a numeric value. Therefore, you can
perform arithmetic operations on a pointer just as you can a numeric value.

Using a Variable Pointer to Point to an Array

Pointer arithmetic is done often with arrays. However, since you cannot change the value of
the name of an array, it being a constant pointer, you first should declare a variable pointer
and then assign it to the address of an array.

So, we begin with an established point of reference, let’s start with the following program,
which outputs the address and value at each element of an array using the name of the
array:
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 for (int i = 0; i < MAX; i++)
 {
 cout << "The address of index " << i
 << " of the array is "<< &testScore[i] << endl;
 cout << "The value at index " << i
 << " of the array is "<< testScore[i] << endl;
 }
 return 0;
}

The resulting output is
The address of index 0 of the array is 0012FECC
The value at index 0 of the array is 4
The address of index 1 of the array is 0012FED0
The value at index 1 of the array is 7
The address of index 2 of the array is 0012FED4
The value at index 2 of the array is 1

This program used the name of the array, testScore, to access, by index, each element of
the array. The name of the array is a constant pointer. The following program modifies the
previous program by using a variable pointer, iPtr, to access by index each element of the
array.

#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = testScore;
 for (int i = 0; i < MAX; i++)
 {
 cout << "The address of index " << i
 << " of the array is "<< & iPtr[i] << endl;
 cout << "The value at index " << i
 << " of the array is "<< iPtr[i] << endl;
 }
 return 0;
}

The following statement in this program sets the variable pointer iPtr to point to the same
address as the array name testScore:
int* iPtr = testScore;

The array name is not preceded with the address operator (&) because the array name
already is an address, namely, the base address of the array. Therefore, after this
assignment, iPtr and testScore both point to the beginning of the array. Accordingly, as
shown in Figure 11-2, iPtr[2] and testScore[2] have the same value.

Figure 11-2: Variable and constant pointers used to access array
elements

Incrementing a Pointer

An important reason for declaring a variable pointer so it points to the same address as the
array name is so the variable pointer can be incremented, unlike the array name which
cannot be incremented because it is a constant pointer. The following program increments

the variable pointer to access each succeeding element of the array:
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = testScore;
 for (int i = 0; i < MAX; i++, iPtr++)
 {
 cout << "The address of index " << i
 << " of the array is "<< iPtr << endl;
 cout << "The value at index " << i
 << " of the array is "<< *iPtr << endl;
 }
 return 0;
}

Incrementing an integer variable increases its value by 1. However, incrementing a pointer
variable increases its value by the number of bytes of its data type. This is an example of
pointer arithmetic. When you run this program, the first address outputted is 0012FECC, the
second 0012FED0, and the third 0012FED4. These hexadecimal addresses are 4 bytes
apart because, on the compiler and operating system used by me to run this program, the
integer data type takes 4 bytes.

For this reason, as shown in Figure 11-3, iPtr + 1 is not the base address plus 1, but
instead is the base address + 4. The same is true of testScore + 1. Consequently, the value
at the second element of the array can be expressed one of four ways:

testScore[1];

*(testScore + 1);

iPtr[1];

*(iPtr + 1);

Figure 11-3: Effect of incrementing or adding 1 to an address

Comparing Addresses

Addresses can be compared like any other value. The following program modifies the
previous one by incrementing the variable pointer so long as the address to which it points
is either less than or equal to the address of the last element of the array, which is
&testScore[MAX - 1]:
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = testScore;
 int i = 0;
 while (iPtr <= &testScore[MAX - 1])
 {
 cout << "The address of index " << i
 << " of the array is "<< iPtr << endl;
 cout << "The value at index " << i
 << " of the array is "<< *iPtr << endl;
 iPtr++;
 i++;
 }
 return 0;
}

As Figures 11-2 and 11-3 depict, the comparison to &testScore[MAX - 1] instead could
have been made to testScore + MAX – 1.

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value by the

number of bytes of its data type. Decrementing a pointer can be used to step “backwards”
through an array.
#include <iostream>
using namespace std;
const int MAX = 3;

int main ()
{
 int testScore[MAX] = {4, 7, 1};
 int* iPtr = &testScore[MAX - 1];
 int i = MAX - 1;
 while (iPtr >= &testScore[0])
 {
 cout << "The address of index " << i
 << " of the array is "<< iPtr << endl;
 cout << "The value at index " << i
 << " of the array is "<< *iPtr << endl;
 iPtr--;
 i--;
 }
 return 0;
}

The output is therefore
The address of index 2 of the array is 0012FED4
The value at index 2 of the array is 1
The address of index 1 of the array is 0012FED0
The value at index 1 of the array is 7
The address of index 0 of the array is 0012FECC
The value at index 0 of the array is 4

The key statement is
int* iPtr = &testScore[MAX - 1];

This statement has the variable pointer point to the last address in the array. That address
then is decremented in the loop so that the pointer variable points to the preceding address
in the array. The loop continues so long as the address pointed to by the pointer variable is
not before the base address of the array.

As discussed previously, the pointer variable also could have been initialized as follows:
int* iPtr = testScore + MAX - 1;

Pointers as Function Arguments
Pointers may be passed as function arguments. Pointer notation usually is used to note that
an argument is a pointer. However, if the pointer argument is the name of an array,
subscript notation alternatively may be used.

Passing an Array Using Pointer Notation

In Chapter 10, we employed the following program that used one function to assign values
to the array and another function to display values from the array, rather than doing all that
work in the main function.
#include <iostream>
using namespace std;
void assignValues(int[], int);
void displayValues(int[], int);
const int MAX = 3;

int main ()
{
 int testScore[MAX];
 assignValues(testScore, MAX);
 displayValues(testScore, MAX);
 return 0;
}

void assignValues(int tests[], int num)
{
 for (int i = 0; i < num; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> tests[i];
 }
}

void displayValues(int scores[], int elems)
{
 for (int i = 0; i < elems; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << scores[i] << endl;
 }
}

As discussed in Chapter 10, the two functions, assignValues and displayValues, passed
their first argument, the array, by address. An argument passed by address can be
changed in the calling function (here main) by the called function (here assignValues) just
as if the argument had been passed by reference. Thus, the assignValues function changed
the value of the testScore array in main by assigning values to the elements of that array.

The function prototypes and headers of the assignValues and displayValues functions used
a subscript [] to indicate that an array is being passed. However, you can also use pointer
notation—for instance, asterisk * instead of a subscript []—as the following example
demonstrates:
#include <iostream>
using namespace std;
void assignValues(int*, int);
void displayValues(int*, int);
const int MAX = 3;

int main ()
{
 int testScore[MAX];
 assignValues(testScore, MAX);
 displayValues(testScore, MAX);
 return 0;
}

void assignValues(int* tests, int num)
{
 for (int i = 0; i < num; i++)
 {
 cout << "Enter test score #" << i + 1 << ": ";
 cin >> tests[i];
 }
}

void displayValues(int* scores, int elems)
{
 for (int i = 0; i < elems; i++)
 {
 cout << "Test score #" << i + 1 << ": "
 << scores[i] << endl;
 }
}

The following comparison of the prototypes of the assignValues function using subscript

and pointer notation, respectively, shows that the only difference is whether a subscript [] or
an asterisk * is used to denote that the argument is an array:
void assignValues(int[], int);
void assignValues(int*, int);

Similarly, the following comparison of the function headers of the assignValues function
using subscript and pointer notation, respectively, shows that the only difference is whether
a subscript [] or an asterisk * is used to denote that the argument is an array. This time,
however, the asterisk precedes the variable name, whereas the subscript follows the
variable name.
void assignValues(int tests[], int num)
void assignValues(int* tests, int num)

Whether you use subscript or pointer notation to pass an array really is a matter of
preference. There is no programming advantage one way or the other. However, the next
section discusses a situation in which subscript notation is not an option, so pointer notation
is the only choice.

Passing a Single Variable Using Pointer Notation

Passing an array name by address is relatively simple because the value of the array name
is an address. However, you may often want to pass a single variable by address. By single
variable I don’t mean a variable that is unmarried, but instead, for example, an int as
opposed to an int array.

With a single variable, subscript notation is not an option. Subscripts make sense only with
an array. Rather, you need to use pointer notation to pass a single variable by address.

Passing an argument by reference or by address both enable the passed argument to be
changed in the calling function by the called function—only the syntax is different. For
comparison, let’s start with the following program from Chapter 9 that passes the variable
to be doubled by reference:
#include <iostream>
using namespace std;
void doubleIt(int&);

int main ()
{
 int num;
 cout << "Enter number: ";
 cin >> num;
 doubleIt(num);
 cout << "The number doubled in main is " << num << endl;

 return 0;
}
void doubleIt (int& x)
{
 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is " << x << endl;
}

Here is some sample input and output:
Enter number: 3
The number to be doubled is 3
The number doubled in doubleIt is 6
The number doubled in main is 6

Let’s now modify this program so it passes the variable to be doubled by address instead
of by reference:
#include <iostream>
using namespace std;
void doubleIt(int*);

int main ()
{
 int num;
 cout << "Enter number: ";
 cin >> num;
 doubleIt(&num);
 cout << "The number doubled in main is " << num << endl;
 return 0;
}
void doubleIt (int* x)
{
 cout << "The number to be doubled is " << *x << endl;
 *x *= 2;
 cout << "The number doubled in doubleIt is " << *x << endl;
}

There are four syntax differences between these two programs.
1. In the function prototype, you use an ampersand (&) for passing by reference but

an asterisk (*) for passing by address:
void doubleIt(int&); // by reference
void doubleIt(int*); // by address

2. Similarly, in the function header, you use an ampersand (&) for passing by
reference but an asterisk (*) for passing by address:
void doubleIt (int& x) // by reference
void doubleIt (int* x) // by address

3. When you call the function, you don’t need the address operator (&) for passing
by reference, but you do need one for passing by address since you are
supposed to be passing by the address of x.:
doubleIt(num); // by reference
doubleIt(&num); // by address

4. In the body of the called function, you don’t need to dereference the argument
when you pass it by reference, but you do need to when you pass by address
since x, being passed by address, is not a value but is instead a pointer:
// by reference - no dereference
{
 cout << "The number to be doubled is " << x << endl;
 x *= 2;
 cout << "The number doubled in doubleIt is " << x << endl;
}
// by address - need to dereference
{
 cout << "The number to be doubled is " << *x << endl;
 *x *= 2;
 cout << "The number doubled in doubleIt is " << *x << endl;
}

You may legitimately be wondering why, with a single variable argument, I would want to
pass it by address when the syntax for passing it by reference seems easier. The pat
answer I give my students is that there are certain sadistic computer science teachers (I’m
not mentioning any names here) who insist their students pass by address to make them
suffer. All kidding aside though, there are actually certain library functions that do use pass
by address. Additionally, when using dynamic memory allocation and returning pointers from
functions (to be covered in the following sections), passing by address may be the only
option.

Dynamic Memory Allocation
As discussed in Chapter 10, when declaring an array, the size declarator must be either a
literal or a constant, and may not be a variable. The following program from Chapter 10
attempts, unsuccessfully, to use a variable numTests in declaring the size of an array:
#include <iostream>
using namespace std;
int main ()
{
 int numTests;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int testScore[numTests];
 return 0;
}

The result is a compiler error. The compiler will flag the declaration of the array (int
testScore[numTests]) and complain that a constant expression was expected. The reason a
constant (or literal) expression is required is that in this program we are allocating memory
for the array at compile time. The compiler needs to know exactly how much memory to
allocate. However, if a variable is the size declarator, the compiler does not know how
much memory to allocate because a variable’s value may change. Indeed, in the preceding
example, the value of the variable used as the size declarator is not even known until
runtime.

Having said this though, it is often desirable to have the user determine at runtime the size
of the array so it is neither too small nor too large, but just right. To accomplish this, you
need to declare the array using dynamic memory allocation. The following program modifies
the previous one to use dynamic memory allocation:
#include <iostream>
using namespace std;
int main ()
{
 int numTests;
 cout << "Enter the number of test scores:";
 cin >> numTests;
 int * iPtr = new int[numTests];
 for (int i = 0; i < numTests; i++)
 {
 cout << "Enter test score #" << i + 1 << " : ";
 cin >> iPtr[i];
 }
 for (i = 0; i < numTests; i++)

 cout << "Test score #" << i + 1 << " is "
 << iPtr[i] << endl;
 delete [] iPtr;
 return 0;
}

Some sample input and output follows:
Enter the number of test scores: 3
Enter test score #1: 66
Enter test score #2: 88
Enter test score #3: 77
Test score #1 is 66
Test score #2 is 88
Test score #3 is 77

Dynamic memory allocation works, even though using a variable as a size declarator does
not, because with dynamic memory allocation, memory is not being allocated at compile
time. Instead, memory is being allocated at runtime, and from a different place (the “heap”)
rather than where it is allocated at compile time (the “stack”).

Note
The terms heap and stack also have meaning in data structures. Here, however,
these terms are used to identify different areas of memory: the stack for memory
allocated at compile time; the heap for memory allocated at runtime.

While you could dynamically allocate a single variable, normally dynamic memory allocation
is used with arrays (as in this example), or with objects such as structures or classes, which
are discussed in Chapter 14.

You need to use a pointer to dynamically allocate memory. The pointer must be of the
same data type as the array that is to be allocated dynamically. An assignment statement is
used, as in the following statement from the program:
 int * iPtr = new int[numTests];

The pointer is on the left side of the assignment operator. Immediately to the right of the
assignment statement is the new operator, whose purpose is to dynamically allocate
memory. The array that is to be allocated dynamically immediately follows the new
operator, described by data type and a size declarator in a subscript [], but with no array
name. The size declarator may be a variable instead of a literal or constant.

Since the array has no name, it and its elements are referred to through the pointer that
created it, such as iPtr[i] in the for loops used to assign values to and output the values of
the array elements. Therefore, the scope of the dynamically created array is the same as
the scope of the pointer used to declare it.

The significance of dynamic memory allocation is not scope, but lifetime. Like a global
variable or a static local variable, the lifetime of a dynamically created variable is as long as
that of the program’s execution. However, if before the end of the program the pointer that
points to a dynamically created variable goes out of scope, you no longer have any way of
accessing the dynamically created memory. Therefore, the dynamically created variable still
takes up memory, but is inaccessible. This is called a memory leak.

Having programs that dynamically allocate memory but never release it is akin to a library
where patrons check out books but never return them. Sooner or later the library will run out
of books, and the computer will run out of memory.

A memory leak is not a particular concern in the preceding program since the pointer that
points to the dynamically allocated memory does not go out of scope until immediately
before the program ends. However, if you dynamically allocate memory inside a function
using a local pointer (as in a program in the next section), then when the function
terminates, the pointer will be destroyed but the memory will remain, orphaned since there
is no longer a way of accessing it for the remainder of the program.

You release dynamically allocated memory with the delete operator. Just as the new
operator is used to create dynamically allocated memory, the delete operator is used to
return dynamically allocated memory to the operating system. The syntax is the delete
operator followed by the pointer that points to the dynamically created memory.
Additionally, if the dynamically created memory is an array as opposed to a single variable,
then empty subscripts [] are placed between the delete operator and the pointer, as in the
following statement from the program:
delete [] iPtr;

While the delete operator operates on a pointer, the delete operator does not delete the
pointer. Instead, the delete operator deletes the memory at the address pointed to by the
pointer.

Note
You should only use the delete operator with a pointer that points to dynamically
created memory. Using the delete operator with a pointer that points to memory
created on the stack rather than from the heap can lead to unpredictable results.

Finally, since the pointer is the only way to which you can refer to the dynamically allocated
variable, you should not change the value of the pointer to point to a different address
unless you first assign a different pointer to the dynamically allocated memory. Otherwise,
you no longer have a way of accessing the dynamically created memory. The result would
be a memory leak.

Returning Pointers from Functions
In Chapter 10, you learned several ways to initialize a character array. The following
program shows you an additional way:
#include <iostream>
using namespace std;
char * setName();

int main (void)
{
 char* str = "Jeff Kent";
 cout << str;
 return 0;
}

With some sample input and output:
Enter your name: Jeff Kent
Your name is Jeff Kent

The key statement is
 char* str = "Jeff Kent";

This statement is almost the same as:
 char str[] = "Jeff Kent";

In both statements, str is a character pointer, and implicit array sizing is used. The
difference is that str in the first statement (char* str) is a variable pointer whereas str in the
second statement (char str[]) is a constant pointer.

Returning a Pointer to a Local Variable (Not a Good Idea)

Now, following the advice in Chapter 9 to make your program more modular, you try to
write a separate function, setName, to obtain the user input. The setName function creates
a character array, assigns user input to that array using the getline function of the cin
object, and then returns a pointer to that character array. The address which is returned by
the setName function then is assigned to the character pointer str in main. The following
program implements this concept:
#include <iostream>
using namespace std;
char * setName();

int main (void)

{
char* str = setName();
cout << str;
return 0;
}

char* setName (void)
{
char name[80];
cout << "Enter your name: ";
cin.getline (name, 80);
return name;
}

The following is some sample input and output:
Enter your name: Jeff Kent
..................D8

While the outputted name is interesting, it certainly would be difficult to write, and in any
event, it is not what I inputted. What went wrong is that the pointer returned by the
setName function points to a local character array whose lifetime ended when that function
finished executing and returned control to main.

Accordingly, the indicated solution is to extend the lifetime of that character array to the life
of the program execution itself. Of course, one way to accomplish this is by making the
character array a global variable, but as you should recall from Chapter 9, there are other
and better alternatives.

Returning a Pointer to a Static Local Variable

One superior alternative is to make the character array in setName static, as in the
following program:
#include <iostream>
using namespace std;
char * setName();

int main (void)
{
char* str = setName();
cout << str;
return 0;
}

char* setName (void)
{
 static char name[80];
 cout << "Enter your name: ";
 cin.getline (name, 80);
 return name;
}

The output from the following sample input now looks much better:
Enter your name: Jeff Kent
Jeff Kent

This works because while the scope of a static local value is limited to the function in which
it is declared, its lifetime is not similarly limited, but instead lasts as long as the execution of
the program. Therefore, the pointer returned by the setName function points to a local
character array whose lifetime, since it was declared with the static keyword, persisted
after the setName function finished executing and returned control to main.

Returning a Pointer to a Dynamically Created Variable

Another alternative, which you learned in this chapter, is dynamic memory allocation:
#include <iostream>
using namespace std;
char * setName();

int main (void)
{
char* str;
str = setName();
cout << str;
delete [] str;
return 0;
}

char* setName (void)
{
char* name;
name = new char[80];
cout << "Enter your name: ";
cin.getline (name, 80);
return name;
}

This works because the pointer returned by the setName function points to a character
array whose lifetime, since it was declared using dynamic memory allocation, persisted
after the setName function finished executing and returned control to main.

As discussed in the previous section, if you dynamically allocate memory inside a function
using a local pointer, then when the function terminates, the pointer will be destroyed but
the memory will remain, orphaned since there is no longer a way of accessing it for the
remainder of the program. This problem is avoided in this program since the local pointer’s
address is returned by the setName function and is assigned in main to another pointer
variable, str. The pointer variable str then is used at the end of main with the delete
operator to deallocate the character array which was dynamically allocated in the setName
function.

This is an example where different pointers point to the same memory address. However, in
the case of dynamically created memory, once you use one of those pointers with the
delete operator, don’t make the common mistake of using another of the pointers with the
delete operator. You should only use the delete operator with a pointer that points to
dynamically created memory. If that dynamically allocated memory already has been
deallocated using the delete operator, using the delete operator the second time will lead to
unpredictable results.

Summary
A pointer is a variable or constant whose value is the address of another variable or
constant. Some C++ tasks are performed more easily with pointers, while other C++ tasks,
such as dynamic memory allocation, cannot be performed without pointers.

Like any variable or constant, you must declare a pointer before you can work with it. The
only difference between declaring a pointer and a variable or constant which stores a value
instead of an address is that the pointer declaration includes an asterisk between the data
type and the pointer name. However, the data type in the declaration of a pointer is not the
data type of its value, as is the case with a variable or constant which stores a value
instead of an address. The actual data type of the value of all pointers, whether integer,
float, character, or otherwise, is the same, a long hexadecimal number that represents a
memory address. Rather, the data type in the declaration of a pointer refers to the data
type of another variable (or constant) whose memory address is the value of the pointer. In
other words, the value of an integer pointer variable must be the address of an integer
variable or constant, the value of a float pointer variable must be the address of a float
variable or constant, and so forth.

You should always explicitly assign a pointer a value before you use it; otherwise, you risk a
runtime error or worse. When you are ready to assign a pointer the address of another
variable or constant, you use the address operator with the target variable or constant.
However, if it is too early in your code to know which address to assign to the pointer, you
first assign the pointer NULL, which is a constant defined in several standard libraries,
including iostream. The value of NULL, the memory address 0, signals that the pointer is not
intended to point to an accessible memory location.

The indirection operator is used on a pointer to obtain the value of the variable or constant
to which the pointer points. This operation is said to dereference the pointer.

A pointer may be a variable or a constant. The name of an array is a constant pointer,
pointing to the base address of the array. A pointer variable, being a variable, may point to
different variables or constants at different times in the program.

A pointer variable may be incremented. Incrementing a pointer variable is common when
looping through consecutive indices of an array. Incrementing a pointer variable does not
necessarily increase its value by 1. Instead, incrementing a pointer variable increases its
value by the number of bytes of its data type.

Pointers may be passed as function arguments. This is called passing by address. Pointer
notation usually is used to note that an argument is a pointer. The difference in syntax
between passing by reference and passing by address is that, in the function prototype and
header, you use an ampersand (&) for passing by reference, but an asterisk (*) for passing
by address. Additionally, if the pointer argument is the name of a single variable as opposed

to an array, there are two further differences in syntax between passing by reference and
passing by address. First, when you call the function, you don’t need the address operator
(&) for passing by reference, but you do for passing by address. Second, in the body of the
called function, you don’t need to dereference the argument when you pass it by reference,
but you do when you pass by address.

You can use a variable as a size declarator for an array if you use dynamic memory
allocation because memory is allocated at runtime from a different place—the heap—than
where memory is allocated for variables declared at compile time on the stack. You need to
use a pointer with the new operator to dynamically allocate memory, and the pointer must
be of the same data type as the array which is to be allocated dynamically.

The lifetime of a dynamically allocated variable may be as long as that of the program’s
execution. However, if before the end of the program the pointer that points to a
dynamically created variable goes out of scope, you no longer have any way of accessing
the dynamically created memory. Therefore, the dynamically created variable still takes up
memory, but is inaccessible. This is called a memory leak. To avoid memory leaks, you use
the delete operator on the pointer that points to the dynamically allocated memory. This
deallocates the dynamically allocated memory.

The return value of a function may be a pointer. If so, the pointer should point to either a
static local variable or a dynamically created variable, not a local variable.

Quiz
1. What is a pointer?

2. Name a C++ task that requires a pointer to be performed.

3. What is the difference between declaring an integer variable and declaring an
integer pointer variable?

4. What is the meaning of the data type in the declaration of a pointer?

5. What is the meaning and purpose of NULL?

6. What operator do you use to assign a pointer the address of another variable or
constant?

7. What is the purpose of the indirection operator?

8. May a pointer point to different memory addresses at different times in the
program?

9. May more than one pointer point to the same memory address?

10. What is the effect of incrementing a pointer variable?

11. What are the purposes of the new and delete operators?

Chapter 12: Character, C-String, and C++ String Class
Functions

Overview
The word “character” has many meanings. One complimentary definition is used to denote
a person with good character. A less complimentary meaning, which I heard more than
once from my parents and teachers, was that I was a character.

The word character has a third meaning in programming, though—as a data type. As you
learned in Chapter 2, each printable (letter, digit, punctuation) or whitespace (ENTER, TAB,
SPACEBAR) key on the keyboard has a corresponding ANSI, ASCII, or Unicode value.
Thus, you can assign any single user input to a character variable without fear of a data
type mismatch.

Of course, often a user’s input may consist of more than one character. As you learned in
Chapter 10, individual characters may be organized together as a character array. Usually,
a character array is ended by a null character, so its value can be outputted by the cout
object and the stream insertion operator (<<). Such a null-terminated character array often
is referred to as a “C-string.” The “C” in “C-string” refers to this character array being used
in the C programming language, which was the predecessor to the C++ programming
language.

C-strings often are used for data entry. For example, if the user is supposed to enter a
four-digit number, but instead enters “Jeff,” an attempt to assign that input directly to an
integer variable will result in either a run-time error or the integer variable having a so-called
“garbage” value such as –858993460. However, if the user input is first assigned to a five-
element character array (the fifth element for the null character), no run-time error would
occur since any input can be represented as a character, and each character in the
character array can be verified as a digit. If proper input is verified, then you can use
standard library functions, as I will show you in this chapter, to convert the character array
representation of an integer, long, or float value into an actual integer, long, or float value.

The C++ programming language introduced the string data type, also referred to as the
C++ string class. The C++ string class often is used instead of a C-string. The functions
used by C-strings and the C++ string class, respectively, will be compared and contrasted
in this chapter.

Reading a Character
You may legitimately be wondering why I am devoting an entire section of this chapter to
reading a character. After all, reading a character usually is relatively simple. You just use
the cin object and the stream insertion operator (>>) as in the following code fragment:
 char grade;
 cout << "Enter a grade: ";
 cin >> grade;

However, in programming, as in life, matters rarely are as simple as they first appear to be,
and this is no exception. The seemingly minor detail of the ENTER key being pressed to end
input gives rise to several interesting, and fortunately quite solvable, problems.

The “Press Any Key to Continue” Problem

The preceding code fragment had the user enter a character which was then assigned to a
character variable. However, the purpose of a user inputting a character is not always to
assign that input to a variable.

For example, programs often prompt the user to press any key to continue. Indeed, a
standard technical support joke concerns a user who complains that their keyboard does
not have an “any” key. Of course, any key means any key on the keyboard, including the
ENTER key.

While this joke may be entertaining, implementing the “press any key to continue”
functionality to include the ENTER key is more complicated than is first apparent.

Let’s examine the following program:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue: ";
 cin >> ch;
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";
 else
 cout << "You quit";
 } while (ch != 'Q' && ch != 'q');
return 0;

}

The program works fine if you press Q or q to quit. The program also works fine if you
press any other printable character to continue, such as a letter other than Q or q, a digit,
or a punctuation mark.

However, what if you press the ENTER key to continue? The answer is: nothing happens;
cin is still waiting for you to enter something. You have to enter a printable character to
continue. The reason is that the stream extraction operator (>>) ignores all leading
whitespace characters, such as the newline character caused by pressing the ENTER key.

The cin.get Function

In Chapter 10, we discussed the getline function of the cin object. The getline function is
called a member function. A member function is a function that is not called by itself, as is,
for example, the pow function we used in Chapter 4 to raise a number to a certain power.
Instead, a member function is called from an object. Here, getline is a member function of
cin. It is called from cin, and separated by a dot, as in cin.getline(name, 80).

Here we will use another member function of cin, get. The get member function was briefly
explained in Chapter 10. There, the get function, like the getline function, could be called
with two or three arguments, the first argument being a character array.

In addition to the two and three argument versions, the get member function also may be
called with no arguments or with one argument. Unlike the two and three argument versions,
the zero and one argument versions of the get member function are used to read a single
character rather than a character array. The one-argument version will be discussed in this
section. The no-argument version will be discussed in the next section, titled “The cin.ignore
Function.”

The data type of the one argument is a character, and the value of this argument changes
to whichever keyboard key the user pressed. This is true even if the keyboard key is the
ENTER key. Thus, the get member function, unlike the cin object with the stream insertion
operator (<<), may be used to assign to a character variable the newline character resulting
from pressing the ENTER key.

We will make one change to the previous program. We will change the statement cin >> ch
to cin.get(ch), so the program now reads as follows:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {

 cout << "Press Q or q to quit, any other key to continue: ";
 cin.get(ch);
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";
 else
 cout << "You quit";
 } while (ch != 'Q' && ch != 'q');
return 0;
}

Now, as the following input and output show, the program works if you press the ENTER
key to continue:
Press Q or q to quit, any other key to continue:
You want to continue?
Press Q or q to quit, any other key to continue: q
You quit

However, as shown by the following input, if you press a printable character to continue,
you are not able to input at the next prompt, which is seemingly skipped:
Press Q or q to quit, any other key to continue: x
You want to continue?
Press Q or q to quit, any other key to continue: You want to continue?
Press Q or q to quit, any other key to continue:

As this output reflects, by curing the problem of a whitespace character not being
recognized, we have introduced a new problem when a printable character is inputted.

A description of why this new problem occurred first requires a brief explanation of the term
input buffer. The input buffer is an area of memory that stores input, such as from the
keyboard, until that input is assigned, such as by cin and the stream extraction operator
(>>) or by the get or getline member functions of the cin object.

When the loop begins, the input buffer is empty. Accordingly, execution of the loop halts at
the statement cin.get(ch) until you enter some input.

As shown in Figure 12-1, if you press the ENTER key, the only character in the input buffer
is the newline character. That character, being the first (and only) one in the input buffer, is
removed from the input buffer to be assigned to the variable ch. Thus, at the next iteration
of the loop, the input buffer again is empty.

Figure 12-1: The input buffer when only the enter key is pressed

By contrast, if you type the letter x and then press the ENTER key to end input, then, as
depicted in Figure 12-2, the input buffer contains not one but two characters, x and the
ENTER key, shown by the newline character.

Figure 12-2: The input buffer after typing the letter x and pressing the enter
key

The get member function of the cin object removes the first character, x, from the input
buffer and assigns that value to the variable ch. As shown in Figure 12-2, the newline
character still remains in the input buffer.

Since the newline character remains in the input buffer, at the next iteration of the loop, you
do not have the opportunity to enter input. Instead, the get member function, which reads
whitespace as well as printable characters, removes the newline character from the input
buffer and assigns that newline character to the variable ch. Now the input buffer is empty,
so at the next loop iteration you will have the opportunity to enter input.

The cin.ignore Function

The solution is to clear the newline character out of the input buffer before calling the getline
function. You do this by using the ignore member function of the cin object.

The ignore member function, like the get and getline member functions, also is overloaded.
It can be called with no arguments, one argument, or two arguments.

Calling the ignore function with no arguments will cause the next character in the input buffer
to be read, and then discarded—that is, it won’t be assigned to anything. This is exactly
what we want. We don’t need to assign the newline character left over in the input buffer
into some variable. Rather, we just need to get rid of it.

Note

The one- and two-argument versions of the ignore member function are used with
character arrays instead of with an individual character. In the one argument
version of the ignore member function, the one argument is the maximum number
of characters to be removed from the input buffer. For example, the statement
cin.ignore(80) removes up to the next 80 characters from the input buffer. In the
two-argument version, the second argument is a character which, if encountered
before the number of characters specified in the first argument, causes the
removal from the input buffer to stop. Thus, the statement cin.ignore(80, '\n')
skips the next 80 characters or until a newline is encountered, whichever comes
first.

You also could use the get member function with no arguments to the same effect as the
ignore member function with no arguments. The following two statements do the same
thing:
cin.ignore();
cin.get();

This section will use the no-argument version of the ignore member function, but you could
substitute the no argument version of the get member function to the same effect.

Accordingly, the following program modifies the previous one by following the call of the get
member function with a call to the ignore member function:
#include <iostream>
using namespace std;

int main(void)
{
 char ch;
 do {
 cout << "Press Q or q to quit, any other key to continue: ";
 cin.get(ch);
 cin.ignore();
 if (ch != 'Q' && ch != 'q')
 cout << "You want to continue?\n";
 else

