
CIL Programming:
Under the Hood™ of .NET

JASON BOCK

*0414CH00_CMP2.qxp 5/20/02 3:28 PM Page i

CIL Programming: Under the Hood™ of .NET

Copyright © 2002 by Jason Bock

All rights reserved. No part of this work may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage or retrieval system, without the prior written permission of
the copyright owner and the publisher.

ISBN: 1-59059-041-4
Printed and bound in the United States of America 12345678910
Trademarked names may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, we use the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement
of the trademark.

Technical Reviewer: Dan Fergus
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,
Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Copy Editor: Ami Knox
Compositor: Diana Van Winkle, Van Winkle Design
Indexer: Carol Burbo
Artist and Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,
175 Fifth Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17,
69112 Heidelberg, Germany.
In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street,
Suite 219, Berkeley, CA 94710.
Phone: 510-549-5930, Fax: 510-549-5939, Email: info@apress.com, Web site:
http://www.apress.com

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither the
author nor Apress shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section. You will need to answer questions pertaining to this book in order
to successfully download the code.

*0414CH00_CMP2.qxp 5/20/02 3:28 PM Page ii

CHAPTER 6

.NET Languages
and CIL

In this chapter, I’ll walk through a number of code snippets written in various
.NET languages and demonstrate what the differences are in their assemblies. I’ll
compare and contrast debug and release builds. You’ll get a chance to look at how
different language constructs are translated into CIL by the different compilers.
I’ll show you how a piece of code in one language may not create the output you
expect. As you’ll see throughout this chapter, what you code is not always what
you get. By knowing CIL, you’ll be able to figure out what’s really going on.

Debug and Release Builds

To start, let’s take a look at a small piece of code that’s implemented in a couple of
.NET languages and see what the CIL looks like. You’ll build the code in both
debug and release modes to find out how the CIL changes between the modes.
Here’s what the general flow of the code is doing in all of the implementations:

1. Gets the type of the current instance and stores it in a local variable called
someType.

2. Gets the name of the type via the Name property, and stores it in a string
called typeName.

3. If name is equal to “SimpleCode”, does the following:

• Declares an integer and call it i.

• Creates a boolean called yes and set it to true.

• Returns yes.

4. Returns a false value.

193

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 193

The C# Implementation

Here’s what the pseudocode looks like in C#:

public bool TestForTypeName()

{

Type someType = this.GetType();

String typeName = someType.Name;

if(true == typeName.Equals("SimpleCode"))

{

int i;

bool yes = true;

return yes;

}

return false;

}

Although the code follows the requirements to the letter, you as a developer
may be squirming at three parts of the code:

• There’s no reason to create i; it’s a waste of space.

• The yes variable really isn’t needed as you could simply return true.

• The someType variable really isn’t needed either as it’s never used after
Name is called.

I don’t know how many times I’ve seen dead code or code that could be
optimized make it into the compilation process of a production system. This is
usually due to a combination of a couple of issues—for example, the code has
been updated by a number of developers, and with large functions it’s not always
obvious where the dead code lies.1 In any event, let’s see what C#’s compiler does
with this method.

Listing 6-1 shows what the resulting CIL looks like if you compile
TestForTypeName() in debug mode.

1. Technically, the C# compiler will tell you if a variable is not being used as is the case with i,
but it won’t be able to make the optimization with someType.

Chapter 6

194

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 194

Listing 6-1. C# Compilation Results in Debug Mode

.method public hidebysig instance bool TestForTypeName() cil managed

{

// Code size 42 (0x2a)

.maxstack 2

.locals init ([0] class [mscorlib]System.Type someType,

[1] string typeName,

[2] int32 i,

[3] bool yes,

[4] bool CS$00000003$00000000)

IL_0000: ldarg.0

IL_0001: callinstance class [mscorlib]System.Type

[mscorlib]System.Object::GetType()

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: callvirt instance string

[mscorlib]System.Reflection.MemberInfo::get_Name()

IL_000d: stloc.1

IL_000e: ldloc.1

IL_0414f: ldstr "SimpleCode"

IL_0014: callvirt instance bool [mscorlib]System.String::Equals(string)

