

Sams Teach Yourself C++ in 24 Hours
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33331-6
ISBN-10: 0-672-33331-7

Printed in the United States of America

First Printing April 2011

Library of Congress Cataloging-in-Publication data is on file.

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or from the use of the
CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor in Chief
Mark Taub

Acquisitions Editor
Mark Taber

Development
Editor
Songlin Qiu

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Keith Cline

Indexer
Lisa Stumpf

Proofreader
Leslie Joseph

Technical Editor
Jon Upchurch

Publishing
Coordinator
Vanessa Evans

Media Producer
Dan Scherf

Designer
Gary Adair

Compositor
Mark Shirar

Table of Contents

Introduction 1

Part I: Beginning C++

HOUR 1: Writing Your First Program 5

Using C++ . .. 5

Finding a Compiler 6

Compiling and Linking the Source Code 9

Creating Your First Program . .. 10

HOUR 2: Organizing the Parts of a Program 15

Reasons to Use C++ 15

The Parts of a Program . .. 19

Comments 22

Functions 23

HOUR 3: Creating Variables and Constants 29

What Is a Variable?. ... 29

Defining a Variable 33

Assigning Values to Variables . .. 35

Using Type Definitions . .. 36

Constants 37

HOUR 4: Using Expressions, Statements, and Operators 43

Statements 43

Expressions 44

Operators 45

If-Else Conditional Statements 53

Logical Operators 56

Tricky Expression Values 58

iv

Sams Teach Yourself C++ in 24 Hours

HOUR 5: Calling Functions 63

What Is a Function? . .. 63

Declaring and Defining Functions 64

Using Variables with Functions . .. 66

Function Parameters . .. 69

Returning Values from Functions 70

Default Function Parameters . .. 72

Overloading Functions. .. 74

HOUR 6: Controlling the Flow of a Program 81

Looping . .. 81

while Loops. ... 81

do-while Loops . .. 85

for Loops 86

switch Statements 90

HOUR 7: Storing Information in Arrays and Strings 97

What Is an Array? 97

Writing Past the End of Arrays . .. 99

Initializing Arrays 100

Multidimensional Arrays 101

Character Arrays. ... 104

Copying Strings 106

Part II: Classes

HOUR 8: Creating Basic Classes 111

What Is a Type? 111

Creating New Types . .. 112

Classes and Members. .. 112

Accessing Class Members 114

Private Versus Public Access . .. 115

Implementing Member Functions . .. 116

Creating and Deleting Objects. .. 118

HOUR 9: Moving into Advanced Classes 125

const Member Functions 125

Interface Versus Implementation 126

Organizing Class Declarations and Function Definitions . .. 126

Inline Implementation . .. 127

Classes with Other Classes as Member Data . .. 129

Part III: Memory Management

HOUR 10: Creating Pointers 137

Understanding Pointers and Their Usage. ... 137

The Stack and the Heap 146

HOUR 11: Developing Advanced Pointers 155

Creating Objects on the Heap . .. 155

Deleting Objects 155

Accessing Data Members Using Pointers 157

Member Data on the Heap . .. 158

The this Pointer 160

Stray or Dangling Pointers . .. 161

const Pointers . .. 162

const Pointers and const Member Functions 163

HOUR 12: Creating References 169

What Is a Reference? . .. 169

Creating a Reference . .. 170

Using the Address of Operator on References . .. 171

What Can Be Referenced?. ... 173

Null Pointers and Null References . .. 174

Passing Function Arguments by Reference . .. 174

Understanding Function Headers and Prototypes . .. 179

Returning Multiple Values . .. 179

Table of Contents

v

vi

Sams Teach Yourself C++ in 24 Hours

HOUR 13: Developing Advanced References and Pointers 185

Passing by Reference for Efficiency . .. 185

Passing a const Pointer 188

References as an Alternative to Pointers 191

When to Use References and When to Use Pointers . .. 192

Don’t Return a Reference to an Object That Isn’t in Scope! . .. 193

Returning a Reference to an Object on the Heap . .. 194

Pointer, Pointer, Who Has the Pointer? 196

Part IV: Advanced C++

HOUR 14: Calling Advanced Functions 201

Overloaded Member Functions 201

Using Default Values . .. 203

Initializing Objects . .. 205

The Copy Constructor . .. 206

HOUR 15: Using Operator Overloading 215

Operator Overloading . .. 215

Conversion Operators . .. 225

Part V: Inheritance and Polymorphism

HOUR 16: Extending Classes with Inheritance 233

What Is Inheritance? . .. 233

Private Versus Protected 236

Constructors and Destructors. .. 238

Passing Arguments to Base Constructors 241

Overriding Functions . .. 245

HOUR 17: Using Polymorphism and Derived Classes 253

Polymorphism Implemented with Virtual Methods . .. 253

How Virtual Member Functions Work . .. 257

Table of Contents

vii

HOUR 18: Making Use of Advanced Polymorphism 269

Problems with Single Inheritance 269

Abstract Data Types . .. 273

HOUR 19: Storing Information in Linked Lists 289

Linked Lists and Other Structures 289

Linked List Case Study . .. 290

Linked Lists as Objects . .. 299

Part VI: Special Topics

HOUR 20: Using Special Classes, Functions, and Pointers 303

Static Member Data. .. 303

Static Member Functions 305

Containment of Classes 307

Friend Classes and Functions . .. 313

HOUR 21: Using New Features of C++0x 331

The Next Version of C++ 331

Null Pointer Constant . .. 332

Compile-Time Constant Expressions . .. 333

Auto-Typed Variables . .. 335

New for Loop . .. 338

HOUR 22: Employing Object-Oriented Analysis and Design 343

The Development Cycle 343

Simulating an Alarm System . .. 344

PostMaster: A Case Study 351

HOUR 23: Creating Templates 373

What Are Templates? . .. 373

Instances of the Template 374

Template Definition . .. 374

Using Template Items . .. 381

viii

Sams Teach Yourself C++ in 24 Hours

HOUR 24: Dealing with Exceptions and Error Handling 389

Bugs, Errors, Mistakes, and Code Rot . .. 389

Handling the Unexpected 390

Exceptions 391

Using try and catch Blocks . .. 395

Writing Professional-Quality Code . .. 400

Part VII: Appendices

APPENDIX A: Binary and Hexadecimal 409

Other Bases . .. 410

Around the Bases 410

Hexadecimal . .. 414

APPENDIX B: Glossary 419

APPENDIX C: This Book’s Website 427

Index 429

About the Authors

Jesse Liberty is the author of numerous books on software development, including best-sell-

ing titles on C++ and .NET. He is the president of Liberty Associates, Inc. (http://www.lib-

ertyassociates.com), where he provides custom programming, consulting, and training.

Rogers Cadenhead is a writer, computer programmer, and web developer who has written

23 books on Internet-related topics, including Sams Teach Yourself Java in 21 Days and Sams

Teach Yourself Java in 24 Hours. He publishes the Drudge Retort and other websites that

receive more than 22 million visits a year. This book’s official website is at

http://cplusplus.cadenhead.org.

Dedications

This book is dedicated to Edythe, who provided life; Stacey, who shares it; and Robin
and Rachel, who give it purpose.

—Jesse Liberty

This book is dedicated to my dad, who’s currently teaching himself something a lot
harder than computer programming: how to walk again after spinal surgery. Through

the many months of rehab, you’ve been an inspiration. I’ve never known someone
with as much indefatigable determination to fix the hitch in his giddy-up.

—Rogers Cadenhead

Acknowledgments

With each book, there is a chance to acknowledge and to thank those folks without whose

support and help this book literally would have been impossible. First among them are

Stacey, Robin, and Rachel Liberty.

—Jesse Liberty

A book like this requires the hard work and dedication of numerous people. Most of them

are at Sams Publishing in Indianapolis, and to them I owe considerable thanks—in particu-

lar, to Keith Cline, Mandie Frank, Songlin Qiu, Mark Taber, and Jon Upchurch. Most of all, I

thank my incredible wife, Mary, and sons, Max, Eli, and Sam.

—Rogers Cadenhead

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write directly to let us know what you did or didn’t like about this book, as

well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and

we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and contact information.

Email: feedback@samspublishing.com

Mail: Reader Feedback

Sams Publishing/Pearson Education

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any

updates, downloads, or errata that might be available for this book.

Introduction

Congratulations! By reading this sentence, you are already 20 seconds closer to

learning C++, one of the most important programming languages in the world.

If you continue for another 23 hours, 59 minutes, and 40 seconds, you will master

the fundamentals of the C++ programming language. Twenty-four 1-hour lessons

cover the fundamentals, such as managing I/O, creating loops and arrays, using

object-oriented programming with templates, and creating C++ programs.

All of this has been organized into well-structured, easy-to-follow lessons. There are

working projects that you create—complete with output and an analysis of the

code—to illustrate the topics of the hour. Syntax examples are clearly marked for

handy reference.

To help you become more proficient, each hour ends with a set of common questions

and answers.

Who Should Read This Book?
You don’t need any previous experience in programming to learn C++ with this book.

This book starts with the basics and teaches you both the language and the concepts

involved with programming C++. Whether you are just beginning or already have

some experience programming, you will find that this book makes learning C++ fast

and easy.

Should I Learn C First?
No, you don’t need to learn C first. C++ is a much more powerful and versatile lan-

guage that was created by Bjarne Stroustrup as a successor to C. Learning C first can

lead you into some programming habits that are more error-prone than what you’ll

do in C++. This book does not assume that readers are familiar with C.

Why Should I Learn C++?
You could be learning a lot of other languages, but C++ is valuable to learn

because it has stood the test of time and continues to be a popular choice for mod-

ern programming.

In spite of being created in 1979, C++ is still being used for professional software

today because of the power and flexibility of the language. There’s even a new ver-

sion of the language coming up, which has the working title C++0x and makes the

language even more useful.

Because other languages such as Java were inspired by C++, learning the language

can provide insight into them, as well. Mastering C++ gives you portable skills that

you can use on just about any platform on the market today, from personal comput-

ers to Linux and UNIX servers to mainframes to mobile devices.

What If I Don’t Want This Book?
I’m sorry you feel that way, but these things happen sometimes. Please reshelve this

book with the front cover facing outward on an endcap with access to a lot of the

store’s foot traffic.

Conventions Used in This Book
This book contains special elements as described here.

These boxes provide additional information to the material you just read.

These boxes focus your attention on problems or side effects that can occur in
specific situations.

These boxes give you tips and highlight information that can make your C++ pro-
gramming more efficient and effective.

By the
Way

Watch
Out!

Did you
Know?

2

Sams Teach Yourself C++ in 24 Hours

When you see this symbol, you know that what you see next will show the output

from a code listing/example.

This book uses various typefaces:

. To help you distinguish C++ code from regular English, actual C++ code is type-

set in a special monospace font.

. Placeholders—words or characters temporarily used to represent the real words

or characters you would type in code—are typeset in italic monospace.

. New or important terms are typeset in italic.

. In the listings in this book, each real code line is numbered. If you see an

unnumbered line in a listing, you’ll know that the unnumbered line is really a

continuation of the preceding numbered code line (some code lines are too

long for the width of the book). In this case, you should type the two lines as

one; do not divide them.

Introduction

3

6 HOUR 1: Writing Your First Program

achieve this because it covers standard C++ (also called ANSI/ISO C++), the interna-

tionally agreed-upon version of the language, which is portable to any platform and

development environment.

The code presented throughout the book is standard ANSI/ISO C++ and should work

with any development environment for C++ that’s up-to-date.

New features that will be part of C++0x, the language’s next version, also are cov-

ered. Some of the most useful ones have begun showing up on an experimental basis

in popular C++ development environments ahead of its scheduled release date in

early 2012.

C++ programs are developed by a set of tools that work together called the compiler

and linker.

A compiler turns C++ programs into a form that can be run. The compiler translates

a program from human-readable form called source code into a machine-runnable

form called machine code. The compiler produces an object file. A linker builds an

executable file from the object file that can be run.

There are several popular environments for C++ programming that you might have

used before or know how to obtain. Some of these are GCC (the GNU Compiler Col-

lection), Microsoft Visual C++, NetBeans and Code::Blocks.

If you have a C++ compiler on your system and know the basics of how to use it, you

will have no trouble completing the programming projects in this book.

If you don’t have a C++ compiler, don’t know how to use a compiler, or don’t know

how to find one, relax. The next section will help.

Finding a Compiler
The programs in this book were created and tested first with GCC, a free and open

source set of programming tools that support C++ software development. GCC is

extremely popular on Linux and available for Windows and Mac OS systems, too.

GCC works in a command-line environment where you type in a command to make

the C++ compiler and linker create a program.

Some computers have GCC installed along with the operating system.

If you know how to use the command line on your computer, you can type the fol-

lowing command to see whether GCC is installed:

g++ ––version

Finding a Compiler 7

G++ is GCC’s C++ compiler and linker. If you see a message like this, you have it on

your computer:

g++ (Ubuntu 4.4.1-4ubuntu9) 4.4.1

Copyright (C) 2009 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY o
FITNESS FOR A PARTICULAR PURPOSE.

The version message displays the operating system and version number of the com-

piler. G++ is all that you need to create the programs in this book.

If you don’t have GCC, you can install it on Microsoft Windows as part of MinGW

(Minimalist GNU for Windows), a free set of development tools for creating Windows

software.

Visit the MinGW website at http://www.mingw.org to find out more about the soft-

ware and download it. Click the Downloads link on the home page—which may be

in the sidebar—to open a web page where it is available for download.

Apple users can get GCC by installing XCode from their Mac OS X installation CD
or by registering as an Apple developer at http://developer.apple.com.

The download page is on SourceForge, a project-hosting service for software. Click

the proper download link to download an installation wizard for MinGW on your

computer.

After the download completes, open the folder where it was downloaded and double-

click the MinGW icon to run the Installation Wizard. Click Next to begin.

Follow the instructions to review the software license agreement and decide how to

install the program.

During one step, the wizard asks which components you want to install, as shown in

Figure 1.1. Check the MinGW base tools and G++ compiler check boxes and click Next.

You’re asked where to install the software. C:\MinGW is the default folder. You can

either keep that default or choose another folder, which will be created if necessary.

Click Next to continue.

As the final step, you’re asked which Start Menu folder to put shortcuts for MinGW

in. Choose one (or accept the MinGW default) and click Install. MinGW is down-

loaded and installed on your computer.

By the
Way

Compiling and Linking the Source Code 9

3. Click the Environment Variables button. The Environment Variables dia-

log opens.

4. Choose Path and click Edit. The Edit System Variable dialog opens.

5. In the Variable Value field, add the following to the end of the Path value:

;C:\MinGW\bin (being sure to include the semicolon at the beginning).

6. Click OK to close each of the dialogs.

The next time you open a new command window, the g++ ––version command

should work in any folder. Switch to different folders to see that it works.

Microsoft Visual Studio also supports C++ programming—the current version of that

integrated development environment is Visual Studio 2010. Although the installa-

tion of that software is too complicated to cover in detail here, some guidance also is

offered in this book for people learning C++ with Visual Studio.

Compiling and Linking the Source Code
Before you create your first C++ program later this hour, it’s worthwhile to under-

stand how the process works.

C++ programs begin as source code, which is just text typed into an editor such as

Windows WordPad, Gedit, Emacs, or Vi. Although Microsoft Word and other word

processors can save files as plain text, you should use a simpler editor for program-

ming because you don’t need all the formatting and presentation capabilities of a

word processor. Source code consists of plain text with no special formatting.

The source code files you create for C++ can be given filenames ending with the

extensions .cpp, .cxx, .cp, or .c. This book names all source code files with the

.cpp extension, the most common choice of C++ programmers and the default for

some compilers. Most C++ compilers don’t care about the extension given to source

code, but using .cpp consistently helps you identify source code files.

Source code is the human-readable form of a C++ program. It can’t be run until it is

compiled and linked.

After your source code is compiled, an object file is produced. This file is turned into

an executable program by a linker.

C++ programs are created by linking together one or more object files with one or

more libraries. A library is a collection of linkable files that provide useful functions

and classes that you can rely on in your programs. A function is a block of code that

10 HOUR 1: Writing Your First Program

performs a task, such as multiplying two numbers or displaying text. A class is the

definition of a new type of data and related functions.

Here are the steps to create a C++ program:

1. Create a source code file with a text editor.

2. Use a compiler to convert the source code into an object file.

3. Use a linker to link the object file and any necessary libraries to produce an

executable program.

4. Type the name of the executable to run it.

The GCC compiler can handle compiling and linking in a single step.

Creating Your First Program
Now that you’ve been introduced to how the process works, it’s time to create your

first C++ program and give the compiler a test drive.

Run the text editor you’re using to create programs and open a new file. The first

program that you will create displays text on the screen.

Type the text of Listing 1.1 into the editor. Ignore the numbers along the left side of

the listing and the colons that follow them. The numbers are there simply for refer-

ence purposes in this book.

As you type, make sure to enter the punctuation on each line properly, such as the

:: and << characters on line 5.

When you’ve finished, save the file as Motto.cpp.

LISTING 1.1 The Full Text of Motto.cpp.

1: #include <iostream>
2:
3: int main()
4: {
5: std::cout << “Solidum petit in profundis!\n”;
6: return 0;
7: }

The point of this project is to become familiar with the steps of creating a C++ program.

If you don’t know what each line is doing, that’s no reason to panic—you’ll begin to

learn what’s going on here during Hour 2, “Organizing the Parts of a Program.”

Creating Your First Program 11

After you save the file, it needs to be compiled and linked. If you’re using GCC, the

following command accomplishes both tasks:

g++ Motto.cpp -o Motto.exe

This command tells the G++ compiler to compile the file named Motto.cpp and link

it into an executable program named Motto.exe. If it compiles successfully, no mes-

sage is displayed. The compiler only says something if there’s a problem, displaying

an error message and the line (or lines) where it appeared.

If you get a compiler error, recheck the program line by line. Make sure that all the

punctuation is included, particularly the semicolon at the end of lines 5 and 6.

After fixing any potential problems, try the compiler again. If you continue to expe-

rience problems and can’t find the cause, you can download a copy of this program

from the book’s website at http://cplusplus.cadenhead.org. Go to the Hour 1 page.

When the program has been compiled properly, you can run Motto.exe like any other

program on your computer: Type its name Motto.exe as a command and press Enter.

The Motto program displays the following output:

Solidum petit in profundis!

This is the motto of Aarhus University, a public school with 38,000 students in

Aarhus, Denmark, and the nation’s second-largest university. The motto is Latin for

“Seek a firm footing in the depths.”

Aarhus alumni include environmental writer Bjorn Lomborg, Nobel laureate chemist

Jens Christian Skou, Danish Crown Prince Fredrik, and some guy named Bjarne

Stroustrop.

Summary
Congratulations! You can now call yourself a C++ programmer, although if you quit

at this point, no one will call you an ambitious one.

The C++ language has been a popular choice for software development for more

than three decades. The language has its idiosyncrasies, but when you become com-

fortable with how programs are structured, it is easy to build on your knowledge by

creating more sophisticated programs.

Over the next few hours, you learn the basic building blocks of C++, creating several

programs each hour that demonstrate new facets of the language and programming

techniques.

Solidum petit in profundis!

16 HOUR 2: Organizing the Parts of a Program

The instructions that make up a computer program are called its source code.

In time, higher-level languages were introduced such as BASIC and COBOL. These

languages made it possible for programmers to begin to craft programs using lan-

guage closer to actual words and sentences, such as Let Gpa = 2.25. These instruc-

tions were translated back into machine language by tools that were called either

interpreters or compilers.

An interpreter-based language such as BASIC translates a program as it reads each

line, acting on each instruction.

A compiler-based language translates a program into what is called object code

through a process called compiling. This code is stored in an object file. Next, a linker

transforms the object file into an executable program that can be run on an operat-

ing system.

Because interpreters read the code as it is written and execute the code on-the-fly,

they’re easy for programmers to work with. Compilers require the more inconvenient

extra steps of compiling and linking programs. The benefit to this approach is that

the programs run significantly faster than programs run by an interpreter.

For many years, the principal goal of computer programmers was to write short pieces

of code that would execute quickly. Programs needed to be small because memory

was expensive, and they needed to be fast because processing power also was expen-

sive. As computers have become cheaper, faster, and more powerful and the cost and

capacity of memory has fallen, these priorities diminished in importance.

Today, the greatest expense in programming is the cost of a programmer’s time.

Modern languages such as C++ make it easier to produce well-written, easy-to-

maintain programs that can be extended and enhanced.

Styles of Programming
As programming languages have evolved, languages have been created to cater to

different styles of programming.

In procedural programming, programs are conceived of as a series of actions per-

formed on a set of data. Structured programming was introduced to provide a system-

atic approach to organizing these procedures and managing large amounts of data.

The principle idea behind structured programming is to divide and conquer. Take a

task that needs to be accomplished in a program, and if it is too complex, break it

down into a set of smaller component tasks. If any of those tasks are still too compli-

Reasons to Use C++ 17

cated, break them down into even smaller tasks. The end goal is tasks that are small

and self-contained enough to be easily understood.

As an example, pretend you’ve been asked by this publisher to write a program that

tracks the average income of its team of enormously talented and understatedly good-

looking computer book authors. This job can be broken down into these subtasks:

1. Find out what each author earns.

2. Count how many authors the publisher has.

3. Total all their income.

4. Divide the total by the number of authors.

Totaling the income can be broken down into the following:

1. Get each author’s personnel record.

2. Access the author’s book advances and royalties.

3. Deduct the cost of morning coffee, corrective eyewear and therapy.

4. Add the income to the running total.

5. Get the next author’s record.

In turn, obtaining each author’s record can be broken down into these subtasks:

1. Open the file folder of authors.

2. Go to the correct record.

3. Read the data from disk.

Although structured programming has been widely used, some drawbacks attach to

the approach. The separation of data from the tasks that manipulate the data

becomes harder to work with as the amount of data grows. The more things that

must be done with data, the more confusing a program becomes.

Procedural programmers often find themselves reinventing new solutions to old

problems instead of producing reusable programs. The idea behind reusability is to

build program components that can be plugged into programs as needed. This

approach is modeled after the physical world, where devices are built out of individ-

ual parts that each perform a specific task and have already been manufactured. A

person designing a bicycle doesn’t have to create a brake system from scratch.

18 HOUR 2: Organizing the Parts of a Program

Instead, she can incorporate an existing brake into the design and take advantage of

its functionality.

Before the introduction of object-oriented programming, there was no similar option

for a computer programmer.

C++ and Object-Oriented Programming
The essence of object-oriented programming is to treat data and the procedures that

act upon the data as a single object—a self-contained entity with an identity and

characteristics of its own.

The C++ language fully supports object-oriented programming, including three con-

cepts that have come to be known as the pillars of object-oriented development:

encapsulation, inheritance, and polymorphism.

Encapsulation
When the aforementioned bike engineer creates a new bicycle, she connects together

component pieces such as the frame, handlebars, wheels, and a headlight. Each

component has certain properties and can accomplish certain behaviors. She can use

the headlight without understanding the details of how it works, as long as she

knows what it does.

To achieve this, the headlight must be self-contained. It must do one well-defined

thing and it must do it completely. Accomplishing one thing completely is called

encapsulation.

All the properties of the headlight are encapsulated in the headlight object. They are

not spread out through the bicycle.

C++ supports the properties of encapsulation through the creation of user-defined

types called classes. A well-defined class acts as a fully encapsulated entity that is

used as an entire unit or not at all. The inner workings of the class should be hidden

on the principle that the programs that use a well-defined class do not need to know

how the class works. They only need to know how to use it. You learn how to create

classes in Hour 8, “Creating Basic Classes.”

Inheritance and Reuse
Now we’re starting to learn a little more about our bike engineer. Let’s call her Penny

Farthing. Penny needs her new bicycle to hit the market quickly—she has run up

enormous gambling debts to people who are not known for their patience.

The Parts of a Program 19

Because of the urgency, Penny starts with the design of an existing bicycle and

enhances it with cool new add-ons like a cup holder and mileage counter. Her new

enhanced bicycle is conceived as a kind of bicycle with added features. She reused all

the features of a regular bicycle while adding capabilities to extend its utility.

C++ supports the idea of reuse through inheritance. A new type can be declared that

is an extension of an existing type. This new subclass is said to derive from the exist-

ing type. Penny’s bicycle is derived from a plain old bicycle and thus inherits all its

qualities but adds additional features as needed. Inheritance and its application in

C++ are discussed in Hour 16, “Extending Classes with Inheritance.”

Polymorphism
As its final new selling point, Penny Farthing’s Amazo-Bicycle™ behaves differently

when its horn is squeezed. Instead of honking like a sickly goose, it sounds like a car

when lightly pressed and roars like a foghorn when strongly squashed. The horn

does the right thing and makes the proper sound based on how it is used by the bicy-

cle’s rider.

C++ supports this idea that different objects do the right thing through a language

feature called function polymorphism and class polymorphism. Polymorphism refers to

the same thing taking many forms, and is discussed during Hour 17, “Using Poly-

morphism and Derived Classes.”

You will learn the full scope of object-oriented programming by learning C++. These

concepts will become familiar to you by the time you’ve completed the full 24-hour

ride and begun to develop your own C++ programs.

You won’t learn how to design bicycles or get out of gambling debt.

The Parts of a Program
The program you created during the first hour, Motto.cpp, contains the basic frame-

work of a C++ program. Listing 2.1 reproduces the source code of this program so

that it can be explored in more detail.

When typing this program into your programming editor, remember not to include

the line numbers in the listing. They are included solely for the purpose of referring

to specific lines in this book.

20 HOUR 2: Organizing the Parts of a Program

LISTING 2.1 The Full Text of Motto.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: std::cout << “Solidum petit in profundis!\n”;
6: return 0;
7: }

This program produces a single line of output, the motto of Aarhus University:

Solidum petit in profundis!

On line 1 of Listing 2.1 a file named iostream is included in the source code. This

line causes the compiler to act as if the entire contents of the file were typed at that

place in Motto.cpp.

Preprocessor Directives
A C++ compiler’s first action is to call another tool called the preprocessor that exam-

ines the source code. This happens automatically each time the compiler runs.

The first character in line 1 is the # symbol, which indicates that the line is a com-

mand to be handled by the preprocessor. These commands are called preprocessor direc-

tives. The preprocessor’s job is to read source code looking for directives and modify the

code according to the indicated directive. The modified code is fed to the compiler.

The preprocessor serves as an editor of code right before it is compiled. Each directive

is a command telling that editor what to do.

The #include directive tells the preprocessor to include the entire contents of a desig-

nated filename at that spot in a program. C++ includes a standard library of source

code that can be used in your programs to perform useful functionality. The code in

the iostream file supports input and output tasks such as displaying information

onscreen and taking input from a user.

The < and > brackets around the filename iostream tell the preprocessor to look in a

standard set of locations for the file. Because of the brackets, the preprocessor looks

for the iostream file in the directory that holds header files for the compiler. These

files also are called include files because they are included in a program’s source code.

The full contents of iostream are included in place of line 1.

The Parts of a Program 21

Header files traditionally ended with the filename extension .h and also were
called h files, so they used a directive of the form include <iostream.h>.

Modern compilers don’t require that extension, but if you refer to files using it,
the directive might still work for compatibility reasons. This book omits the
unneeded .h in include files.

The contents of the file iostream are used by the cout command in line 5, which dis-

plays information to the screen.

There are no other directives in the source code, so the compiler handles the rest of

Motto.cpp.

Source Code Line by Line
Line 3 begins the actual program by declaring a function named main(). Functions

are blocks of code that perform one or more related actions. Functions do some work

and then return to the spot in the program where they were called.

Every C++ program has a main() function. When a program starts, main() is called

automatically.

All functions in C++ must return a value of some kind after their work is done. The

main() function always returns an integer value. Integers are specified using the key-

word int.

Functions, like other blocks of code in a C++ program, are grouped together using the

brace marks { and }. All functions begin with an opening brace { and end with a clos-

ing brace }.

The braces for the main() function of Motto.cpp are on lines 4 and 7, respectively.

Everything between the opening and closing braces is part of the function.

In line 5, the cout command is used to display a message on the screen. The object

has the designation std:: in front of it, which tells the compiler to use the standard

C++ input/output library. The details of how this works are too complex for this early

hour and likely will cause you to throw the book across the room if introduced here.

For the safety of others in your vicinity, they are explained in a later hour. For now,

treat std::cout as the name of the object that handles output in your programs and

std::cin as the object that handles user input.

The reference to std::cout in line 5 is followed by <<, which is called the output redi-

rection operator. Operators are characters in lines of code that perform an action in

By the
Way

22 HOUR 2: Organizing the Parts of a Program

response to some kind of information. The << operator displays the information that

follows it on the line. In line 5, the text “Solidum petit in profundis!\n” is enclosed

within double quotes. This displays a string of characters on the screen followed by a

special character specified by \n, a newline character that advances the program’s

output to the beginning of the next line.

On line 6, the program returns the integer value 0. This value is received by the operat-

ing system after the program finishes running. Typically, a program returns the value 0

to indicate that it ran successfully. Any other number indicates a failure of some kind.

The closing brace on line 7 ends the main() function, which ends the program. All of

your programs use the basic framework demonstrated by this program.

Comments
As you are writing your own programs, it will seem perfectly clear to you what each

line of the source code is intended to accomplish. But as time passes and you come

back to the program later to fix a bug or add a new feature, you often will find your-

self completely mystified by your own work.

To avoid this predicament and help others understand your code, you can document

your source code with comments. Comments are lines of text that explain what a pro-

gram is doing. The compiler ignores them, so they are strictly for benefit of humans

reading the code.

There are two types of comments in C++. A single-line comment begins with two

slash marks (//) and causes the compiler to ignore everything that follows the slashes

on the same line. Here’s an example:

// The next line is a kludge (ugh!)

A multiple-line comment begins with the slash and asterisk characters (/*) and ends

with the same characters reversed (*/). Everything within the opening /* and the clos-

ing */ is a comment, even if it stretches over multiple lines. If a program contains a /*

that is not followed by a */ somewhere, that’s an error likely to be flagged by the com-

piler. Here’s a multiline comment:

/* This part of the program doesn’t work very well. Please remember to
fix this before the code goes live –– or else find a scapegoat you can
blame for the problem. The new guy Curtis would be a good choice. */

In the preceding comment, the text on the left margin is lined up to make it more

readable. This is not required. Because the compiler ignores everything within the /*

and */, anything can be put there—grocery lists, love poems, secrets you’ve never told

anybody in your life, and so on.

Functions 23

An important thing to remember about multiline comments is that they do not
nest inside each other. If you use one /* to start a comment and then use
another /* a few lines later, the first */ mark encountered by the compiler will
end all multiline comments. The second */ mark will result in a compiler error.
Most C++ programming editors display comments in a different color to make
clear where they begin and end.

The next project that you create includes both kinds of comments. Write lots of com-

ments in your programs. The more time spent writing comments that explain what’s

going on in code, the easier that code is to work on weeks, months or even years later.

Functions
The main() function is unusual among C++ functions because it’s called automati-

cally when a program begins.

A program is executed line by line in source code, beginning with the start of main().

When a function is called, the program branches off to execute the function. After

the function has done its work, it returns control to the line where the function was

called. Functions may or may not return a value, with the exception of main(),

which always returns an integer.

Functions consist of a header and a body. The header consists of three things:

. The type of data the function returns

. The function’s name

. The parameters received by the function

The function’s name is a short identifier that describes its purpose.

When a function does not return a value, it uses data type void, which means the

same thing as nothing.

Arguments are data sent to the function that control what it does. These arguments

are received by the function as parameters. A function can have zero, one, or more

parameters. The next program that you create has a function called add() that adds

two numbers together. Here’s how it is declared:

int add(int x, int y)
{

// body of function goes here
}

Watch
Out!

24 HOUR 2: Organizing the Parts of a Program

The parameters are organized within parentheses marks as a list separated by com-

mas. In this function, the parameters are integers named x and y.

The name of a function, its parameters and the order of those parameters is called its

signature. Like a person’s signature, the function’s signature uniquely identifies it.

A function with no parameters has an empty set of parentheses, as in this example:

int getServerStatus()
{

// body of function here
}

Function names cannot contain spaces, so the getServerStatus() function capital-

izes the first letter of each word after the first one. This naming convention is common

among C++ programmers and adopted throughout this book.

The body of a function consists of an opening brace, zero or more statements, and a

closing brace. A function that returns a value uses a return statement, as you’ve

seen in the Motto program:

return 0;

The return statement causes a function to exit. If you don’t include at least one

return statement in a function, it automatically returns a void at the end of the

function’s body. This void must be specified as the function’s return type.

Using Arguments with Functions
The Calculator.cpp program in Listing 2.2 fleshes out the aforementioned add()

function, using it to add two pairs of numbers together and display the results. This

program demonstrates how to create a function that takes two integer arguments

and returns an integer value.

LISTING 2.2 The Full Text of Calculator.cpp

1: #include <iostream>
2:
3: int add(int x, int y)
4: {
5: // add the numbers x and y together and return the sum
6: std::cout << “Running calculator ...\n”;
7: return (x+y);
8: }
9:
10: int main()
11: {
12: /* this program calls an add() function to add two different

Functions 25

LISTING 2.2 Continued
13: sets of numbers together and display the results. The
14: add() function doesn’t do anything unless it is called by
15: a line in the main() function. */
16: std::cout << “What is 867 + 5309?\n”;
17: std::cout << “The sum is “ << add(867, 5309) << “\n\n”;
18: std::cout << “What is 777 + 9311?\n”;
19: std::cout << “The sum is “ << add(777, 9311) << “\n”;
20: return 0;
21: }

This program produces the following output:

What is 867 + 5309?
Running calculator ...
The sum is 6176

What is 777 + 9311?
Running calculator ...
The sum is 10088

The Calculator program includes a single line comment on line 5 and a multiline

comment on lines 12–15. All comments are ignored by the compiler.

The add() function takes two integer parameters named x and y and adds them

together in a return statement (lines 3–8).

The program’s execution begins in the main() function. The first statement in line 16

uses the object std::cout and the redirection operator << to display the text “What

is 867 + 5309?” followed by a newline.

The next line displays the text “The sum is” and calls the add() function with the

arguments 867 and 5309. The execution of the program branches off to the add()

function, as you can tell in the output by the text “Running calculator....”

The integer value returned by the function is displayed along with two more newlines.

The process repeats for a different set of numbers in lines 18–19.

The formula (x+y) is an expression. You learn how to create your own in Hour 4,

“Using Expressions, Statements, and Operators.”

Summary
During this hour, you were shown how C++ evolved from other styles of computer

languages and embraced a methodology called object-oriented programming. This

methodology has been so successful in the world of computing that the language

remains as contemporary today as it did when it was invented in 1979.

What Is a Variable? 31

This statement displays the number of bytes required to store an integer variable.

The sizeof() function is provided by the compiler and does not require an include

directive. The Sizer program in Listing 3.1 relies on the sizeof() function to report

the sizes of common C++ types on your computer.

LISTING 3.1 The Full Text of Sizer.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: std::cout << “The size of an integer:\t\t”;
6: std::cout << sizeof(int) << “ bytes\n”;
7: std::cout << “The size of a short integer:\t”;
8: std::cout << sizeof(short) << “ bytes\n”;
9: std::cout << “The size of a long integer:\t”;
10: std::cout << sizeof(long) << “ bytes\n”;
11: std::cout << “The size of a character:\t”;
12: std::cout << sizeof(char) << “ bytes\n”;
13: std::cout << “The size of a boolean:\t\t”;
14: std::cout << sizeof(bool) << “ bytes\n”;
15: std::cout << “The size of a float:\t\t”;
16: std::cout << sizeof(float) << “ bytes\n”;
17: std::cout << “The size of a double float:\t”;
18: std::cout << sizeof(double) << “ bytes\n”;
19: std::cout << “The size of a long long int:\t”;
20: std::cout << sizeof(long long int) << “ bytes\n”;
21:
22: return 0;
23: }

This program makes use of a new feature of C++0x, the next version of the language.

The long long int data type holds extremely large integers. If your compiler fails

with an error, it may not support this feature yet. Delete lines 19–20 and try again to

see if that’s the problem.

After being compiled, this program produces the following output when run on a

Linux Ubuntu 9.10 system:

The size of an integer: 4 bytes
The size of a short integer: 2 bytes
The size of a long integer: 4 bytes
The size of a character: 1 bytes
The size of a boolean: 1 bytes
The size of a float: 4 bytes
The size of a double float: 8 bytes
The size of a long long int: 8 bytes

Compare this output to how it runs on your computer. The sizeof() function

reveals the size of an object specified as its argument. For example, on line 16 the

keyword float is passed to sizeof(). As you can see from the output, on the

Ubuntu computer an int is equivalent in size to a long.

32 HOUR 3: Creating Variables and Constants

TABLE 3.1 Variable Types

Type Size Values

unsigned short 2 bytes 0 to 65,535

short 2 bytes –32,768 to 32,767

unsigned long 4 bytes 0 to 4,294,967,295

long 4 bytes –2,147,483,648 to 2,147,483,647

int 4 bytes –2,147,483,648 to 2,147,483,647

Signed and Unsigned Variables
All the integer types come in two varieties specified using a keyword. They are

declared with unsigned when they only hold positive values and signed when they

hold positive or negative values. Here’s a statement that creates a short int variable

called zombies that does not hold negative numbers:

unsigned short zombies = 0;

The variable is assigned the initial value 0. Both signed and unsigned integers can

equal 0.

Integers that do not specify either signed or unsigned are assumed to be signed.

Signed and unsigned integers are stored using the same number of bytes. For this

reason, the largest number that can be stored in an unsigned integer is twice as big

as the largest positive number that a signed integer can hold. An unsigned short

can handle numbers from 0 to 65,535. Half the numbers represented by a signed

short are negative, so a signed short represents numbers from –32,768 to 32,767.

In both cases, the total number of possible values is 65,535.

Variable Types
In addition to integer variables, C++ types cover floating-point values and characters

of text.

Floating-point variables have values that can be expressed as decimal values. Char-

acter variables hold a single byte representing 1 of the 256 characters and symbols in

the standard ASCII character set.

Variable types supported by C++ programs are shown in Table 3.1, which lists the

variable type, the most common memory size, and the possible values that it can

hold. Compare this table to the output of the Sizer program when run on your com-

puter, looking for size differences.

Defining a Variable 33

TABLE 3.1

Type Size Values

unsigned int 4 bytes 0 to 4,294,967,295

long long int 8 bytes -9.2 quintillion to 9.2 quintillion

char 1 byte 256 character values

bool 1 byte true or false

float 4 bytes 1.2e–38 to 3.4e38

double 8 bytes 2.2e–308 to 1.8e308

The short and long variables also are called short int and long int in C++. Both

forms are acceptable in your programs.

As shown in Table 3.1, unsigned short integers can hold a value only up to 65,535,

while signed short integers can hold half that at maximum. Although unsigned

long long int integers can hold more than 18.4 quintillion, that’s still finite. If you

need a larger number, you must use float or double at the cost of some numeric

precision. Floats and doubles can hold extremely large numbers, but only the first 7

or 19 digits are significant on most computers. Additional digits are rounded off.

Although it’s considered poor programming practice, a char variable can be used as

a very small integer. Each character has a numeric value equal to its ASCII code in

that character set. For example, the exclamation point character (!) has the value 33.

Defining a Variable
A variable is defined in C++ by stating its type, the variable name, and a colon to

end the statement, as in this example:

int highScore;

Continued

34 HOUR 3: Creating Variables and Constants

More than one variable can be defined in the same statement as long as they share

the same type. The names of the variables should be separated by commas, as in

these examples:

unsigned int highScore, playerScore;
long area, width, length;

The highScore and playerScore variables are both unsigned integers. The second

statement creates three long integers: area, width, and length. Because these inte-

gers share the same type, they can be created in one statement.

A variable name can be any combination of uppercase and lowercase letters, num-

bers and underscore characters (_) without any spaces. Legal variable names include

x, driver8, and playerScore. C++ is case sensitive, so the highScore variable differs

from ones named highscore or HIGHSCORE.

Using descriptive variable names makes it easier to understand a program for the

humans reading it. (The compiler doesn’t care one way or the other.) Take a look at

the following two code examples to see which one is easier to figure out.

Example 1

main()
{

unsigned short x;
unsigned short y;
unsigned int z;
z = x * y;

}

Example 2

main ()
{

unsigned short width;
unsigned short length;
unsigned short area;
area = width * length;

}

Programmers differ in the conventions they adopt for variable names. Some prefer

all lowercase letters for variable names with underscores separating words, such as

high_score and player_score. Others prefer lowercase letters except for the first let-

ter of new words, such as highScore and playerScore. (In a bit of programming

lore, the latter convention has been dubbed CamelCase because the middle-of-word

capitalization looks like a camel’s hump.)

Programmers who learned in a UNIX environment tend to use the first convention,

whereas those in the Microsoft world use CamelCase. The compiler does not care.

The code in this book uses CamelCase.

Assigning Values to Variables 35

Some compilers allow you to turn case sensitivity of variable names off. Do not
do this. If you do, your programs won’t work with other compilers, and other C++
programmers will make fun of you.

Some words are reserved by C++ and may not be used as variable names because they

are keywords used by the language. Reserved keywords include if, while, for, and

main. Generally, any reasonable name for a variable is almost certainly not a keyword.

Variables may contain a keyword as part of a name but not the entire name, so vari-

ables mainFlag and forward are permitted but main and for are reserved.

Assigning Values to Variables
A variable is assigned a value using the = operator, which is called the assignment

operator. The following statements show it in action to create an integer named

highScore with the value 13,000:

unsigned int highScore;
highScore = 13000;

A variable can be assigned an initial value when it is created:

unsigned int highScore = 13000;

This is called initializing the variable. Initialization looks like assignment, but when

you work later with constants, you’ll see that some variables must be initialized

because they cannot be assigned a value.

The Rectangle program in Listing 3.2 uses variables and assignments to compute the

area of a rectangle and display the result.

LISTING 3.2 The Full Text of Rectangle.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: // set up width and length
6: unsigned short width = 5, length;
7: length = 10;
8:
9: // create an unsigned short initialized with the
10: // result of multiplying width by length
11: unsigned short area = width * length;
12:
13: std::cout << “Width: “ << width << “\n”;
14: std::cout << “Length: “ << length << “\n”;

With well-chosen variable names and plenty of comments, your C++ code will be

much easier to figure out when you come back to it months or years later.

Watch
Out!

36 HOUR 3: Creating Variables and Constants

LISTING 3.2 Continued
15: std::cout << “Area: “ << area << “\n”;
16: return 0;
17: }

This program produces the following output when run:

Width: 5
Length: 10
Area: 50

Like the other programs you’ve written so far, Rectangle uses the #include directive

to bring the standard iostream library into the program. This makes it possible to

use std::cout to display information.

Within the program’s main() block, on line 6 the variables width and length are cre-

ated and width is given the initial value of 5. On line 7, the length variable is given

the value 10 using the = assignment operator.

On line 11, an integer named area is defined. This variable is initialized with the

value of the variable width multiplied by the value of length. The multiplication

operator * multiplies one number by another.

On lines 13–15, the values of all three variables are displayed.

Using Type Definitions
When a C++ program contains a lot of variables, it can be repetitious and error-prone

to keep writing unsigned short int for each one. A shortcut for an existing type

can be created with the keyword typedef, which stands for type definition.

A typedef requires typedef followed by the existing type and its new name. Here’s

an example:

typedef unsigned short USHORT

This statement creates a type definition named USHORT that can be used anywhere in

a program in place of unsigned short. The NewRectangle program in Listing 3.3 is

a rewrite of Rectangle that uses this type definition.

LISTING 3.3 The Full Text of NewRectangle.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: // create a type definition
6: typedef unsigned short USHORT;
7:
8: // set up width and length
9: USHORT width = 5;

Constants 37

10: USHORT length = 10;
11:
12: // create an unsigned short initialized with the
13: // result of multiplying width by length
14: USHORT area = width * length;
15:
16: std::cout << “Width: “ << width << “\n”;
17: std::cout << “Length: “ << length << “\n”;
18: std::cout << “Area: “ << area << “\n”;
19: return 0;
20: }

This program has the same output as Rectangle: the values of width (5), length (10),

and area (50).

On line 6, the USHORT typedef is created as a shortcut for unsigned short. A type def-

inition substitutes the underlying definition unsigned short wherever the shortcut

USHORT is used.

During Hour 8, “Creating Basic Classes,” you learn how to create new types in C++.

This is a different from creating type definitions.

Some compilers will warn that in the Rectangle2 program a “conversion may lose
significant digits.” This occurs because the product of the two USHORTS on line 14
might be larger than an unsigned short integer can hold. For this program, you
can safely ignore the warning.

Constants
A constant, like a variable, is a memory location where a value can be stored. Unlike

variables, constants never change in value. You must initialize a constant when it is

created. C++ has two types of constants: literal and symbolic.

A literal constant is a value typed directly into your program wherever it is needed.

For example, consider the following statement:

long width = 5;

This statement assigns the integer variable width the value 5. The 5 in the statement

is a literal constant. You can’t assign a value to 5, and its value can’t be changed.

The values true and false, which are stored in bool variables, also are literal

constants.

A symbolic constant is a constant represented by a name, just like a variable. The

const keyword precedes the type, name, and initialization. Here’s a statement that

sets the point reward for killing a zombie:

const int KILL_BONUS = 5000;

By the
Way

38 HOUR 3: Creating Variables and Constants

Whenever a zombie is dispatched, the player’s score is increased by the reward:

playerScore = playerScore + KILL_BONUS;

If you decide later to increase the reward to 10,000 points, you can change the con-

stant KILL_BONUS, and it will be reflected throughout the program. If you were to use

the literal constant 5000 instead, it would be more difficult to find all the places it is

used and change the value. This reduces the potential for error.

Well-named symbolic constants also make a program more understandable. Con-

stants often are fully capitalized by programmers to make them distinct from vari-

ables. This is not required by C++, but the capitalization of a constant must be con-

sistent because the language is case sensitive.

Defining Constants
There’s another way to define constants that dates back to early versions of the C

language, the precursor of C++. The preprocessor directive #define can create a con-

stant by specifying its name and value, separated by spaces:

#define KILLBONUS 5000

The constant does not have a type such as int or char. The #define directive

enables a simple text substitution that replaces every instance of KILLBONUS in the

code with 5000. The compiler sees only the end result.

Because these constants lack a type, the compiler cannot ensure that the constant

has a proper value.

Enumerated Constants
Enumerated constants create a set of constants with a single statement. They are

defined with the keyword enum followed by a series of comma-separated names sur-

rounded by braces:

enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

This statement creates a set of enumerated constants named COLOR with five values

named RED, BLUE, GREEN, WHITE and BLACK.

The values of enumerated constants begin with 0 for the first in the set and count

upwards by 1. So RED equals 0, BLUE equals 1, GREEN equals 2, WHITE equals 3, and

BLACK equals 4. All the values are integers.

44 HOUR 4: Using Expressions, Statements, and Operators

The assignment statement could be written in the following two ways and still work

the same way:

x=a+b;

x = a + b ;

The compiler ignores whitespace (or the lack of it). Whitespace cannot be used inside a

variable name, so the variable playerScore could not be referred to as player Score.

The tabs or spaces that serve the purpose of indentation in programs is whitespace.

Proper indentation makes it easier to see when a program block or function block

begins and ends.

Compound Statements
Several statements can be grouped together as a compound statement, which begins

with an opening brace { and ends with a closing brace }. A compound statement can

appear anywhere a single statement could.

Although every statement in a compound statement must end with a semicolon, the

compound statement itself does not end with a semicolon. Here’s an example:

{
temp = a;
a = b;
b = temp;

}

This compound statement swaps the values in the variables a and b using a variable

named temp as a temporary holding place for one value.

Expressions
An expression is any part of a statement that returns a value, as in this simple example:

x = y + 13;

This statement makes the variable x equal to the variable y plus 13. So, if y equals

20, x equals 33. The entire statement also returns the final value of x, so it’s also an

expression. To understand this better, consider a more complex statement:

z = x = y + 13;

This statement consists of three expressions:

. The expression y + 13 is stored in the variable x.

Operators 45

. The expression x = y + 13 returns the value of x, which is stored in the vari-

able z.

. The expression z = x = y + 13 returns the value of z, which is not stored.

The assignment operator = causes the operand on the left side of the operator to have

its value changed to the value on the right side of the operator.

Operand is a mathematical term referring to the part of an expression operated upon

by an operator.

The Expression program in Listing 4.1 displays the values of three variables before

and after they are used in a complex multiple-expression statement.

LISTING 4.1 The Full Text of Expression.cpp

1: #include <iostream>
2: int main()
3: {
4: int x = 0, y = 72, z = 0;
5: std::cout << “Before\n\nx: “ << x << “ y: “ << y;
6: std::cout << “ z: “ << z << “\n\n”;
7: z = x = y + 13;
8: std::cout << “After\n\nx: “ << x << “ y: “ << y;
9: std::cout << “ z: “ << z << “\n”;
10: return 0;
11: }

This program produces the following output:

Before
x: 0 y: 72 z: 0

After
x: 85 y: 72 z: 85

Three variables are declared and given initial values, which are displayed on lines

5–6. In line 7, expressions assign values to x and z, in that order. The new values are

displayed in lines 8–9.

Operators
An operator is a symbol that causes the compiler to take an action such as assigning

a value or performing multiplication, division, or another mathematical operation.

46 HOUR 4: Using Expressions, Statements, and Operators

Assignment Operator
An expression consists of an assignment operator, an operand to its left called an

l-value, and an operand to its right called an r-value. In the expression grade = 95,

the l-value is grade, and the r-value is 95.

Constants are r-values but cannot be l-values. The expression 95 = grade is not per-

mitted in C++ because the constant 95 cannot be assigned a new value.

The primary reason to learn the terms l-value and r-value is because they may

appear in compiler error messages.

Mathematical Operators
There are five mathematical operators: addition (+), subtraction (-), multiplication

(*), division (/), and modulus (%). C++, like C, does not have an exponentiation oper-

ator to raise a value to a specified power. There is a function to perform the task.

Addition, subtraction, and multiplication act as you’d expect, but division is more

complex.

Integer division differs from ordinary division. When you divide 21 by 4, the result is

a real number that has a fraction or decimal value. By contrast, integer division pro-

duces only integers, so the remainder is dropped. The value returned by 21 / 4 is 5.

The modulus operator % returns the remainder value of integer division, so 21 % 4

equals 1. The integer division 21 / 4 is 5, leaving a remainder of 1.

When describing an expression using the modulus operator, it is called modulo,
so 21 % 4 is “21 modulo 4.” Modulo is the operation performed by the modulus
operator and the result is called the modulus.

Finding the modulus can be useful in programming. If you want to display a state-

ment every 10th time that a task is performed, the expression taskCount % 10 can

watch for this. The modulus ranges in value from 0 to 10. Every time it equals 0, the

count of tasks is a multiple of 10.

Floating-point division is comparable to ordinary division. The expression 21 / 4.0

equals 5.25.

C++ decides which division to perform based on the type of the operands. If at least

one operand is a floating-point variable or literal, the division is floating point. Oth-

erwise, it is integer division.

By the
Way

Operators 47

Combining Operators
It is not uncommon to want to add a value to a variable and then to assign the result

back into the variable. The following expression adds 10 to the value of a variable

named score:

score = score + 10;

This expression takes the existing value of score, adds 10 to it, and stores the result

in score.

This can be written more simply using the += self-assigned addition operator:

score += 10;

The self-assigned addition operator += adds the r-value to the l-value, and then

assigns the result to the l-value. There are self-assigned subtraction (-=), division (/=),

multiplication (*=), and modulus (%=) operators, as well.

These self-assignment operators do the same thing as longer expressions, so either

form can be used at your discretion.

Increment and Decrement Operators
The most common value to add or subtract from a variable is 1. Increasing a variable

by 1 is called incrementing, and decreasing it by 1 is called decrementing. C++ includes a

++ increment operator and –– decrement operator to accomplish these tasks:

score++;

zombies––;

These statements increase score by 1 and decrease zombies by 1, respectively. They

are equivalent to these more verbose statements:

score = score + 1;

zombies = zombies – 1;

The ++ operator is said aloud as “plus-plus” and –– as “minus-minus.”

Now that you’ve been introduced to the increment operator, the name C++ should
make more sense. The C++ programming language was intended by creator
Bjarne Stroustrup as an incremental improvement over the C language. He named
it like an expression, putting the increment operator in its name and causing
countless people over the years to wonder why it’s called “C-plus-plus” rather
than “C-plus.”

By the
Way

48 HOUR 4: Using Expressions, Statements, and Operators

Prefix and Postfix Operators
The increment operator ++ and decrement operator –– can be used either before or

after a variable’s name to achieve different results. An operator placed before a vari-

able’s name is called a prefix operator, as in this statement:

++count;

An operator placed after the variable name is called the postfix operator:

count++;

In simple statements like the preceding examples, the operators accomplish the same

thing. The count variable is increased by 1 in both statements.

The reason for the existence of prefix and postfix operators becomes apparent in

complex expressions where a variable is being incremented or decremented and

assigned to another variable. The prefix operator occurs before the variable’s value is

used in the expression. The postfix is evaluated after.

This will make more sense with a concrete example:

int x = 5;
int sum = ++x;

After these statements are executed, the x variable and sum variable both equal 6.

The prefix operator in ++x causes x to be incremented from 5 to 6 before it is assigned

to sum.

Compare it to this example:

int x = 5;
int sum = x++;

This causes sum to equal 5 and x to equal 6. The postfix operator causes x to be

assigned to sum before it is incremented from 5 to 6.

Listing 4.2 contains the Years program, which counts forward several years using pre-

fix and postfix increment operators.

LISTING 4.2 The Full Text of Years.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int year = 2010;
6: std::cout << “The year “ << ++year << “ passes.\n”;
7: std::cout << “The year “ << ++year << “ passes.\n”;
8: std::cout << “The year “ << ++year << “ passes.\n”;
9:
10: std::cout << “\nIt is now “ << year << “.”;

Operators 49

11: std::cout << “ Have the Seattle Mariners won the World Series yet?\n”;
12:
13: std::cout << “\nThe year “ << year++ << “ passes.\n”;
14: std::cout << “The year “ << year++ << “ passes.\n”;
15: std::cout << “The year “ << year++ << “ passes.\n”;
16:
17: std::cout << “\nSurely the Mariners have won the Series by now.\n”;
18: return 0;
19: }

This program displays the following output:

The year 2011 passes.
The year 2012 passes.
The year 2013 passes.

It is now 2013. Have the Seattle Mariners won the World Series yet?

The year 2013 passes.
The year 2014 passes.
The year 2015 passes.

Surely the Mariners have won the Series by now.

The Years program counts forward the years, anticipating the first World Series vic-

tory by the Seattle Mariners, one of only two Major League Baseball franchises to

never reach the World Series. The program begins by setting the year variable to

2010 in Line 5.

Line 6 produces the first output of the program: “The year 2011 passes.” Take note

that the year is 2011, not 2010 as it was originally set. This happens because the pre-

fix operator in that line changes the value of year before it is displayed.

Several years pass, and in line 10, the year equals 2013.

Line 13 produces this output: “The year 2013 passes.” The year remains 2013

because the postfix operator changes the value of year after it is displayed.

There are three ways of adding 1 to a variable in C++: a = a + 1, a += 1, and
a++. This leads to some confusion about which one is best to use. There’s no
best way. As long as you know what your code is doing, all three ways are per-
fectly acceptable.

Operator Precedence
The values produced by complex expressions depend on the order of precedence, which

is the order in which expressions are evaluated. Here’s a complex expression with

three operators:

int x = 5 + 3 * 8;

By the
Way

50 HOUR 4: Using Expressions, Statements, and Operators

TABLE 4.1 Operator Precedence

Level Operators Evaluation Order

1 (highest) () . [] fi :: Left to right

2 * & ! ~ ++ – – + - Right to left

sizeof new

delete

Left to right

3 .* fi * Left to right

4 * / Left to right

5 + - Left to right

6 << >> Left to right

7 < <= > >= Left to right

8 == != Left to right

9 & Left to right

10 ^ Left to right

11 | Left to right

12 && Left to right

13 || Left to right

14 ?: Right to left

15 = *= /= += -= %= Right to left

<<= >>= &= ^= |= Right to left

16 (lowest) , Left to right

This expression sets x to 64 if addition takes place before multiplication, because 8

times 8 equals 64. If multiplication takes place before addition, x equals 29 because 5

plus 24 equals 29.

Every operator has a precedence value. Multiplication has higher precedence than addi-

tion, so the expression sets x to 29. The precedence of operators is shown in Table 4.1.

You are introduced to most of these operators in later hours. Operators are evaluated

from top of the table down. Operators with the same precedence are evaluated from

left to right or right to left, as indicated in the table.

Looking at the table, you can see that the multiplication operator * and division

operator / have higher precedence than the addition operator + and subtraction

Operators 51

operator -. For this reason, multiplication and division are handled before addition

and subtraction.

When two mathematical operators have the same precedence, they are performed in

left-to-right order. Here’s an expression with two multiplication operators and three

addition operators:

int x = 5 + 3 + 8 * 9 + 6 * 4;

Because multiplication has higher precedence than addition and the same operators

have left-to-right order, 8 times 9 is evaluated first and becomes 72:

int x = 5 + 3 + 72 + 6 * 4;

Next, 6 times 4 is evaluated:

int x = 5 + 3 + 72 + 24;

Now the addition operators are handled in left-to-right order. The final result is that x

equals 104.

Some operators, such as assignment, are evaluated in right-to-left order:

int z = x = y + 13;

The first expression evaluated is y + 13, which is assigned to x. Next, x is assigned to z.

When precedence order doesn’t meet your needs, you can use parentheses to impose

a different order. Items within parentheses are evaluated at a higher precedence than

any mathematical operators:

int totalSeconds = (minutesWork + minutesTravel) * 60;

This expression adds minutesWork and minutesTravel, multiplies the result by 60,

and assigns it to totalSeconds.