	C++ Demystified Jeff Kent McGraw-Hill/Osborne New York €€Chicago €€San Francisco €€Lisbon €€London €€Madrid €€Mexico City €€Milan €€New Delhi €€San Juan €€Seoul €€Singapore €€Sydney €€Toronto McGraw-Hill/Osborne2100 Powell Street, 10th FloorEmeryville, California €94608U.S.A. To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact McGraw-Hill/Osborne at the above address. For information on translations or book distributors outside the U.S.A., please see the International Contact Information page immediately following the index of this book. Copyright © 2004 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with the exception that the program listings may be entered,
	IntroductionC++ was my first programming language. While I’ve since learned others, I’ve always thought C++ was the “best” programming language, perhaps because of the power it gives the programmer. Of course, this power is a double-edged sword, being also the power to hang yourself if you are not careful. Nonetheless, C++ has always been my favorite programming language. C++ also has been the first choice of others, not just in the business world because of its power, but also in academia. Additionally, many other programming languages, including Java and C#, are based on C++. Indeed, the Java programming language was written using C++. Therefore, knowing C++ also makes learning other programming languages easier. Why Did I Write this Book? Not as a road to riches, fame, or beautiful women. I may be misguided, but I’m not completely delusional. To be sure, there are many introductory level books on C++. Nevertheless, I wrote this book because I believe I bring a different and, I hope,
	Who Should Read this BookAnyone who will pay for it! Just kidding, though no buyers will be turned away. It is hardly news that publishers and authors want the largest possible audience for their books. Therefore, this section of the introduction usually tells you this book is for you whoever you may be and whatever you do. However, no programming book is for everyone. For example, if you exclusively create game programs using Java, this book may not be for you �⠀琀栀漀甀最栀 戀攀椀渀最 愀 挀漀洀洀甀渀椀琀礀 挀漀氀氀攀最攀 琀攀愀挀栀攀爀 䤀 洀愀礀 戀攀 礀漀甀爀 渀攀砀琀 挀甀猀琀漀洀攀爀 椀昀 礀漀甀 挀爀攀愀琀攀 愀 猀瀀愀挀攀 戀攀愀猀琀猀 瘀猀⸀ 挀漀洀洀甀渀椀琀礀 挀漀氀氀攀最攀 愀搀洀椀渀椀猀琀爀愀琀漀爀猀 最愀洀攀). While this book is, of course, not for everyone, it very well may be for you. Many people need or want to learn C++, either as part of a degree program, job training, or even as a hobby. C++ is not the easiest subject to learn, and unfortunately many books don’t make learning C++ any easier, throwing at you a veritable telephone book of complexity and jargon. By contrast, this book, as it
	What this Book CoversI strongly believe that the best way to learn programming is to write programs. The concepts covered by the chapters are illustrated by clearly and thoroughly explained code. You can run this code yourself, or use the code as the basis for writing further programs that expand on the covered concepts. Chapter 1 gets you started. This chapter answers questions such as what is a computer program and what is a programming language. It then discusses the anatomy of a basic C++ program, including both the code you see and what happens “under the hood,” explaining how the preprocessor, compiler, and linker work together to translate your code into instructions the computer can understand. Finally, the chapter tells you how to use an integrated development environment �⠀䤀䐀䔀) to create and run a project. Being able to create and run a program that outputs “Hello World!” as in Chapter 1 is a good start. However, most programs require the storing of information of different ty
	What this Book Covers
	How to Read this BookI have organized this book to be read from beginning to end. While this may seem patently obvious, my students often express legitimate frustration about books (or teachers) that, in discussing a programming concept, mention other concepts that are covered several chapters later or, even worse, not at all. Therefore, I have endeavored to present the material in a linear, logical progression. This not only avoids the frustration of material that is out of order, but also enables you in each succeeding chapter to build on the skills you learned in the preceding chapters.
	Special FeaturesThroughout each chapter are Notes, Tips, and Cautions, as well as detailed code listings. To provide you with additional opportunities to review, there is a Quiz at the end of each chapter and a Final Exam �⠀昀漀甀渀搀 椀渀 琀栀攀 昀椀爀猀琀 愀瀀瀀攀渀搀椀砀) at the end of this book. Answers to both are contained in the following appendix. The overall objective is to get you up to speed quickly, without a lot of dry theory or unnecessary detail. So let’s get started. It’s easy and fun to write C++ programs.
	Contacting the AuthorHmmm… it depends why. Just kidding. While I always welcome gushing praise and shameless flattery, comments, suggestions, and yes, even criticism also can be valuable. The best way to contact me is via e-mail; you can use jkent@genghiskhent.com �⠀琀栀攀 搀漀洀愀椀渀 渀愀洀攀 椀猀 戀愀猀攀搀 漀渀 洀礀 猀琀甀搀攀渀琀猠ᤀ 昀漀渀搀 渀椀挀欀渀愀洀攀 昀漀爀 洀攀). Alternately, you can visit my web site, http://www.genghiskhent.com/. Don’t be thrown off by the entry page; I use this site primarily to support the online classes and online components of other classes that I teach at the college, but there will be a link to the section that supports this book. I hope you enjoy this book as much as I enjoyed writing it.
	Chapter 1: How a C++ Program Works Overview You probably interact with computer programs many times during an average day. When you arrive at work and find out your computer doesn’t work, you call tech support. At the other end of the telephone line, a computer program forces you to navigate a voicemail menu maze and then tortures you while you are on perpetual hold with repeated insincere messages about how important your call is, along with false promises about how soon you will get through. When you’re finally done with tech support, you decide to take a break and log on to your now-working computer to do battle with giant alien insects from the planet Megazoid. Unfortunately, the network administrator catches you goofing off using yet another computer program which monitors employee computer usage. Assuming you are still employed, an accounts payable program then generates your payroll check. On your way home, you decide you need some cash and stop at an ATM, where a computer progr
	Chapter 1: How a C++ Program Works
	What Is a Computer Program?Computers are so widespread in our society because they have three advantages over us humans. First, computers can store huge amounts of information. Second, they can recall that information quickly and accurately. Third, computers can perform calculations with lightning speed and perfect accuracy. The advantages that computers have over us even extend to thinking sports like chess. In 1997, the computer Deep Blue beat the world chess champion, Garry Kasparov, in a chess match. In 2003, Kasparov was out for revenge against another computer, Deep Junior, but only drew the match. Kasparov, while perhaps the best chess player ever, is only human, and therefore no match for the computer’s ability to calculate and remember prior games. However, we have one very significant advantage over computers. We think on our own, while computers don’t, at least not yet anyway. Indeed, computers fundamentally are far more brawn than brain. A computer cannot do anything withou
	What Is a Programming Language?When you enter a darkened room and want to see what is inside, you turn on a light switch. When you leave the room, you turn the light switch off. The first computers were not too different than that light switch. These early computers consisted of wires and switches in which the electrical current followed a path dependent on which switches were in the on �⠀漀渀攀) or off �⠀稀攀爀漀) position. Indeed, I built such a simple computer when I was a kid �⠀眀栀椀挀栀 愀挀挀漀爀搀椀渀最 琀漀 洀礀 漀眀渀 挀栀椀氀搀爀攀渀 眀愀猀 戀愀挀欀 眀栀攀渀 搀椀渀漀猀愀甀爀猀 猀琀椀氀氀 爀甀氀攀搀 琀栀攀 攀愀爀琀栀). Each switch’s position could be expressed as a number: 1 for the on position, 0 for the off position. Thus, the instructions given to these first computers, in the form of the switches’ positions, essentially were a series of ones and zeroes. Today’s computers, of course, are far more powerful and sophisticated than these early computers. However, the language that computers understand, called machine language, remains the same, essenti
	Anatomy of a C++ ProgramIt seems to be a tradition in C++ programming books for the first code example to output to a console window the message “Hello World!” �⠀猀栀漀眀渀 椀渀 䘀椀最甀爀攀 ㄀ⴀ㄀). Figure 1-1: C++ program outputting “Hello World!” to the screen Note The term “console” goes back to the days before Windows when the screen did not have menus and toolbars but just text. If you have typed commands using DOS or UNIX, you likely did so in a console window. The text “Press any key to continue” immediately following “Hello World!” is not part of the program, but instead is a cue for how to close the console window. Unfortunately, all too often the “Hello World!” example is followed quickly by many other program examples without the book or teacher first stopping to explain how the “Hello World!” program works. The result soon is a confused reader or student who’s ready to say “Goodbye, Cruel World.” While the “Hello World!” program looks simple, there actually is a lot going on behind the sc
	Translating the Code for the Computer While you now understand the “Hello World!” code, the computer won’t. Computers don’t understand C++ or any other programming language. They understand only machine language. Three programs are used to translate your source code into an executable file that the computer can run. These programs are, in their order of appearance: Preprocessor Compiler Linker Preprocessor The preprocessor is a program that scans the source code for preprocessor directives such as include directives. The preprocessor inserts into the source code all files included by the include directives. In this example, the iostream standard library file is included by an include directive. Therefore, the preprocessor directive inserts the contents of that standard library file, including its definition of the cout object, into the source code file. Compiler The compiler is another program that translates the preprocessed source code �⠀琀栀攀 猀漀甀爀挀攀 挀漀搀攀 愀昀琀攀爀 琀栀攀 椀渀猀攀爀琀椀漀渀猀 洀愀搀攀 戀礀 琀栩ਾ㸊敮摯扪ਊ㘵㠠〠潢樊㰼ਯ䑥獴⁛㄰㜠〠删⽘奚‵″㤲〠湵汬崊⽎數琠㘵㤠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘵㜠〠刊⽔楴汥 ﻿Using an IDE to Create and Run the “Hello World!” ProjectYou can use any plain-text editor such as Notepad to write the source code. You also can download a free compiler, which usually includes a preprocessor and linker. You then can compile and run your code from the command line. The command line may be, for example, a DOS prompt at which you type a command that specifies the action you want, such as compiling, followed by the name of the file you want to compile. While there is nothing wrong with using a plain-text editor and command line tools, many programmers, including me, prefer to create, compile, and run their programs in a C++ Integrated Development Environment, known by the acronym IDE. The term “integrated” in IDE means that the text editor, preprocessor, compiler, and linker are all together under one �⠀猀漀昀琀眀愀爀攀) roof. Thus, the IDE enables you to create, compile, and run your code using one program rather than separate programs. Additionally, most IDEs have a graphical u⤊㸾੥湤潢樊ਸ਼㔹‰⁯扪਼㰊⽄敳琠嬱㈲‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘶〠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘵㠠〠刊⽔楴汥 ﻿Summary Computers can store huge amounts of information, recall that information quickly and accurately, and perform calculations with lightning speed and perfect accuracy. However, computers cannot think by themselves, and need step-by-step instructions from us telling them what to do. These instructions are called a computer program, written by a human computer programmer in a programming language such as C++. A compiler, together with a preprocessor and a linker, translates the computer program into machine language that a computer understands. We then analyzed a C++ program, which outputs “Hello World!” to the screen. The program looks simple, but much is going on behind the scenes. We analyzed that code, line by line. You then created and ran your own “Hello World!” C++ application.⤊㸾੥湤潢樊ਸ਼㘰‰⁯扪਼㰊⽄敳琠嬱㈴‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘶ㄠ〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘵㤠〠刊⽔楴汥 兵楺⁗桡琠楳⁡⁣潭灵瑥爠灲潧牡洿⁎慭攠獥癥牡氠慤癡湴慧敳⁡⁣潭灵瑥爠桡猠潶敲⁨畭慮猠楮⁰牯捥獳楮朠楮景牭慴楯渿⁗桡琠楳⁡⁰牯杲慭浩湧⁬慮杵慧政⁗桹⁩猠䌫⬠愠杯潤⁰牯杲慭浩湧⁬慮杵慧攠瑯⁬敡牮㼠坨慴⁩猠愠晵湣瑩潮㼠䡯眠浡湹⁭慩渠晵湣瑩潮猠獨潵汤⁡⁃⬫⁰牯杲慭⁨慶政⁗桡琠楳⁡⁳瑡湤慲搠汩扲慲礠晩汥㼠坨慴⁩猠瑨攠灵牰潳攠潦⁡渠楮捬畤攠摩牥捴楶政⁗桡琠摯敳⁡⁰牥灲潣敳獯爠摯㼠坨慴⁤潥猠愠捯浰楬敲⁤漿⁗桡琠摯敳⁡⁬楮步爠摯㼩ਾ㸊敮摯扪ਊ㘶ㄠ〠潢樊㰼ਯ䑥獴⁛ㄲ㘠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㘲‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㘰‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 ㈀㨀 䴀攀洀漀爀礀 愀渀搀 䐀愀琀愀 吀礀瀀攀猀 伀瘀攀爀瘀椀攀眀 䄀昀琀攀爀 䤀 眀爀漀琀攀 洀礀 昀椀爀猀琀 戀漀漀欀Ⰰ 䤀 攀砀瀀攀挀琀愀渀琀氀礀 眀愀椀琀攀搀 攀瘀攀爀礀 搀愀礀 昀漀爀 洀礀 洀愀椀氀Ⰰ 栀漀瀀椀渀最 琀漀 爀攀挀攀椀瘀攀 爀攀焀甀攀猀琀猀 昀漀爀 洀礀 愀甀琀漀最爀愀瀀栀⸀ 吀栀攀 爀攀猀甀氀琀 眀愀猀 瀀爀漀漀昀 漀昀 琀栀攀 愀搀愀最攀†ᰀ戀攀 挀愀爀攀昀甀氀 眀栀愀琀 礀漀甀 愀猀欀 昀漀爀⸠ᴀ 䴀礀 洀愀椀氀戀漀砀 眀愀猀 猀琀甀昀昀攀搀 眀椀琀栀 渀甀洀攀爀漀甀猀 爀攀焀甀攀猀琀猀 昀漀爀 洀礀 愀甀琀漀最爀愀瀀栀⸀ 䄀氀愀猀Ⰰ 琀栀攀猀攀 爀攀焀甀攀猀琀猀 挀愀洀攀 昀爀漀洀 琀栀漀猀攀 眀栀漀 眀愀渀琀攀搀 琀漀 猀栀愀爀攀 洀礀 洀漀渀攀礀Ⰰ 渀漀琀 洀礀 昀愀洀攀⸀ 䴀礀 愀甀琀漀最爀愀瀀栀 眀愀猀 爀攀焀甀攀猀琀攀搀 漀渀 挀栀攀挀欀猀 琀漀 瀀愀礀 洀礀 洀漀爀琀最愀最攀Ⰰ 挀爀攀搀椀琀 挀愀爀搀猀Ⰰ 椀渀猀甀爀愀渀挀攀Ⰰ 瀀栀漀渀攀 猀攀爀瘀椀挀攀Ⰰ 攀氀攀挀琀爀椀挀椀琀礀㬀 眀攀氀氀Ⰰ 礀漀甀 最攀琀 琀栀攀 瀀椀挀琀甀爀攀⸀ 吀栀攀猀攀 挀漀洀瀀愀渀椀攀猀 眀栀漀 氀漀瘀攀 猀攀渀搀椀渀最 洀攀 戀椀氀氀猀 挀漀甀氀搀 渀漀琀 瀀漀猀猀椀戀氀礀 欀攀攀瀀 琀爀愀挀欀 漀昀 琀栀攀椀爀 琀栀漀甀猀愀渀搀猀 漀昀 挀甀猀琀漀洀攀爀猀 戀礀 甀猀椀渀最 瀀攀渀挀椀氀 愀渀搀 瀀愀瀀攀爀⸀ 䤀渀猀琀攀愀搀Ⰰ 琀栀攀礀 甀猀攀 挀漀洀瀀甀琀攀爀 瀀爀漀最爀愀洀猀Ⰰ 眀栀椀挀栀 栀愀爀渀攀猀猀 琀栀攀 挀漀洀瀀甀琀攀爠ᤀ猀 愀戀椀氀椀琀礀 琀漀 猀琀漀爀攀 瘀攀爀礀 氀愀爀最攀 愀洀漀甀渀琀猀 漀昀 椀渀昀漀爀洀愀琀椀漀渀 愀渀搀 琀漀 爀攀琀爀椀攀瘀攀 琀栀愀琀 猀琀漀爀攀搀 椀渀昀漀爀洀愀琀椀漀渀 瘀攀爀礀 焀甀椀挀欀氀礀⸀ 圀攀 甀猀攀 漀甀爀 洀攀洀漀爀礀 琀漀 猀琀漀爀攀 愀渀搀 爀攀挀愀氀氀 椀渀昀漀爀洀愀琀椀漀渀⸀ 匀漀 搀漀 挀漀洀瀀甀琀攀爀猀⸀ 䠀漀眀攀瘀攀爀Ⰰ 愀 挀漀洀瀀甀琀攀爠ᤀ猀 洀攀洀漀爀礀 椀猀 瘀攀爀礀 搀椀昀昀攀爀攀渀琀 昀爀漀洀 漀甀爀猀⸀ 吀栀椀猀 挀栀愀瀀琀攀爀 眀椀氀氀 攀砀瀀氀愀椀渀 栀漀眀 愀 挀漀洀瀀甀琀攀爠ᤀ猀 洀攀洀漀爀礀 眀漀爀欀猀⸀ 䤀渀昀漀爀洀愀琀椩ਾ㸊敮摯扪ਊ㘶㈠〠潢樊㰼ਯ䑥獴⁛ㄲ㘠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㘳‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㘱‰⁒ਯ呩瑬攠⡃桡灴敲′㨠䵥浯特⁡湤⁄慴愠呹灥猩ਾ㸊敮摯扪ਊ㘶㌠〠潢樊㰼ਯ䑥獴⁛ㄳ㔠〠删⽘奚‵′㌵㐠湵汬崊⽎數琠㘶㐠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘶㈠〠刊⽔楴汥 ﻿MemoryComputer programs consist of instructions and data. As discussed in Chapter 1, instructions, written in a programming language such as C++ and then translated by the compiler and linker into machine language, give the computer step-by-step directions on what to do. The data is the information that is the subject of the program. For example, if the user of your computer program wants a list of all students with a GPA of 4.0, the data could be a list of all students and their GPAs. The program then would follow instructions to determine and output the list of all students with a GPA of 4.0. The computer program’s instructions and data have to be in the computer’s memory for the program to work. This section will explain the different types of computer memory, as well as how and where instructions and data are stored in computer memory. Types of Memory There are three principal memory locations on your computer. The central processing unit �⠀䌀倀唀) Random access memory �⠀刀䄀䴀) Persistent⤊㸾੥湤潢樊ਸ਼㘴‰⁯扪਼㰊⽄敳琠嬱㔴‰⁒ 塙娠㔠㌹㈰⁮畬汝ਯ乥硴‶㘵‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㘳‰⁒ਯ呩瑬攠⣾＀䐀愀琀愀 吀礀瀀攀猀 吀栀攀 漀渀攀猀 愀渀搀 稀攀爀漀攀猀 琀栀愀琀 洀愀礀 戀攀 猀琀漀爀攀搀 愀琀 愀 洀攀洀漀爀礀 愀搀搀爀攀猀猀 洀愀礀 爀攀瀀爀攀猀攀渀琀 琀攀砀琀Ⰰ 猀甀挀栀 愀猀 洀礀 渀愀洀攀Ⰰ 䨀攀昀昀 䬀攀渀琀⸀ 吀栀攀猀攀 漀渀攀猀 愀渀搀 稀攀爀漀攀猀 椀渀猀琀攀愀搀 洀愀礀 爀攀瀀爀攀猀攀渀琀 愀 眀栀漀氀攀 渀甀洀戀攀爀Ⰰ 猀甀挀栀 愀猀 洀礀 栀攀椀最栀琀 椀渀 椀渀挀栀攀猀Ⰰ 㜀㈀Ⰰ 漀爀 愀 渀甀洀戀攀爀 眀椀琀栀 搀椀最椀琀猀 琀漀 琀栀攀 爀椀最栀琀 漀昀 琀栀攀 搀攀挀椀洀愀氀 瀀漀椀渀琀Ⰰ 猀甀挀栀 愀猀 洀礀 䜀倀䄀 椀渀 栀椀最栀 猀挀栀漀漀氀Ⰰ 眀栀椀挀栀 䤠ᤀ氀氀 猀愀礀 眀愀猀 ㌀⸀㜀㔀 (I honestly don’t remember, it was too long ago�⤀⸀ 䄀氀琀攀爀渀愀琀椀瘀攀氀礀Ⰰ 琀栀攀 漀渀攀猀 愀渀搀 稀攀爀漀攀猀 洀愀礀 爀攀瀀爀攀猀攀渀琀 攀椀琀栀攀爀 琀爀甀攀 漀爀 昀愀氀猀攀Ⰰ 猀甀挀栀 愀猀 眀栀攀琀栀攀爀 䤀 愀洀 愀 唀⸀匀⸀ 挀椀琀椀稀攀渀⸀ 䐀愀琀愀 挀漀洀攀猀 椀渀 洀愀渀礀 昀漀爀洀猀Ⰰ 愀渀搀 椀猀 最攀渀攀爀愀氀氀礀 攀椀琀栀攀爀 渀甀洀攀爀椀挀 漀爀 琀攀砀琀甀愀氀⸀ 䄀搀搀椀琀椀漀渀愀氀氀礀Ⰰ 猀漀洀攀 渀甀洀攀爀椀挀 搀愀琀愀 甀猀攀猀 眀栀漀氀攀 渀甀洀戀攀爀猀Ⰰ 猀甀挀栀 愀猀 㘀Ⰰ 　Ⰰ 漀爀†ጀ㜀Ⰰ 眀栀椀氀攀 漀琀栀攀爀 渀甀洀攀爀椀挀 搀愀琀愀 甀猀攀猀 昀氀漀愀琀椀渀最ⴀ瀀漀椀渀琀 渀甀洀戀攀爀猀Ⰰ 猀甀挀栀 愀猀 ⸀㘀Ⰰ 㜀⸀㌀Ⰰ 愀渀搀†ጀ㘀⸀㄀⸀ 吀栀攀爀攀 愀爀攀 搀椀昀昀攀爀攀渀琀 搀愀琀愀 琀礀瀀攀猀 昀漀爀 攀愀挀栀 漀昀 琀栀攀 洀愀渀礀 昀漀爀洀猀 漀昀 搀愀琀愀⸀ 吀栀攀 搀愀琀愀 琀礀瀀攀 礀漀甀 挀栀漀漀猀攀 眀椀氀氀 愀昀昀攀挀琀 渀漀琀 漀渀氀礀 琀栀攀 昀漀爀洀 椀渀 眀栀椀挀栀 琀栀攀 搀愀琀愀 椀猀 猀琀漀爀攀搀Ⰰ 戀甀琀 愀氀猀漀 琀栀攀 愀洀漀甀渀琀 漀昀 洀攀洀漀爀礀 爀攀焀甀椀爀攀搀 琀漀 猀琀漀爀攀 琀栀攀 搀愀琀愀⸀ 䰀攀琠ᤀ猀 渀漀眀 琀愀欀攀 愀 氀漀漀欀 愀琀 琀栀攀猀攀 搀椀昀昀攀爀攀渀琀 搀愀琀愀 琀礀瀀攀猀⸀ 圀栀漀氀攀 一甀洀戀攀爀 䐀愀琀愀 吀礀瀀攀猀 圀攀 搀攀愀氩ਾ㸊敮摯扪ਊ㘶㔠〠潢樊㰼ਯ䑥獴⁛ㄷ㌠〠删⽘奚‵′㌵㐠湵汬崊⽎數琠㘶㘠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘶㐠〠刊⽔楴汥 ﻿Project: Determining the Size of Data TypesAs discussed in the previous Data Types section, the size of each data type depends on the compiler and operating system you are using. In this project, you will find out the size of each data type on your system by using the sizeof operator. The sizeof Operator The sizeof operator is followed by parentheses, in which you place a data type. It returns the size in bytes of that data type. For example, on my computer, the expression sizeof�⠀椀渀琀) returns 4. This means that on my compiler and operating system, the size of an int data type is 4 bytes. Changing the Source File of Your Project Try creating and running the next program using the steps you followed in Chapter 1 to create the “Hello World!” program. While you could start a new project, in this example, you will reuse the project you used in Chapter 1. It is good to know both how to create a new project and how to reuse an existing one. Start Visual C++. Use the File | Open Solution menu⤊㸾੥湤潢樊ਸ਼㘶‰⁯扪਼㰊⽄敳琠嬱㠱‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘶㜠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘶㔠〠刊⽔楴汥 ﻿SummaryA computer program’s instructions and data have to be in the computer’s memory for the program to work. There are three principal memory locations on your computer: the central processing unit �⠀䌀倀唀), random access memory �⠀刀䄀䴀), and persistent storage. Computer programs usually use RAM to store instructions and data. Instructions and data are stored at addresses, represented by a sequential series of numbers. A computer stores information in a series of ones and zeroes. Each one or zero is a bit. However, a computer cannot process information as small as a single bit. Eight bits, or one byte, is the smallest unit of information that a computer can process. Therefore, each address stores one byte of information. Some information is numeric; other data is textual. Each type of information is referred to as a data type. The principal data type categories are whole numbers, floating-point numbers, and text. However, all data types have in common a characteristic of size, which is the⤊㸾੥湤潢樊ਸ਼㘷‰⁯扪਼㰊⽄敳琠嬱㠳‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘶㠠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘶㘠〠刊⽔楴汥 兵楺⁆牯洠睨楣栠潦⁴桥⁦潬汯睩湧⁴祰敳⁯映浥浯特⁣慮⁴桥⁃偕⁭潳琠煵楣歬礠慣捥獳⁩湳瑲畣瑩潮猠潲⁤慴愺⁣慣桥⁭敭潲礬⁒䅍Ⱐ潲⁰敲獩獴敮琠獴潲慧政⁗桩捨⁯映瑨攠景汬潷楮朠瑹灥猠潦⁭敭潲礠楳⁮潴⁴敭灯牡特㨠捡捨攠浥浯特Ⱐ剁䴬⁯爠灥牳楳瑥湴⁳瑯牡来㼠坨慴⁩猠瑨攠慭潵湴⁯映楮景牭慴楯渠瑨慴⁭慹⁢攠獴潲敤⁡琠愠灡牴楣畬慲⁭敭潲礠慤摲敳猿⁉猠瑨攠獩穥⁯映愠摡瑡⁴祰攠慬睡祳⁴桥⁳慭攠湯⁭慴瑥爠睨楣栠捯浰畴敲⁹潵⁭慹⁢攠睯牫楮朠潮㼠坨慴⁩猠浥慮琠批⁴桥⁲慮来⁯映愠摡瑡⁴祰政⁗桡琠楳⁴桥⁤楦晥牥湣攠扥瑷敥渠慮⁵湳楧湥搠慮搠獩杮敤⁤慴愠瑹灥㼠坨慴⁤散業慬⁮畭扥爠楳⁲数牥獥湴敤⁢礠㔮ㅅⴳ⁩渠䔠湯瑡瑩潮㼠坨慴⁩猠慮⁁千䥉⁶慬略㼠坨慴⁤潥猠瑨攠獩穥潦⁯灥牡瑯爠摯㼠坨慴⁩猠愠汩瑥牡氠獴物湧㼠坨慴⁩猠慮⁥硰牥獳楯渿⤊㸾੥湤潢樊ਸ਼㘸‰⁯扪਼㰊⽄敳琠嬱㠵‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘶㤠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘶㜠〠刊⽔楴汥 ﻿Chapter 3: Variables Overview Recently, while in a crowded room, someone yelled “Hey, you!” I and a number of other people looked up, because none of us could tell to whom the speaker was referring. Had the speaker instead yelled “Hey, Jeff Kent!,” I would have known he was calling me �⠀甀渀氀攀猀猀 漀昀 挀漀甀爀猀攀 琀栀攀爀攀 栀愀瀀瀀攀渀攀搀 琀漀 戀攀 愀渀漀琀栀攀爀 䨀攀昀昀 䬀攀渀琀 椀渀 琀栀攀 爀漀漀洀). We use names to refer to each other. Similarly, when you need to refer in code to a particular item of information among perhaps thousands of items of information, you do so by referring to the name of that information item. You name information by creating a variable. A variable not only gives you a way of referring later to particular information, but also reserves the amount of memory necessary to store that information. This chapter will show you how to create variables, store information in them, and retrieve information from