IL_0019: brfalse.s IL_0022

IL_001b: ldc.i4.1

IL_001c: stloc.3

IL_001d: ldloc.3

IL_001e: stloc.s CS$00000003$00000000

IL_0020: br.s IL_0027

IL_0022: ldc.i4.0

IL_0023: stloc.s CS$00000003$00000000

IL_0025: br.s IL_0027

IL_0027: ldloc.s CS$00000003$00000000

IL_0029: ret

} // end of method SimpleCode::TestForTypeName

Let me draw your attention to a couple of interesting things about the results.
First, you’ll see that all of the code has been translated into CIL and included in
the assembly—that is, the C# compiler made no optimizations whatsoever.
The other interesting aspect about the debug build is the fifth local variable,
CS$00000003$00000000. It’s not a variable you create in your code; the C# compiler
creates this variable to make the debugging process “friendlier.” To see what I
mean by this statement, here are the last few lines of CIL with the C# code inlined:

.NET Languages and CIL

195

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 195

//000022: return yes;

IL_001d: ldloc.3

IL_001e: stloc.s CS$00000003$00000000

IL_0020: br.s IL_0027

//000023: }

//000024:

//000025: return false;

IL_0022: ldc.i4.0

IL_0023: stloc.s CS$00000003$00000000

IL_0025: br.s IL_0027

//000026: }

IL_0027: ldloc.s CS$00000003$00000000

IL_0029: ret

} // end of method SimpleCode::TestForTypeName

You’ll notice that when each return statement is reached in C# code, there’s
no corresponding ret opcode. Instead, the return value is stored in
CS$00000003$00000000, and then an unconditional branch occurs (br.s). This
branch is made to the end of the method (“}”), where the value is finally returned.

Before I show why this has an advantage during debugging, let’s tell the
compiler to turn optimizations on for the debug build. You do this in VS .NET by
right-clicking the project node in the Solutions Explorer window and selecting the
Properties menu option. Select the Build node underneath Configuration Proper-
ties and set the Optimize Code property to true (see Figure 6-1 for details).

Figure 6-1. Project properties

Chapter 6

196

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 196

When you recompile the code, the CIL will look like the code in Listing 6-2.

Listing 6-2. C# Compilation Results in Debug Mode with Optimizations

.method public hidebysig instance bool TestForTypeName() cil managed

{

// Code size 33 (0x21)

.maxstack 2

.locals init ([0] class [mscorlib]System.Type someType,

[1] string typeName,

[2] bool yes)

IL_0000: ldarg.0

IL_0001: call instance class [mscorlib]System.Type

[mscorlib]System.Object::GetType()

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: callvirt instance string

[mscorlib]System.Reflection.MemberInfo::get_Name()

IL_000d: stloc.1

IL_000e: ldloc.1

IL_000f: ldstr "SimpleCode"

IL_0014: callvirt instance bool [mscorlib]System.String::Equals(string)

IL_0019: brfalse.s IL_001f

IL_001b: ldc.i4.1

IL_001c: stloc.2

IL_001d: ldloc.2

IL_001e: ret

IL_001f: ldc.i4.0

IL_0020: ret

} // end of method SimpleCode::TestForTypeName

You can see that i is no longer declared as a local, and there’s no temporary
return value listed either. If you step through this optimized code in the debugger,
you’ll see that i doesn’t show up in the Locals window as a local variable. You’ll
also notice that when you hit a return statement, you immediately jump out of
the method, rather than go to the end.

If you’re in debug mode, I’d strongly suggest not optimizing your build
because of the changes that happen at the CIL level, especially when it comes to
exiting a method. The reason is it gives you is a chance to see what the last value is
before the method is finished. In the case of TestForTypeName(), it’s not a big deal,
because you can see in the code that you’ll return a true or a false. This becomes
a nice feature to have when you perform a calculation in the return statement.

.NET Languages and CIL

197

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 197

To see why this feature is desirable, take a look at the following code:

public int IncrementIntValue()

{

int i = 0;

return i++;

}

If you turn on optimizations in debug mode, you’ll end up never seeing what the
value is for i unless you’re in the calling method. If you want to see what i is
before the method exits, just leave optimizations off.2

Now, when you compile the application in release mode, there’s no debug file
created, but the results are the same as before from a CIL perspective. The only
difference is that the local variable names are mangled. Here’s a snippet from
TestForTypeName() in release mode with optimizations on:

.method public hidebysig instance bool

TestForTypeName() cil managed

{

// Code size 33 (0x21)

.maxstack 2

.locals init (class [mscorlib]System.Type V_0,

string V_1,

bool V_2)

The names you gave the variables are no longer there. This makes it a little harder
to follow the code, as good variable names will give hints to people when they
analyze decompiled code; they also make the symbol sizes smaller in the meta-
data, but they don’t affect your code in any way.