Parentheses can be nested within each other. The innermost parenthesis are evalu-

ated first:

totalSeconds = ((secondsWork * 60) + minutesTravel) * 60;

When in doubt, use parentheses to make an expression’s meaning clear. They do
not affect a program’s performance, so there’s no harm in using them even in
cases where they wouldn’t be needed.

Relational Operators
Relational operators are used for comparisons to determine when two numbers are

equal or one is greater or less than the other. Every relational expression returns

either true or false. The relational operators are presented in Table 4.2.

By the
Way

52 HOUR 4: Using Expressions, Statements, and Operators

TABLE 4.2 The Relational Operators

Name Operator Sample Evaluates

Equals == 100 == 50; false

50 == 50; true

Not equal != 100 != 50; true

50 != 50; false

Greater than > 100 > 50; true

50 > 50; false

Greater than or equals >= 100 >= 50; true

50 >= 50; true

Less than < 100 < 50; false

50 < 50; false

Less than or equals <= 100 <= 50; false

50 <= 50; true

If you have integer variables called myAge and yourAge, the expression myAge ==

yourAge determines whether they are equal. The following statement uses this

expression:

std::cout << (myAge == yourAge) << “\n”;

This statement displays 1 if they are equal and 0 if unequal.

Many novice C++ programmers confuse the assignment operator = with the equal-
ity operator ==, which can introduce bugs into a program that are difficult to spot.
The compiler might give you a warning when you use the assignment operator in
situations where the equality operator makes more sense, but it sometimes won’t
be detected until the program does not perform as intended.

Watch
Out!

If-Else Conditional Statements 53

If-Else Conditional Statements
The programs you have created thus far execute each line in order from top to bottom.

The if keyword makes it possible to run code only if a condition is met, such as

whether two variables are equal, one variable is larger than a specific value, or a bool

variable has the value true.

The following if statement displays a message only when an integer called zombies

meets a specific condition:

if (zombies == 0)
std::cout << “No more zombies!\n”;

This code displays the words “No more zombies!” if the zombies variable equals 0.

The expression within parentheses is the condition. If the expression is true, the state-

ment following the if is executed. If it is false, the statement is skipped.

For example, if the zombies variable equals 25 when this code runs, nothing is dis-

played.

The expression must be true for the conditional code to be executed. Because bool

variables can be true or false, one can be used as the condition:

bool run = true;
if (run)

std::count << “Running\n”;

This code displays the text “Running” only when the bool variable run equals true.

The Else Clause
A program can execute one statement if an if condition is true and another if it is

false. The else keyword identifies the statement to execute when the condition is false:

if (zombies == 0)
std::cout << “No more zombies!\n”;

else
std::cout << “Beware the zombie apocalypse!\n”;

The Grader program in Listing 4.3 demonstrates the use of conditional statements.

LISTING 4.3 The Full Text of Grader.cpp

1: #include <iostream>
2:
3: int main()
4: {

54 HOUR 4: Using Expressions, Statements, and Operators

LISTING 4.3 Continued
5: int grade;
6: std::cout << “Enter a grade (1-100): “;
7: std::cin >> grade;
8:
9: if (grade >= 70)
10: std::cout << “\nPass\n”;
11: else
12: std::cout << “\nFail\n”;
13:
14: return 0;
15: }

This program uses another part of the input-output library included by the directive

in line 1: the std::cin function, which takes a line of user input. Line 6 displays a

query to the user: “Enter a grade (1-100).” Line 7 uses std::cin to collect input from

the user, storing it in the integer variable grade.

Grader displays different output depending on what the user entered as a grade. This

variability employs the if-else conditional in lines 9–12.

Here’s an example of its output:

Enter a grade (1-100): 68

Fail

Compound If Statements
Compound statements can be used anywhere in code that a single statement could be

placed. The if and if-else conditionals often are followed by compound statements:

if (zombies == 0)
{

std::cout << “No more zombies!\n”;
score += 5000;

}

This code does two things when zombies equals 0: It displays “No more zombies!”

and adds 5000 to the variable score. If zombies does not equal 0, neither of these

things occurs.

Any statement can be used with an if conditional, including another if conditional.

clause, even another if or else statement.

The NewGrader program in Listing 4.4 expands Grader by displaying a different mes-

sage for A, B, and C grades.

If-Else Conditional Statements 55

LISTING 4.4 The Full Text of NewGrader.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int grade;
6: std::cout << “Enter a grade (1-100): “;
7: std::cin >> grade;
8:
9: if (grade >= 70)
10: {
11: if (grade >= 90)
12: {
13: std::cout << “\nPass with an A grade\n”;
14: return 0;
15: }
16: if (grade >= 80)
17: {
18: std::cout << “\nPass with a B grade\n”;
19: return 0;
20: }
21: std::cout << “\nPass with a C grade\n”;
22: }
23: else
24: std::cout << “\nFail\n”;
25:
26: return 0;
27: }

The NewGrader program has a main if-else conditional that handles when the

user-input grade is 70 or higher and when it isn’t.

Grades of 70 or higher are handled in lines 10–22. Two if statements cover grades 90

or higher and 80 or higher and display “Pass with an A grade” or “Pass with a B

grade.” After the message is displayed, the return 0 statement immediately ends the

main() function so the program ends.

If the program is still running when line 21 is reached, the message “Pass with a C

grade” is displayed.

The else conditional is paired with the if in line 9. It covers grades lower than 70

and displays the message “Fail.”

Here’s sample output for the program:

Enter a grade (1-100): 99

Pass with an A grade

The NewGrader program uses braces only around compound statements. The else

conditional is followed with a single statement, so it does not need braces.

56 HOUR 4: Using Expressions, Statements, and Operators

TABLE 4.3 The Logical Operators

Operator Symbol Example

AND && grade >= 70 && grade <

80

OR || grade > 100 || grade < 1

NOT ! !grade >= 70

Some programmers always use braces with conditionals and other blocks of code,

even when unnecessary:

if (zombies == 0)
{

std::cout << “No more zombies!\n”;
}
else
{

std::cout << “Beware the zombie apocalypse!\n”;
}

This is permitted by the compiler and makes the if and else blocks of code more

visually distinct. It also avoids bugs that occur when a single statement is turned into

a compound statement by adding a new line, but the programmer forgets to enclose

it within braces.

Remember that whitespace and indentation are meaningful to you as a program-
mer but entirely meaningless to the compiler. It doesn’t care how if statements
line up.

Logical Operators
The if-else conditionals used so far have a single expression as the condition. It’s

possible to test more than one condition using the logical operators && (also called

AND) and || (OR). The logical operator ! (NOT) tests whether an expression is false.

These operators are listed in Table 4.3.

AND Operator
The logical AND operator evaluates two expressions. If both expressions are true, the

logical AND expression is true, as well. Consider this statement:

if ((x == 5) && (y == 5))

By the
Way

Logical Operators 57

If x and y both equal 5, the expression is true. If either x or y does not equal 5, the

expression is false. Both sides must be true for the entire expression to be true.

OR Operator
The logical OR operator evaluates two expressions and if either one is true, the expres-

sion is true:

if ((x == 5) || (y == 5))

If either x or y equals 5 or both equal 5, the expression is true. In fact, if x equals 5,

the compiler never checks y at all.

NOT Operator
A logical NOT statement reverses a normal expression, returning true if the expression

is false and false if the expression is true. Here’s a statement that uses one:

if (!(grade < 70))

This expression is true if grade is 70 or greater and false otherwise. The Grader and

NewGrader programs used the expression grade >= 70 to check for passing grades.

This NOT expression accomplishes the same thing by looking for grades that are not

less than 70.

Relational Precedence
Relational operators and logical operators, like other operators, return a value of true

or false and have a precedence order that determines which relations are evaluated

first. This fact is important when determining the value of the statement such as the

following:

if (x > 5 && y > 5 || z > 5)

The logical AND and OR operators have the same precedence, so they are evaluated in

left-to-right order. For this expression to be true, both x and y must be greater than 5

or z must be greater than 5.

Parentheses can be used to impose a different order:

if (x > 5 && (y > 5 || z > 5))

58 HOUR 4: Using Expressions, Statements, and Operators

For this expression to be true, x must be greater than 5 and either y or z must be

greater than 5.

It is often a good idea to use extra parentheses in a complex logical expression
just to clarify what the statement is doing. The left-to-right precedence of logical
operators is easy for the compiler to understand, but not always clear to program-
mers. The goal is to write programs that work and that are easy to understand.

Tricky Expression Values
Expressions produce the values true or false. In C++, the value 0 also is considered

false and any other value is true. Some C++ programmers take advantage of this fea-

ture in if statements:

if (zombies)
std::cout << “There are “ << x << “ zombies left\n”;

When zombies equals 0, the if expression is false and the zombie count is not dis-

played. When zombies equals any other number, the expression is true and the

count is shown. This code is the same as the following:

if (zombies != 0)
std::cout << “There are “ << x << “ zombies left\n”;

Both statements are legal, but the latter is clearer. It is good programming practice to

reserve the former method for true tests of logic, rather than for testing for nonzero

values.

These two statements also are equivalent:

if (!x)
if (x == 0)

Both statements are true when x equals 0. The second statement is somewhat easier

to comprehend.

Summary
During this hour, you learned about statements, expressions, and operators, the

basic building blocks of a C++ program.

Statements are individual lines of code that perform specific tasks. A program con-

sists of hundreds, thousands, or even millions of statements. Each statement ends

with a semicolon.

By the
Way

64 HOUR 5: Calling Functions

Declaring and Defining Functions
Before you can write the code for a function, you must declare it.

A function declaration tells the compiler the function’s name, the type of data the

function produces, and the types of any parameters received by the function. A func-

tion’s declaration, which also is called its prototype, contains no code.

The declaration tells the compiler how the function works. The function prototype is

a single statement, which ends with a semicolon.

The argument list is a list of each parameter and its type, separated by commas.

Here’s a declaration for a function that determines a rectangle’s area using length

and width parameters:

int findArea(int length, int width);

The three parts of the declaration are the following:

. The return type, int

. The name, findArea

. The type and name of two parameters, an int named length and an int

named width

The function prototype must match the three elements of the function or the pro-

gram won’t compile. The only thing that does not need to match is the name of the

parameters. A function declaration doesn’t need to name parameters at all. The pre-

vious declaration could be rewritten as follows:

int findArea(int, int);

Although this is permitted, it makes the function prototype less clear than if parame-

ters names had been used.

The function’s name is a short identifier that describes the task it performs. Because

the name cannot contain spaces, a common convention is to capitalize each word in

the name except for the first. That’s why the A is capitalized in the name findArea.

All functions are structured the same as a program’s main() function. The state-

ments in the function are enclosed within an opening { brace and a closing } brace. If

the function returns a value, there should be at least one return statement that

returns a literal or variable of the proper return type.

Declaring and Defining Functions 65

Any C++ data type can be returned by a function. If a function doesn’t produce a

value, the declaration should use void as the type. A function that returns void does

not need a return statement, although one can still be used, as in this statement:

return;

Unlike the function declaration, the statement naming the function must not end

with a semicolon.

Here’s a definition of findArea() that determines the area of a rectangle by multi-

plying its length by its width:

int findArea(int l, int w)
{

return l * w;
}

The only statement in the function returns the value of the two parameters multi-

plied by each other.

The Area program in Listing 5.1 uses this function.

LISTING 5.1 The Full Text of Area.cpp

1: #include <iostream>
2:
3: int findArea(int length, int width); // function prototype
4:
5: int main()
6: {
7: int length;
8: int width;
9: int area;
10:
11: std::cout << “\nHow wide is your yard? “;
12: std::cin >> width;
13: std::cout << “\nHow long is your yard? “;
14: std::cin >> length;
15:
16: area = findArea(length, width);
17:
18: std::cout << “\nYour yard is “;
19: std::cout << area;
20: std::cout << “ square feet\n\n”;
21: return 0;
22: }
23:
24: // function definition
25: int findArea(int l, int w)
26: {
27: return l * w;
28: }

66 HOUR 5: Calling Functions

When the program is compiled and run, it produces the following output:

How wide is your yard? 15

How long is your yard? 19

Your yard is 285 square feet

The function prototype for the findArea() function is on line 3. The code for the

function is contained on lines 25–28. Compare the prototype’s name, return type and

parameter types: They are the same, but the names of the parameters are length

and width in the prototype and l and w in the function. This distinction does not

matter because the parameter types match.

If the definition of the function in lines 25–28 were to be moved above its invoca-
tion, no prototype would be needed. Although this is a workable solution in small
programs like the ones created in this book, on larger programming projects it will
be more cumbersome to ensure that all functions are defined before they are
used. Declaring all functions with prototypes frees you from having to think about
this issue.

Using Variables with Functions
A function works with variables in several different ways. Variables can be specified

as arguments when calling a function. Variables can be created in a function and

cease to exist when the function completes. Variables also can be shared by the func-

tion and the rest of a program.

Local Variables
A variable created in a function is called a local variable because it exists only locally

within the function itself. When the function returns, all of its local variables are no

longer available for use in the program.

Local variables are created like any other variable. The parameters received by the

function are also considered local variables. The Temperature program in Listing 5.2

uses local variables to convert a temperature value expressed in Fahrenheit scale to

one using Celsius.

LISTING 5.2 The Full Text of Temperature.cpp

1: #include <iostream>
2:
3: float convert(float);
4:
5: int main()

By the
Way

Using Variables with Functions 67

6: {
7: float fahrenheit;
8: float celsius;
9:
10: std::cout << “Please enter the temperature in Fahrenheit: “;
11: std::cin >> fahrenheit;
12: celsius = convert(fahrenheit);
13: std::cout << “\nHere’s the temperature in Celsius: “;
14: std::cout << celsius << “\n”;
15: return 0;
16: }
17:
18: // function to convert Fahrenheit to Celsius
19: float convert(float fahrenheit)
20: {
21: float celsius;
22: celsius = ((fahrenheit - 32) * 5) / 9;
23: return celsius;
24: }

Here’s output produced by running the program three times with the user input

Fahrenheit values 212, 32, and 85:

Please enter the temperature in Fahrenheit: 212
Here’s the temperature in Celsius: 100

Please enter the temperature in Fahrenheit: 32
Here’s the temperature in Celsius: 0

Please enter the temperature in Fahrenheit: 85
Here’s the temperature in Celsius: 29.4444

This program has a convert() function defined in lines 19–24 that takes one argu-

ment: a float value called fahrenheit.

A local variable named celsius is declared in line 21 and assigned a value in line

22. The value is determined using the three-step formula for converting Fahrenheit to

Celsius:

. Subtract 32 from the number.

. Multiply the result by 5.

. Divide that result by 9.

The converted value is returned by the function in line 23. When the function ends,

the local variables fahrenheit and celsius cease to exist and no longer can be used.

In the main() method, a variable named fahrenheit is created to hold the value

input by a user. A variable named celsius holds the converted version of that tem-

perature. These variables have the same names as the local variables in the

convert() function, but they are different variables.

68 HOUR 5: Calling Functions

The reason they are not the same is because they are created in a different scope. The

scope of a variable is the portion of the program in which a variable exists. Scope

determines how long a variable is available to your program and where it can be

accessed. Variables declared within a block have the scope of that block. When the

block ends with an ending } bracket, the variable becomes unavailable.

You can declare variables within any block, such as an if conditional statement or a

function.

Global Variables
Variables can be defined outside of all functions in a C++ program, including the

main() function. These are called global variables because they are available every-

where in the program.

Variables defined outside of any function have global scope and thus are available

from any function in the program, including main().

The Global program in Listing 5.3 is a revised version of Temperature that makes use

of global variables.

LISTING 5.3 The Full Text of Global.cpp

1: #include <iostream>
2:
3: void convert();
4:
5: float fahrenheit;
6: float celsius;
7:
8: int main()
9: {
10:
11: std::cout << “Please enter the temperature in Fahrenheit: “;
12: std::cin >> fahrenheit;;
13: convert();
14: std::cout << “\nHere’s the temperature in Celsius: “;
15: std::cout << celsius << “\n”;
16: return 0;
17: }
18:
19: // function to convert Fahrenheit to Celsius
20: void convert()
21: {
22: celsius = ((fahrenheit - 32) * 5) / 9;
23: }

When compiled and run, this program performs exactly like the Temperature pro-

gram, despite the fact that the code has several significant differences.

Function Parameters 69

The float variables fahrenheit and celsius are declared in lines 5–6, outside the

main() function and convert() function. This makes them global variables that can

be used anywhere without regard to scope.

Because the variables are global, the convert() function takes no parameters and

uses the global fahrenheit to convert a Celsius value. The function also returns no

value, using void as its return type, because it stores the converted temperature in the

global celsius.

Although global variables might seem useful in this example, the practice is asking

for trouble in more complex programs that you create. Global variables are avoided

because they lend themselves to errors that are difficult to find. A value of a global

variable can be changed on any statement in the program, so if there’s an error you

must check line by line until the error is found.

One of the advantages of variable scope is that it limits the section of a program that

must be checked when a variable either contains a value you weren’t expecting or

has been used improperly.

The Global program is the only one in this book that makes use of global variables.

Function Parameters
A function receives information in the form of function parameters. There can be

more than one parameters as long as they are separated by commas, or a function

can be called with no parameters at all. The parameters sent to a function don’t have

to be of the same data type. A function can be called with an integer, two longs, and

a character as parameters, for instance.

Any valid C++ expression can be a function parameters, including constants, mathe-

matical and logical expressions, and other functions that return a value.

The parameters passed to a function are local variables within that function, even if

they have the same name as variables within the scope of the statement calling the

function.

Consider the following sample code, which appears to swap the values of two variables:

int x = 4, y = 13;
swap(x, y);

void swap(int x, int y) {
int temp = x;
int x = y;
int y = temp;

}

70 HOUR 5: Calling Functions

Contrary to what you might expect, the swap() function does not swap the variable

values so that x equals 13 and y equals 4. Instead, the variables keep their original

values. The reason is that the parameters received by the swap() function are local

variables within that function. Changing their values does not affect the variables

with the same name that were created right before swap() was called.

Changes made to function parameters do not affect the values in the calling func-

tion. This is called passing by value because values are passed to the function and a

local copy is made of each parameter. These local copies are treated just as any other

local variables.

The swap() function swaps the local variables received by the function as parame-

ters, leaving the variables used to call swap() unchanged.

Because variables are passed by value to functions, the swap() function does not work.

Beginning in Hour 10, “Creating Pointers,” you’ll learn several alternatives to passing

by value that enable functions to change variables passed to them.

Returning Values from Functions
Functions return a value or void, a data type that represents a nonvalue in C++.

To return a value from a function, the keyword return is followed by the value to

return. The value can be a literal, a variable, or an expression, because all expres-

sions produce a value. Here are some examples:

return 5;
return (x > 5);
return (convert(fahrenheit));

These are all permitted return statements, assuming that convert() returns a value.

The value returned in the second statement is false if x is less than or equal to 5, true

otherwise.

When a return statement is executed, program execution returns immediately to the

statement that called the function. Any statements following return are not executed.

It is permissible to have more than one return statement in a function. This is

demonstrated by the LeapYear program in Listing 5.4.

LISTING 5.4 The Full Text of LeapYear.cpp

1: #include <iostream>
2:
3: bool isLeapYear(int year);

Returning Values from Functions 71

4:
5: int main()
6: {
7: int input;
8: std::cout << “Enter a year: “;
9: std::cin >> input;
10: if (isLeapYear(input))
11: {
12: std::cout << input << “ is a leap year\n”;
13: }
14: else
15: {
16: std::cout << input << “ is not a leap year\n”;
17: }
18: return 0;
19: }
20:
21: bool isLeapYear(int year)
22: {
23: if (year % 4 == 0)
24: {
25: if (year % 100 == 0)
26: {
27: if (year % 400 == 0)
28: {
29: return true;
30: }
31: else
32: {
33: return false;
34: }
35: }
36: else
37: {
38: return true;
39: }
40: }
41: else
42: {
43: return false;
44: }
45: }

The LeapYear program determines whether a year is a leap year. Here’s the output

from four successive runs with different user input:

Enter a year: 2010
2010 is not a leap year
Enter a year: 2012
2012 is a leap year

Enter a year: 2100
2100 is not a leap year

Enter a year: 2000
2000 is a leap year

72 HOUR 5: Calling Functions

Leap years, which have 366 days rather than 365, follow three rules:

. If the year is divisible by 4, it is a leap year,

. Unless the year is also divisible by 100, in which case it is not a leap year,

. Unless the year is divisible by 400, and it’s a leap year after all.

The isLeapYear() function in lines 21–45 uses several if and else statements to

carry out these rules. The function returns the bool value true if a year is a leap year

and false otherwise. The function takes an integer argument, the year to check.

There are four different return statements in the function, each of which ends the

execution of the function in a different circumstance. Unlike other functions, the last

line is not a return statement.

Default Function Parameters
When a function is declared in a prototype to receive one or more parameters, the

function only can be called with arguments of the proper data types. Consider a func-

tion that takes one integer:

bool isLeapYear(int year);

The isLeapYear() function must take an integer as the parameter, a requirement

the compiler will check. Calling a function with a missing or invalid value causes a

compiler error.

There’s one exception to this rule: If the function prototype declares a default value

for a parameter, the function can be called without that parameter. The default value

is used whenever the parameter is omitted. Here’s a revised prototype of

isLeapYear() that includes a default year:

bool isLeapYear(int year = 2011);

If the isLeapYear() function is called without specifying a year, the default of 2011

is used.

A function’s definition does not change when default parameter are declared in the

prototype.

When a function has more than one parameter, default values are assigned based on

the order of the parameters. Any parameter can be assigned a default value, with one

important restriction: If a parameter does not have a default value, no previous

parameter may have a default value.

Default Function Parameters 73

Here’s a prototype with four parameters:

long set4DPoint(int x, int y, int z, int t);

The following change is not permitted:

long set4DPoint(int x, int y, int z = 1, int t);

The reason it doesn’t work is because the t parameter lacks a default value. Here’s a

permitted prototype:

long set4DPoint(int x, int y, int z = 1, int t = 2000);

The function created from this prototype could be called with this statement:

set4DPoint(130, 85);

The argument values would be 130 for x, 85 for y, 1 for z, and 2000 for t.

The AreaCube program in Listing 5.5 calculates the area of a three-dimensional cube,

using default function parameter values for two of the dimensions.

LISTING 5.5 The Full Text of AreaCube.cpp

1: #include <iostream>
2:
3: int findArea(int length, int width = 20, int height = 12);
4:
5: int main()
6: {
7: int length = 100;
8: int width = 50;
9: int height = 2;
10: int area;
11:
12: area = findArea(length, width, height);
13: std::cout << “First area: “ << area << “\n\n”;
14:
15: area = findArea(length, width);
16: std::cout << “Second area: “ << area << “\n\n”;
17:
18: area = findArea(length);
19: std::cout << “Third area: “ << area << “\n\n”;
20: return 0;
21: }
22:
23: int findArea(int length, int width, int height)
24: {
25: return (length * width * height);
26: }

74 HOUR 5: Calling Functions

The program produces the following output:

First area: 10000

Second area: 60000

Third area: 24000

On line 3, the findArea() prototype specifies that the function takes three integer

parameters, the last two with default values.

The function computes the area of a cube. If no height is provided, a height of 12 is

used. If no width is provided, a width of 20 and height of 12 are used. It is not possi-

ble to provide a height without providing a width.

On lines 7–9, the dimensions length, height, and width are initialized. They are

passed to the findArea() function on line 12. The values are computed, and the

result is displayed on line 13.

On line 15 findArea() is called again with no value for height. The default value is

used and the area of the computed cube is displayed.

On line 18, findArea() is called with neither width nor height. Execution branches

off for a third time to line 25. The default values for both are used and the cube’s area

is displayed.

Overloading Functions
In C++, more than one function can have the same name as long as there are differ-

ences in their arguments, a practice called function overloading. The functions must

have different data types for parameters, a different number of parameters, or both.

Here are three prototypes for overloaded functions:

int store(int, int);
int store(long, long);
int store(long);

The store() function is overloaded with three different parameter lists. The first and

second differ in the data types and the third differs in the number of parameters.

The parameters the function is called with determine which function will be called.

The return types for overloaded functions do not factor into whether they are differ-

ent. Several overloaded functions can have the same return type, as in the preceding

example, or different types. You can’t overload by making the return different, how-

ever. The parameter types or number of parameters must differ.

Function overloading also is called function polymorphism.

Overloading Functions 75

Overloading makes it possible to create a function that performs a similar task on dif-

ferent types of data without creating unique names for each function. If your pro-

gram needs to average two numbers expressed in different formats, it could have

functions named averageInts(), averageDoubles(), and averageFloats().

To simplify, an overloaded function called average() could be used with these proto-

types:

int average(int, int);
long average(long, long);
float average(float, float);

You just pass in the right data when calling average() and the proper function is

called.

Inline Functions
When you define a function, the C++ compiler creates just one set of instructions in

memory. Execution of the program jumps to those instructions when the function is

called and jumps back after the function returns to the next line in the calling func-

tion. If the program calls the function 10 times, it jumps to the same set of instruc-

tions each time. There is only one copy of the instructions that make up the function,

not 10 copies.

Some performance overhead is required to jump in and out of functions. When a

function consists of a small number of statements, you can gain some efficiency if the

program avoids making the jumps. The program runs faster if the function call can

be avoided.

If a C++ function is declared with the keyword inline, the compiler does not create a

real function. Instead, it copies the code from the inline function directly into the

place where the function was called. It is just as if you had written the statements of

the function right there.

If an inline function is called 10 times, the inline code is copied all 10 times. The tiny

improvement in speed could be swamped by the increase in size of the executable

program.

The inline keyword is a hint to the compiler that you would like the function to
be inlined. The compiler is free to ignore the hint and make a real function call.
Current compilers do a terrific job on their own of making C++ code execute
quickly, so there’s often little to be gained from declaring a function inline.

The inline keyword is used in the function prototype:

inline int double(int);

By the
Way

82 HOUR 6: Controlling the Flow of a Program

Here’s a while loop that displays the numbers 0 through 99:

int x = 0;
while (x < 100)
{

std::cout << x << “\n”;
x++;

}

The while keyword is followed by an expression within parentheses. This statement

does not end in a semicolon. The statements inside the loop are a block statement

surrounded by { and } braces.

The loop has the conditional expression x < 100. Each time that x is less than 100,

the body of the loop is executed, and the value of x is displayed.

When x is equal to 100, the loop ends.

Without the x++ increment statement, the value of x would remain 0, and the loop

would never end. This is called an infinite loop.

The Thirteens program in Listing 6.1 uses a while loop to display all multiples of 13

lower than 500.

LISTING 6.1 The Full Text of Thirteens.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int counter = 0;
6:
7: while (counter < 500)
8: {
9: counter++;
10: if (counter % 13 == 0)
11: {
12: std::cout << counter << “ “;
13: }
14: }
15:
16: std::cout << “\n”;
17: return 0;
18: }

This program produces the following output:

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195
208 221 234 247 260 273 286 299 312 325 338 351 364
377 390 403 416 429 442 455 468 481 494

The Thirteens program demonstrates the fundamentals of the while loop. A condi-

tion is tested and the body of the while loop is executed while it is true. The condi-

while Loops 83

tion tested on line 7 is whether the counter variable is less than 500. If the condition

is true, the body of the loop is executed.

On line 9, the counter is incremented. On line 10, an if statement checks whether

the current value of counter is evenly divisible by 13. If it is, the value is displayed.

The conditional on line 7 is false when counter is no longer less than 500, causing

the while loop to end. Program execution skips lines 8–14 and continues with line 16.

Breaking Out of Loops
The break statement causes a loop to end immediately, instead of waiting for its con-

dition to be false. This statement is demonstrated in the Fourteens program in Listing

6.2, which displays the first 20 multiples of 14.

LISTING 6.2 The Full Text of Fourteens.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int counter = 0;
6: int multiples = 0;
7:
8: while (true)
9: {
10: counter++;
11: if (counter % 14 == 0)
12: {
13: std::cout << counter << “ “;
14: multiples++;
15: }
16: if (multiples > 19)
17: {
18: break;
19: }
20: }
21:
22: std::cout << “\n”;
23: return 0;
24: }

This program produces the expected output:

14 28 42 56 70 84 98 112 126 140 154 168 182 196 210 224
238 252 266 280

This program is similar to the Thirteens program. A counter variable is incremented

from 0 upward, and every time the variable is evenly divisible by 14 (line 11), its

value is displayed.

84 HOUR 6: Controlling the Flow of a Program

The while conditional in line 8 of the program has an unusual conditional expression:

while (true)

Because a while loop executes as long as its condition is true, this loop is designed to

loop forever.

The break statement in line 18 is what causes the loop to end. A multiples variable

tracks the number of times a multiple of 14 has been displayed. When this variable

exceeds 19, break ends the loop.

Infinite loops such as while(true) can cause a program to run forever if the exit
condition is never reached. Press Ctrl+C to end execution of a program that isn’t
ending on its own. Use while(true) with care and test the code thoroughly.

Continuing to the Next Loop
A continue statement is another way to alter the performance of a loop. When a

continue is encountered within a loop, the execution skips all remaining statements

and begins a new iteration of the loop.

The Fifteens program in Listing 6.3 displays the first 20 multiples of 15 using a

continue statement inside the while loop.

LISTING 6.3 The Full Text of Fifteens.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int counter = 0;
6: int multiples = 0;
7:
8: while (multiples < 19)
9: {
10: counter++;
11: if (counter % 15 != 0)
12: {
13: continue;
14: }
15: std::cout << counter << “ “;
16: multiples++;
17: }
18:
19: std::cout << “\n”;
20: return 0;
21: }

Watch
Out!

do-while Loops 85

Here’s the program’s output:

15 30 45 60 75 90 105 120 135 150 165 180 195
210 225 240 255 270 285

The Fifteens program uses a while loop to iterate through a counter variable, like the

preceding two projects of the hour. The while statement in line 8 causes the loop to

keep going until 20 multiples of 15 have been displayed.

The counter variable is incremented in line 10.

An if statement in line 11 tests whether the counter variable is not evenly divisible

by 15. If this condition is true, the continue statement in line 13 is executed, and the

rest of the loop is skipped. Execution of the program resumes with line 8.

If the counter variable is evenly divisible by 15, continue is ignored and lines 15–16

of the loop are executed. The value of counter is displayed and the multiples vari-

able is incremented.

As loops demonstrate, C++ often offers several different ways to accomplish the same

task. As long as the program that you write does what’s needed, you can choose the

technique that you prefer.

do-while Loops
The while loop tests a conditional expression before executing the statements in the

loop. If the condition is never true, the statements never execute.

A loop can test the condition at the end of the loop with the do-while statement.

Consider the following loop:

int x = 60;
do
{

std::cout << x << “\n”;
x++;

} while (x < 50);

This loop’s conditional only is true when x < 50. Because x begins with an initial

value of 60, this condition is never met.

In spite of this, the body of the loop executes once and the x value of 60 is displayed.

This occurs because the do-while loop does not consider the condition for the first

time until after the loop’s statements are executed.

A do-while loop always executes the body at least once.

The Badger program in Listing 6.4 uses one of these loops to display a word a user-

selected number of times.

86 HOUR 6: Controlling the Flow of a Program

LISTING 6.4 The Full Text of Badger.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int badger;
6: std::cout << “How many badgers? “;
7: std::cin >> badger;
8:
9: do
10: {
11: std::cout << “Badger “;
12: badger––;
13: } while (badger > 0);
14:
15: std::cout << “\n”;
16: return 0;
17: }

When you run the program, it asks the question “How many badgers?” and displays

the word Badger that many times.

How many badgers? 5
Badger Badger Badger Badger Badger

Run this program a second time and enter 0. You will see this output:

How many badgers? 0
Badger

The user is prompted for a starting value on line 7, which is stored in the integer vari-

able badger. In the do-while loop, the body of the loop is entered before the condi-

tion is tested, and therefore guaranteed to be executed at least once. On line 11, the

word “Badger” is displayed, on line 12 the counter is decremented, and on line 13 the

condition is tested. If the condition is true, execution jumps to the top of the loop on

line 11; otherwise, it falls through to line 15.

The continue and break statements work in a do-while loop exactly as they do in a

while loop. The only difference between a while loop and a do-while loop is when

the condition is tested.

for Loops
When programming loops, you often find yourself setting up a counter variable, test-

ing to see whether the counter meets a condition and changing the variable’s value

each time through the loop, as in this sample while loop:

int x = 0;
while (x < 13)

for Loops 87

{
std::cout << “X”;
x++;

}
std::cout << “\n”;

This code displays an “X” 13 times on one line of output.

A for loop is a sophisticated loop that combines all three of these steps together into

a single statement. The statement consists of the keyword for followed by a pair of

parentheses. Within the parentheses are three statements separated by semicolons:

. The initialization of the counter

. The conditional test

. The change to the counter

The following code rewrites the preceding while loop to produce the same output:

for (int x = 0; x < 13; x++)
{

std::cout << “X”;
}
std::cout << “\n”;

The first section of a for loop is the initialization. Any C++ statement can be put

here, but typically it is used to create and initialize a counter variable.

The second section is the test, which can be any legal C++ expression. This serves the

same purpose as the condition in a while or do-while loop.

The third section is the action that changes the counter. This typically is a statement

that increments or decrements the counter’s value, but any legal C++ statement can

be used here.

The MultTable program in Listing 6.5 creates a multiplication table for a user-selected

number. The first 10 multiples of that number are displayed using a for loop.

LISTING 6.5 The Full Text of MultTable.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int number;
6: std::cout << “Enter a number: “;
7: std::cin >> number;
8:
9: std::cout << “\nFirst 10 Multiples of “ << number << “\n”;
10:
11: for (int counter = 1; counter < 11; counter++)

88 HOUR 6: Controlling the Flow of a Program

LISTING 6.5 Continued
12: {
13: std::cout << number * counter << “ “;
14: }
15: std::cout << “\n”;
16:
17: return 0;
18: }

Here’s sample output for the user input 11:

Enter a number: 11

The First 10 Multiples of 11:
11 22 33 44 55 66 77 88 99 110

The for statement on line 11 combines on one line the initialization of the integer

variable counter, the test that counter is less than 11, and the action to increment

to counter all into one line. The body of the for statement is line 13.

A common mistake is using a comma (,) instead of a semicolon (;) to separate
the sections of a for statement, which results in a compiler error. Another com-
mon mistake is to place a semicolon (;) after the closing parenthesis of the for
statement. This makes the loop do nothing but loop. Because there are times it
makes sense to do this, the compiler does not report an error.

Advanced for Loops
A for loop can be powerful and flexible. It is not uncommon to initialize more than one

variable, test a compound logical expression, and execute more than one statement.

When the initialization and action sections contain more than one statement, they

are separated by commas. Here’s an example:

for (int x = 0, y = 0; x < 10; x++, y++)
{

std::cout << x * y << “\n”;
}

This loop has an initialization section that sets up two integer variables: x and y.

Take note of the comma between the two declarations.

The loop’s test section tests whether x < 10.

The loop’s action section increments both integer variables, using a comma between

the statements.

The body of the loop displays the product of multiplying the variables together.

Each section of a for loop also can be empty. The semicolons are still there to sepa-

rate sections, but some of them contain no code. Here’s an example:

Watch
Out!

for Loops 89

int x = 0;
int y = 0;
for (; x < 10; x++, y++)
{

std::cout << x * y << “\n”;
}

Nested Loops
Loops can be nested with one loop sitting in the body of another. The inner loop will

be executed in its entirety for every execution of the outer loop.

The BoxMaker program in Listing 6.6 uses one for loop nested inside another to dis-

play a box made of a user-selected character with user-selected height and width.

LISTING 6.6 The Full Text of BoxMaker.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int rows, columns;
6: char character;
7:
8: std::cout << “How many rows? “;
9: std::cin >> rows;
10: std::cout << “How many columns? “;
11: std::cin >> columns;
12: std::cout << “What character to display? “;
13: std::cin >> character;
14:
15: std::cout << “\n”;
16: for (int i = 0; i < rows; i++)
17: {
18: for (int j = 0; j < columns; j++)
19: {
20: std::cout << character;
21: }
22: std::cout << “\n”;
23: }
24: return 0;
25: }

When you run the program, you are asked to select the row and column width of the

rectangle. Next, you’re asked what character to use when drawing the box.

Here’s output for a 10-by-15 rectangle made up of asterisks:

How many rows? 10
How many columns? 15
What character? *

90 HOUR 6: Controlling the Flow of a Program

The first for loop, on line 16, initializes a counter named i to 0 and then the body of

the loop is run.

On line 18, the first line of the outer for loop, there’s an inner for loop is established.

This loop initializes a counter named j to 0, and the body of the inner for loop is

executed. On line 20, the chosen character is printed, and control returns to the

header of the inner for loop.

The inner for loop is only one statement (the displaying of the character). The condi-

tion is tested (j < columns); if it evaluates to true, j is incremented and the next

character is displayed. This continues until j equals the number of columns.

When the inner for loop fails its test, in the preceding example after 15 asterisks are

printed, execution falls through to line 22, and a new line is printed. The outer for

loop now returns to its header, where its condition (i < rows) is tested. If this evalu-

ates to true, i is incremented and the body of the loop is executed.

In the second iteration of the outer for loop, the inner for loop is started over. Thus,

j is reinitialized to 0, and the entire inner loop is run again.

When you use a nested loop, the inner loop is executed for each iteration of the outer

loop. Therefore, the character is printed columns times for each row.

switch Statements
When you use a series of if or if-else conditionals on the same variable, your C++

code can become excessively confusing and cumbersome. An alternative is to use

switch, a conditional that tests one expression for multiple values to decide which of

several blocks of code to execute.

A switch statement consists of the keyword switch followed by an expression to test,

one or more case sections with possible values of that expression, and possibly a

default section when no case matches.

The following switch statement displays a singular or plural ending to the word

“zombie,” depending on how many zombies you have killed:

std::cout << “You have killed “ << zombies << “ zombie”;
switch (zombies)
{

switch Statements 91

case 0:
std::cout << “s\n”;
break;

case 1:
std::cout << “\n”;
break;

default:
std::cout << “s\n”;

}

The switch expression is the variable zombies. The two case sections catch different

values of zombies. If the value is 0, the letter s makes the display text “You have

killed 0 zombies” with the trailing s. If the value is 1, the text is “You have killed 1

zombie” with no trailing s.

The default section handles all other values for zombies, displaying “You have

killed” followed by the number and the word zombies.

The evaluation in the case sections of a switch statement can be only for equality.

There’s no way to test relational operators or Boolean operations. If one of the case

values matches the expression, execution jumps to those statements and continues to

the end of the switch block unless a break statement is encountered. If nothing

matches, execution branches to the optional default statement. If there is no default

and no matching value, execution falls through the switch statement, and the state-

ment ends.

It’s good programming practice to have a default case in switch statements
even when you don’t have a reason to employ one. The default can be used to
display an error when a value defies your expectation and doesn’t match any of
the case sections.

In the preceding example, each case section ends with a break statement that exits

the switch statement. If there is no break statement at the end of a case section,

execution falls through to the next case, and its section is executed also. Although it

comes in handy in limited situations to execute multiple cases, in most situations

you will want a break ending each section.

The BadTeacher program in Listing 6.7 uses a switch statement to deliver a custom

comment to a student in response to the grade received on a test.

LISTING 6.7 The Full Text of BadTeacher.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: char grade;
6: std::cout << “Enter your letter grade (ABCDF): “;

Did you
Know?

92 HOUR 6: Controlling the Flow of a Program

LISTING 6.7 Continued
7: std::cin >> grade;
8: switch (grade)
9: {
10: case ‘A’:
11: std::cout << “Finally!\n”;
12: break;
13: case ‘B’:
14: std::cout << “You can do better!\n”;
15: break;
16: case ‘C’:
17: std::cout << “I’m disappointed in you!\n”;
18: break;
19: case ‘D’:
20: std::cout << “You’re not smart!\n”;
21: break;
22: case ‘F’:
23: std::cout << “Get out of my sight!\n”;
24: break;
25: default:
26: std::cout << “That’s not even a grade!\n”;
27: break;
28: }
29: return 0;
30: }

This program asks a user to report a letter grade of A, B, C, D, or F, and then

responds to this input with an abusive response. Here are three examples of output:

Enter your letter grade (ABCDF): C
I’m disappointed in you!

Enter your letter grade (ABCDF): F
Get out of my sight!

Enter your letter grade (ABCDF): Z
That’s not even a grade!

The user is prompted for a letter. That letter is tested in the switch statement in line

8. The case statement on line 10 tests for the character ’A’. If it’s a match, line 11 is

executed, and the comment “Finally!” is displayed, and the break on the following

line ends the statement.

The other four letter grades are tested in their own case sections. If none of these

matches, the default section on lines 25–27 is executed.

Summary
The loops and conditionals you learned about during this hour add considerable

brainpower to C++ programs.

The while loop runs a block of code until a condition is no longer true. If the condi-

tion is never true, the code is never executed.

98 HOUR 7: Storing Information in Arrays and Strings

This statement assigns a value to the last:

peaks[24] = 7804;

The number of an array element also is called its subscript.

The zero-based numbering of array elements can be confusing—an array with three

elements has elements numbered 0, 1, and 2 (not 1, 2, and 3).

The WeightGoals program in Listing 7.1 uses an array to calculate weight-loss mile-

stones for a dieting person. The array holds floating-point values that represent

progress of 10%, 25%, 50%, and 75% toward the dieter’s goal weight.

LISTING 7.1 The Full Text of WeightGoals.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: float goal[4];
6: goal[0] = 0.9;
7: goal[1] = 0.75;
8: goal[2] = 0.5;
9: goal[3] = 0.25;
10: float weight, target;
11:
12: std::cout << “Enter current weight: “;
13: std::cin >> weight;
14: std::cout << “\nEnter goal weight: “;
15: std::cin >> target;
16: std::cout << “\n”;
17:
18: for (int i = 0; i < 4; i++)
19: {
20: float loss = (weight - target) * goal[i];
21: std::cout << “Goal “ << i << “: “;
22: std::cout << weight - loss << “\n”;
23: }
24:
25: return 0;
26: }

This program asks a user’s current weight and goal weight, and then displays four

intermediate weight milestones:

Enter current weight: 289

Enter goal weight: 225

Goal 0: 282.6
Goal 1: 273
Goal 2: 257
Goal 3: 241

Writing Past the End of Arrays 99

The program stores the user’s current weight in the variable weight and the user’s

target in the variable target. Both hold floating-point variables.

The goal array holds four values that will be used to calculate the weight milestones.

The four-element array is created (line 5) and values of 0.9, 0.75, 0.5, and 0.25 are

assigned to those elements (lines 6–9).

A for loop iterates through the elements of the array. The amount to lose to reach a

milestone is stored in the loss variable (line 20). This variable is the total amount of

weight to lose multiplied by the percentage.

The loss total is subtracted from weight and displayed as a milestone (line 21).

The fact that arrays count up from 0 rather than 1 is a common cause of bugs in
programs written by C++ novices. When you use an array, remember that an array
with 10 elements counts from array[0] to array[9].

Writing Past the End of Arrays
When you assign a value to an array element, the compiler computes where to store

the value in memory based on the size of each element and its subscript. If you store

a new value in goal[3], the compiler multiplies the offset of 3 by the size of each ele-

ment, which for long integers is 4 bytes. The compiler then moves that many bytes,

12, from the beginning of the array and stores the new value at that location.

The goal array in the WeightGoals program only has four elements. If you try to

store something in goal[4], the compiler ignores the fact that there is no such ele-

ment. Instead, it stores it in memory 20 bytes past the beginning of the first element,

replacing whatever data is at that location. This can be almost any data, so writing

the new out-of-bounds value might have unpredictable results, such as crashing

immediately or running with strange results.

These errors can be difficult to spot as a program runs, so it’s important to pay atten-

tion to the size of arrays when they are accessed.

It is so common to write data one element past the end of an array that the bug has

its own name: a fence post error. The name refers to the problem of counting how

many posts you need for a 10-foot fence if you need one post for every foot. Some

people answer 10, but you need 11, as shown in Figure 7.1.

This sort of “off by one” mistake can be the bane of any programmer’s life. Over time,

however, you’ll get used to the idea that a 25-element array counts only to element

24 and that everything counts from zero.

By the
Way

102 HOUR 7: Storing Information in Arrays and Strings

Suppose that you have an array of char values named board that represents the

board. Each element could equal ‘w’ if a white piece occupies the square, ‘b’ if a black

piece does and � otherwise. The following statement creates the array:

int board[8][8];

You also could represent the same data with a one-dimensional, 64-square array:

int board[64];

This doesn’t correspond as closely to the real-world object as the two-dimensional

array, however. When the game begins, the king is located in the fourth position in

the first row. Counting from zero, that position corresponds to board[0][3], assum-

ing that the first subscript corresponds to row and the second to column. The layout of

positions for the entire board is illustrated in Figure 7.2.

Multidimensional arrays can rapidly grow to exceed available memory, so keep
that in mind when creating large arrays with multiple dimensions.

Initializing Multidimensional Arrays
You can initialize multidimensional arrays with values just like single-dimension

arrays. Values are assigned to array elements in order, with the last array subscript

changing and each of the former ones holding steady like a car’s mileage odometer.

Here’s an example:

int box[5][3] = { 8, 6, 7, 5, 3, 0, 9, 2, 1, 7, 8,
9, 0, 5, 2 };

The first value is assigned to box[0][0], the second to box[0][1], and the third to

box [0][2]. The next value is assigned to box[1][0], then box[1][1] and

box[1][2].

This is demonstrated in the Box program in Listing 7.2.

LISTING 7.2 The Full Text of Box.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int box[5][3] = { 8, 6, 7, 5, 3, 0, 9, 2, 1, 7, 8,
6: 9, 0, 5, 2 };
7: for (int i = 0; i < 5; i++)
8: {
9: for (int j = 0; j < 3; j++)
10: {
11: std::cout << “box[“ << i << “]”;
12: std::cout << “[“ << j << “] = “;

Watch
Out!

Multidimensional Arrays 103

13: std::cout << box[i][j] << “\n”;
14: }
15: }
16: }

The program’s output displays the contents of each array element, which can be

compared to the assignment statement in lines 5–6:

box[0][0] = 8
box[0][1] = 6
box[0][2] = 7
box[1][0] = 5
box[1][1] = 3
box[1][2] = 0
box[2][0] = 9
box[2][1] = 2
box[2][2] = 1
box[3][0] = 7
box[3][1] = 8
box[3][2] = 9
box[4][0] = 0
box[4][1] = 5
box[4][2] = 2

The box variable holds a two-dimensional array that has five integers in the first

dimension and two integers in the second. This creates a 5-by-3 grid of elements.

Two for loops are used to cycle through the array, displaying each array element

and its value.

For the sake of clarity, you could group the initializations with braces, organizing

each row on its own line:

int box[5][3] = {
{8, 6, 7},
{5, 3, 0},
{9, 2, 1},
{7, 8, 9},
{0, 5, 2} };

The compiler ignores the inner braces. This makes it easier to see how the numbers

are distributed.

Each value must be separated by a comma without regard to the braces. The entire

initialization set must be within braces, and it must end with a semicolon.

A Word About Memory
When you declare an array, you tell the compiler exactly how many elements you

expect to store in it. The compiler sets aside memory the proper amount of memory

104 HOUR 7: Storing Information in Arrays and Strings

for an array given the size of the data type and the number of elements it contains.

Arrays are suitable for data that consists of a known number of elements, such as

squares on a chessboard (64) or years in a century (100).

When you have no idea how many elements are needed, you must use more

advanced data structures.

Future hours of this book cover arrays of pointers, arrays built on the heap, and

other structures. In Hour 19, “Storing Information in Linked Lists,” we look at an

advanced data structure known as a linked list.

Character Arrays
Familiarity with arrays makes it possible to work with longer text than the single

characters represented by the char data type. A string is a series of characters. The

only strings you’ve worked with up to this point have been string literals used in

std::cout statements:

std::cout << “Solidum petit in profundis!\n”;

In C++, a string is an array of characters ending with a null character, a special

character coded as ’\0’. You can declare and initialize a string like any other array:

char yum[] = { ‘Z’, ‘o’, ‘m’, ‘b’, ‘i’, ‘e’,
‘ ‘,’E’,’a’,’t’,’ ‘, ‘B’, ‘r’, ‘a’, ‘i’, ‘n’,
‘s’, ‘\0’ };

The last character, ’\0’, is the null character that terminates the string.

Because this character-by-character approach is difficult to type and admits too

many opportunities for error, C++ enables a shorthand form of string initialization

using a literal:

char yum[] = “Zombie Eat Brains”;

This form of initialization doesn’t require the null character; the compiler adds it

automatically.

The string “Zombie Eat Brains” is 18 bytes, including null.

You also can create uninitialized character arrays, which are called buffers. As with

all arrays, it is important to ensure that you don’t put more into the buffer than

there is room for.

Buffers can be used to store input typed by a user. Several programs created in past

hours used the std::cin object to collect user input and store it in a variable:

std::cin >> yum;

Character Arrays 105

Although this approach works, two major problems arise. First, if the user enters more

characters than the size of the buffer, cin writes past the end of the buffer, making the

program run improperly and causing security concerns. Second, if the user enters a

space, cin treats it as the end of the string and stops writing to the buffer.

To solve these problems, you must call a method of the cin object called getline()

with two arguments:

. The buffer to fill

. The maximum number of characters to get

The following statement stores user input of up to 18 characters (including null) and

stores it in the yum character array:

std::cin.getline(yum, 18);

The method also can be called with a third argument, the delimiter that termi-

nates input:

std::cin.getline(yum, 18, ‘ ‘);

This statement terminates input at the first space. When the third argument is omit-

ted, the newline character (’\n’) is the delimiter.

The BridgeKeeper program in Listing 7.3 asks three famous questions from film, stor-

ing them in buffers.

LISTING 7.3 The Full Text of BridgeKeeper.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: char name[50];
6: char quest[80];
7: char velocity[80];
8:
9: std::cout << “\nWhat is your name? “;
10: std::cin.getline(name, 49);
11:
12: std::cout << “\nWhat is your quest? “;
13: std::cin.getline(quest, 79);
14:
15: std::cout << “\nWhat is the velocity of an unladen swallow? “;
16: std::cin.getline(velocity, 79);
17:
18: std::cout << “\nName: “ << name << “\n”;
19: std::cout << “Quest: “ << quest << “\n”;
20: std::cout << “Velocity: “ << velocity << “\n”;
21: return 0;
22: }

106 HOUR 7: Storing Information in Arrays and Strings

This program produces output like the following:

What is your name? Rogers Cadenhead

What is your quest? Time-based C++ tutelage

What is the airspeed velocity of an unladen
swallow? I don’t know–– aagh!

Name: Rogers Cadenhead
Quest: Time-based C++ tutelage
Velocity: I don’t know–– aagh!

Line 10 calls the method getLine() of cin. The buffer declared in line 9 is passed in

as the first argument. The second argument is the maximum number of characters

to allow as input. Because the name buffer can hold 50 characters, the argument

must be 49 to allow for the terminating null. There is no need to provide a terminat-

ing character as a third argument because the default value of newline is sufficient.

The film in question, if you haven’t recognized it already (or even if you did), is

Monty Python and the Holy Grail. The Bridge of Death is guarded by a bridgekeeper

who demands that three questions be answered correctly on penalty of being thrown

off to your doom.

The correct answers, in case you run into this problem:

. It is Arthur, King of the Britons

. To seek the Holy Grail

. What do you mean? An African or European swallow?

Copying Strings
C++ inherits from C a library of functions for dealing with strings. This library can be

incorporated in a program by including the header file string.h:

#include <string.h>

Among the many functions provided are two for copying one string into another:

strcpy() and strncpy().

The strcpy() function copies the entire contents of one string into a designated

buffer, as demonstrated by the StringCopier program in Listing 7.4.

LISTING 7.4 The Full Text of StringCopier.cpp

1: #include <iostream>
2: #include <string.h>
3:
4: int main()

Summary 107

5: {
6: char string1[] = “Free the bound periodicals!”;
7: char string2[80];
8:
9: strcpy(string2, string1);
10:
11: std::cout << “String1: “ << string1 << std::endl;
12: std::cout << “String2: “ << string2 << std::endl;
13: return 0;
14: }

Run this program to eyeball the following output:

String1: Free the bound periodicals!
String2: Free the bound periodicals!

A character array is created on Line 6 and initialized with the value of a string lit-

eral. The strcpy() function on Line 9 takes two character arrays: a destination that

will receive the copy and a source that will copy it. If the source array is larger than

the destination, strcpy()writes data past the end of the buffer.

To protect against this, the standard library also includes the function strncpy().

This version takes a third argument that specifies the maximum number of charac-

ters to copy:

strncopy(string1, string2, 80);

Summary
One thing that makes software so useful is the ability to process large amounts of

similar data. Arrays are collections of data that share the same data type. This hour

demonstrated them with only the simple data types, but you learn in upcoming

hours that arrays can be put to use on more complex forms of data.

Although strings are just character arrays in C++, they’re commonly referred to as

strings because they serve so many useful purposes. Strings can collect user input,

present text, and store textual data from files, web documents, and other sources.

There are many other ways to represent data in C++ more sophisticated than simple

data types and arrays.

112 HOUR 8: Creating Basic Classes

Creating New Types
As you work with built-in types in C++, each variable’s type tells you quite a bit

about it. For example, if you write a program with height and width declared as

unsigned short integers, you know that each variable one can hold a number

between 0 and 65,535.

The type also tells you capabilities of the variable. Short integers can be added

together, so by declaring height and width as that type, you know they can be

added together.

The type of a variable tells you several things:

. Its size in memory

. The information it can hold

. The actions that can be performed on it

In C++ you define your own types to model a problem you are trying to solve. The

mechanism for declaring a new type is to create a class. A class is a definition of a

new type.

Classes and Members
A C++ class is a template used to create objects. Once you define a class, objects created

from that class can be put to use like any other data type.

A class is a collection of related variables and functions bundled together. The vari-

ables can be of any other type, including other classes.

Variables make up the data in the class, and functions perform tasks using that data.

Bundling these together is called encapsulation.

This will make more sense in relation to a real object, such as the red tricycle my par-

ents left behind during a move out of Wichita Falls, Texas, when I was 4 years old.

(The U-Haul ran out of room. This is a touchy subject for me.)

One way to think about a trike is that it’s a collection of objects connected together—

wheels, a seat, handlebars, and pedals. Another way is in terms of what it can do:

move, accelerate, stop, and impress 4-year-old girls.

Combining these together—the physical aspects and performance—is encapsulating

the object.

Classes and Members 113

Encapsulation of a class makes it possible for other programs to use the class without

knowing how it works. Users of your class only need to know what it does, not how it

does it.

The variables of the class are called its member variables. A Tricycle class might

have member variables representing the wheel size, top speed, and whether a base-

ball card has been embedded in the spokes.

Member variables, also known as data members or instance variables, are part of your

class, just like the wheel and brake are part of a trike.

The functions in the class use and modify the member variables. They are called the

member functions (or methods) of the class. Member functions of the Tricycle class

might include pedal() and brake().

Member functions are as much a part of your class as member variables. They deter-

mine what the objects of your class can do.

Declaring a Class
To declare a class, use the class keyword followed by information about the member

variables and member functions of the class. An opening brace and closing brace

enclose the class definition. Here’s an example for a Tricycle class:

class Tricycle
{
public:

unsigned int speed;
unsigned int wheelSize;
pedal();
brake();

};

This code creates a class called Tricycle with two member variables, speed and

wheelSize, and two member functions, pedal() and brake(). All four can be used

by other classes because the public keyword precedes them in the class definition.

You learn more about this keyword later in the hour.

Declaring this class does not allocate memory for a Tricycle. It just tells the com-

piler what the Tricycle class is—what data it contains (speed and wheelSize) and

what it can do (pedal() and brake()).

It also tells the compiler how much room the compiler must set aside for each of the

Tricycle objects that you create. In this example, if an integer is 4 bytes, Tricycle

is only 8 bytes big: speed is 4 bytes and wheelSize is another 4. The two functions

take up no room because no storage space is set aside for member functions.

114 HOUR 8: Creating Basic Classes

Defining an Object
An object is created from a class by specifying its class and a variable name, just as

you’ve done with built-in types in the preceding 7 hours. For example:

Tricycle wichita;

This statement creates a Tricycle object named wichita. The Tricycle class is used

as a template for the object. The object will have all member variables and member

functions defined for the class.

C++ differentiates between the class Tricycle, which is the concept of a tricycle, and

each individual Tricycle object.

An object is just an individual instance of a class. When you create an object, you are

said to “instantiate” it from the class.

Because C++ is case sensitive, all class names should follow the same conven-
tion to minimize errors. Instead of having to remember whether a class is called
Tricycle, tricycle, or TRICYCLE, if you always capitalize the first letter of a
class name you’ll know it is Tricycle. Some programmers prefix every class
name with a particular lowercase letter (for example, cTricycle or
cSkateboard). The convention used in this book is initial capitalization, as in
Tricycle and Sasquatch.

Member variables and functions also should follow the same naming rules. This
book begins both with lowercase letters, as in speed and pedal().

Accessing Class Members
After you create an object, you use the dot operator (.) to access the member func-

tions and variables of that object. As you might recall, the Tricycle class has a

member variable called speed. To set this variable, use the dot operator:

Tricycle wichita;
wichita.speed = 6;

After the member function pedal() function has been defined, the dot operator is

used to call it:

wichita.pedal();

By the
Way

Private Versus Public Access 115

Private Versus Public Access
The Tricycle class has two public member variables and two public member func-

tions. The public keyword makes these parts of the class available to the public—in

other words, other classes and programs that use Tricycle objects.