them.⤊㸾੥湤潢樊ਸ਼㘹‰⁯扪਼㰊⽄敳琠嬱㠵‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘷〠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘶㠠〠刊⽔楴汥 䍨慰瑥爠㌺⁖慲楡扬敳⤊㸾੥湤潢樊ਸ਼㜰‰⁯扪਼㰊⽄敳琠嬱㤳‰⁒ 塙娠㔠㈳㔴⁮畬汝ਯ乥硴‶㜱‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㘹‰⁒ਯ呩瑬攠⣾＀䐀攀挀氀愀爀椀渀最 嘀愀爀椀愀戀氀攀猀夀漀甀 氀攀愀爀渀攀搀 椀渀 䌀栀愀瀀琀攀爀 ㈀ 琀栀愀琀 琀栀攀 椀渀昀漀爀洀愀琀椀漀渀 愀 瀀爀漀最爀愀洀 甀猀攀猀 眀栀椀氀攀 椀琀 椀猀 爀甀渀渀椀渀最 昀椀爀猀琀 渀攀攀搀猀 琀漀 戀攀 猀琀漀爀攀搀 椀渀 洀攀洀漀爀礀⸀ 夀漀甀 渀攀攀搀 琀漀 爀攀猀攀爀瘀攀 洀攀洀漀爀礀 戀攀昀漀爀攀 礀漀甀 挀愀渀 猀琀漀爀攀 椀渀昀漀爀洀愀琀椀漀渀 琀栀攀爀攀⸀ 夀漀甀 爀攀猀攀爀瘀攀 洀攀洀漀爀礀 戀礀 搀攀挀氀愀爀椀渀最 愀 瘀愀爀椀愀戀氀攀⸀ 䐀攀挀氀愀爀椀渀最 愀 瘀愀爀椀愀戀氀攀 渀漀琀 漀渀氀礀 爀攀猀攀爀瘀攀猀 洀攀洀漀爀礀Ⰰ 戀甀琀 愀氀猀漀 最椀瘀攀猀 礀漀甀 愀 挀漀渀瘀攀渀椀攀渀琀 眀愀礀 漀昀 爀攀昀攀爀爀椀渀最 琀漀 琀栀愀琀 爀攀猀攀爀瘀攀搀 洀攀洀漀爀礀 眀栀攀渀 礀漀甀 渀攀攀搀 琀漀 搀漀 猀漀 椀渀 礀漀甀爀 瀀爀漀最爀愀洀⸀ 夀漀甀 愀氀猀漀 氀攀愀爀渀攀搀 椀渀 䌀栀愀瀀琀攀爀 ㈀ 琀栀愀琀 洀攀洀漀爀礀 愀搀搀爀攀猀猀攀猀 栀愀瘀攀 栀攀砀愀搀攀挀椀洀愀氀 瘀愀氀甀攀猀 猀甀挀栀 愀猀 　　㄀㈀䘀䔀䐀㐀⸀ 吀栀攀猀攀 瘀愀氀甀攀猀 愀爀攀 栀愀爀搀 琀漀 爀攀洀攀洀戀攀爀⸀ 䤀琀 椀猀 洀甀挀栀 攀愀猀椀攀爀 琀漀 爀攀洀攀洀戀攀爀 椀渀昀漀爀洀愀琀椀漀渀 琀栀愀琀Ⰰ 昀漀爀 攀砀愀洀瀀氀攀Ⰰ 爀攀氀愀琀攀猀 琀漀 愀 琀攀猀琀 猀挀漀爀攀 戀礀 琀栀攀 渀愀洀攀 琀攀猀琀匀挀漀爀攀⸀ 䈀礀 搀攀挀氀愀爀椀渀最 愀 瘀愀爀椀愀戀氀攀Ⰰ 礀漀甀 挀愀渀 爀攀昀攀爀 琀漀 琀栀攀 爀攀猀攀爀瘀攀搀 洀攀洀漀爀礀 戀礀 琀栀攀 瘀愀爀椀愀戀氀攠ᤀ猀 渀愀洀攀Ⰰ 眀栀椀挀栀 椀猀 洀甀挀栀 攀愀猀椀攀爀 琀漀 爀攀洀攀洀戀攀爀 愀渀搀 椀搀攀渀琀椀昀礀 眀椀琀栀 琀栀攀 猀琀漀爀攀搀 椀渀昀漀爀洀愀琀椀漀渀 琀栀愀渀 椀猀 琀栀攀 栀攀砀愀搀攀挀椀洀愀氀 愀搀搀爀攀猀猀⸀ 圀栀椀氀攀 搀攀挀氀愀爀椀渀最 愀 瘀愀爀椀愀戀氀攀 椀猀 爀攀氀愀琀椀瘀攀氀礀 猀椀洀瀀氀攀Ⰰ 爀攀焀甀椀爀椀渀最 漀渀氀礀 漀渀攀 氀椀渀攀 漀昀 挀漀搀攀Ⰰ 洀甀挀栀 椀猀 栀愀瀀瀀攀渀椀渀最 戀攀栀椀渀搀 琀栀攀 猀挀攀渀攀猀⸀ 吀栀攀 瀀爀漀最爀愀洀 愀琀 琀栀攀 攀渀搀 漀昀 琀栀椀猀 猀攀挀琀椀漀渀 眀椀氀氩ਾ㸊敮摯扪ਊ㘷ㄠ〠潢樊㰼ਯ䑥獴⁛㈱㐠〠删⽘奚‵‴㜰㌠湵汬崊⽎數琠㘷㈠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘷〠〠刊⽔楴汥 ﻿Assigning Values to VariablesThe purpose of a variable is to store information. Therefore, after you have created a variable, the next logical step is to specify the information that the variable will store. This is called assigning a value to a variable. A variable can be assigned a value supplied by the programmer in code. A variable also can be assigned a value by the user, usually via the keyboard, when the program is running. You may use the assignment operator, which is discussed in the next section, to specify the value to be stored in a variable. You use the cin object �⠀搀椀猀挀甀猀猀攀搀 椀渀 琀栀攀 甀瀀挀漀洀椀渀最 猀攀挀琀椀漀渀†ᰀ唀猀椀渀最 琀栀攀 挀椀渀 伀戀樀攀挀琠ᴀ) after the assignment operator, to obtain the user’s input, usually from the keyboard, and then store that input in a variable. Assignment Operator You use the assignment operator to assign a value to a variable. The syntax is [variable name] = [value]; The assignment operator looks like the equal sign. However, in C++ the = sign is not used to test for e⤊㸾੥湤潢樊ਸ਼㜲‰⁯扪਼㰊⽄敳琠嬲㈶‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘷㌠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘷ㄠ〠刊⽔楴汥 卵浭慲祁⁶慲楡扬攠獥牶敳⁴睯⁰畲灯獥献⁉琠灲潶楤敳⁹潵⁷楴栠愠睡礠潦⁲敦敲物湧⁴漠灡牴楣畬慲⁩湦潲浡瑩潮Ⱐ慮搠慬獯⁲敳敲癥猠瑨攠慭潵湴⁯映浥浯特⁮散敳獡特⁴漠獴潲攠瑨慴⁩湦潲浡瑩潮⸠奯甠浵獴⁣牥慴攠愠癡物慢汥⁢敦潲攠祯甠捡渠獴慲琠畳楮朠楴⸠奯甠捲敡瑥⁡⁶慲楡扬攠批⁤散污物湧⁩琮⁙潵⁭慹⁤散污牥⁭畬瑩灬攠癡物慢汥猠潦⁴桥⁳慭攠瑹灥⁩渠潮攠獴慴敭敮琮⁙潵⁣慮⁵獥⁴桥⁡摤牥獳⁯灥牡瑯爬…Ⱐ瑯⁤整敲浩湥⁴桥⁡摤牥獳⁯映愠癡物慢汥Ⱐ慮搠瑨攠獩穥潦⁯灥牡瑯爠瑯⁤整敲浩湥⁴桥⁳楺攠潦⁡⁶慲楡扬攮⁔桥⁰畲灯獥⁯映愠癡物慢汥⁩猠瑯⁳瑯牥⁩湦潲浡瑩潮⸠周敲敦潲攬⁡晴敲⁹潵⁨慶攠捲敡瑥搠愠癡物慢汥Ⱐ瑨攠湥硴⁬潧楣慬⁳瑥瀠楳⁴漠獰散楦礠瑨攠楮景牭慴楯渠瑨慴⁴桥⁶慲楡扬攠睩汬⁳瑯牥⸠周楳⁩猠捡汬敤⁡獳楧湩湧⁡⁶慬略⁴漠愠癡物慢汥⸠䄠癡物慢汥⁣慮⁢攠慳獩杮敤⁡⁶慬略⁥楴桥爠批⁴桥⁰牯杲慭浥爠楮⁣潤攠潲⁢礠瑨攠畳敲Ⱐ畳畡汬礠癩愠瑨攠步祢潡牤Ⱐ睨敮⁴桥⁰牯杲慭⁩猠牵湮楮朮⁙潵⁵獥⁴桥⁡獳楧湭敮琠潰敲慴潲⁴漠慳獩杮⁡⁶慬略⁳異灬楥搠批⁣潤攮⁙潵⁵獥⁴桥⁣楮⁯扪散琠瑯⁡獳楧渠愠癡汵攠獵灰汩敤⁢礠瑨攠畳敲⸠䥮⁴桥⁮數琠捨慰⤊㸾੥湤潢樊ਸ਼㜳‰⁯扪਼㰊⽄敳琠嬲㈸‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘷㐠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘷㈠〠刊⽔楴汥 ﻿Quiz What is the effect of declaring a variable? Can you refer to a variable before declaring it as long as you declare it later? Can you declare several variables in the same statement? What is a “naming convention” with respect to variables? What is the difference between the address and sizeof operators? What is initialization? What is overflow? What is the consequence of using an assignment operator to assign a string value to an integer variable? Do you use the cin object for compile time or run-time assignment of values to variables? Can you use one cin statement to assign values to several variables of different data types?⤊㸾੥湤潢樊ਸ਼㜴‰⁯扪਼㰊⽄敳琠嬲㌰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘷㔠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘷㌠〠刊⽔楴汥 ﻿Chapter 4: Arithmetic Operators Overview When I went to elementary school, which as far as my kids are concerned was when dinosaurs roamed the earth, I had to perform arithmetic calculations by hand or in my head. There were no calculators, only slide rules. �⠀圀愀爀渀椀渀最㨀 夀漀甀 洀愀礀 搀愀琀攀 礀漀甀爀猀攀氀昀 戀礀 攀瘀攀渀 愀搀洀椀琀琀椀渀最 礀漀甀 欀渀漀眀 眀栀愀琀 愀 猀氀椀搀攀 爀甀氀攀 椀猀℀) When it was my kids’ turn to go to school, and I’d ask them to perform an arithmetic calculation while going over their homework or tests, they would whip out a calculator. When I asked them to perform the calculation by hand or in their head, they would look at me with mixed amazement and pity and exclaim “Aw, Dad, no one does it that way anymore.” Maybe my kids were right. When I write computer programs, I don’t do it “that way” anymore either. I let the fastest, most accurate calculator I own do the work: my computer. Many computer programs need to perform calculations. Computers, in addition to being able to store vast amounts of data, also can ca⤊㸾੥湤潢樊ਸ਼㜵‰⁯扪਼㰊⽄敳琠嬲㌰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘷㘠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘷㐠〠刊⽔楴汥 䍨慰瑥爠㐺⁁物瑨浥瑩挠佰敲慴潲猩ਾ㸊敮摯扪ਊ㘷㘠〠潢樊㰼ਯ䑥獴⁛㈴㐠〠删⽘奚‵‴㜰㌠湵汬崊⽎數琠㘷㜠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘷㔠〠刊⽔楴汥 ﻿Arithmetic OperatorsAn operator is a symbol that represents a specific action. We have discussed and used operators in prior chapters, including the assignment operator, =. C++ also supports operators for arithmetic, specifically addition, subtraction, multiplication, and division. Operators used for arithmetic are called, naturally enough, arithmetic operators. Table 4-1 summarizes them. Table 4-1: Arithmetic Operators Operator Purpose Example Result + Addition 5 + 2 7 - Subtraction 5 – 2 3 * Multiplication 5 * 2 10 / Division �⠀儀甀漀琀椀攀渀琀) 5 / 2 2 % Division �⠀刀攀洀愀椀渀搀攀爀) 5 % 2 1 The % operator, also called the modulus operator, may look unfamiliar. It returns the remainder in division, and will be explained in the “Division Operators” section later in this chapter. Arithmetic operators are binary operators because they operate on two operands, binary being a reference to 2, and operand referring to each of the two values that is in the arithmetic expression. For example, in the expressio⤊㸾੥湤潢樊ਸ਼㜷‰⁯扪਼㰊⽄敳琠嬲㘳‰⁒ 塙娠㔠ㄵ㜱⁮畬汝ਯ乥硴‶㜸‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㜶‰⁒ਯ呩瑬攠⡔桥⁃桡湧攠䵡捨楮攠偲潪散瑍礠浯瑨敲⁷慳⁮潴⁡扯癥⁵獩湧⁡⁣桡湧攠浡捨楮攠瑯⁤楳瑲慣琠捲慮歹⁯爠浩獣桩敶潵猠祯畮朠杲慮摣桩汤牥渮⁔桥⁹潵湧獴敲猠灯畲敤⁨畮摲敤猠潦⁰敮湩敳⁩湴漠瑨攠瑯瀠潦⁴桥⁭慣桩湥Ⱐ慮搠睡瑣桥搠睩瑨⁦慳捩湡瑩潮 景牴畮慴敬礬⁹潵湧獴敲猠慲攠敡獩汹⁦慳捩湡瑥搩⁡猠瑨攠浡捨楮攠獯牴敤⁴桥⁰敮湩敳⁩湴漠慭潵湴猠潦⁣桡湧攠瑨慴⁣潵汤⁢攠瑡步渠瑯⁴桥⁢慮欠慮搠數捨慮来搠景爠摯汬慲猬ⁱ畡牴敲猬⁡湤⁢楧来爠汯潴⸠周攠祯畮杳瑥牳⁷敲攠浯瑩癡瑥搠慳⁷敬氠慳⁦慳捩湡瑥搬⁳楮捥⁧略獳⁷桯⁧潴⁴漠步数⁴桥ⁱ畡牴敲猿⁐牯杲慭⁄敳捲楰瑩潮⁔桩猠灲潧牡洠睩汬⁡獫⁴桥⁵獥爠瑯⁩湰畴⁴桥⁮畭扥爠潦⁰敮湩敳⸠奯甠浡礠慳獵浥⁴桥⁵獥爠睩汬⁩湰畴⁡⁰潳楴楶攠睨潬攠湵浢敲⸠周攠捯摥⁴桥渠睩汬⁯畴灵琠瑨攠湵浢敲⁯映摯汬慲猬ⁱ畡牴敲猬⁤業敳Ⱐ湩捫敬猬⁡湤⁰敮湩敳⸠周攠楮灵琠慮搠潵瑰畴⁣潵汤⁢攠䕮瑥爠湵浢敲⁯映灥湮楥猠瑯⁭慫攠捨慮来⁦潲㨠㌸㜠䑯汬慲猺″⁑畡牴敲猺″⁄業敳㨠ㄠ乩捫敬猺‰⁐敮湩敳㨠㈠周攠湥硴⁳散瑩潮⁷楬氠牥灲潤畣攠瑨攠捯摥Ⱐ慮搠瑨攠獥捴楯渠景汬潷楮朠睩汬⁥硰污楮⁴桥⁣潤攮⁈潷敶敲Ⱐ慳⁡⁰牯杲慭浩湧⁣桡汬攩ਾ㸊敮摯扪ਊ㘷㠠〠潢樊㰼ਯ䑥獴⁛㈶㜠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㜹‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㜷‰⁒ਯ呩瑬攠⣾＀匀甀洀洀愀爀礀䴀愀渀礀 挀漀洀瀀甀琀攀爀 瀀爀漀最爀愀洀猀 渀攀攀搀 琀漀 瀀攀爀昀漀爀洀 挀愀氀挀甀氀愀琀椀漀渀猀⸀ 䌀漀洀瀀甀琀攀爀猀Ⰰ 椀渀 愀搀搀椀琀椀漀渀 琀漀 戀攀椀渀最 愀戀氀攀 琀漀 猀琀漀爀攀 瘀愀猀琀 愀洀漀甀渀琀猀 漀昀 搀愀琀愀Ⰰ 愀氀猀漀 挀愀渀 挀愀氀挀甀氀愀琀攀 昀愀爀 昀愀猀琀攀爀 愀渀搀 洀漀爀攀 愀挀挀甀爀愀琀攀氀礀 琀栀愀渀 眀攀 挀愀渀⸀ 夀漀甀 甀猀攀 愀爀椀琀栀洀攀琀椀挀 漀瀀攀爀愀琀漀爀猀 琀漀 栀愀爀渀攀猀猀 琀栀攀 挀漀洀瀀甀琀攀爠ᤀ猀 挀愀氀挀甀氀愀琀椀渀最 愀戀椀氀椀琀礀⸀ 䌀⬀⬀ 猀甀瀀瀀漀爀琀猀 愀爀椀琀栀洀攀琀椀挀 漀瀀攀爀愀琀漀爀猀 昀漀爀 愀搀搀椀琀椀漀渀Ⰰ 猀甀戀琀爀愀挀琀椀漀渀Ⰰ 洀甀氀琀椀瀀氀椀挀愀琀椀漀渀Ⰰ 愀渀搀 搀椀瘀椀猀椀漀渀⸀ 圀栀椀氀攀 愀搀搀椀琀椀漀渀Ⰰ 猀甀戀琀爀愀挀琀椀漀渀Ⰰ 愀渀搀 洀甀氀琀椀瀀氀椀挀愀琀椀漀渀 攀愀挀栀 栀愀瘀攀 漀渀攀 漀瀀攀爀愀琀漀爀Ⰰ 搀椀瘀椀猀椀漀渀 栀愀猀 琀眀漀⸀ 吀栀攀 ⼀ 漀瀀攀爀愀琀漀爀 最椀瘀攀猀 礀漀甀 琀栀攀 焀甀漀琀椀攀渀琀Ⰰ 眀栀椀氀攀 琀栀攀 ─ (or modulus
operator�⤀ 最椀瘀攀猀 礀漀甀 琀栀攀 爀攀洀愀椀渀搀攀爀⸀ 吀栀攀 愀爀椀琀栀洀攀琀椀挀 漀瀀攀爀愀琀漀爀猀 愀氀氀 眀漀爀欀 眀椀琀栀 眀栀漀氀攀 渀甀洀戀攀爀 漀瀀攀爀愀渀搀猀⸀ 䄀氀氀 戀甀琀 琀栀攀 洀漀搀甀氀甀猀 漀瀀攀爀愀琀漀爀 愀氀猀漀 眀漀爀欀 眀椀琀栀 昀氀漀愀琀椀渀最 渀甀洀戀攀爀 漀瀀攀爀愀渀搀猀⸀ 吀栀攀 愀搀搀椀琀椀漀渀 漀瀀攀爀愀琀漀爀 愀氀猀漀 眀漀爀欀猀 眀椀琀栀 猀琀爀椀渀最 漀瀀攀爀愀渀搀猀Ⰰ 愀瀀瀀攀渀搀椀渀最 漀渀攀 猀琀爀椀渀最 琀漀 愀渀漀琀栀攀爀⸀ 䌀⬀⬀Ⰰ 甀渀氀椀欀攀 猀漀洀攀 漀琀栀攀爀 瀀爀漀最爀愀洀洀椀渀最 氀愀渀最甀愀最攀猀Ⰰ 搀漀攀猀 渀漀琀 栀愀瘀攀 愀渀 攀砀瀀漀渀攀渀琀 漀瀀攀爀愀琀漀爀⸀ 䤀渀猀琀攀愀搀Ⰰ 椀琀 栀愀猀 愀 戀甀椀氀琀ⴀ椀渀 昀甀渀挀琀椀漀渀 渀愀洀攀搀 瀀漀眀 眀栀椀挀栀 椀猀 搀攀昀椀渀攀搀 椀渀 琀栀攀 猀琀愀渀搀愀爀搀 氀椀戀爀愀爀礀 挀洀愀琀栀⸀ 䤀渀 琀栀攀 渀攀砀琀 挀栀愀瀀琀攀爀Ⰰ 礀漀甀 眀椀氀氀 氀攀愀爀渀 愀戀漀甀琀 爀攀氀愀琀椀漀渀愀氀 愀渀搀 氩ਾ㸊敮摯扪ਊ㘷㤠〠潢樊㰼ਯ䑥獴⁛㈶㤠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㠰‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㜸‰⁒ਯ呩瑬攠⡑畩稠坨楣栠潦⁴桥⁦潵爠慲楴桭整楣⁯灥牡瑩潮猠桡猠浯牥⁴桡渠潮攠潰敲慴潲㼠坨楣栠潦⁴桥⁡物瑨浥瑩挠潰敲慴潲猠捡渠潰敲慴攠潮⁳瑲楮朠慳⁷敬氠慳⁮畭敲楣⁯灥牡湤猿⁗桩捨⁯映瑨攠慲楴桭整楣⁯灥牡瑯牳⁣慮湯琠桡癥⁡⁦汯慴楮朠灯楮琠潰敲慮搿⁗桩捨⁯映瑨攠慲楴桭整楣⁯灥牡瑯牳⁣慮湯琠桡癥⁡⁺敲漠慳⁡⁳散潮搠潰敲慮搿⁁獳畭楮朠瑯瑡氠楳⁡⁶慲楡扬攬⁨潷⁥汳攠捯畬搠祯甠數灲敳猠楮⁣潤攠瑯瑡氠㴠瑯瑡氠⬠㈿⁗桡琠楳⁴桥⁲敳畬琠潦′‫″‪‴㼠坨慴⁩猠瑨攠牥獵汴⁯映瑨攠數灲敳獩潮‸ ′‪‴㼠坨慴⁩猠瑨攠牥獵汴⁯映瑨攠數灲敳獩潮‱〠⼠㐿⁗桡琠潰敲慴潲⁯爠晵湣瑩潮⁤漠祯甠畳攠瑯⁲慩獥⁡⁮畭扥爠瑯⁡⁣敲瑡楮⁰潷敲㼠坨慴⁩猠慮⁡汧潲楴桭㼩ਾ㸊敮摯扪ਊ㘸〠〠潢樊㰼ਯ䑥獴⁛㈷ㄠ〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㠱‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㜹‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 㔀㨀 䴀愀欀椀渀最 䐀攀挀椀猀椀漀渀猀㨀 椀昀 愀渀搀 猀眀椀琀挀栀 匀琀愀琀攀洀攀渀琀猀 伀瘀攀爀瘀椀攀眀 吀栀攀 昀愀洀漀甀猀 瀀漀攀洀†ᰀ吀栀攀 刀漀愀搀 一漀琀 吀愀欀攀渠ᴀ 戀礀 刀漀戀攀爀琀 䘀爀漀猀琀 戀攀最椀渀猀㨀†ᰀ吀眀漀 爀漀愀搀猀 搀椀瘀攀爀最攀搀 椀渀 愀 礀攀氀氀漀眀 眀漀漀搀Ⰰ 愀渀搀 猀漀爀爀礀 䤀 挀漀甀氀搀 渀漀琀 琀爀愀瘀攀氀 戀漀琀栀⸠ᴀ 吀栀椀猀 瀀漀攀洀 椀氀氀甀猀琀爀愀琀攀猀 琀栀愀琀 氀椀昀攀Ⰰ 椀昀 渀漀琀栀椀渀最 攀氀猀攀Ⰰ 瀀爀攀猀攀渀琀猀 甀猀 眀椀琀栀 挀栀漀椀挀攀猀⸀ 匀椀洀椀氀愀爀氀礀Ⰰ 挀漀洀瀀甀琀攀爀 瀀爀漀最爀愀洀猀 瀀爀攀猀攀渀琀 琀栀攀椀爀 甀猀攀爀猀 眀椀琀栀 挀栀漀椀挀攀猀⸀ 匀漀 昀愀爀Ⰰ 昀漀爀 琀栀攀 猀愀欀攀 漀昀 猀椀洀瀀氀椀挀椀琀礀Ⰰ 琀栀攀 昀氀漀眀 漀昀 攀愀挀栀 瀀爀漀最爀愀洀 栀愀猀 昀漀氀氀漀眀攀搀 愀 爀攀氀愀琀椀瘀攀氀礀 猀琀爀愀椀最栀琀 氀椀渀攀Ⰰ 琀愀欀椀渀最 愀 瀀爀攀搀攀琀攀爀洀椀渀攀搀 瀀愀琀栀 昀爀漀洀 戀攀最椀渀渀椀渀最 琀漀 攀渀搀⸀ 䠀漀眀攀瘀攀爀Ⰰ 愀猀 瀀爀漀最爀愀洀猀 戀攀挀漀洀攀 洀漀爀攀 猀漀瀀栀椀猀琀椀挀愀琀攀搀Ⰰ 琀栀攀礀 漀昀琀攀渀 戀爀愀渀挀栀 椀渀 琀眀漀 漀爀 洀漀爀攀 搀椀爀攀挀琀椀漀渀猀 戀愀猀攀搀 漀渀 愀 挀栀漀椀挀攀 愀 甀猀攀爀 洀愀欀攀猀⸀ 䘀漀爀 攀砀愀洀瀀氀攀Ⰰ 眀栀攀渀 䤀 愀洀 戀甀礀椀渀最 戀漀漀欀猀 漀渀氀椀渀攀Ⰰ 䤀 愀洀 瀀爀攀猀攀渀琀攀搀 眀椀琀栀 挀栀漀椀挀攀猀 猀甀挀栀 愀猀 愀搀搀椀渀最 愀渀漀琀栀攀爀 椀琀攀洀 琀漀 洀礀 猀栀漀瀀瀀椀渀最 挀愀爀琀Ⰰ 爀攀挀愀氀挀甀氀愀琀椀渀最 洀礀 琀漀琀愀氀Ⰰ 漀爀 挀栀攀挀欀椀渀最 漀甀琀⸀ 吀栀攀 瀀爀漀最爀愀洀 搀漀攀猀 猀漀洀攀琀栀椀渀最 搀椀昀昀攀爀攀渀琀 椀昀 䤀 愀搀搀 愀渀漀琀栀攀爀 椀琀攀洀 琀漀 洀礀 猀栀漀瀀瀀椀渀最 挀愀爀琀 爀愀琀栀攀爀 琀栀愀渀 挀栀攀挀欀 漀甀琀⸀ 吀栀攀 瀀爀漀最爀愀洀 搀攀琀攀爀洀椀渀攀猀 琀栀攀 愀挀琀椀漀渀 椀琀 琀愀欀攀猀 戀礀 挀漀洀瀀愀爀椀渀最 洀礀 挀栀漀椀挀攀 眀椀琀栀 琀栀攀 瘀愀爀椀漀甀猀 愀氀琀攀爀渀愀琀椀瘀攀猀⸀ 吀栀愀琀 挀漀洀瀀愀爀椀猀漀渀 椀猀 洀愀搀攀 甩ਾ㸊敮摯扪ਊ㘸ㄠ〠潢樊㰼ਯ䑥獴⁛㈷ㄠ〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㠲‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠰‰⁒ਯ呩瑬攠⡃桡灴敲‵㨠䵡歩湧⁄散楳楯湳㨠楦⁡湤⁳睩瑣栠却慴敭敮瑳⤊㸾੥湤潢樊ਸ਼㠲‰⁯扪਼㰊⽄敳琠嬲㜷‰⁒ 塙娠㔠ㄵ㜱⁮畬汝ਯ乥硴‶㠳‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠱‰⁒ਯ呩瑬攠⣾＀刀攀氀愀琀椀漀渀愀氀 伀瀀攀爀愀琀漀爀猀圀攀 洀愀欀攀 挀漀洀瀀愀爀椀猀漀渀猀 愀氀氀 琀栀攀 琀椀洀攀Ⰰ 愀渀搀 猀漀 搀漀 瀀爀漀最爀愀洀猀⸀ 䄀 瀀爀漀最爀愀洀 洀愀礀 渀攀攀搀 琀漀 搀攀琀攀爀洀椀渀攀 眀栀攀琀栀攀爀 漀渀攀 瘀愀氀甀攀 椀猀 攀焀甀愀氀 琀漀Ⰰ 最爀攀愀琀攀爀 琀栀愀渀Ⰰ 漀爀 氀攀猀猀 琀栀愀渀 愀渀漀琀栀攀爀 瘀愀氀甀攀⸀ 䘀漀爀 攀砀愀洀瀀氀攀Ⰰ 椀昀 愀 瀀爀漀最爀愀洀 挀愀氀挀甀氀愀琀攀猀 琀栀攀 挀漀猀琀 漀昀 愀 琀椀挀欀攀琀 琀漀 愀 洀漀瘀椀攀 椀渀 眀栀椀挀栀 挀栀椀氀搀爀攀渀 氀攀猀猀 琀栀愀渀 ㄀㈀ 最攀琀 椀渀 昀爀攀攀Ⰰ 椀琀 渀攀攀搀猀 琀漀 昀椀渀搀 漀甀琀 椀昀 琀栀攀 挀甀猀琀漀洀攀爠ᤀ猀 愀最攀 椀猀 氀攀猀猀 琀栀愀渀 ㄀㈀⸀ 倀爀漀最爀愀洀猀 挀漀洀瀀愀爀攀 瘀愀氀甀攀猀 戀礀 甀猀椀渀最 愀 爀攀氀愀琀椀漀渀愀氀 漀瀀攀爀愀琀漀爀⸀ 吀愀戀氀攀 㔀ⴀ㄀ 氀椀猀琀猀 琀栀攀 爀攀氀愀琀椀漀渀愀氀 漀瀀攀爀愀琀漀爀猀 猀甀瀀瀀漀爀琀攀搀 戀礀 䌀⬀⬀㨀 吀愀戀氀攀 㔀ⴀ㄀㨀 刀攀氀愀琀椀漀渀愀氀 伀瀀攀爀愀琀漀爀猀 伀瀀攀爀愀琀漀爀 䴀攀愀渀椀渀最 㸀 䜀爀攀愀琀攀爀 琀栀愀渀 㰀 䰀攀猀猀 琀栀愀渀 㸀㴀 䜀爀攀愀琀攀爀 琀栀愀渀 漀爀 攀焀甀愀氀 琀漀 㰀㴀 䰀攀猀猀 琀栀愀渀 漀爀 攀焀甀愀氀 琀漀 㴀㴀 䔀焀甀愀氀 琀漀 ℀㴀 一漀琀 攀焀甀愀氀 琀漀 刀攀氀愀琀椀漀渀愀氀 䔀砀瀀爀攀猀猀椀漀渀猀 䰀椀欀攀 琀栀攀 愀爀椀琀栀洀攀琀椀挀 漀瀀攀爀愀琀漀爀猀 搀椀猀挀甀猀猀攀搀 椀渀 琀栀攀 氀愀猀琀 挀栀愀瀀琀攀爀Ⰰ 琀栀攀 爀攀氀愀琀椀漀渀愀氀 漀瀀攀爀愀琀漀爀猀 愀爀攀 戀椀渀愀爀礠᐀琀栀愀琀 椀猀Ⰰ 琀栀攀礀 挀漀洀瀀愀爀攀 琀眀漀 漀瀀攀爀愀渀搀猀⸀ 䄀 猀琀愀琀攀洀攀渀琀 眀椀琀栀 琀眀漀 漀瀀攀爀愀渀搀猀 愀渀搀 愀 爀攀氀愀琀椀漀渀愀氀 漀瀀攀爀愀琀漀爀 戀攀琀眀攀攀渀 琀栀攀洀 椀猀 挀愀氀氀攀搀 愀 爀攀氀愀琀椀漀渀愀氀 攀砀瀀爀攀猀猀椀漀渀⸀ 吀栀攀 爀攀猀甀氀琀 漀昀 愀 爀攀氀愀琀椀漀渀愀氀 攀砀瀀爀攀猀猀椀漀渀 椀猀 愀 䈀漀漀氀攀愀渀 瘀愀氀甀攀Ⰰ 搀攀瀀椀挀琀攀搀 愀猀 攀椀琀栀攀爀 琀爀甀攀 漀爀 昀愀氀猀攀⸀ 吀愀戀氀攀 㔀ⴀ㈀ 氀椀猀琀猀 猀攀瘀攀爀愀氩ਾ㸊敮摯扪ਊ㘸㌠〠潢樊㰼ਯ䑥獴⁛㈸㈠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㠴‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠲‰⁒ਯ呩瑬攠⣾＀䘀氀漀眀挀栀愀爀琀椀渀最䄀 瀀爀漀最爀愀洀Ⰰ 氀椀欀攀 愀 爀椀瘀攀爀Ⰰ 昀氀漀眀猀 昀爀漀洀 戀攀最椀渀渀椀渀最 琀漀 攀渀搀⸀ 倀爀漀最爀愀洀洀攀爀猀 洀愀礀 昀椀渀搀 椀琀 栀攀氀瀀昀甀氀Ⰰ 戀漀琀栀 椀渀 眀爀椀琀椀渀最 挀漀搀攀 愀渀搀 椀渀 甀渀搀攀爀猀琀愀渀搀椀渀最 猀漀洀攀漀渀攀 攀氀猀攠ᤀ猀 挀漀搀攀Ⰰ 琀漀 瘀椀猀甀愀氀氀礀 搀攀瀀椀挀琀 琀栀攀 昀氀漀眀 漀昀 琀栀攀 瀀爀漀最爀愀洀⸀ 䄀昀琀攀爀 愀氀氀Ⰰ 愀猀 琀栀攀 愀搀愀最攀 最漀攀猀Ⰰ 愀 瀀椀挀琀甀爀攀 椀猀 眀漀爀琀栀 愀 琀栀漀甀猀愀渀搀 眀漀爀搀猀⸀ 吀栀攀 愀戀椀氀椀琀礀 琀漀 瘀椀猀甀愀氀椀稀攀 琀栀攀 昀氀漀眀 漀昀 愀 瀀爀漀最爀愀洀 戀攀挀漀洀攀猀 攀瘀攀渀 洀漀爀攀 栀攀氀瀀昀甀氀 愀猀 眀攀 琀爀愀渀猀椀琀椀漀渀 昀爀漀洀 爀攀氀愀琀椀瘀攀氀礀 猀椀洀瀀氀攀 瀀爀漀最爀愀洀猀 琀栀愀琀 昀氀漀眀 椀渀 愀 猀琀爀愀椀最栀琀 氀椀渀攀 琀漀 洀漀爀攀 挀漀洀瀀氀攀砀 瘀愀爀椀攀琀椀攀猀 琀栀愀琀 戀爀愀渀挀栀 椀渀 搀椀昀昀攀爀攀渀琀 搀椀爀攀挀琀椀漀渀猀 戀愀猀攀搀 漀渀 琀栀攀 瘀愀氀甀攀 漀昀 愀 爀攀氀愀琀椀漀渀愀氀 攀砀瀀爀攀猀猀椀漀渀⸀ 倀爀漀最爀愀洀洀攀爀猀 甀猀攀 愀 昀氀漀眀挀栀愀爀琀 琀漀 瘀椀猀甀愀氀氀礀 搀攀瀀椀挀琀 琀栀攀 昀氀漀眀 漀昀 愀 瀀爀漀最爀愀洀⸀ 䘀氀漀眀挀栀愀爀琀猀 甀猀攀 猀琀愀渀搀愀爀搀椀稀攀搀 猀礀洀戀漀氀猀 瀀爀攀猀挀爀椀戀攀搀 戀礀 琀栀攀 䄀洀攀爀椀挀愀渀 一愀琀椀漀渀愀氀 匀琀愀渀搀愀爀搀 䤀渀猀琀椀琀甀琀攀 (ANSI�⤀Ⰰ 眀栀椀挀栀 瀀爀攀猀挀爀椀戀攀猀 漀琀栀攀爀 猀琀愀渀搀愀爀搀猀 眀攀 眀椀氀氀 戀攀 甀猀椀渀最 椀渀 琀栀椀猀 戀漀漀欀⸀ 吀栀攀猀攀 昀氀漀眀挀栀愀爀琀椀渀最 猀礀洀戀漀氀猀 爀攀瀀爀攀猀攀渀琀 搀椀昀昀攀爀攀渀琀 愀猀瀀攀挀琀猀 漀昀 愀 瀀爀漀最爀愀洀Ⰰ 猀甀挀栀 愀猀 琀栀攀 猀琀愀爀琀 漀爀 攀渀搀 漀昀 愀 瀀爀漀最爀愀洀Ⰰ 甀猀攀爀 椀渀瀀甀琀Ⰰ 栀漀眀 椀琀 搀椀猀瀀氀愀礀猀 漀渀 愀 洀漀渀椀琀漀爀Ⰰ 愀渀搀 猀漀 漀渀⸀ 吀栀攀猀攀 猀礀洀戀漀氀猀 愀爀攀 樀漀椀渀攀搀 戀礀 愀爀爀漀眀猀 愀渀搀 漀琀栀攀爀 挀漀渀渀攀挀琀漀爀猀 眀栀椀挀栀 猀栀漀眀 琀栀攀 挀漩ਾ㸊敮摯扪ਊ㘸㐠〠潢樊㰼ਯ䑥獴⁛㈹〠〠删⽘奚‵‱㔷ㄠ湵汬崊⽎數琠㘸㔠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘸㌠〠刊⽔楴汥 ﻿The if Statement The if statement is used to execute code only when the value of a relational expression is true. The syntax of an if statement is if �⠀䈀漀漀氀攀愀渀 瘀愀氀甀攀) statement; Both lines together are called an if statement. The first line consists of the if keyword followed by an expression, such as a relational expression, that evaluates to a Boolean value, true or false. The relational �⠀漀爀 漀琀栀攀爀 䈀漀漀氀攀愀渀) expression must be in parentheses, and should not be terminated with a semicolon. The next line is called a conditional statement. As you may recall from Chapter 1, a statement is an instruction to the computer, directing it to perform a specific action. The statement is conditional because it executes only if the value of the relational expression is true. If the value of the relational expression is false, then the conditional statement is not executed—meaning, it’s essentially skipped. The following program, which tests if a whole number entered by the user is even, illustrates⤊㸾੥湤潢樊ਸ਼㠵‰⁯扪਼㰊⽄敳琠嬲㤹‰⁒ 塙娠㔠ㄵ㜱⁮畬汝ਯ乥硴‶㠶‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠴‰⁒ਯ呩瑬攠⣾＀吀栀攀 椀昀 ⼀ 攀氀猀攀 匀琀愀琀攀洀攀渀琀 伀渀攀 瀀爀漀戀氀攀洀 眀椀琀栀 琀栀攀 瀀爀漀最爀愀洀 琀栀愀琀 琀攀猀琀猀 眀栀攀琀栀攀爀 愀 渀甀洀戀攀爀 椀猀 攀瘀攀渀 椀猀 琀栀愀琀 琀栀攀爀攀 椀猀 渀漀 漀甀琀瀀甀琀 椀昀 琀栀攀 渀甀洀戀攀爀 椀猀 漀搀搀⸀ 圀栀椀氀攀 琀栀攀爀攀 椀猀 愀 挀漀渀搀椀琀椀漀渀愀氀 猀琀愀琀攀洀攀渀琀 椀昀 琀栀攀 爀攀氀愀琀椀漀渀愀氀 攀砀瀀爀攀猀猀椀漀渀 椀猀 琀爀甀攀Ⰰ 琀栀攀爀攀 椀猀 渀漀 挀漀爀爀攀猀瀀漀渀搀椀渀最 挀漀渀搀椀琀椀漀渀愀氀 猀琀愀琀攀洀攀渀琀 (cout << “The number is odd”�⤀ 椀昀 琀栀攀 爀攀氀愀琀椀漀渀愀氀 攀砀瀀爀攀猀猀椀漀渀 椀猀 昀愀氀猀攀⸀ 吀栀攀 猀漀氀甀琀椀漀渀 椀猀 琀漀 愀搀搀 愀渀 攀氀猀攀 瀀愀爀琀 琀漀 琀栀攀 椀昀 猀琀愀琀攀洀攀渀琀⸀ 吀栀攀 爀攀猀甀氀琀 椀猀 愀渀 椀昀 ⼀ 攀氀猀攀 猀琀愀琀攀洀攀渀琀⸀ 吀栀攀 猀礀渀琀愀砀 漀昀 愀渀 椀昀 ⼀ 攀氀猀攀 猀琀愀琀攀洀攀渀琀 椀猀 椀昀 (relational expression�⤀ ꀀꀀ挀漀渀搀椀琀椀漀渀愀氀 猀琀愀琀攀洀攀渀琀㬀 攀氀猀攀 ꀀꀀ挀漀渀搀椀琀椀漀渀愀氀 猀琀愀琀攀洀攀渀琀㬀 䄀挀挀漀爀搀椀渀最氀礀Ⰰ 琀栀攀 瀀爀漀最爀愀洀 洀愀礀 戀攀 洀漀搀椀昀椀攀搀 琀漀 愀搀搀 愀渀 攀氀猀攀 瀀愀爀琀 琀漀 琀栀攀 椀昀 猀琀愀琀攀洀攀渀琀㨀 ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猀瀀愀挀攀 猀琀搀㬀 椀渀琀 洀愀椀渀(void�⤀ 笀 ꀀꀀ椀渀琀 渀甀洀㬀 ꀀꀀ挀漀甀琀 㰀㰀 ∀䔀渀琀攀爀 愀 眀栀漀氀攀 渀甀洀戀攀爀㨀 ∀㬀 ꀀꀀ挀椀渀 㸀㸀 渀甀洀㬀 ꀀꀀ椀昀 (num % 2 == 0 �⤀ ꀀꀀꀀꀀꀀ挀漀甀琀 㰀㰀 ∀吀栀攀 渀甀洀戀攀爀 椀猀 攀瘀攀渀∀ 㰀㰀 攀渀搀氀㬀 ꀀꀀ攀氀猀攀 ꀀꀀꀀꀀꀀ挀漀甀琀 㰀㰀 ∀吀栀攀 渀甀洀戀攀爀 椀猀 漀搀搀∀ 㰀㰀 攀渀搀氀㬀 ꀀꀀ爀攀琀甀爀渀 　㬀 紀 刀甀渀 琀栀椀猀 挀漀搀攀⸀ 䤀昀 琀栀攀 椀渀瀀甀琀琀攀搀 渀甀洀戀攀爀 椀猀 攀瘀攀渀Ⰰ 琀栀攀渀 琀栀攀 漀甀琀瀀甀琀 漀渀挀攀 愀最愀椀渀 椀猀†ᰀ吀栀攀 渀甀洀戀攀爀 椀猀 攀瘀攀渀⸠ᴀ 䠀漀眀攀瘀攀爀Ⰰ 椀昀 琀栀攀 渀甀洀戀攀爩ਾ㸊敮摯扪ਊ㘸㘠〠潢樊㰼ਯ䑥獴⁛㌰㠠〠删⽘奚‵‱㔷ㄠ湵汬崊⽎數琠㘸㜠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘸㔠〠刊⽔楴汥 ﻿The if /else if /else StatementThe program we used to illustrate the if/else statement involved only two alternatives. Additionally, these alternatives were mutually exclusive; only one could be chosen, not both. A whole number is either even or odd; it can’t be both and there is no third alterative. There are many other examples of only two mutually exclusive alternatives. For example, a person is either dead or alive, male or female, child or adult. However, there are other scenarios where there are more than two, mutually exclusive alternatives. For example, if you take a test, your grade may be one of five types: A, B, C, D, or F. Additionally, these grades are mutually exclusive; you can’t get an A and a C on the same test. Since you can have only one if expression and only one else expression in an if statement, you need another expression for the third and additional alternatives. That expression is else if. You use the if / else if / else statement when there are three or more⤊㸾੥湤潢樊ਸ਼㠷‰⁯扪਼㰊⽄敳琠嬳ㄹ‰⁒ 塙娠㔠㌱㌷⁮畬汝ਯ乥硴‶㠸‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠶‰⁒ਯ呩瑬攠⡔桥⁳睩瑣栠却慴敭敮瑔桥⁳睩瑣栠獴慴敭敮琠楳⁳業楬慲⁴漠慮⁩映⽥汳攠楦 敬獥⁳瑡瑥浥湴⸠䥴⁥癡汵慴敳⁴桥⁶慬略⁯映慮⁩湴敧敲⁥硰牥獳楯渠慮搠瑨敮⁣潭灡牥猠瑨慴⁶慬略⁴漠瑷漠潲⁭潲攠潴桥爠癡汵敳⁴漠摥瑥牭楮攠睨楣栠捯摥⁴漠數散畴攮⁔桥⁦潬汯睩湧⁰牯杲慭⁳桯睳⁡⁳睩瑣栠獴慴敭敮琠楮⁡捴楯渠楮⁡⁰牯杲慭⁴桡琠摥瑥牭楮敳⁹潵爠慶敲慧攠扡獥搠潮⁹潵爠杲慤攺‣楮捬畤攠㱩潳瑲敡派⁵獩湧⁮慭敳灡捥⁳瑤㬠楮琠浡楮⡶潩搩⁻₠ꁣ桡爠杲慤攻₠ꁣ潵琠㰼•䕮瑥爠祯畲⁧牡摥㨠∻₠ꁣ楮‾㸠杲慤攻₠ꁳ睩瑣栠⡧牡摥⤠ꂠ笠ꂠ捡獥‧䄧㨠ꂠꂠꁣ潵琠㰼•奯畲⁡癥牡来⁭畳琠扥⁢整睥敮‹〠ⴠ㄰〢₠ꂠꂠꂠꂠꀼ㰠敮摬㬠ꂠꂠꁢ牥慫㬠ꂠ捡獥‧䈧㨠ꂠꂠꁣ潵琠㰼•奯畲⁡癥牡来⁭畳琠扥⁢整睥敮‸〠ⴠ㠹∠ꂠꂠꂠꂠꂠ㰼⁥湤氻₠ꂠꂠ扲敡欻₠ꁣ慳攠❃✺₠ꂠꂠ捯畴‼㰠≙潵爠慶敲慧攠浵獴⁢攠扥瑷敥渠㜰‭‷㤢₠ꂠꂠꂠꂠꀼ㰠敮摬㬠ꂠꂠꁢ牥慫㬠ꂠ捡獥‧䐧㨠ꂠꂠꁣ潵琠㰼•奯畲⁡癥牡来⁭畳琠扥⁢整睥敮‶〠ⴠ㘹∠ꂠꂠꂠꂠꂠ㰼⁥湤氻₠ꂠꂠ扲敡欻₠ꁤ敦慵汴㨠ꂠꂠꁣ潵琠㰼•奯畲⁡癥牡来⁭畳琠扥⁢敬潷‶〢‼㰠敮摬㬠ꂠ素ꂠ牥瑵牮‰㬠素䡥牥⁡牥⁳敶敲慬⁳慭灬攠牵湳Ⱐ敡捨⁳数慲慴敤⁢礩ਾ㸊敮摯扪ਊ㘸㠠〠潢樊㰼ਯ䑥獴⁛㌲㜠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㠹‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠷‰⁒ਯ呩瑬攠⣾＀匀甀洀洀愀爀礀 䌀漀洀瀀甀琀攀爀 瀀爀漀最爀愀洀猀 甀猀甀愀氀氀礀 搀漀 渀漀琀 琀愀欀攀 愀 瀀爀攀漀爀搀愀椀渀攀搀 瀀愀琀栀 昀爀漀洀 戀攀最椀渀渀椀渀最 琀漀 攀渀搀⸀ 䤀渀猀琀攀愀搀Ⰰ 搀椀昀昀攀爀攀渀琀 挀漀搀攀 攀砀攀挀甀琀攀猀 戀愀猀攀搀 漀渀 挀栀漀椀挀攀猀 洀愀搀攀 戀礀 琀栀攀 甀猀攀爀⸀ 刀攀氀愀琀椀漀渀愀氀 漀瀀攀爀愀琀漀爀猀 愀爀攀 甀猀攀搀 琀漀 挀漀洀瀀愀爀攀 琀栀攀 甀猀攀爠ᤀ猀 挀栀漀椀挀攀 眀椀琀栀 瘀愀爀椀漀甀猀 愀氀琀攀爀渀愀琀椀瘀攀猀⸀ 吀栀攀 椀昀Ⰰ 椀昀⼀攀氀猀攀Ⰰ 椀昀 ⼀攀氀猀攀 椀昀 ⼀攀氀猀攀Ⰰ 愀渀搀 猀眀椀琀挀栀 猀琀愀琀攀洀攀渀琀猀 愀爀攀 甀猀攀搀 琀漀 猀琀爀甀挀琀甀爀攀 琀栀攀 挀漀搀攀 猀漀 搀椀昀昀攀爀攀渀琀 挀漀搀攀 攀砀攀挀甀琀攀猀 搀攀瀀攀渀搀椀渀最 漀渀 眀栀椀挀栀 挀栀漀椀挀攀 眀愀猀 洀愀搀攀⸀ 夀漀甀 愀氀猀漀 氀攀愀爀渀攀搀 愀戀漀甀琀 昀氀漀眀挀栀愀爀琀猀Ⰰ 眀栀椀挀栀 栀攀氀瀀 洀愀欀攀 瀀爀漀最爀愀洀猀 洀漀爀攀 甀渀搀攀爀猀琀愀渀搀愀戀氀攀 戀礀 瘀椀猀甀愀氀氀礀 搀攀瀀椀挀琀椀渀最 琀栀攀 瀀爀漀最爀愀洀 挀漀洀瀀漀渀攀渀琀猀 愀渀搀 昀氀漀眀⸀ 䤀渀 琀栀椀猀 挀栀愀瀀琀攀爀Ⰰ 漀渀氀礀 漀渀攀 挀漀洀瀀愀爀椀猀漀渀 眀愀猀 洀愀搀攀 愀琀 愀 琀椀洀攀⸀ 䠀漀眀攀瘀攀爀Ⰰ 猀漀洀攀琀椀洀攀猀 洀漀爀攀 琀栀愀渀 漀渀攀 挀漀洀瀀愀爀椀猀漀渀 渀攀攀搀猀 琀漀 戀攀 洀愀搀攀⸀ 䘀漀爀 攀砀愀洀瀀氀攀Ⰰ 礀漀甀 愀爀攀 攀氀椀最椀戀氀攀 琀漀 瘀漀琀攀 椀渀 琀栀攀 唀⸀匀⸀ 漀渀氀礀 椀昀 礀漀甀 愀爀攀 愀 挀椀琀椀稀攀渀 愀渀搀 愀爀攀 愀琀 氀攀愀猀琀 ㄀㠀 礀攀愀爀猀 漀氀搀⸀ 夀漀甀 挀愀渀渀漀琀 瘀漀琀攀 甀渀氀攀猀猀 戀漀琀栀 愀爀攀 琀爀甀攀⸀ 䠀漀眀攀瘀攀爀Ⰰ 礀漀甀 洀愀礀 最攀琀 椀渀琀漀 愀 洀漀瘀椀攀 昀爀攀攀 椀昀 礀漀甀 愀爀攀 攀椀琀栀攀爀 愀 猀攀渀椀漀爀 挀椀琀椀稀攀渀 (65 years or older�⤀ 漀爀 愀 挀栀椀氀搀 (12 or under�⤀⸀ 吀栀甀猀Ⰰ 礀漀甀 最攀琀 椀渀 昀爀攀攀 椀昀 攀椀琀栀攀爀 椀猀 琀爀甀攀⸀ 䤀渀 琀栀攀 渀攀砀琀 挀栀愀瀀琀攀爀Ⰰ 礀漀甀 眀椀氀氀 氀攀愀爀渀 愀戀漀甀琀 栀漀眩ਾ㸊敮摯扪ਊ㘸㤠〠潢樊㰼ਯ䑥獴⁛㌲㤠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㤰‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠸‰⁒ਯ呩瑬攠⡑畩稠䡯眠浡湹⁯灥牡湤猠慲攠楮⁡⁲敬慴楯湡氠數灲敳獩潮㼠坨慴⁩猠瑨攠灵牰潳攠潦⁡⁦汯督桡牴㼠坨慴⁩猠瑨攠摡瑡⁴祰攠潦⁴桥⁥硰牥獳楯渠景汬潷楮朠瑨攠楦⁫敹睯牤㼠䥮⁡渠楦 敬獥⁩映⽥汳攠獴慴敭敮琬⁷桩捨⁰慲琠浵獴⁹潵⁨慶攠潮攬⁢畴⁯湬礠潮攬⁯昿⁉渠慮⁩映⽥汳攠楦 敬獥⁳瑡瑥浥湴Ⱐ睨楣栠灡牴⁭慹⁹潵⁨慶攠浯牥⁴桡渠潮攠潦㼠䥮⁡渠楦 敬獥⁩映⽥汳攠獴慴敭敮琬⁷桩捨⁰慲琠浡礠祯甠潭楴㼠䥮⁡⁳睩瑣栠獴慴敭敮琬⁷桡琠楳⁴桥⁲敱畩牥搠摡瑡⁴祰攠潦⁥硰牥獳楯渠景汬潷楮朠瑨攠獷楴捨⁫敹睯牤㼠䥮⁡⁳睩瑣栠獴慴敭敮琬⁭慹⁡渠數灲敳獩潮⁯映瑨攠捨慲慣瑥爠摡瑡⁴祰攠景汬潷⁴桥⁳睩瑣栠步祷潲搿⁉渠愠獷楴捨⁳瑡瑥浥湴Ⱐ浡礠瑨攠數灲敳獩潮⁦潬汯睩湧⁡⁣慳攠步祷潲搠扥⁡⁶慲楡扬政⁗桩捨⁫敹睯牤⁩渠愠獷楴捨⁳瑡瑥浥湴⁣潲牥獰潮摳⁴漠瑨攠敬獥⁫敹睯牤⁩渠慮⁩映⽥汳攠楦 敬獥⁳瑡瑥浥湴㼩ਾ㸊敮摯扪ਊ㘹〠〠潢樊㰼ਯ䑥獴⁛㌳ㄠ〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㤱‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㠹‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 㘀㨀 一攀猀琀攀搀 椀昀 匀琀愀琀攀洀攀渀琀猀 愀渀搀 䰀漀最椀挀愀氀 伀瀀攀爀愀琀漀爀猀 伀瘀攀爀瘀椀攀眀 䌀栀愀瀀琀攀爀 㔀 戀攀最愀渀 眀椀琀栀 琀栀攀 漀瀀攀渀椀渀最 眀漀爀搀猀 漀昀 琀栀攀 昀愀洀漀甀猀 瀀漀攀洀†ᰀ吀栀攀 刀漀愀搀 一漀琀 吀愀欀攀渠ᴀ 戀礀 刀漀戀攀爀琀 䘀爀漀猀琀㨀†ᰀ吀眀漀 爀漀愀搀猀 搀椀瘀攀爀最攀搀 椀渀 愀 礀攀氀氀漀眀 眀漀漀搀Ⰰ 愀渀搀 猀漀爀爀礀 䤀 挀漀甀氀搀 渀漀琀 琀爀愀瘀攀氀 戀漀琀栀⸠ᴀ 一漀琀 琀漀 戀攀 愀 瀀漀攀琀爀礀 挀爀椀琀椀挀Ⰰ 戀甀琀 漀昀琀攀渀 琀栀攀爀攀 愀爀攀 洀漀爀攀 琀栀愀渀 琀眀漀 爀漀愀搀猀⸀ 䤀渀 䌀栀愀瀀琀攀爀 㔀Ⰰ 眀攀 攀瘀愀氀甀愀琀攀搀 漀渀氀礀 漀渀攀 䈀漀漀氀攀愀渀 攀砀瀀爀攀猀猀椀漀渀 愀琀 愀 琀椀洀攀Ⰰ 愀渀搀 挀栀漀猀攀 眀栀椀挀栀 漀昀 琀栀攀 琀眀漀 爀漀愀搀猀 漀甀爀 挀漀搀攀 眀漀甀氀搀 琀爀愀瘀攀氀 搀漀眀渀 搀攀瀀攀渀搀椀渀最 漀渀 眀栀攀琀栀攀爀 琀栀攀 攀砀瀀爀攀猀猀椀漀渀 眀愀猀 琀爀甀攀 漀爀 昀愀氀猀攀⸀ 䠀漀眀攀瘀攀爀Ⰰ 猀漀洀攀琀椀洀攀猀 琀眀漀 (or