The VB .NET Implementation

Now let’s look at the method in VB .NET:

Public Function TestForTypeName() As Boolean

Dim someType As Type = Me.GetType()

Dim typeName As String = someType.Name

If True = typeName.Equals("SimpleCode") Then

Dim i As Integer

Dim yes As Boolean = True

Return yes

End If

Return False

End Function

2. In this case, it’s easy to see that i will be 1 when the method is finished, but in more
complex cases it may be nice to see the value before the method exits.

Chapter 6

198

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 198

VB .NET is similar to C# in that the CIL results are the same in both debug and
release mode if optimizations are turned on (except for the variable name
mangling). Note that in VB .NET the project properties window looks a little
different from the C# project properties window, as it relates to optimization
configuration. You can turn them on and off by going to the Optimizations node
under Configuration Properties and selecting Enable optimizations as Figure 6-2
shows.

Figure 6-2. Project properties in VB .NET

There are some differences, though, between debug and release builds with
optimizations off, as well as how VB .NET implements the code compared to C#.
Listing 6-3 shows the CIL code in release mode with no optimizations.

Listing 6-3. VB .NET Compilation Results in Release Mode with Optimizations

// VB .NET Release - no optimizations

.method public instance bool TestForTypeName() cil managed

{

// Code size 42 (0x2a)

.maxstack 3

.NET Languages and CIL

199

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 199

.locals init (class [mscorlib]System.Type V_0,

bool V_1,

string V_2,

int32 V_3,

bool V_4)

IL_0000: ldarg.0

IL_0001: callvirt instance class [mscorlib]System.Type

[mscorlib]System.Object::GetType()

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: callvirt instance string

[mscorlib]System.Reflection.MemberInfo::get_Name()

IL_000d: stloc.2

IL_000e: ldc.i4.1

IL_000f: ldloc.2

IL_0010: ldstr "SimpleCode"

IL_0015: callvirt instance bool

[mscorlib]System.String::Equals(string)

IL_001a: bne.un.s IL_0024

IL_001c: ldc.i4.1

IL_001d: stloc.s V_4

IL_001f: ldloc.s V_4

IL_0021: stloc.1

IL_0022: br.s IL_0028

IL_0024: ldc.i4.0

IL_0025: stloc.1

IL_0026: br.s IL_0028

IL_0028: ldloc.1

IL_0029: ret

} // end of method SimpleCode::TestForTypeName

Notice that VB .NET does not create a dummy variable to store the return
value; rather, it creates a variable (V_1) with the same type as the return type. This
lets the VB .NET developer use the method name as the return value. It’s more
prevalent if you look at the debug build shown in Listing 6-4.

Listing 6-4. VB .NET Compilation Results in Debug Mode

.method public instance bool TestForTypeName() cil managed

{

// Code size 44 (0x2c)

.maxstack 3

Chapter 6

200

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 200

.locals init ([0] class [mscorlib]System.Type someType,

[1] bool TestForTypeName,

[2] string typeName,

[3] int32 i,

[4] bool yes)

IL_0000: nop

IL_0001: ldarg.0

IL_0002: callvirt instance class [mscorlib]System.Type

[mscorlib]System.Object::GetType()

IL_0007: stloc.0

IL_0008: ldloc.0

IL_0009: callvirt instance string

[mscorlib]System.Reflection.MemberInfo::get_Name()

IL_000e: stloc.2

IL_000f: ldc.i4.1

IL_0010: ldloc.2

IL_0011: ldstr "SimpleCode"

IL_0016: callvirt instance bool [mscorlib]System.String::Equals(string)

IL_001b: bne.un.s IL_0025

IL_001d: ldc.i4.1

IL_001e: stloc.s yes

IL_0020: ldloc.s yes

IL_0022: stloc.1

IL_0023: br.s IL_002a

IL_0025: nop

IL_0026: ldc.i4.0

IL_0027: stloc.1

IL_0028: br.s IL_002a

IL_002a: ldloc.1

IL_002b: ret

} // end of method SimpleCode::TestForTypeName

As you can see, the local variable at index position 1 is named
TestForTypeName. This is the variable that’s set if you do something like this in code:

TestForTypeName = True

You’ll also note that VB .NET includes some nop opcodes in the CIL stream.
The reason it does this is to include all of the VB .NET code it can into the debug-
ging experience. For example, here’s the CIL code inlined with the VB .NET code:

// Source File 'D:\Personal\APress\Programming in CIL\

// Chapter 6 - dotNET Languages and CIL\SimpleVBCode\SimpleVBCode.vb'

//000009: Public Function TestForTypeName() As Boolean

.NET Languages and CIL

201

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 201

IL_0000: nop

//000010: Dim someType As Type = Me.GetType()

IL_0001: ldarg.0

IL_0002: callvirt instance class [mscorlib]System.Type

[mscorlib]System.Object::GetType()

IL_0007: stloc.0

Compare that code to the CIL code from C#:

// Source File 'D:\Personal\APress\Programming in CIL\

// Chapter 6 - dotNET Languages and CIL\

// SimpleCSharpCode\SimpleCSharpCode.cs'

//000018: Type someType = this.GetType();

IL_0000: ldarg.0

IL_0001: call instance class [mscorlib]System.Type

[mscorlib]System.Object::GetType()

IL_0006: stloc.0

If you’ve ever debugged a program in C#, try setting a breakpoint on the
method declaration. Even though VS .NET puts the breakpoint on that line of
code, you’ll see that the breakpoint is pushed down to the first line of executable
code when you start up the debugger. However, in VB .NET, it’s different. You can
set a breakpoint on the method declaration and it won’t move. By putting nop
opcodes into the CIL stream, VB .NET’s compiler can bind these “do-nothing”
lines of code to the debug version of the assembly.

The Component Pascal Implementation

The last high-level language implementation I’ll show you is Component
Pascal (CP):

MODULE SimpleCPCode;

IMPORT System := mscorlib_System, CPmain, Console;

TYPE SimpleCode* = POINTER TO EXTENSIBLE RECORD

(System.Object) END;

PROCEDURE (this : SimpleCode) TestForTypeName*() :

BOOLEAN, NEW, EXTENSIBLE;

Chapter 6

202

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 202

VAR someType : System.Type;

typeName : System.String;

i : INTEGER;

yes : BOOLEAN;

BEGIN

someType := this.GetType();

typeName := someType.get_Name();

IF (typeName.Equals(MKSTR("SimpleCode"))) THEN

yes := TRUE;

RETURN yes;

END;

RETURN FALSE;

END TestForTypeName;

END SimpleCPCode.

As far as I can tell from the CP docs, there’s no debug or release build
available, so you’ll only be seeing one CIL implementation, which is shown in
Listing 6-5.

Listing 6-5. Component Pascal Compilation Results

.method public newslot virtual instance bool

TestForTypeName() cil managed

{

// Code size 41 (0x29)

.maxstack 8

.locals init ([0] class [mscorlib]System.Type someType,

[1] string typeName,

[2] int32 i,

[3] bool yes)

IL_0000: ldarg.0

IL_0001: call

instance class [mscorlib]System.Type object::GetType()

IL_0006: stloc.0

IL_0007: ldloc.0

IL_0008: callvirt

instance string [mscorlib]System.Reflection.MemberInfo::get_Name()

IL_000d: stloc.1

IL_000e: ldloc.1

IL_000f: ldstr "SimpleCode"

IL_0014: call string [RTS]CP_rts::mkStr(char[])

IL_0019: call instance bool string::Equals(string)

IL_001e: brfalse IL_0027

IL_0023: ldc.i4.1

.NET Languages and CIL

203

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 203

IL_0024: stloc.3

IL_0025: ldloc.3

IL_0026: ret

IL_0027: ldc.i4.0

IL_0028: ret

} // end of method SimpleCode::TestForTypeName

There really isn’t anything interesting with this code except the call to MKSTR(),
which originates from CP’s runtime assembly (RTS). This is necessary because CP
needs to resolve the call to Equals() since it’s overloaded by System.String.3

Because the “SimpleCode” literal could be a String or an Object, CP’s compiler
can’t resolve the call on its own. Note that I could’ve made a separate String vari-
able to make the call unambiguous:

VAR targetName : System.String;

targetName := “SimpleCode”;

IF (typeName.Equals(targetName)) THEN

Commentary

In all three cases, the implementations are pretty similar, but with some slight
differences. C#’s compiler is pretty aggressive in eliminating dead code in
comparison to the other two languages.4 However, there are some optimizations
that we as humans can see that the compilers can’t. For example, we all know
there’s no reason to create a Type reference to get its name—here’s how they could
all be optimized:

// C# code

String typeName = this.GetType().Name;

' VB .NET code

Dim typeName As String = Me.GetType().Name

(* CP Code *)

typeName := this.GetType().get_Name();

3. Later on, I’ll demonstrate a more convoluted example with overridden and overloaded
methods.

4. For a listing of the optimizations that C#’s compiler will perform, please read the section
“Optimizations” in Chapter 36 of Eric Gunnerson’s book, A Programmer’s Introduction to
C#, Second Edition (Apress, 2001).