All member variables and functions are private by default. Private members can be

accessed only within functions of the class itself. Public members can be accessed

everywhere else. Here’s a modified definition of Tricycle:

class Tricycle
{

unsigned int speed;
unsigned int wheelSize;
pedal();
brake();

};

When the public keyword appears in a class definition, all member variables and

functions after the keyword are public:

class Tricycle
{

int model = 110;
public:

unsigned int speed;
unsigned int wheelSize;
pedal();
brake();

};

The preceding code declares everything in the Tricycle class public except for the

model member variable.

There’s also a private keyword to make all subsequent member variables and func-

tions private.

Each use of public or private changes access control from that point on to the end

of the class or until the next access control keyword.

Keeping member data private limits access and controls how their values can be

changed.

Although member variables can be public, it’s a good idea to keep them all private

and make them available only via functions.

A function used to set or get the value of a private member variable is called an

accessor. Other classes must call the accessor instead of working directly with the

variable.

116 HOUR 8: Creating Basic Classes

Accessors enable you to separate the details of how the data is stored from how it is

used. If you later change how the data is stored, you don’t need to rewrite functions

that use the data.

You create accessors in the next section.

Implementing Member Functions
Every class member function that you declare also must be defined.

A member function definition begins with the name of the class followed by the

scope resolution operator (::) and the name of the function. Here’s an example:

void Tricycle::pedal()
{

std::cout << “Pedaling trike\n”;
}

Class functions have the same capabilities as functions; they can have parameters

and return a value.

The Tricycle program in Listing 8.1 defines a Tricycle class and takes it for a test drive.

LISTING 8.1 The Full Text of Tricycle.cpp

1: #include <iostream>
2:
3: class Tricycle
4: {
5: public:
6: int getSpeed();
7: void setSpeed(int speed);
8: void pedal();
9: void brake();
10: private:
11: int speed;
12: };
13:
14: // get the trike’s speed
15: int Tricycle::getSpeed()
16: {
17: return speed;
18: }
19:
20: // set the trike’s speed
21: void Tricycle::setSpeed(int newSpeed)
22: {
23: if (newSpeed >= 0)
24: {
25: speed = newSpeed;
26: }
27: }
28:
29: // pedal the trike

Implementing Member Functions 117

30: void Tricycle::pedal()
31: {
32: setSpeed(speed + 1);
33: std::cout << “\nPedaling; tricycle speed “ << speed << “ mph\n”;
34: }
35:
36: // apply the brake on the trike
37: void Tricycle::brake()
38: {
39: setSpeed(speed - 1);
40: std::cout << “\nBraking; tricycle speed “ << speed << “ mph\n”;
41: }
42:
43: // create a trike and ride it
44: int main()
45: {
46: Tricycle wichita;
47: wichita.setSpeed(0);
48: wichita.pedal();
49: wichita.pedal();
50: wichita.brake();
51: wichita.brake();
52: wichita.brake();
53: return 0;
54: }

The Tricycle program creates a Tricycle object, sets its initial speed to 0 and calls

the pedal() and brake() member functions several times. These functions increase

and decrease the speed, respectively. Here’s the output:

Pedaling; tricycle speed 1 mph

Pedaling; tricycle speed 2 mph

Braking; tricycle speed 1 mph

Braking; tricycle speed 0 mph

Braking; tricycle speed 0 mph

Lines 3–12 contain the definition of the Tricycle class. Line 5 contains the keyword

public, which tells the compiler that what follows is a set of public members. Line 6

has the declaration of the public accessor getSpeed(), which provides access to the

private member variable speed declared on line 11. Line 7 has the public accessor

setSpeed(), which takes an integer as an parameter and sets speed to the value of

that parameter.

Line 10 begins the private section, which includes only the declaration of the private

member variable speed.

Lines 15–18 contain the definition of the member function getSpeed(). This func-

tion takes no parameters; it returns an integer. Note that class member functions

include the class name followed by two colons and the function’s name. This syntax

118 HOUR 8: Creating Basic Classes

tells the compiler that the getSpeed() function you are defining here is the one that

you declared in the Tricycle class. With the exception of this header line, the

getSpeed() function is created like any function.

The getSpeed() function is only one statement, which returns the value in the mem-

ber variable speed. The program’s main() function cannot access speed because it is

private in the Tricycle class. The main() function has access to the public function

getSpeed(). Because getSpeed() is a function of the class, it has full access to its

speed variable. This access enables the function to return the value of speed to

main().

Lines 21–27 contain the definition of the setSpeed() function. It takes an integer

parameter and sets the value of speed to the value of that parameter, but only if the

parameter is greater than or equal to 0. By using an accessor and making speed pri-

vate, the class controls how the variable is set. This restriction against negative

speeds is an example of that.

Line 30 begins the pedal() function. This function increases the speed of the trike by

1 by calling setSpeed() and displays the current speed after acceleration.

Line 37 begins the brake() function, which decreases the speed by 1 with a call to

setSpeed() and displays the current speed. The attempt to decrease the speed fails if

speed equals 0, because 0 miles per hour is the slowest the trike can travel.

Line 44 begins the body of the program with the main() function. A Tricycle object

named wichita is created and given an initial speed of 0. The Tricycle object’s

pedal() and brake() function are called to change the rate of speed.

The last call to brake() in line 52 shows that the speed won’t go below 0. The trike

already had stopped as of line 51, as the output illustrates.

Creating and Deleting Objects
There are two ways to define built-in types such as integers. One way is to define the

variable and then assign a value to it later in the program:

int weight;
weight = 7;

Alternatively, you can define the integer and immediately initialize it:

int weight = 7;

Initialization combines the definition of the variable with its initial assignment.

Nothing stops you from changing that value later, but initialization ensures that the

variable always has a value.

Creating and Deleting Objects 119

Classes have a special member function called a constructor that is called when an

object of the class is instantiated. The job of the constructor is to create a valid object

of the class, which often includes initializing its member data. The constructor is a

function with the same name as the class but no return value. Constructors may or

may not have parameters, just like any other function of the class.

Here’s a constructor for the Tricycle class:

Tricycle::Tricycle(int initialSpeed)
{

setSpeed(initialSpeed);
}

This constructor sets the initial value of the speed member variable using a parameter.

When you declare a constructor, you also should declare a destructor. Just as con-

structors create and initialize objects of your class, destructors clean up after objects

and free any memory that was allocated for them. A destructor always has the name

of the class preceded by a tilde (~). Destructors take no parameters and have no

return value.

Here’s a Tricycle destructor:

Tricycle::~Tricycle()
{

// do nothing
}

The destructor for the class requires no special actions to free up memory, so it just

includes a comment.

Default Constructors
There are several ways to call constructors when setting up an object.

One is to specify one or more parameters in parentheses:

Tricycle wichita(5);

The parameter (or parameters) is sent to the constructor. In this example, it sets the

initial speed of the trike.

You also can set an object up without specifying parameters:

Tricycle wichita;

This calls the default constructor of the class, which is a constructor with no parameters.

120 HOUR 8: Creating Basic Classes

Constructors Provided by the Compiler
If you declare no constructors, as you did in the Tricycle program in Listing 8.1, the

compiler creates a default constructor for you.

The default constructor the compiler provides takes no action; it is as if you declared

a constructor with no parameters whose body was empty.

There are two important points to note:

. The default constructor is any constructor that takes no parameters. You can

define it yourself or get it as a default from the compiler.

. If you define any constructor (with or without parameters), the compiler does

not provide a default constructor for you. In that case, if you want a default

constructor, you must define it yourself.

If you fail to define a destructor, the compiler also provides one of those, which also

has an empty body and does nothing.

If you define a constructor, be sure to define a destructor even if your destructor does

nothing. Although it is true that the default destructor would work correctly, it does-

n’t hurt to define your own.

The NewTricycle program in Listing 8.2 rewrites the Tricycle class to use a construc-

tor to initialize the object, setting its speed to an initial value. It also demonstrates

where the destructor is called.

LISTING 8.2 The Full Text of NewTricycle.cpp

1: #include <iostream>
2:
3: class Tricycle
4: {
5: public:
6: Tricycle(int initialAge);
7: ~Tricycle();
8: int getSpeed();
9: void setSpeed(int speed);
10: void pedal();
11: void brake();
12: private:
13: int speed;
14: };
15:
16: // constructor for the object
17: Tricycle::Tricycle(int initialSpeed)
18: {
19: setSpeed(initialSpeed);
20: }
21:
22: // destructor for the object

Creating and Deleting Objects 121

23: Tricycle::~Tricycle()
24: {
25: // do nothing
26: }
27:
28: // get the trike’s speed
29: int Tricycle::getSpeed()
30: {
31: return speed;
32: }
33:
34: // set the trike’s speed
35: void Tricycle::setSpeed(int newSpeed)
36: {
37: if (newSpeed >= 0)
38: {
39: speed = newSpeed;
40: }
41: }
42:
43: // pedal the trike
44: void Tricycle::pedal()
45: {
46: setSpeed(speed + 1);
47: std::cout << “\nPedaling; tricycle speed “ << getSpeed() << “ mph\n”;
48: }
49:
50: // apply the brake on the trike
51: void Tricycle::brake()
52: {
53: setSpeed(speed - 1);
54: std::cout << “\nBraking; tricycle speed “ << getSpeed() << “ mph\n”;
55: }
56:
57: // create a trike and ride it
58: int main()
59: {
60: Tricycle wichita(5);
61: wichita.pedal();
62: wichita.pedal();
63: wichita.brake();
64: wichita.brake();
65: wichita.brake();
66: return 0;
67: }

This program produces the following output, which reflects an initial trike speed of

5 mph:

Pedaling; tricycle speed 6 mph

Pedaling; tricycle speed 7 mph

Braking; tricycle speed 6 mph

Braking; tricycle speed 5 mph

Braking; tricycle speed 4 mph

126 HOUR 9: Moving into Advanced Classes

If you declare a function to be const and the implementation of that function

changes the object by changing the value of any of its members, the compiler will

flag it as an error.

It is good programming practice to declare as many function to be const as possible.

Each time you do, you enable the compiler to catch unintended changes to member

variables, instead of letting these errors show up when your program is running.

Interface Versus Implementation
The parts of a program that create and use objects are the clients of the class. The

class declaration serves as a contract with these clients. The contract tells clients what

data the class has available and what the class can do.

For example, in the Tricycle class declaration, you promise in the contract that

every Tricycle object will be able to retrieve its speed, that you can initialize the

speed at construction and set or retrieve it later, and that every Tricycle will know

how to pedal() and brake().

If you make getSpeed() a const function, the contract also promises that it won’t

change the Tricycle on which it is called.

Organizing Class Declarations and
Function Definitions
Class definitions often are kept separate from their implementations in the source

code of C++ programs. Each function that you declare for your class must have a def-

inition. Like functions, the definition of a class function has a header and a body.

The definition must be in a file that the compiler can find. Most C++ compilers want

that file to end with .cpp.

Although you can put the declaration in the source code file, a convention that most

programmers adopt is putting the declaration in a header file with the same name

but ending in .hpp (or less commonly .h or .hp).

So if you’ve put the declaration of the Tricycle class in a file named Tricycle.hpp,

the definition of the class functions would be in Tricycle.cpp. The header file can

be incorporated into the .cpp file with a preprocessor directive:

#include “Tricycle.hpp”

The reason to separate them is because clients of a class don’t care about the imple-

mentation specifics. Everything they need to know is in the header file.

Inline Implementation 127

Inline Implementation
Just as you can ask the compiler to make a regular function inline, you can make

member functions inline. The keyword inline appears before the return value, as in

this example:

inline int Tricycle::getSpeed()
{

return speed;
}

You also can put the definition of a function in the declaration of the class, which

automatically makes that function inline. Here’s an example:

class Tricycle
{
public:

int getSpeed() const { return speed; }
void setSpeed(int newSpeed);

};

The getSpeed() definition has changed. Instead of a semicolon after the keyword

const, there’s a short block of code within braces. The body of the inline function

begins immediately after the declaration of the member function; there’s no semi-

colon after the parentheses. Whitespace doesn’t matter, so the declaration could be

formatted like this:

class Tricycle
{
public:

int getSpeed() const
{

return speed;
}
void setSpeed(int newSpeed);

};

Listings 9.1 and 9.2 re-create the Tricycle class, moving the declaration to

Tricycle.hpp and the implementation of the functions to Tricycle.cpp. Listing 9.1

also changes the getSpeed() accessor method and the pedal() and brake() func-

tions to inline.

LISTING 9.1 The Full Text of Tricycle.hpp

1: #include <iostream>
2:
3: class Tricycle
4: {
5: public:
6: Tricycle(int initialSpeed);
7: ~Tricycle();
8: int getSpeed() const { return speed; }
9: void setSpeed(int speed);
10: void pedal()

128 HOUR 9: Moving into Advanced Classes

LISTING 9.1 Continued
11: {
12: setSpeed(speed + 1);
13: std::cout << “\nPedaling “ << getSpeed() << “ mph\n”;
14: }
15: void brake()
16: {
17: setSpeed(speed - 1);
18: std::cout << “\nPedaling “ << getSpeed() << “ mph\n”;
19: }
20: private:
21: int speed;
22: };

LISTING 9.2 The Full Text of Tricycle.cpp

1: #include “Tricycle.hpp”
2:
3: // constructor for the object
4: Tricycle::Tricycle(int initialSpeed)
5: {
6: setSpeed(initialSpeed);
7: }
8:
9: // destructor for the object
10: Tricycle::~Tricycle()
11: {
12: // do nothing
13: }
14:
15: // set the trike’s speed
16: void Tricycle::setSpeed(int newSpeed)
17: {
18: if (newSpeed >= 0)
19: {
20: speed = newSpeed;
21: }
22: }
23:
24: // create a trike and ride it
25: int main()
26: {
27: Tricycle wichita(5);
28: wichita.pedal();
29: wichita.pedal();
30: wichita.brake();
31: wichita.brake();
32: wichita.brake();
33: return 0;
34: }

The Tricycle program produces this output:

Pedaling 6 mph
Pedaling 7 mph
Pedaling 6 mph
Pedaling 5 mph
Pedaling 4 mph

Classes with Other Classes as Member Data 129

The getSpeed() function is declared on line 8 of Listing 9.1 and its inline implemen-

tation is provided. Lines 10–19 provide more inline functions.

Line 1 of Listing 9.2 is a preprocessor directive to include the header file

Tricycle.hpp in the source code.

Classes with Other Classes as
Member Data
It is not uncommon to build a complex class by declaring simpler classes and includ-

ing them in the declaration of the more complicated class.

For example, you might declare a Wheel class, Motor class, Transmission class, and

so forth, and then combine them into a Car class. This declares a “has-a” relation-

ship: A car has a motor, it has wheels, and it has a transmission.

Consider a second example. A rectangle is composed of four lines. Each line is

defined by two points. A point is defined by x and y coordinates. Listing 9.3 shows a

complete declaration of a Rectangle class as it might appear in Rectangle.hpp.

Because a rectangle is defined as four lines connecting four points, and each point

refers to a coordinate on a graph, a Point class is first declared to hold the x and y

coordinates of each point. Listing 9.4 shows a complete declaration of both classes.

LISTING 9.3 The Full Text of Rectangle.hpp

1: #include <iostream>
2:
3: class Point
4: {
5: // no constructor, use default
6: public:
7: void setX(int newX) { x = newX; }
8: void setY(int newY) { y = newY; }
9: int getX() const { return x; }
10: int getY() const { return y; }
11: private:
12: int x;
13: int y;
14: };
15:
16: class Rectangle
17: {
18: public:
19: Rectangle(int newTop, int newLeft, int newBottom, int newRight);
20: ~Rectangle() {}
21:
22: int getTop() const { return top; }
23: int getLeft() const { return left; }
24: int getBottom() const { return bottom; }

130 HOUR 9: Moving into Advanced Classes

LISTING 9.3 Continued
25: int getRight() const { return right; }
26:
27: Point getUpperLeft() const { return upperLeft; }
28: Point getLowerLeft() const { return lowerLeft; }
29: Point getUpperRight() const { return upperRight; }
30: Point getLowerRight() const { return lowerRight; }
31:
32: void setUpperLeft(Point location);
33: void setLowerLeft(Point location);
34: void setUpperRight(Point location);
35: void setLowerRight(Point location);
36:
37: void setTop(int newTop);
38: void setLeft (int newLeft);
39: void setBottom (int newBottom);
40: void setRight (int newRight);
41:
42: int getArea() const;
43:
44: private:
45: Point upperLeft;
46: Point upperRight;
47: Point lowerLeft;
48: Point lowerRight;
49: int top;
50: int left;
51: int bottom;
52: int right;
53: };

LISTING 9.4 The Full Text of Rectangle.cpp

1: #include “Rectangle.hpp”
2:
3: Rectangle::Rectangle(int newTop, int newLeft, int newBottom, int newRight)
4: {
5: top = newTop;
6: left = newLeft;
7: bottom = newBottom;
8: right = newRight;
9:
10: upperLeft.setX(left);
11: upperLeft.setY(top);
12:
13: upperRight.setX(right);
14: upperRight.setY(top);
15:
16: lowerLeft.setX(left);
17: lowerLeft.setY(bottom);
18:
19: lowerRight.setX(right);
20: lowerRight.setY(bottom);
21: }
22:
23: void Rectangle::setUpperLeft(Point location)
24: {
25: upperLeft = location;

Classes with Other Classes as Member Data 131

26: upperRight.setY(location.getY());
27: lowerLeft.setX(location.getX());
28: top = location.getY();
29: left = location.getX();
30: }
31:
32: void Rectangle::setLowerLeft(Point location)
33: {
34: lowerLeft = location;
35: lowerRight.setY(location.getY());
36: upperLeft.setX(location.getX());
37: bottom = location.getY();
38: left = location.getX();
39: }
40:
41: void Rectangle::setLowerRight(Point location)
42: {
43: lowerRight = location;
44: lowerLeft.setY(location.getY());
45: upperRight.setX(location.getX());
46: bottom = location.getY();
47: right = location.getX();
48: }
49:
50: void Rectangle::setUpperRight(Point location)
51: {
52: upperRight = location;
53: upperLeft.setY(location.getY());
54: lowerRight.setX(location.getX());
55: top = location.getY();
56: right = location.getX();
57: }
58:
59: void Rectangle::setTop(int newTop)
60: {
61: top = newTop;
62: upperLeft.setY(top);
63: upperRight.setY(top);
64: }
65:
66: void Rectangle::setLeft(int newLeft)
67: {
68: left = newLeft;
69: upperLeft.setX(left);
70: lowerLeft.setX(left);
71: }
72:
73: void Rectangle::setBottom(int newBottom)
74: {
75: bottom = newBottom;
76: lowerLeft.setY(bottom);
77: lowerRight.setY(bottom);
78: }
79:
80: void Rectangle::setRight(int newRight)
81: {
82: right = newRight;
83: upperRight.setX(right);

132 HOUR 9: Moving into Advanced Classes

LISTING 9.4 Continued
84: lowerRight.setX(right);
85: }
86:
87: int Rectangle::getArea() const
88: {
89: int width = right - left;
90: int height = top - bottom;
91: return (width * height);
92: }
93:
94: // compute area of the rectangle by finding corners,
95: // establish width and height and then multiply
96: int main()
97: {
98: // initialize a local Rectangle variable
99: Rectangle myRectangle(100, 20, 50, 80);
100:
101: int area = myRectangle.getArea();
102:
103: std::cout << “Area: “ << area << “\n”;
104: std::cout << “Upper Left X Coordinate: “;
105: std::cout << myRectangle.getUpperLeft().getX() << “\n”;
106: return 0;
107: }

When the Rectangle program in Listing 9.4 is run, here’s the output:

Area: 3000
Upper Left X Coordinate: 20

Lines 3–14 in Listing 9.3 declare the class Point, which is used to hold a specific x, y

coordinate on a graph.

The member variables x and y are declared in lines 12–13 to hold the values of the

coordinates. Under the Cartesian coordinate system this class uses, as the x coordi-

nate increases, the point moves to the right on the graph. As the y coordinate

increases, the point moves upward. Other graphs use different systems.

The Point class uses inline accessors to get and set the x and y points declared on

lines 7–10. Because the Point class uses the default constructor and destructor, their

coordinates must be set explicitly.

Line 16 begins the declaration of a Rectangle class. A Rectangle consists of four

points that represent the corners of the Rectangle.

The constructor for the Rectangle (line 19) takes four integers, called newTop,

newLeft, newBottom, and newRight. The four parameters to the constructor are

copied into four member variables, and then the four Points are established.

In addition to the accessor functions, Rectangle has a function named getArea()

declared in line 42. Instead of storing the area as a variable, the getArea() function

Classes with Other Classes as Member Data 133

computes the area in lines 87–92 of Listing 9.4. To do this, it computes the width and

the height of the rectangle and then multiplies those two values.

Getting the x coordinate of the upper-left corner of the rectangle requires that you

access the upperLeft point and ask that point for its x value. Because

getUpperLeft()is a function of Rectangle, it can directly access the private data of

Rectangle, including upperLeft member variable. Because upperLeft is a Point

and a point’s x value is private, getUpperLeft() cannot directly access this data.

Instead, it must use the public accessor getX() to obtain the value.

Line 96 of Listing 9.4 is the beginning of the body of the actual program. Until line

99, no memory has been allocated and nothing has been executed. The only thing

accomplished in the preceding lines is to tell the compiler how to make Point and

Rectangle objects, in case they are ever needed.

In line 99, we define a Rectangle by passing in values for top, left, bottom, and right.

In line 101, we make a local variable, area, of type int. This variable holds the area

of the Rectangle that was created, initializing it with the value returned by

Rectangle’s getArea() function.

A client of Rectangle could create a Rectangle object and get its area without ever

looking at the implementation of getArea().

By looking at the header file in Listing 9.3, which contains the declaration of the

Rectangle class, a programmer knows that getArea() returns an int. How

getArea() accomplishes this is not a concern to users of class Rectangle. In fact, the

author of Rectangle could change the function without affecting programs that use

the Rectangle class.

Summary
A C++ programmer doesn’t have to use classes or objects at all. Programs could con-

sist simply of variables and functions, removing the need to master the complex con-

cepts of object-oriented programming.

Few programmers go this route. Why? Because you can be much more effective if

you design a program as a series of classes that interact with each other.

Developing classes makes code more reusable. If an object that’s useful in one program

would be useful in another, the class can be reused. A word processor’s Spellchecker

class could be added to a web browser or any other tool where users write text. The

spell-checking object’s capabilities would work the same in any program.

140 HOUR 10: Creating Pointers

How does the compiler know how much memory each variable needs? You tell the com-

piler how much memory to allow for your variables by declaring the variable’s type.

Therefore, if you declare your variable to be of type unsigned long, the compiler

knows to set aside 4 bytes of memory because every unsigned long takes 4 bytes.

The compiler takes care of assigning the actual address.

When a pointer is allocated, the compiler assigns enough memory to hold an address

in your hardware and operating system environment. The size of a pointer might or

might not be the same size as an integer, so be sure you make no assumptions.

Storing the Address in a Pointer
Every variable has an address. Even without knowing the specific address of a given

variable, you can store that address in a pointer.

For example, suppose that the variable howOld is an integer. To declare a pointer

called pAge to hold its address, you write the following statement:

int *pAge = NULL;

This declares pAge to be a pointer to int. That is, pAge is declared to hold the address

of an int.

Pointers can have any name that is legal for other variables. This book follows the

convention of naming all pointers with an initial p and a second letter capitalized, as

in pAge.

Note that pAge is a variable like any other variable. When you declare an integer

variable, it is set up to hold an integer. When you declare a pointer variable like

pAge, it is set up to hold an address. A pointer is just a special type of variable that

holds the address of an object in memory; in this case, pAge is holding the address of

an integer variable.

You declare the type of variable you want the pointer to point to. This tells the com-

piler how to treat the memory at the location the pointer points to. The pointer itself

contains an address.

In this example, pAge is initialized to NULL. A pointer whose value is NULL is called a

null pointer. All pointers, when they are created, should be initialized to something. If

you don’t know what you want to assign to the pointer, assign NULL. A pointer that

is not initialized is called a wild pointer. Wild pointers are dangerous.

You also might see pointers initialized to 0 like this:

int *pAge = 0;

Understanding Pointers and Their Usage 141

The result should be the same as if you initialized it to NULL, but technically 0 is an

integer constant, and NULL is an address constant of 0.

The next version of C, C++0x, has a new nullptr constant that represents a null
pointer. When your C++ compiler supports this new version, use nullptr instead
of 0 or NULL.

If you initialize the pointer to 0 or NULL, you must specifically assign the address of

howOld to pAge. Here’s code that shows how to do that:

int howOld = 50; // make a variable
int *pAge = 0; // make a pointer
pAge = &howOld; // put howOld’s address in pAge

The first line creates a variable—howOld, whose type is unsigned short int—and

initializes it with the value 50. The second line declares pAge to be a pointer to type

unsigned short int and initializes the address to 0. You know that pAge is a pointer

because of the asterisk (*) after the variable type and before the variable name.

The third and final line assigns the address of howOld to the pointer pAge. You can tell

that the address of howOld is being assigned to the pointer because of the address of

operator &. If the address of operator was not used, the value of howOld would be

assigned instead of its address. That value might be a valid address somewhere in

memory, but that would be entirely a coincidence.

Assigning a nonpointer to a pointer variable is a common error. Fortunately, the
compiler will detect this and fail with an “invalid conversion” error.

At this point, pAge has as its value the address of howOld. howOld, in turn, has the

value 50. You could have accomplished this with fewer steps:

unsigned short int howOld = 50; // make a variable
unsigned short int *pAge = &howOld; // make pointer to howOld

pAge is a pointer that now contains the address of the howOld variable. Using pAge,

you actually can determine the value of howOld, which in this case is 50. Accessing

howOld by using the pointer pAge is called indirection because you are indirectly

accessing howOld by means of pAge. Later this hour you see how to use indirection to

access a variable’s value.

Did you
Know?

By the
Way

142 HOUR 10: Creating Pointers

Indirection accesses the value at the address held by a pointer. The pointer provides

an indirect way to get the value held at that address.

The Indirection Operator, or Using Pointers
Indirectly
The indirection operator * also is called the dereference operator. When a pointer is

dereferenced, the value at the address stored by the pointer is retrieved. Consider the

following statements to assign one variable’s value to another:

unsigned short int howOld = 50;
unsigned short int yourAge;
yourAge = howOld;

A pointer provides indirect access to the value of the variable whose address it stores.

To assign the value in howOld to the new variable yourAge by way of the pointer

pAge, you write the following:

unsigned short int howOld = 50; // create the variable howOld
unsigned short int *pAge = &howOld; // pAge points to the address of howOld
unsigned short int yourAge; // create another variable
yourAge = *pAge; // assign value at pAge (50) to yourAge

The indirection operator * in front of the variable pAge means “the value stored at.”

This assignment says, “Take the value stored at the address in pAge and assign it to

yourAge.” Another way of thinking about it is “don’t affect the pointer, affect the

item stored at the address in the pointer.”

The indirection operator * is used in two distinct ways with pointers: declaration
and dereference. When a pointer is declared, the star indicates that it is a
pointer, not a normal variable. For example:
unsigned short *pAge = NULL; // make a pointer to an unsigned short

When the pointer is dereferenced, the indirection operator indicates that the
value at the memory location stored in the pointer is to be accessed, rather than
the address itself:
*pAge = 5; // assign 5 to the value at pAge

Also note that this same character (*) is used as the multiplication operator. The
compiler knows which operator to call based on context.

We deal with indirection in our daily lives all the time. If you want to call the local pizza

shop to order dinner but do not know their phone number, you go to the phone book to

look it up. That information source is not the pizza shop, but it contains the “address”

(phone number) of the pizza shop. When you do that, you perform indirection!

By the
Way

144 HOUR 10: Creating Pointers

LISTING 10.2 Continued
9: pAge = &myAge; // assign address of myAge to pAge
10: std::cout << “myAge: “ << myAge << “\n”;
11: std::cout << “*pAge: “ << *pAge << “\n\n”;
12:
13: std::cout << “*pAge = 7\n”;
14: *pAge = 7; // sets myAge to 7
15: std::cout << “*pAge: “ << *pAge << “\n”;
16: std::cout << “myAge: “ << myAge << “\n\n”;
17:
18: std::cout << “myAge = 9\n”;
19: myAge = 9;
20: std::cout << “myAge: “ << myAge << “\n”;
21: std::cout << “*pAge: “ << *pAge << “\n”;
22:
23: return 0;
24: }

Here’s this program’s output:

myAge: 5
*pAge: 5

*pAge = 7
*pAge: 7
myAge: 7

myAge =9
myAge: 9
*pAge: 9

This program declares two variables: an int myAge; and a pointer pAge, which is a

pointer to int and which holds the address of myAge. myAge is assigned the value 5 in

line 8; this is verified by the display in line 10.

In line 9, pAge is assigned the address of myAge. In line 11, pAge is dereferenced and

displayed, showing that the value at the address that pAge stores is the 5 stored in

myAge. In line 14, the value 7 is assigned to the variable at the address stored in pAge.

This sets myAge to 7, and the displays in lines 15 and 16 confirm this.

In line 19, the value 9 is assigned to the variable myAge. This value is obtained

directly in line 20 and indirectly—by dereferencing pAge—in line 21.

Examining Addresses Stored in Pointers
Pointers enable you to manipulate addresses without ever knowing their real value.

After this hour, you’ll take it on faith that when you assign the address of a variable

to a pointer, the pointer really has the address of that variable as its value. But just

this once, why not check to make sure? The PointerCheck program in Listing 10.3

puts a pointer to the test.

Understanding Pointers and Their Usage 145

LISTING 10.3 The Full Text of PointerCheck.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: unsigned short int myAge = 5, yourAge = 10;
6: unsigned short int *pAge = &myAge; // a pointer
7:
8: std::cout << “myAge:\t” << myAge;
9: std::cout << “\t\tyourAge:\t” << yourAge << “\n”;
10: std::cout << “&myAge:\t” << &myAge;
11: std::cout << “\t&yourAge:\t” << &yourAge <<”\n”;
12:
13: std::cout << “pAge:\t” << pAge << “\n”;
14: std::cout << “*pAge:\t” << *pAge << “\n\n”;
15:
16: pAge = &yourAge; // reassign the pointer
17:
18: std::cout << “myAge:\t” << myAge;
19: std::cout << “\t\tyourAge:\t” << yourAge << “\n”;
20: std::cout << “&myAge:\t” << &myAge;
21: std::cout << “\t&yourAge:\t” << &yourAge <<”\n”;
22:
23: std::cout << “pAge:\t” << pAge << “\n”;
24: std::cout << “*pAge:\t” << *pAge << “\n\n”;
25:
26: std::cout << “&pAge:\t” << &pAge << “\n”;
27: return 0;
28: }

This program produces the following output:

myAge: 5 yourAge: 10
&myAge: 1245066 &yourAge: 1245064
pAge: 1245066
*pAge: 5
myAge: 5 yourAge: 10
&myAge: 1245066 &yourAge: 1245064
pAge: 1245064
*pAge: 10

&pAge: 1245060

Your output will differ because each computer stores variables at different addresses,

depending on what else is in memory and how much memory is available.

In line 5, myAge and yourAge are declared to be variables of type unsigned short

integer. In line 6, pAge is declared to be a pointer to an unsigned short integer, and

it is initialized with the address of the variable myAge.

Lines 8–11 print the values and the addresses of myAge and yourAge. Line 13 displays

the contents of pAge, which is the address of myAge. Line 14 displays the result of

dereferencing pAge, which displays the value at pAge—the value in myAge, or 5.

146 HOUR 10: Creating Pointers

This is the essence of pointers. Line 13 shows that pAge stores the address of myAge,

and line 14 shows how to get the value stored in myAge by dereferencing the pointer

pAge. Make sure that you understand this fully before you go on. Study the code and

look at the output.

In line 16, pAge is reassigned to point to the address of yourAge. The values and

addresses are displayed again. The output shows that pAge now has the address of

the variable yourAge, and that dereferencing obtains the value in yourAge.

Line 26 displays the address of pAge itself. Like any variable, it too has an address,

and that address can be stored in a pointer. (Assigning the address of a pointer to

another pointer will be discussed shortly.)

Why to Use Pointers?
So far, you’ve seen step-by-step details of assigning a variable’s address to a pointer.

In practice, though, you would never do this. After all, why bother with a pointer

when you already have a variable with access to that value? The only reason for this

kind of pointer manipulation of a variable is to demonstrate how pointers work.

Now that you are comfortable with the syntax of pointers, you can put them to better

use. Pointers are employed most often for three tasks:

. Managing data on the heap

. Accessing class member data and functions

. Passing variables by reference to functions

The rest of this hour focuses on managing data on the heap and accessing class

member data and functions. In Hour 12, “Creating References,” you learn about

passing variables by reference.

The Stack and the Heap
Programmers generally deal with five areas of memory:

. Global name space

. The heap

. Registers

. Code space

. The stack

The Stack and the Heap 147

Local variables are on the stack, along with function parameters. Code is in code

space, of course, and global variables are in global name space. The registers are

used for internal housekeeping functions, such as keeping track of the top of the stack

and the instruction pointer. Just about all remaining memory is given over to the

heap, which is sometimes referred to as the free store.

The problem with local variables is that they don’t persist. When the function returns,

the local variables are thrown away. Global variables solve that problem at the cost

of being accessible without restriction throughout the program, which leads to the

creation of bug-prone code that is more difficult to understand and maintain. Putting

data in the heap solves both of these problems.

You can think of the heap as a massive section of memory in which thousands of

sequentially numbered cubbyholes lie waiting for your data. You can’t label these

cubbyholes, though, as you can with the stack. You must ask for the address of the

cubbyhole that you reserve and then stash that address away in a pointer.

One way to think about this is with an analogy: A friend gives you the 800 number

for Acme Mail Order. You go home and program your telephone with that number,

and then you throw away the piece of paper with the number on it.

When you push the button, a telephone rings somewhere, and Acme Mail Order

answers. You don’t remember the number, and you don’t know where the other tele-

phone is located, but the button gives you access to Acme Mail Order.

Acme Mail Order is your data on the heap. You don’t know where it is, but you know

how to get to it. You access it by using its address—in this comparison, the telephone

number. You don’t have to know that number; you just have to put it into a pointer—

the speed-dial button. The pointer gives you access to your data without bothering

you with the details.

The stack is cleaned automatically when a function returns. All the local variables go

out of scope, and they are removed from the stack. The heap is not cleaned until your

program ends, and it is your responsibility to free any memory that you’ve reserved

when you are done with it. Leaving items hanging around in the heap when you no

longer need them is known as a memory leak, a topic covered later in this hour.

The advantage to the heap is that the memory you reserve remains available until

you explicitly free it. If you reserve memory on the heap while in a function, the

memory is still available when the function returns.

The advantage of accessing memory in this way, rather than using global variables,

is that only functions with access to the pointer have access to the data. This provides

a tightly controlled interface to that data, and it eliminates the problem of one func-

tion changing that data in unexpected and unanticipated ways.

148 HOUR 10: Creating Pointers

For this to work, you must be able to create a pointer to an area on the heap. The fol-

lowing sections describe how to do this.

Using the new Keyword
You allocate memory on the heap in C++ by using the new keyword. new is followed

by the type of the object that you want to allocate so that the compiler knows how

much memory is required. Therefore, new unsigned short int allocates 2 bytes in

the heap, and new long allocates 4.

The return value from new is a memory address. It must be assigned to a pointer. To

create an unsigned short on the heap, you might write the following:

unsigned short int *pPointer;
pPointer = new unsigned short int;

You can, of course, initialize the pointer at its creation:

unsigned short int *pPointer = new unsigned short int;

In either case, pPointer now points to an unsigned short int on the heap. You

can use this like any other pointer to a variable and assign a value into that area of

memory:

*pPointer = 72;

This means “put 72 at the value in pPointer” or “assign the value 72 to the area on

the heap to which pPointer points.”

If new cannot create memory on the heap—since memory is a limited resource—it

throws an exception. Exceptions are error-handling objects covered in detail in Hour

24, “Dealing with Exceptions and Error Handling.”

Some older compilers return the null pointer. If you have an older compiler, check
your pointer for null each time you request new memory. All modern compilers
can be counted on to throw an exception.

Using the delete Keyword
When you have finished with your area of memory, you must call delete on the

pointer, which returns the memory to the heap. Remember that the pointer itself—as

opposed to the memory it points to—is a local variable. When the function in which

it is declared returns, that pointer goes out of scope and is lost. The memory allocated

with the new operator is not freed automatically, however. That memory becomes

unavailable—a situation called a memory leak. It’s called a memory leak because that

By the
Way

The Stack and the Heap 149

memory can’t be recovered until the program ends. It is as though the memory has

leaked out of your computer.

To restore the memory to the heap, you use the keyword delete. For example:

delete pPointer;

When you delete the pointer, what you are really doing is freeing up the memory

whose address is stored in the pointer. You are saying, “Return to the heap the mem-

ory that this pointer points to.” The pointer is still a pointer, and it can be reassigned.

When you call delete on a pointer, the memory it points to is freed. Calling delete

on that pointer again will crash your program! When you delete a pointer, set it to

NULL. Calling delete on a null pointer is guaranteed to be safe. For example:

Animal *pDog = new Animal;
delete pDog; // frees the memory
pDog = NULL; // sets pointer to null
// ...
delete pDog; // harmless

Don’t worry if the preceding code looks a little confusing. We’ll look at allocating

objects on the heap in the next hour. This also works with atomic data types like int,

as shown here:

int *pNumber = new int;
delete pNumber; // frees the memory
pNumber = 0; // sets pointer to null
// ...
delete pNumber; // harmless

The Heap program in Listing 10.4 demonstrates allocating a variable on the heap,

using that variable, and deleting it.

LISTING 10.4 The Full Text of Heap.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int localVariable = 5;
6: int *pLocal= &localVariable;
7: int *pHeap = new int;
8: if (pHeap == NULL)
9: {
10: std::cout << “Error! No memory for pHeap!!”;
11: return 1;
12: }
13: *pHeap = 7;
14: std::cout << “localVariable: “ << localVariable << “\n”;
15: std::cout << “*pLocal: “ << *pLocal << “\n”;
16: std::cout << “*pHeap: “ << *pHeap << “\n”;
17: delete pHeap;

150 HOUR 10: Creating Pointers

LISTING 10.4 Continued
18: pHeap = new int;
19: if (pHeap == NULL)
20: {
21: std::cout << “Error! No memory for pHeap!!”;
22: return 1;
23: }
24: *pHeap = 9;
25: std::cout << “*pHeap: “ << *pHeap << “\n”;
26: delete pHeap;
27: return 0;
28: }

The program has the following output:

localVariable: 5
*pLocal: 5
*pHeap: 7
*pHeap: 9

Line 5 declares and initializes a local variable. Line 6 declares and initializes a

pointer with the address of the local variable. Line 7 declares another pointer but ini-

tializes it with the result obtained from calling new int. This allocates space on the

heap for an int. Line 13 assigns the value 7 to the newly allocated memory. Line 14

displays the value of the local variable, and line 15 prints the value pointed to by

pLocal. As expected, these are the same. Line 16 prints the value pointed to by

pHeap. It shows that the value assigned in line 13 is, in fact, accessible.

In line 17, the memory allocated in line 7 is returned to the heap by a call to delete.

This frees the memory and disassociates the pointer from that memory location.

pHeap is now free to point to other memory. It is reassigned in lines 18–24, and line

25 displays the result. Line 26 again restores that memory to the heap.

Although line 26 is redundant (the end of the program would have returned that
memory), it is a good idea to free this memory explicitly. If the program changes
or is extended, it will be beneficial that this step was already taken care of.

Avoiding Memory Leaks
Another way you might inadvertently create a memory leak is by reassigning your

pointer before deleting the memory to which it points. Consider this code fragment:

1: unsigned short int *pPointer = new unsigned short int;
2: *pPointer = 72;
3: pPointer = new unsigned short int;
4: *pPointer = 84;

Line 1 in this fragment creates pPointer and assigns it the address of an area on the

heap. Line 2 stores the value 72 in that area of memory. Line 3 reassigns pPointer to

another area of memory. Line 4 places the value 84 in that area. The original area—

By the
Way

Summary 151

in which the value 72 is now held—is unavailable because the pointer to that area of

memory has been reassigned. There is no way to access that original area of memory,

nor is there any way to free it before the program ends.

The code should have been written like this:

1: unsigned short int *pPointer = new unsigned short int;
2: *pPointer = 72;
3: delete pPointer;
4: pPointer = new unsigned short int;
5: *pPointer = 84;

Now the memory originally pointed to by pPointer is deleted—and thus freed—in

line 3 of the preceding fragment.

For every time in your program that you call new, there should be a call to delete.
It is important to keep track of which pointer owns an area of memory and to
ensure that the memory is returned to the heap when you are done with it.

Summary
This hour was the first of two devoted to pointers, a subject that trips up more begin-

ning C++ programmers than any other aspect of the language.

Variable values are stored in computer memory, which is organized into sequential

memory locations. Each location is a memory address. Pointers are special variables

to one of those addresses.

Pointers make it possible to manipulate computer memory directly in a program.

When you know the memory address of data, you don’t have to use a variable to

access that data. You can work with a pointer to that address instead.

There are tasks where it makes more sense to use pointers than variables. Pointers

are one of the most powerful parts of the C++ language.

If they’re still a point of confusion, you will find they make more sense the further

you progress through the book.

By the
Way

156 HOUR 11: Developing Advanced Pointers

The HeapCreator program in Listing 11.1 shows how to create and delete objects on

the heap.

LISTING 11.1 The Full Text of HeapCreator.cpp

1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat();
7: ~SimpleCat();
8: private:
9: int itsAge;
10: };
11:
12: SimpleCat::SimpleCat()
13: {
14: std::cout << “Constructor called\n”;
15: itsAge = 1;
16: }
17:
18: SimpleCat::~SimpleCat()
19: {
20: std::cout << “Destructor called\n”;
21: }
22:
23: int main()
24: {
25: std::cout << “SimpleCat Frisky ...\n”;
26: SimpleCat Frisky;
27:
28: std::cout << “SimpleCat *pRags = new SimpleCat ...\n”;
29: SimpleCat *pRags = new SimpleCat;
30:
31: std::cout << “delete pRag s ...\n”;
32: delete pRags;
33:
34: std::cout << “Exiting, watch Frisky go ...\n”;
35: return 0;
36: }

The program displays the following output:

SimpleCat Frisky ...
Constructor called
SimpleCat * pRags = new SimpleCat ...
Constructor called
delete pRags ...
Destructor called
Exiting, watch Frisky go ...
Destructor called

Lines 3–10 declare the stripped-down class SimpleCat. On line 26, Frisky is created

on the stack, which causes the constructor to be called. On line 29, the SimpleCat

Accessing Data Members Using Pointers 157

pointed to by pRags is created on the heap; the constructor is called again. On line

32, delete is called on pRags, and the destructor is called. When the function ends,

Frisky goes out of scope, and the destructor is called.

Accessing Data Members Using
Pointers
You accessed data members and functions by using the dot operator (.) for Cat

objects created locally. To access the Cat object on the heap, you must dereference

the pointer and call the dot operator on the object pointed to by the pointer. There-

fore, to access the GetAge member function, you write the following:

(*pRags).GetAge();

Parentheses are used to assure that pRags is dereferenced before GetAge() is

accessed.

Because this is cumbersome, C++ provides a shorthand operator for indirect access:

the points-to operator ->, which is created by typing a dash (-) immediately fol-

lowed by the greater than symbol (>). C++ treats this as a single symbol.

The HeapAccessor program in Listing 11.2 demonstrates accessing member variables

and functions of objects created on the heap.

LISTING 11.2 The Full Text of HeapAccessor.cpp

1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat() { itsAge = 2; }
7: ~SimpleCat() {}
8: int GetAge() const { return itsAge; }
9: void SetAge(int age) { itsAge = age; }
10: private:
11: int itsAge;
12: };
13:
14: int main()
15: {
16: SimpleCat *Frisky = new SimpleCat;
17: std::cout << “Frisky is “ << Frisky->GetAge()
18: << “ years old” << “\n”;
19:
20: Frisky->SetAge(5);
21: std::cout << “Frisky is “ << Frisky->GetAge()
22: << “ years old\n”;

158 HOUR 11: Developing Advanced Pointers

LISTING 11.2 Continued
23:
24: delete Frisky;
25: return 0;
26: }

HeapAccessor produces this output:

Frisky is 2 years old
Frisky is 5 years old

On line 16, a SimpleCat object is instantiated on the heap. The default constructor

sets its age to 2, and the GetAge() member function is called on line 17. Because this

is a pointer, the points-to operator -> is used to access the member data and func-

tions. On line 20, the SetAge() function is called, and GetAge() is accessed again on

line 21.

Member Data on the Heap
One or more of the data members of a class can be a pointer to an object on the

heap. The memory can be allocated in the class constructor or in one of its functions,

and it can be deleted in its destructor, as the DataMember program in Listing 11.3

illustrates.

LISTING 11.3 The Full Text of DataMember.cpp

1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat();
7: ~SimpleCat();
8: int GetAge() const { return *itsAge; }
9: void SetAge(int age) { *itsAge = age; }
10:
11: int GetWeight() const { return *itsWeight; }
12: void setWeight (int weight) { *itsWeight = weight; }
13:
14: private:
15: int *itsAge;
16: int *itsWeight;
17: };
18:
19: SimpleCat::SimpleCat()
20: {
21: itsAge = new int(2);
22: itsWeight = new int(5);
23: }
24:
25: SimpleCat::~SimpleCat()

Member Data on the Heap 159

26: {
27: delete itsAge;
28: delete itsWeight;
29: }
30:
31: int main()
32: {
33: SimpleCat *Frisky = new SimpleCat;
34: std::cout << “Frisky is “ << Frisky->GetAge()
35: << “ years old\n”;
36:
37: Frisky->SetAge(5);
38: std::cout << “Frisky is “ << Frisky->GetAge()
39: << “ years old\n”;
40:
41: delete Frisky;
42: return 0;
43: }

This program produces the following output:

Frisky is 2 years old
Frisky is 5 years old

The class SimpleCat has two member variables—both of which are pointers to inte-

gers. The constructor (lines 19–23) initializes the pointers to memory on the heap

and to the default values.

The destructor (lines 25–29) cleans up the allocated memory. Because this is the

destructor, there is no point in assigning these pointers to NULL because they will no

longer be accessible. This is one of the safe places to break the rule that deleted point-

ers should be assigned to NULL, although following the rule doesn’t hurt.

The calling function—in this case, main()—is unaware that itsAge and itsWeight

are pointers to memory on the heap. main() continues to call GetAge() and

SetAge() and the details of the memory management are hidden in the implemen-

tation of the class, as they should be.

When Frisky is deleted on line 41, its destructor is called. The destructor deletes each

of its member pointers. If these in turn point to objects of other user-defined classes,

their destructors are also called.

This is an excellent example of why to write your own destructor rather than use the

compiler’s default. By default, the delete statements on lines 27 and 28 would not

happen. Without those deletes, the object goes away with the delete on line 41

(including the pointers to the heap)—but not the entries on the heap itself. Without

the destructor, there would be a memory leak.

160 HOUR 11: Developing Advanced Pointers

The this Pointer
Every class member function has a hidden parameter: the this pointer. this points

to the individual object. Therefore, in each call to GetAge() or SetAge(), the this

pointer for the object is included as a hidden parameter.

The job of the this pointer is to point to the individual object whose function has

been invoked. Usually, you don’t need this; you just call functions and set member

variables. Occasionally, however, you need to access the object itself (perhaps to

return a pointer to the current object). It is at that point that the this pointer

becomes so helpful.

Normally, you don’t need to use the this pointer to access the member variables of

an object from within functions of that object. You can, however, explicitly call the

this pointer if you want to. The This program in Listing 11.4 illustrates how to make

use of the this pointer.

LISTING 11.4 The Full Text of This.cpp

1: #include <iostream>
2:
3: class Rectangle
4: {
5: public:
6: Rectangle();
7: ~Rectangle();
8: void SetLength(int length) { this->itsLength = length; }
9: int GetLength() const { return this->itsLength; }
10: void SetWidth(int width) { itsWidth = width; }
11: int GetWidth() const { return itsWidth; }
12:
13: private:
14: int itsLength;
15: int itsWidth;
16: };
17:
18: Rectangle::Rectangle()
19: {
20: itsWidth = 5;
21: itsLength = 10;
22: }
23:
24: Rectangle::~Rectangle()
25: {}
26:
27: int main()
28: {
29: Rectangle theRect;
30: std::cout << “theRect is “ << theRect.GetLength()
31: << “ feet long.\n”;
32: std::cout << “theRect is “ << theRect.GetWidth()
33: << “ feet wide.\n”;

Stray or Dangling Pointers 161

34:
35: theRect.SetLength(20);
36: theRect.SetWidth(10);
37: std::cout << “theRect is “ << theRect.GetLength()
38: << “ feet long.\n”;
39: std::cout << “theRect is “ << theRect.GetWidth()
40: << “ feet wide.\n”;
41:
42: return 0;
43: }

When you run the program, the following is displayed:

theRect is 10 feet long
theRect is 5 feet wide
theRect is 20 feet long
theRect is 10 feet wide

The SetLength() and GetLength() accessor functions explicitly use the this pointer

to access the member variables of the Rectangle object. The SetWidth and GetWidth

accessors do not. There is no difference in their behavior, although the function with-

out the this pointer may be easier to read.

If that’s all there were to the this pointer, there would be little point in bothering
you with it. But because this is a pointer, it stores the memory address of an
object and can be a powerful tool.

You’ll see a practical use for the this pointer later in the book, when operator
overloading is discussed in Hour 15, “Using Operator Overloading.”

You don’t have to worry about creating or deleting the this pointer. The compiler
takes care of that.

Stray or Dangling Pointers
A source of bugs that are nasty and difficult to find is stray pointers. A stray pointer is

created when you call delete on a pointer—thereby freeing the memory that it

points to—and later try to use that pointer again without reassigning it.

It is as though the Acme Mail Order company moved away and you still pressed the

speed-dial button on your phone. It is possible that nothing terrible happens—a tele-

phone rings in a deserted warehouse. Another possibility is that the telephone num-

ber has been reassigned to someone who works the night shift and you just woke

them up!

Take care not to use a pointer after you have called delete on it. The pointer still

points to the old area of memory, but the compiler is free to put other data there;

By the
Way

162 HOUR 11: Developing Advanced Pointers

using the pointer can cause your program to crash. Worse, your program might pro-

ceed merrily on its way and crash several minutes later. This is called a time bomb,

and it is no fun. To be safe, after you delete a pointer, set it to NULL. This disarms the

pointer.

Stray pointers are often called wild pointers or dangling pointers.

const Pointers
You can use the keyword const for pointers before the type, after the type, or in both

places. For example, all the following are legal declarations:

const int *pOne;
int * const pTwo;
const int * const pThree;

These three statements do not all mean the same thing. pOne is a pointer to a con-

stant integer. The value that is pointed to can’t be changed using this pointer. That

means you can’t write the following:

*pOne = 5;

If you try to do so, the compiler fails with an error.

pTwo is a constant pointer to an integer. The integer can be changed, but pTwo can’t

point to anything else. A constant pointer can’t be reassigned. That means you can’t

write this:

pTwo = &x;

pThree is a constant pointer to a constant integer. The value that is pointed to can’t

be changed and pThree can’t be changed to point to anything else.

Draw an imaginary line just to the right of the asterisk. If the word const is to the left

of the line, that means the object is constant. If the word const is to the right of the

line, the pointer itself is constant:

const int *p1; // the int pointed to is constant
int * const p2; // p2 is constant, it can’t point to anything else

By the
Way

const Pointers and const Member Functions 163

const Pointers and const Member
Functions
In Hour 8, “Creating Basic Classes,” you learned that you can apply the const key-

word to a member function. When a function is declared as const, the compiler flags

as an error any attempt to change data in the object from within that function.

If you declare a pointer to a const object, the only functions that you can call with that

pointer are const functions. The ConstPointer program in Listing 11.5 illustrates this.

LISTING 11.5 The Full Text of ConstPointer.cpp

1: #include <iostream>
2:
3: class Rectangle
4: {
5: public:
6: Rectangle();
7: ~Rectangle();
8: void SetLength(int length) { itsLength = length; }
9: int GetLength() const { return itsLength; }
10:
11: void SetWidth(int width) { itsWidth = width; }
12: int GetWidth() const { return itsWidth; }
13:
14: private:
15: int itsLength;
16: int itsWidth;
17: };
18:
19: Rectangle::Rectangle():
20: itsWidth(5),
21: itsLength(10)
22: {}
23:
24: Rectangle::~Rectangle()
25: {}
26:
27: int main()
28: {
29: Rectangle* pRect = new Rectangle;
30: const Rectangle *pConstRect = new Rectangle;
31: Rectangle* const pConstPtr = new Rectangle;
32:
33: std::cout << “pRect width: “
34: << pRect->GetWidth() << “ feet\n”;
35: std::cout << “pConstRect width: “
36: << pConstRect->GetWidth() << “ feet\n”;
37: std::cout << “pConstPtr width: “
38: << pConstPtr->GetWidth() << “ feet\n”;
39:
40: pRect->SetWidth(10);
41: // pConstRect->SetWidth(10);

164 HOUR 11: Developing Advanced Pointers

LISTING 11.5 Continued
42: pConstPtr->SetWidth(10);
43:
44: std::cout << “pRect width: “
45: << pRect->GetWidth() << “ feet\n”;
46: std::cout << “pConstRect width: “
47: << pConstRect->GetWidth() << “ feet\n”;
48: std::cout << “pConstPtr width: “
49: << pConstPtr->GetWidth() << “ feet\n”;
50: return 0;
51: }

This program displays the following output:

pRect width: 5 feet
pConstRect width: 5 feet
pConstPtr width: 5 feet
pRect width: 10 feet
pConstRect width: 5 feet
pConstPtr width: 10 feet

Lines 3–17 declare Rectangle. Line 12 declares the GetWidth() member function

const. Line 29 declares a pointer to a Rectangle. Line 30 declares pConstRect,

which is a pointer to a constant Rectangle. Line 31 declares pConstPtr, which is a

constant pointer to Rectangle.

Lines 33–38 display the value of the widths.

In line 40, pRect is used to set the width of the rectangle to 10. In line 41,

pConstRect would be used, but it was declared to point to a constant Rectangle.

Therefore, it cannot legally call a non-const member function and is commented

out. On line 31, pConstPtr is declared to be a constant pointer to a rectangle. In

other words, the pointer is constant and cannot point to anything else, but the rec-

tangle is not constant.

When you declare an object to be const, you are, in effect, declaring that the
this pointer is a pointer to a const object. A const this pointer can be used
only with const member functions.

Constant objects and constant pointers are discussed again in the next hour,
when references to constant objects are discussed.

Summary
Pointers can be created to point to simple data types like integers and to objects as well.

Objects can be created and deleted on the heap. If you have declared an object, you

can declare a pointer to that class and instantiate the object on the heap.

By the
Way

170 HOUR 12: Creating References

Creating a Reference
You create a reference by writing the type of the target object, followed by the refer-

ence operator &, followed by the name of the reference. References can use any legal

variable name, but in this book all reference names are prefixed with r and the sec-

ond letter is capitalized. So, if you have an integer variable named someInt, you can

make a reference to that variable by writing the following:

int &rSomeRef = someInt;

This is read as “rSomeRef is a reference to an integer that is initialized to refer to

someInt.” The Reference program in Listing 12.1 shows how references are created

and used.

LISTING 12.1 The Full Text of Reference.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int intOne;
6: int &rSomeRef = intOne;
7:
8: intOne = 5;
9: std::cout << “intOne: “ << intOne << “\n”;
10: std::cout << “rSomeRef: “ << rSomeRef << “\n”;
11:
12: rSomeRef = 7;
13: std::cout << “intOne: “ << intOne << “\n”;
14: std::cout << “rSomeRef: “ << rSomeRef << “\n”;
15: return 0;
16: }

Reference produces the following output:

intOne: 5
rSomeRef: 5
intOne: 7
rSomeRef: 7

On line 5, a local int variable, intOne, is declared. On line 6, a reference to an int,

rSomeRef, is declared and initialized to refer to intOne. If you declare a reference but

don’t initialize it, you get a compiler error. References must be initialized.

On line 8, intOne is assigned the value 5. On lines 9 and 10, the values in intOne

and rSomeRef are displayed, and are the same because rSomeRef is simply the refer-

ence to intOne.

Using the Address of Operator on References 171

On line 12, 7 is assigned to rSomeRef. Because this is a reference, it is an alias for

intOne, and therefore the 7 is really assigned to intOne, as is shown by the display

on lines 13 and 14.

The reference operator & is the same symbol as the one used for the address of
operator. In this case, it is used in the declaration.

Remember, with pointers, an asterisk (*) in the declaration means that the vari-
able is a pointer. When used in a statement, it is the indirection operator when
used with pointers or the multiplication operator when used in a mathematical
expression.

Using the Address of Operator on
References
If you ask a reference for its address, it returns the address of its target. That is the

nature of references—they are aliases for the target.

The Reference2 program in Listing 12.2 demonstrates this concept.

LISTING 12.2 The Full Text of Reference2.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int intOne;
6: int &rSomeRef = intOne;
7:
8: intOne = 5;
9: std::cout << “intOne: “ << intOne << “\n”;
10: std::cout << “rSomeRef: “ << rSomeRef << “\n”;
11:
12: std::cout << “&intOne: “ << &intOne << “\n”;
13: std::cout << “&rSomeRef: “ << &rSomeRef << “\n”;
14:
15: return 0;
16: }

Here’s the output for the Reference2 program:

intOne: 5
rSomeRef: 5
&intOne: 0x0012FF7C
&rSomeRef: 0x0012FF7C

Once again, rSomeRef is initialized as a reference to intOne. This time the addresses

of the two variables are displayed and they are identical. C++ gives you no way to

By the
Way

172 HOUR 12: Creating References

access the address of the reference itself because it is not meaningful, as it would be if

you were using a pointer or other variable. References are initialized when created

and always act as a synonym for their target, even when the address of operator is

applied.