more�⤀ 䈀漀漀氀攀愀渀 攀砀瀀爀攀猀猀椀漀渀猀 渀攀攀搀 琀漀 戀攀 攀瘀愀氀甀愀琀攀搀 琀漀 搀攀琀攀爀洀椀渀攀 琀栀攀 瀀愀琀栀 琀栀攀 挀漀搀攀 眀椀氀氀 琀爀愀瘀攀氀⸀ 䘀漀爀 攀砀愀洀瀀氀攀Ⰰ 礀漀甀 愀爀攀 攀氀椀最椀戀氀攀 琀漀 瘀漀琀攀 漀渀氀礀 椀昀 礀漀甀 愀爀攀 愀 挀椀琀椀稀攀渀 愀渀搀 礀漀甀 愀爀攀 愀琀 氀攀愀猀琀 ㄀㠀 礀攀愀爀猀 漀氀搀⸀ 夀漀甀 挀愀渀渀漀琀 瘀漀琀攀 甀渀氀攀猀猀 戀漀琀栀 挀漀渀搀椀琀椀漀渀猀 愀爀攀 琀爀甀攀⸀ 伀琀栀攀爀 琀椀洀攀猀 眀椀琀栀 䈀漀漀氀攀愀渀 攀砀瀀爀攀猀猀椀漀渀猀Ⰰ 礀漀甀 愀爀攀 琀攀猀琀椀渀最 椀昀 攀椀琀栀攀爀 漀昀 琀眀漀 挀漀洀瀀愀爀椀猀漀渀猀 椀猀 琀爀甀攀⸀ 䘀漀爀 攀砀愀洀瀀氀攀Ⰰ 礀漀甀 洀愀礀 最攀琀 椀渀琀漀 愀 洀漀瘀椀攀 昀爀攀攀 椀昀 礀漀甀 愀爀攀 攀椀琀栀攀爀 愀 猀攀渀椀漀爀 挀椀琀椀稀攀渀 (65 years or older�⤀ 漀爀 愀 挀栀椀氀搀 (12 or under�⤀⸀ 吀栀甀猀Ⰰ 礀漀甀 最攀琀 椀渀 昀爀攀攀 椀昀 攀椀琀栀攀爀 挀漀渀搩ਾ㸊敮摯扪ਊ㘹ㄠ〠潢樊㰼ਯ䑥獴⁛㌳ㄠ〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‶㤲‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㤰‰⁒ਯ呩瑬攠⡃桡灴敲‶㨠乥獴敤⁩映却慴敭敮瑳⁡湤⁌潧楣慬⁏灥牡瑯牳⤊㸾੥湤潢樊ਸ਼㤲‰⁯扪਼㰊⽄敳琠嬳㐰‰⁒ 塙娠㔠㈳㔴⁮畬汝ਯ乥硴‶㤳‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㤱‰⁒ਯ呩瑬攠⣾＀一攀猀琀攀搀 椀昀 匀琀愀琀攀洀攀渀琀猀䄀渀 椀昀 猀琀愀琀攀洀攀渀琀 洀愀礀 愀瀀瀀攀愀爀 椀渀猀椀搀攀 愀渀漀琀栀攀爀 椀昀 猀琀愀琀攀洀攀渀琀⸀ 圀栀攀渀 琀栀椀猀 椀猀 搀漀渀攀Ⰰ 琀栀攀 椀渀渀攀爀 椀昀 猀琀愀琀攀洀攀渀琀 椀猀 猀愀椀搀 琀漀 戀攀†ᰀ渀攀猀琀攀搠ᴀ 椀渀猀椀搀攀 琀栀攀 漀甀琀攀爀 椀昀 猀琀愀琀攀洀攀渀琀⸀ 夀漀甀 挀愀渀 渀攀猀琀 椀昀 猀琀愀琀攀洀攀渀琀猀 琀漀 搀攀琀攀爀洀椀渀攀 椀昀 戀漀琀栀 漀昀 琀眀漀 䈀漀漀氀攀愀渀 攀砀瀀爀攀猀猀椀漀渀猀 愀爀攀 琀爀甀攀Ⰰ 漀爀 椀昀 攀椀琀栀攀爀 漀昀 琀栀攀 攀砀瀀爀攀猀猀椀漀渀猀 椀猀 琀爀甀攀⸀ 吀攀猀琀椀渀最 椀昀 䈀漀琀栀 䈀漀漀氀攀愀渀 䔀砀瀀爀攀猀猀椀漀渀猀 䄀爀攀 吀爀甀攀 吀栀攀 昀漀氀氀漀眀椀渀最 瀀爀漀最爀愀洀 猀栀漀眀猀 琀栀攀 甀猀攀 漀昀 渀攀猀琀攀搀 椀昀 猀琀愀琀攀洀攀渀琀猀 椀渀 搀攀琀攀爀洀椀渀椀渀最 椀昀 戀漀琀栀 漀昀 琀眀漀 䈀漀漀氀攀愀渀 攀砀瀀爀攀猀猀椀漀渀猀 愀爀攀 琀爀甀攀⸀ 䤀昀 琀栀攀 甀猀攀爠ᤀ猀 椀渀瀀甀琀 椀猀 琀栀愀琀 琀栀攀礀 愀爀攀 愀琀 氀攀愀猀琀 ㄀㠀 礀攀愀爀猀 漀氀搀 愀渀搀 愀 挀椀琀椀稀攀渀Ⰰ 琀栀攀 瀀爀漀最爀愀洀 漀甀琀瀀甀琀猀 琀栀愀琀 琀栀攀礀 愀爀攀 攀氀椀最椀戀氀攀 琀漀 瘀漀琀攀⸀ 伀琀栀攀爀眀椀猀攀Ⰰ 琀栀攀 瀀爀漀最爀愀洀 漀甀琀瀀甀琀猀 琀栀愀琀 琀栀攀礀 愀爀攀 渀漀琀 攀氀椀最椀戀氀攀 琀漀 瘀漀琀攀⸀ ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猀瀀愀挀攀 猀琀搀㬀 椀渀琀 洀愀椀渀(void�⤀ 笀 ꀀꀀ椀渀琀 愀最攀㬀 ꀀꀀ挀栀愀爀 挀栀漀椀挀攀㬀 ꀀꀀ戀漀漀氀 挀椀琀椀稀攀渀㬀 ꀀꀀ挀漀甀琀 㰀㰀 ∀䔀渀琀攀爀 礀漀甀爀 愀最攀㨀 ∀㬀 ꀀꀀ挀椀渀 㸀㸀 愀最攀㬀 ꀀꀀ挀漀甀琀 㰀㰀 ∀䄀爀攀 礀漀甀 愀 挀椀琀椀稀攀渀 (Y/N�⤀㨀 ∀㬀 ꀀꀀ挀椀渀 㸀㸀 挀栀漀椀挀攀㬀 ꀀꀀ椀昀 (choice == 'Y'�⤀ ꀀꀀꀀꀀꀀ挀椀琀椀稀攀渀 㴀 琀爀甀攀㬀 ꀀꀀ攀氀猀攀 ꀀꀀꀀꀀꀀ挀椀琀椀稀攀渀 㴀 昀愀氀猀攀㬀 ꀀꀀ椀昀 (age >= 18�⤀ ꀀꀀꀀꀀꀀ椀昀(citizen == true�⤀ ꀀꀀꀀꀀꀀꀀꀀꀀ挀漀甀琀 㰀㰀 ∀夀漀甀 愀爀攀 攀氀椀最椀戩ਾ㸊敮摯扪ਊ㘹㌠〠潢樊㰼ਯ䑥獴⁛㌵㌠〠删⽘奚‵″ㄳ㜠湵汬崊⽎數琠㘹㐠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘹㈠〠刊⽔楴汥 ﻿Logical OperatorsC++ has logical operators that enable you to combine comparisons in one if or else if statement. Table 6-1 lists the logical operators supported by C++ and describes what each does. Table 6-1: Logical Operators Operator Name What It Does && And Connects two relational expressions. Both expressions must be true for the overall expression to be true. || Or Connects two relational expressions. If either expression is true, the overall expression is true. ! Not Reverses the “truth” of an expression, making a true expression false, and a false expression true. The && Operator The && operator also is known as the logical And operator. It is a binary operator; it takes two Boolean expressions as operands. It returns true only if both expressions are true. If either expression is false, the overall expression is false. Of course, if both expressions are false, the overall expression is false. Table 6-2 illustrates this. Table 6-2: The Logical And Operator Expression #1 Express⤊㸾੥湤潢樊ਸ਼㤴‰⁯扪਼㰊⽄敳琠嬳㘱‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘹㔠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘹㌠〠刊⽔楴汥 啳楮朠瑨攠獷楴捨⁓瑡瑥浥湴⁷楴梠䱯杩捡沠佰敲慴潲猠周攠獷楴捨⁳瑡瑥浥湴⁷慳⁤楳捵獳敤⁡琠獯浥⁬敮杴栠楮⁃桡灴敲‵⸠䡯睥癥爬⁳漠晡爠楮⁴桩猠捨慰瑥爠楴⁨慳⁢敥渠捯湳灩捵潵猠批⁩瑳⁡扳敮捥⸠䥮⁃桡灴敲‵Ⱐ睥⁤楳捵獳敤⁨潷⁴桥⁳睩瑣栠獴慴敭敮琠睡猠捵浢敲獯浥⁷桥渠摥慬楮朠睩瑨⁡⁲慮来⁯映湵浢敲献⁔桥⁲敡獯渠睡猠瑨慴⁴桥⁣慳攠步祷潲搠捡湮潴⁢攠景汬潷敤⁢礠愠牡湧攠潦⁮畭扥牳⁢散慵獥⁩琠浵獴⁩湳瑥慤⁢攠景汬潷敤⁢礠愠獩湧汥⁩湴敧敲⁣潮獴慮琮⁈潷敶敲Ⱐ瑨攠獷楴捨⁳瑡瑥浥湴⁭慹⁢攠畳敤⁷楴栠數灲敳獩潮猠瑨慴⁵獥⁴桥⁬潧楣慬⁁湤⁯爠佲⁯灥牡瑯爮⁔桥⁲敡獯渠楳⁴桡琠瑨敳攠數灲敳獩潮猠桡癥⁯湬礠潮攠潦⁴睯⁰潳獩扬攠癡汵敳Ⱐ瑲略⁯爠晡汳攮⁔牵攠慮搠晡汳攠慲攠扯瑨⁣潮獴慮瑳㬠瑨攠癡汵攠潦⁴牵攠楳⁡汷慹猠瑲略⁡湤⁴桥⁶慬略⁯映晡汳攠楳⁡汷慹猠晡汳攮⁗桩汥⁴牵攠慮搠晡汳攠慲攠䉯潬敡渠癡汵敳Ⱐ敡捨⁨慳⁡⁣潲牥獰潮摩湧⁩湴敧敲⁶慬略㨠ㄠ慮搠〮⁔桥牥景牥Ⱐ瑨攠捡獥⁫敹睯牤⁭慹⁢攠景汬潷敤⁢礠瑲略⁯爠晡汳攬⁪畳琠慳⁩渠䍨慰瑥爠㔠睨敲攠瑨攠捡獥⁫敹睯牤⁣慮⁢攠景汬潷敤⁢礠愠捨慲慣瑥爠獩湣攠愠捨慲慣瑥爠桡猠愠捯牲敳灯湤楮朠楮⤊㸾੥湤潢樊ਸ਼㤵‰⁯扪਼㰊⽄敳琠嬳㘵‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘹㘠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘹㐠〠刊⽔楴汥 卵浭慲礠䥮⁃桡灴敲‵Ⱐ睥⁥癡汵慴敤⁯湬礠潮攠䉯潬敡渠數灲敳獩潮⁡琠愠瑩浥⁴漠摥瑥牭楮攠睨楣栠潦⁴睯⁡汴敲湡瑩癥⁢汯捫猠潦⁣潤攠獨潵汤⁥硥捵瑥⸠䡯睥癥爬⁯晴敮⁴睯 潲⁭潲攩⁂潯汥慮⁥硰牥獳楯湳⁮敥搠瑯⁢攠敶慬畡瑥搠瑯⁤整敲浩湥⁷桩捨⁢汯捫⁯映捯摥⁳桯畬搠數散畴攮⁉渠瑨攠數慭灬攠楮⁷桩捨⁹潵⁡牥⁥汩杩扬攠瑯⁶潴攠潮汹⁩映瑨攠畳敲⁩猠愠捩瑩穥渠慮搠慴⁬敡獴‱㠠祥慲猠潬搬⁢潴栠䉯潬敡渠數灲敳獩潮猠浵獴⁢攠瑲略⁩渠潲摥爠景爠瑨攠灲潧牡洠瑯⁯畴灵琠瑨慴⁴桥⁵獥爠楳⁥汩杩扬攠瑯⁶潴攮⁉渠慮潴桥爠數慭灬攬⁩渠睨楣栠祯甠来琠楮瑯⁡⁭潶楥⁦牥攠楦⁴桥⁵獥爠楳⁥楴桥爠愠獥湩潲⁣楴楺敮 㘵⁹敡牳⁯爠潬摥爩⁯爠愠捨楬搠⠱㈠潲⁵湤敲⤬⁴桥⁰牯杲慭⁯畴灵瑳⁴桡琠瑨攠畳敲⁧整猠楮瑯⁴桥⁭潶楥⁦牥攠楦⁥楴桥爠䉯潬敡渠數灲敳獩潮⁩猠瑲略⸠周楳⁣桡灴敲⁣潶敲敤⁴睯⁤楦晥牥湴⁡灰牯慣桥猠潦⁥癡汵慴楮朠瑷漠䉯潬敡渠數灲敳獩潮猠瑯⁤整敲浩湥⁷桩捨⁣潤攠獨潵汤⁥硥捵瑥⸠周攠晩牳琠慰灲潡捨⁮敳瑥搠潮攠楦⁳瑡瑥浥湴⁩湳楤攠慮潴桥爮⁔桥⁳散潮搠慰灲潡捨⁩湴牯摵捥搠瑨牥攠汯杩捡氠潰敲慴潲献⁔桥⁬潧楣慬…☠⡁湤⤠潰敲慴潲⁩猠畳敤⁷桥渠扯瑨⁂⤊㸾੥湤潢樊ਸ਼㤶‰⁯扪਼㰊⽄敳琠嬳㘷‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘹㜠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘹㔠〠刊⽔楴汥 ﻿Quiz Can you use nested if statements as an alternative to the logical And and Or operators? Can an if statement be nested in the else if or else part of an if / else if / else statement, or just the if part? For which of the logical operators do both Boolean expressions have to be true for the overall Boolean expression to be true? For which of the logical operators do both Boolean expressions have to be false for the overall Boolean expression to be false? Which of the logical operators reverses the “truth” of a Boolean expression, making a true expression false and a false expression true? Assuming resident is a Boolean variable, is if�⠀爀攀猀椀搀攀渀琀) the same as if�⠀爀攀猀椀搀攀渀琀 㴀㴀 琀爀甀攀)? Which of the logical operators is a unary rather than binary operator? Which of the logical operators has a higher precedence than the relational operators? Which logical operator has a higher precedence, And or Or? Can a Boolean value of either true or false be used following the case keyword in a switch st⤊㸾੥湤潢樊ਸ਼㤷‰⁯扪਼㰊⽄敳琠嬳㘹‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘹㠠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘹㘠〠刊⽔楴汥 ﻿Chapter 7: The For Loop Overview Parents customarily remind their children not to repeat themselves. Indeed, parents often illustrate another saying �⠠ᰀ䐀漀 愀猀 䤀 猀愀礀Ⰰ 渀漀琀 愀猀 䤀 搀漠ᴀ) by continually repeating that reminder. This is my nifty way of introducing the idea that, in the world of computers, sometimes you want your code to repeat itself, too. For example, if the user enters invalid data, you may want to ask the user whether they want to retry or quit. If they retry and still enter invalid data, you again would ask the user whether they want to retry or quit. This process keeps repeating until the user either enters valid data or quits. You use a loop to repeat the execution of code statements. A loop in C++ is a structure that repeats the execution of code until a condition becomes false. In the preceding example, the condition is that the data is invalid and the user wants to retry, thus the repeating code is the prompt asking the user whether they want to retry or quit. This chapt⤊㸾੥湤潢樊ਸ਼㤸‰⁯扪਼㰊⽄敳琠嬳㘹‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㘹㤠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘹㜠〠刊⽔楴汥 䍨慰瑥爠㜺⁔桥⁆潲⁌潯瀩ਾ㸊敮摯扪ਊ㘹㤠〠潢樊㰼ਯ䑥獴⁛㌷㜠〠删⽘奚‵′㌵㐠湵汬崊⽎數琠㜰〠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㘹㠠〠刊⽔楴汥 ﻿Increment and Decrement OperatorsIncrement means to increase a value by one. Conversely, decrement means to decrease a value by one. C++ has an increment operator that you can use to increase a value by one and a decrement operator that you can use to decrease a value by one. This section will show you how to use both, something that will be useful in the next section on the for loop, which uses increment and decrement operators. The Increment Operator In the following program, the statement num += 1 increases the value of the integer variable num, which was initialized to the value 2, by 1, so the output will be 3. #include <iostream> using namespace std; int main�⠀瘀漀椀搀) { int num = 2; num += 1; cout << num; return 0; } Another way to accomplish the same result is by using the increment operator, ++. The increment operator is unary—that is, it operates on one operand. That operand generally is a whole number variable, such as an int. We can use the increment operator simply by⤊㸾੥湤潢樊਷〰‰⁯扪਼㰊⽄敳琠嬳㤳‰⁒ 塙娠㔠㐷〳⁮畬汝ਯ乥硴‷〱‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‶㤹‰⁒ਯ呩瑬攠⣾＀吀栀攀 䘀漀爀 䰀漀漀瀀䤀昀 礀漀甀 眀愀渀琀攀搀 琀漀 漀甀琀瀀甀琀 琀栀攀 渀甀洀戀攀爀猀 戀攀琀眀攀攀渀 ㄀ 愀渀搀 ㄀　Ⰰ 礀漀甀 挀漀甀氀搀 眀爀椀琀攀 愀 瀀爀漀最爀愀洀 猀甀挀栀 愀猀 琀栀攀 昀漀氀氀漀眀椀渀最㨀 ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猀瀀愀挀攀 猀琀搀㬀 椀渀琀 洀愀椀渀(void�⤀ 笀 ꀀꀀ椀渀琀 渀甀洀 㴀 ㄀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ挀漀甀琀 㰀㰀 渀甀洀⬀⬀㬀 ꀀꀀ爀攀琀甀爀渀 　㬀 紀 䠀漀眀攀瘀攀爀Ⰰ 礀漀甀 挀漀甀氀搀 眀爀椀琀攀 琀栀攀 猀愀洀攀 瀀爀漀最爀愀洀 眀椀琀栀 昀愀爀 氀攀猀猀 挀漀搀攀 戀礀 甀猀椀渀最 愀 昀漀爀 氀漀漀瀀㨀 ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猀瀀愀挀攀 猀琀搀㬀 椀渀琀 洀愀椀渀(void�⤀ 笀 ꀀꀀ昀漀爀 (int num = 1; num <= 10;
num++�⤀ ꀀꀀꀀꀀꀀ挀漀甀琀 㰀㰀 渀甀洀 㰀㰀 ∀ ∀㬀 ꀀꀀ爀攀琀甀爀渀 　㬀 紀 吀栀攀 搀椀昀昀攀爀攀渀挀攀 戀攀琀眀攀攀渀 琀栀攀 琀眀漀 瀀爀漀最爀愀洀猀 戀攀挀漀洀攀猀 洀漀爀攀 瀀爀漀渀漀甀渀挀攀搀 椀昀 礀漀甀 挀栀愀渀最攀 琀栀攀 猀瀀攀挀椀昀椀挀愀琀椀漀渀 昀爀漀洀 漀甀琀瀀甀琀琀椀渀最 琀栀攀 渀甀洀戀攀爀猀 戀攀琀眀攀攀渀 ㄀ 愀渀搀 ㄀　 琀漀 漀甀琀瀀甀琀琀椀渀最 琀栀攀 渀甀洀戀攀爀猀 戀攀琀眀攀攀渀 ㄀ 愀渀搀 ㄀　　⸀ 䤀 眀漀渠ᤀ琀 爀攀眀爀椀琀攀 琀栀攀 昀椀爀猀琀 瀀爀漀最爀愀洀 戀攀挀愀甀猀攀 椀琀 眀漀甀氀搀 琀愀欀攀 甀瀀 琀漀漀 洀愀渀礀 瀀愀最攀猀㬀 猀甀昀昀椀挀攀 椀琀 琀漀 猀愀礀Ⰰ 礀漀甀 眀漀甀氀搀 栀愀瘀攀 琀漀 愀搀搀 㤀　 洀漀爀攀 挀漀甀琀 猀琀愀琀攀洀攀渀琀猀⸀ 䠀漀眀攀瘀攀爀Ⰰ 琀栀攀 猀愀洀攀 瀀爀漀最爀愀洀 甀猀椀渀最 愀 昀漀爀 氀漀漀瀀 眀漀甀氀搀 戀攀㨀 ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猩ਾ㸊敮摯扪ਊ㜰ㄠ〠潢樊㰼ਯ䑥獴⁛㐰㔠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷〲‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〰‰⁒ਯ呩瑬攠⡓畭浡特奯甠畳攠愠汯潰⁴漠牥灥慴⁴桥⁥硥捵瑩潮⁯映捯摥⁳瑡瑥浥湴献⁁⁬潯瀠楳⁡⁳瑲畣瑵牥⁴桡琠牥灥慴猠瑨攠數散畴楯渠潦⁣潤攠畮瑩氠愠捯湤楴楯渠扥捯浥猠晡汳攮⁙潵⁬敡牮敤⁩渠瑨楳⁣桡灴敲⁨潷⁴漠畳攠潮攠瑹灥⁯映汯潰㨠瑨攠景爠汯潰⸠䡯睥癥爬⁢敦潲攠摩獣畳獩湧⁴桥⁦潲⁬潯瀬⁉⁳桯睥搠祯甠桯眠瑯⁵獥⁩湣牥浥湴⁡湤⁤散牥浥湴⁯灥牡瑯牳Ⱐ睨楣栠慲攠畳敤⁩渠景爠慮搠潴桥爠瑹灥猠潦⁬潯灳⸠䤠瑨敮⁥硰污楮敤⁴桥⁤楦晥牥湣攠扥瑷敥渠灲敦楸⁡湤⁰潳瑦楸⁷桥渠畳楮朠瑨攠楮捲敭敮琠慮搠摥捲敭敮琠潰敲慴潲献⁙潵⁡汳漠汥慲湥搠楮⁴桩猠捨慰瑥爠桯眠瑯⁵獥⁴桥⁢牥慫⁫敹睯牤⁴漠灲敭慴畲敬礠瑥牭楮慴攠愠景爠汯潰⁡湤⁴桥⁣潮瑩湵攠步祷潲搠瑯⁰牥浡瑵牥汹⁴敲浩湡瑥⁴桥⁣畲牥湴⁩瑥牡瑩潮⁯映瑨攠汯潰⸠奯甠瑨敮⁬敡牮敤⁨潷⁴漠畳攠瑨攠汯杩捡氠潰敲慴潲猠慳⁡渠慬瑥牮慴楶攠瑯⁴桥⁢牥慫⁡湤⁣潮瑩湵攠步祷潲摳⸠奯甠慬獯⁬敡牮敤⁡扯畴⁮敳瑩湧⁯湥⁦潲⁬潯瀠楮獩摥⁡湯瑨敲⸠周攠景爠汯潰⁧敮敲慬汹⁩猠畳敤⁷桥渠瑨攠汯潰⁷楬氠數散畴攠愠晩硥搠湵浢敲⁯映瑩浥献⁈潷敶敲Ⱐ獯浥瑩浥猠瑨攠湵浢敲⁯映瑩浥猠愠汯潰⁷楬氠數散畴攠楳⁵湰牥摩捴慢汥Ⱐ摥灥湤楮朩ਾ㸊敮摯扪ਊ㜰㈠〠潢樊㰼ਯ䑥獴⁛㐰㜠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷〳‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〱‰⁒ਯ呩瑬攠⣾＀儀甀椀稀 圀栀愀琀 搀漀攀猀 琀栀攀 椀渀挀爀攀洀攀渀琀 漀瀀攀爀愀琀漀爀 搀漀㼀 圀栀愀琀 搀漀攀猀 琀栀攀 搀攀挀爀攀洀攀渀琀 漀瀀攀爀愀琀漀爀 搀漀㼀 圀栀椀挀栀 漀挀挀甀爀猀 昀椀爀猀琀Ⰰ 搀攀挀爀攀洀攀渀琀椀渀最 漀爀 琀栀攀 漀甀琀瀀甀琀琀椀渀最 漀昀 琀栀攀 瘀愀氀甀攀 漀昀 渀甀洀Ⰰ 椀渀 琀栀攀 猀琀愀琀攀洀攀渀琀 挀漀甀琀 㰀㰀 ⴀⴀ渀甀洀㼀 圀栀愀琀 椀猀 愀渀 椀琀攀爀愀琀椀漀渀㼀 圀栀愀琀 椀猀 琀栀攀 甀猀甀愀氀 瀀甀爀瀀漀猀攀 漀昀 琀栀攀 昀椀爀猀琀 攀砀瀀爀攀猀猀椀漀渀 椀渀 琀栀攀 瀀愀爀攀渀琀栀攀猀攀猀 昀漀氀氀漀眀椀渀最 琀栀攀 昀漀爀 欀攀礀眀漀爀搀㼀 圀栀愀琀 椀猀 琀栀攀 瀀甀爀瀀漀猀攀 漀昀 琀栀攀 猀攀挀漀渀搀 攀砀瀀爀攀猀猀椀漀渀 椀渀 琀栀攀 瀀愀爀攀渀琀栀攀猀攀猀 昀漀氀氀漀眀椀渀最 琀栀攀 昀漀爀 欀攀礀眀漀爀搀㼀 圀栀愀琀 椀猀 琀栀攀 甀猀甀愀氀 瀀甀爀瀀漀猀攀 漀昀 琀栀攀 琀栀椀爀搀 攀砀瀀爀攀猀猀椀漀渀 椀渀 琀栀攀 瀀愀爀攀渀琀栀攀猀攀猀 昀漀氀氀漀眀椀渀最 琀栀攀 昀漀爀 欀攀礀眀漀爀搀㼀 䌀愀渀 漀渀攀 漀爀 洀漀爀攀 漀昀 琀栀攀 攀砀瀀爀攀猀猀椀漀渀猀 椀渀 琀栀攀 瀀愀爀攀渀琀栀攀猀攀猀 昀漀氀氀漀眀椀渀最 琀栀攀 昀漀爀 欀攀礀眀漀爀搀 戀攀 攀洀瀀琀礀㼀 圀栀愀琀 椀猀 琀栀攀 瀀甀爀瀀漀猀攀 漀昀 琀栀攀 戀爀攀愀欀 欀攀礀眀漀爀搀 椀渀 愀 昀漀爀 氀漀漀瀀㼀 圀栀愀琀 椀猀 琀栀攀 瀀甀爀瀀漀猀攀 漀昀 琀栀攀 挀漀渀琀椀渀甀攀 欀攀礀眀漀爀搀 椀渀 愀 昀漀爀 氀漀漀瀀㼀 䤀昀 礀漀甀 眀攀爀攀 最漀椀渀最 琀漀 甀猀攀 渀攀猀琀攀搀 昀漀爀 氀漀漀瀀猀 琀漀 瀀爀椀渀琀 爀漀眀猀 愀渀搀 挀漀氀甀洀渀猀Ⰰ 眀栀椀挀栀 昀漀爀 氀漀漀瀀 眀漀甀氀搀 瀀爀椀渀琀 琀栀攀 挀漀氀甀洀渀猠᐀椀渀渀攀爀 漀爀 漀甀琀攀爀㼩ਾ㸊敮摯扪ਊ㜰㌠〠潢樊㰼ਯ䑥獴⁛㐰㤠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷〴‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〲‰⁒ਯ呩瑬攠⡃桡灴敲‸㨠坨楬攠慮搠䑯⁗桩汥⁌潯灳⁏癥牶楥眠周攠景爠汯潰⁧敮敲慬汹⁩猠畳敤⁷桥渠瑨攠汯潰⁷楬氠楴敲慴攠愠晩硥搠湵浢敲⁯映瑩浥献⁈潷敶敲Ⱐ獯浥瑩浥猠瑨攠湵浢敲⁯映瑩浥猠愠汯潰⁷楬氠楴敲慴攠楳⁵湰牥摩捴慢汥Ⱐ摥灥湤楮朠潮⁵獥爠楮灵琠摵物湧⁲畮瑩浥⸠䙯爠數慭灬攬⁩渠愠摡瑡⁥湴特⁡灰汩捡瑩潮Ⱐ祯甠浡礠睡湴⁡⁬潯瀠瑨慴Ⱐ異潮⁥湴特⁯映楮癡汩搠摡瑡Ⱐ慳歳⁴桥⁵獥爠睨整桥爠瑨敹⁷慮琠瑯⁲整特⁯爠煵楴Ⱐ慮搠楦⁴桥礠睡湴⁴漠牥瑲礬⁧楶敳⁴桥⁵獥爠慮潴桥爠潰灯牴畮楴礠瑯⁥湴敲⁤慴愮⁔桥⁮畭扥爠潦⁴業敳⁴桩猠汯潰⁭慹⁩瑥牡瑥⁩猠畮灲敤楣瑡扬攬⁳楮捥⁩琠睩汬⁫敥瀠牥灥慴楮朠畮瑩氠瑨攠畳敲⁥楴桥爠敮瑥牳⁶慬楤⁤慴愠潲ⁱ畩瑳⸠周楳⁣桡灴敲⁷楬氠獨潷⁹潵⁨潷⁴漠畳攠瑨攠睨楬攠汯潰Ⱐ睨楣栠楳⁡⁢整瑥爠捨潩捥⁴桡渠愠景爠汯潰⁷桥渠瑨攠湵浢敲⁯映瑩浥猠愠汯潰⁷楬氠楴敲慴攠楳⁵湰牥摩捴慢汥⸠坨楬攠瑨攠瑯瑡氠湵浢敲⁯映汯潰⁩瑥牡瑩潮猠浡礠扥⁵湰牥摩捴慢汥Ⱐ瑨敲攠潦瑥渠慲攠獩瑵慴楯湳⁩渠睨楣栠瑨攠汯潰⁷楬氠楴敲慴攠慴⁬敡獴⁯湣攮⁁渠數慭灬攠楳⁡⁬潯瀠瑨慴⁤楳灬慹猠愠浥湵⁷楴栠癡物潵猠捨潩捥猬⁩湣汵摩湧⁥硩瑩湧⁴桥⁰牯杲慭⸠䥮⤊㸾੥湤潢樊਷〴‰⁯扪਼㰊⽄敳琠嬴〹‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜰㔠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜰㌠〠刊⽔楴汥 䍨慰瑥爠㠺⁗桩汥⁡湤⁄漠坨楬攠䱯潰猩ਾ㸊敮摯扪ਊ㜰㔠〠潢樊㰼ਯ䑥獴⁛㐲㌠〠删⽘奚‵‴㜰㌠湵汬崊⽎數琠㜰㘠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜰㐠〠刊⽔楴汥 周攠坨楬攠䱯潰⁔桥⁷桩汥⁬潯瀠楳⁳業楬慲⁴漠愠景爠汯潰⁩渠瑨慴⁢潴栠桡癥⁴桥⁴祰楣慬⁣桡牡捴敲楳瑩捳⁯映愠汯潰㨠瑨攠捯摥⁩湳楤攠敡捨⁣潮瑩湵敳⁴漠楴敲慴攠畮瑩氠愠捯湤楴楯渠扥捯浥猠晡汳攮⁔桥⁤楦晥牥湣攠扥瑷敥渠瑨敭⁩猠楮⁴桥⁰慲敮瑨敳敳⁦潬汯睩湧⁴桥⁦潲⁡湤⁷桩汥⁫敹睯牤献⁔桥⁰慲敮瑨敳敳⁦潬汯睩湧⁴桥⁦潲⁫敹睯牤⁣潮獩獴猠潦⁴桲敥⁥硰牥獳楯湳Ⱐ楮楴楡汩穡瑩潮Ⱐ捯湤楴楯測⁡湤⁵灤慴攮⁂礠捯湴牡獴Ⱐ瑨攠灡牥湴桥獥猠景汬潷楮朠瑨攠睨楬攠步祷潲搠捯湳楳瑳⁯湬礠潦⁴桥⁣潮摩瑩潮㬠祯甠桡癥⁴漠瑡步⁣慲攠潦⁡湹⁩湩瑩慬楺慴楯渠慮搠異摡瑥⁥汳敷桥牥⁩渠瑨攠捯摥⸠周楳⁤楦晥牥湣攠楳⁩汬畳瑲慴敤⁢礠瑨攠景汬潷楮朠灲潧牡洠瑨慴⁯畴灵瑳⁴桥⁮畭扥牳⁢整睥敮‱⁡湤‱〮⁃桡灴敲‷⁩湣汵摥搠瑨攠景汬潷楮朠灲潧牡洠瑨慴⁯畴灵瑳⁴桥⁮畭扥牳⁢整睥敮‱⁡湤‱〠畳楮朠瑨攠景爠汯潰⸠⍩湣汵摥‼楯獴牥慭㸠畳楮朠湡浥獰慣攠獴搻⁩湴⁭慩渨癯楤⤠笠ꂠ景爠⡩湴⁮畭‽‱㬠湵洠㰽‱〻⁮畭⬫⤠ꂠꂠꁣ潵琠㰼⁮畭‼㰠∠∻₠ꁲ整畲渠〻⁽⁔桥⁳慭攠灲潧牡洠畳楮朠瑨攠睨楬攠汯潰⁣潵汤⁢攠⍩湣汵摥‼楯獴牥慭㸠畳楮朠湡浥獰慣攠獴搻⁩湴⁭慩渨癯楤⤠笠ꂠ楮⤊㸾੥湤潢樊਷〶‰⁯扪਼㰊⽄敳琠嬴㌷‰⁒ 塙娠㔠ㄵ㜱⁮畬汝ਯ乥硴‷〷‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〵‰⁒ਯ呩瑬攠⡔桥⁄漠坨楬攠䱯潰周攠摯⁷桩汥⁬潯瀠楳⁳業楬慲⁴漠瑨攠睨楬攠汯潰⸠周攠灲業慲礠摩晦敲敮捥⁩猠瑨慴⁷楴栠愠摯⁷桩汥⁬潯瀠瑨攠捯湤楴楯渠楳⁴敳瑥搠慴⁴桥⁢潴瑯洠潦⁴桥⁬潯瀬⁵湬楫攠愠睨楬攠汯潰⁷桥牥⁴桥⁣潮摩瑩潮⁩猠瑥獴敤⁡琠瑨攠瑯瀮⁔桩猠浥慮猠瑨慴⁡⁤漠睨楬攠汯潰⁷楬氠慬睡祳⁥硥捵瑥⁡琠汥慳琠潮捥Ⱐ睨敲敡猠愠睨楬攠汯潰⁭慹⁮敶敲⁥硥捵瑥⁡琠慬氠楦⁩瑳⁣潮摩瑩潮⁩猠晡汳攠慴⁴桥⁯畴獥琮⁓祮瑡砠周攠獹湴慸⁯映愠摯⁷桩汥⁬潯瀠楳⁤漠笠ꂠ獴慴敭敮琨猩㬠素睨楬攠⡣潮摩瑩潮⤻⁔桥⁤漠步祷潲搠獴慲瑳⁴桥⁬潯瀮⁔桥⁳瑡瑥浥湴⁯爠獴慴敭敮瑳⁢敬潮杩湧⁴漠瑨攠汯潰⁡牥⁥湣汯獥搠楮⁣畲汹⁢牡捥献⁁晴敲⁴桥⁣汯獥⁣畲汹⁢牡捥Ⱐ瑨攠睨楬攠步祷潲搠慰灥慲猬⁦潬汯睥搠批⁴桥⁣潮摩瑩潮⁩渠灡牥湴桥獥猬⁴敲浩湡瑥搠批⁡⁳敭楣潬潮⸠䄠䑯⁗桩汥⁌潯瀠䕸慭灬攠周攠景汬潷楮朠灲潧牡洠楳⁡⁭潤楦楣慴楯渠潦⁴桥⁯湥⁥慲汩敲⁩渠瑨楳⁣桡灴敲⁴桡琠畳敤⁡⁷桩汥⁬潯瀠瑯⁣潮瑩湵攠瑯⁰牯浰琠瑨攠畳敲⁴漠敮瑥爠愠灯獩瑩癥⁮畭扥爠畮瑩氠瑨攠畳敲⁥楴桥爠摩搠獯⁯爠煵楴Ⱐ慮搠瑨敮⁥楴桥爠潵瑰畴瑥搠瑨攠灯獩瑩癥⁮畭扥爠潲⁡⁭敳獡来⁴桡琠瑨攠畳敲⁤楤⁮漩ਾ㸊敮摯扪ਊ㜰㜠〠潢樊㰼ਯ䑥獴⁛㐴㌠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷〸‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〶‰⁒ਯ呩瑬攠⡓畭浡特⁃桡灴敲‷⁩湴牯摵捥搠瑨攠晩牳琠潦⁳敶敲慬⁬潯灳㨠瑨攠景爠汯潰⸠周攠景爠汯潰⁷潲歳⁷敬氠楮⁳楴畡瑩潮猠睨敲攠瑨攠汯潰⁷楬氠楴敲慴攠愠晩硥搠湵浢敲⁯映瑩浥献⁏晴敮Ⱐ桯睥癥爬⁴桥⁮畭扥爠潦⁴業敳⁡⁬潯瀠睩汬⁩瑥牡瑥⁩猠畮灲敤楣瑡扬攠獩湣攠瑨攠湵浢敲⁯映楴敲慴楯湳⁤数敮摳⁯渠畳敲⁩湰畴⁤畲楮朠牵湴業攮⁏湥⁥硡浰汥⁤楳捵獳敤⁩渠瑨楳⁣桡灴敲⁩猠愠摡瑡⁥湴特⁡灰汩捡瑩潮⁩渠睨楣栠瑨攠汯潰Ⱐ異潮⁥湴特⁯映楮癡汩搠摡瑡Ⱐ慳歳⁴桥⁵獥爠睨整桥爠瑨敹⁷慮琠瑯⁲整特⁯爠煵楴Ⱐ慮搠楦⁴桥礠睡湴⁴漠牥瑲礬⁧楶敳⁴桥⁵獥爠慮潴桥爠潰灯牴畮楴礠瑯⁥湴敲⁤慴愮⁔桥⁮畭扥爠潦⁴業敳⁴桩猠汯潰⁭慹⁩瑥牡瑥⁩猠畮灲敤楣瑡扬攬⁳楮捥⁩琠睩汬⁫敥瀠牥灥慴楮朠畮瑩氠瑨攠畳敲⁥楴桥爠敮瑥牳⁶慬楤⁤慴愠潲ⁱ畩瑳⸠周楳⁣桡灴敲⁳桯睥搠祯甠桯眠瑯⁵獥⁴桥⁷桩汥⁬潯瀬⁷桩捨⁷潲歳⁢整瑥爠瑨慮⁡⁦潲⁬潯瀠睨敮⁴桥⁮畭扥爠潦⁴業敳⁡⁬潯瀠睩汬⁥硥捵瑥⁩猠畮灲敤楣瑡扬攮⁗桩汥⁴桥⁰慲敮瑨敳敳⁦潬汯睩湧⁴桥⁦潲⁫敹睯牤⁣潮獩獴猠潦⁴桲敥⁥硰牥獳楯湳Ⱐ楮楴楡汩穡瑩潮Ⱐ捯湤楴楯測⁡湤⁵灤慴攬⁴桥⁰慲敮瑨敳敳⁦潬汯睩湧⁴桥⁷桩汥⁫敹睯牤⁣潮獩猩ਾ㸊敮摯扪ਊ㜰㠠〠潢樊㰼ਯ䑥獴⁛㐴㔠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷〹‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〷‰⁒ਯ呩瑬攠⣾＀儀甀椀稀 圀栀椀挀栀 漀昀 琀栀攀 琀栀爀攀攀 氀漀漀瀀猠᐀昀漀爀Ⰰ 眀栀椀氀攀Ⰰ 漀爀 搀漀 眀栀椀氀攠᐀攀砀攀挀甀琀攀猀 愀琀 氀攀愀猀琀 漀渀挀攀㼀 圀栀椀挀栀 漀昀 琀栀攀 琀栀爀攀攀 氀漀漀瀀猠᐀昀漀爀Ⰰ 眀栀椀氀攀Ⰰ 漀爀 搀漀 眀栀椀氀攠᐀椀猀 琀栀攀 戀攀猀琀 挀栀漀椀挀攀 眀栀攀渀 琀栀攀 渀甀洀戀攀爀 漀昀 椀琀攀爀愀琀椀漀渀猀 椀猀 瀀爀攀搀椀挀琀愀戀氀攀㼀 䤀猀 琀栀攀 瀀愀爀攀渀琀栀攀琀椀挀愀氀 攀砀瀀爀攀猀猀椀漀渀 昀漀氀氀漀眀椀渀最 琀栀攀 眀栀椀氀攀 欀攀礀眀漀爀搀 昀漀爀 椀渀椀琀椀愀氀椀稀愀琀椀漀渀Ⰰ 挀漀渀搀椀琀椀漀渀 漀爀 甀瀀搀愀琀攀㼀 䴀愀礀 琀栀攀 瀀愀爀攀渀琀栀攀琀椀挀愀氀 攀砀瀀爀攀猀猀椀漀渀 昀漀氀氀漀眀椀渀最 琀栀攀 眀栀椀氀攀 欀攀礀眀漀爀搀 戀攀 琀爀甀攀Ⰰ 猀甀挀栀 愀猀 眀栀椀氀攀 (true�⤀㼀 䌀愀渀 琀栀攀 瀀愀爀攀渀琀栀攀琀椀挀愀氀 攀砀瀀爀攀猀猀椀漀渀 昀漀氀氀漀眀椀渀最 琀栀攀 眀栀椀氀攀 欀攀礀眀漀爀搀 挀漀洀戀椀渀攀 琀眀漀 攀砀瀀爀攀猀猀椀漀渀猀㼀 圀栀愀琀 椀猀 琀栀攀 瀀甀爀瀀漀猀攀 漀昀 琀栀攀 戀爀攀愀欀 欀攀礀眀漀爀搀 椀渀 愀 眀栀椀氀攀 氀漀漀瀀㼀 圀栀愀琀 椀猀 琀栀攀 瀀甀爀瀀漀猀攀 漀昀 琀栀攀 挀漀渀琀椀渀甀攀 欀攀礀眀漀爀搀 椀渀 愀 眀栀椀氀攀 氀漀漀瀀㼀 圀栀愀琀 椀猀 愀 昀氀愀最㼀 䤀昀 礀漀甀 眀攀爀攀 最漀椀渀最 琀漀 甀猀攀 渀攀猀琀攀搀 眀栀椀氀攀 氀漀漀瀀猀 琀漀 瀀爀椀渀琀 爀漀眀猀 愀渀搀 挀漀氀甀洀渀猀Ⰰ 眀栀椀挀栀 昀漀爀 氀漀漀瀀 眀漀甀氀搀 瀀爀椀渀琀 琀栀攀 爀漀眀猀Ⰰ 椀渀渀攀爀 漀爀 漀甀琀攀爀㼀 䐀漀攀猀 愀 瘀愀爀椀愀戀氀攀 搀攀挀氀愀爀攀搀 椀渀猀椀搀攀 琀栀攀 戀漀搀礀 漀昀 愀 搀漀 眀栀椀氀攀 氀漀漀瀀 栀愀瘀攀 猀挀漀瀀攀 椀渀 琀栀攀 瀀愀爀攀渀琀栀攀琀椀挀愀氀 攀砀瀀爀攀猀猀椀漀渀 昀漀氀氀漀眀椀渀最 琀栀攀 眀栀椀氀攀 欀攀礀眀漀爀搀㼩ਾ㸊敮摯扪ਊ㜰㤠〠潢樊㰼ਯ䑥獴⁛㐴㜠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷㄰‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〸‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 㤀㨀 䘀甀渀挀琀椀漀渀猀 伀瘀攀爀瘀椀攀眀 䄀 昀甀渀挀琀椀漀渀 椀猀 愀 最爀漀甀瀀 漀昀 猀琀愀琀攀洀攀渀琀猀 琀栀愀琀 琀漀最攀琀栀攀爀 瀀攀爀昀漀爀洀 愀 琀愀猀欀⸀ 匀漀 昀愀爀Ⰰ 漀甀爀 瀀爀漀最爀愀洀猀 栀愀瘀攀 栀愀搀 漀渀攀 昀甀渀挀琀椀漀渀Ⰰ 洀愀椀渀⸀ 䄀搀搀椀琀椀漀渀愀氀氀礀Ⰰ 愀琀 琀椀洀攀猀 眀攀 栀愀瘀攀 甀猀攀搀 昀甀渀挀琀椀漀渀猀 搀攀昀椀渀攀搀 椀渀 愀 猀琀愀渀搀愀爀搀 氀椀戀爀愀爀礀Ⰰ 猀甀挀栀 愀猀 琀栀攀 瀀漀眀 昀甀渀挀琀椀漀渀 椀渀 琀栀攀 挀洀愀琀栀 氀椀戀爀愀爀礀Ⰰ 甀猀攀搀 琀漀 爀愀椀猀攀 愀 渀甀洀戀攀爀 琀漀 愀 挀攀爀琀愀椀渀 瀀漀眀攀爀⸀ 一漀 瀀爀漀最爀愀洀 渀攀攀搀猀 洀漀爀攀 琀栀愀渀 愀 洀愀椀渀 昀甀渀挀琀椀漀渀⸀ 䠀漀眀攀瘀攀爀Ⰰ 愀猀 礀漀甀 眀爀椀琀攀 洀漀爀攀 挀漀洀瀀氀攀砀 愀渀搀 猀漀瀀栀椀猀琀椀挀愀琀攀搀 瀀爀漀最爀愀洀猀Ⰰ 礀漀甀 洀愀礀 昀椀渀搀 礀漀甀爀 洀愀椀渀 昀甀渀挀琀椀漀渀 戀攀挀漀洀椀渀最 攀砀琀爀攀洀攀氀礀 氀漀渀最⸀ 一攀椀琀栀攀爀 琀栀攀 挀漀洀瀀椀氀攀爀 渀漀爀 琀栀攀 爀甀渀琀椀洀攀 挀愀爀攀猀 椀昀 礀漀甀爀 洀愀椀渀 昀甀渀挀琀椀漀渀 椀猀 猀栀漀爀琀 漀爀 氀漀渀最⸀ 䠀漀眀攀瘀攀爀Ⰰ 礀漀甀 猀栀漀甀氀搀 挀愀爀攀⸀ 䄀 洀愀椀渀 昀甀渀挀琀椀漀渀 琀栀愀琀 挀漀渀琀椀渀甀攀猀 昀漀爀 瀀愀最攀猀 椀猀 搀椀昀昀椀挀甀氀琀 琀漀 甀渀搀攀爀猀琀愀渀搀 漀爀 昀椀砀 椀昀 攀爀爀漀爀猀 愀爀椀猀攀⸀ 䈀礀 愀渀愀氀漀最礀Ⰰ 琀栀椀猀 戀漀漀欀 椀猀 猀攀瘀攀爀愀氀 栀甀渀搀爀攀搀 瀀愀最攀猀 氀漀渀最⸀ 䤀琀 眀漀甀氀搀 戀攀 栀愀爀搀攀爀 琀漀 甀渀搀攀爀猀琀愀渀搀 椀昀 攀愀挀栀 挀栀愀瀀琀攀爀 眀愀猀 渀漀琀 搀椀瘀椀搀攀搀 椀渀琀漀 猀攀挀琀椀漀渀猀⸀ 吀栀椀猀 戀漀漀欀 眀漀甀氀搀 戀攀 猀琀椀氀氀 栀愀爀搀攀爀 琀漀 甀渀搀攀爀猀琀愀渀搀 椀昀 椀琀 挀漀渀猀椀猀琀攀搀 漀昀 漀渀氀礀 漀渀攀Ⰰ 瘀攀爀礀 氀漀渀最 挀栀愀瀀琀攀爀⸀ 䈀礀 搀椀瘀椀搀椀渀最 琀栀椀猀 戀漀漀欠ᤀ猀 挀漀渀琀攀渀琀 椀渀琀漀 挀栀愀瀀琀攀爀猀Ⰰ 愀渀搀 攀愀挀栀 挀栀愀瀀琀攀爀 椀渀琀漀 猀攀挀琀椀漀渀猀Ⰰ 琀栀椀猀 戀漀漀欀 椀猀 攀愀猩ਾ㸊敮摯扪ਊ㜱〠〠潢樊㰼ਯ䑥獴⁛㐴㜠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷ㄱ‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷〹‰⁒ਯ呩瑬攠⡃桡灴敲‹㨠䙵湣瑩潮猩ਾ㸊敮摯扪ਊ㜱ㄠ〠潢樊㰼ਯ䑥獴⁛㐵㘠〠删⽘奚‵′㌵㐠湵汬崊⽎數琠㜱㈠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜱〠〠刊⽔楴汥 ﻿Defining and Calling a FunctionImplementing any function in addition to main involves two steps: Defining the function Calling the function The explanation of these steps uses terminology we have not discussed before, so that terminology is reviewed first. Terminology of a Function Let’s look at a simple program with one function, main: #include <iostream> using namespace std; int main �⠀) { cout << "Hello world!"; return 0; } The first line, int main �⠀), is the function header. Unlike a statement, the function header is not followed by a semicolon. The function header consists of a return type, a function name, and an argument list. The data type int preceding main is the return type, main is the function name, and the parentheses, empty in this example but not always, contains the argument list. A function header always is followed by an open curly brace, which begins the function body. The function body ends with a close curly brace. There may be other open and curly braces betwe⤊㸾੥湤潢樊਷ㄲ‰⁯扪਼㰊⽄敳琠嬴㘶‰⁒ 塙娠㔠㈳㔴⁮畬汝ਯ乥硴‷ㄳ‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷ㄱ‰⁒ਯ呩瑬攠⣾＀嘀愀爀椀愀戀氀攀 匀挀漀瀀攀 愀渀搀 䰀椀昀攀琀椀洀攀 吀栀甀猀 昀愀爀Ⰰ 愀氀氀 瘀愀爀椀愀戀氀攀猀 栀愀瘀攀 戀攀攀渀 搀攀昀椀渀攀搀 愀琀 琀栀攀 琀漀瀀 漀昀 琀栀攀 洀愀椀渀 昀甀渀挀琀椀漀渀⸀ 䤀渀 瀀爀漀最爀愀洀猀 眀栀攀爀攀 琀栀攀 漀渀氀礀 昀甀渀挀琀椀漀渀 椀猀 洀愀椀渀Ⰰ 琀栀漀猀攀 瘀愀爀椀愀戀氀攀猀 挀愀渀 戀攀 愀挀挀攀猀猀攀搀 琀栀爀漀甀最栀漀甀琀 琀栀攀 攀渀琀椀爀攀 瀀爀漀最爀愀洀 猀椀渀挀攀 洀愀椀渀 椀猀 琀栀攀 攀渀琀椀爀攀 瀀爀漀最爀愀洀⸀ 䠀漀眀攀瘀攀爀Ⰰ 漀渀挀攀 眀攀 猀琀愀爀琀 搀椀瘀椀搀椀渀最 甀瀀 琀栀攀 挀漀搀攀 椀渀琀漀 猀攀瀀愀爀愀琀攀 昀甀渀挀琀椀漀渀猀Ⰰ 椀猀猀甀攀猀 愀爀椀猀攀 挀漀渀挀攀爀渀椀渀最 瘀愀爀椀愀戀氀攀 猀挀漀瀀攀 愀渀搀 氀椀昀攀琀椀洀攀⸀ 吀栀攀 椀猀猀甀攀 漀昀 瘀愀爀椀愀戀氀攀 猀挀漀瀀攀 眀愀猀 椀渀琀爀漀搀甀挀攀搀 椀渀 䌀栀愀瀀琀攀爀 㠀 椀渀 挀漀渀渀攀挀琀椀漀渀 眀椀琀栀 琀栀攀 搀漀 眀栀椀氀攀 氀漀漀瀀⸀ 吀栀攀 椀猀猀甀攀 漀昀 瘀愀爀椀愀戀氀攀 氀椀昀攀琀椀洀攀 椀猀 渀攀眀⸀ 䰀漀挀愀氀 嘀愀爀椀愀戀氀攀猀 夀漀甀 挀愀渀 挀愀氀氀 琀栀攀 猀愀洀攀 昀甀渀挀琀椀漀渀 洀甀氀琀椀瀀氀攀 琀椀洀攀猀⸀ 吀栀攀 昀漀氀氀漀眀椀渀最 瀀爀漀最爀愀洀 愀琀琀攀洀瀀琀猀 琀漀 挀愀氀氀 琀栀攀 瀀爀椀渀琀䴀攀猀猀愀最攀 昀甀渀挀琀椀漀渀 椀渀 愀 氀漀漀瀀 甀渀琀椀氀 琀栀攀 甀猀攀爀 搀攀挀椀搀攀猀 琀漀 猀琀漀瀀Ⰰ 愀渀搀 攀愀挀栀 琀椀洀攀 漀甀琀瀀甀琀猀 琀栀攀 渀甀洀戀攀爀 漀昀 琀椀洀攀猀 琀栀攀 瀀爀椀渀琀䴀攀猀猀愀最攀 昀甀渀挀琀椀漀渀 栀愀猀 戀攀攀渀 挀愀氀氀攀搀⸀ 吀栀攀 最漀愀氀 椀猀 琀栀愀琀 琀栀攀 昀椀爀猀琀 琀椀洀攀 琀栀攀 瀀爀椀渀琀䴀攀猀猀愀最攀 昀甀渀挀琀椀漀渀 椀猀 挀愀氀氀攀搀Ⰰ 琀栀攀 漀甀琀瀀甀琀 眀椀氀氀 戀攀†ᰀ吀栀椀猀 昀甀渀挀琀椀漀渀 挀愀氀氀攀搀 ㄀ 琀椀洀攀猠ᴀ (pardon the bad grammar�⤀Ⰰ 琀栀攀 猀攀挀漀渀搀 琀椀洀攀 琀栀攀 瀀爀椀渀琀䴀攀猀猀愀最攀 昀甀渀挀琀椀漀渀 椀猀 挀愀氀氀攀搀Ⰰ 琀栀攀 漀甀琀瀀甀琀 眀椀氀氀 戀攀†ᰀ吀栀椀猀 昀甀渀挀琀椀漀渀 挀愀氀氀攀搀 ㈀ 琀椀洀攀猩ਾ㸊敮摯扪ਊ㜱㌠〠潢樊㰼ਯ䑥獴⁛㐸㌠〠删⽘奚‵″㤲〠湵汬崊⽎數琠㜱㐠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜱㈠〠刊⽔楴汥 ﻿Sending Information to a Function The printMessage function in the Hello World program outputs “Hello world!” It does not need any further information to do its job. Let’s make the printMessage function more useful so that it does not always output “Hello world” but instead outputs whatever message we ask it to. Of course, the printMessage function is not a mind reader; we need to tell it the message we want it to output. Let’s try to write a program in which the user enters in main the string to be outputted, that user input is stored in a string variable str, and then the printMessage function attempts to output the value of that str variable. One approach is to make the variable str global so it can be accessed in both the main and printMessage functions: #include <iostream> #include <string> using namespace std; void printMessage�⠀); string str; int main �⠀) { cout << "Enter a string: "; cin >> str; printMessage�⠀ ); return 0; } void printMessage �⠀ ) { cout << "You
inpu⤊㸾੥湤潢樊਷ㄴ‰⁯扪਼㰊⽄敳琠嬴㤳‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜱㔠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜱㌠〠刊⽔楴汥 剥瑵牮楮朠愠噡汵攠晲潭⁡⁆畮捴楯渠䅲杵浥湴猠慲攠畳敤⁴漠灡獳⁶慬略猠瑯⁡⁣慬汥搠晵湣瑩潮⸠䄠牥瑵牮⁶慬略⁣慮⁢攠畳敤⁴漠灡獳⁡⁶慬略⁦牯洠愠捡汬敤⁦畮捴楯渠扡捫⁴漠瑨攠晵湣瑩潮⁴桡琠捡汬敤⁩琮⁆潲⁥硡浰汥Ⱐ楮⁴桥⁰牥癩潵猠灲潧牡洠瑨攠晵湣瑩潮⁡摤乵浢敲猠桡搠瑨牥攠慲杵浥湴猬⁴桥⁦楲獴⁴睯⁢敩湧⁴桥⁮畭扥牳⁴漠扥⁡摤敤Ⱐ瑨攠瑨楲搠扥楮朠瑨敩爠獵洮⁔桥⁦潬汯睩湧⁰牯杲慭⁭潤楦楥猠瑨攠灲敶楯畳⁯湥⁢礠敬業楮慴楮朠瑨攠瑨楲搠慲杵浥湴Ⱐ扵琠慤摩湧⁡⁲整畲渠癡汵攠瑯⁴桥⁦畮捴楯渺‣楮捬畤攠㱩潳瑲敡派⁵獩湧⁮慭敳灡捥⁳瑤㬠楮琠慤摎畭扥牳⡩湴Ⱐ楮琩㬠ꀠ楮琠浡楮 ⤠笠ꂠ楮琠晩牳瑎畭Ⱐ獥捯湤乵洬⁳畭‽‰㬠ꂠ捯畴‼㰠≅湴敲⁦楲獴⁮畭扥爺•㬠ꂠ捩渠㸾⁦楲獴乵活₠ꁣ潵琠㰼•䕮瑥爠獥捯湤⁮畭扥爺•㬠ꂠ捩渠㸾⁳散潮摎畭㬠ꂠ獵洠㴠慤摎畭扥牳 晩牳瑎畭Ⱐ獥捯湤乵洩㬠ꂠ捯畴‼㰠晩牳瑎畭‼㰠∠⬠∠㰼⁳散潮摎畭‼㰠∠㴠∠㰼⁳畭㬠ꂠ牥瑵牮‰㬠素楮琠慤摎畭扥牳 楮琠砬⁩湴⁹⤠笠ꂠ牥瑵牮⁸‫⁹㬠素周攠獡浰汥⁩湰畴⁡湤⁯畴灵琠浡礠扥⁴桥⁳慭攠慳⁩渠瑨攠灲敶楯畳⁰牯杲慭㨠䕮瑥爠晩牳琠湵浢敲㨠㌠䕮瑥爠晩牳琠湵浢敲㨠㘠㌠⬠㘠㴠㤠周攠牥瑵牮⤊㸾੥湤潢樊਷ㄵ‰⁯扪਼㰊⽄敳琠嬴㤸‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜱㘠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜱㐠〠刊⽔楴汥 卵浭慲礠䄠晵湣瑩潮⁩猠愠杲潵瀠潦⁳瑡瑥浥湴猠瑨慴⁴潧整桥爠灥牦潲洠愠瑡獫⸠坨楬攠湯⁰牯杲慭⁮敥摳⁭潲攠瑨慮⁡⁭慩渠晵湣瑩潮Ⱐ慳⁹潵⁷物瑥⁭潲攠捯浰汥砠慮搠獯灨楳瑩捡瑥搠灲潧牡浳Ⱐ祯畲⁣潤攠睩汬⁢攠敡獩敲⁴漠睲楴攬⁵湤敲獴慮搬⁡湤⁦楸⁩映祯甠摩癩摥⁴桥⁣潤攠異⁡浯湧⁤楦晥牥湴⁦畮捴楯湳Ⱐ敡捨⁦畮捴楯渠灥牦潲浩湧⁡⁳灥捩晩挠瑡獫⸠奯甠業灬敭敮琠愠晵湣瑩潮⁩渠慤摩瑩潮⁴漠浡楮⁢礠晩牳琠摥晩湩湧⁩琠慮搠瑨敮⁣慬汩湧⁩琮⁁⁦畮捴楯渠摥晩湩瑩潮⁣潮獩獴猠潦⁡⁦畮捴楯渠桥慤敲⁡湤⁡⁦畮捴楯渠扯摹⸠周攠晵湣瑩潮⁨敡摥爠捯湳楳瑳⁯映愠牥瑵牮⁴祰攬⁡⁦畮捴楯渠湡浥Ⱐ慮搠慮⁡牧畭敮琠汩獴⸠周攠晵湣瑩潮⁨敡摥爠慬睡祳⁩猠景汬潷敤⁢礠慮⁯灥渠捵牬礠扲慣攬⁷桩捨⁢敧楮猠瑨攠晵湣瑩潮⁢潤礮⁔桥⁦畮捴楯渠扯摹⁥湤猠睩瑨⁡⁣汯獥⁣畲汹⁢牡捥⁡湤⁣潮瑡楮猠潮攠潲⁭潲攠獴慴敭敮瑳Ⱐ来湥牡汬礠敮摩湧⁷楴栠愠牥瑵牮⁳瑡瑥浥湴⸠䅤摩瑩潮慬汹Ⱐ畮汥獳⁴桥⁦畮捴楯渠楳⁤敦楮敤⁡扯癥⁷桥牥⁩琠楳⁣慬汥搬⁩琠浵獴⁢攠灲潴潴祰敤⸠䥮⁰牯杲慭猠睨敲攠瑨攠潮汹⁦畮捴楯渠楳⁭慩測⁡汬⁶慲楡扬敳⁤敦楮敤⁡琠瑨攠瑯瀠潦⁴桡琠晵湣瑩潮⁮散敳獡物汹⁣慮⤊㸾੥湤潢樊਷ㄶ‰⁯扪਼㰊⽄敳琠嬵〰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜱㜠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜱㔠〠刊⽔楴汥 兵楺⁗桡琠楳⁴桥⁤楦晥牥湣攠扥瑷敥渠癡物慢汥⁳捯灥⁡湤⁬楦整業政⁍畳琠愠晵湣瑩潮⁯瑨敲⁴桡渠浡楮⁢攠灲潴潴祰敤㼠䥳⁡⁦畮捴楯渠牥煵楲敤⁴漠桡癥⁡琠汥慳琠潮攠慲杵浥湴㼠䍡渠愠晵湣瑩潮⁨慶攠浯牥⁴桡渠潮攠慲杵浥湴㼠坨慴⁩猠瑨攠敦晥捴⁯渠愠癡物慢汥⁩渠浡楮⁩映楴⁩猠灡獳敤⁢礠癡汵攠瑯⁡湯瑨敲⁦畮捴楯渠睨楣栠捨慮来猠瑨攠慲杵浥湴⁣潲牥獰潮摩湧⁴漠瑨慴⁶慲楡扬政⁗桡琠楳⁴桥⁥晦散琠潮⁡⁶慲楡扬攠楮⁭慩渠楦⁩琠楳⁰慳獥搠批⁲敦敲敮捥⁴漠慮潴桥爠晵湣瑩潮⁷桩捨⁣桡湧敳⁴桥⁡牧畭敮琠捯牲敳灯湤楮朠瑯⁴桡琠癡物慢汥㼠䵵獴⁡⁦畮捴楯渠桡癥⁡⁲整畲渠癡汵政⁃慮⁡⁦畮捴楯渠桡癥⁭潲攠瑨慮⁯湥⁲整畲渠癡汵政⁍慹⁡⁦畮捴楯渠桡癥⁮敩瑨敲⁡⁲整畲渠癡汵攠湯爠慮礠慲杵浥湴猿⁍慹⁡⁦畮捴楯渠桡癥⁢潴栠愠牥瑵牮⁶慬略⁡湤⁡牧畭敮瑳㼩ਾ㸊敮摯扪ਊ㜱㜠〠潢樊㰼ਯ䑥獴⁛㔰㈠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷ㄸ‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷ㄶ‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 ㄀　㨀 䄀爀爀愀礀猀 伀瘀攀爀瘀椀攀眀 吀栀攀 瘀愀爀椀愀戀氀攀猀 眀攀 栀愀瘀攀 眀漀爀欀攀搀 眀椀琀栀 猀漀 昀愀爀 挀愀渀 栀漀氀搀 漀渀氀礀 漀渀攀 瘀愀氀甀攀 愀琀 愀 琀椀洀攀⸀ 䘀漀爀 攀砀愀洀瀀氀攀Ⰰ 椀昀 礀漀甀 搀攀挀氀愀爀攀 愀渀 椀渀琀攀最攀爀 瘀愀爀椀愀戀氀攀 渀愀洀攀搀 琀攀猀琀匀挀漀爀攀 琀漀 爀攀瀀爀攀猀攀渀琀 愀 猀琀甀搀攀渀琠ᤀ猀 琀攀猀琀 猀挀漀爀攀Ⰰ 琀栀愀琀 瘀愀爀椀愀戀氀攀 挀愀渀 栀漀氀搀 漀渀氀礀 漀渀攀 琀攀猀琀 猀挀漀爀攀⸀ 吀栀攀 昀愀挀琀 琀栀愀琀 琀栀攀 瘀愀爀椀愀戀氀攀 琀攀猀琀匀挀漀爀攀 挀愀渀 栀漀氀搀 漀渀氀礀 漀渀攀 琀攀猀琀 猀挀漀爀攀 椀猀 渀漀琀 愀 瀀爀漀戀氀攀洀 猀漀 氀漀渀最 愀猀 琀栀愀琀 猀琀甀搀攀渀琀 漀渀氀礀 琀愀欀攀猀 漀渀攀 琀攀猀琀⸀ 䠀漀眀攀瘀攀爀Ⰰ 椀昀 琀栀攀 猀愀洀攀 猀琀甀搀攀渀琀 琀愀欀攀猀 愀渀漀琀栀攀爀 琀攀猀琀Ⰰ 漀爀 愀渀漀琀栀攀爀 猀琀甀搀攀渀琀 琀愀欀攀猀 琀栀攀 猀愀洀攀 琀攀猀琀Ⰰ 眀栀攀爀攀 搀漀 礀漀甀 猀琀漀爀攀 琀栀攀 猀攀挀漀渀搀 琀攀猀琀 猀挀漀爀攀㼀 䤀昀 礀漀甀 猀琀漀爀攀 琀栀攀 猀攀挀漀渀搀 猀挀漀爀攀 椀渀 琀攀猀琀匀挀漀爀攀Ⰰ 琀栀攀渀 礀漀甀 氀漀猀攀 琀栀攀 愀戀椀氀椀琀礀 琀漀 爀攀琀爀椀攀瘀攀 琀栀攀 昀椀爀猀琀 猀挀漀爀攀 昀爀漀洀 琀栀攀 瘀愀爀椀愀戀氀攀 琀攀猀琀匀挀漀爀攀Ⰰ 猀椀渀挀攀 琀栀愀琀 瘀愀爀椀愀戀氀攀 挀愀渀 栀漀氀搀 漀渀氀礀 漀渀攀 琀攀猀琀 猀挀漀爀攀 愀琀 愀 琀椀洀攀⸀ 吀栀攀爀攀昀漀爀攀Ⰰ 椀昀 礀漀甀 眀愀渀琀攀搀 琀漀 欀攀攀瀀 琀爀愀挀欀 漀昀Ⰰ 昀漀爀 攀砀愀洀瀀氀攀Ⰰ ㄀　　 琀攀猀琀 猀挀漀爀攀猀Ⰰ 礀漀甀爀 挀漀搀攀 洀椀最栀琀 氀漀漀欀 氀椀欀攀 琀栀椀猀㨀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㄀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㈀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㌀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㐀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㔀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㘀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㜀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㠀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㤀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀㄀　㬀 ꀀꀀ⼀⼀ 搀攀挀氀愀爀攀 琀攀猀琀匀挩ਾ㸊敮摯扪ਊ㜱㠠〠潢樊㰼ਯ䑥獴⁛㔰㈠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷ㄹ‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷ㄷ‰⁒ਯ呩瑬攠⡃桡灴敲‱〺⁁牲慹猩ਾ㸊敮摯扪ਊ㜱㤠〠潢樊㰼ਯ䑥獴⁛㔱〠〠删⽘奚‵′㌵㐠湵汬崊⽎數琠㜲〠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜱㠠〠刊⽔楴汥 䑥捬慲楮朠慮⁁牲慹䅮⁡牲慹⁩猠愠癡物慢汥⸠周敲敦潲攬⁬楫攠瑨攠潴桥爠癡物慢汥猠睥⁨慶攠捯癥牥搠獯⁦慲Ⱐ慮⁡牲慹⁭畳琠扥⁤散污牥搠扥景牥⁩琠捡渠扥⁵獥搮⁔桥⁳祮瑡砠景爠摥捬慲楮朠慮⁡牲慹⁩猠慬浯獴⁩摥湴楣慬⁴漠瑨攠獹湴慸⁦潲⁤散污物湧⁩湴敧敲猬⁣桡牡捴敲猬⁯爠潴桥爠癡物慢汥献⁆潲⁥硡浰汥Ⱐ祯甠睯畬搠摥捬慲攠慮⁩湴敧敲⁶慲楡扬攠瑥獴卣潲攠慳⁦潬汯睳㨠ꂠ楮琠瑥獴卣潲攻⁂礠捯湴牡獴Ⱐ祯甠睯畬搠摥捬慲攠慮⁡牲慹⁯映瑨牥攠瑥獴⁳捯牥猠瑨楳⁷慹㨠ꂠ楮琠瑥獴卣潲敛㍝㬠周楳⁤散污牡瑩潮⁣潮瑡楮猠慮⁡牲慹⁯映楮瑥来牳⸠奯甠楮獴敡搠捯畬搠摥捬慲攠慮⁡牲慹⁯映晬潡瑳Ⱐ捨慲慣瑥牳Ⱐ潲⁳瑲楮杳⁩渠瑨攠景汬潷楮朠浡湮敲㨠ꂠ晬潡琠䝐䄠嬵崻₠ꁣ桡爠杲慤敳嬷崻₠ꁳ瑲楮朠湡浥獛㙝㬠坨楬攠慮⁡牲慹⁭慹⁢攠潮攠潦⁳敶敲慬⁤慴愠瑹灥猬⁡汬⁴桥⁶慬略猠楮⁡⁰慲瑩捵污爠慲牡礠浵獴⁢攠潦⁴桥⁳慭攠摡瑡⁴祰攮⁙潵⁣慮湯琠桡癥⁡渠慲牡礠楮⁷桩捨⁳潭攠敬敭敮瑳⁡牥⁦汯慴猬⁯瑨敲猠慲攠獴物湧猬⁳瑩汬⁯瑨敲猠慲攠楮瑥来牳Ⱐ慮搠獯⁯渮⁔桥⁤散污牡瑩潮⁯映扯瑨⁡⁳楮杬攠癡物慢汥⁡湤⁡渠慲牡礠潦⁶慲楡扬敳⁢敧楮猠睩瑨⁴桥⁤慴愠瑹灥⁦潬汯睥搠批⁡⁶慲楡⤊㸾੥湤潢樊਷㈰‰⁯扪਼㰊⽄敳琠嬵㈳‰⁒ 塙娠㔠㈳㔴⁮畬汝ਯ乥硴‷㈱‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷ㄹ‰⁒ਯ呩瑬攠⣾＀䤀渀椀琀椀愀氀椀稀愀琀椀漀渀䄀猀 昀椀爀猀琀 搀椀猀挀甀猀猀攀搀 椀渀 䌀栀愀瀀琀攀爀 ㌀Ⰰ 椀渀椀琀椀愀氀椀稀愀琀椀漀渀 椀猀 眀栀攀渀 礀漀甀 愀猀猀椀最渀 愀 瘀愀氀甀攀 琀漀 愀 瘀愀爀椀愀戀氀攀 椀渀 琀栀攀 猀愀洀攀 猀琀愀琀攀洀攀渀琀 椀渀 眀栀椀挀栀 礀漀甀 搀攀挀氀愀爀攀 琀栀愀琀 瘀愀爀椀愀戀氀攀⸀ 䈀礀 挀漀渀琀爀愀猀琀Ⰰ 愀猀猀椀最渀洀攀渀琀 椀猀 眀栀攀渀 礀漀甀 愀猀猀椀最渀 愀 瘀愀氀甀攀 琀漀 愀 瘀愀爀椀愀戀氀攀 椀渀 愀 猀琀愀琀攀洀攀渀琀 愀昀琀攀爀 琀栀攀 漀渀攀 椀渀 眀栀椀挀栀 礀漀甀 搀攀挀氀愀爀攀 琀栀愀琀 瘀愀爀椀愀戀氀攀⸀ 圀攀 眀椀氀氀 搀椀猀挀甀猀猀 愀猀猀椀最渀椀渀最 瘀愀氀甀攀猀 琀漀 愀渀 愀爀爀愀礀 氀愀琀攀爀 椀渀 琀栀椀猀 挀栀愀瀀琀攀爀 椀渀 琀栀攀 猀攀挀琀椀漀渀†ᰀ䄀猀猀椀最渀椀渀最 愀渀搀 䐀椀猀瀀氀愀礀椀渀最 䄀爀爀愀礀 嘀愀氀甀攀猀⸠ᴀ 吀栀椀猀 猀攀挀琀椀漀渀 挀漀瘀攀爀猀 椀渀椀琀椀愀氀椀稀愀琀椀漀渀 漀昀 愀渀 愀爀爀愀礀⸀ 夀漀甀 栀愀瘀攀 琀眀漀 愀氀琀攀爀渀愀琀椀瘀攀 洀攀琀栀漀搀猀 漀昀 椀渀椀琀椀愀氀椀稀椀渀最 愀渀 愀爀爀愀礀⸀ 吀栀攀 昀椀爀猀琀 愀氀琀攀爀渀愀琀椀瘀攀 椀猀 攀砀瀀氀椀挀椀琀 愀爀爀愀礀 猀椀稀椀渀最Ⰰ 椀渀 眀栀椀挀栀 琀栀攀 猀焀甀愀爀攀 戀爀愀挀欀攀琀猀 挀漀渀琀愀椀渀 愀 渀甀洀攀爀椀挀愀氀 挀漀渀猀琀愀渀琀 琀栀愀琀 攀砀瀀氀椀挀椀琀氀礀 猀瀀攀挀椀昀椀攀猀 琀栀攀 猀椀稀攀 漀昀 琀栀攀 愀爀爀愀礀⸀ 吀栀攀 猀攀挀漀渀搀 愀氀琀攀爀渀愀琀椀瘀攀 椀猀 椀洀瀀氀椀挀椀琀 愀爀爀愀礀 猀椀稀椀渀最Ⰰ 椀渀 眀栀椀挀栀 琀栀攀 猀焀甀愀爀攀 戀爀愀挀欀攀琀猀 愀爀攀 攀洀瀀琀礀 愀渀搀 琀栀攀 猀椀稀攀 漀昀 琀栀攀 愀爀爀愀礀 椀猀 椀渀搀椀挀愀琀攀搀 椀洀瀀氀椀挀椀琀氀礀 戀礀 琀栀攀 渀甀洀戀攀爀 漀昀 攀氀攀洀攀渀琀猀 漀渀 琀栀攀 爀椀最栀琀 猀椀搀攀 漀昀 琀栀攀 愀猀猀椀最渀洀攀渀琀 漀瀀攀爀愀琀漀爀⸀ 䔀砀瀀氀椀挀椀琀 䄀爀爀愀礀 匀椀稀椀渀最 吀栀攀 昀漀氀氀漀眀椀渀最 愀爀攀 攀砀愀洀瀀氀攀猀 漀昀 攀砀瀀氀椀挀椀琀 愀爀爀愀礀 猀椀稀椀渀最㨀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀嬀㌀崀 㴀 笀 㜀㐀Ⰰ 㠀㜀Ⰰ 㤀㄀ 紀㬩ਾ㸊敮摯扪ਊ㜲ㄠ〠潢樊㰼ਯ䑥獴⁛㔳㜠〠删⽘奚‵″㤲〠湵汬崊⽎數琠㜲㈠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜲〠〠刊⽔楴汥 