Chapter 6

204

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 204

However, it’s interesting to see what the compilers do with this optimization.
Here’s the CIL for all three languages:

// C# and CP CIL

IL_0001: call instance class

[mscorlib]System.Type [mscorlib]System.Object::GetType()

IL_0006: callvirt instance string

[mscorlib]System.Reflection.MemberInfo::get_Name()

// VB .NET CIL

IL_0001: callvirt instance class

[mscorlib]System.Type [mscorlib]System.Object::GetType()

IL_0006: callvirt instance string

[mscorlib]System.Reflection.MemberInfo::get_Name()

Both C# and CP call GetType() with call, whereas VB .NET calls it with
callvirt. This is a nonvirtual method, and calling nonvirtual methods with
callvirt is legal, but why is VB .NET the only language to emit a callvirt? It’s
being more cautious than the other two compilers. callvirt will always check to
see that the instance reference is the first argument on the stack—if it’s null, it
throws a NullReferenceException. call won’t do this. At the end of the day, they’re
both legitimate choices. If the reference were null, VB .NET would throw the
exception before the method is called. In the other two languages, the error
wouldn’t occur until the reference was accessed (if at all).

SOURCE CODE The SimpleVBCode, SimpleCSharpCode, and
SimpleCPCode projects contain the code written in the different
languages discussed in this section.

Language Constructs

In this section, I’ll dive into specific language keywords and constructs and what
the generated CIL looks like. It’s interesting to see what the compilers are doing
with your favorite (or not-so-favorite) language’s keywords—in some cases, it
might make you question whether you should ever use a certain construct at all.

VB .NET’s With Statement

Let’s start with an easy one. VB .NET has a With statement that allows you to refer-
ence an object’s members without redundant typing of the object’s variable name.

.NET Languages and CIL

205

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 205

For example, here’s a piece of code that prints out the contents of an Atom
instance:

Function PrintAtom(ByVal TargetAtom As Atom)

Console.WriteLine("Atom name is " & TargetAtom.Name)

Console.WriteLine("Atom symbol is " & TargetAtom.Symbol)

Console.WriteLine("Number of protons and electrons: " & _

TargetAtom.Electrons)

Console.WriteLine("Number of neutrons: " & _

TargetAtom.Nucleus.Neutrons.Length)

End Function

By using With, you eliminate the need to type TargetAtom whenever you access
its property values:

Function WithPrintAtom(ByVal TargetAtom As Atom)

With TargetAtom

Console.WriteLine("Atom name is " & .Name)

Console.WriteLine("Atom symbol is " & .Symbol)

Console.WriteLine("Number of protons and electrons: " & .Electrons)

Console.WriteLine("Number of neutrons: " & .Nucleus.Neutrons.Length)

End With

End Function

Note that With only works on objects, so you can’t use With on Console to make the
WriteLine() calls smaller from a typing perspective.

When you’re accessing a number of a particular object’s properties and
methods, With is a nice piece of syntactic sugar to make the code a bit cleaner. In
fact, it’s so nice that when I wear my C# hat I wish it had a similar construct. The
only way to get close to faking it is to set a variable with a very short name (like x)
equal to the object reference in question:

Atom PrintAtom(Atom TargetAtom)

{

Atom x = TargetAtom;

Console.WriteLine("Atom name is " + x.Name);

// etc.