For example, if you have a class called President, you might declare an instance of

that class as follows:

President Barack_Obama;

You might then declare a reference to President and initialize it with this object:

President &Obama = Barack_Obama;

There is only one President; both identifiers refer to the same object of the same

class. Any action you take on Obama will be taken on Barack_Obama, as well.

Be careful to distinguish between the & symbol on line 6 of Listing 12.2, which

declares a reference to int named rSomeRef, and the & symbols on lines 12 and 13,

which return the addresses of the integer variable intOne and the reference

rSomeRef.

Normally, when you use a reference, you do not use the address of operator. You

just use the reference as you would use the target variable. This is shown on line 10.

Even experienced C++ programmers, who know the rule that references cannot be

reassigned and are always aliases for their target, can be confused by what happens

when you try to reassign a reference: What appears to be a reassignment turns out to

be the assignment of a new value to the target.

This is demonstrated by the Assignment program in Listing 12.3.

LISTING 12.3 The Full Text of Assignment.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: int intOne;
6: int &rSomeRef = intOne;
7:
8: intOne = 5;
9: std::cout << “intOne:\t” << intOne << “\n”;
10: std::cout << “rSomeRef:\t” << rSomeRef << “\n”;
11: std::cout << “&intOne:\t” << &intOne << “\n”;
12: std::cout << “&rSomeRef:\t” << &rSomeRef << “\n”;
13:
14: int intTwo = 8;
15: rSomeRef = intTwo; // not what you think!
16: std::cout << “\nintOne:\t” << intOne << “\n”;
17: std::cout << “intTwo:\t” << intTwo << “\n”;

What Can Be Referenced? 173

18: std::cout << “rSomeRef:\t” << rSomeRef << “\n”;
19: std::cout << “&intOne:\t” << &intOne << “\n”;
20: std::cout << “&intTwo:\t” << &intTwo << “\n”;
21: std::cout << “&rSomeRef:\t” << &rSomeRef << “\n”;
22: return 0;
23: }

The program displays this output:

intOne: 5
rSomeRef: 5
&intOne: 1245064
&rSomeRef: 1245064

intOne: 8
intTwo: 8
rSomeRef: 8
&intOne: 1245064
&intTwo: 1245056
&rSomeRef: 1245064

Once again, an integer variable and a reference to an integer are declared, on lines 5

and 6. The integer is assigned the value 5 on line 8, and the values and their

addresses are printed on lines 9–11.

On line 14 a new variable, intTwo, is created and initialized with the value 8. On

line 15, the program tries to reassign rSomeRef to now be an alias to the variable

intTwo, but that is not what happens.

Instead, rSomeRef continues to act as an alias for intOne, so this assignment is

exactly equivalent to the following:

intOne = intTwo;

Sure enough, when the values of intOne and rSomeRef are displayed (lines 16 and 18)

they are the same as intTwo. In fact, when the addresses are printed on lines 19–21,

you see that rSomeRef continues to refer to intOne and not intTwo.

What Can Be Referenced?
Any object can be referenced, including user-defined objects. Note that you create a

reference to an object, not to a class or a data type such as int. You do not write this:

int &rIntRef = int; // wrong

You must initialize rIntRef to a particular integer, such as this:

int howBig = 200;
int &rIntRef = howBig;

174 HOUR 12: Creating References

In the same way, you don’t initialize a reference to a Cat:

Cat &rCatRef = Cat; // wrong

You must initialize rCatRef to a particular Cat object:

Cat Frisky;
Cat & rCatRef = Frisky;

References to objects are used just like the object itself. Member data and functions

are accessed using the normal class member access operator (.). As with the built-in

types, the reference acts as an alias to the object.

Null Pointers and Null References
When pointers are not initialized, or when they are deleted, they ought to be

assigned to NULL. This is not true for references. In fact, a reference cannot be null,

and a program with a reference to a null object is considered an invalid program.

When a program is invalid, just about anything can happen. It can appear to work,

or it can erase important files on your hard drive. Both are possible outcomes of an

invalid program.

Most compilers support null references without much complaint, crashing only if you

try to use the reference in some way. Taking advantage of this, however, is not a

good idea. When you move your program to another computer or a different com-

piler, mysterious bugs might occur if you have null references.

Passing Function Arguments by
Reference
In Hour 5, “Calling Functions,” you learned that functions have two limitations:

Arguments are passed by value and the return statement only can return one value.

Passing values to a function by reference can overcome both of these limitations. In

C++, passing by reference is accomplished in two ways: using pointers and using ref-

erences. The syntax is different, but the net effect is the same: Rather than a copy

being created within the scope of the function, the actual original object is passed

into the function.

Passing an object by reference enables the function to change the object being

referred to.

Passing Function Arguments by Reference 175

The ValuePasser program in Listing 12.4 creates a swap function and passes in its

parameters by value.

LISTING 12.4 The Full Text of ValuePasser.cpp

1: #include <iostream>
2:
3: void swap(int x, int y);
4:
5: int main()
6: {
7: int x = 5, y = 10;
8:
9: std::cout << “Main. Before swap, x: “ << x
10: << “ y: “ << y << “\n”;
11: swap(x,y);
12: std::cout << “Main. After swap, x: “ << x
13: << “ y: “ << y << “\n”;
14: return 0;
15: }
16:
17: void swap (int x, int y)
18: {
19: int temp;
20:
21: std::cout << “Swap. Before swap, x: “ << x
22: << “ y: “ << y << “\n”;
23:
24: temp = x;
25: x = y;
26: y = temp;
27:
28: std::cout << “Swap. After swap, x: “ << x
29: << “ y: “ << y << “\n”;
30:
31: }

The following output is displayed:

Main. Before swap. x: 5 y: 10
Swap. Before swap. x: 5 y: 10
Swap. After swap. x: 10 y: 5
Main. After swap. x: 5 y: 10

This program initializes two variables in main() and then passes them to the swap()

function, which appears to swap them. But when they are examined again in

main(), they are unchanged!

The problem here is that x and y are being passed to swap() by value. Local copies

were made in the function and those copies were swapped, but the originals

remained unchanged. What you want to do is pass x and y by reference.

176 HOUR 12: Creating References

There are two ways to solve this problem in C++: You can make the parameters of

swap() pointers to the original values, or you can pass in references to the original

values.

Making swap() Work with Pointers
When you pass in a pointer, you pass in the actual address of the object. Thus, the

function can manipulate the value at that address.

To make swap() change the actual values using pointers, the function should be

declared to accept two int pointers. Then, by dereferencing the pointers, the values

of x and y will, in fact, be swapped. The PointerSwap program in Listing 12.5 demon-

strates this idea.

LISTING 12.5 The Full Text of PointerSwap.cpp

1: #include <iostream>
2:
3: void swap(int *x, int *y);
4:
5: int main()
6: {
7: int x = 5, y = 10;
8:
9: std::cout << “Main. Before swap, x: “ << x
10: << “ y: “ << y << “\n”;
11: swap(&x, &y);
12: std::cout << “Main. After swap, x: “ << x
13: << “ y: “ << y << “\n”;
14: return 0;
15: }
16:
17: void swap(int *px, int *py)
18: {
19: int temp;
20:
21: std::cout << “Swap. Before swap, *px: “ << *px
22: << “ *py: “ << *py << “\n”;
23:
24: temp = *px;
25: *px = *py;
26: *py = temp;
27:
28: std::cout << “Swap. After swap, *px: “ << *px
29: << “ *py: “ << *py << “\n”;
30: }

The PointerSwap program demonstrates the results of the swap attempt in the output:

Main. Before swap. x: 5 y: 10
Swap. Before swap. *px: 5 *py: 10
Swap. After swap. *px: 10 *py: 5
Main. After swap. x: 10 y: 5

Passing Function Arguments by Reference 177

Success! On line 3, the prototype of swap() is changed to indicate that its two param-

eters will be pointers to int rather than int variables. The asterisk between the vari-

able type and its name indicates that it’s a pointer.

When swap() is called on line 11, the addresses of x and y are passed as the arguments.

On line 19, the local variable temp is declared in the swap() function. There’s no

need for temp to be a pointer; it will just hold the value of *px (the value of x in the

calling function) for the life of the function. After the function returns, temp is no

longer needed.

On line 24, temp is assigned the value at px. On line 25, the value at px is assigned

to the value at py. On line 26, the value stashed in temp (that is, the original value

at px) is put into py.

The values in the calling function, whose address was passed to swap(), are

swapped.

Implementing swap() with References
The preceding program works, but the syntax of the swap() function is cumbersome

in two ways. First, the repeated need to dereference the pointers in the swap() func-

tion makes it error-prone and hard to read. Second, the need to pass the address of

the variables in the calling function makes the inner workings of swap() overly

apparent to its users.

A useful goal in C++ is to prevent the user of a function from worrying about how it

works, instead of just focusing on what it does and the value it returns. Passing by

pointers puts the burden on the calling function, which is not where it belongs. The

calling function must know to pass in the address of the object it wants to swap.

The burden of understanding the reference semantics should be on the function

implementing the swap. To accomplish this, you use references. The ReferenceSwap

program in Listing 12.6 rewrites the swap() function using references.

Now the calling function just passes in the object, and because the parameters are

declared to be references, the semantics are passed by reference. The calling function

doesn’t need to do anything special.

LISTING 12.6 The Full Text of ReferenceSwap.cpp

1: #include <iostream>
2:
3: void swap(int &x, int &y);
4:
5: int main()
6: {

178 HOUR 12: Creating References

LISTING 12.6 Continued
7: int x = 5, y = 10;
8:
9: std::cout << “Main. Before swap, x: “ << x
10: << “ y: “ << y << “\n”;
11: swap(x, y);
12: std::cout << “Main. After swap, x: “ << x
13: << “ y: “ << y << “\n”;
14: return 0;
15: }
16:
17: void swap(int &rx, int &ry)
18: {
19: int temp;
20:
21: std::cout << “Swap. Before swap, rx: “ << rx
22: << “ ry: “ << ry << “\n”;
23:
24: temp = rx;
25: rx = ry;
26: ry = temp;
27:
28: std::cout << “Swap. After swap, rx: “ << rx
29: << “ ry: “ << ry << “\n”;
30:}

In the program’s output, the success of the swap is demonstrated:

Main. Before swap, x:5 y: 10
Swap. Before swap, rx:5 ry:10
Swap. After swap, rx:10 ry:5
Main. After swap, x:10, y:5

Just as in the example with pointers, two variables are declared (line 7), and their

values are displayed on lines 9 and 10. On line 11 the function swap() is called, but

note that x and y are passed, not their addresses. The calling function simply passes

the variables.

When swap() is called, program execution jumps to line 17, where the variables are

identified as references by the reference operator & between the argument’s type and

name. The values of x and y are displayed on lines 20–21, but note that no special

operators are required. These are aliases for the original values and can be used as

such.

On lines 24–26 the values are swapped, and then they’re displayed on lines 28–29.

Program execution jumps back to the calling function, and on lines 12 and 13 the

values are displayed in main(). Because the parameters to swap() are declared to be

references, the values from main() are passed by reference, and thus are changed in

main(), as well.

References provide the convenience and ease of use of normal variables with the

power and pass-by-reference capability of pointers.

Understanding Function Headers and Prototypes 179

Understanding Function Headers and
Prototypes
The swap() function that takes references is easier to use and the code is easier to

read. But how does the calling function know if the values are passed by reference or

by value? As a user of swap(), the programmer must ensure that swap() will in fact

change the parameters.

This is another use for the function prototype. By examining the parameters declared

in the prototype, which is typically in a header file along with all the other proto-

types, the programmer knows that the values passed into swap() are passed by refer-

ence and thus will be swapped properly.

If swap() had been a member function of a class, the class declaration, also avail-

able in a header file, would have supplied this information.

In C++, users of classes (any other class’s function using the class) rely on the header

file to tell all that is needed; it acts as the interface to the class or function. The

actual implementation is hidden from the client. This enables the programmer to

focus on the problem at hand and to use the class or function without concern for

how it is implemented.

Returning Multiple Values
As discussed, functions can return only one value. What if you need to get two values

back from a function? One way to solve this problem is to pass two objects into the

function by reference. The function then can fill the objects with the correct values.

Because passing by reference enables a function to change the original objects, this

effectively lets the function return two pieces of information. This approach bypasses

the return value of the function, which then can be reserved for reporting errors.

Once again, this can be done with references or pointers. The ReturnPointer program

in Listing 12.7 demonstrates a function that returns three values, two as pointer

parameters and one as the return value of the function.

LISTING 12.7 The Full Text of ReturnPointer.cpp

1: #include <iostream>
2:
3: short factor(int, int*, int*);
4:
5: int main()
6: {
7: int number, squared, cubed;

180 HOUR 12: Creating References

LISTING 12.7 Continued
8: short error;
9:
10: std::cout << “Enter a number (0 - 20): “;
11: std::cin >> number;
12:
13: error = factor(number, &squared, &cubed);
14:
15: if (!error)
16: {
17: std::cout << “number: “ << number << “\n”;
18: std::cout << “square: “ << squared << “\n”;
19: std::cout << “cubed: “ << cubed << “\n”;
20: }
21: else
22: std::cout << “Error encountered!!\n”;
23: return 0;

24: }
25:
26: short factor(int n, int *pSquared, int *pCubed)
27: {
28: short value = 0;
29: if (n > 20)
30: {
31: value = 1;
32: }
33: else
34: {
35: *pSquared = n*n;
36: *pCubed = n*n*n;
37: value = 0;
38: }
39: return value;
40: }

The ReturnPointer program produces the following output:

Enter a number (0-20): 3
number: 3
square: 9
cubed: 27

On line 7, number, squared, and cubed are defined as int. number is assigned a

value based on user input. This number and the addresses of squared and cubed are

passed to the function factor().

factor() examines the first parameter, which is passed by value. If it is greater than

20 (the maximum value this function can handle), it sets value to a simple error

value. Note that the return value from factor() is reserved for either this error value

or the value 0, indicating all went well. The function returns this value on line 39.

The actual values needed by users calling the function, the square and cube of

number, are returned not through the return mechanism, but rather by changing the

values directly using the pointers that were passed into the function.

Returning Multiple Values 181

On lines 35 and 36, the pointers are assigned their return values. On line 37, value

is assigned a success value of 0. On line 39, value is returned.

One improvement to this program might be to declare the following:

enum ERR_CODE { SUCCESS, ERROR };

Then, rather than returning 0 or 1, the program could return SUCCESS or ERROR. Enu-

merated constants are given integer values based on their order unless otherwise

specified, so the first enumerated value (SUCCESS) is given the value 0 and the second

is given the value 1.

Returning Values by Reference
Although the ReturnPointer program works, it can be made easier to read and main-

tain by using references rather than pointers. The ReturnReference program in

Listing 12.8 shows the same program rewritten to use references and to incorporate

the ERR_CODE enumeration.

LISTING 12.8 The Full Text of ReturnReference.cpp

1: #include <iostream>
2:
3: enum ERR_CODE { SUCCESS, ERROR };
4:
5: ERR_CODE factor(int, int&, int&);
6:
7: int main()
8: {
9: int number, squared, cubed;
10: ERR_CODE result;
11:
12: std::cout << “Enter a number (0 - 20): “;
13: std::cin >> number;
14:
15: result = factor(number, squared, cubed);
16:
17: if (result == SUCCESS)
18: {
19: std::cout << “number: “ << number << “\n”;
20: std::cout << “square: “ << squared << “\n”;
21: std::cout << “cubed: “ << cubed << “\n”;
22: }
23: else
24: {
25: std::cout << “Error encountered!!\n”;
26: }
27: return 0;
28: }
29:
30: ERR_CODE factor(int n, int &rSquared, int &rCubed)
31: {
32: if (n > 20)

182 HOUR 12: Creating References

LISTING 12.8 Continued
33: {
34: return ERROR; // simple error code
35: }
36: else
37: {
38: rSquared = n*n;
39: rCubed = n*n*n;
40: return SUCCESS;
41: }
42: }

Here’s sample output for the ReturnReference program:

Enter a number (0-20): 3
number: 3
square: 9
cubed: 27

The ReturnReference program is identical to the ReturnPointer program with two

exceptions. The ERR_CODE enumeration makes the error reporting a bit more explicit

on lines 34 and 40, and the error handling on line 17.

The larger change, however, is that factor() is now declared to take references to

squared and cubed rather than pointers. This makes the manipulation of these

parameters much simpler and easier to understand.

Summary
During this hour, you worked with references, which serve a similar purpose to point-

ers and are sometimes mistaken for them. The difference is that pointers are vari-

ables holding the address of an object, whereas references are aliases to an object.

It’s important to understand how pointers and references are distinct.

A reference is an alias to another object, which is called the target. The reference

serves as an alternate name for the target. Any actions taken to the reference actu-

ally affect the target.

References provide the power of pointers with simpler syntax.

Q&A
Q. Why use references if pointers can do everything references can?

A. References are easier to use and understand. The indirection is hidden, and

there is no need to repeatedly dereference the variable.

186 HOUR 13: Developing Advanced References and Pointers

object’s destructor is called. If an object is returned by value, a copy of that object

must also be made and destroyed.

With large objects, these constructor and destructor calls can be expensive in speed

and use of memory. To illustrate this idea, the ObjectRef program in Listing 13.1 cre-

ates a stripped-down, user-created object: SimpleCat. A real object would be larger

and more expensive, but this is sufficient to show how often the copy constructor and

destructor are called.

The program creates the SimpleCat object and then calls two functions. The first

function receives the SimpleCat by value and then returns it by value. The second

one takes its argument by reference, meaning it receives a pointer to the object,

rather than the object itself, and returns a pointer to the object.

Passing by reference avoids creating the copy and calling the copy constructor, and is

therefore generally more efficient. On the other hand, it also passes the object itself,

and thus exposes that object to change in the called function.

LISTING 13.1 The Full Text of ObjectRef.cpp
1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat(); // constructor
7: SimpleCat(SimpleCat&); // copy constructor
8: ~SimpleCat(); // destructor
9: };
10:
11: SimpleCat::SimpleCat()
12: {
13: std::cout << “Simple Cat Constructor ...\n”;
14: }
15:
16: SimpleCat::SimpleCat(SimpleCat&)
17: {
18: std::cout << “Simple Cat Copy Constructor ...\n”;
19: }
20:
21: SimpleCat::~SimpleCat()
22: {
23: std::cout << “Simple Cat Destructor ...\n”;
24: }
25:
26: SimpleCat FunctionOne(SimpleCat theCat);
27: SimpleCat* FunctionTwo(SimpleCat *theCat);
28:
29: int main()
30: {
31: std::cout << “Making a cat ...\n”;
32: SimpleCat Frisky;
33: std::cout << “Calling FunctionOne ...\n”;
34: FunctionOne(Frisky);

Passing by Reference for Efficiency 187

35: std::cout << “Calling FunctionTwo ...\n”;
36: FunctionTwo(&Frisky);
37: return 0;
38: }
39:
40: // FunctionOne, passes by value
41: SimpleCat FunctionOne(SimpleCat theCat)
42: {
43: std::cout << “Function One. Returning ...\n”;
44: return theCat;
45: }
46:
47: // functionTwo, passes by reference
48: SimpleCat* FunctionTwo (SimpleCat *theCat)
49: {
50: std::cout << “Function Two. Returning ...\n”;
51: return theCat;
52: }

The following output is displayed:

1: Making a cat ...
2: Simple Cat Constructor ...
3: Calling FunctionOne ...
4: Simple Cat Copy Constructor ...
5: Function One. Returning ...
6: Simple Cat Copy Constructor ...
7: Simple Cat Destructor ...
8: Simple Cat Destructor ...
9: Calling FunctionTwo ...
10: Function Two. Returning ...
11: Simple Cat Destructor ...

The line numbers shown here do not display. They are added to aid in the analy-
sis in the text only.

A very simplified SimpleCat class is declared on lines 3–9. The constructor, copy con-

structor, and destructor all print an informative message so that you can tell when

they’ve been called.

On line 31, main() prints out a message; you can see it on output line 1. On line 32,

a SimpleCat object is instantiated. This causes the constructor to be called, and the

output from the constructor is shown on output line 2.

On line 33, main() reports that it is calling FunctionOne(), which creates output line

3. Because FunctionOne() is called passing the SimpleCat object by value, a copy of

the SimpleCat object is made on the stack as an object local to the called function.

This causes the copy constructor to be called, which creates output line 4.

By the
Way

188 HOUR 13: Developing Advanced References and Pointers

Program execution jumps to line 43 in the called function, which prints an informa-

tive message (output line 5). The function then returns, returning the SimpleCat

object by value. This creates yet another copy of the object, calling the copy construc-

tor and producing line 6.

The return value from FunctionOne() is not assigned to any object, so the temporary

object created for the return is thrown away, calling the destructor, which produces

output line 7. Because FunctionOne() has ended, its local copy goes out of scope and

is destroyed, calling the destructor and producing line 8.

Program execution returns to main(), and FunctionTwo() is called, but the parame-

ter is passed by reference. No copy is produced, so there’s no output. FunctionTwo()

prints the message that appears as output line 10 and then returns the SimpleCat

object, again by reference, and so again produces no calls to the constructor or

destructor.

Finally, the program ends and Frisky goes out of scope, causing one final call to the

destructor and printing output line 11.

The call to FunctionOne(), because it passed the cat by value, produced two calls to

the copy constructor and two to the destructor, although the call to FunctionTwo()

produced none.

Passing a const Pointer
Though passing a pointer to FunctionTwo() is more efficient, it is dangerous.

FunctionTwo() is not supposed to change the SimpleCat object it is passed, yet it is

given the address of the SimpleCat. This exposes the object to impermissible change

and defeats the protection offered in passing by value.

Passing by value is like giving a museum a photograph of your masterpiece rather

than the real thing. If vandals mark it up, no harm occurs to the original. Passing by

reference is like sending your home address to the museum and inviting guests to

come over and look at the real thing.

If you want to provide the security of pass by value and the efficiency of pass by refer-

ence, the solution is to pass a const pointer to SimpleCat. Doing so prevents calling

any non-const member function on SimpleCat, and thus protects the object from

change. The ConstPasser program in Listing 13.2 demonstrates this idea.

Passing a const Pointer 189

LISTING 13.2 The Full Text of ConstPasser.cpp

1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat();
7: SimpleCat(SimpleCat&);
8: ~SimpleCat();
9:
10: int GetAge() const { return itsAge; }
11: void SetAge(int age) { itsAge = age; }
12:
13: private:
14: int itsAge;
15: };
16:
17: SimpleCat::SimpleCat()
18: {
19: std::cout << “Simple Cat Constructor ...\n”;
20: itsAge = 1;
21: }
22:
23: SimpleCat::SimpleCat(SimpleCat&)
24: {
25: std::cout << “Simple Cat Copy Constructor ...\n”;
26: }
27:
28: SimpleCat::~SimpleCat()
29: {
30: std::cout << “Simple Cat Destructor ...\n”;
31: }
32:
33: const SimpleCat * const
34: FunctionTwo (const SimpleCat *const theCat);
35:
36: int main()
37: {
38: std::cout << “Making a cat ...\n”;
39: SimpleCat Frisky;
40: std::cout << “Frisky is “;
41: std::cout << Frisky.GetAge() << “ years old\n”;
42: int age = 5;
43: Frisky.SetAge(age);
44: std::cout << “Frisky is “;
45: std::cout << Frisky.GetAge() << “ years old\n”;
46: std::cout << “Calling FunctionTwo ...\n”;
47: FunctionTwo(&Frisky);
48: std::cout << “Frisky is “;
49: std::cout << Frisky.GetAge() << “ years old\n”;
50: return 0;
51: }
52:
53: // functionTwo, passes a const pointer
54: const SimpleCat * const
55: FunctionTwo (const SimpleCat * const theCat)

190 HOUR 13: Developing Advanced References and Pointers

56: {
57: std::cout << “Function Two. Returning ...\n”;
58: std::cout << “Frisky is now “ << theCat->GetAge();
59: std::cout << “ years old \n”;
60: // theCat->SetAge(8); const!
61: return theCat;
62: }

Here’s the output:

Making a cat...
Simple Cat Constructor...
Frisky is 1 years old
Frisky is 5 years old
Calling FunctionTwo...
Function Two. Returning...
Frisky is now 5 years old
Frisky is 5 years old
Simple Cat Destructor...

SimpleCat has added two accessor functions: GetAge() on line 10, which is a const

function; and SetAge() on line 11, which is not. It has also added the member vari-

able itsAge on line 14.

The constructor, copy constructor, and destructor are still defined to display their mes-

sages. The copy constructor is never called, however, because the object is passed by

reference and no copies are made. On line 39, an object is created, and its default age

is printed on lines 40 and 41.

On line 43, itsAge is set using the accessor SetAge(), and the result is displayed on

lines 43 and 44. FunctionOne() is not used in this program, but FunctionTwo() is

called.

FunctionTwo() has changed slightly; the parameter and return value are now

declared, on lines 33 and 34, to take a constant pointer to a constant object and to

return a constant pointer to a constant object.

Because the parameter and return value are still passed by reference, no copies are

made, and the copy constructor is not called. The pointer in FunctionTwo(), how-

ever, is now constant and, therefore, cannot call the non-const member function,

SetAge(). If the call to SetAge() on line 60 were not commented out, the program

would not compile.

Note that the object created in main() is not constant, and Frisky can call SetAge().

The address of this nonconstant object is passed to FunctionTwo(), but because the

FunctionTwo() declaration declares the pointer to be a constant pointer, the object is

treated as if it were constant.

LISTING 13.2 Continued

References as an Alternative to Pointers 191

References as an Alternative to
Pointers
The ConstPasser program solves the problem of making extra copies, saving the calls

to the copy constructor and destructor. It uses constant pointers to constant objects,

thereby solving the problem of the called function making impermissible changes to

the objects passed in as parameters. The method is still somewhat cumbersome, how-

ever, because the objects passed to the function are pointers.

Because you know the parameters will never be NULL, it is easier to work with the

function if references are passed in rather than pointers. The RefPasser program in

Listing 13.3 rewrites the previous project to use references rather than pointers.

LISTING 13.3 The Full Text of RefPasser.cpp

1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat();
7: SimpleCat(SimpleCat&);
8: ~SimpleCat();
9:
10: int GetAge() const { return itsAge; }
11: void SetAge(int age) { itsAge = age; }
12:
13: private:
14: int itsAge;
15: };
16:
17: SimpleCat::SimpleCat()
18: {
19: std::cout << “Simple Cat Constructor...\n”;
20: itsAge = 1;
21: }
22:
23: SimpleCat::SimpleCat(SimpleCat&)
24: {
25: std::cout << “Simple Cat Copy Constructor...\n”;
26: }
27:
28: SimpleCat::~SimpleCat()
29: {
30: std::cout << “Simple Cat Destructor...\n”;
31: }
32:
33: const SimpleCat & FunctionTwo (const SimpleCat & theCat);
34:
35: int main()
36: {
37: std::cout << “Making a cat...\n”;
38: SimpleCat Frisky;

192 HOUR 13: Developing Advanced References and Pointers

39: std::cout << “Frisky is “ << Frisky.GetAge()
40: << “ years old\n”;
41:
42: int age = 5;
43: Frisky.SetAge(age);
44: std::cout << “Frisky is “ << Frisky.GetAge()
45: << “ years old\n”;
46:
47: std::cout << “Calling FunctionTwo...\n”;
48: FunctionTwo(Frisky);
49: std::cout << “Frisky is “ << Frisky.GetAge()
50: << “ years old\n”;
51: return 0;
52: }
53:
54: // functionTwo passes a ref to a const object
55: const SimpleCat & FunctionTwo (const SimpleCat & theCat)
56: {
57: std::cout << “Function Two. Returning...\n”;
58: std::cout << “Frisky is now “ << theCat.GetAge()
59: << “ years old \n”;
60: // theCat.SetAge(8); const!
61: return theCat;
62: }

This program has the following output:

Making a cat ...
Simple Cat constructor ...
Frisky is 1 years old
Frisky is 5 years old
Calling FunctionTwo
FunctionTwo. Returning ...
Frisky is now 5 years old
Frisky is 5 years old
Simple Cat Destructor ...

The output is identical to that produced by the previous program. The only signifi-

cant change is that FunctionTwo() now takes and returns a reference to a constant

object. Once again, working with references is somewhat simpler than working with

pointers; and the same savings and efficiency, and the safety provided by using

const, are achieved.

When to Use References and When to
Use Pointers
Generally, C++ programmers strongly prefer references to pointers because they are

cleaner and easier to use. References cannot be reassigned, however. If you need to

point first to one object and then to another, you must use a pointer. References can-

not be NULL, so if there is any chance that the object in question might be, you must

LISTING 13.3 Continued

Don’t Return a Reference to an Object That Isn’t in Scope! 193

use a pointer rather than a reference. If you want to allocate dynamic memory from

the heap, you have to use pointers as discussed in previous hours.

Don’t Return a Reference to an Object
That Isn’t in Scope!
After C++ programmers learn to pass by reference, they have a tendency to go hog-

wild. It is possible, however, to overdo it. Remember that a reference always is an

alias that refers to some other object. If you pass a reference into or out of a function,

be sure to ask yourself, “What is the object I’m aliasing, and will it still exist every

time it’s used?”

The ReturnRef program in Listing 13.4 illustrates the danger of returning a reference

to an object that no longer exists.

LISTING 13.4 The Full Text of ReturnRef.cpp

1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat(int age, int weight);
7: ~SimpleCat() {}
8: int GetAge() { return itsAge; }
9: int GetWeight() { return itsWeight; }
10: private:
11: int itsAge;
12: int itsWeight;
13: };
14:
15: SimpleCat::SimpleCat(int age, int weight):
16: itsAge(age), itsWeight(weight) {}
17:
18: SimpleCat &TheFunction();
19:
20: int main()
21: {
22: SimpleCat &rCat = TheFunction();
23: int age = rCat.GetAge();
24: std::cout << “rCat is “ << age << “ years old!\n”;
25: return 0;
26: }
27:
28: SimpleCat &TheFunction()
29: {
30: SimpleCat Frisky(5,9);
31: return Frisky;
32: }

194 HOUR 13: Developing Advanced References and Pointers

When you build this program, you are confronted with an error about how a refer-

ence to the local variable Frisky is being returned.

Some compilers are smart enough to see the reference to a null object and
report a compile error. Other compilers will compile and even run; however, noted
that this is a bad coding practice and that you should not take advantage of it
when using a compiler that will allow you to do this.

On lines 3–13, SimpleCat is declared. On line 22, a reference to SimpleCat is initial-

ized with the results of calling TheFunction(), which is declared on line 18 to return

a reference to a SimpleCat.

The body of TheFunction() declares a local object of type SimpleCat and initializes

its age and weight. It then returns that local object by reference. Some compilers are

smart enough to catch this error and don’t let you run the program. Others let you

run the program, but with unpredictable results. When TheFunction() returns, the

local object, Frisky, is destroyed (painlessly, I assure you). The reference returned by

this function is to a nonexistent object, and this is a bad thing.

Returning a Reference to an Object on
the Heap
You might be tempted to solve the problem in RefReturn by having TheFunction()

create Frisky on the heap. That way, when you return from TheFunction(), Frisky

still exists.

The problem with this approach is this: What do you do with the memory allocated

for Frisky when you have finished with it? The Leak program in Listing 13.5 illus-

trates this problem.

LISTING 13.5 The Full Text of Leak.cpp

1: #include <iostream>
2:
3: class SimpleCat
4: {
5: public:
6: SimpleCat (int age, int weight);
7: ~SimpleCat() {}
8: int GetAge() { return itsAge; }
9: int GetWeight() { return itsWeight; }
10:
11: private:
12: int itsAge;
13: int itsWeight;

Watch
Out!

Returning a Reference to an Object on the Heap 195

14: };
15:
16: SimpleCat::SimpleCat(int age, int weight):
17: itsAge(age), itsWeight(weight) {}
18:
19: SimpleCat & TheFunction();
20:
21: int main()
22: {
23: SimpleCat &rCat = TheFunction();
24: int age = rCat.GetAge();
25: std::cout << “rCat is “ << age << “ years old!\n”;
26: std::cout << “&rCat: “ << &rCat << “\n”;
27: // How do you get rid of that memory?
28: SimpleCat *pCat = &rCat;
29: delete pCat;
30: // Uh oh, rCat now refers to ??
31: return 0;
32: }
33:
34: SimpleCat &TheFunction()
35: {
36: SimpleCat *pFrisky = new SimpleCat(5,9);
37: std::cout << “pFrisky: “ << pFrisky << “\n”;
38: return *pFrisky;
39: }

Here’s the output:

pFrisky: 8861880
rCat is 5 years old!
&rCat: 8861880

This compiles, links, and appears to work. But it is a time bomb waiting to go off.

The function TheFunction() has been changed so that it no longer returns a refer-

ence to a local variable. Memory is allocated on the heap and assigned to a pointer

on line 36. The address that the pointer holds is printed, and then the pointer is deref-

erenced and the SimpleCat object is returned by reference.

On line 23, the return of TheFunction() is assigned to a reference to a SimpleCat,

and that object is used to obtain the cat’s age, which is displayed on line 25.

To prove that the reference declared in main() is referring to the object put on the

heap in TheFunction(), the address of operator is applied to rCat. Sure enough, it

displays the address of the object it refers to, and this matches the address of the

object on the heap.

So far, so good. But how will that memory be freed? You can’t call delete on the ref-

erence. One clever solution is to create another pointer and initialize it with the

address obtained from rCat. This does delete the memory and plugs the memory

196 HOUR 13: Developing Advanced References and Pointers

leak. One small problem, though: What is rCat referring to after line 30? As stated

earlier, a reference must always be an alias for an actual object. If it references a null

object (as this does now), the program is invalid.

It cannot be overemphasized that a program with a reference to a null object
might compile, but it is invalid and its performance is unpredictable.

There are actually two solutions to this problem. The first is to return a pointer to the

memory created on line 36. Then the calling function can delete the pointer when it

is done. To do this, change the return value of TheFunction to a pointer (rather than

reference) and return the pointer, rather than the dereferenced pointer:

SimpleCat *TheFunction()
{

SimpleCat *pFrisky = new SimpleCat(5,9);
std::cout << “pFrisky: “ << pFrisky << “\n”;
return pFrisky; // return the pointer

}

A more desirable solution is to declare the object in the calling function and then pass

it to TheFunction() by reference. The advantage of this alternative is that the func-

tion that allocates the memory (the calling function) is also the function responsible

for deallocating it, which, as discussed in the next section, is preferable.

Pointer, Pointer, Who Has the Pointer?
When your program allocates memory on the heap, a pointer is returned. It is imper-

ative that you keep a pointer to that memory, because after the pointer is lost, the

memory cannot be deleted and becomes a memory leak.

As you pass this block of memory between functions, one of the functions “owns” the

pointer. Typically, the value in the block is passed using references, and the function

that created the memory block is the one that deletes it. But this is a general rule, not

an ironclad one.

It is dangerous for one function to create space in memory and another to free it,

however. Ambiguity about which owns the pointer can lead to one of two problems:

forgetting to delete a pointer or deleting it twice. Either one can cause serious prob-

lems in your program. It is safer to build your functions so that they delete the mem-

ory spaces they created.

If you write a function that needs to create a block of memory and then pass it back

to the calling function, consider changing your interface. Have the calling function

allocate the memory and then pass it into your function by reference. This moves all

memory management out of your program and back to the function that is prepared

to delete it.

Watch
Out!

202 HOUR 14: Calling Advanced Functions

11:
12: private:
13: int width;
14: int height;
15: };
16:
17: Rectangle::Rectangle(int newWidth, int newHeight)
18: {
19: width = newWidth;
20: height = newHeight;
21: }
22:
23: void Rectangle::drawShape() const
24: {
25: drawShape(width, height);
26: }
27:
28: void Rectangle::drawShape(int width, int height) const
29: {
30: for (int i = 0; i < height; i++)
31: {
32: for (int j = 0; j < width; j++)
33: {
34: std::cout << “*”;
35: }
36: std::cout << “\n”;
37: }
38: }
39:
40: int main()
41: {
42: Rectangle box(30, 5);
43: std::cout << “drawShape(): \n”;
44: box.drawShape();
45: std::cout << “\ndrawShape(40, 2): \n”;
46: box.drawShape(40, 2);
47: return 0;
48: }

The Rectangle program displays two rectangles consisting of asterisks:

drawShape():

drawShape(40, 2):
**
**

On lines 9–10, the drawShape() function is overloaded. The implementation for

these overloaded class functions is on lines 23–38.

The version of drawShape() that takes no parameters works by calling the version

that takes two parameters, passing in the current member variables. This avoids

LISTING 14.1 Continued

Using Default Values 203

duplicating similar code in two overloaded functions. When code is duplicated to

perform the same task, a change you make later to one function could be overlooked

in the other, introducing errors to your program.

The main function on lines 40–48 creates a Rectangle object and calls drawShape()

twice, first with no parameters and then with two integers.

The compiler decides which function to call based on the number and type of param-

eters entered. A potential third overloaded function named drawShape() could take

one dimension and use it for both width and height.

Using Default Values
Just as ordinary functions can have one or more default values, so can each function

of a class. The same rules apply for declaring the default values, as illustrated by the

Rectangle2 program in Listing 14.2.

LISTING 14.2 The Full Text of Rectangle2.cpp

1: #include <iostream>
2:
3: class Rectangle
4: {
5: public:
6: Rectangle(int width, int height);
7: ~Rectangle(){}
8: void drawShape(int aWidth, int aHeight,
9: bool useCurrentValue = false) const;
10: private:
11: int width;
12: int height;
13: };
14:
15: Rectangle::Rectangle(int aWidth, int aHeight)
16: {
17: width = aWidth;
18: height = aHeight;
19: }
20: void Rectangle::drawShape(
21: int aWidth,
22: int aHeight,
23: bool useCurrentValue
24:) const
25: {
26: int printWidth;
27: int printHeight;
28:
29: if (useCurrentValue == true)
30: {
31: printWidth = width;
32: printHeight = height;
33: }

204 HOUR 14: Calling Advanced Functions

34: else
35: {
36: printWidth = aWidth;
37: printHeight = aHeight;
38: }
39:
40: for (int i = 0; i < printHeight; i++)
41: {
42: for (int j = 0; j < printWidth; j++)
43: {
44: std::cout << “*”;
45: }
46: std::cout << “\n”;
47: }
48: }
49:
50: int main()
51: {
52: Rectangle box(20, 5);
53: std::cout << “drawShape(0, 0, true)...\n”;
54: box.drawShape(0, 0, true);
55: std::cout <<”drawShape(25, 4)...\n”;
56: box.drawShape(25, 4);
57: return 0;
58: }

This program produces the following output:

drawShape(0, 0, true)...

drawShape(25, 4)...

Listing 14.2 replaces the overloaded drawShape() function with a single function

that has default parameters. The function is declared on lines 8–9 to take three

parameters. The first two, aWidth and aHeight, are integers. The third,

useCurrentValue, is a bool (true or false) that defaults to false.

The implementation for this function begins on line 20. The third parameter,

useCurrentValue, is evaluated. If it is true, the member variables width and height

are used to set the local variables printWidth and printHeight.

If useCurrentValue is false, either because it defaulted to false or was set by the user

to that value, the first two parameters are used to set printWidth and printHeight.

LISTING 14.2 Continued

Initializing Objects 205

The Rectangle and Rectangle2 programs accomplish the same thing, but the
overloaded functions in 14.1 are simpler to understand and more natural to use.
Also, if a additional variation are needed—perhaps the user wants to supply
either the width or the height but not both—it is easier to extend overloaded func-
tions. The default values approach quickly becomes too complex as new varia-
tions are added.

Initializing Objects
Constructors, like member functions, can be overloaded. The capability to overload

constructors is powerful and flexible.

A rectangle object could have two constructors. One takes a length and width as

parameters and makes a rectangle of that size. The second takes no parameters and

makes a rectangle of a default size specified by the class. The compiler chooses the

right constructor based on the number and type of the parameters.

You can overload constructors, but you can’t overload destructors. Destructors always

have the same signature: the name of the class prepended by a tilde (~) and no

parameters.

Until now, you’ve been setting the member variables of objects in the body of the

constructor.

Constructors are created in two stages: the initialization stage and the body of the

constructor. A member variable can be set during the initialization or by assigning it

a value in the body of the constructor. The following example shows how to initialize

member variables:

Tricycle::Tricycle():
speed(5),
wheelSize(12)
{

// body of constructor
}

To assign values in a constructor’s initialization, put a colon after the closing parenthe-

ses of the constructor’s parameter list. After the colon, list the name of a member vari-

able followed by a pair of parentheses. Inside the parentheses, put an expression that

initializes the member variable. If more than one variable is being set in this manner,

separate each one with a comma.

By the
Way

206 HOUR 14: Calling Advanced Functions

The preceding example sets the speed member variable to 5 and the wheelSize vari-

able to 12.

Because references and constants cannot be assigned values, they must be ini-
tialized using this technique.

To understand why it is more efficient to initialize member variables than assign to

them values, you must understand the copy constructor.

The Copy Constructor
In addition to providing a default constructor and destructor, the compiler provides a

default copy constructor. The copy constructor is called every time a copy of an object

is made.

When you pass an object by value, either into a function or as a function’s return

value, a temporary copy of that object is made. If the object is a user-defined object,

the class’s copy constructor is called.

All copy constructors take one parameter: a reference to an object of the same class.

It is a good idea to make it a constant reference, because the constructor will not

have to alter the object passed in. For example:

Tricycle(const Tricycle &trike);

In this statement the Tricycle constructor takes a constant reference to an existing

Tricycle object. The goal of the copy constructor is to make a copy of trike.

The default copy constructor simply copies each member variable from the object

passed as a parameter to the member variables of the new object. This is called a

shallow (or member-wise) copy. Though this is fine for most member variables, it

does not work for member variables that are pointers to objects on the heap.

A shallow copy copies the exact values of one object’s member variables into another

object. Pointers in both objects end up pointing to the same memory. A deep copy, on

the other hand, copies the values allocated on the heap to newly allocated memory.

An example illustrates the problem: If the Tricycle class includes a member vari-

able called durability pointing to an integer on the heap, the default copy con-

structor copies the passed-in Tricycle’s durability member variable to the new

Tricycle’s durability member variable. The two objects then point to the same

memory, as illustrated in Figure 14.1.

Watch
Out!

208 HOUR 14: Calling Advanced Functions

23:
24: Tricycle::Tricycle(const Tricycle& rhs)
25: {
26: speed = new int;
27: *speed = rhs.getSpeed();
28: }
29:
30: Tricycle::~Tricycle()
31: {
32: delete speed;
33: speed = NULL;
34: }
35:
36: void Tricycle::pedal()
37: {
38: setSpeed(*speed + 1);
39: std::cout << “\nPedaling “ << getSpeed() << “ mph\n”;
40: }
41: void Tricycle::brake()
42: {
43: setSpeed(*speed - 1);
44: std::cout << “\nPedaling “ << getSpeed() << “ mph\n”;
45: }
46:
47: int main()
48: {
49: std::cout << “Creating trike named wichita ...”;
50: Tricycle wichita;
51: wichita.pedal();
52: std::cout << “Creating trike named dallas ...\n”;
53: Tricycle dallas(wichita);
54: std::cout << “wichita’s speed: “ << wichita.getSpeed() << “\n”;
55: std::cout << “dallas’s speed: “ << dallas.getSpeed() << “\n”;
56: std::cout << “setting wichita to 10 ...\n”;
57: wichita.setSpeed(10);
58: std::cout << “wichita’s speed: “ << wichita.getSpeed() << “\n”;
59: std::cout << “dallas’s speed: “ << dallas.getSpeed() << “\n”;
60: return 0;
61: }

This program creates two Tricycle objects and takes them for a ride:

Creating trike named wichita ...
Pedaling 6 mph
Creating trike named dallas ...
wichita’s speed: 6
dallas’s speed: 6
setting wichita to 10 ...
wichita’s speed: 10
dallas’s speed: 6

On lines 3–16, the Tricycle class is declared. A default constructor (line 6) and copy

constructor (line 7) are declared for the class.

LISTING 14.3 Continued

210 HOUR 14: Calling Advanced Functions

On lines 54–55, the current speed of both Tricycles is displayed. This verifies that a

copy was made because dallas has the same speed as wichita, 6, not the default

speed of 5. On line 57, wichita’s speed is set to 10, and the speeds of both objects are

displayed again. This time dallas has a speed of 10, while wichita remains 6,

demonstrating that they are stored in separate areas of memory.

When the Tricycle objects fall out of scope, their destructors are automatically

invoked. The implementation of the Tricycle destructor is shown on lines 30–34.

delete is called on the pointer and for safety it is reassigned to NULL.

Summary
During this hour, you learned how to achieve more control over the creation and

destruction of objects in C++.

Constructors, like functions, can be overloaded. The number and type of parameter

to the constructor enables the compiler to determine which one should be called by

users of the class.

A constructor may have default values just like member functions and ordinary

functions.

When an object is copied, all member variables are copied by the default copy con-

structor. This creates problems when member variables are pointers to objects on the

heap. Both the original object and the copy point to the same object. When one

object goes out of scope and is destroyed, the other still has an active pointer to that

object. Any attempt to use that pointer results in a crash of the program.

This problem can be fixed by writing your own copy constructor for a class. The con-

structor takes one parameter, the original object that will be copied. In the construc-

tor, care can be taken so that the pointer uses new heap memory.

Q&A
Q. Why would you ever use default values when you can overload a function?

A. Because it’s easier to maintain one function than two and easier to understand

a function with default parameters than to study the bodies of two functions.

Furthermore, updating one of the functions and neglecting to update the sec-

ond is a common source of bugs.

216 HOUR 15: Using Operator Overloading

As you can see, the code is longer and more complex. For a simpler approach, classes

can be manipulated with operators by using a technique called operator overload-

ing.

Operator overloading defines what happens when a specific operator is used with an

object of a class. Almost all operators in C++ can be overloaded.

Expressions written using operators are easier to read and understand.

For your first exploration of operator overloading, the Counter program in Listing

15.1 creates a class of that name. A Counter object will be used in counting, loops,

and other tasks where a number must be incremented, decremented, or monitored.

LISTING 15.1 The Full Text of Counter.cpp
1: #include <iostream>
2:
3: class Counter
4: {
5: public:
6: Counter();
7: ~Counter(){}
8: int getValue() const { return value; }
9: void setValue(int x) { value = x; }
10:
11: private:
12: int value;
13: };
14:
15: Counter::Counter():
16: value(0)
17: {}
18:
19: int main()
20: {
21: Counter c;
22: std::cout << “The value of c is “ << c.getValue()
23: << “\n”;
24: return 0;
25: }

This simple program creates a counter and displays its current value:

The value of c is 0

As it stands, this is pretty plain-vanilla stuff. The class is defined on lines 3–13 and has

only one member variable, an int named value. The default constructor, which is

declared on line 6 and implemented on lines 15–17, initializes the member variable to 0.

Operator Overloading 217

Unlike a built-in int, the Counter object can’t be incremented, decremented, added,

assigned, or manipulated with operators. It can’t display its value easily, either.

The following sections address these shortcomings.

Writing an Increment Method
Operator overloading provides functionality that would otherwise be missing in user-

defined classes such as Counter. When you implement an operator for a class, you

are said to be overloading that operator.

The most common way to overload an operator in a class is to use a member func-

tion. The function declaration takes this form:

returnType operatorsymbol(parameter list)
{

// body of overloaded member function
}

The name of the function is operator followed by the operator being defined, such

as + or ++. The returnType is the function’s return type and the parameter list holds

zero, one, or two parameters (depending on the operator).

The Counter2 program in Listing 15.2 illustrates how to overload the increment oper-

ator ++.

LISTING 15.2 The Full Text of Counter2.cpp

1: #include <iostream>
2:
3: class Counter
4: {
5: public:
6: Counter();
7: ~Counter(){}
8: int getValue() const { return value; }
9: void setValue(int x) { value = x; }
10: void increment() { ++value; }
11: const Counter& operator++();
12:
13: private:
14: int value;
15: };
16:
17: Counter::Counter():
18: value(0)
19: {}
20:
21: const Counter& Counter::operator++()
22: {

218 HOUR 15: Using Operator Overloading

23: ++value;
24: return *this;
25: }
26:
27: int main()
28: {
29: Counter c;
30: std::cout << “The value of c is “ << c.getValue()
31: << “\n”;
32: c.increment();
33: std::cout << “The value of c is “ << c.getValue()
34: << “\n”;
35: ++c;
36: std::cout << “The value of c is “ << c.getValue()
37: << “\n”;
38: Counter a = ++c;
39: std::cout << “The value of a: “ << a.getValue();
40: std::cout << “ and c: “ << c.getValue() << “\n”;
41: return 0;
42: }

This program increments the Counter object several times and creates a second

object, displaying the values:

The value of c is 0
The value of c is 1
The value of c is 2
The value of a: 3 and c: 3

On line 35, you can see that the increment operator is invoked on an object of the

Counter class:

++c;

This is interpreted by the compiler as a call to the implementation of operator++

shown on lines 21–25. This member function increments the member variable value

and then dereferences the this pointer to return the current object. Because it returns

the current object, it can be assigned to the variable a in line 38.

If the Counter object allocated memory, it would be important to override the copy

constructor. In this case, the default copy constructor works fine.

Note that the value returned is a Counter reference, thereby avoiding the creation of

an extra temporary object. It is a const reference because the value is not changed

by the function using the object.

LISTING 15.2 Continued

Operator Overloading 219

Overloading the Postfix Operator
The preceding project used the prefix version of the ++ increment operator, which

raises the question of how the postfix operator could be overloaded. The prefix and

postfix operators are both ++, so the name of the overloaded member function is not

useful to distinguish between the two.

The way to handle this and overload the postfix operator is to include a int variable

as the only parameter to the operator++() member function. The integer won’t be

used; it’s just a signal that the function defines the postfix operator.

As you’ve learned in earlier hours, the prefix operator changes a variable’s value

before returning it in expressions. The postfix operator returns the value before incre-

menting or decrementing it.

To do this, in an overloaded member function, a temporary object must be created to

hold the original value while the value of the original object is incremented. The

temporary object is returned because the postfix operator requires the original value,

not the incremented value.

The temporary object must be returned by value and not by reference. Otherwise, it

goes out of scope as soon as the function returns.

The Counter3 program in Listing 15.3 demonstrates how to overload the prefix and

the postfix operators.

LISTING 15.3 The Full Text of Counter3.cpp

1: #include <iostream>
2:
3: class Counter
4: {
5: public:
6: Counter();
7: ~Counter(){}
8: int getValue() const { return value; }
9: void setValue(int x) { value = x; }
10: const Counter& operator++(); // prefix
11: const Counter operator++(int); // postfix
12:
13: private:
14: int value;
15: };
16:
17: Counter::Counter():
18: value(0)
19: {}
20:
21: const Counter& Counter::operator++() // prefix
22: {

220 HOUR 15: Using Operator Overloading

23: ++value;
24: return *this;
25: }
26:
27: const Counter Counter::operator++(int) // postfix
28: {
29: Counter temp(*this);
30: ++value;
31: return temp;
32: }
33:
34: int main()
35: {
36: Counter c;
37: std::cout << “The value of c is “ << c.getValue()
38: << “\n”;
39: c++;
40: std::cout << “The value of c is “ << c.getValue()
41: << “\n”;
42: ++c;
43: std::cout << “The value of c is “ << c.getValue()
44: << “\n”;
45: Counter a = ++c;
46: std::cout << “The value of a: “ << a.getValue();
47: std::cout << “ and c: “ << c.getValue() << “\n”;
48: a = c++;
49: std::cout << “The value of a: “ << a.getValue();
50: std::cout << “ and c: “ << c.getValue() << “\n”;
51: return 0;
52: }

This program overloads the prefix and postfix increment operators and uses them in

several statements:

The value of c is 0
The value of c is 1
The value of c is 2
The value of a: 3 and c: 3
The value of a: 3 and c: 4

The postfix operator is declared on line 11 and implemented on lines 27–32. Note

that the int parameter in the function declaration on line 27 is not used in any fash-

ion. It isn’t even given a variable name.

Overloading the Addition Operator
The increment operator is a unary operator, which means that it takes only one

operand. The addition operator (+) is a binary operator which adds two operands

together, which adds a new wrinkle to how overloading works.

LISTING 15.3 Continued

Operator Overloading 221

The next version of the Counter class will be able to add two Counter objects

together using the + operator:

Counter var1, var2, var3;
var3 = var1 + var2;

Although you could write an add() method that takes two Counter objects and

returns a Counter that contains their sum, a better technique is to overload the + oper-

ator. The Counter4 program in Listing 15.4 shows how to do this.

LISTING 15.4 The Full Text of Counter4.cpp

1: #include <iostream>
2:
3: class Counter
4: {
5: public:
6: Counter();
7: Counter(int initialValue);
8: ~Counter(){}
9: int getValue() const { return value; }
10: void setValue(int x) { value = x; }
11: Counter operator+(const Counter&);
12:
13: private:
14: int value;
15: };
16:
17: Counter::Counter(int initialValue):
18: value(initialValue)
19: {}
20:
21: Counter::Counter():
22: value(0)
23: {}
24:
25: Counter Counter::operator+(const Counter &rhs)
26: {
27: return Counter(value + rhs.getValue());
28: }
29:
30: int main()
31: {
32: Counter alpha(4), beta(13), gamma;
33: gamma = alpha + beta;
34: std::cout << “alpha: “ << alpha.getValue() << “\n”;
35: std::cout << “beta: “ << beta.getValue() << “\n”;
36: std::cout << “gamma: “ << gamma.getValue()
37: << “\n”;
38: return 0;
39: }

The program adds two Counter objects, storing the sum in a third:

alpha: 4
beta: 13
gamma: 17

222 HOUR 15: Using Operator Overloading

As you can see from the output, the gamma object contains the sum of alpha plus beta.

The addition operator is invoked on line 33:

gamma = alpha + beta;

The compiler interprets the statement as if you had written the following code:

gamma = alpha.operator+(beta);

Line 33 invokes the operator+ member function declared on line 11 and defined on

lines 25–28.

There are two operands in an addition expression. The left operand is the object

whose operator+() function is called. The right operand is the parameter of this

method.

If you had written an add() method to add two objects together, it could have been

called with a statement of this kind:

gamma = alpha.add(beta);

Operator overloading makes programs easier to use and understand by replacing

explicit function calls.

Limitations on Operator Overloading
Although operator overloading is one of the most powerful features in the C++ lan-

guage, it has limits.

Operators for built-in types such as int cannot be overloaded. The precedence order

cannot be changed, and the arity of the operator—whether it is unary, binary, or tri-

nary—cannot be altered, either. You also cannot make up new operators, so there’s

no way to do something such as declaring ** to be the exponentiation (power of)

operator.

Operator overloading is one of the aspects of C++ most overused and abused by new

programmers. It is tempting to create new and interesting uses for some of the more

obscure operators, but these often lead to code that is confusing and difficult to read.

Operator Overloading 223

Doing counterintuitive things like making the + operator subtract and the * opera-
tor add is amusing the first time you try it, but no pros would do that in their code.

The real danger lies in the well-intentioned but idiosyncratic use of an operator,
such as using + to concatenate a series of letters or / to split a string. There is
good reason to consider these uses, but better reason to proceed with caution.
The goal of overloading operators is to increase usability and understanding.

operator=

The C++ compiler provides each class with a default constructor, destructor, and copy

constructor. A fourth member function supplied by the compiler, when one has not

been specified in the class, defines the assignment operator.

The assignment operator’s overloaded function takes the form operator=() and is

called when you assign a value to an object, as in this code:

Tricycle wichita;
wichita.setSpeed(4);
Tricycle dallas;
dallas.setSpeed(13);
dallas = wichita;

The Tricycle object named wichita is created and its member variable speed given

the value 4, followed by the Tricycle dallas with the value 13. The final statement

uses the assignment operator =.

Because of this assignment, dallas’s speed variable is assigned the value of that

variable from wichita. After this statement executes, dallas.speed will have the

value 4 rather than 13.

In this case, the copy constructor is not called because dallas already exists, so

there’s no need to construct it. The compiler calls the assignment operator instead.

Hour 14, “Creating Advanced Functions,” described the difference between a shallow

(member-wise) copy and a deep copy. A shallow copy just copies the members, mak-

ing both objects point to the same area on the heap. A deep copy allocates the neces-

sary memory.

The same issue crops up here, with an added wrinkle. Because the object dallas

already exists and has memory allocated, that memory must be deleted to prevent a

memory leak.

For this reason, the first thing you must do when overloading the assignment opera-

tor is delete the memory assigned to its pointers with statements such as this:

delete speed;

Watch
Out!

224 HOUR 15: Using Operator Overloading

This works, but what happens if you assign dallas to itself:

dallas = dallas;

No programmer is likely to do this on purpose, but the class must be able to handle

this situation because it can happen by accident. References and dereferenced point-

ers might hide the fact that an object is being assigned to itself.

If you don’t guard against this problem, the self-assignment causes dallas to delete

its own memory allocation. After it does, when it’s ready to copy the memory from

the right side of the assignment, that memory is gone.

This can be prevented if the assignment operator checks to see whether the right side

of the assignment operator is the object itself using the this pointer.

The Assignment class in Listing 15.5 uses overloading to define a custom assignment

operator and avoids the same-object problem.