䅳獩杮楮朠慮搠䑩獰污祩湧⁁牲慹⁖慬略獔桥⁦潬汯睩湧⁰牯杲慭⁳桯睳⁨潷⁴漠慳獩杮⁶慬略猠瑯⁡渠慲牡礬⁯湥⁥汥浥湴⁡琠愠瑩浥⸠周攠慳獩杮浥湴⁳瑡牴猠睩瑨⁴桥⁦楲獴⁩湤數Ⱐ〬⁡湤⁥湤猠睩瑨⁴桥⁬慳琠楮摥砬′Ⱐ睨楣栠楳⁯湥⁬敳猠瑨慮⁴桥⁮畭扥爠潦⁥汥浥湴猬″⸠周攠灲潧牡洠瑨敮⁯畴灵瑳⁴桥⁡牲慹⁶慬略猬⁯湥⁡琠愠瑩浥⸠⍩湣汵摥‼楯獴牥慭㸠畳楮朠湡浥獰慣攠獴搻⁩湴⁭慩渠⠩⁻₠ꁩ湴⁴敳瑓捯牥嬳崻₠ꁣ潵琠㰼•䕮瑥爠瑥獴⁳捯牥‣ㄺ•㬠ꂠ捩渠㸾⁴敳瑓捯牥嬰崻₠ꁣ潵琠㰼•䕮瑥爠瑥獴⁳捯牥‣㈺•㬠ꂠ捩渠㸾⁴敳瑓捯牥嬱崻₠ꁣ潵琠㰼•䕮瑥爠瑥獴⁳捯牥‣㌺•㬠ꂠ捩渠㸾⁴敳瑓捯牥嬲崻₠ꁣ潵琠㰼•呥獴⁳捯牥‣ㄺ•‼㰠瑥獴卣潲敛そ‼㰠敮摬㬠ꂠ捯畴‼㰠≔敳琠獣潲攠⌲㨠∠㰼⁴敳瑓捯牥嬱崠㰼⁥湤氻₠ꁣ潵琠㰼•呥獴⁳捯牥‣㌺•‼㰠瑥獴卣潲敛㉝‼㰠敮摬㬠ꂠ牥瑵牮‰㬠素卯浥⁳慭灬攠楮灵琠慮搠潵瑰畴⁣潵汤⁢攺⁅湴敲⁴敳琠獣潲攠⌱㨠㜷⁅湴敲⁴敳琠獣潲攠⌲㨠㤱⁅湴敲⁴敳琠獣潲攠⌳㨠㠴⁔敳琠獣潲攠⌱㨠㜷⁔敳琠獣潲攠⌲㨠㤱⁔敳琠獣潲攠⌳㨠㠴⁈潷敶敲Ⱐ瑨楳⁯湥ⵥ汥浥湴ⵡ琭愭瑩浥⁡灰牯慣栠桡猠湯⁡摶慮瑡来⁯癥爠瑨攠景汬潷楮朠灲潧牡洬⁷桩捨⁤潥猠湯⤊㸾੥湤潢樊਷㈲‰⁯扪਼㰊⽄敳琠嬵㔰‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜲㌠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜲ㄠ〠刊⽔楴汥 偡獳楮朠䅲牡祳⁡猠䙵湣瑩潮⁁牧畭敮瑳偲敶楯畳汹⁩渠瑨楳⁣桡灴敲Ⱐ睥⁵獥搠瑨攠景汬潷楮朠灲潧牡洠瑯⁤敭潮獴牡瑥⁨潷⁬潯灳⁡牥⁥晦散瑩癥⁩渠慳獩杮楮朠慮搠摩獰污祩湧⁡牲慹⁶慬略猺‣楮捬畤攠㱩潳瑲敡派⁵獩湧⁮慭敳灡捥⁳瑤㬠捯湳琠楮琠䵁堠㴠㌻⁩湴⁭慩渠⠩⁻₠ꁩ湴⁴敳瑓捯牥孍䅘崻₠ꁦ潲 楮琠椠㴠〻⁩‼⁍䅘㬠椫⬩₠ꁻ₠ꂠꂠ捯畴‼㰠≅湴敲⁴敳琠獣潲攠⌢‼㰠椠⬠ㄠ㰼•㨠∻₠ꂠꂠ捩渠㸾⁴敳瑓捯牥孩崻₠ꁽ₠ꁦ潲 椠㴠〻⁩‼⁍䅘㬠椫⬩₠ꁻ₠ꂠꂠ捯畴‼㰠≔敳琠獣潲攠⌢‼㰠椠⬠ㄠ㰼•㨠∠ꂠꂠꂠꂠ㰼⁴敳瑓捯牥孩崠㰼⁥湤氻₠ꁽ₠ꁲ整畲渠〻⁽⁎潷⁷攠慲攠杯楮朠瑯⁭慫攠瑨楳⁰牯杲慭⁭潲攠浯摵污爠批⁷物瑩湧⁯湥⁦畮捴楯渠瑯⁡獳楧渠癡汵敳⁴漠瑨攠慲牡礬⁡湤⁡湯瑨敲⁦畮捴楯渠瑯⁤楳灬慹⁶慬略猠晲潭⁴桥⁡牲慹Ⱐ牡瑨敲⁴桡渠摯楮朠慬氠瑨慴⁷潲欠楮⁴桥⁭慩渠晵湣瑩潮⸠⍩湣汵摥‼楯獴牥慭㸠畳楮朠湡浥獰慣攠獴搻⁶潩搠慳獩杮噡汵敳⡩湴孝Ⱐ楮琩㬠癯楤⁤楳灬慹噡汵敳⡩湴孝Ⱐ楮琩㬠捯湳琠楮琠䵁堠㴠㌻⁩湴⁭慩渠⠩⁻₠ꁩ湴⁴敳瑓捯牥孍䅘崻₠ꁡ獳楧湖慬略猨瑥獴卣潲攬⁍䅘⤻₠ꁤ楳灬慹噡汵敳⡴敳瑓捯牥Ⱐ䵁堩㬠ꀠꂠ牥瑵牮‰㬠素癯楤⁡獳楧湖慬略猨楮琠瑥獴獛⤊㸾੥湤潢樊਷㈳‰⁯扪਼㰊⽄敳琠嬵㔴‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜲㐠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜲㈠〠刊⽔楴汥 ﻿SummaryThe variables we have worked with before this chapter could hold only one value at a time. In this chapter, you learned about an array, which permits you to use a single variable to store many values. The values are stored at consecutive indexes, starting with zero and then incrementing by one for each additional element of the array. The data type of an array may be integer, float, or character. However, a particular array cannot contain integers, floats, and characters. All the elements of an array must be of the same data type. You need to declare an array before you can use it. The syntax for declaring an array is almost identical to the syntax for declaring integer, character, or other variables. The only difference between declaring a single scalar variable and an array of scalar variables is that, when declaring an array, the variable name is followed by a number within square brackets. That number is the array’s size declarator. The size declarator must be a literal or a⤊㸾੥湤潢樊਷㈴‰⁯扪਼㰊⽄敳琠嬵㔶‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜲㔠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜲㌠〠刊⽔楴汥 兵楺⁃慮⁡⁰慲瑩捵污爠慲牡礠捯湴慩渠楮瑥来牳Ⱐ晬潡瑳Ⱐ慮搠捨慲慣瑥牳㼠坨慴⁩猠瑨攠湵浢敲⁯映瑨攠獴慲瑩湧⁩湤數⁯映慮⁡牲慹㼠坨慴⁩猠瑨攠湵浢敲⁯映瑨攠敮摩湧⁩湤數⁯映慮⁡牲慹㼠坨慴⁩猠瑨攠摩晦敲敮捥⁢整睥敮⁩湩瑩慬楺慴楯渠慮搠慳獩杮浥湴㼠坨慴⁡牥⁴桥⁴睯⁡汴敲湡瑩癥⁭整桯摳⁯映楮楴楡汩穩湧⁡渠慲牡礿⁗桡琠楳⁴桥⁰畲灯獥⁯映瑨攠湵汬⁣桡牡捴敲㼠坨慴⁩猠瑨攠癡汵攠潦⁴桥⁮慭攠潦⁡渠慲牡礿⁓桯畬搠瑨攠污獴⁥汥浥湴⁯映愠捨慲慣瑥爠慲牡礠慬睡祳⁢攠愠湵汬⁣桡牡捴敲㼠坨慴⁩猠瑨攠摩晦敲敮捥⁢整睥敮⁴桥⁧整⁡湤⁧整汩湥⁦畮捴楯湳⁯映瑨攠捩渠潢橥捴㼠坨敮⁹潵⁰慳猠慮⁡牲慹⁮慭攠慳⁡⁦畮捴楯渠慲杵浥湴Ⱐ慲攠祯甠灡獳楮朠楴⁢礠癡汵攬⁲敦敲敮捥Ⱐ潲⁡摤牥獳㼩ਾ㸊敮摯扪ਊ㜲㔠〠潢樊㰼ਯ䑥獴⁛㔵㠠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷㈶‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㈴‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 ㄀㄀㨀 圀栀愀琠ᤀ猀 琀栀攀 䄀搀搀爀攀猀猀㼀 倀漀椀渀琀攀爀猀 伀瘀攀爀瘀椀攀眀 䴀礀 瀀愀爀攀渀琀猀 琀漀氀搀 洀攀 眀栀攀渀 䤀 眀愀猀 愀 挀栀椀氀搀 琀栀愀琀 椀琀 眀愀猀 渀漀琀 瀀漀氀椀琀攀 琀漀 瀀漀椀渀琀⸀ 䠀漀眀攀瘀攀爀Ⰰ 攀愀挀栀 猀攀洀攀猀琀攀爀 䤀 琀攀愀挀栀 洀礀 挀漀洀瀀甀琀攀爀 瀀爀漀最爀愀洀洀椀渀最 猀琀甀搀攀渀琀猀 栀漀眀 琀漀 瀀漀椀渀琀⸀ 一漀Ⰰ 䤀 愀洀 渀漀琀 琀爀礀椀渀最 琀漀 瀀爀漀洀漀琀攀 爀甀搀攀 戀攀栀愀瘀椀漀爀⸀ 刀愀琀栀攀爀Ⰰ 䤀 愀洀 琀攀愀挀栀椀渀最 洀礀 猀琀甀搀攀渀琀猀 愀戀漀甀琀 瀀漀椀渀琀攀爀猀Ⰰ 眀栀椀挀栀†ᰀ瀀漀椀渀琠ᴀ 琀漀 愀渀漀琀栀攀爀 瘀愀爀椀愀戀氀攀 漀爀 挀漀渀猀琀愀渀琀⸀ 夀漀甀 礀漀甀爀猀攀氀昀 洀愀礀 栀愀瘀攀 愀挀琀攀搀 愀猀 愀 瀀漀椀渀琀攀爀 椀渀 琀栀攀 瀀愀猀琀⸀ 䠀愀瘀攀 礀漀甀 攀瘀攀爀 戀攀攀渀 愀猀欀攀搀 眀栀攀爀攀 猀漀洀攀漀渀攀 氀椀瘀攀猀㼀 䤀昀 琀栀愀琀 栀漀甀猀攀 眀愀猀 渀攀愀爀戀礀Ⰰ 礀漀甀 洀愀礀 栀愀瘀攀 瀀漀椀渀琀攀搀 椀琀 漀甀琀⸀ 吀栀攀 瀀漀椀渀琀攀爀 瀀攀爀昀漀爀洀猀 愀 猀椀洀椀氀愀爀 昀甀渀挀琀椀漀渀⸀ 䄀 瀀漀椀渀琀攀爀 瀀漀椀渀琀猀 琀漀 愀渀漀琀栀攀爀 瘀愀爀椀愀戀氀攀 漀爀 挀漀渀猀琀愀渀琀⸀ 伀昀 挀漀甀爀猀攀Ⰰ 琀栀攀 瀀漀椀渀琀攀爀 搀漀攀猀 渀漀琀 瀀漀椀渀琀 眀椀琀栀 愀渀 愀爀洀 愀渀搀 昀椀渀最攀爀猀 愀猀 礀漀甀 眀漀甀氀搀⸀ 刀愀琀栀攀爀Ⰰ 琀栀攀 瀀漀椀渀琀攀爠ᤀ猀 瘀愀氀甀攀 椀猀 琀栀攀 愀搀搀爀攀猀猀 漀昀 琀栀攀 瘀愀爀椀愀戀氀攀 漀爀 挀漀渀猀琀愀渀琀 琀漀 眀栀椀挀栀 椀琀 瀀漀椀渀琀猀⸀ 䤀渀搀攀攀搀Ⰰ 礀漀甀 洀愀礀 栀愀瘀攀 搀漀渀攀 猀漀洀攀琀栀椀渀最 猀椀洀椀氀愀爀⸀ 䤀昀 礀漀甀 眀攀爀攀 愀猀欀攀搀 眀栀攀爀攀 猀漀洀攀漀渀攀 氀椀瘀攀猀 愀渀搀 琀栀愀琀 栀漀甀猀攀 眀愀猀 渀漀琀 挀氀漀猀攀 攀渀漀甀最栀 琀漀 瀀栀礀猀椀挀愀氀氀礀 瀀漀椀渀琀 漀甀琀Ⰰ 礀漀甀 椀渀猀琀攀愀搀 洀愀礀 栀愀瘀攀 瀀爀漀瘀椀搀攀搀 愀渀 愀搀搀爀攀猀猀 戀礀 眀栀椀挀栀 琀栀攀 栀漀甀猀攀 挀漀甀氀搀 戀攀 氀漀挀愀琀攀搀⸀ 倀漀椀渀琀攀爀猀 栀愀瘀攀 栀愀搀 愀 爀攀瀩ਾ㸊敮摯扪ਊ㜲㘠〠潢樊㰼ਯ䑥獴⁛㔵㠠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷㈷‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㈵‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 ㄀㄀㨀 圀栀愀琠ᤀ猀 琀栀攀 䄀搀搀爀攀猀猀㼀 倀漀椀渀琀攀爀猩ਾ㸊敮摯扪ਊ㜲㜠〠潢樊㰼ਯ䑥獴⁛㔶㐠〠删⽘奚‵‱㔷ㄠ湵汬崊⽎數琠㜲㠠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜲㘠〠刊⽔楴汥 ﻿Declaring a PointerLike any variable or constant, you must declare a pointer before you can work with it. The syntax of declaring a pointer is almost the same as declaring a variable which stores a value rather than an address. However, the meaning of the pointer’s data type is quite different than the meaning of the data type of a variable which stores a value rather than an address. Syntax of a Pointer Declaration The syntax of declaring a pointer is almost the same as the syntax of declaring the variables we have worked with in previous chapters. The following statement declares an integer pointer variable: int* iPtr; The asterisk you use to declare a pointer is the same asterisk that you use for multiplication. However, in this statement the asterisk is being used in a declaration, so in this context it is being used to designate a variable as a pointer. Later in this chapter, we will use the asterisk for a third purpose, as an indirection operator. Note It is common in C++ for
a⤊㸾੥湤潢樊਷㈸‰⁯扪਼㰊⽄敳琠嬵㜰‰⁒ 塙娠㔠ㄵ㜱⁮畬汝ਯ乥硴‷㈹‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㈷‰⁒ਯ呩瑬攠⣾＀䄀猀猀椀最渀椀渀最 愀 嘀愀氀甀攀 琀漀 愀 倀漀椀渀琀攀爀吀栀椀猀 猀攀挀琀椀漀渀 眀椀氀氀 攀砀瀀氀愀椀渀 栀漀眀 礀漀甀 愀猀猀椀最渀 愀 瘀愀氀甀攀 琀漀 愀 瀀漀椀渀琀攀爀⸀ 吀栀漀甀最栀Ⰰ 戀攀昀漀爀攀 䤀 攀砀瀀氀愀椀渀 栀漀眀Ⰰ 瀀攀爀栀愀瀀猀 䤀 猀栀漀甀氀搀 攀砀瀀氀愀椀渀 眀栀礀⸀ 圀栀礀 夀漀甀 匀栀漀甀氀搀 一漀琀 吀爀礀 琀漀 唀猀攀 愀渀 唀渀愀猀猀椀最渀攀搀ꀀ倀漀椀渀琀攀爀 䈀愀挀欀 椀渀 攀氀攀洀攀渀琀愀爀礀 猀挀栀漀漀氀 眀攀 眀攀爀攀 琀愀甀最栀琀 愀 瘀攀爀猀攀㨀†ᰀ䤀 猀栀漀琀 愀渀 愀爀爀漀眀 椀渀琀漀 琀栀攀 愀椀爀Ⰰ 眀栀攀爀攀 椀琀 氀愀渀搀猀Ⰰ 䤀 搀漀渠ᤀ琀 挀愀爀攀⸠ᴀ 䰀漀漀欀椀渀最 戀愀挀欀Ⰰ 䤀 眀漀渀搀攀爀 眀栀礀 礀漀甀渀最 挀栀椀氀搀爀攀渀 眀攀爀攀 琀愀甀最栀琀 琀栀椀猀 瘀攀爀猀攀⸀ 䤀琀 洀愀礀 爀栀礀洀攀Ⰰ 戀甀琀 椀琀猀 洀攀猀猀愀最攀 椀猀 爀攀愀氀氀礀 渀漀琀 愀瀀瀀爀漀瀀爀椀愀琀攀 昀漀爀 氀椀琀琀氀攀 漀渀攀猀⸀ 䠀漀眀攀瘀攀爀Ⰰ 眀栀攀渀 礀漀甀 搀攀挀氀愀爀攀 愀 瀀漀椀渀琀攀爀 戀甀琀 琀栀攀渀 甀猀攀 椀琀 眀椀琀栀漀甀琀 昀椀爀猀琀 愀猀猀椀最渀椀渀最 椀琀 愀 瘀愀氀甀攀Ⰰ 礀漀甀 愀爀攀Ⰰ 愀氀愀猀Ⰰ 搀漀椀渀最 琀栀攀 瀀爀漀最爀愀洀洀椀渀最 攀焀甀椀瘀愀氀攀渀琀 漀昀 琀栀愀琀 瘀攀爀猀攀⸀ 吀栀攀 昀漀氀氀漀眀椀渀最 瀀爀漀最爀愀洀 搀攀挀氀愀爀攀猀 愀 瀀漀椀渀琀攀爀 愀渀搀 琀栀攀渀 愀琀琀攀洀瀀琀猀 琀漀 漀甀琀瀀甀琀 椀琀猀 瘀愀氀甀攀 眀椀琀栀漀甀琀 昀椀爀猀琀 愀猀猀椀最渀椀渀最 椀琀 愀 瘀愀氀甀攀㨀 ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猀瀀愀挀攀 猀琀搀㬀 椀渀琀 洀愀椀渀 (�⤀ 笀 ꀀꀀ椀渀琀⨀ 椀倀琀爀㬀 ꀀꀀ挀漀甀琀 㰀㰀 ∀吀栀攀 瘀愀氀甀攀 漀昀 椀倀琀爀 椀猀 ∀ 㰀㰀 椀倀琀爀 㰀㰀 攀渀搀氀㬀 ꀀꀀ爀攀琀甀爀渀 　㬀 紀 吀栀攀 爀攀猀甀氀琀Ⰰ 搀攀瀀攀渀搀椀渀最 漀渀 礀漀甀爀 挀漀洀瀀椀氀攀爀 愀渀搀 漀瀀攀爀愀琀椀渀最 猀礀猀琀攀洀Ⰰ 洀愀礀 戀攀 愀 挀漀洀瀀椀氀攀爀 攀爀爀漀爀Ⰰ 愀 爀甀渀琀椀洀攀 攀爀爀漀爀Ⰰ 漀爀 愀 挀漀洀瀀甀琀攀爀 琀栀愀琀 氀漀挀欀猀 甀瀀⸀ 刀攀最愀爀搀氀攀猀猀Ⰰ 愩ਾ㸊敮摯扪ਊ㜲㤠〠潢樊㰼ਯ䑥獴⁛㔷㔠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷㌰‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㈸‰⁒ਯ呩瑬攠⡉湤楲散瑩潮⁏灥牡瑯爠慮搠䑥牥晥牥湣楮朠周攠灲業慲礠畳攠潦⁡⁰潩湴敲⁩猠瑯⁡捣敳猠慮搬⁩映慰灲潰物慴攬⁣桡湧攠瑨攠癡汵攠潦⁴桥⁶慲楡扬攠瑨慴⁴桥⁰潩湴敲⁩猠灯楮瑩湧⁴漮⁉渠瑨攠景汬潷楮朠灲潧牡洬⁴桥⁶慬略⁯映瑨攠楮瑥来爠癡物慢汥⁮畭⁩猠捨慮来搠瑷楣攮‣楮捬畤攠㱩潳瑲敡派⁵獩湧⁮慭敳灡捥⁳瑤㬠楮琠浡楮 ⤠笠ꂠ楮琠湵洠㴠㔻₠ꁩ湴⨠楐瑲‽…湵活₠ꁣ潵琠㰼•周攠癡汵攠潦⁮畭⁩猠∠㰼⁮畭‼㰠敮摬㬠ꂠ湵洠㴠㄰㬠ꂠ捯畴‼㰠≔桥⁶慬略⁯映湵洠慦瑥爠湵洠㴠㄰⁩猠∠ꂠꂠꀼ㰠湵洠㰼⁥湤氻₠ꀪ楐瑲‽‱㔻₠ꁣ潵琠㰼•周攠癡汵攠潦⁮畭⁡晴敲‪楐瑲‽‱㔠楳•₠ꂠꂠ㰼⁮畭‼㰠敮摬㬠ꂠ牥瑵牮‰㬠素周攠牥獵汴楮朠潵瑰畴⁩猠周攠癡汵攠潦⁮畭⁩猠㔠周攠癡汵攠潦⁮畭⁡晴敲⁮畭‽‱〠楳‱〠周攠癡汵攠潦⁮畭⁡晴敲‪楐瑲‽‱㔠楳‱㔠周攠晩牳琠捨慮来⁳桯畬搠扥⁦慭楬楡爬⁢礠瑨攠摩牥捴⁡獳楧湭敮琠潦⁡⁶慬略⁴漠湵洬⁳畣栠慳⁮畭‽‱〮⁈潷敶敲Ⱐ瑨攠獥捯湤⁣桡湧攠楳⁡捣潭灬楳桥搠愠湥眠睡礬⁵獩湧⁴桥⁩湤楲散瑩潮⁯灥牡瑯爺‪楐瑲‽‱㔻⁔桥⁩湤楲散瑩潮⁯灥牡瑯爠楳⁡渠慳瑥物獫Ⱐ瑨攠獡浥⁡獴敲楳欠瑨慴⁹潵⁵獥搠瑯⁤散污牥⁴桥⁰潩湴敲⁯爠瑯⁰敲景牭⤊㸾੥湤潢樊਷㌰‰⁯扪਼㰊⽄敳琠嬵㜹‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜳ㄠ〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜲㤠〠刊⽔楴汥 ﻿The Pointer as a Variable or a ConstantA pointer may be a variable or a constant. Let’s examine both possibilities. Pointer as a Variable The preceding program had the pointer pointing to one integer variable. However, a pointer variable, being a variable, can point to different variables at different times in the program. In the following program, the value of the pointer is changed to point to two different integer variables. #include <iostream> using namespace std; int main �⠀) { int num1 = 5, num2 = 14; int* iPtr = &num1; cout << "The value of num1 is " << num1 << endl; *iPtr *= 2; cout << "The value of num1 after *iPtr *= 2 is " << *iPtr << endl; iPtr = &num2; cout << "The value of num2 is " << num2 << endl; *iPtr /= 2; cout << "The value of num after *iPtr /= 2 is " << *iPtr << endl; return 0; } The resulting output is therefore: The value of num1 is 5 The value of num1 after *iPtr *= 2 is 10 The value of num2 is 14 The value of num after *iPtr /= 2 i⤊㸾੥湤潢樊਷㌱‰⁯扪਼㰊⽄敳琠嬵㠸‰⁒ 塙娠㔠㈳㔴⁮畬汝ਯ乥硴‷㌲‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㌰‰⁒ਯ呩瑬攠⣾＀倀漀椀渀琀攀爀 䄀爀椀琀栀洀攀琀椀挀吀栀攀 瘀愀氀甀攀 漀昀 愀 瀀漀椀渀琀攀爀Ⰰ 攀瘀攀渀 琀栀漀甀最栀 椀琀 椀猀 愀渀 愀搀搀爀攀猀猀Ⰰ 椀猀 愀 渀甀洀攀爀椀挀 瘀愀氀甀攀⸀ 吀栀攀爀攀昀漀爀攀Ⰰ 礀漀甀 挀愀渀 瀀攀爀昀漀爀洀 愀爀椀琀栀洀攀琀椀挀 漀瀀攀爀愀琀椀漀渀猀 漀渀 愀 瀀漀椀渀琀攀爀 樀甀猀琀 愀猀 礀漀甀 挀愀渀 愀 渀甀洀攀爀椀挀 瘀愀氀甀攀⸀ 唀猀椀渀最 愀 嘀愀爀椀愀戀氀攀 倀漀椀渀琀攀爀 琀漀 倀漀椀渀琀 琀漀 愀渀 䄀爀爀愀礀 倀漀椀渀琀攀爀 愀爀椀琀栀洀攀琀椀挀 椀猀 搀漀渀攀 漀昀琀攀渀 眀椀琀栀 愀爀爀愀礀猀⸀ 䠀漀眀攀瘀攀爀Ⰰ 猀椀渀挀攀 礀漀甀 挀愀渀渀漀琀 挀栀愀渀最攀 琀栀攀 瘀愀氀甀攀 漀昀 琀栀攀 渀愀洀攀 漀昀 愀渀 愀爀爀愀礀Ⰰ 椀琀 戀攀椀渀最 愀 挀漀渀猀琀愀渀琀 瀀漀椀渀琀攀爀Ⰰ 礀漀甀 昀椀爀猀琀 猀栀漀甀氀搀 搀攀挀氀愀爀攀 愀 瘀愀爀椀愀戀氀攀 瀀漀椀渀琀攀爀 愀渀搀 琀栀攀渀 愀猀猀椀最渀 椀琀 琀漀 琀栀攀 愀搀搀爀攀猀猀 漀昀 愀渀 愀爀爀愀礀⸀ 匀漀Ⰰ 眀攀 戀攀最椀渀 眀椀琀栀 愀渀 攀猀琀愀戀氀椀猀栀攀搀 瀀漀椀渀琀 漀昀 爀攀昀攀爀攀渀挀攀Ⰰ 氀攀琠ᤀ猀 猀琀愀爀琀 眀椀琀栀 琀栀攀 昀漀氀氀漀眀椀渀最 瀀爀漀最爀愀洀Ⰰ 眀栀椀挀栀 漀甀琀瀀甀琀猀 琀栀攀 愀搀搀爀攀猀猀 愀渀搀 瘀愀氀甀攀 愀琀 攀愀挀栀 攀氀攀洀攀渀琀 漀昀 愀渀 愀爀爀愀礀 甀猀椀渀最 琀栀攀 渀愀洀攀 漀昀 琀栀攀 愀爀爀愀礀㨀 ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猀瀀愀挀攀 猀琀搀㬀 挀漀渀猀琀 椀渀琀 䴀䄀堀 㴀 ㌀㬀 椀渀琀 洀愀椀渀 (�⤀ 笀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀嬀䴀䄀堀崀 㴀 笀㐀Ⰰ 㜀Ⰰ ㄀紀㬀 ꀀꀀ昀漀爀 (int i = 0; i < MAX; i++�⤀ ꀀꀀ笀 ꀀꀀꀀꀀꀀ挀漀甀琀 㰀㰀 ∀吀栀攀 愀搀搀爀攀猀猀 漀昀 椀渀搀攀砀 ∀ 㰀㰀 椀 ꀀꀀꀀꀀꀀꀀꀀꀀ㰀㰀 ∀ 漀昀 琀栀攀 愀爀爀愀礀 椀猀 ∀㰀㰀 ☀琀攀猀琀匀挀漀爀攀嬀椀崀 㰀㰀 攀渀搀氀㬀 ꀀꀀꀀꀀꀀ挀漀甀琀 㰀㰀 ∀吀栀攀 瘀愀氀甀攀 愀琀 椀渀搀攀砀 ∀ 㰀㰀 椀 ꀀꀀꀀꀀꀀꀀꀀꀀ㰀㰀 ∀ 漀昀 琀栀攀 愀爀爀愀礀 椀猀 ∀㰀㰀 琀攀猀琀匀挀漀爀攀嬀椀崀 㰀㰀 攀渀搀氀㬀 ꀀꀀ紀 ꀀꀀ爀攀琀甩ਾ㸊敮摯扪ਊ㜳㈠〠潢樊㰼ਯ䑥獴⁛㔹㤠〠删⽘奚‵′㌵㐠湵汬崊⽎數琠㜳㌠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜳ㄠ〠刊⽔楴汥 偯楮瑥牳⁡猠䙵湣瑩潮⁁牧畭敮瑳偯楮瑥牳⁭慹⁢攠灡獳敤⁡猠晵湣瑩潮⁡牧畭敮瑳⸠偯楮瑥爠湯瑡瑩潮⁵獵慬汹⁩猠畳敤⁴漠湯瑥⁴桡琠慮⁡牧畭敮琠楳⁡⁰潩湴敲⸠䡯睥癥爬⁩映瑨攠灯楮瑥爠慲杵浥湴⁩猠瑨攠湡浥⁯映慮⁡牲慹Ⱐ獵扳捲楰琠湯瑡瑩潮⁡汴敲湡瑩癥汹⁭慹⁢攠畳敤⸠偡獳楮朠慮⁁牲慹⁕獩湧⁐潩湴敲⁎潴慴楯渠䥮⁃桡灴敲‱〬⁷攠敭灬潹敤⁴桥⁦潬汯睩湧⁰牯杲慭⁴桡琠畳敤⁯湥⁦畮捴楯渠瑯⁡獳楧渠癡汵敳⁴漠瑨攠慲牡礠慮搠慮潴桥爠晵湣瑩潮⁴漠摩獰污礠癡汵敳⁦牯洠瑨攠慲牡礬⁲慴桥爠瑨慮⁤潩湧⁡汬⁴桡琠睯牫⁩渠瑨攠浡楮⁦畮捴楯渮‣楮捬畤攠㱩潳瑲敡派⁵獩湧⁮慭敳灡捥⁳瑤㬠癯楤⁡獳楧湖慬略猨楮瑛崬⁩湴⤻⁶潩搠摩獰污祖慬略猨楮瑛崬⁩湴⤻⁣潮獴⁩湴⁍䅘‽″㬠楮琠浡楮 ⤠笠ꂠ楮琠瑥獴卣潲敛䵁塝㬠ꂠ慳獩杮噡汵敳⡴敳瑓捯牥Ⱐ䵁堩㬠ꂠ摩獰污祖慬略猨瑥獴卣潲攬⁍䅘⤻₠₠ꁲ整畲渠〻⁽⁶潩搠慳獩杮噡汵敳⡩湴⁴敳瑳孝Ⱐ楮琠湵洩⁻₠ꁦ潲 楮琠椠㴠〻⁩‼⁮畭㬠椫⬩₠ꁻ₠ꂠꂠ捯畴‼㰠≅湴敲⁴敳琠獣潲攠⌢‼㰠椠⬠ㄠ㰼•㨠∻₠ꂠꂠ捩渠㸾⁴敳瑳孩崻₠ꁽ⁽⁶潩搠摩獰污祖慬略猨楮琠獣潲敳孝Ⱐ楮琠敬敭猩⁻⁦潲 楮琠椠㴠〻⁩‼⁥汥浳㬠椫⬩₠ꁻ₠ꂠꂠ捯畴‼㰠≔敳⤊㸾੥湤潢樊਷㌳‰⁯扪਼㰊⽄敳琠嬶〷‰⁒ 塙娠㔠ㄵ㜱⁮畬汝ਯ乥硴‷㌴‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㌲‰⁒ਯ呩瑬攠⣾＀䐀礀渀愀洀椀挀 䴀攀洀漀爀礀 䄀氀氀漀挀愀琀椀漀渀 䄀猀 搀椀猀挀甀猀猀攀搀 椀渀 䌀栀愀瀀琀攀爀 ㄀　Ⰰ 眀栀攀渀 搀攀挀氀愀爀椀渀最 愀渀 愀爀爀愀礀Ⰰ 琀栀攀 猀椀稀攀 搀攀挀氀愀爀愀琀漀爀 洀甀猀琀 戀攀 攀椀琀栀攀爀 愀 氀椀琀攀爀愀氀 漀爀 愀 挀漀渀猀琀愀渀琀Ⰰ 愀渀搀 洀愀礀 渀漀琀 戀攀 愀 瘀愀爀椀愀戀氀攀⸀ 吀栀攀 昀漀氀氀漀眀椀渀最 瀀爀漀最爀愀洀 昀爀漀洀 䌀栀愀瀀琀攀爀 ㄀　 愀琀琀攀洀瀀琀猀Ⰰ 甀渀猀甀挀挀攀猀猀昀甀氀氀礀Ⰰ 琀漀 甀猀攀 愀 瘀愀爀椀愀戀氀攀 渀甀洀吀攀猀琀猀 椀渀 搀攀挀氀愀爀椀渀最 琀栀攀 猀椀稀攀 漀昀 愀渀 愀爀爀愀礀㨀 ⌀椀渀挀氀甀搀攀 㰀椀漀猀琀爀攀愀洀㸀 甀猀椀渀最 渀愀洀攀猀瀀愀挀攀 猀琀搀㬀 椀渀琀 洀愀椀渀 (�⤀ 笀 ꀀꀀ椀渀琀 渀甀洀吀攀猀琀猀㬀 ꀀꀀ挀漀甀琀 㰀㰀 ∀䔀渀琀攀爀 琀栀攀 渀甀洀戀攀爀 漀昀 琀攀猀琀 猀挀漀爀攀猀㨀∀㬀 ꀀꀀ挀椀渀 㸀㸀 渀甀洀吀攀猀琀猀㬀 ꀀꀀ椀渀琀 琀攀猀琀匀挀漀爀攀嬀渀甀洀吀攀猀琀猀崀㬀 ꀀꀀ爀攀琀甀爀渀 　㬀 紀 吀栀攀 爀攀猀甀氀琀 椀猀 愀 挀漀洀瀀椀氀攀爀 攀爀爀漀爀⸀ 吀栀攀 挀漀洀瀀椀氀攀爀 眀椀氀氀 昀氀愀最 琀栀攀 搀攀挀氀愀爀愀琀椀漀渀 漀昀 琀栀攀 愀爀爀愀礀 (int testScore[numTests]�⤀ 愀渀搀 挀漀洀瀀氀愀椀渀 琀栀愀琀 愀 挀漀渀猀琀愀渀琀 攀砀瀀爀攀猀猀椀漀渀 眀愀猀 攀砀瀀攀挀琀攀搀⸀ 吀栀攀 爀攀愀猀漀渀 愀 挀漀渀猀琀愀渀琀 (or literal�⤀ 攀砀瀀爀攀猀猀椀漀渀 椀猀 爀攀焀甀椀爀攀搀 椀猀 琀栀愀琀 椀渀 琀栀椀猀 瀀爀漀最爀愀洀 眀攀 愀爀攀 愀氀氀漀挀愀琀椀渀最 洀攀洀漀爀礀 昀漀爀 琀栀攀 愀爀爀愀礀 愀琀 挀漀洀瀀椀氀攀 琀椀洀攀⸀ 吀栀攀 挀漀洀瀀椀氀攀爀 渀攀攀搀猀 琀漀 欀渀漀眀 攀砀愀挀琀氀礀 栀漀眀 洀甀挀栀 洀攀洀漀爀礀 琀漀 愀氀氀漀挀愀琀攀⸀ 䠀漀眀攀瘀攀爀Ⰰ 椀昀 愀 瘀愀爀椀愀戀氀攀 椀猀 琀栀攀 猀椀稀攀 搀攀挀氀愀爀愀琀漀爀Ⰰ 琀栀攀 挀漀洀瀀椀氀攀爀 搀漀攀猀 渀漀琀 欀渀漀眀 栀漀眀 洀甀挀栀 洀攀洀漀爀礀 琀漀 愀氀氀漀挀愀琀攀 戀攀挀愀甀猀攀 愀 瘀愀爀椀愀戀氀攠ᤀ猀 瘀愀氀甀攀 洀愀礀 挀栀愀渀最攀⸀ 䤀渀搀攀攀搀Ⰰ 椀渀 琀栀攀 瀀爀攀挀攀搀椀渀朩ਾ㸊敮摯扪ਊ㜳㐠〠潢樊㰼ਯ䑥獴⁛㘱㘠〠删⽘奚‵‱㔷ㄠ湵汬崊⽎數琠㜳㔠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜳㌠〠刊⽔楴汥 剥瑵牮楮朠偯楮瑥牳⁦牯洠䙵湣瑩潮猠䥮⁃桡灴敲‱〬⁹潵⁬敡牮敤⁳敶敲慬⁷慹猠瑯⁩湩瑩慬楺攠愠捨慲慣瑥爠慲牡礮⁔桥⁦潬汯睩湧⁰牯杲慭⁳桯睳⁹潵⁡渠慤摩瑩潮慬⁷慹㨠⍩湣汵摥‼楯獴牥慭㸠畳楮朠湡浥獰慣攠獴搻⁣桡爠⨠獥瑎慭攨⤻⁩湴⁭慩渠⡶潩搩⁻₠ꁣ桡爪⁳瑲‽•䩥晦⁋敮琢㬠ꂠ捯畴‼㰠獴爻₠ꁲ整畲渠〻⁽⁗楴栠獯浥⁳慭灬攠楮灵琠慮搠潵瑰畴㨠䕮瑥爠祯畲⁮慭攺⁊敦映䭥湴⁙潵爠湡浥⁩猠䩥晦⁋敮琠周攠步礠獴慴敭敮琠楳₠ꁣ桡爪⁳瑲‽•䩥晦⁋敮琢㬠周楳⁳瑡瑥浥湴⁩猠慬浯獴⁴桥⁳慭攠慳㨠ꂠ捨慲⁳瑲孝‽•䩥晦⁋敮琢㬠䥮⁢潴栠獴慴敭敮瑳Ⱐ獴爠楳⁡⁣桡牡捴敲⁰潩湴敲Ⱐ慮搠業灬楣楴⁡牲慹⁳楺楮朠楳⁵獥搮⁔桥⁤楦晥牥湣攠楳⁴桡琠獴爠楮⁴桥⁦楲獴⁳瑡瑥浥湴 捨慲⨠獴爩⁩猠愠癡物慢汥⁰潩湴敲⁷桥牥慳⁳瑲⁩渠瑨攠獥捯湤⁳瑡瑥浥湴 捨慲⁳瑲孝⤠楳⁡⁣潮獴慮琠灯楮瑥爮⁒整畲湩湧⁡⁐潩湴敲⁴漠愠䱯捡氠噡物慢汥 乯琠愠䝯潤⁉摥愩⁎潷Ⱐ景汬潷楮朠瑨攠慤癩捥⁩渠䍨慰瑥爠㤠瑯⁭慫攠祯畲⁰牯杲慭⁭潲攠浯摵污爬⁹潵⁴特⁴漠睲楴攠愠獥灡牡瑥⁦畮捴楯測⁳整乡浥Ⱐ瑯⁯扴慩渠瑨攠畳敲⁩湰畴⸠周攠獥瑎慭攠晵湣瑩潮⁣牥慴敳⁡⁣桡牡捴敲⁡牲慹Ⱐ慳獩杮猠畳敲⁩湰畴⤊㸾੥湤潢樊਷㌵‰⁯扪਼㰊⽄敳琠嬶㈲‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜳㘠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜳㐠〠刊⽔楴汥 卵浭慲祁⁰潩湴敲⁩猠愠癡物慢汥⁯爠捯湳瑡湴⁷桯獥⁶慬略⁩猠瑨攠慤摲敳猠潦⁡湯瑨敲⁶慲楡扬攠潲⁣潮獴慮琮⁓潭攠䌫⬠瑡獫猠慲攠灥牦潲浥搠浯牥⁥慳楬礠睩瑨⁰潩湴敲猬⁷桩汥⁯瑨敲⁃⬫⁴慳歳Ⱐ獵捨⁡猠摹湡浩挠浥浯特⁡汬潣慴楯測⁣慮湯琠扥⁰敲景牭敤⁷楴桯畴⁰潩湴敲献⁌楫攠慮礠癡物慢汥⁯爠捯湳瑡湴Ⱐ祯甠浵獴⁤散污牥⁡⁰潩湴敲⁢敦潲攠祯甠捡渠睯牫⁷楴栠楴⸠周攠潮汹⁤楦晥牥湣攠扥瑷敥渠摥捬慲楮朠愠灯楮瑥爠慮搠愠癡物慢汥⁯爠捯湳瑡湴⁷桩捨⁳瑯牥猠愠癡汵攠楮獴敡搠潦⁡渠慤摲敳猠楳⁴桡琠瑨攠灯楮瑥爠摥捬慲慴楯渠楮捬畤敳⁡渠慳瑥物獫⁢整睥敮⁴桥⁤慴愠瑹灥⁡湤⁴桥⁰潩湴敲⁮慭攮⁈潷敶敲Ⱐ瑨攠摡瑡⁴祰攠楮⁴桥⁤散污牡瑩潮⁯映愠灯楮瑥爠楳⁮潴⁴桥⁤慴愠瑹灥⁯映楴猠癡汵攬⁡猠楳⁴桥⁣慳攠睩瑨⁡⁶慲楡扬攠潲⁣潮獴慮琠睨楣栠獴潲敳⁡⁶慬略⁩湳瑥慤⁯映慮⁡摤牥獳⸠周攠慣瑵慬⁤慴愠瑹灥⁯映瑨攠癡汵攠潦⁡汬⁰潩湴敲猬⁷桥瑨敲⁩湴敧敲Ⱐ晬潡琬⁣桡牡捴敲Ⱐ潲⁯瑨敲睩獥Ⱐ楳⁴桥⁳慭攬⁡⁬潮朠桥硡摥捩浡氠湵浢敲⁴桡琠牥灲敳敮瑳⁡⁭敭潲礠慤摲敳献⁒慴桥爬⁴桥⁤慴愠瑹灥⁩渠瑨攠摥捬慲慴楯渠潦⁡⁰潩湴敲⁲敦敲猠瑯⁴桥⁤慴愠瑹灥⁯映慮潴桥爠癡物⤊㸾੥湤潢樊਷㌶‰⁯扪਼㰊⽄敳琠嬶㈶‰⁒ 塙娠㔠㜸㠠湵汬崊⽎數琠㜳㜠〠刊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜳㔠〠刊⽔楴汥 兵楺⁗桡琠楳⁡⁰潩湴敲㼠乡浥⁡⁃⬫⁴慳欠瑨慴⁲敱畩牥猠愠灯楮瑥爠瑯⁢攠灥牦潲浥搮⁗桡琠楳⁴桥⁤楦晥牥湣攠扥瑷敥渠摥捬慲楮朠慮⁩湴敧敲⁶慲楡扬攠慮搠摥捬慲楮朠慮⁩湴敧敲⁰潩湴敲⁶慲楡扬政⁗桡琠楳⁴桥⁭敡湩湧⁯映瑨攠摡瑡⁴祰攠楮⁴桥⁤散污牡瑩潮⁯映愠灯楮瑥爿⁗桡琠楳⁴桥⁭敡湩湧⁡湤⁰畲灯獥⁯映乕䱌㼠坨慴⁯灥牡瑯爠摯⁹潵⁵獥⁴漠慳獩杮⁡⁰潩湴敲⁴桥⁡摤牥獳⁯映慮潴桥爠癡物慢汥⁯爠捯湳瑡湴㼠坨慴⁩猠瑨攠灵牰潳攠潦⁴桥⁩湤楲散瑩潮⁯灥牡瑯爿⁍慹⁡⁰潩湴敲⁰潩湴⁴漠摩晦敲敮琠浥浯特⁡摤牥獳敳⁡琠摩晦敲敮琠瑩浥猠楮⁴桥⁰牯杲慭㼠䵡礠浯牥⁴桡渠潮攠灯楮瑥爠灯楮琠瑯⁴桥⁳慭攠浥浯特⁡摤牥獳㼠坨慴⁩猠瑨攠敦晥捴⁯映楮捲敭敮瑩湧⁡⁰潩湴敲⁶慲楡扬政⁗桡琠慲攠瑨攠灵牰潳敳⁯映瑨攠湥眠慮搠摥汥瑥⁯灥牡瑯牳㼩ਾ㸊敮摯扪ਊ㜳㜠〠潢樊㰼ਯ䑥獴⁛㘲㠠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷㌸‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㌶‰⁒ਯ呩瑬攠⣾＀䌀栀愀瀀琀攀爀 ㄀㈀㨀 䌀栀愀爀愀挀琀攀爀Ⰰ 䌀ⴀ匀琀爀椀渀最Ⰰ 愀渀搀 䌀⬀⬀ 匀琀爀椀渀最 䌀氀愀猀猀 䘀甀渀挀琀椀漀渀猀 伀瘀攀爀瘀椀攀眀 吀栀攀 眀漀爀搀†ᰀ挀栀愀爀愀挀琀攀爠ᴀ 栀愀猀 洀愀渀礀 洀攀愀渀椀渀最猀⸀ 伀渀攀 挀漀洀瀀氀椀洀攀渀琀愀爀礀 搀攀昀椀渀椀琀椀漀渀 ꀀ椀猀 甀猀攀搀 琀漀 搀攀渀漀琀攀 愀 瀀攀爀猀漀渀 眀椀琀栀 最漀漀搀 挀栀愀爀愀挀琀攀爀⸀ 䄀 氀攀猀猀 挀漀洀瀀氀椀洀攀渀琀愀爀礀 洀攀愀渀椀渀最Ⰰ 眀栀椀挀栀 䤀 栀攀愀爀搀 洀漀爀攀 琀栀愀渀 漀渀挀攀 昀爀漀洀 洀礀 瀀愀爀攀渀琀猀 愀渀搀 琀攀愀挀栀攀爀猀Ⰰ 眀愀猀 琀栀愀琀 䤀 眀愀猀 愀 挀栀愀爀愀挀琀攀爀⸀ 吀栀攀 眀漀爀搀 挀栀愀爀愀挀琀攀爀 栀愀猀 愀 琀栀椀爀搀 洀攀愀渀椀渀最 椀渀 瀀爀漀最爀愀洀洀椀渀最Ⰰ 琀栀漀甀最栠᐀愀猀 愀 搀愀琀愀 琀礀瀀攀⸀ 䄀猀 礀漀甀 氀攀愀爀渀攀搀 椀渀 䌀栀愀瀀琀攀爀 ㈀Ⰰ 攀愀挀栀 瀀爀椀渀琀愀戀氀攀 (letter, digit, punctuation�⤀ 漀爀 眀栀椀琀攀猀瀀愀挀攀 (ENTER, TAB, SPACEBAR�⤀ 欀攀礀 漀渀 琀栀攀 欀攀礀戀漀愀爀搀 栀愀猀 愀 挀漀爀爀攀猀瀀漀渀搀椀渀最 䄀一匀䤀Ⰰ 䄀匀䌀䤀䤀Ⰰ 漀爀 唀渀椀挀漀搀攀 瘀愀氀甀攀⸀ 吀栀甀猀Ⰰ 礀漀甀 挀愀渀 愀猀猀椀最渀 愀渀礀 猀椀渀最氀攀 甀猀攀爀 椀渀瀀甀琀 琀漀 愀 挀栀愀爀愀挀琀攀爀 瘀愀爀椀愀戀氀攀 眀椀琀栀漀甀琀 昀攀愀爀 漀昀 愀 搀愀琀愀 琀礀瀀攀 洀椀猀洀愀琀挀栀⸀ 伀昀 挀漀甀爀猀攀Ⰰ 漀昀琀攀渀 愀 甀猀攀爠ᤀ猀 椀渀瀀甀琀 洀愀礀 挀漀渀猀椀猀琀 漀昀 洀漀爀攀 琀栀愀渀 漀渀攀 挀栀愀爀愀挀琀攀爀⸀ 䄀猀 礀漀甀 氀攀愀爀渀攀搀 椀渀 䌀栀愀瀀琀攀爀 ㄀　Ⰰ 椀渀搀椀瘀椀搀甀愀氀 挀栀愀爀愀挀琀攀爀猀 洀愀礀 戀攀 漀爀最愀渀椀稀攀搀 琀漀最攀琀栀攀爀 愀猀 愀 挀栀愀爀愀挀琀攀爀 愀爀爀愀礀⸀ 唀猀甀愀氀氀礀Ⰰ 愀 挀栀愀爀愀挀琀攀爀 愀爀爀愀礀 椀猀 攀渀搀攀搀 戀礀 愀 渀甀氀氀 挀栀愀爀愀挀琀攀爀Ⰰ 猀漀 椀琀猀 瘀愀氀甀攀 挀愀渀 戀攀 漀甀琀瀀甀琀琀攀搀 戀礀 琀栀攀 挀漀甀琀 漀戀樀攀挀琀 愀渀搀 琀栀攀 猀琀爀攀愀洀 椀渀猀攀爀琀椀漀渀 漀瀀攀爀愀琀漀爀 (<<�⤀⸀ 匀甀挀栀 愀 渀甀氩ਾ㸊敮摯扪ਊ㜳㠠〠潢樊㰼ਯ䑥獴⁛㘲㠠〠删⽘奚‵‷㠸⁮畬汝ਯ乥硴‷㌹‰⁒ਯ偡牥湴‶㐳‰⁒ਯ偲敶‷㌷‰⁒ਯ呩瑬攠⡃桡灴敲‱㈺⁃桡牡捴敲Ⱐ䌭却物湧Ⱐ慮搠䌫⬠却物湧⁃污獳⁆畮捴楯湳⤊㸾੥湤潢樊਷㌹‰⁯扪਼㰊⽄敳琠嬶㌲‰⁒ 塙娠〠㜹㈠湵汬崊⽐慲敮琠㘴㌠〠刊⽐牥瘠㜳㠠〠刊⽔楴汥 ﻿Reading a CharacterYou may legitimately be wondering why I am devoting an entire section of this chapter to reading a character. After all, reading a character usually is relatively simple. You just use the cin object and the stream insertion operator �⠀㸀㸀) as in the following code fragment: char grade; cout << "Enter a grade: "; cin >> grade; However, in programming, as in life, matters rarely are as simple as they first appear to be, and this is no exception. The seemingly minor detail of the ENTER key being pressed to end input gives rise to several interesting, and fortunately quite solvable, problems. The “Press Any Key to Continue” Problem The preceding code fragment had the user enter a character which was then assigned to a character variable. However, the purpose of a user inputting a character is not always to assign that input to a variable. For example, programs often prompt the user to press any key to continue. Indeed, a standard technical support joke concerns a user who⤊㸾੥湤潢樊਷㐰‰⁯扪਼㰠⽌敮杴栱‷㘵〰 䙩汴敲⁛⽆污瑥䑥捯摥崠⽌敮杴栠㐳㘲㌠⽄䰠㜶㔰〠㸾ੳ瑲敡洊碜貼ॠ哕�맫昲ﭶ枟撒찤㌓預졥ঋ耄�ᘁԥ覈聒ꊢ膠䊭묭戕䖥㗬Ƭꉕ宫빢毝멈ﮢ戵⵭텪ℳ�얾�﷿맜珏㵷饳黥䘈㝢偺�瑽헟ꃥ秘术땒﹧뜠蓋ဒ幛�鼿⟄�쓗ⱙ빦燏⽞뤎↓蓐緇非㕿퇛韻湃台糝剨냼췲㕂㬒瀞奺햻쟘缅ၲ➖꽘㢟절붸ዎ⮯鶿뫃肥鼢皸忮塱﷊ⷿ﴾�葆᜻몮ㇼ�ჶ삹즊ん썛ᆇჷ゗腞䙋䝦㭚䰬頣葧㢖⌌诐�ﺉ뒘뫢먕䡁狱ⱷ条㳎ࡁ籄䆸堬튫�끏䄁�좃僱侰龀ﵤ硦ᤊឮ
	Using an IDE to Create and Run the “Hello World!” ProjectYou can use any plain-text editor such as Notepad to write the source code. You also can download a free compiler, which usually includes a preprocessor and linker. You then can compile and run your code from the command line. The command line may be, for example, a DOS prompt at which you type a command that specifies the action you want, such as compiling, followed by the name of the file you want to compile. While there is nothing wrong with using a plain-text editor and command line tools, many programmers, including me, prefer to create, compile, and run their programs in a C++ Integrated Development Environment, known by the acronym IDE. The term “integrated” in IDE means that the text editor, preprocessor, compiler, and linker are all together under one �⠀猀漀昀琀眀愀爀攀) roof. Thus, the IDE enables you to create, compile, and run your code using one program rather than separate programs. Additionally, most IDEs have a graphical u
	Summary Computers can store huge amounts of information, recall that information quickly and accurately, and perform calculations with lightning speed and perfect accuracy. However, computers cannot think by themselves, and need step-by-step instructions from us telling them what to do. These instructions are called a computer program, written by a human computer programmer in a programming language such as C++. A compiler, together with a preprocessor and a linker, translates the computer program into machine language that a computer understands. We then analyzed a C++ program, which outputs “Hello World!” to the screen. The program looks simple, but much is going on behind the scenes. We analyzed that code, line by line. You then created and ran your own “Hello World!” C++ application.
	Quiz What is a computer program? Name several advantages a computer has over humans in processing information? What is a programming language? Why is C++ a good programming language to learn? What is a function? How many main functions should a C++ program have? What is a standard library file? What is the purpose of an include directive? What does a preprocessor do? What does a compiler do? What does a linker do?
	Chapter 2: Memory and Data Types Overview After I wrote my first book, I expectantly waited every day for my mail, hoping to receive requests for my autograph. The result was proof of the adage “be careful what you ask for.” My mailbox was stuffed with numerous requests for my autograph. Alas, these requests came from those who wanted to share my money, not my fame. My autograph was requested on checks to pay my mortgage, credit cards, insurance, phone service, electricity; well, you get the picture. These companies who love sending me bills could not possibly keep track of their thousands of customers by using pencil and paper. Instead, they use computer programs, which harness the computer’s ability to store very large amounts of information and to retrieve that stored information very quickly. We use our memory to store and recall information. So do computers. However, a computer’s memory is very different from ours. This chapter will explain how a computer’s memory works. Informati
	Chapter 2: Memory and Data Types
	MemoryComputer programs consist of instructions and data. As discussed in Chapter 1, instructions, written in a programming language such as C++ and then translated by the compiler and linker into machine language, give the computer step-by-step directions on what to do. The data is the information that is the subject of the program. For example, if the user of your computer program wants a list of all students with a GPA of 4.0, the data could be a list of all students and their GPAs. The program then would follow instructions to determine and output the list of all students with a GPA of 4.0. The computer program’s instructions and data have to be in the computer’s memory for the program to work. This section will explain the different types of computer memory, as well as how and where instructions and data are stored in computer memory. Types of Memory There are three principal memory locations on your computer. The central processing unit �⠀䌀倀唀) Random access memory �⠀刀䄀䴀) Persistent
	Data Types The ones and zeroes that may be stored at a memory address may represent text, such as my name, Jeff Kent. These ones and zeroes instead may represent a whole number, such as my height in inches, 72, or a number with digits to the right of the decimal point, such as my GPA in high school, which I’ll say was 3.75 �⠀䤀 栀漀渀攀猀琀氀礀 搀漀渠ᤀ琀 爀攀洀攀洀戀攀爀Ⰰ 椀琀 眀愀猀 琀漀漀 氀漀渀最 愀最漀). Alternatively, the ones and zeroes may represent either true or false, such as whether I am a U.S. citizen. Data comes in many forms, and is generally either numeric or textual. Additionally, some numeric data uses whole numbers, such as 6, 0, or –7, while other numeric data uses floating-point numbers, such as .6, 7.3, and –6.1. There are different data types for each of the many forms of data. The data type you choose will affect not only the form in which the data is stored, but also the amount of memory required to store the data. Let’s now take a look at these different data types. Whole Number Data Types We deal