LISTING 15.5 The Full Text of Assignment.cpp

1: #include <iostream>
2:
3: class Tricycle
4: {
5: public:
6: Tricycle();
7: // copy constructor and destructor use default
8: int getSpeed() const { return *speed; }
9: void setSpeed(int newSpeed) { *speed = newSpeed; }
10: Tricycle operator=(const Tricycle&);
11:
12: private:
13: int *speed;
14: };
15:
16: Tricycle::Tricycle()
17: {
18: speed = new int;
19: *speed = 5;
20: }
21:
22: Tricycle Tricycle::operator=(const Tricycle& rhs)
23: {
24: if (this == &rhs)
25: return *this;
26: delete speed;
27: speed = new int;
28: *speed = rhs.getSpeed();
29: return *this;
30: }
31:
32: int main()
33: {
34: Tricycle wichita;
35: std::cout << “Wichita’s speed: “ << wichita.getSpeed()

Conversion Operators 225

36: << “\n”;
37: std::cout << “Setting Wichita’s speed to 6 ...\n”;
38: wichita.setSpeed(6);
39: Tricycle dallas;
40: std::cout << “Dallas’ speed: “ << dallas.getSpeed()
41: << “\n”;
42: std::cout << “Copying Wichita to Dallas ...\n”;
43: wichita = dallas;
44: std::cout << “Dallas’ speed: “ << dallas.getSpeed()
45: << “\n”;
46: return 0;
47: }

Assignment produces this output when run:

Wichita’s speed: 5
Setting Wichita’s speed to 6 ...
Dallas’ speed: 5
Copying Wichita to Dallas ...
Dallas’ speed: 5

Listing 15.5 brings back the Tricycle class, omitting the copy constructor and

destructor to save room. On line 10, the assignment operator is declared, and on lines

22–30, it is defined.

On line 24, the current object (the Tricycle being assigned to) is tested to see if it is

the same as the Tricycle being assigned. This is done by checking whether the

address of rhs is the same as the address stored in the this pointer.

The equality operator (==) can be overloaded, as well, enabling you to determine for

yourself what it means for your objects to be equal.

On lines 26–27 the member variable speed is deleted and re-created on the
heap. Although this is not strictly necessary, it is good programming practice that
avoids memory leaks when working with variable-length objects that do not over-
load their assignment operators.

Conversion Operators
What happens when you try to assign a variable of a built-in type, such as int or

unsigned short, to an object of a user-defined class? Listing 15.6 brings back the

Counter class and attempts to assign a variable of type int to a Counter object.

By the
Way

226 HOUR 15: Using Operator Overloading

Listing 15.6 will not compile, for reasons you’ll learn after preparing it.

LISTING 15.6 The Full Text of Counter5.cpp

1: #include <iostream>
2:
3: class Counter
4: {
5: public:
6: Counter();
7: ~Counter() {}
8: int getValue() const { return value; }
9: void setValue(int newValue) { value = newValue; }
10: private:
11: int value;
12: };
13:
14: Counter::Counter():
15: value(0)
16: {}
17:
18: int main()
19: {
20: int beta = 5;
21: Counter alpha = beta;
22: std::cout << “alpha: “ << alpha.getValue() << “\n”;
23: return 0;
24: }

When you attempt to compile this program, it fails with an error about trying to con-

vert an int to a Counter object in line 21.

The Counter class declared on lines 3–12 has only a default constructor. It declares

no particular member function for turning an int into a Counter object, so line 21

triggers a compile error. The compiler cannot figure out, absent such a function, that

an int should be assigned to the object’s member variable value.

The Counter6 program (Listing 15.7) corrects this by creating a conversion operator:

a constructor that takes an int and produces a Counter object.

LISTING 15.7 The Full Text of Counter6.cpp

1: #include <iostream>
2:
3: class Counter
4: {
5: public:
6: Counter();
7: ~Counter() {}
8: Counter(int newValue);
9: int getValue() const { return value; }
10: void setValue(int newValue) { value = newValue; }

Watch
Out!

Conversion Operators 227

11: private:
12: int value;
13: };
14:
15: Counter::Counter():
16: value(0)
17: {}
18:
19: Counter::Counter(int newValue):
20: value(newValue)
21: {}
22:
23: int main()
24: {
25: int beta = 5;
26: Counter alpha = beta;
27: std::cout << “alpha: “ << alpha.getValue() << “\n”;
28: return 0;
29: }

This code compiles successfully and produces the following line of output:

alpha: 5

The important change is on line 8, where the constructor is overloaded to take an

int, and on lines 19–21, where the constructor is implemented. The effect of this con-

structor is to create a Counter out of an int.

Given this constructor, the compiler knows to call it when an integer is assigned to a

Counter object in line 26.

The int() Operator
The preceding project demonstrated how to assign a built-in type to an object. It’s

also possible to assign an object to a built-in type, which is attempted in this code:

Counter gamma(18);
int delta = gamma;
cout << “delta : “ << delta << “\n”;

If this code were added to the Counter6 program, it would not compile successfully.

The class knows how to create a Counter from an integer, but it does not know how

to accomplish the reverse and create an integer from a Counter.

C++ provides conversion operators that can be added to a class to specify how to do

implicit conversions to built-in types. The Counter7 program in Listing 15.8 illus-

trates this.

228 HOUR 15: Using Operator Overloading

LISTING 15.8 The Full Text of Counter7.cpp

1: #include <iostream>
2:
3: class Counter
4: {
5: public:
6: Counter();
7: ~Counter() {}
8: Counter(int newValue);
9: int getValue() const { return value; }
10: void setValue(int newValue) { value = newValue; }
11: operator unsigned int();
12: private:
13: int value;
14: };
15:
16: Counter::Counter():
17:value(0)
18: {}
19:
20: Counter::Counter(int newValue):
21: value(newValue)
22: {}
23:
24: Counter::operator unsigned int()
25: {
26: return (value);
27: }
28:
29: int main()
30: {
31: Counter epsilon(19);
32: int zeta = epsilon;
33: std::cout << “zeta: “ << zeta << “\n”;
34: return 0;
35: }

Counter7 produces the following output when run:

zeta: 19

On line 11, the conversion operator is declared. Note that it has no return value. The

implementation of this function is on lines 24–27. Line 26 returns the value of the

object’s value member variable. The integer returned by the function matches the

type in the function declaration.

Now the compiler knows how to turn integers into Counter objects and vice versa, so

they can be assigned to one another freely.

Note that conversion operators do not specify a return value, despite the fact that

they are returning a converted value.

234 HOUR 16: Extending Classes with Inheritance

The taxonomist’s hierarchy establishes an “is a” relationship—a dog is a canine.

There are “is a” relationships everywhere. A Toyota is a kind of car, which is a kind

of vehicle. A sundae is a kind of dessert, which is a kind of food.

What is meant when something is described as a kind of something else? This means

it is a specialization of that thing. That is, a car is a special kind of vehicle. Cars and

buses are both vehicles. They are distinguished by their specific characteristics but

share things in common with each other and other vehicles.

Inheritance and Derivation
These relationships are conveyed by inheritance. The concept of a dog inherits all the

features of a mammal. Because it is a mammal, it moves and breathes air; by defini-

tion, all mammals move and breathe air. The concept of a dog adds to that defini-

tion the idea of barking, a wagging tail, and so forth. A dog has traits unique to dogs

and traits common to all mammals.

Dogs can be divided further into hunting dogs and terriers; terriers can be divided

into Yorkshire Terriers, Dandie Dinmont Terriers, and so forth.

A Yorkshire Terrier is a kind of terrier; therefore, it is a kind of dog; therefore, a kind

of mammal; therefore, a kind of animal; and, therefore, a kind of living thing.

C++ attempts to represent these relationships by defining classes that derive from one

another. Derivation is a way of expressing the “is a” relationship. You derive a new

class, Dog, from the class Mammal. You don’t have to state explicitly that dogs move

because they inherit that from Mammal. Because it derives from Mammal, Dog automat-

ically moves.

A class that adds new functionality to an existing class is said to derive from that

original class. The original class is said to be the new class’s base class.

If the Dog class derives from the Mammal class, Mammal is a base class of Dog. Derived

classes are supersets of their base classes. Just as dogs add certain features to the idea

of a mammal, the Dog class will add certain methods or data to the Mammal class.

A base class can have more than one derived class. Just as dogs, cats, and horses are

all types of mammals, their classes would all derive from the Mammal class.

Animals and Inheritance
To facilitate the discussion of derivation and inheritance, this section focuses on the

relationships among a number of classes representing animals. Imagine that you

have been asked to design a children’s game—a simulation of a farm.

What Is Inheritance? 235

The game will have a whole set of farm animals, including horses, cows, dogs, cats,

sheep, and so forth. You will create member functions for these classes so that they

can act in the ways the child might expect, but for now you’ll stub out each method

with a simple cout statement.

Stubbing out a function means to write only enough to show that the function was

called, leaving the details for later. You do not have to fill in all the details as you

work on the problem; the stubs act as placeholders.

The Syntax of Derivation
When you create a class that inherits from another class in C++, in the class decla-

ration you put a colon after the class name and specify the access level of the class

(public, protected, or private) and the class from which it derives.

Access control is covered later. For now, you use public, as in this example:

class Dog : public Mammal

This statement creates a derived class called Dog that inherits from the base class

Mammal. The Mammal1 program in Listing 16.1 creates a full Dog class derived from

Mammal.

LISTING 16.1 The Full Text of Mammal1.cpp
1: #include <iostream>
2:
3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
4:
5: class Mammal
6: {
7: public:
8: // constructors
9: Mammal();
10: ~Mammal();
11:
12: // accessors
13: int getAge() const;
14: void setAge(int);
15: int getWeight() const;
16: void setWeight();
17:
18: // other methods
19: void speak();
20: void sleep();
21:
22: protected:
23: int age;
24: int weight;
25: };

236 HOUR 16: Extending Classes with Inheritance

26:
27: class Dog : public Mammal
28: {
29: public:
30: // constructors
31: Dog();
32: ~Dog();
33:
34: // accessors
35: BREED getBreed() const;
36: void setBreed(BREED);
37:
38: // other methods
39: // wagTail();
40: // begForFood();
41:
42: protected:
43: BREED breed;
44: };
45:
46: int main()
47: {
48: return 0;
49: }

This program has no output; it is only a set of class declarations without implemen-

tations. Nonetheless, there is much to see here and it will compile.

On lines 5–25, the Mammal class is declared. Because all mammals have an age and

weight, these attributes are represented by the member variables age and weight in

this class.

Six member functions are defined in the Mammal class: four accessor methods,

speak(), and sleep().

The Dog class inherits from Mammal, as indicated on line 27. Every Dog object has

three member variables: age, weight, and breed. Note that the class declaration for

Dog does not include two of these variables, age and weight. Dog objects inherit these

variables from the Mammal class along with all Mammal’s member functions except for

the copy operator, the constructors, and the destructor.

Private Versus Protected
A new access keyword, protected, has been introduced on lines 22 and 42 of the

Mammal2 program in Listing 16.1. Previously, class data had been declared

private. However, private members are not available to derived classes. You could

LISTING 16.1 Continued

Private Versus Protected 237

make age and weight public, but that is not desirable. You don’t want other classes

accessing these data members directly.

What you want is to make the data visible to this class and its derived classes, which

is accomplished by protected. Protected data members and functions are fully visi-

ble to derived classes, but are otherwise private.

There are three access specifiers: public, protected, and private. If a function has

an instance of a class, it can access all the public member data and functions of that

class. The member functions of a class, however, can access all the private data

members and functions of any class from which they derive.

Therefore, the function Dog::wagTail() can access the private data breed and can

access the protected data in the Mammal class.

Even if other classes are layered between Mammal and Dog (for example,

DomesticAnimals), the Dog class will still be able to access the protected members of

Mammal, assuming that these other classes have public inheritance.

The Mammal2 program in Listing 16.2 demonstrates how to create objects of type

Dog and access its data and member functions.

LISTING 16.2 The Full Text of Mammal2.cpp

1: #include <iostream>
2:
3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
4:
5: class Mammal
6: {
7: public:
8: // constructors
9: Mammal(): age(2), weight(5) {}
10: ~Mammal(){}
11:
12: // accessors
13: int getAge() const { return age; }
14: void setAge(int newAge) { age = newAge; }
15: int getWeight() const { return weight; }
16: void setWeight(int newWeight) { weight = newWeight; }
17:
18: // other methods
19: void speak() const { std::cout << “Mammal sound!\n”; }
20: void sleep() const { std::cout << “Shhh. I’m sleeping.\n”; }
21:
22: protected:
23: int age;
24: int weight;
25: };

238 HOUR 16: Extending Classes with Inheritance

26:
27: class Dog : public Mammal
28: {
29: public:
30: // constructors
31: Dog(): breed(YORKIE) {}
32: ~Dog() {}
33:
34: // accessors
35: BREED getBreed() const { return breed; }
36: void setBreed(BREED newBreed) { breed = newBreed; }
37:
38: // other methods
39: void wagTail() { std::cout << “Tail wagging ...\n”; }
40: void begForFood() { std::cout << “Begging for food ...\n”; }
41:
42: private:
43: BREED breed;
44: };
45:
46: int main()
47: {
48: Dog fido;
49: fido.speak();
50: fido.wagTail();
51: std::cout << “Fido is “ << fido.getAge() << “ years old\n”;
52: return 0;
53: }

When you run Mammal2, this output appears:

Mammal sound!
Tail wagging ...
Fido is 2 years old

On lines 5–25, the Mammal class is declared with several inline member functions. On

lines 27–44, the Dog class is declared as a derived class of Mammal. These declarations

give all Dog objects an age, weight, and breed.

On line 48, a Dog is declared called fido, which inherits all the attributes of a Mammal

and the attributes of a Dog. Thus, fido knows how to wagTail(), speak(), and

sleep().

Constructors and Destructors
An important aspect to understand about inheritance in C++ is that more than one

constructor is called when an object of a derived class is created.

Dog objects are Mammal objects. When fido was created in the Mammal2 program,

his base class constructor was called first, creating a Mammal, and then the Dog con-

LISTING 16.2 Continued

Constructors and Destructors 239

structor was called, completing the construction of the Dog object. Because fido was

created with no parameters, the default constructor was called in each case.

When the fido object is destroyed, the Dog destructor is called first, followed by the

destructor for the Mammal part of Fido. Each destructor is given an opportunity to

clean up after its own part of the object. Constructors are called in order of inheri-

tance. Destructors are called in reverse order of inheritance.

The Mammal3 program in Listing 16.3 demonstrates how constructors and destruc-

tors are called for objects belonging to derived classes.

LISTING 16.3 The Full Text of Mammal3.cpp

1: #include <iostream>
2:
3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
4:
5: class Mammal
6: {
7: public:
8: // constructors
9: Mammal();
10: ~Mammal();
11:
12: // accessors
13: int getAge() const { return age; }
14: void setAge(int newAge) { age = newAge; }
15: int getWeight() const { return weight; }
16: void setWeight(int newWeight) { weight = newWeight; }
17:
18: // other methods
19: void speak() const { std::cout << “Mammal sound!\n”; }
20: void sleep() const { std::cout << “shhh. I’m sleeping.\n”; }
21:
22: protected:
23: int age;
24: int weight;
25: };
26:
27: class Dog : public Mammal
28: {
29: public:
30: // constructors
31: Dog();
32: ~Dog();
33:
34: // accessors
35: BREED getBreed() const { return breed; }
36: void setBreed(BREED newBreed) { breed = newBreed; }
37:
38: // other methods
39: void wagTail() { std::cout << “Tail wagging ...\n”; }
40: void begForFood() { std::cout << “Begging for food ...\n”; }

240 HOUR 16: Extending Classes with Inheritance

41:
42: private:
43: BREED breed;
44: };
45:
46: Mammal::Mammal():
47: age(1),
48: weight(5)
49: {
50: std::cout << “Mammal constructor ...\n”;
51: }
52:
53: Mammal::~Mammal()
54: {
55: std::cout << “Mammal destructor ...\n”;
56: }
57:
58: Dog::Dog():
59: breed(YORKIE)
60: {
61: std::cout << “Dog constructor ...\n”;
62: }
63:
64: Dog::~Dog()
65: {
66: std::cout << “Dog destructor ...\n”;
67: }
68:
69: int main()
70: {
71: Dog fido; // create a dog
72: fido.speak();
73: fido.wagTail();
74: std::cout << “Fido is “ << fido.getAge() << “ years old\n”;
75: return 0;
76: }

Here’s the program’s output:

Mammal constructor ...
Dog constructor ...
Mammal sound!
Tail wagging ...
Fido is 1 years old
Dog destructor ...
Mammal destructor ...

The Mammal3 program displays text as constructors and destructors are called.

When fido is created, Mammal’s constructor is called, and then Dog’s constructor. At

that point the Dog fully exists, and its member functions can be called. When fido

goes out of scope as the main() function ends on line 76, Dog’s destructor is called,

followed by a call to Mammal’s destructor.

LISTING 16.3 Continued

Passing Arguments to Base Constructors 241

Passing Arguments to Base
Constructors
It is possible that you’ll want to overload the constructor of Mammal to set a specific

age and overload the Dog constructor to set a breed. How do you get the age and

weight parameters passed up to the right constructor in Mammal? What if Dog needs

to initialize weight but Mammal doesn’t?

Base class initialization can be performed during class initialization by writing the

base class name followed by the parameters expected by the base class, as shown in

the Mammal4 program (Listing 16.4).

LISTING 16.4 The Full Text of Mammal4.cpp

1: #include <iostream>
2:
3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
4:
5: class Mammal
6: {
7: public:
8: // constructors
9: Mammal();
10: Mammal(int age);
11: ~Mammal();
12:
13: // accessors
14: int getAge() const { return age; }
15: void setAge(int newAge) { age = newAge; }
16: int getWeight() const { return weight; }
17: void setWeight(int newWeight) { weight = newWeight; }
18:
19: // other methods
20: void speak() const { std::cout << “Mammal sound!\n”; }
21: void sleep() const { std::cout << “Shhh. I’m sleeping.\n”; }
22:
23: protected:
24: int age;
25: int weight;
26: };
27:
28: class Dog : public Mammal
29: {
30: public:
31: // constructors
32: Dog();
33: Dog(int age);
34: Dog(int age, int weight);
35: Dog(int age, BREED breed);
36: Dog(int age, int weight, BREED breed);
37: ~Dog();
38:
39: // accessors
40: BREED getBreed() const { return breed; }

242 HOUR 16: Extending Classes with Inheritance

41: void setBreed(BREED newBreed) { breed = newBreed; }
42:
43: // other methods
44: void wagTail() { std::cout << “Tail wagging ...\n”; }
45: void begForFood() { std::cout << “Begging for food ...\n”; }
46:
47: private:
48: BREED breed;
49: };
50:
51: Mammal::Mammal():
52: age(1),
53: weight(5)
54: {
55: std::cout << “Mammal constructor ...\n”;
56: }
57:
58: Mammal::Mammal(int age):
59: age(age),
60: weight(5)
61: {
62: std::cout << “Mammal(int) constructor ...\n”;
63: }
64:
65: Mammal::~Mammal()
66: {
67: std::cout << “Mammal destructor ...\n”;
68: }
69:
70: Dog::Dog():
71: Mammal(),
72: breed(YORKIE)
73: {
74: std::cout << “Dog constructor ...\n”;
75: }
76:
77: Dog::Dog(int age):
78: Mammal(age),
79: breed(YORKIE)
80: {
81: std::cout << “Dog(int) constructor ...\n”;
82: }
83:
84: Dog::Dog(int age, int newWeight):
85: Mammal(age),
86: breed(YORKIE)
87: {
88: weight = newWeight;
89: std::cout << “Dog(int, int) constructor ...\n”;
90: }
91:
92: Dog::Dog(int age, int newWeight, BREED breed):
93: Mammal(age),
94: breed(breed)
95: {
96: weight = newWeight;
97: std::cout << “Dog(int, int, BREED) constructor ...\n”;
98: }

LISTING 16.4 Continued

Passing Arguments to Base Constructors 243

99:
100: Dog::Dog(int age, BREED newBreed):
101: Mammal(age),
102: breed(newBreed)
103: {
104: std::cout << “Dog(int, BREED) constructor ...\n”;
105: }
106:
107: Dog::~Dog()
108: {
109: std::cout << “Dog destructor ...\n”;
110: }
111:
112: int main()
113: {
114: Dog fido;
115: Dog rover(5);
116: Dog buster(6, 8);
117: Dog yorkie (3, YORKIE);
118: Dog dobbie (4, 20, DOBERMAN);
119: fido.speak();
120: rover.wagTail();
121: std::cout << “Yorkie is “
122: << yorkie.getAge() << “ years old\n”;
123: std::cout << “Dobbie weighs “
124: << dobbie.getWeight() << “ pounds\n”;
125: return 0;
126: }

The Mammal4 program displays the following output, which has line numbers

added so that they can be referenced in this section (but that don’t appear in the

actual output):

1: Mammal constructor ...
2: Dog constructor ...
3: Mammal(int) constructor ...
4: Dog(int) constructor ...
5: Mammal(int) constructor ...
6: Dog(int, int) constructor ...
7: Mammal(int) constructor ...
8: Dog(int, BREED) constructor ...
9: Mammal(int) constructor ...
10: Dog(int, int, BREED) constructor ...
11: Mammal sound!
12: Tail wagging ...
13: Yorkie is 3 years old
14: Dobbie weighs 20 pounds
15: Dog destructor ...
16: Mammal destructor ...
17: Dog destructor ...
18: Mammal destructor ...
19: Dog destructor ...
20: Mammal destructor ...
21: Dog destructor ...
22: Mammal destructor ...
23: Dog destructor ...
24: Mammal destructor ...

244 HOUR 16: Extending Classes with Inheritance

In Listing 16.4, Mammal’s constructor has been overloaded on line 10 to take an inte-

ger, the Mammal object’s age. The implementation on lines 58–63 initializes age with

the value passed into the constructor, and weight with the value 5.

Dog has overloaded five constructors on lines 32–36. The first is the default construc-

tor. The second takes the age, which is the same parameter that the Mammal construc-

tor takes. The third constructor takes both the age and the weight; the fourth takes

the age and breed; and the fifth takes the age, weight, and breed.

Note that on line 71, Dog’s default constructor calls Mammal’s default constructor.
Although it is not strictly necessary to do this, it serves as documentation that
you intended to call the base constructor, which takes no parameters. The base
constructor would be called in any case, but actually doing so makes your inten-
tions explicit.

The implementation for the Dog constructor, which takes an integer, is on lines

77–82. In its initialization phase (lines 78–79), Dog initializes its base class, passing

in the parameter; and then it initializes its breed.

Another Dog constructor is on lines 84–90. This one takes two parameters. It initial-

izes its base class by calling the appropriate constructor, but this time also assigns

weight to its base class’s variable weight. Note that you cannot assign to the base

class variable in the initialization phase. So, you cannot write this code:

Dog::Dog(int age, int newWeight):
Mammal(age),
breed(YORKIE),
weight(newWeight) // error!
{

std::cout << “Dog(int, int) constructor ...\n”;
}

Why? You are not allowed to initialize a value in the base class. Similarly, you may

not write the following:

Dog::Dog(int newAge, int newWeight):
Mammal(newAge, newWeight), // error!
breed(YORKIE)
{

std::cout << “Dog(int, int) constructor ...\n”;
}

Mammal does not have a constructor that takes the weight parameter. You must do

this assignment within the body of the Dog constructor.

Dog::Dog(int newAge, int weight):
Mammal(newAge), // base constructor

By the
Way

Overriding Functions 245

breed(YORKIE) // initialization
{

weight = weight; // assignment
}

Walk through the remaining constructors to make sure you are comfortable with

how they work. Take note of what is initialized and what must wait for the body of

the constructor.

The output has been numbered so that each line can be referred to in this analysis.

The first two lines of output represent the instantiation of fido, using the default

constructor.

In the output, lines 3 and 4 represent the creation of rover. Lines 5 and 6 represent

buster. Note that the Mammal constructor that was called is the constructor that takes

one integer, but the Dog constructor is the constructor that takes two integers.

After all the objects are created, they are used and then go out of scope. As each

object is destroyed, first the Dog destructor and then the Mammal destructor is called;

there are five of each in total.

This is an example of overloading base class member functions within a derived class.

Overriding Functions
A Dog object has access to all the member functions in class Mammal, as well as to any

member functions, such as wagTail(), that the declaration of the Dog class might

add. It also can override a base class function. Overriding a function means chang-

ing the implementation of a base class function in a derived class. When you make

an object of the derived class, the correct function is called.

When a derived class creates a member function with the same return type and sig-

nature as a member function in the base class, but with a new implementation, it is

said to be overriding that function.

When you override a function, it must agree in return type and in signature with the

function in the base class. The signature is the function prototype other than the

return type: that is, the name, the parameter list, and the keyword const, if used.

The signature of a function is its name, and the number and type of its parameters.

The signature does not include the return type.

246 HOUR 16: Extending Classes with Inheritance

The Mammal5 program (Listing 16.5) illustrates what happens if the Dog class over-

rides the speak() method in Mammal. To save room, the accessor functions have been

left out of these classes.

LISTING 16.5 The Full Text of Mammal5.cpp

1: #include <iostream>
2:
3: enum BREED { YORKIE, CAIRN, DANDIE, SHETLAND, DOBERMAN, LAB };
4:
5: class Mammal
6: {
7: public:
8: // constructors
9: Mammal() { std::cout << “Mammal constructor ...\n”; }
10: ~Mammal() { std::cout << “Mammal destructor ...\n”; }
11:
12: // other methods
13: void speak() const { std::cout << “Mammal sound!\n”; }
14: void sleep() const { std::cout << “Shhh. I’m sleeping.\n”; }
15:
16: protected:
17: int age;
18: int weight;
19: };
20:
21: class Dog : public Mammal
22: {
23: public:
24: // constructors
25: Dog() { std::cout << “Dog constructor ...\n”; }
26: ~Dog() { std::cout << “Dog destructor ...\n”; }
27:
28: // other methods
29: void wagTail() { std::cout << “Tail wagging ...\n”; }
30: void begForFood() { std::cout << “Begging for food ...\n”; }
31: void speak() const { std::cout << “Woof!\n”; }
32:
33: private:
34: BREED breed;
35: };
36:
37: int main()
38: {
39: Mammal bigAnimal;
40: Dog fido;
41: bigAnimal.speak();
42: fido.speak();
43: return 0;
44: }

Here’s the output of Mammal5:

Mammal constructor ...
Mammal constructor ...
Dog constructor ...

Overriding Functions 247

Mammal sound!
Woof!
Dog destructor ...
Mammal destructor ...
Mammal destructor ...

On line 31, the Dog class overrides the speak() method, causing Dog objects to say

“Woof!” when the speak() method is called. On line 39, a Mammal object, bigAnimal,

is created, causing the first line of output to be displayed when the Mammal construc-

tor is called. On line 40, a Dog object, fido, is created, causing the next two lines of

output, where the Mammal constructor and then the Dog constructor are called.

On line 41, the Mammal object calls its speak() method; then on line 42 the Dog

object calls its speak() method. The output reflects that the correct methods were

called. Finally, the two objects go out of scope and the destructors are called.

Overloading Versus Overriding
The terms overloading and overriding are similar and do similar things in C++. When

you overload a member function, you create more than one function with the same

name but with different signatures. When you override a member function, you cre-

ate a function in a derived class with the same name as a function in the base class

and with the same signature.

Hiding the Base Class Method
In the Mammal5 program, the Dog class’s member function speak() hides the base

class’s function. This is just what is wanted, but it can have unexpected results. If

Mammal has a move() method that is overloaded, and Dog overrides that function, the

Dog method hides all the Mammal functions with that name.

If Mammal overloads move() as three functions—one that takes no parameters, one

that takes an integer, and one that takes an integer and a direction—and Dog over-

rides just the move() method, which takes no parameters, it will not be easy to access

the other two methods using a Dog object. The Mammal6 program in Listing 16.6

illustrates this problem.

LISTING 16.6 The Full Text of Mammal6.cpp

1: #include <iostream>
2:
3: class Mammal
4: {

248 HOUR 16: Extending Classes with Inheritance

5: public:
6: void move() const { std::cout << “Mammal moves one step\n”; }
7: void move(int distance) const
8: { std::cout << “Mammal moves “ << distance <<” steps\n”; }
9: protected:
10: int age;
11: int weight;
12: };
13:
14: class Dog : public Mammal
15: {
16: public:
17: void move() const { std::cout << “Dog moves 5 steps\n”; }
18: }; // you may receive a warning that you are hiding a function!
19:
20: int main()
21: {
22: Mammal bigAnimal;
23: Dog fido;
24: bigAnimal.move();
25: bigAnimal.move(2);
26: fido.move();
27: // fido.move(10);
28: return 0;
29: }

The Mammal6 program produces this output when run:

Mammal moves one step
Mammal moves 2 steps
Dog moves 5 steps

All the extra methods and data have been removed from these classes. On lines 6–8,

the Mammal class declares the overloaded move() methods. On line 17, Dog overrides

the version of move() with no parameters. These are invoked on lines 24–26, and the

output reflects this as executed.

Line 27, however, is commented out, as it causes a compile-time error. Although the

Dog class could have called the move(int) method if it had not overridden the ver-

sion of move() without parameters, now that it has done so it must override both to

use both. This is reminiscent of the rule that states if you supply any constructor the

compiler will no longer supply a default constructor.

It is a common mistake to hide a base class method, when you intend to override it,

by forgetting to include the keyword const. That keyword is part of the signature,

and leaving it off changes the signature and thus hides the member function instead

of overriding it.

LISTING 16.6 Continued

Overriding Functions 249

Some compilers will give you a warning somewhere around lines 15–18. Although

you are allowed to hide base class member functions from derived classes, it often is

done by mistake, which is why some compilers issue a warning.

Calling the Base Method
If you have overridden the base method, it is still possible to call it by fully qualifying

the name of the method. You do this by writing the base name, followed by two

colons and then the method name. For example:

Mammal::move()

It would have been possible to rewrite line 27 in Listing 16.6 so that it would compile:

28: fido.Mammal::move(10);

This calls the Mammal method explicitly. This hour’s last project, the Mammal7 pro-

gram in Listing 16.7, fully illustrates this idea.

LISTING 16.7 The Full Text of Mammal7.cpp

1: #include <iostream>
2:
3: class Mammal
4: {
5: public:
6: void move() const { std::cout << “Mammal moves one step\n”; }
7: void move(int distance) const
8: { std::cout << “Mammal moves “ << distance << “ steps\n”; }
9: protected:
10: int age;
11: int weight;
12: };
13:
14: class Dog : public Mammal
15: {
16: public:
17: void move() const;
18: };
19:
20: void Dog::move() const
21: {
22: std::cout << “Dog moves ...\n”;
23: Mammal::move(3);
24: }
25:
26: int main()
27: {
28: Mammal bigAnimal;
29: Dog fido;
30: bigAnimal.move(2);
31: fido.Mammal::move(6);

250 HOUR 16: Extending Classes with Inheritance

32: return 0;
33: }

Mammal6 produces this output when run:

Mammal moves 2 steps
Mammal moves 6 steps

On line 28, a Mammal, bigAnimal, is created; and on line 29, a Dog called fido is cre-

ated. The method call on line 30 invokes the move() method of Mammal, which takes

an integer.

If you wanted to invoke move(int) on the Dog object, there’s a problem. Dog over-

rides the move() method but doesn’t overload it and does not provide a version that

takes an int. This is solved by the explicit call to the base class move(int) method

on line 31.

Summary
If this is your first introduction to class inheritance, you might find yourself wonder-

ing if the work of creating base classes and derived classes is worth the effort. Decid-

ing where to put member variables and functions among a set of related classes can

take some time and planning.

The reason to do the work is that it makes your classes more powerful and reusable.

When you’ve designed a set of related classes well, you can extend a base class and

design a new derived class much more easily. You only have to focus on the things

that make the new class different from its parent.

Q&A
Q. Are inherited members and functions passed along to subsequent genera-

tions? If Dog derives from Mammal and Mammal derives from Animal, does Dog

inherit Animal’s functions and data?

A. Yes. As derivation continues, derived classes inherit the sum of all the functions

and data in all their base classes.

Q. Can a derived class make a public base function private?

A. Yes, and it will then remain private for all subsequent derivations.

LISTING 16.6 Continued

254 HOUR 17: Using Polymorphism and Derived Classes

At the same time, when you have a collection of Mammal objects such as a Farm with

Dog, Cat, Horse, and Cow objects, you want the farm to be able to tell each of these

objects to speak() without knowing or caring about the details of how they imple-

ment the speak() method. When you treat these objects as if they are all mammals

by calling the Mammal.speak() method, you are treating them polymorphically.

Polymorphism is an unusual word that means the ability to take many forms. It
comes from the roots poly, which means many, and morph, which means form.
You are dealing with Mammal in its many forms.

You can use polymorphism to declare a pointer to Mammal and assign to it the address

of a Dog object you create on the heap. Because a Dog “is a” Mammal, the following is

perfectly legal:

Mammal* pMammal = new Dog;

You then can use this pointer to invoke any member function on Mammal. What you

would like is for those functions that are overridden in Dog to call the correct function.

Virtual member functions let you do that. When you treat these objects polymorphi-

cally, you call the method on the Mammal pointer and you don’t know or care what

the actual object is or how it implements its method.

The Mammal8 program in Listing 17.1 illustrates how virtual functions implement

polymorphism.

LISTING 17.1 The Full Text of Mammal8.cpp
1: #include <iostream>
2:
3: class Mammal
4: {
5: public:
6: Mammal():age(1) { std::cout << “Mammal constructor ...\n”; }
7: ~Mammal() { std::cout << “Mammal destructor ...\n”; }
8: void move() const { std::cout << “Mammal, move one step\n”; }
9: virtual void speak() const { std::cout << “Mammal speak!\n”; }
10:
11: protected:
12: int age;
13: };
14:
15: class Dog : public Mammal
16: {
17: public:
18: Dog() { std::cout << “Dog constructor ...\n”; }
19: ~Dog() { std::cout << “Dog destructor ..\n”; }

By the
Way

Polymorphism Implemented with Virtual Methods 255

20: void wagTail() { std::cout << “Wagging tail ...\n”; }
21: void speak() const { std::cout << “Woof!\n”; }
22: void move() const { std::cout << “Dog moves 5 steps ...\n”; }
23: };
24:
25: int main()
26: {
27: Mammal *pDog = new Dog;
28: pDog->move();
29: pDog->speak();
30: return 0;
31: }

Mammal8 displays this output:

Mammal constructor ...
Dog constructor ...
Mammal, move one step
Woof!

On line 9, Mammal is provided a virtual method called speak(). The designer of the

class thereby signals that she expects this class to eventually be another class’s base

type. The derived class will probably want to override this function.

On line 27, a pointer to Mammal is created, pDog, but it is assigned the address of a

new Dog object. Because a Dog is a Mammal, this is a legal assignment. The pointer

then is used to call the move() function. Because the compiler knows pDog only to be

a Mammal, it looks to the Mammal object to find the move() function.

On line 29, the pointer then calls the speak() function. Because speak() is virtual,

the speak() function overridden in Dog is invoked.

As far as the calling function knew, it had a Mammal pointer, but here a function of

Dog was called. In fact, if you have an array of pointers to Mammal, each of which

points to a subclass of Mammal, you can call each in turn and the correct function is

called. The Mammal9 program (Listing 17.2) illustrates this idea.

LISTING 17.2 The Full Text of Mammal9.cpp

1: #include <iostream>
2:
3: class Mammal
4: {
5: public:
6: Mammal():age(1) { }
7: ~Mammal() { }
8: virtual void speak() const { std::cout << “Mammal speak!\n”; }
9: protected:
10: int age;
11: };

256 HOUR 17: Using Polymorphism and Derived Classes

12:
13: class Dog : public Mammal
14: {
15: public:
16: void speak() const { std::cout << “Woof!\n”; }
17: };
18:
19: class Cat : public Mammal
20: {
21: public:
22: void speak() const { std::cout << “Meow!\n”; }
23: };
24:
25: class Horse : public Mammal
26: {
27: public:
28: void speak() const { std::cout << “Whinny!\n”; }
29: };
30:
31: class Pig : public Mammal
32: {
33: public:
34: void speak() const { std::cout << “Oink!\n”; }
35: };
36:
37: int main()
38: {
39: Mammal* array[5];
40: Mammal* ptr;
41: int choice, i;
42: for (i = 0; i < 5; i++)
43: {
44: std::cout << “(1) dog (2) cat (3) horse (4) pig: “;
45: std::cin >> choice;
46: switch (choice)
47: {
48: case 1:
49: ptr = new Dog;
50: break;
51: case 2:
52: ptr = new Cat;
53: break;
54: case 3:
55: ptr = new Horse;
56: break;
57: case 4:
58: ptr = new Pig;
59: break;
60: default:
61: ptr = new Mammal;
62: break;
63: }
64: array[i] = ptr;
65: }
66: for (i=0; i < 5; i++)
67: {
68: array[i]->speak();
69: }

LISTING 17.2 Continued

How Virtual Member Functions Work 259

Although you can transform the Mammal pointer into a Dog pointer, there usually are

better and safer ways to call the wagTail() method. C++ frowns on explicit casts

because they are error-prone. This subject is addressed in depth when multiple-inheri-

tance is covered in Hour 18, “Making Use of Advanced Polymorphism,” and again

when templates are covered in Hour 24, “Dealing with Exceptions and Error Handling.”

Slicing
Note that the virtual function magic only operates on pointers and references. Pass-

ing an object by value will not enable the virtual member functions to be invoked.

The Mammal10 program in Listing 17.3 illustrates this problem.

LISTING 17.3 The Full Text of Mammal10.cpp

1: #include <iostream>
2:
3: class Mammal
4: {
5: public:
6: Mammal():age(1) { }
7: ~Mammal() { }
8: virtual void speak() const { std::cout << “Mammal speak!\n”; }
9: protected:
10: int age;
11: };
12:
13: class Dog : public Mammal
14: {
15: public:
16: void speak() const { std::cout << “Woof!\n”; }
17: };
18:
19: class Cat : public Mammal
20: {
21: public:
22: void speak()const { std::cout << “Meow!\n”; }
23: };
24:
25: void valueFunction(Mammal);
26: void ptrFunction(Mammal*);
27: void refFunction(Mammal&);
28:
29: int main()
30: {
31: Mammal* ptr=0;
32: int choice;
33: while (1)
34: {
35: bool fQuit = false;
36: std::cout << “(1) dog (2) cat (0) quit: “;
37: std::cin >> choice;
38: switch (choice)
39: {

260 HOUR 17: Using Polymorphism and Derived Classes

40: case 0:
41: fQuit = true;
42: break;
43: case 1:
44: ptr = new Dog;
45: break;
46: case 2:
47: ptr = new Cat;
48: break;
49: default:
50: ptr = new Mammal;
51: break;
52: }
53: if (fQuit)
54: {
55: break;
56: }
57: ptrFunction(ptr);
58: refFunction(*ptr);
59: valueFunction(*ptr);
60: }
61: return 0;
62: }
63:
64: void valueFunction(Mammal mammalValue) // This function is called last
65: {
66: mammalValue.speak();
67: }
68:
69: void ptrFunction (Mammal *pMammal)
70: {
71: pMammal->speak();
72: }
73:
74: void refFunction (Mammal &rMammal)
75: {
76: rMammal.speak();
77: }

Here’s a sample run and the corresponding output:

(1) dog (2) cat (0) quit: 1
Woof!
Woof!
Mammal speak!
(1) dog (2) cat (0) quit: 2
Meow!
Meow!
Mammal speak!
(1)dog (2)cat (0)Quit: 0

On lines 3–23, stripped-down versions of the Mammal, Dog, and Cat classes are

declared. Three functions are declared: ptrFunction(), refFunction(), and

valueFunction(). They take a pointer to a Mammal, a Mammal reference, and a

LISTING 17.3 Continued

How Virtual Member Functions Work 261

Mammal object, respectively. All three functions then do the same thing; they call the

speak() method.

The user is prompted to choose a Dog or Cat; based on the choice she makes, a

pointer to the correct type is created on lines 38–52.

In the first line of the output, the user chooses Dog. The Dog object is created on the

heap in line 44. The Dog then is passed as a pointer, as a reference, and by value to

the three functions. The pointer and references all invoke the virtual member func-

tions, and the Dog->speak() member function is invoked. This is shown on the first

two lines of output after the user’s choice.

The dereferenced pointer is passed by value, however. The function expects a Mammal

object, so the compiler slices down the Dog object to just the Mammal part. At that

point, the Mammal speak() method is called, as reflected in the third line of output

after the user’s choice.

This experiment then is repeated for the Cat object, with similar results.

Virtual Destructors
It is legal and common to pass a pointer to a derived object when a pointer to a base

object is expected. What happens when that pointer to a derived subject is deleted? If

the destructor is virtual, as it should be, the right thing happens—the derived class’s

destructor is called. Because the derived class’s destructor will automatically invoke

the base class’s destructor, the entire object will be properly destroyed.

The rule of thumb is this: If any of the functions in your class are virtual, the destruc-

tor should also be virtual.

Virtual Copy Constructors
As previously stated, no constructor can be virtual. Nonetheless, there are times

when your program desperately needs to be able to pass in a pointer to a base object

and have a copy of the correct derived object that is created. A common solution to

this problem is to create a clone member function in the base class and to make it

virtual. A clone function creates a new copy of the current object and returns that

object.

Because each derived class overrides the clone function, a copy of the derived class is

created. The Mammal11 program (Listing 17.4) illustrates how this is used.

262 HOUR 17: Using Polymorphism and Derived Classes

LISTING 17.4 The Full Text of Mammal11.cpp

1: #include <iostream>
2:
3: class Mammal
4: {
5: public:
6: Mammal():age(1) { std::cout << “Mammal constructor ...\n”; }
7: virtual ~Mammal() { std::cout << “Mammal destructor ...\n”; }
8: Mammal (const Mammal &rhs);
9: virtual void speak() const { std::cout << “Mammal speak!\n”; }
10: virtual Mammal* clone() { return new Mammal(*this); }
11: int getAge() const { return age; }
12:
13: protected:
14: int age;
15: };
16:
17: Mammal::Mammal (const Mammal &rhs):age(rhs.getAge())
18: {
19: std::cout << “Mammal copy constructor ...\n”;
20: }
21:
22: class Dog : public Mammal
23: {
24: public:
25: Dog() { std::cout << “Dog constructor ...\n”; }
26: virtual ~Dog() { std::cout << “Dog destructor ...\n”; }
27: Dog (const Dog &rhs);
28: void speak() const { std::cout << “Woof!\n”; }
29: virtual Mammal* clone() { return new Dog(*this); }
30: };
31:
32: Dog::Dog(const Dog &rhs):
33: Mammal(rhs)
34: {
35: std::cout << “Dog copy constructor ...\n”;
36: }
37:
38: class Cat : public Mammal
39: {
40: public:
41: Cat() { std::cout << “Cat constructor ...\n”; }
42: virtual ~Cat() { std::cout << “Cat destructor ...\n”; }
43: Cat (const Cat&);
44: void speak() const { std::cout << “Meow!\n”; }
45: virtual Mammal* Clone() { return new Cat(*this); }
46: };
47:
48: Cat::Cat(const Cat &rhs):
49: Mammal(rhs)
50: {
51: std::cout << “Cat copy constructor ...\n”;
52: }
53:
54: enum ANIMALS { MAMMAL, DOG, CAT};
55: const int numAnimalTypes = 3;
56: int main()

How Virtual Member Functions Work 263

57: {
58: Mammal *array[numAnimalTypes];
59: Mammal *ptr;
60: int choice, i;
61: for (i = 0; i < numAnimalTypes; i++)
62: {
63: std::cout << “(1) dog (2) cat (3) mammal: “;
64: std::cin >> choice;
65: switch (choice)
66: {
67: case DOG:
68: ptr = new Dog;
69: break;
70: case CAT:
71: ptr = new Cat;
72: break;
73: default:
74: ptr = new Mammal;
75: break;
76: }
77: array[i] = ptr;
78: }
79: Mammal *otherArray[numAnimalTypes];
80: for (i=0; i < numAnimalTypes; i++)
81: {
82: array[i]->speak();
83: otherArray[i] = array[i]->clone();
84: }
85: for (i=0; i < numAnimalTypes; i++)
86: {
87: otherArray[i]->speak();
88: }
89: return 0;
90: }

The following output demonstrates one run of the program:

1: (1) dog (2) cat (3) mammal: 1
2: Mammal constructor...
3: Dog constructor...
4: (1) dog (2) cat (3) mammal: 2
5: Mammal constructor...
6: Cat constructor...
7: (1) dog (2) cat (3) mammal: 3
8: Mammal constructor...
9: Woof!
10: Mammal copy constructor...
11: Dog copy constructor...
12: Meow!
13: Mammal copy constructor...
14: Cat copy constructor...
15: Mammal speak!
16: Mammal copy constructor...
17: Woof!
18: Meow!
19: Mammal speak!

264 HOUR 17: Using Polymorphism and Derived Classes

Listing 17.4 is similar to the previous two listings, except that a new virtual function

has been added to the Mammal class: clone(). This function returns a pointer to a

new Mammal object by calling the copy constructor, passing in itself (*this) as a

const reference.

Dog and Cat both override the clone() function, initializing their data and passing

in copies of themselves to their own copy constructors. Because clone() is virtual,

this effectively creates a virtual copy constructor, as shown on line 83.

The user is prompted to choose dogs, cats, or mammals, and these are created on

lines 65–76. A pointer to each choice is stored in an array on line 77.

As the program iterates over the array, each object has its speak() and its clone()

method called, in turn, on lines 82 and 83. The result of the clone() call is a pointer

to a copy of the object, which then is stored in a second array on line 83.

On line 1 of the output, the user is prompted and responds with 1, choosing to create

a dog. The Mammal and Dog constructors are invoked. This is repeated for Cat and for

Mammal on lines 4–8 of the output.

Line 9 of the output represents the call to speak() on the first object, the Dog from

line 82 (within the first for loop). The virtual speak() method is called, and the cor-

rect version of speak() is invoked. The clone() function then is called, and as this is

also virtual, Dog’s clone function is invoked, causing the Mammal constructor and the

Dog copy constructor to be called.

The same is repeated for Cat on lines 12–14 of the output, and then for Mammal on

lines 15 and 16. Finally, the new array is iterated (output lines 17–19, code lines

85–88), and each of the new objects has speak() invoked.

The difference between this approach and the use of a copy constructor is that you,

as the programmer, must explicitly call the clone() function. The copy constructor is

called automatically when an object is copied. Remember that you can always over-

ride the copy function in a derived class. But that approach reduces the flexibility

you have.

The Cost of Virtual Member Functions
Because objects with virtual member functions must maintain a v-table, some over-

head is required to employ them. If you have a small class from which you do not

expect to derive other classes, there might be no reason to have any virtual functions

at all.

270 HOUR 18: Making Use of Advanced Polymorphism

15: public:
16: Cat() { std::cout << “Cat constructor ...\n”; }
17: ~Cat() { std::cout << “Cat destructor ...\n”; }
18: void speak() const { std::cout << “Meow!\n”; }
19: };
20:
21: int main()
22: {
23: Mammal *pCat = new Cat;
24: pCat->speak();
25: return 0;
26: }

When you run the Mammal12 program, the following output displays:

Mammal constructor ...
Cat constructor ...
Meow!

On line 8, speak() is declared to be a virtual member function; it is overridden on

line 18 and invoked on line 24. Note, again, that pCat is declared to be a pointer to

Mammal, but the address of a Cat is assigned to it. As discussed in Hour 17, “Using

Polymorphism and Derived Classes,” this is the essence of polymorphism.

What happens, however, if you want to add a member function to Cat that is inap-

propriate for Mammal? Suppose you want to add a function called purr(). Cats purr,

but other mammals do not. You would declare your class like this:

class Cat: public Mammal
{
public:

Cat() { std::cout << “Cat constructor ...\n”; }
~Cat() { std::cout << “Cat destructor ...\n”; }
void speak() const { std::cout << “Meow!\n”; }
void purr() const { std::cout << “Rrrrrrrr!\n”; }

};

The problem is this: If you now call purr() using your pointer to Mammal, you get a

compiler error stating that “’Purr’ is not a member of Mammal.”

When your compiler tries to resolve purr() in its Mammal virtual table, there is no

entry. You can percolate this function up into the base class, but that is a bad idea.

Although it works as an expedient, populating your base class with functions that

are specific to derived classes is poor programming practice and a recipe for difficult-

to-maintain code.

In fact, this entire problem is a reflection of bad design. Generally, if you have a

pointer to a base class that is assigned to a derived class object, it is because you

intend to use that object polymorphically, and in this case, you ought not even try to

access functions that are specific to the derived class.

LISTING 18.1 Continued

Problems with Single Inheritance 271

The problem is not that you have such specific functions; it is that you are trying to

get at them with the base class pointer. In an ideal world, when you have such a

pointer you would not try to get at those functions.

But this is not an ideal world, and at times, you find yourself with a collection of

base objects—for example, a zoo full of mammals. At one point or another, you

might realize you have a Cat object and you want the darn thing to purr. In this

case, there might be only one thing to do: cheat.

To cheat, cast your base class pointer to your derived type. You say to the compiler,

“Look, compiler, I am the programmer and know this is really a cat, so go and do

what I tell you.”

To make this work, you’ll use the dynamic_cast operator. This operator ensures that

when you cast, you cast safely.

Here’s how it works: If you have a pointer to a base class, such as Mammal, and you

assign to it a pointer to a derived class, such as Cat, you can use the Mammal pointer

polymorphically to access virtual functions. Then, if you need to get at the Cat object

to call, for example, the purr() method, you create a Cat pointer using the

dynamic_cast operator to do so. At runtime, the base pointer is examined. If the

conversion is proper, your new Cat pointer is fine. If the conversion is improper, if

you didn’t really have a Cat object after all, your new pointer will be null. The

Mammal13 program in Listing 18.2 illustrates this.

LISTING 18.2 The Full Text of Mammal13.cpp

1: #include <iostream>
2:
3: class Mammal
4: {
5: public:
6: Mammal():age(1) { std::cout << “Mammal constructor ...\n”; }
7: virtual ~Mammal() { std::cout << “Mammal destructor ...\n”; }
8: virtual void speak() const { std::cout << “Mammal speak!\n”; }
9: protected:
10: int age;
11: };
12:
13: class Cat: public Mammal
14: {
15: public:
16: Cat() { std::cout << “Cat constructor ...\n”; }
17: ~Cat() { std::cout << “Cat destructor ...\n”; }
18: void speak() const { std::cout << “Meow!\n”; }
19: void purr() const { std::cout << “Rrrrrrrrrrr!\n”; }
20: };
21:
22: class Dog: public Mammal
23: {

272 HOUR 18: Making Use of Advanced Polymorphism

24: public:
25: Dog() { std::cout << “Dog constructor ...\n”; }
26: ~Dog() { std::cout << “Dog destructor ...\n”; }
27: void speak() const { std::cout << “Woof!\n”; }
28: };
29:
30: int main()
31: {
32: const int numberMammals = 3;
33: Mammal* zoo[numberMammals];
34: Mammal* pMammal;
35: int choice, i;
36: for (i = 0; i < numberMammals; i++)
37: {
38: std::cout << “(1)Dog (2)Cat: “;
39: std::cin >> choice;
40: if (choice == 1)
41: pMammal = new Dog;
42: else
43: pMammal = new Cat;
44:
45: zoo[i] = pMammal;
46: }
47:
48: std::cout << “\n”;
49:
50: for (i = 0; i < numberMammals; i++)
51: {
52: zoo[i]->speak();
53:
54: Cat *pRealCat = dynamic_cast<Cat *> (zoo[i]);
55: if (pRealCat)
56: pRealCat->purr();
57: else
58: std::cout << “Uh oh, not a cat!\n”;
59:
60: delete zoo[i];
61: std::cout << “\n”;
62: }
63:
64: return 0;
65: }

When you run Mammal13, you’re asked three times to create either a Dog object or

Cat object. After the third response, each object is tested by calling either speak()

alone or speak() and purr(). Here’s sample output:

(1)Dog (2)Cat: 1
Mammal constructor ...
Dog constructor ...
(1)Dog (2)Cat: 2
Mammal constructor ...
Cat constructor ...

LISTING 18.2 Continued

Abstract Data Types 273

(1)Dog (2)Cat: 1
Mammal constructor ...
Dog constructor ...

Woof!
Uh oh, not a cat!
Mammal destructor ...

Meow
rrrrrrrrrrr
Mammal destructor ...

Woof!
Uh oh, not a cat!
Mammal destructor ...

On lines 38–45, the user is asked to choose to add either a Cat or a Dog object to the

array of Mammal pointers. Line 50 walks through the array and, on line 52, each

object’s virtual speak() method is called. These functions respond polymorphically:

Cats meow, and dogs say woof!

Cat objects should purr, but the purr() function must not be called on Dog objects.

The dynamic_cast operator on line 54 ensures that the object is a Cat. When it is,

the pointer will not equal null and passes the conditional test on line 55.

Abstract Data Types
Often, you will create a hierarchy of classes together. For example, you might create

a Shape class as a base class to derive a Rectangle and a Circle. From Rectangle,

you might derive Square as a special case of Rectangle.

Each of the derived classes override the draw() method, the getArea() method, and

so forth. Listing 18.3 illustrates a bare-bones implementation of the Shape class and

its derived Circle and Rectangle classes.

LISTING 18.3 The Full Text of Shape.cpp

1: #include <iostream>
2:
3: class Shape
4: {
5: public:
6: Shape() {}
7: virtual ~Shape() {}
8: virtual long getArea() { return -1; } // error
9: virtual long getPerim() { return -1; }
10: virtual void draw() {}

274 HOUR 18: Making Use of Advanced Polymorphism

11: };
12:
13: class Circle : public Shape
14: {
15: public:
16: Circle(int newRadius):radius(newRadius) {}
17: ~Circle() {}
18: long getArea() { return 3 * radius * radius; }
19: long getPerim() { return 9 * radius; }
20: void draw();
21: private:
22: int radius;
23: int circumference;
24: };
25:
26: void Circle::draw()
27: {
28: std::cout << “Circle drawing routine here!\n”;
29: }
30:
31: class Rectangle : public Shape
32: {
33: public:
34: Rectangle(int newLen, int newWidth):
35: length(newLen), width(newWidth) {}
36: virtual ~Rectangle() {}
37: virtual long getArea() { return length * width; }
38: virtual long getPerim() { return 2 * length + 2 * width; }
39: virtual int getLength() { return length; }
40: virtual int getWidth() { return width; }
41: virtual void draw();
42: private:
43: int width;
44: int length;
45: };
46:
47: void Rectangle::draw()
48: {
49: for (int i = 0; i < length; i++)
50: {
51: for (int j = 0; j < width; j++)
52: std::cout << “x “;
53:
54: std::cout << “\n”;
55: }
56: }
57:
58: class Square : public Rectangle
59: {
60: public:
61: Square(int len);
62: Square(int len, int width);
63: ~Square() {}
64: long getPerim() { return 4 * getLength(); }
65: };
66:
67: Square::Square(int newLen):
68: Rectangle(newLen, newLen)

LISTING 18.3 Continued

Abstract Data Types 275

69: {}
70:
71: Square::Square(int newLen, int newWidth):
72: Rectangle(newLen, newWidth)
73: {
74: if (getLength() != getWidth())
75: std::cout << “Error, not a square ... a rectangle?\n”;
76: }
77:
78: int main()
79: {
80: int choice;
81: bool fQuit = false;
82: Shape * sp;
83:
84: while (1)
85: {
86: std::cout << “(1) Circle (2) Rectangle (3) Square (0) Quit: “;
87: std::cin >> choice;
88:
89: switch (choice)
90: {
91: case 1:
92: sp = new Circle(5);
93: break;
94: case 2:
95: sp = new Rectangle(4, 6);
96: break;
97: case 3:
98: sp = new Square(5);
99: break;
100: default:
101: fQuit = true;
102: break;
103: }
104: if (fQuit)
105: break;
106:
107: sp->draw();
108: std::cout << “\n”;
109: }
110: return 0;
111: }

When run, this program asks the user one or more times to choose between creating

a circle, rectangle or square. When 0 is chosen rather than a shape, it exits. Here’s a

look at the output for a run:

(1) Circle (2) Rectangle (3) Square (0) Quit: 2
x x x x x x
x x x x x x
x x x x x x
x x x x x x
(1) Circle (2) Rectangle (3) Square (0) Quit: 3
x x x x x
x x x x x
x x x x x

276 HOUR 18: Making Use of Advanced Polymorphism

x x x x x
x x x x x
(1) Circle (2) Rectangle (3) Square (0) Quit: 0

On lines 3–11, the Shape class is declared. The getArea() and getPerim() member

functions return an error value, and draw() takes no action. Only specific types of

shapes such as circles and rectangle can be drawn; shapes as an abstraction cannot

be drawn.

Circle derives from Shape and overrides the three virtual member functions. Note

that there is no reason to add the word virtual, because that is part of their inheri-

tance. But there is no harm in doing so either, as shown in the Rectangle class on

lines 36–41.

Square derives from Rectangle, and it too overrides the getPerim() member func-

tion, inheriting the rest of the functions defined in Rectangle.

It is troubling, though, that it is possible to instantiate a Shape object, and it might

be desirable to make that impossible. The Shape class exists only to provide an inter-

face for the classes derived from it. It is an abstract data type, or ADT.

An abstract data type represents a concept (like shape) rather than an object (like

circle). In C++, an ADT is always the base class to other classes, and it is not valid to

make an instance of an ADT. Therefore, if you make Shape an ADT, it is not possible

to make an instance of a Shape object.

Pure Virtual Functions
C++ supports the creation of abstract data types with pure virtual functions. A pure

virtual function is a virtual function that must be overridden in the derived class. A

virtual function is made pure by initializing it with 0, as in the following:

virtual void draw() = 0;

Any class with one or more pure virtual functions is an ADT, and it is illegal to

instantiate an object of a class that is an ADT. Trying to do so causes a compile-time

error. Putting a pure virtual function in your class signals two things to clients of

your class:

. Don’t make an object of this class; derive from it.

. Make sure to override the pure virtual function.

Any class that derives from an ADT inherits the pure virtual function as pure, and so

must override every pure virtual function if it wants to instantiate objects. Therefore,

Abstract Data Types 277

if Rectangle inherits from Shape, and Shape has three pure virtual functions,

Rectangle must override all three or it, too, will be an ADT.

A virtual function is declared to be abstract by writing = 0 after the function declara-

tion, as in this statement:

virtual long getArea = 0;

Here’s a rewrite of the Shape class to be an abstract data type:

class Shape
{
public:

Shape() {}
virtual ~Shape() {}
virtual long getArea() = 0;
virtual long getPerim() = 0;
virtual void draw() = 0;

private:
};

If this definition of Shape were substituted in lines 3–11 of Listing 18.3, it would

become impossible to make an object of class Shape.

Implementing Pure Virtual Functions
Typically, the pure virtual functions in an abstract base class are never implemented.

Because no objects of that type are ever created, there is no reason to provide imple-

mentations, and the ADT works purely as the definition of an interface to objects that

derive from it.

It is possible, however, to provide an implementation to a pure virtual function. The

function can then be called by objects derived from the ADT, perhaps to provide com-

mon functionality to all the overridden functions.

The Shape2 program in Listing 18.4 defines Shape as an ADT and includes an imple-

mentation for the pure virtual function draw(). The Circle class overrides draw(),

as it must, and then chains up to the base class function for additional functionality.

In this example, the additional functionality is simply an additional message dis-

played. A more robust graphical class could set up a shared drawing mechanism,

perhaps setting up a window that all derived classes will use.

LISTING 18.4 The Full Text of Shape2.cpp

1: #include <iostream>
2:
3: class Shape
4: {

278 HOUR 18: Making Use of Advanced Polymorphism

5: public:
6: Shape() {}
7: virtual ~Shape() {}
8: virtual long getArea() = 0;
9: virtual long getPerim()= 0;
10: virtual void draw() = 0;
11: private:
12: };
13:
14: void Shape::draw()
15: {
16: std::cout << “Abstract drawing mechanism!\n”;
17: }
18:
19: class Circle : public Shape
20: {
21: public:
22: Circle(int newRadius):radius(newRadius) {}
23: ~Circle() {}
24: long getArea() { return 3 * radius * radius; }
25: long getPerim() { return 9 * radius; }
26: void draw();
27: private:
28: int radius;
29: int circumference;
30: };
31:
32: void Circle::draw()
33: {
34: std::cout << “Circle drawing routine here!\n”;
35: Shape::draw();
36: }
37:
38: class Rectangle : public Shape
39: {
40: public:
41: Rectangle(int newLen, int newWidth):
42: length(newLen), width(newWidth) {}
43: virtual ~Rectangle() {}
44: long getArea() { return length * width; }
45: long getPerim() { return 2 * length + 2 * width; }
46: virtual int getLength() { return length; }
47: virtual int getWidth() { return width; }
48: void draw();
49: private:
50: int width;
51: int length;
52: };
53:
54: void Rectangle::draw()
55: {
56: for (int i = 0; i < length; i++)
57: {
58: for (int j = 0; j < width; j++)
59: std::cout << “x “;
60:
61: std::cout << “\n”;
62: }

LISTING 18.4 Continued

Abstract Data Types 279

63: Shape::draw();
64: }
65:
66: class Square : public Rectangle
67: {
68: public:
69: Square(int len);
70: Square(int len, int width);
71: ~Square() {}
72: long getPerim() {return 4 * getLength();}
73: };
74:
75: Square::Square(int newLen):
76: Rectangle(newLen, newLen)
77: {}
78:
79: Square::Square(int newLen, int newWidth):
80: Rectangle(newLen, newWidth)
81: {
82: if (getLength() != getWidth())
83: std::cout << “Error, not a square ... a rectangle?\n”;
84: }
85:
86: int main()
87: {
88: int choice;
89: bool fQuit = false;
90: Shape * sp;
91:
92: while (1)
93: {
94: std::cout << “(1) Circle (2) Rectangle (3) Square (0) Quit: “;
95: std::cin >> choice;
96:
97: switch (choice)
98: {
99: case 1:
100: sp = new Circle(5);
101: break;
102: case 2:
103: sp = new Rectangle(4, 6);
104: break;
105: case 3:
106: sp = new Square(5);
107: break;
108: default:
109: fQuit = true;
110: break;
111: }
112: if (fQuit)
113: break;
114: sp->draw();
115: std::cout << “\n”;
116: }
117: return 0;
118: }

280 HOUR 18: Making Use of Advanced Polymorphism

Again, the user is asked which shapes to create. Here’s sample output:

(1) Circle (2) Rectangle (3) Square (0) Quit: 2
x x x x x x
x x x x x x
x x x x x x
x x x x x x
Abstract drawing mechanism!
(1) Circle (2) Rectangle (3) Square (0) Quit: 3
x x x x x
x x x x x
x x x x x
x x x x x
x x x x x
Abstract drawing mechanism!
(1) Circle (2) Rectangle (3) Square (0) Quit: 0

On lines 3–12, the abstract data type Shape is declared, with all three of its accessors

declared to be pure virtual. Note that this is not necessary. If any one were declared

pure virtual, the class would have been an ADT.

The getArea() and getPerim() methods are not implemented, but draw() is.

Circle and Rectangle both override draw(); and both chain up to the base mem-

ber function, taking advantage of shared functionality in the base class.

Complex Hierarchies of Abstraction
At times, you will derive ADTs from other ADTs. It might be that you want to

make some of the derived pure virtual functions nonpure and leave others pure.

If you create the Animal class, you can make eat(), sleep(), move(), and

reproduce() pure virtual functions. Perhaps you derive Mammal and Fish from

Animal.

On examination, you decide that every Mammal will reproduce in the same way, and

so you make Mammal::reproduce() be nonpure, but you leave eat(), sleep(), and

move() as pure virtual functions.

From Mammal you derive Dog, and Dog must override and implement the three

remaining pure virtual functions so that you can make objects of type Dog.

What you say, as class designer, is that no Animal or Mammal objects can be instanti-

ated, but that all Mammal objects can inherit the provided reproduce() method with-

out overriding it.

The Animal class in Listing 18.5 illustrates this technique with a bare-bones implemen-

tation of these classes.

Abstract Data Types 281

LISTING 18.5 The Full Text of Animal.cpp

1: #include <iostream>
2:
3: enum COLOR { Red, Green, Blue, Yellow, White, Black, Brown } ;
4:
5: class Animal // common base to both horse and bird
6: {
7: public:
8: Animal(int);
9: virtual ~Animal() { std::cout << “Animal destructor ...\n”; }
10: virtual int getAge() const { return age; }
11: virtual void setAge(int newAge) { age = newAge; }
12: virtual void sleep() const = 0;
13: virtual void eat() const = 0;
14: virtual void reproduce() const = 0;
15: virtual void move() const = 0;
16: virtual void speak() const = 0;
17: private:
18: int age;
19: };
20:
21: Animal::Animal(int newAge):
22: age(newAge)
23: {
24: std::cout << “Animal constructor ...\n”;
25: }
26:
27: class Mammal : public Animal
28: {
29: public:
30: Mammal(int newAge):Animal(newAge)
31: { std::cout << “Mammal constructor ...\n”;}
32: virtual ~Mammal() { std::cout << “Mammal destructor ...\n”;}
33: virtual void reproduce() const
34: { std::cout << “Mammal reproduction depicted ...\n”; }
35: };
36:
37: class Fish : public Animal
38: {
39: public:
40: Fish(int newAge):Animal(newAge)
41: { std::cout << “Fish constructor ...\n”;}
42: virtual ~Fish()
43: { std::cout << “Fish destructor ...\n”; }
44: virtual void sleep() const
45: { std::cout << “Fish snoring ...\n”; }
46: virtual void eat() const
47: { std::cout << “Fish feeding ...\n”; }
48: virtual void reproduce() const
49: { std::cout << “Fish laying eggs ...\n”; }
50: virtual void move() const
51: { std::cout << “Fish swimming ...\n”; }
52: virtual void speak() const { }
53: };
54:
55: class Horse : public Mammal
56: {

282 HOUR 18: Making Use of Advanced Polymorphism

57: public:
58: Horse(int newAge, COLOR newColor):
59: Mammal(newAge), color(newColor)
60: { std::cout << “Horse constructor ...\n”; }
61: virtual ~Horse()
62: { std::cout << “Horse destructor ...\n”; }
63: virtual void speak() const
64: { std::cout << “Whinny!\n”; }
65: virtual COLOR getcolor() const
66: { return color; }
67: virtual void sleep() const
68: { std::cout << “Horse snoring ...\n”; }
69: virtual void eat() const
70: { std::cout << “Horse feeding ...\n”; }
71: virtual void move() const
72: { std::cout << “Horse running ...\n”;}
73:
74: protected:
75: COLOR color;
76: };
77:
78: class Dog : public Mammal
79: {
80: public:
81: Dog(int newAge, COLOR newColor):
82: Mammal(newAge), color(newColor)
83: { std::cout << “Dog constructor ...\n”; }
84: virtual ~Dog()
85: { std::cout << “Dog destructor ...\n”; }
86: virtual void speak() const
87: { std::cout << “Whoof!\n”; }
88: virtual void sleep() const
89: { std::cout << “Dog snoring ...\n”; }
90: virtual void eat() const
91: { std::cout << “Dog eating ...\n”; }
92: virtual void move() const
93: { std::cout << “Dog running...\n”; }
94: virtual void reproduce() const
95: { std::cout << “Dogs reproducing ...\n”; }
96:
97: protected:
98: COLOR color;
99: };
100:
101: int main()
102: {
103: Animal *pAnimal = 0;
104: int choice;
105: bool fQuit = false;
106:
107: while (1)
108: {
109: std::cout << “(1) Dog (2) Horse (3) Fish (0) Quit: “;
110: std::cin >> choice;
111:
112: switch (choice)
113: {
114: case 1:
115: pAnimal = new Dog(5, Brown);

LISTING 18.5 Continued

Abstract Data Types 283

116: break;
117: case 2:
118: pAnimal = new Horse(4, Black);
119: break;
120: case 3:
121: pAnimal = new Fish(5);
122: break;
123: default:
124: fQuit = true;
125: break;
126: }
127: if (fQuit)
128: break;
129:
130: pAnimal->speak();
131: pAnimal->eat();
132: pAnimal->reproduce();
133: pAnimal->move();
134: pAnimal->sleep();
135: delete pAnimal;
136: std::cout << “\n”;
137: }
138: return 0;
139: }

Here’s sample output from a run of this program:

(1) Dog (2) Horse (3) Bird (0) Quit: 1
Animal constructor ...
Mammal constructor ...
Dog constructor ...
Whoof!
Dog eating ...
Dog reproducing ...
Dog running ...
Dog snoring ...
Dog destructor ...
Mammal destructor ...
Animal destructor ...
(1) Dog (2) Horse (3) Bird (0) Quit: 0

On lines 5–19, the abstract data type Animal is declared. Animal has nonpure virtual

accessors for age, which are shared by all Animal objects. It has five pure virtual

functions: sleep(), eat(), reproduce(), move(), and speak().

Mammal derives from Animal and is declared on lines 27–35. It adds no data. It over-

rides reproduce(), however, providing a common form of reproduction for all

Mammal objects. Fish must override reproduce() because Fish derives directly from

Animal and cannot take advantage of Mammal reproduction.

Mammal classes no longer have to override the reproduce() function, but they are

free to do so if they choose (as Dog does on lines 94–95). Fish, Horse, and Dog all

override the remaining pure virtual functions so that objects of their type can be

instantiated.

284 HOUR 18: Making Use of Advanced Polymorphism

In the body of the program, an Animal pointer is used to point to the various derived

objects in turn. The virtual member functions are invoked, and, based on the run-

time binding of the pointer, the correct function is called in the derived class.

It would cause a compile-time error to try to instantiate an Animal or a Mammal,

because both are abstract data types.

Which Types Are Abstract?
In one program, the class Animal is abstract; in another it is not. What determines

whether to make a class abstract?

The answer to this question is decided not by any real-world, intrinsic factor, but by

what makes sense in your program. If you are writing a program that depicts a farm

or a zoo, you might want Animal to be an abstract data type but Dog to be a class

from which you can instantiate objects.

On the other hand, if you are making an animated kennel, you might want to keep

Dog as an abstract data type and only instantiate types of dogs: retrievers, terriers,

and so forth. The level of abstraction is a function of how finely you need to distin-

guish your types.

Summary
During this hour, you learned about abstract data types and pure virtual functions,

two aspects of the C++ language that make its support for object-oriented program-

ming more robust.

An abstract data type is a class that cannot be implemented as an object. Instead, it

defines common member variables and functions for its derived classes.

A function becomes a pure virtual function by adding = 0 to the end of its declara-

tion. If a class contains at least one pure function, the class is an abstract data type.

The compiler will not allow objects of an abstract data type to be instantiated.

Q&A
Q. What does percolating functionality upward mean?

A. This refers to the idea of moving shared functionality upwards into a common

base class. If more than one class shares a function, it is desirable to find a

common base class in which that function can be stored.

Linked List Case Study 291

Delegation of Responsibility
A fundamental premise of object-oriented programming is that each object does one

thing very well and delegates to other objects anything that is not part of its mission.

An automobile is an example of this idea. The engine’s job is to produce the power.

Distribution of that power is not the engine’s job; that is up to the transmission.

Turning is not the job of the engine or the transmission; that is delegated to the

wheels.

A well-designed machine has lots of small, well-understood parts, each doing its own

job and working together to accomplish a greater good. A well-designed program is

much the same: Each class sticks to its own assignment, but together they create a

functioning program.

Component Parts
The linked list will consist of nodes. The node class itself will be abstract; we’ll use

three subtypes to accomplish the work. There will be a head and tail node to manage

those parts of the list and zero or more internal nodes. The internal nodes will keep

track of the actual data to be held in the list.

Note that the data and the list are quite distinct. You can save any type of data you

like in a list. It isn’t the data that is linked together; it is the node that holds the data

that is linked.

The program doesn’t actually know about the nodes; it only works with the list. The

list does little work, simply delegating to the nodes.

The LinkedList program in Listing 19.1 is covered in detail. The source code is heavily

commented to better explain how each part works.

LISTING 19.1 The Full Text of LinkedList.cpp
1: // Demonstrates an object-oriented approach to
2: // linked lists. The list delegates to the node.
3: // The node is an abstract data type. Three types of
4: // nodes are used, head nodes, tail nodes and internal
5: // nodes. Only the internal nodes hold data.
6: //
7: // The Data class is created to serve as an object to
8: // hold in the linked list.
9: //
10: #include <iostream>
11:
12: enum { kIsSmaller, kIsLarger, kIsSame };
13:
14: // Data class to put into the linked list
15: // Any class in this linked list must support two
16: // functions: show (displays the value) and compare

292 HOUR 19: Storing Information in Linked Lists

17: // (returns relative position)
18: class Data
19: {
20: public:
21: Data(int newVal):value(newVal) {}
22: ~Data() {}
23: int compare(const Data&);
24: void show() { std::cout << value << “\n”; }
25: private:
26: int value;
27: };
28:
29: // Compare is used to decide where in the list
30: // a particular object belongs.
31: int Data::compare(const Data& otherData)
32: {
33: if (value < otherData.value)
34: return kIsSmaller;
35: if (value > otherData.value)
36: return kIsLarger;
37: else
38: return kIsSame;
39: }
40:
41: // forward declarations
42: class Node;
43: class HeadNode;
44: class TailNode;
45: class InternalNode;
46:
47: // ADT representing the node object in the list.
48: // Every derived class must override insert and show.
49: class Node
50: {
51: public:
52: Node() {}
53: virtual ~Node() {}
54: virtual Node* insert(Data* data) = 0;
55: virtual void show() = 0;
56: private:
57: };
58:
59: // This is the node that holds the actual object.
60: // In this case the object is of type Data.
61: // We’ll see how to make this more general when
62: // we cover templates.
63: class InternalNode : public Node
64: {
65: public:
66: InternalNode(Data* data, Node* next);
67: virtual ~InternalNode() { delete next; delete data; }
68: virtual Node* insert(Data* data);
69: virtual void show()
70: { data->show(); next->show(); } // delegate!
71:
72: private:
73: Data* data; // the data itself
74: Node* next; // points to next node in the linked list

LISTING 19.1 Continued

Linked List Case Study 293

75: };
76:
77: // All the constructor does is to initialize
78: InternalNode::InternalNode(Data* newData, Node* newNext):
79: data(newData), next(newNext)
80: {
81: }
82:
83: // The meat of the list.
84: // When you put a new object into the list
85: // it is passed to the node which figures out
86: // where it goes and inserts it into the list
87: Node* InternalNode::insert(Data* otherData)
88: {
89: // is the new guy bigger or smaller than me?
90: int result = data->compare(*otherData);
91:
92: switch(result)
93: {
94: // by convention if it is the same as me it comes first
95: case kIsSame: // fall through
96: case kIsLarger: // new data comes before me
97: {
98: InternalNode* dataNode =
99: new InternalNode(otherData, this);
100: return dataNode;
101: }
102:
103: // it is bigger than I am so pass it on to the next
104: // node and let IT handle it.
105: case kIsSmaller:
106: next = next->insert(otherData);
107: return this;
108: }
109: return this; // appease the compiler
110: }
111:
112: // Tail node is just a sentinel
113: class TailNode : public Node
114: {
115: public:
116: TailNode() {}
117: virtual ~TailNode() {}
118: virtual Node* insert(Data* data);
119: virtual void show() {}
120: private:
121: };
122:
123: // If data comes to me, it must be inserted before me
124: // as I am the tail and NOTHING comes after me
125: Node* TailNode::insert(Data* data)
126: {
127: InternalNode* dataNode = new InternalNode(data, this);
128: return dataNode;
129: }
130:
131: // Head node has no data, it just points
132: // to the very beginning of the list
133: class HeadNode : public Node

294 HOUR 19: Storing Information in Linked Lists

134: {
135: public:
136: HeadNode();
137: virtual ~HeadNode() { delete next; }
138: virtual Node* insert(Data* data);
139: virtual void show() { next->show(); }
140: private:
141: Node* next;
142: };
143:
144: // As soon as the head is created
145: // it creates the tail
146: HeadNode::HeadNode()
147: {
148: next = new TailNode;
149: }
150:
151: // Nothing comes before the head so just
152: // pass the data on to the next node
153: Node* HeadNode::insert(Data* data)
154: {
155: next = next->insert(data);
156: return this;
157: }
158:
159: // I get all the credit and do none of the work
160: class LinkedList
161: {
162: public:
163: LinkedList();
164: ~LinkedList() { delete head; }
165: void insert(Data* data);
166: void showAll() { head->show(); }
167: private:
168: HeadNode* head;
169: };
170:
171: // At birth, i create the head node
172: // It creates the tail node
173: // So an empty list points to the head which
174: // points to the tail and has nothing between
175: LinkedList::LinkedList()
176: {
177: head = new HeadNode;
178: }
179:
180: // Delegate, delegate, delegate
181: void LinkedList::insert(Data* pData)
182: {
183: head->insert(pData);
184: }
185:
186: // test driver program
187: int main()
188: {
189: Data* pData;
190: int val;

LISTING 19.1 Continued

Linked List Case Study 295

191: LinkedList ll;
192:
193: // ask the user to produce some values
194: // put them in the list
195: while (true)
196: {
197: std::cout << “What value (0 to stop)? “;
198: std::cin >> val;
199: if (!val)
200: break;
201: pData = new Data(val);
202: ll.insert(pData);
203: }
204:
205: // now walk the list and show the data
206: ll.showAll();
207: return 0; // ll falls out of scope and is destroyed!
208: }

When you run the LinkedList program, enter a series of numeric values one at a

time. These values are used as the data stored in each linked list node. After you

have entered as many values as you want, choose 0 to end input. The nodes in the

linked list are displayed in ascending numeric order, as in this example:

What value? (0 to stop): 5
What value? (0 to stop): 8
What value? (0 to stop): 3
What value? (0 to stop): 9
What value? (0 to stop): 2
What value? (0 to stop): 10
What value? (0 to stop): 0
2
3
5
8
9
10

The first thing to note is the enumerated constant (line 12), which provides three con-

stant values: kIsSmaller, kIsLarger, and kIsSame. Every object that might be held

in this linked list must support a compare() member function. These constants are

the result value returned by this function.

The Data class is created on lines 18–27, and the compare() function is implemented

on lines 31–39. A Data object holds a value and can compare itself with other Data

objects. It also supports a show() member function to display the value of the Data

object.

Linked List Case Study 297

tail node. Therefore, on line 127 it creates a new InternalNode object, passing in the

data and a pointer to itself. This invokes the constructor for the InternalNode object,

shown on line 78.

The InternalNode constructor does nothing more than initialize its Data pointer

with the address of the Data object it was passed and its next pointer with the node’s

address it was passed. In this case, the node it points to is the tail node. (The tail

node passed in its own this pointer.)

Now that the InternalNode has been created, the address of that internal node is

assigned to the pointer dataNode on line 127, and that address is in turn returned

from the TailNode::insert() member function.

This returns us to HeadNode::insert(), where the address of the InternalNode is

assigned to the HeadNode’s next pointer (on line 155). Finally, the HeadNode’s address

is returned to the linked list on line 183, although this value is not stored in a vari-

able. Nothing is done with it because the linked list already knows the address of the

head node.

Why bother returning the address if it is not used? The insert() function is declared

in the base class, Node. The return value is needed by the other implementations. If

you change the return value of HeadNode::insert(), you get a compiler error; it is

simpler just to return the HeadNode and let the linked list do nothing with it.

Let’s review what happened: The data was inserted into the list. The list passed it to

the head. The head blindly passed the data to whatever the head happened to be

pointing to. In this first case, the head was pointing to the tail. The tail immediately

created a new internal node, initializing the new node to point to the tail. The tail

then returned the address of the new node to the head, which reassigned its next

pointer to point to the new node.

Presto! The data is in the list in the right place, as illustrated in Figure 19.3.

After inserting the first node, program control resumes at line 195. Once again, the

value is evaluated. For illustration purposes, assume that the value 3 is entered. This

causes a new Data object to be created on line 201 and inserted into the list on line

202.

Once again, on line 183 the list passes the data to its HeadNode. The

HeadNode::insert() function in turn passes the new value to whatever its next

happens to be pointing to. As you know, it is now pointing to the node that contains

the Data object whose value is 15. This invokes the InternalNode::insert() func-

tion on line 87.

Linked Lists as Objects 299

This causes the InternalNode::insert() function to branch to line 106. Instead of

creating a new node and inserting it, the InternalNode passes the new data on to

the Insert function of whatever its next pointer happens to be pointing to. In this

case, it invokes InsertNode on the InternalNode whose Data object’s value is 15.

The comparison is done again, and now a new InternalNode is created. This new

InternalNode points to the InternalNode whose Data object’s value is 15, and its

address is passed back to the InternalNode whose Data object’s value is 3, as shown

on line 107.

The net effect is that the new node is inserted into the list at the right location.

The end result of all of this is that you have a sorted list of data items—no matter the

order in which you enter the data.

Linked Lists as Objects
In object-oriented programming, each individual object is given a narrow and well-

defined set of responsibilities. The linked list is responsible for maintaining the head

node. The HeadNode immediately passes any new data on to whatever it currently

points to, without regard for what that might be.

The TailNode, whenever it is handed data, creates a new node and inserts it. It

knows only one thing: If this came to me, it gets inserted right before me.

Internal nodes are marginally more complicated; they ask their existing object to

compare itself with the new object. Depending on the result, either they then insert or

they just pass it along.

Note that the InternalNode has no idea how to do the comparison; that is properly

left to the object itself. All the InternalNode knows is to ask the objects to compare

themselves and to expect one of three possible answers. Given one answer, it inserts;

otherwise, it just passes it along, not knowing or caring where it will end up.

So who’s in charge? In a well-designed object-oriented program, no one is in charge.

Each object does its own little job, and the net effect is a well-running machine.

The beauty of a linked list is that you can put any data type you would like in the

Data of this class. In this case, it contained an integer. It could contain multiple built-

in data types or even other objects (including other linked lists).

The use of dynamic memory allows linked lists to use very little memory when small,

and lots of memory if they grow large. The important thing is that they only use

304 HOUR 20: Using Special Classes, Functions, and Pointers

The StaticCat program in Listing 20.1 declares a Cat object with a static data mem-

ber, howManyCats. This variable keeps track of how many Cat objects have been cre-

ated by incrementing a static variable. The variable increases with each construction

and decreases with each destruction.

LISTING 20.1 The Full Text of StaticCat.cpp
1: #include <iostream>
2:
3: class Cat
4: {
5: public:
6: Cat(int newAge = 1):age(newAge){ howManyCats++; }
7: virtual ~Cat() { howManyCats—; }
8: virtual int getAge() { return age; }
9: virtual void setAge(int newAge) { age = newAge; }
10: static int howManyCats;
11:
12: private:
13: int age;
14: };
15:
16: int Cat::howManyCats = 0;
17:
18: int main()
19: {
20: const int maxCats = 5;
21: Cat *catHouse[maxCats];
22: int i;
23: for (i = 0; i < maxCats; i++)
24: catHouse[i] = new Cat(i);
25:
26: for (i = 0; i < maxCats; i++)
27: {
28: std::cout << “There are “;
29: std::cout << Cat::howManyCats;
30: std::cout << “ cats left!\n”;
31: std::cout << “Deleting the one which is “;
32: std::cout << catHouse[i]->getAge();
33: std::cout << “ years old\n”;
34: delete catHouse[i];
35: catHouse[i] = 0;
36: }
37: return 0;
38: }

Run the program to see it create five cats and then delete the objects:

There are 5 cats left!
Deleting the one which is 0 years old
There are 4 cats left!
Deleting the one which is 1 years old
There are 3 cats left!
Deleting the one which is 2 years old
There are 2 cats left!

Static Member Functions 305

Deleting the one which is 3 years old
There are 1 cats left!
Deleting the one which is 4 years old

On lines 3–14, the simplified class Cat is declared. On line 10, howManyCats is

declared to be a static member variable of type int.

The declaration of howManyCats does not define an integer; no storage space is set

aside. Unlike the nonstatic member variables, no storage space is set aside for static

members as a result of instantiating a Cat object, because the howManyCats member

variable is not in the object. Therefore, on line 16 the variable is defined and initial-

ized.

It is a common mistake to forget to define the static member variables of classes. You

don’t need to do this for age on line 13 because it is a nonstatic member variable

and is defined each time you make a Cat object, which is done here on line 24.

The constructor for Cat increments the static member variable on line 6. The destruc-

tor decrements it on line 7. Therefore, at any moment, howManyCats has an accurate

measure of how many Cat objects were created but not yet destroyed.

The main function that begins on lines 19 instantiates five Cat objects and puts

them in an array. This calls five Cat constructors; thus howManyCats is incremented

from 0 to 5.

The program then loops through each of the five positions in the array and displays

the value of howManyCats before deleting the current Cat pointer. The output reflects

that the starting value is 5 (after all, five are constructed), and that each time the

loop is run, one less Cat remains.

Note that howManyCats is public and is accessed directly by main(). It is preferable to

make it private along with the other member variables and provide a public acces-

sor, as long as you will always access the data through an instance of Cat. If you’d

like to access this data directly without necessarily having a Cat object available, you

have two options: Keep it public or provide a static member function.

Static Member Functions
Static member functions are like static member variables: They exist not in an object

but in the scope of the class. Therefore, they can be called without having an object

of that class, as illustrated in Listing 20.2.

306 HOUR 20: Using Special Classes, Functions, and Pointers

LISTING 20.2 The Full Text of StaticFunction.cpp

1: #include <iostream>
2:
3: class Cat
4: {
5: public:
6: Cat(int newAge = 1):age(newAge){ howManyCats++; }
7: virtual ~Cat() { howManyCats—; }
8: virtual int gGetAge() { return age; }
9: virtual void setAge(int newAge) { age = newAge; }
10: static int getHowMany() { return howManyCats; }
11: private:
12: int age;
13: static int howManyCats;
14: };
15:
16: int Cat::howManyCats = 0;
17:
18: void countCats();
19:
20: int main()
21: {
22: const int maxCats = 5;
23: Cat *catHouse[maxCats];
24: int i;
25: for (i = 0; i < maxCats; i++)
26: {
27: catHouse[i] = new Cat(i);
28: countCats();
29: }
30:
31: for (i = 0; i < maxCats; i++)
32: {
33: delete catHouse[i];
34: countCats();
35: }
36: return 0;
37: }
38:
39: void countCats()
40: {
41: std::cout << “There are “ << Cat::getHowMany()
42: << “ cats alive!\n”;
43: }

The StaticFunction program creates five cats, using the countCats() static function

each time to see how many cats exist, as the output demonstrates:

There are 1 cats alive
There are 2 cats alive
There are 3 cats alive
There are 4 cats alive
There are 5 cats alive
There are 4 cats alive
There are 3 cats alive
There are 2 cats alive
There are 1 cats alive
There are 0 cats alive

Containment of Classes 307

The static member variable howManyCats is declared to have private access on lines

11 and 13 of the Cat declaration. The public accessor getHowMany() is declared to be

both public and static on line 10.

Because getHowMany() is public, it can be accessed by any function. Because it is

static, there is no need to have an object of type Cat on which to call it. Therefore, on

line 41, the function countCats() is able to access the public static accessor even

though it has no access to a Cat object. Of course, you could have called

getHowMany() on any Cat objects available in main(), as with any other accessor

function.

Static member functions do not have a this pointer, so they cannot be declared
const. Also, because member data variables are accessed in member functions
using the this pointer, static member functions cannot access any nonstatic
member variables.

Containment of Classes
As you have seen previously, it is possible for the member data of a class to include

objects of another class. C++ programmers say that the outer class contains the inner

class. An Employee class might contain String objects for the name of the employee

as well as integers for the employee’s salary and so forth.

The String class in Listing 20.3 defines a stripped-down but useful class. The file

should be saved as String.hpp and is used in another program later in this section.

LISTING 20.3 The Full Text of String.hpp.
1: #include <iostream>
2: #include <string.h>
3:
4: class String
5: {
6: public:
7: // constructors
8: String();
9: String(const char *const);
10: String(const String&);
11: ~String();
12:
13: // overloaded operators
14: char& operator[](int offset);
15: char operator[](int offset) const;
16: String operator+(const String&);
17: void operator+=(const String&);
18: String& operator= (const String &);
19:
20: // general accessors
21: int getLen() const { return len; }

By the
Way

308 HOUR 20: Using Special Classes, Functions, and Pointers

22: const char* getString() const { return value; }
23: // static int constructorCount;
24:
25: private:
26: String(int); // private constructor
27: char* value;
28: int len;
29: };
30:
31: // default constructor creates string of 0 bytes
32: String::String()
33: {
34: value = new char[1];
35: value[0] = ‘\0’;
36: len = 0;
37: // std::cout << “\tDefault string constructor\n”;
38: // constructorCount++;
39: }
40:
41: // private (helper) constructor, used only by
42: // class functions for creating a new string of
43: // required size. Null filled.
44: String::String(int len)
45: {
46: value = new char[len + 1];
47: int i;
48: for (i = 0; i < len; i++)
49: value[i] = ‘\0’;
50: len = len;
51: // std::cout << “\tString(int) constructor\n”;
52: // constructorCount++;
53: }
54:
55: String::String(const char* const cString)
56: {
57: len = strlen(cString);
58: value = new char[len + 1];
59: int i;
60: for (i = 0; i < len; i++)
61: value[i] = cString[i];
62: value[len] = ‘\0’;
63: // std::cout << “\tString(char*) constructor\n”;
64: // constructorCount++;
65: }
66:
67: String::String(const String& rhs)
68: {
69: len = rhs.getLen();
70: value = new char[len + 1];
71: int i;
72: for (i = 0; i < len; i++)
73: value[i] = rhs[i];
74: value[len] = ‘\0’;
75: // std::cout << “\tString(String&) constructor\n”;
76: // constructorCount++;
77: }
78:
79: String::~String()

LISTING 20.3 Continued

Containment of Classes 309

80: {
81: delete [] value;
82: len = 0;
83: // std::cout << “\tString destructor\n”;
84: }
85:
86: // operator equals, frees existing memory
87: // then copies string and size
88: String& String::operator=(const String &rhs)
89: {
90: if (this == &rhs)
91: return *this;
92: delete [] value;
93: len = rhs.getLen();
94: value = new char[len + 1];
95: int i;
96: for (i = 0; i < len; i++)
97: value[i] = rhs[i];
98: value[len] = ‘\0’;
99: return *this;
100: // std::cout << “\tString operator=\n”;
101: }
102:
103: //non constant offset operator, returns
104: // reference to character so it can be
105: // changed!
106: char& String::operator[](int offset)
107: {
108: if (offset > len)
109: return value[len - 1];
110: else
111: return value[offset];
112: }
113:
114: // constant offset operator for use
115: // on const objects (see copy constructor!)
116: char String::operator[](int offset) const
117: {
118: if (offset > len)
119: return value[len-1];
120: else
121: return value[offset];
122: }
123:
124: // creates a new string by adding current
125: // string to rhs
126: String String::operator+(const String& rhs)
127: {
128: int totalLen = len + rhs.getLen();
129: int i, j;
130: String temp(totalLen);
131: for (i = 0; i < len; i++)
132: temp[i] = value[i];
133: for (j = 0; j < rhs.getLen(); j++, i++)
134: temp[i] = rhs[j];
135: temp[totalLen] = ‘\0’;
136: return temp;
137: }

310 HOUR 20: Using Special Classes, Functions, and Pointers

138:
139: // changes current string, returns nothing
140: void String::operator+=(const String& rhs)
141: {
142: int rhsLen = rhs.getLen();
143: int totalLen = len + rhsLen;
144: int i, j;
145: String temp(totalLen);
146: for (i = 0; i < len; i++)
147: temp[i] = value[i];
148: for (j = 0; j < rhs.getLen(); j++, i++)
149: temp[i] = rhs[i - len];
150: temp[totalLen] = ‘\0’;
151: *this = temp;
152: }
153:
154: // int String::constructorCount = 0;

There’s no main() function in this listing, so it can’t be run as a program.

You have the code from Listing 20.3 in a file called String.hpp. Any time you need

the String class, you can include this code with an #include preprocessor directive.

For example, at the top of Listing 20.4, #include “string.hpp” appears. This adds

the String class to your program.

Note that a number of statements in Listing 20.3 are commented out; they are used

in the exercises. On line 22, the static member variable constructorCount is

declared, and on line 154 it is initialized. This variable is incremented in each String

constructor.

The Employee program (Listing 20.4) contains an Employee class that makes use of

three String objects.

LISTING 20.4 The Full Text of Employee.cpp

1: #include “String.hpp”
2:
3: class Employee
4: {
5: public:
6: Employee();
7: Employee(char *, char *, char *, long);
8: ~Employee();
9: Employee(const Employee&);
10: Employee& operator=(const Employee&);
11:
12: const String& getFirstName() const { return firstName; }
13: const String& getLastName() const { return lastName; }
14: const String& getAddress() const { return address; }
15: long getSalary() const { return salary; }
16:
17: void setFirstName(const String& fName)
18: { firstName = fName; }

LISTING 20.3 Continued

Containment of Classes 311

19: void setLastName(const String& lName)
20: { lastName = lName; }
21: void setAddress(const String& newAddress)
22: { address = newAddress; }
23: void setSalary(long newSalary) { salary = newSalary; }
24: private:
25: String firstName;
26: String lastName;
27: String address;
28: long salary;
29: };
30:
31: Employee::Employee():
32: firstName(““),
33: lastName(““),
34: address(““),
35: salary(0)
36: {}
37:
38: Employee::Employee(char* newFirstName, char* newLastName,
39: char* newAddress, long newSalary):
40: firstName(newFirstName),
41: lastName(newLastName),
42: address(newAddress),
43: salary(newSalary)
44: {}
45:
46: Employee::Employee(const Employee& rhs):
47: firstName(rhs.getFirstName()),
48: lastName(rhs.getLastName()),
49: address(rhs.getAddress()),
50: salary(rhs.getSalary())
51: {}
52:
53: Employee::~Employee() {}
54:
55: Employee& Employee::operator=(const Employee& rhs)
56: {
57: if (this == &rhs)
58: return *this;
59:
60: firstName = rhs.getFirstName();
61: lastName = rhs.getLastName();
62: address = rhs.getAddress();
63: salary = rhs.getSalary();
64:
65: return *this;
66: }
67:
68: int main()
69: {
70: Employee edie(“Jane”, “Doe”, “1461 Shore Parkway”, 20000);
71: edie.setSalary(50000);
72: String lastName(“Levine”);
73: edie.setLastName(lastName);
74: edie.setFirstName(“Edythe”);

312 HOUR 20: Using Special Classes, Functions, and Pointers

75:
76: std::cout << “Name: “;
77: std::cout << edie.getFirstName().getString();
78: std::cout << “ “ << edie.getLastName().getString();
79: std::cout << “.\nAddress: “;
80: std::cout << edie.getAddress().getString();
81: std::cout << “.\nSalary: “ ;
82: std::cout << edie.getSalary() << “\n”;
83: return 0;
84: }

The following output is displayed:

Name; Edythe Levine
Address: 1461 Shore Parkway
Salary: 50000

Listing 20.4 shows the Employee class, which contains three String objects:

firstName, lastName, and address.

On line 70, an Employee object is created and four values are passed in to initialize it.

On line 71, the Employee access function setSalary() is called, with the literal 50000.

On line 72, a string is created and initialized using a C++ string constant. This string

object is then used as an argument to setLastName() on line 73.

On line 74, the Employee function setFirstName() is called with another string con-

stant. Employee does not have a function setFirstName() that takes a character

string as its argument; setFirstName() requires a constant string reference.

The compiler resolves this because it knows how to make a String object from a con-

stant character string. It knows this because you told it how to do so on line 9 of

Listing 20.3.

Accessing Members of the Contained Class
Employee objects do not have special access to the member variables of String. If the

Employee object edie tries to access the member variable len of its own firstName

member variable, it gets a compile-time error. This is not much of a burden, however.

The accessor functions provide an interface for the String class. The Employee class

need not worry about the implementation details any more than it worries about

how the integer variable, salary, stores its information.

Filtering Access to Contained Members
Note that the String class provides operator+. The designer of the Employee class

has blocked access to operator+ being called on Employee objects by declaring that

LISTING 20.4 Continued

Friend Classes and Functions 313

all the String accessors, such as getFirstName(), return a constant reference.

Because operator+ can’t be a const function because it changes the object it is called

on, attempting to write the following causes a compile-time error:

String buffer = edie.getFirstName() + edie.getLastName();

The getFirstName() function returns a constant String; you can’t call operator+

on a constant object.

To fix this, overload getFirstName() to be non-const:

const String& getFirstName() const { return firstName; }
String& getFirstName() { return firstName; }

Note that the return value is no longer const and that the member function itself is

no longer const. Changing the return value is not sufficient to overload the function

name; you must change the constancy of the function itself. Because both a const

and a non-const version are provided, the compiler invokes the const version wher-

ever possible (for example, when a client calls getFirstName) and the non-const ver-

sion as needed (for example, when invoked with operator+).

It is important to note that the user of an Employee class pays the price of each
of those String objects every time one is constructed or a copy of the Employee
is made.

Copying by Value Versus by Reference
When you pass Employee objects by value, all their contained strings are copied as

well, and therefore copy constructors are called. This is very expensive; it takes up

memory and it takes time.

When you pass Employee objects by reference using pointers or references, all this is

saved. This is why C++ programmers work hard never to pass anything larger than a

few bytes by value.

Friend Classes and Functions
Sometimes you will create classes together, as a set. These paired classes might need

access to one another’s private members, but you might not want to make that infor-

mation public.

If you want to expose your private member data or functions to another class, you

must declare that class to be a friend. This extends the interface of your class to

include the friend class.

Watch
Out!

314 HOUR 20: Using Special Classes, Functions, and Pointers

This friendship cannot be transferred and is not inherited. It also is not commutative.

Assigning Class1 to be a friend of Class2 does not make Class2 a friend of Class1.

Declarations of friend classes should be used with extreme caution. If two classes are

inextricably entwined, and one must frequently access data in the other, there might be

good reason to use this declaration. It is often just as easy to use public accessors

instead. Doing so allows you to change one class without having to recompile the other.

At times, you will want to grant the friend level of access not to an entire class, but

only to one or two functions of that class. You can do this by declaring the member

functions of the other class to be friends, instead of declaring the entire class to be a

friend. In fact, you can declare any function, whether or not it is a member function

of another class, to be a friend function.

Pointers to Functions
Just as an array name is a constant pointer to the first element of the array, a func-

tion name is a constant pointer to the function. It is possible to declare a pointer vari-

able that points to a function, and to invoke the function by using that pointer. This

can prove very useful; it allows you to create programs that decide which functions to

invoke based on user input.

The only tricky part about function pointers is understanding the type of the object

being pointed to. A pointer to int points to an integer variable, and a pointer to a

function must point to a function of the appropriate return type and signature.

In the declaration

long (*funcPtr)(int);

The funcPtr variable is declared to be a pointer that points to a function that takes

an integer parameter and returns a long. The parentheses around *funcPtr are nec-

essary because the parentheses around int have higher precedence than the indirec-

tion operator (*). Without the first parenthesis, this would declare a function that

takes an integer and returns a pointer to a long.

Examine these two declarations:

long* func(int);
long (*funcPtr)(int);

The first, func(), is a function taking an integer and returning a pointer to a variable

of type long. The second, funcPtr, is a pointer to a function taking an integer and

returning a variable of type long.

Friend Classes and Functions 315

The declaration of a function pointer always includes the return type and parentheses

indicating the type of the parameters, if any. The FunctionPointer program in Listing

20.5 illustrates the declaration and use of function pointers.

LISTING 20.5 The Full Text of FunctionPointer.cpp

1: #include <iostream>
2:
3: void square(int&, int&);
4: void cube(int&, int&);
5: void swap(int&, int&);
6: void getVals(int&, int&);
7: void printVals(int, int);
8:
9: int main()
10: {
11: void (*pFunc)(int&, int&);
12: bool fQuit = false;
13:
14: int valOne = 1, valTwo = 2;
15: int choice;
16: while (fQuit == false)
17: {
18: std::cout << “(0) Quit (1) Change Values “
19: << “(2) Square (3) Cube (4) Swap: “;
20: std::cin >> choice;
21: switch (choice)
22: {
23: case 1:
24: pFunc = getVals;
25: break;
26: case 2:
27: pFunc = square;
28: break;
29: case 3:
30: pFunc = cube;
31: break;
32: case 4:
33: pFunc = swap;
34: break;
35: default :
36: fQuit = true;
37: break;
38: }
39:
40: if (fQuit)
41: break;
42:
43: printVals(valOne, valTwo);
44: pFunc(valOne, valTwo);
45: printVals(valOne, valTwo);
46: }
47: return 0;
48: }
49:
50: void printVals(int x, int y)
51: {
52: std::cout << “x: “ << x << “ y: “ << y << “\n”;

316 HOUR 20: Using Special Classes, Functions, and Pointers

53: }
54:
55: void square(int &rX, int &rY)
56: {
57: rX *= rX;
58: rY *= rY;
59: }
60:
61: void cube(int &rX, int &rY)
62: {
63: int tmp;
64:
65: tmp = rX;
66: rX *= rX;
67: rX = rX * tmp;
68:
69: tmp = rY;
70: rY *= rY;
71: rY = rY * tmp;
72: }
73:
74: void swap(int &rX, int &rY)
75: {
76: int temp;
77: temp = rX;
78: rX = rY;
79: rY = temp;
80: }
81:
82: void getVals(int &rValOne, int &rValTwo)
83: {
84: std::cout << “New value for valOne: “;
85: std::cin >> rValOne;
86: std::cout << “New value for valTwo: “;
87: std::cin >> rValTwo;
88: }

Here’s the output of FunctionPointer:

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 1
x: 1 y:2
New value for valOne: 2
New value for valTwo: 3
x: 2 y:3
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 3
x: 2 y:3
x: 8 y: 27
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 2
x: 8 y: 27
x:64 y:729
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 4
x:64 y:729
x:729 y:64
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 0

On lines 3–6, four functions are declared, each with the same return type and signa-

ture, returning void and taking two references to integers.

LISTING 20.5 Continued

Friend Classes and Functions 317

On line 11, pFunc is declared to be a pointer to a function that returns void and

takes two integer reference parameters. Any of the previous functions can be pointed

to by pFunc. The user is repeatedly offered the choice of which functions to invoke,

and pFunc is assigned accordingly. On lines 43–45, the current values of the two inte-

gers are displayed, the currently assigned function is invoked, and then the values are

printed again.

The pointer to a function does not need to be dereferenced, although you are free to

do so. Therefore, if pFunc is a pointer to a function taking an integer and returning a

variable of type long, and you assign pFunc to a matching function, you can invoke

that function with either

pFunc(x);

or

(*pFunc)(x);

The two forms are identical. The former is just a shorthand version of the latter.

Arrays of Pointers to Functions
Just as you can declare an array of pointers to integers, you can declare an array of

pointers to functions returning a specific value type and with a specific signature. The

ArrayFunction program in Listing 20.6 demonstrates this.

LISTING 20.6 The Full Text of ArrayFunction.cpp

1: #include <iostream>
2:
3: void square(int&, int&);
4: void cube(int&, int&);
5: void swap(int&, int&);
6: void getVals(int&, int&);
7: void printVals(int, int);
8:
9: int main()
10: {
11: int valOne=1, valTwo=2;
12: int choice, i;
13: const int maxArray = 5;
14: void (*pFuncArray[maxArray])(int&, int&);
15:
16: for (i=0;i < maxArray; i++)
17: {
18: std::cout << “(1) Change Values “
19: << “(2) Square (3) Cube (4) Swap: “;
20: std::cin >> choice;
21: switch (choice)
22: {

318 HOUR 20: Using Special Classes, Functions, and Pointers

23: case 1:
24: pFuncArray[i] = getVals;
25: break;
26: case 2:
27: pFuncArray[i] = square;
28: break;
29: case 3:
30: pFuncArray[i] = cube;
31: break;
32: case 4:
33: pFuncArray[i] = swap;
34: break;
35: default:
36: pFuncArray[i] = 0;
37: }
38: }
39:
40: for (i = 0; i < maxArray; i++)
41: {
42: pFuncArray[i](valOne, valTwo);
43: printVals(valOne, valTwo);
44: }
45: return 0;
46: }
47:
48: void printVals(int x, int y)
49: {
50: std::cout << “x: “ << x << “ y: “ << y << “\n”;
51: }
52:
53: void square(int &rX, int &rY)
54: {
55: rX *= rX;
56: rY *= rY;
57: }
58:
59: void cube(int &rX, int &rY)
60: {
61: int tmp;
62:
63: tmp = rX;
64: rX *= rX;
65: rX = rX * tmp;
66:
67: tmp = rY;
68: rY *= rY;
69: rY = rY * tmp;
70: }
71:
72: void swap(int &rX, int &rY)
73: {
74: int temp;
75: temp = rX;
76: rX = rY;
77: rY = temp;
78: }
79:
80: void getVals(int &rValOne, int &rValTwo)

LISTING 20.6 Continued

Friend Classes and Functions 319

81: {
82: std::cout << “New value for valOne: “;
83: std::cin >> rValOne;
84: std::cout << “New value for valTwo: “;
85: std::cin >> rValTwo;
86: }

Here’s sample output using five user-selected options:

(1) Change Values (2) Square (3) Cube (4) Swap: 1
(1) Change Values (2) Square (3) Cube (4) Swap: 2
(1) Change Values (2) Square (3) Cube (4) Swap: 3
(1) Change Values (2) Square (3) Cube (4) Swap: 4
(1) Change Values (2) Square (3) Cube (4) Swap: 2
New Value for valOne: 2
New Value for valTwo: 3
x: 2 y: 3
x: 4 y: 9
x: 64 y: 729
x: 729 y: 64
x: 531441 y: 4096

In the for loop beginning on line 16, the user is asked to pick the functions to invoke.

Each member of the array is assigned the address of the appropriate function. In the

loop on lines 40–44, each function is invoked in turn. Line 42 executes the function

whose address is stored in the pFuncArray array. The result is displayed after each

invocation.

As mentioned at the beginning of the book. these projects do not guard against
invalid user input. If a value other than 1, 2, 3, or 4 is selected in the ArrayFunc-
tion program, it tries to call an undefined function on line 36 and fails with an
error.

Passing Pointers to Functions to Other Functions
The pointers to functions (and arrays of pointers to functions, for that matter) can be

passed to other functions that may take action and then call the right function using

the pointer.

For example, you might improve the ArrayFunction program by passing the chosen

function pointer to another function (outside of main()) that will display the values,

invoke the function, and then show them again. The FunctionPasser program (Listing

20.7) shows how this is done.

Watch
Out!

320 HOUR 20: Using Special Classes, Functions, and Pointers

LISTING 20.7 The Full Text of FunctionPasser.cpp

1: #include <iostream>
2:
3: void square(int&,int&);
4: void cube(int&, int&);
5: void swap(int&, int&);
6: void getVals(int&, int&);
7: void printVals(void (*)(int&, int&),int&, int&);
8:
9: int main()
10: {
11: int valOne=1, valTwo=2;
12: int choice;
13: bool fQuit = false;
14:
15: void (*pFunc)(int&, int&);
16:
17: while (fQuit == false)
18: {
19: std::cout << “(0) Quit (1) Change Values “
20: << “(2) Square (3) Cube (4) Swap: “;
21: std::cin >> choice;
22: switch (choice)
23: {
24: case 1:
25: pFunc = getVals;
26: break;
27: case 2:
28: pFunc = square;
29: break;
30: case 3:
31: pFunc = cube;
32: break;
33: case 4:
34: pFunc = swap;
35: break;
36: default:
37: fQuit = true;
38: break;
39: }
40: if (fQuit == true)
41: break;
42: printVals(pFunc, valOne, valTwo);
43: }
44:
45: return 0;
46: }
47:
48: void printVals(void (*pFunc)(int&, int&),int& x, int& y)
49: {
50: std::cout << “x: “ << x << “ y: “ << y << “\n”;
51: pFunc(x, y);
52: std::cout << “x: “ << x << “ y: “ << y << “\n”;
53: }
54:
55: void square(int &rX, int &rY)
56: {

Friend Classes and Functions 321

57: rX *= rX;
58: rY *= rY;
59: }
60:
61: void cube(int &rX, int &rY)
62: {
63: int tmp;
64:
65: tmp = rX;
66: rX *= rX;
67: rX = rX * tmp;
68:
69: tmp = rY;
70: rY *= rY;
71: rY = rY * tmp;
72: }
73:
74: void swap(int &rX, int &rY)
75: {
76: int temp;
77: temp = rX;
78: rX = rY;
79: rY = temp;
80: }
81:
82: void getVals(int &rValOne, int &rValTwo)
83: {
84: std::cout << “New value for valOne: “;
85: std::cin >> rValOne;
86: std::cout << “New value for valTwo: “;
87: std::cin >> rValTwo;
88: }

Here’s a sample run of the program:

(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 1
x: 1 y:2
New value for valOne: 2
New value for valTwo: 3
x: 2 y:3
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 3
x: 2 y:3
x: 8 y: 27
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 2
x: 8 y: 27
x:64 y:729
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 4
x:64 y:729
x:729 y:64
(0) Quit (1) Change Values (2) Square (3) Cube (4) Swap: 0

On line 15, pFunc is declared to be a pointer to a function returning void and taking

two parameters, both of which are integer references. On line 7, printVals is

declared to be a function taking three parameters. The first is a pointer to a function

322 HOUR 20: Using Special Classes, Functions, and Pointers

that returns void but takes two integer reference parameters, and the second and

third arguments to printVals are integer references. The user is again prompted

which functions to call, and then on line 42 printVals is called.

There is a more readable way of writing this with typedef.

Using typedef with Pointers to Functions
The construct void (*)(int&, int&) in the FunctionPasser program is cumbersome,

at best. You can use typedef to simplify this, by declaring a type VPF as a pointer to a

function returning void and taking two integer references:

typedef void (*VPF) (int&, int&);

The pFunc variable is declared to be of type VPF:

VPF pFunc;

The member function printVals() is declared to take three parameters, a VPF and

two integer references:

void printVals(VPF pFunc,int& x, int& y)

Remember that typedef creates a synonym; the only difference is readability.

Pointers to Member Functions
Up until this point, all the function pointers you’ve created have been for general,

nonclass functions. It also is possible to create pointers to functions that are members

of classes.

To create a pointer to member function, use the same syntax as with a pointer to a

function, but include the class name and the scoping operator (::). Therefore, if

pFunc points to a member function of the class Shape, which takes two integers and

returns void, the declaration for pFunc is the following:

void (Shape::*pFunc)(int, int);

Pointers to member functions are used in exactly the same way as pointers to func-

tions, except that they require an object of the correct class on which to invoke them.

The MemberPointer program in Listing 20.8 illustrates the use of pointers to member

functions.

Friend Classes and Functions 323

LISTING 20.8 The Full Text of MemberPointer.cpp

1: #include <iostream>
2:
3: enum BOOL {FALSE, TRUE};
4:
5: class Mammal
6: {
7: public:
8: Mammal():age(1) { }
9: virtual ~Mammal() { }
10: virtual void speak() const = 0;
11: virtual void move() const = 0;
12: protected:
13: int age;
14: };
15:
16: class Dog : public Mammal
17: {
18: public:
19: void speak() const { std::cout << “Woof!\n”; }
20: void move() const { std::cout << “Walking to heel ...\n”; }
21: };
22:
23: class Cat : public Mammal
24: {
25: public:
26: void speak() const { std::cout << “Meow!\n”; }
27: void move() const { std::cout << “Slinking...\n”; }
28: };
29:
30: class Horse : public Mammal
31: {
32: public:
33: void speak() const { std::cout << “Winnie!\n”; }
34: void move() const { std::cout << “Galloping ...\n”; }
35: };
36:
37: int main()
38: {
39: void (Mammal::*pFunc)() const = 0;
40: Mammal* ptr = 0;
41: int animal;
42: int method;
43: bool fQuit = false;
44:
45: while (fQuit == false)
46: {
47: std::cout << “(0) Quit (1) Dog (2) Cat (3) Horse: “;
48: std::cin >> animal;
49: switch (animal)
50: {
51: case 1:
52: ptr = new Dog;
53: break;
54: case 2:
55: ptr = new Cat;

324 HOUR 20: Using Special Classes, Functions, and Pointers

56: break;
57: case 3:
58: ptr = new Horse;
59: break;
60: default:
61: fQuit = true;
62: break;
63: }
64: if (fQuit)
65: break;
66:
67: std::cout << “(1) Speak (2) Move: “;
68: std::cin >> method;
69: switch (method)
70: {
71: case 1:
72: pFunc = &Mammal::speak;
73: break;
74: default:
75: pFunc = &Mammal::move;
76: break;
77: }
78:
79: (ptr->*pFunc)();
80: delete ptr;
81: }
82: return 0;
83: }

The program asks users to choose a type of object and then the behavior (function) to

call on that object. Here’s one run:

(0) Quit (1) Dog (2) Cat (3) Horse: 1
(1) Speak (2) Move: 1
Woof!
(0) Quit (1) Dog (2) Cat (3) Horse: 2
(1) Speak (2) Move: 1
Meow!
(0) Quit (1) Dog (2) Cat (3) Horse: 3
(1) Speak (2) Move: 2
Galloping
(0) Quit (1) Dog (2) Cat (3) Horse: 0

On lines 5–14, the abstract data type Mammal is declared with two pure virtual mem-

ber functions, speak() and move(). Mammal is subclassed into Dog, Cat, and Horse,

each of which overrides speak() and move().

The main() function asks the user to choose which type of animal to create, and

then a new subclass of Animal is created and assigned to ptr in the switch block on

lines 49–63.

LISTING 20.8 Continued

Friend Classes and Functions 325

The user is then prompted for which function to invoke, and that function is assigned

to the pointer pFunc. On line 79, the function chosen is invoked by the object created,

by using the pointer ptr to access the object and pFunc to access the function.

Finally, on line 80, delete is called on the pointer ptr to return the memory set aside

for the object to the heap.

There is no reason to call delete on pFunc because this is a pointer to code, not
to an object on the heap. In fact, attempting to do so generates a compile-time
error.

Arrays of Pointers to Member Functions
As with pointers to functions, pointers to member functions can be stored in an

array. The array can be initialized with the addresses of various member functions,

and those can be invoked by offsets into the array. Listing 20.9 illustrates this tech-

nique.

LISTING 20.9 The Full Text of MPFunction.cpp

1: #include <iostream>
2:
3: class Dog
4: {
5: public:
6: void speak() const { std::cout << “Woof!\n”; }
7: void move() const { std::cout << “Walking to heel ...\n”; }
8: void eat() const { std::cout << “Gobbling food ...\n”; }
9: void growl() const { std::cout << “Grrrrr\n”; }
10: void whimper() const { std::cout << “Whining noises ...\n”; }
11: void rollOver() const { std::cout << “Rolling over ...\n”; }
12: void playDead() const
13: { std::cout << “Is this the end of Little Caesar?\n”; }
14: };
15:
16: typedef void (Dog::*PDF)() const;
17:
18: int main()
19: {
20: const int maxFuncs = 7;
21: PDF dogFunctions[maxFuncs] =
22: { &Dog::speak,
23: &Dog::move,
24: &Dog::eat,
25: &Dog::growl,
26: &Dog::whimper,
27: &Dog::rollOver,
28: &Dog::playDead
29: };
30:
31: Dog* pDog =0;

By the
Way

326 HOUR 20: Using Special Classes, Functions, and Pointers

32: int method;
33: bool fQuit = false;
34:
35: while (!fQuit)
36: {
37: std::cout << “(0) Quit (1) Speak (2) Move (3) Eat (4) Growl”;
38: std::cout << “ (5) Whimper (6) Roll Over (7) Play Dead: “;
39: std::cin >> method;
40: if (method == 0)
41: {
42: fQuit = true;
43: break;
44: }
45: else
46: {
47: pDog = new Dog;
48: (pDog->*dogFunctions[method - 1])();
49: delete pDog;
50: }
51: }
52: return 0;
53: }

On lines 3–14, the class Dog is created with seven member functions all sharing the

same return type and signature. On line 16, a typedef declares PDF to be a pointer to

a member function of Dog that takes no arguments and returns no values, and that is

const. This is the signature of the seven member functions of Dog.