	Project: Determining the Size of Data TypesAs discussed in the previous Data Types section, the size of each data type depends on the compiler and operating system you are using. In this project, you will find out the size of each data type on your system by using the sizeof operator. The sizeof Operator The sizeof operator is followed by parentheses, in which you place a data type. It returns the size in bytes of that data type. For example, on my computer, the expression sizeof�⠀椀渀琀) returns 4. This means that on my compiler and operating system, the size of an int data type is 4 bytes. Changing the Source File of Your Project Try creating and running the next program using the steps you followed in Chapter 1 to create the “Hello World!” program. While you could start a new project, in this example, you will reuse the project you used in Chapter 1. It is good to know both how to create a new project and how to reuse an existing one. Start Visual C++. Use the File | Open Solution menu
	SummaryA computer program’s instructions and data have to be in the computer’s memory for the program to work. There are three principal memory locations on your computer: the central processing unit �⠀䌀倀唀), random access memory �⠀刀䄀䴀), and persistent storage. Computer programs usually use RAM to store instructions and data. Instructions and data are stored at addresses, represented by a sequential series of numbers. A computer stores information in a series of ones and zeroes. Each one or zero is a bit. However, a computer cannot process information as small as a single bit. Eight bits, or one byte, is the smallest unit of information that a computer can process. Therefore, each address stores one byte of information. Some information is numeric; other data is textual. Each type of information is referred to as a data type. The principal data type categories are whole numbers, floating-point numbers, and text. However, all data types have in common a characteristic of size, which is the
	Quiz From which of the following types of memory can the CPU most quickly access instructions or data: cache memory, RAM, or persistent storage? Which of the following types of memory is not temporary: cache memory, RAM, or persistent storage? What is the amount of information that may be stored at a particular memory address? Is the size of a data type always the same no matter which computer you may be working on? What is meant by the range of a data type? What is the difference between an unsigned and signed data type? What decimal number is represented by 5.1E-3 in E notation? What is an ASCII value? What does the sizeof operator do? What is a literal string? What is an expression?
	Chapter 3: Variables Overview Recently, while in a crowded room, someone yelled “Hey, you!” I and a number of other people looked up, because none of us could tell to whom the speaker was referring. Had the speaker instead yelled “Hey, Jeff Kent!,” I would have known he was calling me �⠀甀渀氀攀猀猀 漀昀 挀漀甀爀猀攀 琀栀攀爀攀 栀愀瀀瀀攀渀攀搀 琀漀 戀攀 愀渀漀琀栀攀爀 䨀攀昀昀 䬀攀渀琀 椀渀 琀栀攀 爀漀漀洀). We use names to refer to each other. Similarly, when you need to refer in code to a particular item of information among perhaps thousands of items of information, you do so by referring to the name of that information item. You name information by creating a variable. A variable not only gives you a way of referring later to particular information, but also reserves the amount of memory necessary to store that information. This chapter will show you how to create variables, store information in them, and retrieve information from them.
	Chapter 3: Variables
	Declaring VariablesYou learned in Chapter 2 that the information a program uses while it is running first needs to be stored in memory. You need to reserve memory before you can store information there. You reserve memory by declaring a variable. Declaring a variable not only reserves memory, but also gives you a convenient way of referring to that reserved memory when you need to do so in your program. You also learned in Chapter 2 that memory addresses have hexadecimal values such as 0012FED4. These values are hard to remember. It is much easier to remember information that, for example, relates to a test score by the name testScore. By declaring a variable, you can refer to the reserved memory by the variable’s name, which is much easier to remember and identify with the stored information than is the hexadecimal address. While declaring a variable is relatively simple, requiring only one line of code, much is happening behind the scenes. The program at the end of this section will
	Assigning Values to VariablesThe purpose of a variable is to store information. Therefore, after you have created a variable, the next logical step is to specify the information that the variable will store. This is called assigning a value to a variable. A variable can be assigned a value supplied by the programmer in code. A variable also can be assigned a value by the user, usually via the keyboard, when the program is running. You may use the assignment operator, which is discussed in the next section, to specify the value to be stored in a variable. You use the cin object �⠀搀椀猀挀甀猀猀攀搀 椀渀 琀栀攀 甀瀀挀漀洀椀渀最 猀攀挀琀椀漀渀†ᰀ唀猀椀渀最 琀栀攀 挀椀渀 伀戀樀攀挀琠ᴀ) after the assignment operator, to obtain the user’s input, usually from the keyboard, and then store that input in a variable. Assignment Operator You use the assignment operator to assign a value to a variable. The syntax is [variable name] = [value]; The assignment operator looks like the equal sign. However, in C++ the = sign is not used to test for e
	SummaryA variable serves two purposes. It provides you with a way of referring to particular information, and also reserves the amount of memory necessary to store that information. You must create a variable before you can start using it. You create a variable by declaring it. You may declare multiple variables of the same type in one statement. You can use the address operator, &, to determine the address of a variable, and the sizeof operator to determine the size of a variable. The purpose of a variable is to store information. Therefore, after you have created a variable, the next logical step is to specify the information that the variable will store. This is called assigning a value to a variable. A variable can be assigned a value either by the programmer in code or by the user, usually via the keyboard, when the program is running. You use the assignment operator to assign a value supplied by code. You use the cin object to assign a value supplied by the user. In the next chap
	Quiz What is the effect of declaring a variable? Can you refer to a variable before declaring it as long as you declare it later? Can you declare several variables in the same statement? What is a “naming convention” with respect to variables? What is the difference between the address and sizeof operators? What is initialization? What is overflow? What is the consequence of using an assignment operator to assign a string value to an integer variable? Do you use the cin object for compile time or run-time assignment of values to variables? Can you use one cin statement to assign values to several variables of different data types?
	Chapter 4: Arithmetic Operators Overview When I went to elementary school, which as far as my kids are concerned was when dinosaurs roamed the earth, I had to perform arithmetic calculations by hand or in my head. There were no calculators, only slide rules. �⠀圀愀爀渀椀渀最㨀 夀漀甀 洀愀礀 搀愀琀攀 礀漀甀爀猀攀氀昀 戀礀 攀瘀攀渀 愀搀洀椀琀琀椀渀最 礀漀甀 欀渀漀眀 眀栀愀琀 愀 猀氀椀搀攀 爀甀氀攀 椀猀℀) When it was my kids’ turn to go to school, and I’d ask them to perform an arithmetic calculation while going over their homework or tests, they would whip out a calculator. When I asked them to perform the calculation by hand or in their head, they would look at me with mixed amazement and pity and exclaim “Aw, Dad, no one does it that way anymore.” Maybe my kids were right. When I write computer programs, I don’t do it “that way” anymore either. I let the fastest, most accurate calculator I own do the work: my computer. Many computer programs need to perform calculations. Computers, in addition to being able to store vast amounts of data, also can ca
	Chapter 4: Arithmetic Operators
	Arithmetic OperatorsAn operator is a symbol that represents a specific action. We have discussed and used operators in prior chapters, including the assignment operator, =. C++ also supports operators for arithmetic, specifically addition, subtraction, multiplication, and division. Operators used for arithmetic are called, naturally enough, arithmetic operators. Table 4-1 summarizes them. Table 4-1: Arithmetic Operators Operator Purpose Example Result + Addition 5 + 2 7 - Subtraction 5 – 2 3 * Multiplication 5 * 2 10 / Division �⠀儀甀漀琀椀攀渀琀) 5 / 2 2 % Division �⠀刀攀洀愀椀渀搀攀爀) 5 % 2 1 The % operator, also called the modulus operator, may look unfamiliar. It returns the remainder in division, and will be explained in the “Division Operators” section later in this chapter. Arithmetic operators are binary operators because they operate on two operands, binary being a reference to 2, and operand referring to each of the two values that is in the arithmetic expression. For example, in the expressio
	The Change Machine ProjectMy mother was not above using a change machine to distract cranky or mischievous young grandchildren. The youngsters poured hundreds of pennies into the top of the machine, and watched with fascination (fortunately, youngsters are easily fascinated) as the machine sorted the pennies into amounts of change that could be taken to the bank and exchanged for dollars, quarters, and bigger loot. The youngsters were motivated as well as fascinated, since guess who got to keep the quarters? Program Description This program will ask the user to input the number of pennies. You may assume the user will input a positive whole number. The code then will output the number of dollars, quarters, dimes, nickels, and pennies. The input and output could be Enter number of pennies to make change for: 387 Dollars: 3 Quarters: 3 Dimes: 1 Nickels: 0 Pennies: 2 The next section will reproduce the code, and the section following will explain the code. However, as a programming challe
	SummaryMany computer programs need to perform calculations. Computers, in addition to being able to store vast amounts of data, also can calculate far faster and more accurately than we can. You use arithmetic operators to harness the computer’s calculating ability. C++ supports arithmetic operators for addition, subtraction, multiplication, and division. While addition, subtraction, and multiplication each have one operator, division has two. The / operator gives you the quotient, while the % �⠀漀爀 洀漀搀甀氀甀猀 漀瀀攀爀愀琀漀爀) gives you the remainder. The arithmetic operators all work with whole number operands. All but the modulus operator also work with floating number operands. The addition operator also works with string operands, appending one string to another. C++, unlike some other programming languages, does not have an exponent operator. Instead, it has a built-in function named pow which is defined in the standard library cmath. In the next chapter, you will learn about relational and l
	Quiz Which of the four arithmetic operations has more than one operator? Which of the arithmetic operators can operate on string as well as numeric operands? Which of the arithmetic operators cannot have a floating point operand? Which of the arithmetic operators cannot have a zero as a second operand? Assuming total is a variable, how else could you express in code total = total + 2? What is the result of 2 + 3 * 4? What is the result of the expression 8 / 2 * 4? What is the result of the expression 10 / 4? What operator or function do you use to raise a number to a certain power? What is an algorithm?
	Chapter 5: Making Decisions: if and switch Statements Overview The famous poem “The Road Not Taken” by Robert Frost begins: “Two roads diverged in a yellow wood, and sorry I could not travel both.” This poem illustrates that life, if nothing else, presents us with choices. Similarly, computer programs present their users with choices. So far, for the sake of simplicity, the flow of each program has followed a relatively straight line, taking a predetermined path from beginning to end. However, as programs become more sophisticated, they often branch in two or more directions based on a choice a user makes. For example, when I am buying books online, I am presented with choices such as adding another item to my shopping cart, recalculating my total, or checking out. The program does something different if I add another item to my shopping cart rather than check out. The program determines the action it takes by comparing my choice with the various alternatives. That comparison is made u
	Chapter 5: Making Decisions: if and switch Statements
	Relational OperatorsWe make comparisons all the time, and so do programs. A program may need to determine whether one value is equal to, greater than, or less than another value. For example, if a program calculates the cost of a ticket to a movie in which children less than 12 get in free, it needs to find out if the customer’s age is less than 12. Programs compare values by using a relational operator. Table 5-1 lists the relational operators supported by C++: Table 5-1: Relational Operators Operator Meaning > Greater than < Less than >= Greater than or equal to <= Less than or equal to == Equal to != Not equal to Relational Expressions Like the arithmetic operators discussed in the last chapter, the relational operators are binary—that is, they compare two operands. A statement with two operands and a relational operator between them is called a relational expression. The result of a relational expression is a Boolean value, depicted as either true or false. Table 5-2 lists several
	FlowchartingA program, like a river, flows from beginning to end. Programmers may find it helpful, both in writing code and in understanding someone else’s code, to visually depict the flow of the program. After all, as the adage goes, a picture is worth a thousand words. The ability to visualize the flow of a program becomes even more helpful as we transition from relatively simple programs that flow in a straight line to more complex varieties that branch in different directions based on the value of a relational expression. Programmers use a flowchart to visually depict the flow of a program. Flowcharts use standardized symbols prescribed by the American National Standard Institute �⠀䄀一匀䤀), which prescribes other standards we will be using in this book. These flowcharting symbols represent different aspects of a program, such as the start or end of a program, user input, how it displays on a monitor, and so on. These symbols are joined by arrows and other connectors which show the co
	The if Statement The if statement is used to execute code only when the value of a relational expression is true. The syntax of an if statement is if �⠀䈀漀漀氀攀愀渀 瘀愀氀甀攀) statement; Both lines together are called an if statement. The first line consists of the if keyword followed by an expression, such as a relational expression, that evaluates to a Boolean value, true or false. The relational �⠀漀爀 漀琀栀攀爀 䈀漀漀氀攀愀渀) expression must be in parentheses, and should not be terminated with a semicolon. The next line is called a conditional statement. As you may recall from Chapter 1, a statement is an instruction to the computer, directing it to perform a specific action. The statement is conditional because it executes only if the value of the relational expression is true. If the value of the relational expression is false, then the conditional statement is not executed—meaning, it’s essentially skipped. The following program, which tests if a whole number entered by the user is even, illustrates
	The if / else Statement One problem with the program that tests whether a number is even is that there is no output if the number is odd. While there is a conditional statement if the relational expression is true, there is no corresponding conditional statement �⠀挀漀甀琀 㰀㰀†ᰀ吀栀攀 渀甀洀戀攀爀 椀猀 漀搀搠ᴀ) if the relational expression is false. The solution is to add an else part to the if statement. The result is an if / else statement. The syntax of an if / else statement is if �⠀爀攀氀愀琀椀漀渀愀氀 攀砀瀀爀攀猀猀椀漀渀) conditional statement; else conditional statement; Accordingly, the program may be modified to add an else part to the if statement: #include <iostream> using namespace std; int main�⠀瘀漀椀搀) { int num; cout << "Enter a whole number: "; cin >> num; if �⠀ 渀甀洀 ─ ㈀ 㴀㴀 　 ) cout << "The number is even" << endl; else cout << "The number is odd" << endl; return 0; } Run this code. If the inputted number is even, then the output once again is “The number is even.” However, if the number
	The if /else if /else StatementThe program we used to illustrate the if/else statement involved only two alternatives. Additionally, these alternatives were mutually exclusive; only one could be chosen, not both. A whole number is either even or odd; it can’t be both and there is no third alterative. There are many other examples of only two mutually exclusive alternatives. For example, a person is either dead or alive, male or female, child or adult. However, there are other scenarios where there are more than two, mutually exclusive alternatives. For example, if you take a test, your grade may be one of five types: A, B, C, D, or F. Additionally, these grades are mutually exclusive; you can’t get an A and a C on the same test. Since you can have only one if expression and only one else expression in an if statement, you need another expression for the third and additional alternatives. That expression is else if. You use the if / else if / else statement when there are three or more
	The switch StatementThe switch statement is similar to an if /else if /else statement. It evaluates the value of an integer expression and then compares that value to two or more other values to determine which code to execute. The following program shows a switch statement in action in a program that determines your average based on your grade: #include <iostream> using namespace std; int main(void) { €€char grade; €€cout << "Enter your grade: "; €€cin >> grade; €€switch (grade) €€{ €€case 'A': €€€€€cout << "Your average must be between 90 - 100" €€€€€€€€€€<< endl; €€€€€break; €€case 'B': €€€€€cout << "Your average must be between 80 - 89" €€€€€€€€€€<< endl; €€€€€break; €€case 'C': €€€€€cout << "Your average must be between 70 - 79" €€€€€€€€€€<< endl; €€€€€break; €€case 'D': €€€€€cout << "Your average must be between 60 - 69" €€€€€€€€€€<< endl; €€€€€break; €€default: €€€€€cout << "Your average must be below 60" << endl; €€} €€return 0; } Here are several sample runs, each separated by
	Summary Computer programs usually do not take a preordained path from beginning to end. Instead, different code executes based on choices made by the user. Relational operators are used to compare the user’s choice with various alternatives. The if, if/else, if /else if /else, and switch statements are used to structure the code so different code executes depending on which choice was made. You also learned about flowcharts, which help make programs more understandable by visually depicting the program components and flow. In this chapter, only one comparison was made at a time. However, sometimes more than one comparison needs to be made. For example, you are eligible to vote in the U.S. only if you are a citizen and are at least 18 years old. You cannot vote unless both are true. However, you may get into a movie free if you are either a senior citizen �⠀㘀㔀 礀攀愀爀猀 漀爀 漀氀搀攀爀) or a child �⠀㄀㈀ 漀爀 甀渀搀攀爀). Thus, you get in free if either is true. In the next chapter, you will learn about how
	Quiz How many operands are in a relational expression? What is the purpose of a flowchart? What is the data type of the expression following the if keyword? In an if /else if /else statement, which part must you have one, but only one, of? In an if /else if /else statement, which part may you have more than one of? In an if /else if /else statement, which part may you omit? In a switch statement, what is the required data type of expression following the switch keyword? In a switch statement, may an expression of the character data type follow the switch keyword? In a switch statement, may the expression following a case keyword be a variable? Which keyword in a switch statement corresponds to the else keyword in an if /else if /else statement?