On lines 21–29, the array dogFunctions is declared to hold seven such member func-

tions, and it is initialized with the addresses of these functions.

On lines 37–39, the user is prompted to pick a function. Unless the user enters 0 to quit,

a new Dog is created on the heap, and the correct function is invoked on the array on

line 48.

Summary
This hour covered several ways to make your functions more powerful.

Static member variables serve as a way to store information about an entire class of

objects. They’re also useful as a technique in which objects of the same class can

exchange information with each other.

Static member functions provide a place for behavior that fits a class but does not

require a specific object of that class to operate on.

Friend functions make it possible for one class to expose its private member variables

and functions to another class that would not otherwise have access. Although nor-

LISTING 20.9 Continued

332 HOUR 21: Using New Features of C++0x

Null Pointer Constant
As you learned during Hour 10, “Creating Pointers,” it’s important when using point-

ers to make sure they always have a value. A pointer that is not initialized could be

pointing to anything in memory. These wild pointers, as they are called, pose a secu-

rity and stability risk to your programs.

To prevent this, pointers are assigned a null value when created. This can be done by

using either 0 or NULL as the value:

int *pBuffer = 0;

int *pBuffer = NULL;

These are both accomplishing the same thing. NULL is a preprocessor macro that is

converted to either 0 (an integer) or 0L (a long).

Setting null pointers in this manner works well in almost all circumstances, but it

creates an ambiguity when a class relies on function overloading. Consider an over-

loaded function that takes either a character pointer or an integer as an argument:

void displayBuffer(char *);
void displayBuffer(int);

If this function is called with a null pointer, the displayBuffer(int) member func-

tion will be called, despite the fact that this is probably not what the programmer

intended.

C++0x addresses this pointer problem with the addition of a new keyword, nullptr,

that represents the value of a null pointer:

int *pBuffer = nullptr;

The constant 0 also remains valid as a null pointer value, for reasons of backward

compatibility, but nullptr is preferred.

A nullptr value is not implicitly converted to integer types except for bool values.

For Booleans, nullptr converts to the value false.

The Swapper program (Listing 21.1) gives one variable the value of another using a

pointer.

LISTING 21.1 The Full Text of Swapper.cpp
1: #include <iostream>
2:
3: int main()
4: {
5: int value1 = 12500;
6: int value2 = 1700;

Compile-Time Constant Expressions 333

7: int *pointer2 = nullptr;
8:
9: // give pointer the address of value2
10: pointer2 = &value2;
11: // dereference the pointer and assign to value1
12: value1 = *pointer2;
13: pointer2 = 0;
14:
15: std::cout << “value1 = “ << value1 << “\n”;
16:
17: return 0;
18: }

Run Swapper to produce the following output:

value1 = 1700

The pointer2 variable is initialized as a null pointer, then assigned the address of

the value2 variable on line 10. This is dereferenced and stored in value1 (line 12),

replacing its original value.

Your compiler might fail with an error message such as “’nullptr’ was not declared
in this scope.” This error indicates that your C++ development environment does
not support the C++0x features described during this hour—or that you’re not
compiling with these features turned on. The GNU Compiler Collection version
4.6.0 supports C++0x, as long as you compile with the command-line option -
std=C++0x.

Even if your compiler doesn’t support these features, they should be simple
enough to learn even without hands-on experience trying them out.

Compile-Time Constant Expressions
C++ compilers do everything they can to make programs run faster, optimizing the code

that you’ve written wherever possible. One simple opportunity for increased efficiency is

when two constants are added together, as in this sample code:

const int decade = 10;
int year = 2011 + decade;

Because both halves of the expression 2011 + decade are constants, compilers evalu-

ate the expression and store it in compiled form as the result 2021. The compiler acts

as if year were assigned the value 2021.

Watch
Out!

334 HOUR 21: Using New Features of C++0x

Functions can use the const keyword to return a constant value:

const int getCentury()
{

return 100;
}

For this reason, you might think the following expression has the potential to be

optimized:

int year = 2011 + getCentury();

Although the member function returns a constant, the function itself might not be

constant. It might change global variables or call nonconstant member functions.

C++0x adds constant expressions to the language with the constexpr keyword:

constexpr int getCentury()
{

return 100;
}

The constant expression must have a non-void return type and contain return

expression as its contents. The expression returned only can contain literal values,

calls to other constant expressions or variables that also have been defined with

constexpr.

The following statement defines a variable to be constexpr:

const int century = 100;
constexpr year = 2011 + century;

The Circle program (Listing 21.2) makes use of a constant expression to represent the

value of PI, using it to calculate the area of a circle based on a radius value entered

by the user.

LISTING 21.2 The Full Text of Circle.cpp

1: #include <iostream>
2:
3:// get an approximate value of PI
4: constexpr double getPi() {
5: return (double) 22 / 7;
6: }
7:
8: int main()
9: {
10: float radius;
11:
12: std::cout << “Enter the radius of the circle: “;
13: std::cin >> radius;
14:
15: // the area equals PI * the radius squared

Auto-Typed Variables 335

16: double area = getPi() * (radius * radius);
17:
18: std::cout << “\nCircle’s area: “ << area << “\n”;
19:
20: return 0;
21: }

Here’s sample output for the program for a radius of 11:

Enter the radius of the circle: 11

Circle’s area: 380.286

C++ does not have a keyword for the value PI. A reasonable approximation of its

value suitable for some uses is to divide 22 by 7. When stored as a double in C++ it

equals 3.14286, the value of PI rounded to five places.

The Circle program calculates 22 / 7 as a constant expression. The function can do

this because it contains only one statement, the return expression, and only includes

literals, constants, or constant expressions.

The constexpr keyword is not supported in Microsoft Visual Studio 10, so you
can’t take advantage of the new feature if you’re doing C++ programming in that
development environment. It should be available in the next version.

Auto-Typed Variables
One of the first things you learned about variables in C++ is that the size of built-in

data types such as long and double can be different on different implementations.

The sizeof() function tells you how many bytes a type occupies:

std::cout << “Integers require “ << sizeof(int) << “ bytes.”

The new auto keyword in C++0x enables a type to be inferred based on the value

that’s initially assigned to it. The compiler figures out the proper data type.

Here’s an example:

auto index = 3;
auto gpa = 2.25F;
auto rate = 500 / 3.0;

These statements create an index variable that holds an int value, a gpa variable

that holds a float and a rate variable that holds a double. The literal assigned to

the variables at initialization determines the type of the variable.

Watch
Out!

336 HOUR 21: Using New Features of C++0x

In the rate statement, the expression 500 / 3.0 produces a double because one of

the operands is a double value.

This works with the return value of functions, as well:

auto score = calculateScore();

The return type of the function is the return type of the score variable.

auto is not a new data type in C++. The compiler determines the type and it’s as if the

following statements were encountered:

int index = 3;
float gpa = 2.25F;
double rate = 500 / 3.0;

Because of how auto works, it’s not permitted to declare an auto-typed variable with-

out assigning it a value at initialization.

There are a few limitations, as well. An array cannot use auto, and it cannot be used

as a function’s parameter or return type. None of the following statements compile:

auto ages[]={9, 11, 15};
int check(auto x);
auto printFile(int copies);

The auto keyword cannot be used to define class member variables or in struct

structures either, unless it is a static member.

Multiple variables can be assigned with an auto keyword as long as every one of the

variables has the same data type.

auto a = 86, b = 75, c = 309;

The Combat program (Listing 21.3) calculates combat statistics such as those for a

character in a videogame.

LISTING 21.3 The Full Text of Combat.cpp

1: #include <iostream>
2:
3: int main()
4: {
5: // define character values
6: auto strength;
7: auto accuracy;
8: auto dexterity;
9:
10: // define constants
11: const auto maximum = 50;
12:
13: // get user input
14: std::cout << “\nEnter strength (1-100): “;

Auto-Typed Variables 337

15: std::cin >> strength;
16:
17: std::cout << “\nEnter accuracy (1-50): “;
18: std::cin >> accuracy;
19:
20: std::cout << “\nEnter dexterity (1-50): “;
21: std::cin >> dexterity;
22:
23: // calculate character combat stats
24: auto attack = strength * (accuracy / maximum);
25: auto damage = strength * (dexterity / maximum);
26:
27: std::cout << “\nAttack rating: “ << attack << “\n”;
28: std::cout << “Damage rating: “ << damage << “\n”;
29: }

This program displays output such as the following:

Enter strength (1-100): 80

Enter accuracy (1-50): 45.5

Enter dexterity (1-50): 24

Attack rating: 72.8
Damage rating: 38.4

In lines 14–21, the user is asked to enter three attributes: the character’s strength,

accuracy, and dexterity. In lines 24–25, these are plugged in to formulas to calculate

an attack rating and damage rating. If this code were part of a game, the values

would be used when the character engages in combat.

All six variables in the program make use of the auto keyword, so if users enter inte-

gers they are treated as int variables. If users enter floating-point values, they’re

treated as double.

Run the program several times with different types of numeric input to see how the

answers change in numeric format.

There already was an auto keyword in C++ prior to version C++0x. It was sup-
posed to be used to indicate that a variable was local in scope. The developers of
C++ inspected millions of lines of code and found only a handful of uses, most of
which were in test suites. They decided the keyword was redundant and useless
and replaced it with this new functionality.

Any code that relies on the old meaning of auto will not work in C++0x.

Watch
Out!

338 HOUR 21: Using New Features of C++0x

New for Loop
One disadvantage of C++ relative to languages such as Java is the amount of code

required to do one of the most common tasks in programming. When you iterate

through the elements of an array or another list, the code is verbose and inelegant.

C++0x adds a new for loop that’s much easier for this task.

The for statement has two sections separated by a colon (:). The first is a reference

that holds the value of the list or list element. The second is the name of the list.

The following code multiplies every element of an array by 3 and displays the result:

int positions[5] = {4, 3, 10, 25, 8};
for (int &p: positions)
{

p *= 3;
std::cout << p << “\n”;

}

This is called a range-based for loop and can be used on arrays, initializer lists, and

any class that has a begin() and end() function that return iterators.

Summary
The features introduced during this hour are just the first that have been imple-

mented in compilers such as GCC (the GNU Compilers Collection).

C++0x will also include the following additions and improvements:

. The ability of constructors to call other constructors of that class

. A new return syntax for function templates

. Better virtual function overriding

. Unicode support for string literals

. User-defined literals

. The new built-in data type long long int

C++ creator Bjarne Stroustrop writes on his website that he’s enormously excited

about the new release: “C++0x feels like a new language: The pieces just fit together

better than they used to and I find a higher-level style of programming more natural

than before and as efficient as ever.”

For more of his thoughts, visit his site at http://www2.research.att.com/~bs/

C++0xFAQ.html.

344 HOUR 22: Employing Object-Oriented Analysis and Design

programmers working for many months, will require a more fully articulated archi-

tecture than a quick-and-dirty application written in one day by a single programmer.

This hour focuses on the design of large, complex programs that will be expanded

and enhanced over many years. Many programmers enjoy working at the bleeding

edge of technology; they tend to write programs whose complexity pushes at the lim-

its of their tools and understanding. In many ways, C++ was designed to extend the

complexity that a programmer or team of programmers can manage.

Simulating an Alarm System
A simulation is a computer model of a part of a real-world system. There are many

reasons to build a simulation, but a good design must start with an understanding of

what questions you hope the simulation will answer.

As a starting point, examine this problem: You have been asked to simulate the

alarm system for a house. The house is a center-hall colonial with four bedrooms, a

finished basement, and an under-the-house garage.

The downstairs has the following windows: three in the kitchen, four in the dining

room, one in the half-bathroom, two each in the living room and the family room,

and two small windows next to the front door. All four bedrooms are upstairs; each

bedroom has two windows except for the master bedroom, which has four. There are

two baths, each with one window. Finally, there are four half-windows in the base-

ment and one window in the garage.

Normal access to the house is through the front door. In addition, the kitchen has a

sliding glass door, and the garage has two doors for the cars and one door for easy

access to the basement. There is also a cellar door in the backyard.

All the windows and doors are alarmed, and there is a panic button on each phone

and one next to the bed in the master bedroom. The grounds are alarmed, as well,

although these alarms are carefully calibrated so that they are not set off by small

animals or birds.

A central alarm system in the basement sounds a warning chirp when the alarm has

been tripped. If the alarm is not disabled within a set amount of time, the police are

called. If a panic button is pushed, the police are called immediately.

The alarm is also wired into the fire and smoke detectors and the sprinkler system.

The alarm system itself is fault tolerant, has its own internal backup power supply,

and is encased in a fireproof box.

Simulating an Alarm System 345

Conceptualization
In the conceptualization phase, you try to understand what the customer hopes to

gain from the program: What is this program for? What questions might this simula-

tion answer? For example, you might be able to use the simulation to answer the

questions, “How long might a sensor be broken before anyone notices?” or “Is there a

way to defeat the window alarms without the police being notified?”

The conceptualization phase is a good time to think about what is inside the pro-

gram and what is outside. Are the police represented in the simulation? Is control of

the actual house alarm in the system itself?

Analysis and Requirements
The conceptualization phase gives way to the analysis phase. During analysis, your

job as object-oriented analyst is to help the customer understand what he requires

from the program. Exactly what behavior will the program exhibit? What kinds of

interactions can the customer expect?

These requirements are typically captured in a series of documents. These documents

might include use cases. A use case is a description of how the system will be used. It

describes interactions and use patterns, helping the programmer capture the design

goals of the system.

The Unified Modeling Language (UML) is one way of representing your require-
ments and analysis. The advantage of using UML to represent your information is
twofold: It’s graphical (easy to understand), and it follows a standard form (so
many people will be able to understand it). Although it is beyond the scope of this
book to teach UML (there are many good books on that topic alone), you should
know that it includes ways of representing use cases. It is particularly suited for
object-oriented development, because it supports abstract and other types of
classes directly.

One good resource is Sams Teach Yourself UML in 24 Hours, Third Edition (ISBN:
0-672-32640-X), by Joseph Schmuller.

By the
Way

346 HOUR 22: Employing Object-Oriented Analysis and Design

High-Level and Low-Level Design
After the product is fully understood and the requirements have been captured in the

appropriate documentation, it is time to move on to the high-level design. During

this phase of the design the programmer doesn’t worry about the platform, operating

system, or programming language issues. He concentrates, instead, on how the sys-

tem will work: What are the major components? How do they interact with one

another?

One way to approach this problem is to set aside issues relating to the user interface

and to focus only on the components of the problem space.

The problem space is the set of problems and issues your program is trying to solve.

The solution space is the set of possible solutions to the problems.

As your high-level design evolves you’ll want to begin thinking about the responsibil-

ities of the objects you identify—what they do and what information they hold. You

also want to think about their collaborations—what objects they interact with.

For example, clearly you have sensors of various types, a central alarm system, but-

tons, wires, and telephones. Further thought convinces you that you must also simu-

late rooms, perhaps floors, and possibly groups of people such as owners and police.

The sensors can be divided into motion detectors, trip wires, sound detectors, smoke

detectors, and so forth. All these are types of sensors, although there is no such thing

as a sensor per se. This is a good indication that sensor is an abstract data type (ADT).

As an ADT, the class Sensor would provide the complete interface for all types of sen-

sors, and each derived type would provide the implementation. Clients of the various

sensors would use them without regard to which type of sensor they are, and they

would each “do the right thing” based on their real type.

To create a good ADT, you need to have a complete understanding of what sensors do

(rather than how they work). For example, are sensors passive devices or are they

active? Do they wait for some element to heat up, a wire to break, or a piece of caulk

to melt, or do they probe their environment? Perhaps some sensors have only a

binary state (alarm state or OK), but others have a more analog state (what is the

current temperature?). The interface to the abstract data type should be sufficiently

complete to handle all the anticipated needs of the myriad derived classes.

Other Objects
The design continues in this way, teasing out the various other classes that are

required to meet the specification. For example, if a log is to be kept, probably a timer

Simulating an Alarm System 347

is needed; should the timer poll each sensor, or should each sensor file its own report

periodically?

The user is going to need to be able to set up, disarm, and program the system, so a

terminal of some sort is required. You might want a separate object in your simula-

tion for the alarm program itself.

Designing the Classes
As you solve these problems, you will begin to design your classes. For example, you

already have an indication that HeatSensor will derive from Sensor. If the sensor is

to make periodic reports, it might also derive via multiple inheritance from Timer, or

it might have a timer as a member variable.

The HeatSensor will probably have member functions, such as currentTemp() and

setTempLimit(), and will probably inherit functions such as soundAlarm() from its

base class, Sensor.

A frequent issue in object-oriented design is that of encapsulation. You can imagine a

design in which the alarm system has a setting for maxTemp. The alarm system asks

the heat sensor what the current temperature is, compares it to the maximum tem-

perature, and sounds the alarm if it is too hot. One could argue that this violates the

principle of encapsulation. Perhaps it would be better if the alarm system didn’t know

or care about the details of temperature analysis—arguably that should be in the

HeatSensor.

Whether or not you agree with that argument, it is the kind of decision you want to

focus on during the analysis of the problem. To continue this analysis, one could

argue that only the sensor and the Log object should know any details of how sensor

activity is logged; the Alarm object shouldn’t know or care.

Good encapsulation is marked by each class having a coherent and complete set of

responsibilities, and no other class having the same responsibilities. If the Sensor is

responsible for noting the current temperature, no other class should have that

responsibility.

On the other hand, other classes might help deliver the necessary functionality. For

example, although it might be the responsibility of the Sensor class to note and log

the current temperature, it might implement that responsibility by delegating to a

Log object the job of actually recording the data.

Maintaining a firm division of responsibilities makes your program easier to extend

and maintain. When you decide to change the alarm system for an enhanced mod-

ule, its interface to the log and to the sensors will be narrow and well defined.

Changes to the alarm system should not affect the Sensor classes, and vice versa.

348 HOUR 22: Employing Object-Oriented Analysis and Design

Should the HeatSensor have a reportAlarm() function? All sensors will need the

capability to report an alarm. This is a good indication that reportAlarm() should

be a virtual member function of Sensor, and that Sensor might be an abstract base

class. It is possible that HeatSensor will chain up to Sensor’s more general

reportAlarm() member function; the overridden function will just fill in the details it

is uniquely qualified to supply.

You might want to consider checking out the Addison-Wesley book The Object-Ori-
ented Thought Process, Third Edition (ISBN: 0-672-33016-4), by Matt Weisfeld, for
additional information about object-oriented concepts.

Adding More Classes
When your sensors report an alarm condition, they want to provide a lot of informa-

tion to the object that phones the police and to the log. It might well be that you

want to create a Condition class, whose constructor takes a number of measure-

ments. Depending on the complexity of the measurements, these too might be

objects, or they might be simple scalar values such as integers.

It is possible that Condition objects are passed to the central alarm object, or that

Condition objects are subclassed into Alarm objects, which themselves know how to

take emergency action. Perhaps there is no central object; instead, there might be

sensors that know how to create Condition objects. Some Condition objects would

know how to log themselves; others might know how to contact the police.

A well-designed, event-driven system need not have a central coordinator. One can

imagine the sensors all independently receiving and sending message objects to one

another, setting parameters, taking readings, monitoring the house. When a fault is

detected, an Alarm object is created that logs the problem—such as by sending a mes-

sage to the Log object—and takes the appropriate action.

Event Loops
To simulate such an event-driven system, your program needs to create an event

loop. An event loop is typically an infinite loop such as while(true) that gets mes-

sages from the operating system (mouse clicks, keyboard presses, and so on) and dis-

patches them one by one, returning to the loop until an exit condition is satisfied.

The SimpleEvent program in Listing 22.1 shows a rudimentary event loop.

LISTING 22.1 The Full Text of SimpleEvent.cpp
1: #include <iostream>
2:
3: class Condition

By the
Way

Simulating an Alarm System 349

4: {
5: public:
6: Condition() { }
7: virtual ~Condition() {}
8: virtual void log() = 0;
9: };
10:
11: class Normal : public Condition
12: {
13: public:
14: Normal() { log(); }
15: virtual ~Normal() {}
16: virtual void log()
17: { std::cout << “Logging normal conditions ...\n”; }
18: };
19:
20: class Error : public Condition
21: {
22: public:
23: Error() { log(); }
24: virtual ~Error() {}
25: virtual void log() { std::cout << “Logging error!\n”; }
26: };
27:
28: class Alarm : public Condition
29: {
30: public:
31: Alarm();
32: virtual ~Alarm() {}
33: virtual void warn() { std::cout << “Warning!\n”; }
34: virtual void log() { std::cout << “General alarm log\n”; }
35: virtual void call() = 0;
36: };
37:
38: Alarm::Alarm()
39: {
40: log();
41: warn();
42: }
43:
44: class FireAlarm : public Alarm
45: {
46: public:
47: FireAlarm() { log();};
48: virtual ~FireAlarm() {}
49: virtual void call() { std::cout<< “Calling fire department!\n”; }
50: virtual void log() { std::cout << “Logging fire call\n”; }
51: };
52:
53: int main()
54: {
55: int input;
56: int okay = 1;
57: Condition *pCondition;
58: while (okay)
59: {
60: std::cout << “(0) Quit (1) Normal (2) Fire: “;
61: std::cin >> input;

350 HOUR 22: Employing Object-Oriented Analysis and Design

LISTING 22.1 Continued
62: okay = input;
63: switch (input)
64: {
65: case 0:
66: break;
67: case 1:
68: pCondition = new Normal;
69: delete pCondition;
70: break;
71: case 2:
72: pCondition = new FireAlarm;
73: delete pCondition;
74: break;
75: default:
76: pCondition = new Error;
77: delete pCondition;
78: okay = 0;
79: break;
80: }
81: }
82: return 0;
83: }

The SimpleEvent program takes one of three options as input. Here’s one run of the

program:

(0) Quit (1) Normal (2) Fire: 1
Logging normal conditions ...
(0) Quit (1) Normal (2) Fire: 2
General alarm log
Warning!
Logging fire call
(0) Quit (1) Normal (2) Fire: 0

The simple loop on lines 58–81 enables the user to enter input simulating a normal

report from a sensor and a report of a fire. Note that the effect of this report is to

spawn a Condition object whose constructor calls various member functions.

Calling virtual member functions from a constructor can cause confusing results if

you are not mindful of the order of construction of objects. For example, when the

FireAlarm object is created on line 72, the order of construction is Condition, Alarm,

FireAlarm.

The Alarm constructor calls Log, but it is Alarm’s log() that is invoked, not

FireAlarm’s, despite log() being declared virtual.

This is because at the time Alarm’s constructor runs, there is no FireAlarm object.

Later, when FireAlarm itself is constructed, its constructor calls log() again, and this

time FireAlarm::log() is called.

PostMaster: A Case Study 351

PostMaster: A Case Study
Here’s another problem on which to practice your object-oriented analysis: You have

been hired by Defective Software to start a new software project and to hire a team of

C++ programmers to implement your program. Sam Snett, vice-president of New

Product Development, is your new boss. He wants you to design and build PostMaster,

a utility to read electronic mail from various unrelated email providers. The potential

customer is a business person who uses more than one email product (for example,

Gmail, Hotmail, and Lotus Notes).

The customer will be able to teach PostMaster how to connect to each of the email

providers. PostMaster will get the mail and then present it in a uniform manner,

enabling the customer to organize the mail, reply, forward letters among services,

and so forth.

PostMaster Professional, to be developed as version two of PostMaster, is already

anticipated. It will add an administrative assistant mode that will enable the user to

designate another person to read some or all of the mail, to handle routine corre-

spondence, and so forth. There is also speculation in the marketing department that

an artificial-intelligence component might add the capability for PostMaster to pre-

sort and prioritize the mail based on subject and content keywords and associations.

Other enhancements have been talked about, including the capability to handle not

only mail but discussion groups, such as Internet newsgroups and mail lists. It is

obvious that Acme has great hopes for PostMaster, and you are under severe time

constraints to bring it to market, although you seem to have a nearly unlimited

budget.

Measure Twice, Cut Once
You set up your office and order your equipment; your first order of business is then to

get a good specification for the product. After examining the market, you decide to

recommend that development be focused on a single platform, and you set out to

decide among Linux, Mac OS, and Windows.

You have many painful meetings with Snett. It becomes clear that there is no right

choice, so you decide to separate the front end—that is, the user interface (or UI)—

from the back end—the communications and database part. To get things going

quickly, you decide to write for Windows, followed later by Mac OS and perhaps Linux.

This simple decision has enormous ramifications for your project. It quickly becomes

obvious that you need a class library or a series of libraries to handle memory man-

352 HOUR 22: Employing Object-Oriented Analysis and Design

agement, the various user interfaces, and perhaps also the communications and

database components.

Snett believes strongly that projects live or die by having one person with a clear

vision, so he asks that you do the initial architectural analysis and design before hir-

ing any programmers. You set out to analyze the problem.

Divide and Conquer
It quickly becomes obvious that you really have more than one problem to solve. You

divide the project into these significant subprojects:

. Communications: The capability for the software to dial into the email

provider via modem, or to connect over a network.

. Database: The capability to store data and to retrieve it from disk.

. Email: The capability to read various email formats and to write new

messages to each system.

. Editing: Providing state-of-the-art editors for the creation and manipulation of

messages.

. Platform issues: The various UI issues presented by each platform.

. Extensibility: Planning for growth and enhancements.

. Organization and scheduling: Managing the various developers and their

code interdependencies. Each group must devise and publish schedules, and

then be able to plan accordingly. Senior management and marketing need to

know when the product will be ready.

You decide to hire a manager to handle one of these items, organization and schedul-

ing. You then hire senior developers to help you analyze and design, and then to

manage the implementation of the remaining areas. These senior developers will cre-

ate the following teams:

. Communications: Responsible for both dial-up and network communications.

They deal with packets, streams, and bits rather than with email messages per se.

. Message format: Responsible for converting messages from each email provider

to a canonical form (PostMaster standard), and back. It is also this team’s job to

write these messages to disk and to get them back off the disk as needed.

. Message Editors: This group is responsible for the entire UI of the product, on

each platform. It is the editors’ job to ensure that the interface between the

PostMaster: A Case Study 353

back end and the front end of the product is sufficiently narrow so that extend-

ing the product to other platforms does not require duplication of code.

Message Format
You decide to focus on the message format first, setting aside the issues relating to

communications and user interface. These will follow after you understand more fully

what it is you are dealing with. There is little sense in worrying about how to present

the information to the user until you understand what kind of information it is.

An examination of the various email formats reveals that they have many things in

common, despite their various differences. Each email message has a point of origi-

nation, a destination, and a creation date. Nearly all such messages have a title or

subject line, and a body that might consist of simple text, rich text (text with format-

ting), graphics, and perhaps even sound or other fancy additions. Most such email

services also support attachments so that users can send programs and other files.

You confirm your early decision that you will read each mail message out of its origi-

nal format and into PostMaster format. This way you will have to store only one

record format, and writing to and reading from the disk will be simplified. You also

decide to separate the header information (sender, recipient, date, title, and so on)

from the body of the message. Often the user will want to scan the headers without

necessarily reading the contents of all the messages. You anticipate that a time might

come when users will want to download only the headers from the message provider,

without getting the text at all, but for now you intend that version one of PostMaster

will always get the full message, although it might not display it to the user.

Initial Class Design
This analysis of the messages leads you to design the Message class. In anticipation

of extending the program to non-email messages, you derive EmailMessage from the

abstract base Message. From EmailMessage you derive PostMasterMessage,

InterchangeMessage, LotusMessage, GmailMessage, and so forth.

Messages are a natural choice for objects in a program handling mail messages, but

finding all the right objects in a complex system is the single greatest challenge of

object-oriented programming. In some cases, such as with messages, the primary

objects seem to fall out of your understanding of the problem. More often, however,

you have to think long and hard about what you are trying to accomplish to find the

right objects.

354 HOUR 22: Employing Object-Oriented Analysis and Design

Don’t despair. Most designs are not perfect the first time. A good starting point is to

describe the problem out loud. Make a list of all the nouns and verbs you use when

describing the project. The nouns are good candidates for objects. The verbs might be

the functions of those objects (or they might be objects in their own right). This is not

a foolproof technique, but it is a good technique to use when getting started on your

design.

That was the easy part. Now the question arises, “Should the message header be a

separate class from the body?” If so, do you need parallel hierarchies—

NewsGroupBody and NewsGroupHeader as well as EmailBody and EmailHeader?

Parallel hierarchies are often a warning sign of a bad design. It is a common error in

object-oriented design to have a set of objects in one hierarchy and a matching set of

manager objects in another. The burden of keeping these hierarchies up-to-date and in

sync with each other soon becomes overwhelming: a classic maintenance nightmare.

There are no hard-and-fast rules, of course, and at times such parallel hierarchies are

the most efficient way to solve a particular problem. Nonetheless, if you see your

design moving in this direction, you should rethink the problem; a more elegant solu-

tion might be available.

When the messages arrive from the email provider, they will not necessarily be sepa-

rated into header and body; many will be one large stream of data that your pro-

gram will have to disentangle. Perhaps your hierarchy should reflect that idea

directly.

Further reflection on the tasks at hand leads you to try to list the properties of these

messages, with an eye toward introducing capabilities and data storage at the right

level of abstraction. Listing properties of your objects is a good way to find the data

members, as well as to shake out other objects you might need.

Mail messages will need to be stored, as will the user’s preferences, phone numbers,

and so forth. Storage clearly needs to be high up in the hierarchy. Should the mail

messages necessarily share a base class with the preferences?

Rooted Hierarchies Versus Nonrooted
There are two overall approaches to inheritance hierarchies: You can have all, or

nearly all, of your classes descend from a common root class, or you can have more

than one inheritance hierarchy. An advantage of a common root class is that you

often can avoid multiple inheritance; a disadvantage is that many times implemen-

tation will percolate up into the base class.

PostMaster: A Case Study 355

A set of classes is rooted if all share a common ancestor. Nonrooted hierarchies do not

all share a common base class.

Because you know that your product will be developed on many platforms, and

because multiple inheritance is complex and not necessarily well supported by all

compilers on all platforms, your first decision is to use a rooted hierarchy and single

inheritance. You decide to identify those places where multiple inheritance might be

used in the future. You can then design so that breaking apart the hierarchy and

adding multiple inheritance at a later time need not be traumatic to your entire

design.

You decide to prefix the name of all your internal classes with the letter p, so that you

can easily and quickly tell which classes are yours and which are from other libraries.

Your root class will be pObject. Nearly every class you create will descend from this

object. pObject itself will be kept fairly simple; only the data that absolutely every

item shares will appear in this class.

If you want a rooted hierarchy, you want to give the root class a fairly generic name

(like pObject) and few capabilities. The point of a root object is to be able to create

collections of all its descendants and refer to them as instances of pObject. The trade-

off is that rooted hierarchies often percolate interface up into the root class.

The next likely candidates for top-of-the-hierarchy status are pStored and pWired.

pStored objects are saved to disk at various times (for example, when the program is

not in use), and pWired objects are sent over the modem or network. Because nearly

all your objects will need to be stored to disk, it makes sense to push this functionality

up high in the hierarchy. Because all the objects that are sent over the modem must

be stored, but not all stored objects must be sent over the wire, it makes sense to

derive pWired from pStored.

Each derived class acquires all the knowledge (data) and functionality (member func-

tions) of its base class, and each should have one discrete additional capability. Thus

pWired might add various functions, but all these functions are designed to facilitate

transfer of data over a modem.

It is possible that all wired objects are stored, or that all stored objects are wired, or

that neither of those statements is true. If only some wired objects are stored, and

only some stored objects are wired, you will be forced either to use multiple inheri-

tance or to hack around the problem. A potential hack for such a situation would be

to inherit, for example, Wired from Stored, and then to make the stored functions do

nothing or return an error for those objects that are sent via modem but are never

stored.

PostMaster: A Case Study 357

The root class, pObject, will only have those data and functions that are common to

everything on your system. Perhaps every object should have a unique identification

number. You could create pID (PostMaster ID) and make that a member of pObject;

but first you must ask yourself, “Does any object that is not stored and not wired need

such a number?” That raises this question: Are there any objects that are not stored,

but that are part of this hierarchy?

If there are no such objects, you might want to consider collapsing pObject and

pStored into one class; after all, if all objects are stored, what is the point of the dif-

ferentiation? Thinking this through, you realize that there might be some objects,

such as address objects, that it would be beneficial to derive from pObject but that

will never be stored on their own; if they are stored it will be as part of some other

object.

This tells you that, for now, having a separate pObject class would be useful. You can

imagine that there will be an address book that will be a collection of pAddress

objects, and although no pAddress will ever be stored on its own, there would be util-

ity in having each one have its own unique identification number. You tentatively

assign pID to pObject; that means that pObject, at a minimum, will look like this:

class pOjbect
{
public:

pObject();
~pObject();
pID GetID()const;
void SetID();

private:
pID itsID;

}

Note a number of things about this class declaration. First, this class is not declared to

derive from any other; this is your root class. Second, there is no attempt to show

implementation, even for member functions such as GetID() that are likely to have

inline implementation when you are done.

Third, const member functions are already identified; this is part of the interface, not

the implementation. Finally, a new data type is implied: pID. Defining pID as a type

rather than using, for example, unsigned long, puts greater flexibility into your

design.

If it turns out that you don’t need an unsigned long, or that an unsigned long is

not sufficiently large, you can modify pID. That modification will affect every place

pID is used, and you won’t have to track down and edit every file with a pID in it.

For now, you use typedef to declare pID to be ULONG which, in turn, you declare to be

unsigned long. This raises the question: Where do these declarations go?

358 HOUR 22: Employing Object-Oriented Analysis and Design

When programming a large project, an overall design of the files is needed. A stan-

dard approach, one that you will follow for this project, is that each class appears in

its own header file, and the implementation for the class member functions appears

in an associated .cpp file. Therefore, you will have a file called Object.hpp and

another called Object.cpp. You anticipate having other files such as Msg.hpp and

Msg.cpp with the declaration of pMessage and the implementation of its functions,

respectively.

Building a Prototype
For a project as large as PostMaster, it is unlikely that your initial design will be com-

plete and perfect. It would be easy to become overwhelmed by the sheer scale of the

problem, and trying to create all the classes and to complete their interface before

writing a line of working code is a recipe for disaster.

There are a number of good reasons to try out your design on a prototype—a quick-

and-dirty working example of your core ideas. There are a number of different types

of prototypes, however, each meeting different needs.

An interface design prototype provides the chance to test the look and feel of your

product with potential users.

A functionality prototype does not have the final user interface, but enables users to

try out various features, such as forwarding messages or attaching files.

Finally, an architecture prototype might be designed to give you a chance to develop

a smaller version of the program and to assess how easily your design decisions will

scale up as the program is fleshed out.

It is imperative to keep your prototyping goals clear. Are you examining the user

interface, experimenting with functionality, or building a scale model of your final

product? A good architecture prototype makes a poor user interface prototype, and

vice versa.

It is also important to keep an eye on overengineering of the prototype, or becoming

so concerned with the investment you’ve made in the prototype that you are reluc-

tant to tear down the code and redesign as you progress.

The 80/80 Rule
A good design rule of thumb at this stage is to design for those things that 80% of the

people want to do 80% of the time, and to set aside your concerns about the remain-

ing 20%. The boundary conditions will need to be addressed sooner or later, but the

core of your design should focus on the 80/80.

PostMaster: A Case Study 359

Accordingly, you might decide to start by designing the principal classes, setting aside

the need for the secondary classes. Further, when you identify multiple classes that

will have similar designs with only minor refinements, you might choose to pick one

representative class and focus on that, leaving until later the design and implementa-

tion of its close cousins.

There is another rule, the 80/20 rule, that states this: The first 20% of your pro-
gram will take 80% of your time to code; the remaining 80% of your program will
take the other 80% of your time!

The real rule is that 80% of the time is required to do 20% of the work—or that
80% of a company’s profit will come from 20% of the customers. This rule has
wide application.

Designing the PostMasterMessage Class
In keeping with these considerations, you decide to focus on the

PostMasterMessage. This is the class that is most directly under your control.

As part of its interface, PostMasterMessage needs to talk with other types of mes-

sages, of course. You hope to be able to work closely with the other message

providers, and to get their message format specifications, but for now you can make

some smart guesses just by observing what is sent to your computer as you use their

services.

In any case, you know that every PostMasterMessage will have a sender, a recipi-

ent, a date, and a subject, as well as the body of the message and perhaps attached

files. This tells you that you’ll need accessors for each of these attributes, as well as

member functions to report on the size of the attached files, the size of the messages,

and so forth.

Some of the services to which you will connect will use rich text—that is, text with

formatting instructions to set the font, character size, and attributes such as bold and

italic. Other services do not support these attributes, and those that do might or

might not use their own proprietary scheme for managing rich text. Your class needs

conversion functions for turning rich text into plain ASCII, and perhaps for turning

other formats into PostMaster formats.

The Application Programming Interface
An application programming interface (API) is a set of documentation and routines

for using a service. Many of the mail providers will give you an API so that PostMas-

ter mail can take advantage of their more advanced features, such as rich text and

By the
Way

360 HOUR 22: Employing Object-Oriented Analysis and Design

embedding files. You also want to publish an API for PostMaster so that other

providers can plan for working with PostMaster in the future.

Your PostMasterMessage class needs to have a well-designed public interface, and

the conversion functions will be a principal component of PostMaster’s API. Listing

22.2 illustrates what PostMasterMessage’s interface looks like so far.

Because this listing does not define the base class (MailMessage), it will not com-
pile.

LISTING 22.2 The Full Text of PostMasterMessage.cpp

1: class PostMasterMessage : public MailMessage
2: {
3: public:
4: PostMasterMessage();
5: PostMasterMessage(
6: pAddress sender,
7: pAddress recipient,
8: pString subject,
9: pDate creationDate);
10:
11: // other constructors here
12: // remember to include copy constructor
13: // as well as constructor from storage
14: // and constructor from wire format
15: // Also include constructors from other formats
16: ~PostMasterMessage();
17: pAddress& getSender() const;
18: void setSender(pAddress&);
19: // other member accessors
20: // operator functions here, including operator equals
21: // and conversion routines to turn PostMaster messages
22: // into messages of other formats.
23:
24: private:
25: pAddress sender;
26: pAddress recipient;
27: pString subject;
28: pDate creationDate;
29: pDate lastModDate;
30: pDate receiptDate;
31: pDate firstReadDate;
32: pDate lastReadDate;
33: };

Class PostMasterMessage is declared to derive from MailMessage. A number of con-

structors will be provided, facilitating the creation of PostMasterMessages from other

types of mail messages.

Watch
Out!

PostMaster: A Case Study 361

A number of accessors are anticipated for reading and setting the various member

data, as well as operators for turning all or part of a message into other message for-

mats. You anticipate storing these messages to disk and reading them from the wire, so

accessors are noted for those purposes as well.

Programming in Large Groups
Even this preliminary architecture is enough to indicate how the various develop-

ment groups ought to proceed. The Communications group can go ahead and start

work on the communications back end, negotiating a narrow interface with the Mes-

sage Format group.

The Message Format group will probably lay out the general interface to the Message

classes, as was begun earlier, and then will turn its attention to the question of how to

write data to the disk and read it back. After this disk interface is well understood, the

team will be in a good position to negotiate the interface to the communications layer.

The message editors will be tempted to create editors with an intimate knowledge of

the internals of the message class, but this would be a bad design mistake. They too

must negotiate a very narrow interface to the message class; message editor objects

should know very little about the internal structure of messages.

Ongoing Design Considerations
As the project continues, you will repeatedly confront this basic design issue: In

which class should you put a given set of functionality (or information)? Should the

message class have this function, or should the address class? Should the editor store

this information, or should the message store it itself?

Your classes should operate on a need-to-know basis, much like secret agents. They

shouldn’t share any more knowledge than is absolutely necessary.

As you progress with your program, you will face hundreds of design issues. They will

range from the more global questions, “What do we want this to do?” to the more

specific, “How do we make this work?”

Although the details of your implementation won’t be finalized until you ship the

code, and some of the interfaces will continue to shift and change as you work, you

must ensure that your design is well understood early in the process. It is imperative

that you know what you are trying to build before you write the code. The single

most frequent cause of software dying on the vine must be that there is not sufficient

agreement, early enough in the process, about what is being built.

362 HOUR 22: Employing Object-Oriented Analysis and Design

To get a feel for what the design process is like, examine this question: What will be

on the menu? For PostMaster, the first choice is probably New Mail Message, and this

immediately raises another design issue: When the user selects New Mail Message,

what happens? Does an editor get created, which in turn creates a mail message, or

does a new mail message get created, which then creates the editor?

The command you are working with is New Mail Message, so creating a new mail

message seems like the obvious thing to do. But what happens if the user clicks Can-

cel after starting to write the message? Perhaps it would be cleaner to first create the

editor and have it create (and own) the new message.

The problem with this approach is that the editor will need to act differently if it is

creating a message than if it were editing the message; whereas if the message is cre-

ated first, and then handed to the editor, only one set of code needs to exist because

everything is an edit of an existing message.

If a message is created first, who creates it? Is it created by the menu command code?

If so, does the menu also tell the message to edit itself, or is this part of the construc-

tor function of the message?

It makes sense for the constructor to do this at first glance; after all, every time you

create a message you’ll probably want to edit it. Nonetheless, this is not a good

design idea. First, it is possible that the premise is wrong; you might create “canned”

messages (that is, error messages mailed to the system operator) that are not put into

an editor. Second, and more important, a constructor’s job is to create an object; it

should do no more and no less than that. After a mail message is created, the con-

structor’s job is done. Adding a call to the edit function just confuses the role of the

constructor and makes the mail message vulnerable to failures in the editor.

Worse yet, the edit function will call another class—the editor—causing its construc-

tor to be called. But the editor is not a base class of the message, nor is it contained

within the message. It would be unfortunate if the construction of the message

depended on successful construction of the editor.

Finally, you won’t want to call the editor at all if the message can’t be successfully

created; yet successful creation would, in this scenario, depend on calling the editor!

Clearly, you want to fully return from message’s constructor before calling

Message::Edit().

Working with Driver Programs
One approach to surfacing design issues is to create a driver program early in the

process. A driver program is a function that exists only to demonstrate or test other

functions. For example, the driver program for PostMaster might offer a simple menu

PostMaster: A Case Study 363

that will create PostMasterMessage objects, manipulate them, and otherwise exer-

cise some of the design. Another term for this is test harness.

Listing 22.3 illustrates a somewhat more robust definition of the PostMasterMessage

class and a simple driver program.

LISTING 22.3 The Full Text of Driver.cpp

1: #include <iostream>
2: #include <string.h>
3:
4: typedef unsigned long pDate;
5:
6: enum SERVICE { PostMaster, Interchange,
7: Gmail, Hotmail, AOL, Internet };
8:
9: class String
10: {
11: public:
12: // constructors
13: String();
14: String(const char *const);
15: String(const String&);
16: ~String();
17:
18: // overloaded operators
19: char& operator[](int offset);
20: char operator[](int offset) const;
21: String operator+(const String&);
22: void operator+=(const String&);
23: String& operator=(const String&);
24: friend std::ostream& operator<<
25: (std::ostream& stream, String& newString);
26: // General accessors
27: int getLen() const { return len; }
28: const char* getString() const { return string; }
29: // static int constructorCount;
30:
31: private:
32: String(int); // private constructor
33: char* string;
34: int len;
35: };
36:
37: // default constructor creates string of 0 bytes
38: String::String()
39: {
40: string = new char[1];
41: string[0] = ‘\0’;
42: len = 0;
43: // std::cout << “\tDefault string constructor\n”;
44: // constructorCount++;
45: }
46:
47: // private (helper) constructor, used only by
48: // class functions for creating a new string of
49: // required size. Null filled.

364 HOUR 22: Employing Object-Oriented Analysis and Design

LISTING 22.3 Continued
50: String::String(int newLen)
51: {
52: string = new char[newLen + 1];
53: int i;
54: for (i = 0; i <= newLen; i++)
55: string[1] = ‘\0’;
56: len = newLen;
57: // std::cout << “\tString(int) constructor\n”;
58: // constructorCount++;
59: }
60:
61: // Converts a character array to a String
62: String::String(const char* const cString)
63: {
64: len = strlen(cString);
65: string = new char[len + 1];
66: int i;
67: for (i = 0; i < len; i++)
68: string[i] = cString[i];
69: string[len]=’\0’;
70: // std::cout << “\tString(char*) constructor\n”;
71: // constructorCount++;
72: }
73:
74: // copy constructor
75: String::String(const String &rhs)
76: {
77: len = rhs.getLen();
78: string = new char[len + 1];
79: int i;
80: for (i = 0; i < len; i++)
81: string[i] = rhs[i];
82: string[len] = ‘\0’;
83: // std::cout << “\tString(String&) constructor\n”;
84: // constructorCount++;
85: }
86:
87: // destructor, frees allocated memory
88: String::~String ()
89: {
90: delete [] string;
91: len = 0;
92: // std::cout << “\tString destructor\n”;
93: }
94:
95: String& String::operator=(const String &rhs)
96: {
97: if (this == &rhs)
98: return *this;
99: delete [] string;
100: len = rhs.getLen();
101: string = new char[len + 1];
102: int i;
103: for (i = 0; i < len; i++)
104: string[i] = rhs[i];
105: string[len] = ‘\0’;
106: return *this;
107: // std::cout << “\tString operator=\n”;

PostMaster: A Case Study 365

108: }
109:
110: //non constant offset operator, returns
111: // reference to character so it can be changed
112: char &String::operator[](int offset)
113: {
114: if (offset > len)
115: return string[len - 1];
116: else
117: return string[offset];
118: }
119:
120: // constant offset operator for use
121: // on const objects (see copy constructor!)
122: char String::operator[](int offset) const
123: {
124: if (offset > len)
125: return string[len - 1];
126: else
127: return string[offset];
128: }
129:
130: // creates a new string by adding current
131: // string to rhs
132: String String::operator+(const String& rhs)
133: {
134: int totalLen = len + rhs.getLen();
135: String temp(totalLen);
136: int i, j;
137: for (i = 0; i < len; i++)
138: temp[i] = string[i];
139: for (j = 0; j < rhs.getLen(); j++, i++)
140: temp[i] = rhs[j];
141: temp[totalLen]=’\0’;
142: return temp;
143: }
144:
145: // changes current string, returns nothing
146: void String::operator+=(const String& rhs)
147: {
148: int rhsLen = rhs.getLen();
149: int totalLen = len + rhsLen;
150: String temp(totalLen);
151: int i, j;
152: for (i = 0; i < len; i++)
153: temp[i] = string[i];
154: for (j = 0; j < rhs.getLen(); j++, i++)
155: temp[i] = rhs[i - len];
156: temp[totalLen]=’\0’;
157: *this = temp;
158: }
159:
160: // int String::ConstructorCount = 0;
161:
162: std::ostream& operator<<(std::ostream& stream,
163: String& newString)
164: {
165: stream << newString.getString();

366 HOUR 22: Employing Object-Oriented Analysis and Design

LISTING 22.3 Continued
166: return stream;
167: }
168:
169: class pAddress
170: {
171: public:
172: pAddress(SERVICE newService,
173: const String& newAddress,
174: const String& newDisplay):
175: service(newService),
176: addressString(newAddress),
177: displayString(newDisplay)
178: {}
179: // pAddress(String, String);
180: // pAddress();
181: // pAddress(const pAddress&);
182: ~pAddress(){}
183: friend std::ostream& operator<<(
184: std::ostream& stream, pAddress& address);
185: String& getDisplayString()
186: { return displayString; }
187: private:
188: SERVICE service;
189: String addressString;
190: String displayString;
191: };
192:
193: std::ostream& operator<<
194: (std::ostream& stream, pAddress& address)
195: {
196: stream << address.getDisplayString();
197: return stream;
198: }
199:
200: class PostMasterMessage
201: {
202: public:
203: // PostMasterMessage();
204:
205: PostMasterMessage(const pAddress& newSender,
206: const pAddress& newRecipient,
207: const String& newSubject,
208: const pDate& newCreationDate);
209:
210: ~PostMasterMessage(){}
211:
212: void Edit(); // invokes editor on this message
213:
214: pAddress& getSender() { return sender; }
215: pAddress& getRecipient() { return recipient; }
216: String& getSubject() { return subject; }
217: // void setSender(pAddress&);
218: // other member accessors
219:
220: // operator functions here, including operator equals
221: // and conversion routines to turn PostMaster messages
222: // into messages of other formats.
223:

PostMaster: A Case Study 367

224: private:
225: pAddress sender;
226: pAddress recipient;
227: String subject;
228: pDate creationDate;
229: pDate lastModDate;
230: pDate receiptDate;
231: pDate firstReadDate;
232: pDate lastReadDate;
233: };
234:
235: PostMasterMessage::PostMasterMessage(
236: const pAddress& newSender,
237: const pAddress& newRecipient,
238: const String& newSubject,
239: const pDate& newCreationDate):
240: sender(newSender),
241: recipient(newRecipient),
242: subject(newSubject),
243: creationDate(newCreationDate),
244: lastModDate(newCreationDate),
245: firstReadDate(0),
246: lastReadDate(0)
247: {
248: std::cout << “Postmaster message created. \n”;
249: }
250:
251: void PostMasterMessage::Edit()
252: {
253: std::cout << “Postmaster message edit function called\n”;
254: }
255:
256:
257: int main()
258: {
259: pAddress sender(
260: PostMaster, “james@ekzemplo.com”, “James”);
261: pAddress recipient(
262: PostMaster, “sharon@ekzemplo.com”,”Sharon”);
263: PostMasterMessage postMasterMessage(
264: sender, recipient, “Greetings”, 0);
265: std::cout << “Message review... \n”;
266: std::cout << “From:\t\t”
267: << postMasterMessage.getSender() << “\n”;
268: std::cout << “To:\t\t”
269: << postMasterMessage.getRecipient() << “\n”;
270: std::cout << “Subject:\t”
271: << postMasterMessage.getSubject() << “\n”;
272: return 0;
273: }

Here’s the output:

Post Master Message created.
Message review...
From: James
To: Sharon
Subject: Greetings

368 HOUR 22: Employing Object-Oriented Analysis and Design

On line 4, pDate is type-defined to be an unsigned long. It is not uncommon for

dates to be stored as a long integer, typically as the number of seconds since an arbi-

trary starting date, such as January 1, 1900. In this program, this is a placeholder;

you would expect to eventually turn pDate into a real class.

On lines 6–7, an enumerated constant, SERVICE, is defined to enable the address

objects to keep track of what type of address they are, including PostMaster, Gmail,

and so forth.

Lines 9–167 represent the interface to and implementation of String, along much

the same lines as you have seen in previous chapters. The String class is used for a

number of member variables in all the message classes and in various other classes

used by messages, and as such, it is pivotal in your program. A full and robust

String class will be essential to making your message classes complete.

On lines 169–191, the pAddress class is declared. This represents only the fundamen-

tal functionality of this class, and you would expect to flesh this out after your pro-

gram is better understood. These objects represent essential components in every

message: both the sender’s address and that of the recipient. A fully functional

pAddress object will be able to handle forwarding messages, replies, and so forth.

It is the pAddress object’s job to keep track of both the display string and the internal

routing string for its service. One open question for your design is whether there

should be one pAddress object, or whether it should be subclassed for each service

type. For now, the service is tracked as an enumerated constant that is a member

variable of each pAddress object.

Lines 200–233 show the interface to the PostMasterMessage class. In this particular

listing, this class stands on its own, but soon you’ll want to make this part of its

inheritance hierarchy. When you do redesign this to inherit from Message, some of

the member variables might move into the base classes, and some of the member

functions might become overrides of base class member functions.

A variety of other constructors, accessors, and other member functions will be

required to make this class fully functional. Note that what this listing illustrates is

that your class does not have to be 100% complete before you can write a simple

driver program to test some of your assumptions.

On lines 251–254, the Edit() function is stubbed out in just enough detail to indi-

cate where the editing functionality will be put after this class is fully operational.

Lines 257–273 represent the driver program. Currently, this program does nothing

more than exercise a few of the accessor functions and the operator<< overload.

Q&A 369

Nonetheless, this gives you the starting point for experimenting with

PostMasterMessages and a framework within which you can modify these classes

and examine the impact.

Summary
Prior to the development of these object-oriented techniques, analysts and program-

mers tended to think of programs as functions that acted on data.

Object-oriented programming focuses on the integrated data and functionality as

discrete units that have both knowledge (data) and capabilities (functions).

A thorough grounding in the methodology of object-oriented programming, coupled

with time devoted to the design process for a program before a single line of code is

written, is necessary to develop robust and efficient C++ software.

Q&A
Q. Is object-oriented programming finally the silver bullet that will solve all pro-

gramming problems?

A. No, it was never intended to be. For large, complex problems, however, object-

oriented analysis, design, and programming can provide the programmer with

tools to manage enormous complexity in ways that were previously impossible.

Q. What is the systematic IUPAC name for a carboxylic acid with a potassium
ion in place of the acid hydrogen?

A. Potassium octanoate, according to professor Henri Favre, the chairman of the

Commission on Nomenclature of Organic Chemistry for IUPAC, the Interna-

tional Union of Pure and Applied Chemistry.

“There is no specific use for this corrosive acid,” Favre told me.

IUPAC is a scientific council that recommends names for chemicals, atomic

weights, and related areas of study. In 2004, the group participated in the deci-

sion to name atomic element 111 roentgenium after German physicist Wilhelm

Conrad Röntgen.

374 HOUR 23: Creating Templates

Templates, a relatively new addition to C++, offer a solution to this problem. In addi-

tion, unlike old-fashioned macros, templates are an integrated part of the language

and are type-safe and very flexible.

Templates enable you to create a general class and pass types as parameters to the

template to build specific instances of the parameterized type.

Instances of the Template
Templates enable you to teach the compiler how to make a list of any type of thing,

instead of creating a set of type-specific lists. A PartsList is a list of parts; a CatList

is a list of cats. The only way in which they differ is the type of the thing on the list.

With templates, the type of the thing on the list becomes a parameter to the defini-

tion of the class.

The act of creating an object (from a class) or a specific type from a template is called

instantiation, and the individual classes are called instances of the template.

Template Definition
You declare a parameterized List object (a template for a list) with the template

keyword, as in this code:

template <class T> // declare the template and the parameter
class List // the class being parameterized
{
public:

List();
// full class declaration here

};

The keyword template is used at the beginning of every declaration and definition

of a template class. The template’s parameters follow the keyword template; they

are the items that will change with each instance. For example, in the list template

shown in this code snippet, the type of the objects stored in the list will change. One

instance might store a list of Integer objects, another a list of Animals.

In this example, the keyword class is used, followed by the identifier T. The keyword

class indicates that this parameter is a type. The identifier T is used throughout the

rest of the template definition to refer to the parameterized type. One instance of this

class will substitute int everywhere T appears, and another will substitute Cat.

Template Definition 375

To declare an int and a Cat instance of the parameterized list class, you would write

the following:

List<int> intList;
List<Cat> catList;

The object intList is of the type list of integers; the object catList is a list of Cat

objects. You now can use the type List<int> anywhere you would normally use a

type—as the return value from a function, as a parameter to a function, and so forth.

The ParamList program (Listing 23.1) parameterizes the List object. This is an excel-

lent technique for building templates: Get your object working on a single type, as we

did in Hour 19. Then by parameterizing, generalize your object to handle any type.

LISTING 23.1 The Full Text of ParamList.cpp
1: // Demonstrates an object-oriented approach to parameterized
2: // linked lists. The list delegates to the node.
3: // The node is an abstract Object type. Three types of
4: // nodes are used, head nodes, tail nodes and internal
5: // nodes. Only the internal nodes hold Object.
6: //
7: // The Object class is created to serve as an object to
8: // hold in the linked list.
9: //
10: //***
11: #include <iostream>
12:
13: enum { kIsSmaller, kIsLarger, kIsSame};
14:
15: // Object class to put into the linked list
16: // Any class in this linked list must support two member
17: // functions: show (displays the value) and
18: // compare (returns relative position)
19: class Data
20: {
21: public:
22: Data(int newVal):value(newVal) {}
23: ~Data()
24: {
25: std::cout << “Deleting Data object with value: “;
26: std::cout << value << “\n”;
27: }
28: int compare(const Data&);
29: void show() { std::cout << value << “\n”; }
30: private:
31: int value;
32: };
33:
34: // compare is used to decide where in the list
35: // a particular object belongs.
36: int Data::compare(const Data& otherObject)
37: {
38: if (value < otherObject.value)

376 HOUR 23: Creating Templates

LISTING 23.1 Continued
39: return kIsSmaller;
40: if (value > otherObject.value)
41: return kIsLarger;
42: else
43: return kIsSame;
44: }
45:
46: // Another class to put into the linked list
47: // Again, every class in this linked
48: // list must support two member functions:
49: // Show (displays the value) and
50: // Compare (returns relative position)
51: class Cat
52: {
53: public:
54: Cat(int newAge): age(newAge) {}
55: ~Cat()
56: {
57: std::cout << “Deleting “;
58: std::cout << age << “ year old Cat.\n”;
59: }
60: int compare(const Cat&);
61: void show()
62: {
63: std::cout << “This cat is “;
64: std::cout << age << “ years old\n”;
65: }
66: private:
67: int age;
68: };
69:
70: // compare is used to decide where in the list
71: // a particular object belongs.
72: int Cat::compare(const Cat& otherCat)
73: {
74: if (age < otherCat.age)
75: return kIsSmaller;
76: if (age > otherCat.age)
77: return kIsLarger;
78: else
79: return kIsSame;
80: }
81:
82: // ADT representing the node object in the list
83: // Every derived class must override insert and show
84: template <class T>
85: class Node
86: {
87: public:
88: Node(){}
89: virtual ~Node() {}
90: virtual Node* insert(T* object) = 0;
91: virtual void show() = 0;
92: private:
93: };
94:
95: template <class T>
96: class InternalNode: public Node<T>
97: {

Template Definition 377

98: public:
99: InternalNode(T* object, Node<T>* next);
100: ~InternalNode(){ delete next; delete object; }
101: virtual Node<T> * insert(T * object);
102: virtual void show()
103: {
104: object->show();
105: next->show();
106: } // delegate!
107: private:
108: T* object; // the Object itself
109: Node<T>* next; // points to next node in the linked list
110: };
111:
112: // All the constructor does is initialize
113: template <class T>
114: InternalNode<T>::InternalNode(T* newObject, Node<T>* newNext):
115: object(newObject),next(newNext)
116: {
117: }
118:
119: // the meat of the list
120: // When you put a new object into the list
121: // it is passed to the node which figures out
122: // where it goes and inserts it into the list
123: template <class T>
124: Node<T>* InternalNode<T>::insert(T* newObject)
125: {
126: // is the new guy bigger or smaller than me?
127: int result = object->compare(*newObject);
128:
129: switch(result)
130: {
131: // by convention if it is the same as me it comes first
132: case kIsSame: // fall through
133: case kIsLarger: // new object comes before me
134: {
135: InternalNode<T>* objectNode =
136: new InternalNode<T>(newObject, this);
137: return objectNode;
138: }
139: // it is bigger than I am so pass it on to the next
140: // node and let HIM handle it.
141: case kIsSmaller:
142: next = next->insert(newObject);
143: return this;
144: }
145: return this; // appease MSC
146: }
147:
148: // Tail node is just a sentinel
149: template <class T>
150: class TailNode : public Node<T>
151: {
152: public:
153: TailNode() {}
154: virtual ~TailNode() {}
155: virtual Node<T>* insert(T * object);
156: virtual void show() { }

378 HOUR 23: Creating Templates

LISTING 23.1 Continued
157: private:
158: };
159:
160: // If object comes to me, it must be inserted before me
161: // as I am the tail and NOTHING comes after me
162: template <class T>
163: Node<T>* TailNode<T>::insert(T * object)
164: {
165: InternalNode<T>* objectNode =
166: new InternalNode<T>(object, this);
167: return objectNode;
168: }
169:
170: // Head node has no Object, it just points
171: // to the very beginning of the list
172: template <class T>
173: class HeadNode : public Node<T>
174: {
175: public:
176: HeadNode();
177: virtual ~HeadNode() { delete next; }
178: virtual Node<T>* insert(T * object);
179: virtual void show() { next->show(); }
180: private:
181: Node<T> * next;
182: };
183:
184: // As soon as the head is created
185: // it creates the tail
186: template <class T>
187: HeadNode<T>::HeadNode()
188: {
189: next = new TailNode<T>;
190: }
191:
192: // Nothing comes before the head so just
193: // pass the Object on to the next node
194: template <class T>
195: Node<T> * HeadNode<T>::insert(T* object)
196: {
197: next = next->insert(object);
198: return this;
199: }
200:
201: // I get all the credit and do none of the work
202: template <class T>
203: class LinkedList
204: {
205: public:
206: LinkedList();
207: ~LinkedList() { delete head; }
208: void insert(T* object);
209: void showAll() { head->show(); }
210: private:
211: HeadNode<T> * head;
212: };
213:
214: // At birth, I create the head node

Template Definition 379

215: // It creates the tail node
216: // So an empty list points to the head which
217: // points to the tail and has nothing between
218: template <class T>
219: LinkedList<T>::LinkedList()
220: {
221: head = new HeadNode<T>;
222: }
223:
224: // Delegate, delegate, delegate
225: template <class T>
226: void LinkedList<T>::insert(T* pObject)
227: {
228: head->insert(pObject);
229: }
230:
231: // test driver program
232: int main()
233: {
234: Cat* pCat;
235: Data* pData;
236: int val;
237: LinkedList<Cat> listOfCats;
238: LinkedList<Data> listOfData;
239:
240: // ask the user to produce some values
241: // put them in the list
242: while (true)
243: {
244: std::cout << “What value (0 to stop)? “;
245: std::cin >> val;
246: if (!val)
247: break;
248: pCat = new Cat(val);
249: pData = new Data(val);
250: listOfCats.insert(pCat);
251: listOfData.insert(pData);
252: }
253:
254: // now walk the list and show the Object
255: std::cout << “\n”;
256: listOfCats.showAll();
257: std::cout << “\n”;
258: listOfData.showAll();
259: std::cout << “\n************\n\n”;
260: return 0; // The lists fall out of scope and are destroyed!
261: }

The ParamList program asks for a series of values that will be used to set the ages of

Cat objects. It then uses the same values to create Data objects. The objects are sorted

by the integer value they hold in ascending order. Here’s the output for a run where

5, 13, 2, 9, and 7 were the values entered:

What value (0 to stop)? 5
What value (0 to stop)? 13
What value (0 to stop)? 2
What value (0 to stop)? 9
What value (0 to stop)? 7

380 HOUR 23: Creating Templates

What value (0 to stop)? 0

This cat is 2 years old
This cat is 5 years old
This cat is 7 years old
This cat is 9 years old
This cat is 13 years old

2
5
7
9
13

Deleting Data object with value: 13
Deleting Data object with value: 9
Deleting Data object with value: 7
Deleting Data object with value: 5
Deleting Data object with value: 2
Deleting 13 year old Cat.
Deleting 9 year old Cat.
Deleting 7 year old Cat.
Deleting 5 year old Cat.
Deleting 2 year old Cat.

The first thing to notice is the striking similarity to the LinkedList program in

Hour 19.

The biggest change is that each of the class declarations and member functions is

now preceded by

template class <T>

This tells the compiler that you are parameterizing this list on a type that you will

define later, when you instantiate the list. For example, the declaration of the Node

class now becomes

template <class T>
class Node

This indicates that Node will not exist as a class in itself, but rather that you will

instantiate Nodes of Cats and Nodes of Data objects. The actual type you’ll pass in is

represented by T.

Thus, InternalNode now becomes InternalNode<T> (read that as “InternalNode

of T”). And InternalNode<T> points not to a Data object and another Node; rather,

it points to a T (whatever type of object) and a Node<T>. You can see this on lines

113–114.

Using Template Items 381

Look carefully at the insert() function defined on lines 124–146. The logic is just

the same, but where we used to have a specific type (Data) we now have T. Thus, on

line 124 the parameter is a pointer to a T. Later, when we instantiate the specific lists,

the T will be replaced by the compiler with the right type (Data or Cat).

The important thing is that the InternalNode can continue working, indifferent to

the actual type. It knows to ask the objects to compare themselves. It doesn’t care

whether Cat objects compare themselves in the same way Data objects do. In fact, we

can rewrite this so that Cat objects don’t keep their age. We can have them keep

their birth date and compute their relative age on-the-fly, and the InternalNode

won’t care a bit.

Using Template Items
You can treat template items as you would any other type. You can pass them as

parameters, either by reference or by value, and you can return them as the return

values of functions, also by value or by reference.

The TemplateList program in Listing 23.2 demonstrates how to pass Template

objects. Compare the following listing with the code in Listing 23.1.

LISTING 23.2 The Full Text of TemplateList.cpp

1: #include <iostream>
2:
3: enum { kIsSmaller, kIsLarger, kIsSame};
4:
5: class Data
6: {
7: public:
8: Data(int newVal):value(newVal) {}
9: ~Data()
10: {
11: std::cout << “Deleting Data object with value: “;
12: std::cout << value << “\n”;
13: }
14: int compare(const Data&);
15: void show() { std::cout << value << “\n”; }
16: private:
17: int value;
18: };
19:
20: int Data::compare(const Data& otherObject)
21: {
22: if (value < otherObject.value)
23: return kIsSmaller;
24: if (value > otherObject.value)

382 HOUR 23: Creating Templates

LISTING 23.2 Continued
25: return kIsLarger;
26: else
27: return kIsSame;
28: }
29:
30: class Cat
31: {
32: public:
33: Cat(int newAge): age(newAge) {}
34: ~Cat()
35: {
36: std::cout << “Deleting “ << age
37: << “ year old Cat.\n”;
38: }
39: int compare(const Cat&);
40: void show()
41: {
42: std::cout << “This cat is “ << age
43: << “ years old\n”;
44: }
45: private:
46: int age;
47: };
48:
49: int Cat::compare(const Cat& otherCat)
50: {
51: if (age < otherCat.age)
52: return kIsSmaller;
53: if (age > otherCat.age)
54: return kIsLarger;
55: else
56: return kIsSame;
57: }
58:
59: template <class T>
60: class Node
61: {
62: public:
63: Node() {}
64: virtual ~Node() {}
65: virtual Node* insert(T* object) = 0;
66: virtual void show() = 0;
67: private:
68: };
69:
70: template <class T>
71: class InternalNode: public Node<T>
72: {
73: public:
74: InternalNode(T* theObject, Node<T>* next);
75: virtual ~InternalNode(){ delete next; delete object; }
76: virtual Node<T>* insert(T* object);
77: virtual void show()
78: {
79: object->show();
80: next->show();
81: }

Using Template Items 383

82: private:
83: T* object;
84: Node<T>* next;
85: };
86:
87: template <class T>
88: InternalNode<T>::InternalNode(T* newObject, Node<T>* newNext):
89: object(newObject), next(newNext)
90: {
91: }
92:
93: template <class T>
94: Node<T>* InternalNode<T>::insert(T* newObject)
95: {
96: int result = object->compare(*newObject);
97:
98: switch(result)
99: {
100: case kIsSame:
101: case kIsLarger:
102: {
103: InternalNode<T> * objectNode =
104: new InternalNode<T>(newObject, this);
105: return objectNode;
106: }
107: case kIsSmaller:
108: next = next->insert(newObject);
109: return this;
110: }
111: return this;
112: }
113:
114: template <class T>
115: class TailNode : public Node<T>
116: {
117: public:
118: TailNode() {}
119: virtual ~TailNode() {}
120: virtual Node<T>* insert(T* object);
121: virtual void show() {}
122: private:
123: };
124:
125: template <class T>
126: Node<T>* TailNode<T>::insert(T* object)
127: {
128: InternalNode<T>* objectNode =
129: new InternalNode<T>(object, this);
130: return objectNode;
131: }
132:
133: template <class T>
134: class HeadNode : public Node<T>
135: {
136: public:
137: HeadNode();
138: virtual ~HeadNode() { delete next; }
139: virtual Node<T>* insert(T* object);

384 HOUR 23: Creating Templates

LISTING 23.2 Continued
140: virtual void show() { next->show(); }
141: private:
142: Node<T>* next;
143: };
144:
145: template <class T>
146: HeadNode<T>::HeadNode()
147: {
148: next = new TailNode<T>;
149: }
150:
151: template <class T>
152: Node<T>* HeadNode<T>::insert(T* object)
153: {
154: next = next->insert(object);
155: return this;
156: }
157:
158: template <class T>
159: class LinkedList
160: {
161: public:
162: LinkedList();
163: ~LinkedList() { delete head; }
164: void insert(T* object);
165: void showAll() { head->show(); }
166: private:
167: HeadNode<T>* head;
168: };
169:
170: template <class T>
171: LinkedList<T>::LinkedList()
172: {
173: head = new HeadNode<T>;
174: }
175:
176: template <class T>
177: void LinkedList<T>::insert(T* pObject)
178: {
179: head->insert(pObject);
180: }
181:
182: void myFunction(LinkedList<Cat>& listOfCats);
183: void myOtherFunction(LinkedList<Data>& listOfData);
184:
185: int main()
186: {
187: LinkedList<Cat> listOfCats;
188: LinkedList<Data> listOfData;
189:
190: myFunction(listOfCats);
191: myOtherFunction(listOfData);
192:
193: std::cout << “\n”;
194: listOfCats.showAll();
195: std::cout << “\n”;
196: listOfData.showAll();
197: std::cout << “\n************\n\n”;

Using Template Items 385

198: return 0;
199: }
200:
201: void myFunction(LinkedList<Cat>& listOfCats)
202: {
203: Cat* pCat;
204: int val;
205:
206: while (true)
207: {
208: std::cout << “\nHow old is your cat (0 to stop)? “;
209: std::cin >> val;
210: if (!val)
211: break;
212: pCat = new Cat(val);
213: listOfCats.insert(pCat);
214: }
215: }
216:
217: void myOtherFunction(LinkedList<Data>& listOfData)
218: {
219: Data* pData;
220: int val;
221:
222: while (true)
223: {
224: std::cout << “\nWhat value (0 to stop)? “;
225: std::cin >> val;
226: if (!val)
227: break;
228: pData = new Data(val);
229: listOfData.insert(pData);
230: }
231: }

This is the output of the program:

How old is your cat (0 to stop)? 12
How old is your cat (0 to stop)? 2
How old is your cat (0 to stop)? 14
How old is your cat (0 to stop)? 6
How old is your cat (0 to stop)? 0
What value (0 to stop)? 3
What value (0 to stop)? 9
What value (0 to stop)? 1
What value (0 to stop)? 5
What value (0 to stop)? 0

This cat is 2 years old
This cat is 6 years old
This cat is 12 years old
This cat is 14 years old

1
3
5
9

386 HOUR 23: Creating Templates

Deleting Data object with value: 9
Deleting Data object with value: 5
Deleting Data object with value: 3
Deleting Data object with value: 1
Deleting 14 year old Cat.
Deleting 12 year old Cat.
Deleting 6 year old Cat.
Deleting 2 year old Cat.

This code is much like the previous example, but this time we pass the LinkedList

objects by reference to their respective functions for processing.

A pointer to a Cat object is created on line 203. After the cat’s age is input by the user

on line 208, a new Cat object is created and its address is assigned to the pointer.

The linked list’s insert() member function is called with the Cat pointer, causing

the object referenced by that pointer to be inserted in the list.

The same process is followed in lines 219–230, but this time to add a Data object to

the list.

This is a powerful feature. After the lists are instantiated, they can be treated as fully

defined types, passed into functions, and returned as values.

Summary
C++ is a popular language to use when creating programming languages. As you are

introduced to features such as templates, the reason becomes clear. C++ exposes the

building blocks of the language to modification.

Templates enable the functionality of a class to be adapted to more than one data

type without repeating code for each type.

With templates, code can be written in the abstract that applies to multiple types

of data.

Q&A
Q. Why use templates when macros will do?

A. Templates are type-safe and built in to the language.

Q. What is the difference between the parameterized type of a template func-
tion and the parameters to a normal function?

390 HOUR 24: Dealing with Exceptions and Error Handling

the algorithms properly. The second is syntactic: You used the wrong idiom, function,

or structure. These two are the most common, and they are the ones most program-

mers are on the lookout for. Far harder to find are subtle bugs that pop up only when

the user does something unexpected. These little logic bombs can lurk until they’re

finally encountered and the program blows up.

Research and real-world experience have consistently shown that the later in the

development process you find a problem, the more it costs to fix it. The least expen-

sive problems or bugs to fix are the ones you manage to avoid creating. The next

cheapest are those that the compiler spots. The C++ standards force compilers to put

a lot of energy into reporting more and more errors at compile time.

Bugs that are compiled but caught at the first test—those that crash every time—are

less expensive to find and fix than those that are only crash once in a while.

A bigger problem than logic or syntactic bugs is unnecessary fragility: Your program

works just fine if the user enters a number when you ask for one, but it crashes if the

user enters letters. Other programs crash if they run out of memory, or if the floppy

disk is left out of the drive, or if the modem drops the line.

To combat this kind of fragility, programmers strive to make their programs bullet-

proof. A bulletproof program is one that can handle anything that comes up at run-

time, from bizarre user input to running out of memory. If you watch out and pre-

pare for these things, you can avoid a crash.

It is important to distinguish among bugs. Some arise because the programmer

made a mistake in syntax. There also are logic errors that arise because the program-

mer misunderstood the problem or how to solve it. Finally, other exceptions arise

because of unusual but predictable problems such as running out of resources (mem-

ory or disk space).

Handling the Unexpected
Programmers use design reviews and exhaustive testing to find logic errors.

Exceptions are different, however. You can’t eliminate exceptional circumstances;

you only can prepare for them. For example, user computers will run out of memory

from time to time. That’s not something a programmer can prevent. Programs only

can respond to when it occurs, using one of these approaches:

. Crash the program.

. Inform the user and exit gracefully.

Exceptions 391

. Inform the user and allow the user to try to recover and continue.

. Take corrective action and continue without disturbing the user.

Although it is not necessary or even desirable for every program you write to auto-

matically and silently recover from all exceptional circumstances, it is clear that you

must do better than crashing.

C++ exception handling provides a type-safe, integrated technique for coping with

the predictable but unusual conditions that arise while running a program.

Exceptions
In C++, an exception is an object that is passed from the area of code where a prob-

lem occurs to the part of the code that is going to handle the problem. When an

exception occurs it is said to be thrown. When an exception is handled, it is said to be

caught.

The type of the exception determines which area of code will handle the problem; and

the contents of the object thrown, if any, may be used to provide feedback to the user.

The basic idea behind exceptions is fairly straightforward:

. The actual allocation of resources (for example, the allocation of memory or

the locking of a file) is usually done at a very low level in the program.

. The logic of what to do when an operation fails, memory cannot be allocated,

or a file cannot be locked is usually high in the program, with the code for

interacting with the user.

. Exceptions provide an express path from the code that allocates resources to

the code that can handle the error condition. If there are intervening layers of

functions, they are given an opportunity to clean up memory allocations, but

are not required to include code whose only purpose is to pass along the error

condition.

How Exceptions Are Used
A try block is created to surround areas of code that might have a problem. It is a

block, surrounded by braces, in which an exception might be thrown. For example:

try
{

someDangerousFunction();
}

392 HOUR 24: Dealing with Exceptions and Error Handling

A catch block is the block immediately following a try block, in which exceptions

are handled. For example:

try
{

someDangerousFunction();
}
catch(outOfMemory)
{

// take action to recover from low memory condition
}
catch(fileNotFound)
{

// take action when a file is not found
}

The basic steps in using exceptions are these:

1. Identify those areas of the program in which you begin an operation that

might raise an exception, and put them in try blocks.

2. Create catch blocks to catch the exceptions if they are thrown, to clean up

allocated memory, and to inform the user as appropriate.

The Exception program in Listing 24.1 illustrates the use of both try blocks and

catch blocks.

When an exception is thrown (or raised), control transfers to the catch block
immediately following the current try block.

LISTING 24.1 The Full Text of Exception.cpp
1: #include <iostream>
2:
3: const int defaultSize = 10;
4:
5: // define the exception class
6: class XBoundary
7: {
8: public:
9: XBoundary() {}
10: ~XBoundary() {}
11: private:
12: };
13:
14: class Array
15: {
16: public:
17: // constructors
18: Array(int size = defaultSize);
19: Array(const Array &rhs);
20: ~Array() { delete [] pType; }
21:
22: // operators
23: Array& operator=(const Array&);

By the
Way

Exceptions 393

24: int& operator[](int offSet);
25: const int& operator[](int offSet) const;
26:
27: // accessors
28: int getSize() const { return size; }
29:
30: // friend function
31: friend std::ostream& operator<<(std::ostream&, const Array&);
32:
33: private:
34: int *pType;
35: int size;
36: };
37:
38: Array::Array(int newSize):
39: size(newSize)
40: {
41: pType = new int[size];
42: for (int i = 0; i < size; i++)
43: pType[i] = 0;
44: }
45:
46: Array& Array::operator=(const Array &rhs)
47: {
48: if (this == &rhs)
49: return *this;
50: delete [] pType;
51: size = rhs.getSize();
52: pType = new int[size];
53: for (int i = 0; i < size; i++)
54: pType[i] = rhs[i];
55: return *this;
56: }
57:
58: Array::Array(const Array &rhs)
59: {
60: size = rhs.getSize();
61: pType = new int[size];
62: for (int i = 0; i < size; i++)
63: pType[i] = rhs[i];
64: }
65:
66: int& Array::operator[](int offSet)
67: {
68: int size = getSize();
69: if (offSet >= 0 && offSet < size)
70: return pType[offSet];
71: throw XBoundary();
72: return pType[offSet];
73: }
74:
75: const int& Array::operator[](int offSet) const
76: {
77: int size = getSize();
78: if (offSet >= 0 && offSet < size)
79: return pType[offSet];
80: throw XBoundary();
81: return pType[offSet];

394 HOUR 24: Dealing with Exceptions and Error Handling

LISTING 24.1 Continued
82: }
83:
84: std::ostream& operator<<(std::ostream& output,
85: const Array& array)
86: {
87: for (int i = 0; i < array.getSize(); i++)
88: output << “[“ << i << “] “ << array[i] << “\n”;
89: return output;
90: }
91:
92: int main()
93: {
94: Array intArray(20);
95: try
96: {
97: for (int j = 0; j < 100; j++)
98: {
99: intArray[j] = j;
100: std::cout << “intArray[“ << j
101: << “] OK ...” << “\n”;
102: }
103: }
104: catch (XBoundary)
105: {
106: std::cout << “Unable to process your input\n”;
107: }
108: std::cout << “Done\n”;
109: return 0;
110: }

Running the program produces this output:

intArray[0] OK ...
intArray[1] OK ...
intArray[2] OK ...
intArray[3] OK ...
intArray[4] OK ...
intArray[5] OK ...
intArray[6] OK ...
intArray[7] OK ...
intArray[8] OK ...
intArray[9] OK ...
intArray[10] OK ...
intArray[11] OK ...
intArray[12] OK ...
intArray[13] OK ...
intArray[14] OK ...
intArray[15] OK ...
intArray[16] OK ...
intArray[17] OK ...
intArray[18] OK ...
intArray[19] OK ...
Unable to process your input
Done

Using try and catch Blocks 395

Listing 24.1 presents a somewhat stripped-down Array class, created just to illustrate

this simple use of exceptions. On lines 6–12, a simple exception class is declared,

XBoundary.

The most important thing to notice about this class is that there is absolutely nothing

that makes it an exception class. Any class will do just fine to handle exceptions.

What makes this an exception is only that it is thrown, as shown on line 71, and that

it is caught, as shown on line 104.

The offset operators throw XBoundary when the client of the class attempts to access

data outside the array (lines 71 and 80). This is superior to the way normal arrays

handle such a request; they just return whatever garbage happens to be in memory

at that location, a surefire way to crash the program.

On line 95, a try block begins that ends on line 103. Within that try block, 100 inte-

gers are added to the array that was declared on line 94.

On line 104, the catch block to catch XBoundary exceptions is declared.

Using try and catch Blocks
Figuring out where to put try blocks is the hardest part of using exceptions; it is not

always obvious which actions might raise an exception. The next question is where to

catch the exception. It might be that you’ll want to throw all memory exceptions

where the memory is allocated, but you’ll want to catch the exceptions high in the

program where you deal with the user interface.

When trying to determine try block locations, look to where you allocate memory or

use resources. Other things to look for are out-of-bounds errors and illegal input.

Catching Exceptions
Catching exceptions works as follows: When an exception is thrown, the call stack is

examined. The call stack is the list of function calls created when one part of the pro-

gram invokes another function.

The call stack tracks the execution path. If main() calls the function

Animal::getFavoriteFood(), and getFavoriteFood() calls

Animal::lookupPreferences(), which in turn calls fstream::operator>>(), all

these are on the call stack. A recursive function might be on the call stack many times.

396 HOUR 24: Dealing with Exceptions and Error Handling

The exception is passed up the call stack to each enclosing block. As the stack is

unwound, the destructors for local objects on the stack are invoked and the objects

are destroyed.

After each try block are one or more catch statements. If the exception matches one

of the catch statements, it is considered to be handled by having that statement exe-

cute. If it doesn’t match any, the unwinding of the stack continues.

If the exception reaches all the way to the beginning of the program (main()) and is

still not caught, the function terminate() is called, which in turn calls abort() to

abort the program.

It is important to note that the exception unwinding of the stack is a one-way street.

As it progresses, the stack is unwound, and objects on the stack are destroyed. There is

no going back: After the exception is handled, the program continues after the try

block of the catch statement that handled the exception.

In the Exception program, execution continues on line 104, the first line after the try

block of the catch statement that handled the XBoundary exception. When an excep-

tion is raised, program flow continues after the catch block, not after the point where

the exception was thrown.

More Than One Catch
It is possible for more than one condition to cause an exception. In this case, the

catch statements can be lined up one after another, much like the conditions in a

switch statement. The equivalent to the default statement is the “catch everything”

statement, indicated by catch(...).

Be careful about putting in two catch statements where one catch is a base
class and the other catch is a derived class that is more specific. The code will
actually do the steps of both catch statements; sometimes you want that behav-
ior and sometimes you don’t, but you should be aware of this.

Watch
Out!

Using try and catch Blocks 397

Catching by Reference and Polymorphism
You can take advantage of the fact that exceptions are just classes to use them poly-

morphically. By passing the exception by reference, you can use the inheritance hier-

archy to take the appropriate action based on the runtime type of the exception.

The PolyException program Listing 24.2 illustrates using exceptions polymorphically.

LISTING 24.2 The Full Text of PolyException.cpp

1: #include <iostream>
2:
3: const int defaultSize = 10;
4:
5: // define the exception classes
6: class XBoundary {};
7:
8: class XSize
9: {
10: public:
11: XSize(int newSize):size(newSize) {}
12: ~XSize(){}
13: virtual int getSize() { return size; }
14: virtual void printError()
15: { std::cout << “Size error. Received: “
16: << size << “\n”; }
17: protected:
18: int size;
19: };
20:
21: class XTooBig : public XSize
22: {
23: public:
24: XTooBig(int size):XSize(size) {}
25: virtual void printError()
26: {
27: std::cout << “Too big! Received: “;
28: std::cout << XSize::size << “\n”;
29: }
30: };
31:
32: class XTooSmall : public XSize
33: {
34: public:
35: XTooSmall(int size):XSize(size) {}
36: virtual void printError()
37: {
38: std::cout << “Too small! Received: “;
39: std::cout << XSize::size << “\n”;
40: }
41: };
42:
43: class XZero : public XTooSmall
44: {
45: public:
46: XZero(int newSize):XTooSmall(newSize){}

398 HOUR 24: Dealing with Exceptions and Error Handling

LISTING 24.2 Continued
47: virtual void printError()
48: {
49: std::cout << “Zero Received: “;
50: std::cout << XSize::size << “\n”;
51: }
52: };
53:
54: class XNegative : public XSize
55: {
56: public:
57: XNegative(int size):XSize(size){}
58: virtual void printError()
59: {
60: std::cout << “Negative! Received: “;
61: std::cout << XSize::size << “\n”;
62: }
63: };
64:
65: class Array
66: {
67: public:
68: // constructors
69: Array(int size = defaultSize);
70: Array(const Array &rhs);
71: ~Array() { delete [] pType; }
72:
73: // operators
74: Array& operator=(const Array&);
75: int& operator[](int offSet);
76: const int& operator[](int offSet) const;
77:
78: // accessors
79: int getSize() const { return size; }
80:
81: // friend function
82: friend std::ostream& operator<< (std::ostream&, const Array&);
83:
84:
85: private:
86: int *pType;
87: int size;
88: };
89:
90: Array::Array(int newSize):
91: size(newSize)
92: {
93: if (newSize == 0)
94: throw XZero(size);
95:
96: if (newSize < 0)
97: throw XNegative(size);
98:
99: if (newSize < 10)
100: throw XTooSmall(size);
101:
102: if (newSize > 30000)
103: throw XTooBig(size);

Using try and catch Blocks 399

104:
105: pType = new int[newSize];
106: for (int i = 0; i < newSize; i++)
107: pType[i] = 0;
108: }
109:
110: int& Array::operator[] (int offset)
111: {
112: int size = getSize();
113: if (offset >= 0 && offset < size)
114: return pType[offset];
115: throw XBoundary();
116: return pType[offset];
117: }
118:
119: const int& Array::operator[] (int offset) const
120: {
121: int size = getSize();
122: if (offset >= 0 && offset < size)
123: return pType[offset];
124: throw XBoundary();
125: return pType[offset];
126: }
127:
128: int main()
129: {
130: try
131: {
132: int choice;
133: std::cout << “Enter the array size: “;
134: std::cin >> choice;
135: Array intArray(choice);
136: for (int j = 0; j < 100; j++)
137: {
138: intArray[j] = j;
139: std::cout << “intArray[“ << j << “] OK ...”
140: << “\n”;
141: }
142: }
143: catch (XBoundary)
144: {
145: std::cout << “Unable to process your input\n”;
146: }
147: catch (XSize& exception)
148: {
149: exception.printError();
150: }
151: catch (...)
152: {
153: std::cout << “Something went wrong,”
154: << “but I’ve no idea what!” << “\n”;
155: }
156: std::cout << “Done\n”;
157: return 0;
158: }

400 HOUR 24: Dealing with Exceptions and Error Handling

The output reflects running the program three times, first passing in an array size of

5, then 50,000, and finally 12:

Enter the array size: 5
Too small! Received: 5
Done

Enter the array size: 50000
Too big! Received: 50000
Done

Enter the array size: 12
intArray[0] OK ...
intArray[1] OK ...
intArray[2] OK ...
intArray[3] OK ...
intArray[4] OK ...
intArray[5] OK ...
intArray[6] OK ...
intArray[7] OK ...
intArray[8] OK ...
intArray[9] OK ...
intArray[10] OK ...
intArray[11] OK ...
Unable to process your input
Done

Listing 24.2 declares a virtual function in the XSize class, printError(), that dis-

plays an error message and the actual size of the class. This is overridden in each of

the derived classes.

On line 147, the exception object is declared to be a reference. When printError()

is called with a reference to an object, polymorphism causes the correct version of

printError() to be invoked. The first time through the user asks for an array of size

5. This causes the XTooSmall exception to be thrown; that is the xSize exception

caught on line 147. The second time through the user asks for an array of 50,000

and that causes the XTooBig exception to be thrown. This is also caught on line 147,

but polymorphism causes the right error string to print. When the user finally asks

for an array of size 12, the array is populated until the XBoundary exception is

thrown and caught on line 143.

Writing Professional-Quality Code
With templates and exceptions under your belt, you are well-equipped with some of

the more advanced aspects of C++. Before you put the book down, it’s worthwhile to

take a moment to discuss some points about writing professional-quality code. When

you go beyond hobbyist interest and work as part of a development team, you must

write code that not only works but can be understood by others. Your code also must

Writing Professional-Quality Code 401

be maintained and supported both by you, as the customer’s demands change, and

also by others after you leave the project.

Although it doesn’t matter which style you adopt, it is important to adopt a consis-

tent coding style. A consistent style makes it easier to guess what you meant by a

particular part of the code, and you avoid having to look up whether you spelled the

function with an initial cap the last time you invoked it.

The following guidelines just one way of doing things, but they’ve been tested by per-

sonal experience. You can just as easily devise up your own, but these will get you

started.

Though Ralph Waldo Emerson said, “Foolish consistency is the hobgoblin of small

minds,” Emerson never had to deliver a 100,000-line C++ web application program

on deadline. Having some consistency in your code is a good thing. It makes your

life, and the life of your co-workers, easier if you follow the style of your group. That

doesn’t mean the style has to be permanently fixed (improvements and new ideas

come along all the time), but the consistency makes it easier for everyone to work

together.

Understand that there are many different styles, and you can run into serious dis-

agreements on the following topics. Remember that these are guidelines, not

absolutes.

Braces
How to align braces can be the most controversial topic between C and C++ pro-

grammers. Here are the tips I suggest:

. Matching braces should be aligned vertically.

. The outermost set of braces in a definition or declaration should be at the left

margin. Statements within should be indented. All other sets of braces should

be in line with their leading statement.

. For really long blocks, you should put a comment after the close brace identify-

ing the purpose of the block. When you look at the close brace and are not sure

where the open brace is, that is a “really long block.” For example:

if (condition == true)
{

// many lines of code including other blocks
// many lines of code including other blocks
// many lines of code including other blocks

} // if (condition == true)

402 HOUR 24: Dealing with Exceptions and Error Handling

. No code should appear on the same line as a brace. For example:

if (condition == true)
{

j = k;
someFunction();

}
m++;

Long Lines
Keep lines to the width displayable on a single screen. Code that is off to the right is

easily overlooked, and scrolling horizontally is annoying. When a line is broken,

indent the following lines. Try to break the line at a reasonable place, and try to

leave the intervening operator at the end of the previous line (as opposed to the

beginning of the following line) so that it is clear that the line does not stand alone

and that there is more coming.

In C++, functions tend to be much shorter than they were in C, but the old, sound

advice still applies. Try to keep your functions short enough to show the entire func-

tion on one page.

Tab size should be three or four spaces. Make sure your editor converts each tab to

that size.

switch Statements
Indent switch statements as follows to conserve horizontal space:

switch(variable)
{
case ValueOne:

actionOne();
break;

case ValueTwo:
actionTwo();
break;

default:
// bad action!
break;

}

Writing Professional-Quality Code 403

Program Text
You can follow several tips to create easy-to-read code. Code that is easy to read is

easy to maintain:

. Use whitespace to help readability.

. Objects and arrays are really referring to one thing. Don’t use spaces within

object references (., ->, []).

. Unary operators are associated with their operand, so don’t put a space

between them. Do put a space on the side away from the operand. Unary oper-

ators include !, ~, ++, —, -, * (for pointers), & (casts), and sizeof.

. Binary operators should have spaces on both sides: +, =, *, /, %, >>, <<, <, >, ==,

!=, &, |, &&, ||, ?:, =, +=, and so on.

. Don’t use lack of spaces to indicate precedence (4+ 3*2).

. Put a space after commas and semicolons, not before.

. Parentheses should not have spaces on either side.

. Keywords, such as if, should be set off by a space: if (a == b).

. The body of a comment should be set off from the // with a space.

. Place the pointer or reference indicator next to the type name, not the variable

name. Do this:

char* foo;
int& theInt;

rather than this:

char *foo;
int &theInt;

. Do not declare more than one variable on the same line unless they are

related.

Identifier Names
Here are some guidelines for working with identifiers:

. Identifier names should be long enough to be descriptive.

. Avoid cryptic abbreviations.

. Take the time and energy to spell things out.

404 HOUR 24: Dealing with Exceptions and Error Handling

. Short names (i, p, x, and so on) should be used only where their brevity makes

the code more readable and where the usage is so obvious that a descriptive

name is not needed.

. The length of a variable’s name should be proportional to its scope.

. Make sure identifiers look and sound different from one another to minimize

confusion.

. Function (or method) names are usually verbs or verb-noun phrases:

search(), reset(), findParagraph(), showCursor(). Variable names are

usually abstract nouns, possibly with an additional noun: count, state,

windSpeed, windowHeight. Boolean variables should be named appropriately:

windowIconized, fileIsOpen.

Spelling and Capitalization of Names
Spelling and capitalization should not be overlooked when creating your own style.

Some tips for these areas include the following:

. Identifiers should be consistent—use mixed case where appropriate. Function

names, class, typedef, struct names, data members and locals should begin

with a lowercase letter (often called camel case, as in myVariable).

. Enumerated constants should begin with a few lowercase letters as an abbrevi-

ation for the enum. For example:

enum TextStyle
{

tsPlain,
tsBold,
tsItalic,
tsUnderscore,

};

Comments
Comments can make it much easier to understand a program. Often, you will not

work on a program for several days or even months, while you turn your attention to

higher-priority projects. In this time, you can forget what certain code does or why it

has been included. Problems in understanding code can also occur when someone

else reads your code. Comments that are applied in a consistent, well thought-out

style can be well worth the effort. There are several tips to remember concerning

comments:

Writing Professional-Quality Code 405

. Wherever possible, use C++ // comments rather than the /* */ style.

. Higher-level comments are infinitely more important than process details. Add

value; do not merely restate the code. For example:

n++; // n is incremented by one

This comment isn’t worth the time it takes to type it in. Concentrate on the

semantics of functions and blocks of code. Say what a function does. Indicate

side effects, types of parameters, and return values. Describe all assumptions

that are made (or not made), such as “assumes n is non-negative” or “will

return –1 if x is invalid.” Within complex logic, use comments to indicate the

conditions that exist at that point in the code.

. Use complete English sentences with appropriate punctuation and capitaliza-

tion. The extra typing is worth it. Don’t be overly cryptic, and don’t abbreviate.

What seems exceedingly clear to you as you write code can be amazingly

obtuse in a few months.

. Include comments at the top of your program, functions, and header source

modules to define the purpose of that module, inputs, outputs, parameters, ini-

tial author, and any changes (including date and author).

. Use blank lines freely to help the reader understand what is going on. Separate

statements into logical groups.

Access
The way you access portions of your program should also be consistent. Some tips for

access are these:

. Always use public:, private:, and protected: labels; don’t rely on the

defaults.

. List the public members first, then protected, then private. List the data mem-

bers in a group after the member functions.

. Put the constructors first in the appropriate section, followed by the destructor.

List overloaded member functions with the same name adjacent to each other.

Group accessors together when possible.

. Consider alphabetizing the member function names within each group and

alphabetizing the member variables. Be sure to alphabetize the filenames in

include statements.

406 HOUR 24: Dealing with Exceptions and Error Handling

. Even though the use of the virtual keyword is optional when overriding, use

it anyway; it helps to remind you that it is virtual, and also keeps the declara-

tion consistent.

Class Definitions
Try to keep the definitions of member functions in the same order as the declara-

tions. It makes things easier to find.

When defining a function, place the return type and all other modifiers on a previ-

ous line so that the class name and function name begin on the left margin. This

makes it much easier to find functions.

include Files
Try as hard as you can to keep from including files into header files. The ideal mini-

mum is the header file for the class that the current class derives from. Other manda-

tory includes will be those for objects that are members of the class being declared.

Classes that are merely pointed to or referenced only need forward references of the

form.

Don’t leave out an include file in a header just because you assume that whatever

.cpp file includes this one will also have the needed include.

const

Use const wherever appropriate: for parameters, variables, and member functions.

Often there is a need for both a const and a non-const version of a function; don’t

leave one out if both are needed. Be careful when explicitly casting from const to

non-const and vice versa—sometimes this is the only way to do something—but be

certain that it makes sense, and include a comment.

Summary
After 24 hours, you’re ready to start tackling your own programming projects with

the C++ language.

The complexity of the language might still seem daunting—Bjarne Stroustrop cre-

ated a language so powerful that it remains in vogue three decades after its creation.

There’s a lot more to be learned about C++, and you could immediately dive into

more advanced books, courses, and websites.

410 APPENDIX A: Binary and Hexadecimal

Other Bases
It is not a coincidence that we use base 10; after all, our species has 10 fingers. One

can imagine a different base, however. Using the rules found in base 10, here’s how

you can describe base 8:

1. The digits used in base 8 are 0–7.

2. The columns are powers of 8: 1s, 8s, 64s, and so on.

3. With n columns, you can represent 0 to 8n–1.

To distinguish numbers written in each base, write the base as a subscript next to the

number. The number fifteen in base 10 would be written as 1510 and read as “one,

five, base ten.”

Therefore, to represent the number 1510 in base 8, you would write 178. This is read

“one, seven, base eight.” Note that it can also be read “fifteen,” because that is the

number it continues to represent.

Why 17? The 1 means 1 eight, and the 7 means 7 ones. One eight plus seven ones

equals fifteen. Consider fifteen asterisks:

***** *****

The natural tendency is to make two groups, a group of ten asterisks and another of

five. This would be represented in decimal as 15 (1 ten and 5 ones). You can also

group the asterisks as follows:

**** *******

That is, eight asterisks and seven. That would be represented in base eight as 178.

That is, 1 eight and 7 ones.

Around the Bases
You can represent the number fifteen in base 10 as 15, or 1510, in base 9 as 169, in

base 8 as 178, in base 7 as 217. Why 217? In base 7, there is no numeral 8. To repre-

sent fifteen, you need two 7s and one 1.

How do you generalize the process? To convert a base 10 number to base 7, think

about the columns: In base 7, they are ones, sevens, forty-nines, three-hundred forty-

Around the Bases 411

4 3 2 1

73 72 71 70

343 49 7 1

5 4 3 2 1

64 63 62 61 60

1296 216 36 6 1

0 4 2 5 2

5 4 3 2 1

64 63 62 61 60

1296 216 36 6 1

threes, and so on. Why these columns? They represent 70, 71, 72, 73, and so forth. Cre-

ate a table for yourself:

One of the rules of mathematics is that any value raised to the zero power has a
result of one. 70 = 1, 100 = 1, 217,549,3430 = 1.

The first row represents the column number. The second row represents the power of

7. The third row represents the decimal value of each number in that row.

To convert from a decimal value to base 7, here is the procedure: Examine the num-

ber and decide which column to use first. If the number is 200, for example, you

know that column 4 (343) is 0, and you don’t have to worry about it.

To find out how many 49s there are, divide 200 by 49. The answer is 4, so put 4 in

column 3 and examine the remainder: 4. There are no 7s in 4, so put a 0 in the sev-

ens column. There are 4 ones in 4, so put a 4 in the 1s column. The answer is 4047.

To convert the number 96810 to base 6:

By the
Way

There are no 1296s in 968, so column 5 has 0. Dividing 968 by 216 yields 4 with a

remainder of 104. Column 4 is 4. Dividing 104 by 36 yields 2 with a remainder of 32.

Column 3 is 2. Dividing 32 by 6 yields 5 with a remainder of 2. The answer, there-

fore, is 42526..

412 APPENDIX A: Binary and Hexadecimal

0 1 0 1 1 0 0 0

4 * 216 = 864

2 * 36 = 72

5 * 6 = 30

2 * 1 = 2

968

Col: 8 7 6 5 4 3 2 1

Power: 27 26 25 24 23 22 21 20

Value: 128 64 32 16 8 4 2 1

There is a shortcut when converting from one base to another base (such as 6) to base

10. You can multiply:

Binary
Base 2 is the ultimate extension of this idea. There are only two digits: 0 and 1. The

columns are as follows:

To convert the number 8810 to base 2, you follow the same procedure. There are no

128s, so column 8 is 0.

There is one 64 in 88, so column 7 is 1, and 24 is the remainder. There are no 32s in

24, so column 6 is 0.

There is one 16 in 24, so column 5 is 1. The remainder is 8. There is one 8 in 8, and so

column 4 is 1. There is no remainder, so the rest of the columns are 0:

To test this answer, convert it back:

1 * 64 = 64
0 * 32 = 0
1 * 16 = 16
1 * 8 = 8
0 * 4 = 0
0 * 2 = 0
0 * 1 = 0

88

Why Base 2?
The power of base 2 is that it corresponds cleanly to what a computer needs to repre-

sent. Computers do not know anything at all about letters, numerals, instructions, or

Around the Bases 413

programs. At their core, they are just circuitry, and at a given juncture, there either is

a lot of power or there is very little.

To keep the logic clean, engineers do not treat this as a relative scale (a little power,

some power, more power, or lots of power), but rather as a binary scale (enough

power or not enough power). This is simplified to “yes” or “no.” Yes or no can be rep-

resented as 1 or 0. By convention, 1 means true or yes, but that is just a convention; it

could just as easily have meant false or no.

After you make this great leap of intuition, the power of binary becomes clear: With

1s and 0s, you can represent the fundamental truth of every circuit. (There is power

or there isn’t.) All a computer ever knows is, “Is it on, or is it off?” On equals 1, off

equals 0.

Bits, Bytes, and Nybbles
After the decision is made to represent truth and falsehood with 1s and 0s, binary

digits (or bits) become very important. Because early computers could send 8 bits at a

time, it was natural to start writing code using 8-bit numbers (called bytes).

Half a byte (4 bits) is called a nybble! You may also see this spelled as nibble.

With 8 binary digits, you can represent up to 256 different values. Why? Examine

the columns: If all 8 bits are set (1), the value is 255. If none is set (all the bits are

clear or zero), the value is 0. 0–255 is 256 possible states.

What’s a KB?
It turns out that 210 (1,024) is roughly equal to 103 (1,000). This coincidence was too

good to miss, so computer scientists started referring to 210 bytes as 1KB or 1 kilobyte,

based on the scientific prefix of kilo for thousand.

Similarly, 1,024 * 1,024 (1,048,576) is close enough to one million to receive the des-

ignation 1MB or 1 megabyte, and 1,024 megabytes is called 1 gigabyte (giga implies

thousand-million or billion).

Binary Numbers
Computers use patterns of 1s and 0s to encode everything they do. Machine instruc-

tions are encoded as a series of 1s and 0s and interpreted by the fundamental circuitry.

Arbitrary sets of 1s and 0s can be translated back into numbers by computer scientists,

but it would be a mistake to think that these numbers have intrinsic meaning.

By the
Way

414 APPENDIX A: Binary and Hexadecimal

4 3 2 1

163 162 161 160

4096 256 16 1

For example, the Intel x86 chip set interprets the bit pattern 1001 0101 as an instruc-

tion. You certainly can translate this into decimal (149), but that number has no spe-

cial meaning.

Sometimes the numbers are instructions, sometimes they are values, and sometimes

they are codes. One important standardized code set is ASCII. In ASCII, every letter

and punctuation is given a seven-digit binary representation. For example, the lower-

case letter a is represented by 0110 0001. This is not a number, although you can

translate it to the number 9710 (64 + 32 + 1). It is in this sense that people say that the

letter a is represented by 9710 in ASCII; but the truth is that the binary representation

of 9710, 01100001, is the encoding of the letter a, and the decimal value 97 is a

human convenience.

Hexadecimal
Because binary numbers are difficult to read, a simpler way to represent the same

values is sought. Translating from binary to base 10 involves a fair bit of manipula-

tion of numbers; but it turns out that translating from base 2 to base 16 is simple,

because there is a very good shortcut.

To understand this, you must first understand base 16, which is known as hexadeci-

mal. In base 16, there are 16 numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

The last six are arbitrary; the letters A–F were chosen because they are easy to repre-

sent on a keyboard. The columns in hexadecimal are as follows:

To translate from hexadecimal to decimal, you can multiply. Thus, the number

F8C16 represents the following:

F * 256 = 15 * 256 = 3840
8 * 16 = 128
C * 1 = 12 * 1 = 12
3980

Translating the number FC16 to binary is best done by translating first to base 10,

and then to binary:

F * 16 = 15 * 16 = 240
C * 1 = 12 * 1 = 12
252

Hexadecimal 415

Converting 25210 to binary requires the chart:

Col: 9 8 7 6 5 4 3 2 1
Power: 28 27 26 25 24 23 22 21 20

Value: 256 128 64 32 16 8 4 2 1

There are no 256s.
1 128 leaves 124
1 64 leaves 60
1 32 leaves 28
1 16 leaves 12
1 8 leaves 4
1 4 leaves 0
0
0
1 1 1 1 1 1 0 0

Thus, the answer in binary is 1111 1100.

Now, it turns out that if you treat this binary number as two sets of four digits, you

can do a magical transformation.

The right set is 1100. In decimal, that is 12, or in hexadecimal it is C.

The left set is 1111, which in base 10 is 15, or in hex is F.

Thus, you have the following:

1111 1100
F C

Putting the two hex numbers together is FC, which is the real value of 1111 11002.

This shortcut always works. You can take any binary number of any length and

reduce it to sets of four, translate each set of four to hex, and put the hex numbers

together to get the result in hex.

You can shortcut the hexadecimal to binary conversion by using the reverse process.

Split the hexadecimal number into individual digits and convert each of them into

four binary digits (bits). If you remember that the values of the first four bits are 8, 4,

2, and 1, you can easily convert from hexadecimal to binary—because each hex

digit can be treated as an individual four bits.

Here’s a much larger number:

1011 0001 1101 0111

The columns are 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,

and 32768:

1 x 1 = 1
1 x 2 = 2
1 x 4 = 4

416 APPENDIX A: Binary and Hexadecimal

0 x 8 = 0

1 x 16 = 16
0 x 32 = 0
1 x 64 = 64
1 x 128 = 128

1 x 256 = 256
0 x 512 = 0
0 x 1024 = 0
0 x 2048 = 0

1 x 4096 = 4,096
1 x 8192 = 8,192
0 x 16384 = 0
1 x 32768 = 32,768
Total: 45,527

Converting this to hexadecimal requires a chart with the hexadecimal values:

65535 4096 256 16 1

There are no 65,536s in 45,527, so the first column is 4096. There are 11 4096s

(45,056), with a remainder of 471. There is one 256 in 471 with a remainder of 215.

There are 13 16s (208) in 215 with a remainder of 7. Thus, the hexadecimal number

is B1D7.

Checking the math:

B (11) * 4096 = 45,056
1 * 256 = 256
D (13) * 16 = 208
7 * 1 = 7
Total 45,527

The shortcut version is to take the original binary number, 1011000111010111, and

break it into groups of four: 1011 0001 1101 0111. Each of the four is then evaluated

as a hexadecimal number:

1011 =
1 x 1 = 1
1 x 2 = 2
0 x 4 = 0
1 x 8 = 8
Total 11
Hex: B

0001 =
1 x 1 = 1
0 x 2 = 0
0 x 4 = 0
0 * 8 = 0
Total 1
Hex: 1

Hexadecimal 417

1101 =
1 x 1 = 1
0 x 2 = 0
1 x 4 = 4
1 x 8 = 8
Total 13
Hex = D

0111 =
1 x 1 = 1
1 x 2 = 2
1 x 4 = 4
0 x 8 = 0
Total 7
Hex: 7

Total Hex: B1D7

A
Abstract data type (ADT)
This represents a concept (like shape)
rather than an object (like circle). As the
name implies, it is an abstract form.

Accessor methods
Methods used to access private member
variables.

ANSI
The American National Standards
Institute is a nonprofit company that acts
as the guardian of standards within the
United States. Most countries and many
regions (for example, the European
Union) have similar organizations. In
some cases, those organizations are part
of the government, but ANSI is not a gov-
ernmental agency. Go to http://www.ansi.
org for more information.

Arity
How many terms an operator takes. The
possible values for a C++ operator’s arity
are unary, binary, and ternary.

Array
A collection of objects all of the same
type.

ASCII (American Standard Code for
Information Interchange)
A system for encoding the characters,
numerals, and punctuation used by
many computers.

Assignment operator (=)
Causes the operand on the left side of the
assignment operator to have its value
changed to the value on the right side of
the assignment operator.

B
Binary operator
An operator that takes two terms, such as
a+b.

Glossary

This appendix contains definitions for the key terms you will see throughout the book. They

are organized alphabetically. As you read each hour and see a term you do not recognize,

you should be able to turn to this appendix and find out a little more.

I
Implementation
(also called class implementation)
The code and declarations of data within
a class. This is the code that is accessed
using the interface. This information is
typically stored in a .cpp file and com-
piled into object or library form. In many
cases, the interface (in the form of a
header file) and the compiled code
(object or library file) is provided and not
the actual class code—which prevents it
from being modified.

Incrementing
Increasing a value by 1 (when applied to
the ++ operator).

Indirection
Accessing the value at an address held by
a pointer.

Infinite loop
Doing the same thing again and again
forever. This is the type of iteration that
programmers strive to avoid.

Inheritance
Creating a new type that can extend the
characteristics of an existing type.

Instantiation
Creating an object from a class, or a type
from a template.

Interface (also called class interface)
The definition of data and methods that
can be accessed by other classes and
code. The interface tells how the code is
used. This information is often stored in a
header file and included into the using
module.

Interpreter
An interpreter translates a program from
human-readable form to machine code
while the program is running.

ISO
International Organization for
Standardization. An international stan-
dards body similar to ANSI. ISO is not a
governmental agency. Go to http://www.
iso.org for more information.

Iteration
Doing the same thing again and again.

L
L-value
An l-value is an operand that can be on
the left side of an operator.

Library
A collection of linkable files that were
supplied with your compiler, you pur-
chased separately, or created yourself.

Linked list
A data structure that consists of nodes
linked to one another.

Linker
A program that builds an executable
(runnable) file from the object code files
produced by the compiler.

Linking
The second step in creating an executable
file; links together the object files pro-
duced by a compiler into an executable
program.

422

Implementation

Literal constant
A value typed directly into the program,
such as 35.

Local variables
Variables that exist only within a func-
tion.

M
Member functions
(also called member methods)
The functions of your class.

Member methods
See member functions.

Member variables (also known as data
members)
The variables in your class.

Method definition
A definition that begins with the name of
the class followed by two colons, the
name of the function, and its parameters.

O
Object
An instance of a class.

Object oriented
A programming approach that takes the
next step beyond procedural and struc-
tural programming. As the name implies,
it takes advantage of the behavior of
objects (defined in classes). In some cases,
this term is overused for marketing pur-
poses.

OO
See object oriented.

Operand
A mathematical term referring to the
part of an expression operated upon by
an operator.

Operator
A symbol that causes the compiler to
take an action.

Overriding
When a derived class creates a member
function that changes the implementa-
tion of a function in the base class. The
overridden method must have the same
return type and signature as the base
method.

P
Pointer
A variable that holds a memory address.

Problem space
The set of problems and issues your pro-
gram will try to solve.

Procedural programming
A series of actions performed on a set of
data.

Polymorphism
The ability to treat many subtypes as if
they were of the same base type.

Postfix operator
The postfix operator (zombies++) incre-
ments after evaluation.

Postfix operator

423

Precedence value
The precedence value tells the compiler
the order in which to evaluate operators.

Prefix operator
The prefix operator (––zombies) incre-
ments before evaluation.

Preprocessor
A program that runs before your compil-
er and handles lines that begin with a
pound (#) symbol.

Prototype
Declaration of a function.

Private access
Access available only to the methods of
the class itself or to methods of classes
derived from the class.

Public access
Access available to methods of all classes.

Pure virtual function
A virtual function that must be overrid-
den in the derived class because it has no
code behind it. It is purely abstract with
no implementation in the base class.

R
R-value
An r-value is an operand that can be on
the right side of an operator.

RAM
Random access memory.

Reference
An alias to an object.

Relational operators
Determine whether two numbers are
equal or if one is greater or less than the
other.

S
Scope
Where a variable is visible and can be
accessed.

Shallow copy
Copies the exact values of one object’s
member variables to another object. Also
called a member-wise copy.

Signature
The name of a function and its argu-
ments.

Signed
A variable type that can hold negative
and positive values.

Simulation
A computer model of part of a real-world
system.

Singly linked list
A linked list in which nodes point to the
next node in the list, but not back to the
previous.

Solution space
The set of possible solutions to the
problem.

Spaghetti code
Programs written in a tangled and diffi-
cult to read format with limited structure.
It gets its name because it looks like a
plate of spaghetti and is difficult to follow
internal flow.

424

Precedence value

Stack
A special area of memory allocated for
your program to hold the data required
by each of the functions in your pro-
gram. Another term for stack is LIFO (last
in, first out) queue. The last (most recent)
item placed in the LIFO is the first one
pulled out.

Statement
A way to control the sequence of execu-
tion, evaluate an expression, or do noth-
ing (the null statement).

Static member data
Unlike most member data elements with-
in a class, this does not get replicated for
each object created. Only one copy of
these elements exists and can be accessed
by all the objects of that class. It is typi-
cally used to keep track of the number of
objects or anything else that applies to
all member objects.

Static member functions
Like static member data, these exist in
the scope of the class, not individual
objects and can be invoked without refer-
encing a specific object.

Stray pointer (also called dangling
pointer)
The name for a pointer that is created
when you perform delete on it and then
try to access the memory that has been
freed. This is a common bug that is diffi-
cult to debug because the fault (accessing
the memory improperly) typically takes
place long after the delete.

String
An array of characters ending with a null
character.

Structured programming
A systematic approach to breaking pro-
grams down into procedures.

Symbolic constant
A typed and named value marked as
constant, such as BoilingPoint.

Stubbing out
Writing only enough of a function to
compile, leaving the details for later.

Subscript
Offsets into an array. The fourth element
of myArray would be accessed as
myArray[3].

T
Template
Provides the ability to create a general
class or method and pass types as param-
eters.

Ternary operator
An operator that takes three terms. In
C++, there is only one ternary operator,
the ? operator, used as

a < b ? true : false;

which will return true if a is less than b,
and otherwise will return false.

Token
A string of characters.

Tree
A complex data structure built from
nodes, each of which points to two or
more other nodes.

Tree

425

Type
The size and characteristics of an object.

Typedef
A data type definition. Acts as a syn-
onym for a built-in data type.

U
UML
Unified Modeling Language. A standard-
ized, graphical means of representing
requirements and design.

Unary operator
An operator that takes only one term,
such as a++, as opposed to a binary oper-
ator, which takes two terms, such as a+b.

Unsigned
A variable type that can hold only posi-
tive values.

Use case
A description of how the system will be
used.

V
Variable
A named memory location in which you
can store a value.

Virtual method
One of the means by which C++ imple-
ments polymorphism. This allows you to
treat derived objects as if they were base
objects.

v-table
The internal mechanism that keeps track
of the virtual functions created within
individual objects.

W
Waterfall
A method in which each stage is com-
pleted before the product is passed on to
the next stage. Each stage is discrete and
self-contained. This can be applied to
software development or any project
(including building a house or car or so
forth).

Whitespace
Spaces, tabs, and new lines.

426

Type

	Team rebOOk