	Chapter 6: Nested if Statements and Logical Operators Overview Chapter 5 began with the opening words of the famous poem “The Road Not Taken” by Robert Frost: “Two roads diverged in a yellow wood, and sorry I could not travel both.” Not to be a poetry critic, but often there are more than two roads. In Chapter 5, we evaluated only one Boolean expression at a time, and chose which of the two roads our code would travel down depending on whether the expression was true or false. However, sometimes two �⠀漀爀 洀漀爀攀) Boolean expressions need to be evaluated to determine the path the code will travel. For example, you are eligible to vote only if you are a citizen and you are at least 18 years old. You cannot vote unless both conditions are true. Other times with Boolean expressions, you are testing if either of two comparisons is true. For example, you may get into a movie free if you are either a senior citizen �⠀㘀㔀 礀攀愀爀猀 漀爀 漀氀搀攀爀) or a child �⠀㄀㈀ 漀爀 甀渀搀攀爀). Thus, you get in free if either cond
	Chapter 6: Nested if Statements and Logical Operators
	Nested if StatementsAn if statement may appear inside another if statement. When this is done, the inner if statement is said to be “nested” inside the outer if statement. You can nest if statements to determine if both of two Boolean expressions are true, or if either of the expressions is true. Testing if Both Boolean Expressions Are True The following program shows the use of nested if statements in determining if both of two Boolean expressions are true. If the user’s input is that they are at least 18 years old and a citizen, the program outputs that they are eligible to vote. Otherwise, the program outputs that they are not eligible to vote. #include <iostream> using namespace std; int main�⠀瘀漀椀搀) { int age; char choice; bool citizen; cout << "Enter your age: "; cin >> age; cout << "Are you a citizen �⠀夀⼀一): "; cin >> choice; if �⠀挀栀漀椀挀攀 㴀㴀 ✀夀✀) citizen = true; else citizen = false; if �⠀愀最攀 㸀㴀 ㄀㠀) if�⠀挀椀琀椀稀攀渀 㴀㴀 琀爀甀攀) cout << "You are eligib
	Logical OperatorsC++ has logical operators that enable you to combine comparisons in one if or else if statement. Table 6-1 lists the logical operators supported by C++ and describes what each does. Table 6-1: Logical Operators Operator Name What It Does && And Connects two relational expressions. Both expressions must be true for the overall expression to be true. || Or Connects two relational expressions. If either expression is true, the overall expression is true. ! Not Reverses the “truth” of an expression, making a true expression false, and a false expression true. The && Operator The && operator also is known as the logical And operator. It is a binary operator; it takes two Boolean expressions as operands. It returns true only if both expressions are true. If either expression is false, the overall expression is false. Of course, if both expressions are false, the overall expression is false. Table 6-2 illustrates this. Table 6-2: The Logical And Operator Expression #1 Express
	Using the switch Statement with€Logical€Operators The switch statement was discussed at some length in Chapter 5. However, so far in this chapter it has been conspicuous by its absence. In Chapter 5, we discussed how the switch statement was cumbersome when dealing with a range of numbers. The reason was that the case keyword cannot be followed by a range of numbers because it must instead be followed by a single integer constant. However, the switch statement may be used with expressions that use the logical And or Or operator. The reason is that these expressions have only one of two possible values, true or false. True and false are both constants; the value of true is always true and the value of false is always false. While true and false are Boolean values, each has a corresponding integer value: 1 and 0. Therefore, the case keyword may be followed by true or false, just as in Chapter 5 where the case keyword can be followed by a character since a character has a corresponding in
	Summary In Chapter 5, we evaluated only one Boolean expression at a time to determine which of two alternative blocks of code should execute. However, often two (or more) Boolean expressions need to be evaluated to determine which block of code should execute. In the example in which you are eligible to vote only if the user is a citizen and at least 18 years old, both Boolean expressions must be true in order for the program to output that the user is eligible to vote. In another example, in which you get into a movie free if the user is either a senior citizen (65 years or older) or a child (12 or under), the program outputs that the user gets into the movie free if either Boolean expression is true. This chapter covered two different approaches of evaluating two Boolean expressions to determine which code should execute. The first approach nested one if statement inside another. The second approach introduced three logical operators. The logical && (And) operator is used when both B
	Quiz Can you use nested if statements as an alternative to the logical And and Or operators? Can an if statement be nested in the else if or else part of an if / else if / else statement, or just the if part? For which of the logical operators do both Boolean expressions have to be true for the overall Boolean expression to be true? For which of the logical operators do both Boolean expressions have to be false for the overall Boolean expression to be false? Which of the logical operators reverses the “truth” of a Boolean expression, making a true expression false and a false expression true? Assuming resident is a Boolean variable, is if�⠀爀攀猀椀搀攀渀琀) the same as if�⠀爀攀猀椀搀攀渀琀 㴀㴀 琀爀甀攀)? Which of the logical operators is a unary rather than binary operator? Which of the logical operators has a higher precedence than the relational operators? Which logical operator has a higher precedence, And or Or? Can a Boolean value of either true or false be used following the case keyword in a switch st
	Chapter 7: The For Loop Overview Parents customarily remind their children not to repeat themselves. Indeed, parents often illustrate another saying �⠠ᰀ䐀漀 愀猀 䤀 猀愀礀Ⰰ 渀漀琀 愀猀 䤀 搀漠ᴀ) by continually repeating that reminder. This is my nifty way of introducing the idea that, in the world of computers, sometimes you want your code to repeat itself, too. For example, if the user enters invalid data, you may want to ask the user whether they want to retry or quit. If they retry and still enter invalid data, you again would ask the user whether they want to retry or quit. This process keeps repeating until the user either enters valid data or quits. You use a loop to repeat the execution of code statements. A loop in C++ is a structure that repeats the execution of code until a condition becomes false. In the preceding example, the condition is that the data is invalid and the user wants to retry, thus the repeating code is the prompt asking the user whether they want to retry or quit. This chapt
	Chapter 7: The For Loop
	Increment and Decrement OperatorsIncrement means to increase a value by one. Conversely, decrement means to decrease a value by one. C++ has an increment operator that you can use to increase a value by one and a decrement operator that you can use to decrease a value by one. This section will show you how to use both, something that will be useful in the next section on the for loop, which uses increment and decrement operators. The Increment Operator In the following program, the statement num += 1 increases the value of the integer variable num, which was initialized to the value 2, by 1, so the output will be 3. #include <iostream> using namespace std; int main�⠀瘀漀椀搀) { int num = 2; num += 1; cout << num; return 0; } Another way to accomplish the same result is by using the increment operator, ++. The increment operator is unary—that is, it operates on one operand. That operand generally is a whole number variable, such as an int. We can use the increment operator simply by
	The For LoopIf you wanted to output the numbers between 1 and 10, you could write a program such as the following: #include <iostream> using namespace std; int main�⠀瘀漀椀搀) { int num = 1; cout << num++; cout << num++; cout << num++; cout << num++; cout << num++; cout << num++; cout << num++; cout << num++; cout << num++; cout << num++; return 0; } However, you could write the same program with far less code by using a for loop: #include <iostream> using namespace std; int main�⠀瘀漀椀搀) { for �⠀椀渀琀 渀甀洀 㴀 ㄀㬀 渀甀洀 㰀㴀 ㄀　㬀 渀甀洀⬀⬀) cout << num << " "; return 0; } The difference between the two programs becomes more pronounced if you change the specification from outputting the numbers between 1 and 10 to outputting the numbers between 1 and 100. I won’t rewrite the first program because it would take up too many pages; suffice it to say, you would have to add 90 more cout statements. However, the same program using a for loop would be: #include <iostream> using names
	SummaryYou use a loop to repeat the execution of code statements. A loop is a structure that repeats the execution of code until a condition becomes false. You learned in this chapter how to use one type of loop: the for loop. However, before discussing the for loop, I showed you how to use increment and decrement operators, which are used in for and other types of loops. I then explained the difference between prefix and postfix when using the increment and decrement operators. You also learned in this chapter how to use the break keyword to prematurely terminate a for loop and the continue keyword to prematurely terminate the current iteration of the loop. You then learned how to use the logical operators as an alternative to the break and continue keywords. You also learned about nesting one for loop inside another. The for loop generally is used when the loop will execute a fixed number of times. However, sometimes the number of times a loop will execute is unpredictable, depending
	Quiz What does the increment operator do? What does the decrement operator do? Which occurs first, decrementing or the outputting of the value of num, in the statement cout << --num? What is an iteration? What is the usual purpose of the first expression in the parentheses following the for keyword? What is the purpose of the second expression in the parentheses following the for keyword? What is the usual purpose of the third expression in the parentheses following the for keyword? Can one or more of the expressions in the parentheses following the for keyword be empty? What is the purpose of the break keyword in a for loop? What is the purpose of the continue keyword in a for loop? If you were going to use nested for loops to print rows and columns, which for loop would print the columns—inner or outer?
	Chapter 8: While and Do While Loops Overview The for loop generally is used when the loop will iterate a fixed number of times. However, sometimes the number of times a loop will iterate is unpredictable, depending on user input during runtime. For example, in a data entry application, you may want a loop that, upon entry of invalid data, asks the user whether they want to retry or quit, and if they want to retry, gives the user another opportunity to enter data. The number of times this loop may iterate is unpredictable, since it will keep repeating until the user either enters valid data or quits. This chapter will show you how to use the while loop, which is a better choice than a for loop when the number of times a loop will iterate is unpredictable. While the total number of loop iterations may be unpredictable, there often are situations in which the loop will iterate at least once. An example is a loop that displays a menu with various choices, including exiting the program. In
	Chapter 8: While and Do While Loops
	The While Loop The while loop is similar to a for loop in that both have the typical characteristics of a loop: the code inside each continues to iterate until a condition becomes false. The difference between them is in the parentheses following the for and while keywords. The parentheses following the for keyword consists of three expressions, initialization, condition, and update. By contrast, the parentheses following the while keyword consists only of the condition; you have to take care of any initialization and update elsewhere in the code. This difference is illustrated by the following program that outputs the numbers between 1 and 10. Chapter 7 included the following program that outputs the numbers between 1 and 10 using the for loop. #include <iostream> using namespace std; int main(void) { €€for (int num = 1; num <= 10; num++) €€€€€cout << num << " "; €€return 0; } The same program using the while loop could be #include <iostream> using namespace std; int main(void) { €€in
	The Do While LoopThe do while loop is similar to the while loop. The primary difference is that with a do while loop the condition is tested at the bottom of the loop, unlike a while loop where the condition is tested at the top. This means that a do while loop will always execute at least once, whereas a while loop may never execute at all if its condition is false at the outset. Syntax The syntax of a do while loop is do { €€statement(s); } while (condition); The do keyword starts the loop. The statement or statements belonging to the loop are enclosed in curly braces. After the close curly brace, the while keyword appears, followed by the condition in parentheses, terminated by a semicolon. A Do While Loop Example The following program is a modification of the one earlier in this chapter that used a while loop to continue to prompt the user to enter a positive number until the user either did so or quit, and then either outputted the positive number or a message that the user did no
	Summary Chapter 7 introduced the first of several loops: the for loop. The for loop works well in situations where the loop will iterate a fixed number of times. Often, however, the number of times a loop will iterate is unpredictable since the number of iterations depends on user input during runtime. One example discussed in this chapter is a data entry application in which the loop, upon entry of invalid data, asks the user whether they want to retry or quit, and if they want to retry, gives the user another opportunity to enter data. The number of times this loop may iterate is unpredictable, since it will keep repeating until the user either enters valid data or quits. This chapter showed you how to use the while loop, which works better than a for loop when the number of times a loop will execute is unpredictable. While the parentheses following the for keyword consists of three expressions, initialization, condition, and update, the parentheses following the while keyword consis
	Quiz Which of the three loops—for, while, or do while—executes at least once? Which of the three loops—for, while, or do while—is the best choice when the number of iterations is predictable? Is the parenthetical expression following the while keyword for initialization, condition or update? May the parenthetical expression following the while keyword be true, such as while �⠀琀爀甀攀)? Can the parenthetical expression following the while keyword combine two expressions? What is the purpose of the break keyword in a while loop? What is the purpose of the continue keyword in a while loop? What is a flag? If you were going to use nested while loops to print rows and columns, which for loop would print the rows, inner or outer? Does a variable declared inside the body of a do while loop have scope in the parenthetical expression following the while keyword?
	Chapter 9: Functions Overview A function is a group of statements that together perform a task. So far, our programs have had one function, main. Additionally, at times we have used functions defined in a standard library, such as the pow function in the cmath library, used to raise a number to a certain power. No program needs more than a main function. However, as you write more complex and sophisticated programs, you may find your main function becoming extremely long. Neither the compiler nor the runtime cares if your main function is short or long. However, you should care. A main function that continues for pages is difficult to understand or fix if errors arise. By analogy, this book is several hundred pages long. It would be harder to understand if each chapter was not divided into sections. This book would be still harder to understand if it consisted of only one, very long chapter. By dividing this book’s content into chapters, and each chapter into sections, this book is eas
	Chapter 9: Functions
	Defining and Calling a FunctionImplementing any function in addition to main involves two steps: Defining the function Calling the function The explanation of these steps uses terminology we have not discussed before, so that terminology is reviewed first. Terminology of a Function Let’s look at a simple program with one function, main: #include <iostream> using namespace std; int main �⠀) { cout << "Hello world!"; return 0; } The first line, int main �⠀), is the function header. Unlike a statement, the function header is not followed by a semicolon. The function header consists of a return type, a function name, and an argument list. The data type int preceding main is the return type, main is the function name, and the parentheses, empty in this example but not always, contains the argument list. A function header always is followed by an open curly brace, which begins the function body. The function body ends with a close curly brace. There may be other open and curly braces betwe
	Variable Scope and Lifetime Thus far, all variables have been defined at the top of the main function. In programs where the only function is main, those variables can be accessed throughout the entire program since main is the entire program. However, once we start dividing up the code into separate functions, issues arise concerning variable scope and lifetime. The issue of variable scope was introduced in Chapter 8 in connection with the do while loop. The issue of variable lifetime is new. Local Variables You can call the same function multiple times. The following program attempts to call the printMessage function in a loop until the user decides to stop, and each time outputs the number of times the printMessage function has been called. The goal is that the first time the printMessage function is called, the output will be “This function called 1 times” �⠀瀀愀爀搀漀渀 琀栀攀 戀愀搀 最爀愀洀洀愀爀), the second time the printMessage function is called, the output will be “This function called 2 times
	Sending Information to a Function The printMessage function in the Hello World program outputs “Hello world!” It does not need any further information to do its job. Let’s make the printMessage function more useful so that it does not always output “Hello world” but instead outputs whatever message we ask it to. Of course, the printMessage function is not a mind reader; we need to tell it the message we want it to output. Let’s try to write a program in which the user enters in main the string to be outputted, that user input is stored in a string variable str, and then the printMessage function attempts to output the value of that str variable. One approach is to make the variable str global so it can be accessed in both the main and printMessage functions: #include <iostream> #include <string> using namespace std; void printMessage�⠀); string str; int main �⠀) { cout << "Enter a string: "; cin >> str; printMessage�⠀ ); return 0; } void printMessage �⠀ ) { cout << "You inpu
	Returning a Value from a Function Arguments are used to pass values to a called function. A return value can be used to pass a value from a called function back to the function that called it. For example, in the previous program the function addNumbers had three arguments, the first two being the numbers to be added, the third being their sum. The following program modifies the previous one by eliminating the third argument, but adding a return value to the function: #include <iostream> using namespace std; int addNumbers(int, int); € int main () { €€int firstNum, secondNum, sum = 0; €€cout << "Enter first number: "; €€cin >> firstNum; €€cout << "Enter second number: "; €€cin >> secondNum; €€sum = addNumbers (firstNum, secondNum); €€cout << firstNum << " + " << secondNum << " = " << sum; €€return 0; } int addNumbers (int x, int y) { €€return x + y; } The sample input and output may be the same as in the previous program: Enter first number: 3 Enter first number: 6 3 + 6 = 9 The return
	Summary A function is a group of statements that together perform a task. While no program needs more than a main function, as you write more complex and sophisticated programs, your code will be easier to write, understand, and fix if you divide the code up among different functions, each function performing a specific task. You implement a function in addition to main by first defining it and then calling it. A function definition consists of a function header and a function body. The function header consists of a return type, a function name, and an argument list. The function header always is followed by an open curly brace, which begins the function body. The function body ends with a close curly brace and contains one or more statements, generally ending with a return statement. Additionally, unless the function is defined above where it is called, it must be prototyped. In programs where the only function is main, all variables defined at the top of that function necessarily can
	Quiz What is the difference between variable scope and lifetime? Must a function other than main be prototyped? Is a function required to have at least one argument? Can a function have more than one argument? What is the effect on a variable in main if it is passed by value to another function which changes the argument corresponding to that variable? What is the effect on a variable in main if it is passed by reference to another function which changes the argument corresponding to that variable? Must a function have a return value? Can a function have more than one return value? May a function have neither a return value nor any arguments? May a function have both a return value and arguments?
	Chapter 10: Arrays Overview The variables we have worked with so far can hold only one value at a time. For example, if you declare an integer variable named testScore to represent a student’s test score, that variable can hold only one test score. The fact that the variable testScore can hold only one test score is not a problem so long as that student only takes one test. However, if the same student takes another test, or another student takes the same test, where do you store the second test score? If you store the second score in testScore, then you lose the ability to retrieve the first score from the variable testScore, since that variable can hold only one test score at a time. Therefore, if you wanted to keep track of, for example, 100 test scores, your code might look like this: int testScore1; int testScore2; int testScore3; int testScore4; int testScore5; int testScore6; int testScore7; int testScore8; int testScore9; int testScore10; // declare testSc
	Chapter 10: Arrays
	Declaring an ArrayAn array is a variable. Therefore, like the other variables we have covered so far, an array must be declared before it can be used. The syntax for declaring an array is almost identical to the syntax for declaring integers, characters, or other variables. For example, you would declare an integer variable testScore as follows: €€int testScore; By contrast, you would declare an array of three test scores this way: €€int testScore[3]; This declaration contains an array of integers. You instead could declare an array of floats, characters, or strings in the following manner: €€float GPA [5]; €€char grades[7]; €€string names[6]; While an array may be one of several data types, all the values in a particular array must be of the same data type. You cannot have an array in which some elements are floats, others are strings, still others are integers, and so on. The declaration of both a single variable and an array of variables begins with the data type followed by a varia
	InitializationAs first discussed in Chapter 3, initialization is when you assign a value to a variable in the same statement in which you declare that variable. By contrast, assignment is when you assign a value to a variable in a statement after the one in which you declare that variable. We will discuss assigning values to an array later in this chapter in the section “Assigning and Displaying Array Values.” This section covers initialization of an array. You have two alternative methods of initializing an array. The first alternative is explicit array sizing, in which the square brackets contain a numerical constant that explicitly specifies the size of the array. The second alternative is implicit array sizing, in which the square brackets are empty and the size of the array is indicated implicitly by the number of elements on the right side of the assignment operator. Explicit Array Sizing The following are examples of explicit array sizing: int testScore[3] = { 74, 87, 91 };
	Assigning and Displaying Array ValuesThe following program shows how to assign values to an array, one element at a time. The assignment starts with the first index, 0, and ends with the last index, 2, which is one less than the number of elements, 3. The program then outputs the array values, one at a time. #include <iostream> using namespace std; int main () { €€int testScore[3]; €€cout << "Enter test score #1: "; €€cin >> testScore[0]; €€cout << "Enter test score #2: "; €€cin >> testScore[1]; €€cout << "Enter test score #3: "; €€cin >> testScore[2]; €€cout << "Test score #1: " << testScore[0] << endl; €€cout << "Test score #2: " << testScore[1] << endl; €€cout << "Test score #3: " << testScore[2] << endl; €€return 0; } Some sample input and output could be: Enter test score #1: 77 Enter test score #2: 91 Enter test score #3: 84 Test score #1: 77 Test score #2: 91 Test score #3: 84 However, this one-element-at-a-time approach has no advantage over the following program, which does no
	Passing Arrays as Function ArgumentsPreviously in this chapter, we used the following program to demonstrate how loops are effective in assigning and displaying array values: #include <iostream> using namespace std; const int MAX = 3; int main () { €€int testScore[MAX]; €€for (int i = 0; i < MAX; i++) €€{ €€€€€cout << "Enter test score #" << i + 1 << ": "; €€€€€cin >> testScore[i]; €€} €€for (i = 0; i < MAX; i++) €€{ €€€€€cout << "Test score #" << i + 1 << ": " €€€€€€€€<< testScore[i] << endl; €€} €€return 0; } Now we are going to make this program more modular by writing one function to assign values to the array, and another function to display values from the array, rather than doing all that work in the main function. #include <iostream> using namespace std; void assignValues(int[], int); void displayValues(int[], int); const int MAX = 3; int main () { €€int testScore[MAX]; €€assignValues(testScore, MAX); €€displayValues(testScore, MAX); € €€return 0; } void assignValues(int tests[
	SummaryThe variables we have worked with before this chapter could hold only one value at a time. In this chapter, you learned about an array, which permits you to use a single variable to store many values. The values are stored at consecutive indexes, starting with zero and then incrementing by one for each additional element of the array. The data type of an array may be integer, float, or character. However, a particular array cannot contain integers, floats, and characters. All the elements of an array must be of the same data type. You need to declare an array before you can use it. The syntax for declaring an array is almost identical to the syntax for declaring integer, character, or other variables. The only difference between declaring a single scalar variable and an array of scalar variables is that, when declaring an array, the variable name is followed by a number within square brackets. That number is the array’s size declarator. The size declarator must be a literal or a
	Quiz Can a particular array contain integers, floats, and characters? What is the number of the starting index of an array? What is the number of the ending index of an array? What is the difference between initialization and assignment? What are the two alternative methods of initializing an array? What is the purpose of the null character? What is the value of the name of an array? Should the last element of a character array always be a null character? What is the difference between the get and getline functions of the cin object? When you pass an array name as a function argument, are you passing it by value, reference, or address?
	Chapter 11: What’s the Address? Pointers Overview My parents told me when I was a child that it was not polite to point. However, each semester I teach my computer programming students how to point. No, I am not trying to promote rude behavior. Rather, I am teaching my students about pointers, which “point” to another variable or constant. You yourself may have acted as a pointer in the past. Have you ever been asked where someone lives? If that house was nearby, you may have pointed it out. The pointer performs a similar function. A pointer points to another variable or constant. Of course, the pointer does not point with an arm and fingers as you would. Rather, the pointer’s value is the address of the variable or constant to which it points. Indeed, you may have done something similar. If you were asked where someone lives and that house was not close enough to physically point out, you instead may have provided an address by which the house could be located. Pointers have had a rep
	Chapter 11: What’s the Address? Pointers
	Declaring a PointerLike any variable or constant, you must declare a pointer before you can work with it. The syntax of declaring a pointer is almost the same as declaring a variable which stores a value rather than an address. However, the meaning of the pointer’s data type is quite different than the meaning of the data type of a variable which stores a value rather than an address. Syntax of a Pointer Declaration The syntax of declaring a pointer is almost the same as the syntax of declaring the variables we have worked with in previous chapters. The following statement declares an integer pointer variable: int* iPtr; The asterisk you use to declare a pointer is the same asterisk that you use for multiplication. However, in this statement the asterisk is being used in a declaration, so in this context it is being used to designate a variable as a pointer. Later in this chapter, we will use the asterisk for a third purpose, as an indirection operator. Note It is common in C++ for a
	Assigning a Value to a PointerThis section will explain how you assign a value to a pointer. Though, before I explain how, perhaps I should explain why. Why You Should Not Try to Use an Unassigned Pointer Back in elementary school we were taught a verse: “I shot an arrow into the air, where it lands, I don’t care.” Looking back, I wonder why young children were taught this verse. It may rhyme, but its message is really not appropriate for little ones. However, when you declare a pointer but then use it without first assigning it a value, you are, alas, doing the programming equivalent of that verse. The following program declares a pointer and then attempts to output its value without first assigning it a value: #include <iostream> using namespace std; int main �⠀) { int* iPtr; cout << "The value of iPtr is " << iPtr << endl; return 0; } The result, depending on your compiler and operating system, may be a compiler error, a runtime error, or a computer that locks up. Regardless, a
	Indirection Operator and Dereferencing The primary use of a pointer is to access and, if appropriate, change the value of the variable that the pointer is pointing to. In the following program, the value of the integer variable num is changed twice. #include <iostream> using namespace std; int main () { €€int num = 5; €€int* iPtr = # €€cout << "The value of num is " << num << endl; €€num = 10; €€cout << "The value of num after num = 10 is " €€€€€<< num << endl; €€*iPtr = 15; €€cout << "The value of num after *iPtr = 15 is " €€€€€<< num << endl; €€return 0; } The resulting output is The value of num is 5 The value of num after num = 10 is 10 The value of num after *iPtr = 15 is 15 The first change should be familiar, by the direct assignment of a value to num, such as num = 10. However, the second change is accomplished a new way, using the indirection operator: *iPtr = 15; The indirection operator is an asterisk, the same asterisk that you used to declare the pointer or to perform
	The Pointer as a Variable or a ConstantA pointer may be a variable or a constant. Let’s examine both possibilities. Pointer as a Variable The preceding program had the pointer pointing to one integer variable. However, a pointer variable, being a variable, can point to different variables at different times in the program. In the following program, the value of the pointer is changed to point to two different integer variables. #include <iostream> using namespace std; int main �⠀) { int num1 = 5, num2 = 14; int* iPtr = &num1; cout << "The value of num1 is " << num1 << endl; *iPtr *= 2; cout << "The value of num1 after *iPtr *= 2 is " << *iPtr << endl; iPtr = &num2; cout << "The value of num2 is " << num2 << endl; *iPtr /= 2; cout << "The value of num after *iPtr /= 2 is " << *iPtr << endl; return 0; } The resulting output is therefore: The value of num1 is 5 The value of num1 after *iPtr *= 2 is 10 The value of num2 is 14 The value of num after *iPtr /= 2 i
	Pointer ArithmeticThe value of a pointer, even though it is an address, is a numeric value. Therefore, you can perform arithmetic operations on a pointer just as you can a numeric value. Using a Variable Pointer to Point to an Array Pointer arithmetic is done often with arrays. However, since you cannot change the value of the name of an array, it being a constant pointer, you first should declare a variable pointer and then assign it to the address of an array. So, we begin with an established point of reference, let’s start with the following program, which outputs the address and value at each element of an array using the name of the array: #include <iostream> using namespace std; const int MAX = 3; int main �⠀) { int testScore[MAX] = {4, 7, 1}; for �⠀椀渀琀 椀 㴀 　㬀 椀 㰀 䴀䄀堀㬀 椀⬀⬀) { cout << "The address of index " << i << " of the array is "<< &testScore[i] << endl; cout << "The value at index " << i << " of the array is "<< testScore[i] << endl; } retu
	Pointers as Function ArgumentsPointers may be passed as function arguments. Pointer notation usually is used to note that an argument is a pointer. However, if the pointer argument is the name of an array, subscript notation alternatively may be used. Passing an Array Using Pointer Notation In Chapter 10, we employed the following program that used one function to assign values to the array and another function to display values from the array, rather than doing all that work in the main function. #include <iostream> using namespace std; void assignValues(int[], int); void displayValues(int[], int); const int MAX = 3; int main () { €€int testScore[MAX]; €€assignValues(testScore, MAX); €€displayValues(testScore, MAX); € €€return 0; } void assignValues(int tests[], int num) { €€for (int i = 0; i < num; i++) €€{ €€€€€cout << "Enter test score #" << i + 1 << ": "; €€€€€cin >> tests[i]; €€} } void displayValues(int scores[], int elems) { for (int i = 0; i < elems; i++) €€{ €€€€€cout << "Tes
	Dynamic Memory Allocation As discussed in Chapter 10, when declaring an array, the size declarator must be either a literal or a constant, and may not be a variable. The following program from Chapter 10 attempts, unsuccessfully, to use a variable numTests in declaring the size of an array: #include <iostream> using namespace std; int main �⠀) { int numTests; cout << "Enter the number of test scores:"; cin >> numTests; int testScore[numTests]; return 0; } The result is a compiler error. The compiler will flag the declaration of the array �⠀椀渀琀 琀攀猀琀匀挀漀爀攀嬀渀甀洀吀攀猀琀猀崀) and complain that a constant expression was expected. The reason a constant �⠀漀爀 氀椀琀攀爀愀氀) expression is required is that in this program we are allocating memory for the array at compile time. The compiler needs to know exactly how much memory to allocate. However, if a variable is the size declarator, the compiler does not know how much memory to allocate because a variable’s value may change. Indeed, in the preceding
	Returning Pointers from Functions In Chapter 10, you learned several ways to initialize a character array. The following program shows you an additional way: #include <iostream> using namespace std; char * setName(); int main (void) { €€char* str = "Jeff Kent"; €€cout << str; €€return 0; } With some sample input and output: Enter your name: Jeff Kent Your name is Jeff Kent The key statement is €€char* str = "Jeff Kent"; This statement is almost the same as: €€char str[] = "Jeff Kent"; In both statements, str is a character pointer, and implicit array sizing is used. The difference is that str in the first statement (char* str) is a variable pointer whereas str in the second statement (char str[]) is a constant pointer. Returning a Pointer to a Local Variable (Not a Good Idea) Now, following the advice in Chapter 9 to make your program more modular, you try to write a separate function, setName, to obtain the user input. The setName function creates a character array, assigns user input
	SummaryA pointer is a variable or constant whose value is the address of another variable or constant. Some C++ tasks are performed more easily with pointers, while other C++ tasks, such as dynamic memory allocation, cannot be performed without pointers. Like any variable or constant, you must declare a pointer before you can work with it. The only difference between declaring a pointer and a variable or constant which stores a value instead of an address is that the pointer declaration includes an asterisk between the data type and the pointer name. However, the data type in the declaration of a pointer is not the data type of its value, as is the case with a variable or constant which stores a value instead of an address. The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a long hexadecimal number that represents a memory address. Rather, the data type in the declaration of a pointer refers to the data type of another vari
	Quiz What is a pointer? Name a C++ task that requires a pointer to be performed. What is the difference between declaring an integer variable and declaring an integer pointer variable? What is the meaning of the data type in the declaration of a pointer? What is the meaning and purpose of NULL? What operator do you use to assign a pointer the address of another variable or constant? What is the purpose of the indirection operator? May a pointer point to different memory addresses at different times in the program? May more than one pointer point to the same memory address? What is the effect of incrementing a pointer variable? What are the purposes of the new and delete operators?
	Chapter 12: Character, C-String, and C++ String Class Functions Overview The word “character” has many meanings. One complimentary definition is used to denote a person with good character. A less complimentary meaning, which I heard more than once from my parents and teachers, was that I was a character. The word character has a third meaning in programming, though—as a data type. As you learned in Chapter 2, each printable �⠀氀攀琀琀攀爀Ⰰ 搀椀最椀琀Ⰰ 瀀甀渀挀琀甀愀琀椀漀渀) or whitespace �⠀䔀一吀䔀刀Ⰰ 吀䄀䈀Ⰰ 匀倀䄀䌀䔀䈀䄀刀) key on the keyboard has a corresponding ANSI, ASCII, or Unicode value. Thus, you can assign any single user input to a character variable without fear of a data type mismatch. Of course, often a user’s input may consist of more than one character. As you learned in Chapter 10, individual characters may be organized together as a character array. Usually, a character array is ended by a null character, so its value can be outputted by the cout object and the stream insertion operator �⠀㰀㰀). Such a nul
	Chapter 12: Character, C-String, and C++ String Class Functions
	Reading a CharacterYou may legitimately be wondering why I am devoting an entire section of this chapter to reading a character. After all, reading a character usually is relatively simple. You just use the cin object and the stream insertion operator �⠀㸀㸀) as in the following code fragment: char grade; cout << "Enter a grade: "; cin >> grade; However, in programming, as in life, matters rarely are as simple as they first appear to be, and this is no exception. The seemingly minor detail of the ENTER key being pressed to end input gives rise to several interesting, and fortunately quite solvable, problems. The “Press Any Key to Continue” Problem The preceding code fragment had the user enter a character which was then assigned to a character variable. However, the purpose of a user inputting a character is not always to assign that input to a variable. For example, programs often prompt the user to press any key to continue. Indeed, a standard technical support joke concerns a user who