}

What’s interesting is that VB .NET is doing the same thing behind the scenes.
Let’s take a look at some of the CIL produced by these two methods. Here’s the
first two WriteLine() calls in PrintAtom():

Chapter 6

206

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 206

.method public static object PrintAtom(

class WithTest.WithTest/Atom TargetAtom) cil managed

{

// Code size 106 (0x6a)

.maxstack 2

.locals init (object V_0)

IL_0000: ldstr "Atom name is "

IL_0005: ldarg.0

IL_0006: callvirt instance string WithTest.WithTest/Atom::get_Name()

IL_000b: call string [mscorlib]System.String::Concat(string,

string)

IL_0010: call void [mscorlib]System.Console::WriteLine(string)

IL_0015: ldstr "Atom symbol is "

IL_001a: ldarg.0

IL_001b: callvirt instance string WithTest.WithTest/Atom::get_Symbol()

IL_0020: call string [mscorlib]System.String::Concat(string,

string)

IL_0025: call void [mscorlib]System.Console::WriteLine(string)

As expected, TargetAtom is loaded each time information is needed out of it
(ldarg.0). Now look at the same code in WithPrintAtom():

.method public static object WithPrintAtom

(class WithTest.WithTest/Atom TargetAtom) cil managed

{

// Code size 110 (0x6e)

.maxstack 2

.locals init (object V_0,

class WithTest.WithTest/Atom V_1)

IL_0000: ldarg.0

IL_0001: stloc.1

IL_0002: ldstr "Atom name is "

IL_0007: ldloc.1

IL_0008: callvirt instance string WithTest.WithTest/Atom::get_Name()

IL_000d: call string [mscorlib]System.String::Concat(string,

string)

IL_0012: call void [mscorlib]System.Console::WriteLine(string)

IL_0017: ldstr "Atom symbol is "

IL_001c: ldloc.1

IL_001d: callvirt instance string WithTest.WithTest/Atom::get_Symbol()

IL_0022: call string [mscorlib]System.String::Concat(string,

string)

IL_0027: call void [mscorlib]System.Console::WriteLine(string)

.NET Languages and CIL

207

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 207

In this case, the compiler created a local variable of type Atom and set it
equal to TargetAtom (ldarg.0 and stloc.1). Then, whenever TargetAtom is needed,
VB .NET actually loads the local variable (ldloc.1) and not the original variable.

This may seem a bit odd at first glance. Why create the dummy variable? In
this case, there’s not much of a difference between a local variable and a method
argument. However, the reasoning behind this process becomes clearer when you
start calling properties or methods as part of the With statement. Take a look at the
following code:

With TargetAtom.Symbol

Console.WriteLine("Atom object information: " & .ToString)

End With

It’s possible that the value returned from Symbol would change if you loaded
TargetAtom onto the stack to get its value to implement the With statement. The
way With works is that the value used when the With block is entered doesn’t
change throughout the block.5 So the compiler doesn’t have much of a choice but
to cache the value once and then use that value throughout the lifetime of the
With block.

SOURCE CODE The WithTest project contains the methods discussed
in this section.

Implementing Interface Methods

As you have seen, .NET allows you to create interfaces that classes can imple-
ment. Furthermore, it’s possible to specify which method on which interface your
class is implementing.6 However, the way that this is done varies between
languages.

5. See Section 8.4 of the Visual Basic Language Specification of the .NET SDK.

6. This isn’t possible with ATL out of the box; see http://www.sellsbrothers.com/tools/default.aspx
for a workaround to this problem if you run into it and you’re still coding COM servers
in ATL.

Chapter 6

208

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 208

Consider the following set of interface definitions:

namespace DriveInterfaces

{

public interface IGolfer

{

string Drive();

}

public interface IStockCarRacer

{

string Drive();

}

public interface ISundayDriver

{

string Drive();

}

}

Now, let’s say I need to model two different classes: a person who is a stock
car racer and a golfer, and another person who’s a bad automobile driver as well
as a bad golfer. Therefore, the way the first person drives the stock car is different
than the way she drives a golf ball; the second person is lousy at both activities.
Listing 6-6 shows how this is implemented in C#.

Listing 6-6. Interface Implementation in C#

public class StockCarGolfer : IStockCarRacer, IGolfer

{

public StockCarGolfer() {}

string IStockCarRacer.Drive()

{

return "Without rubbing you ain't got racing!";

}

string IGolfer.Drive()

{

return "350 yards right down the middle of the fairway...";

}

}

public class BadDriver : ISundayDriver, IGolfer

{

.NET Languages and CIL

209

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 209

public BadDriver() {}

string ISundayDriver.Drive()

{

return this.Drive();

}

string IGolfer.Drive()

{

return this.Drive();

}

private string Drive()

{

return "I'm a bad driver no matter what I do.";

}

}

In C#, interface methods can be overridden by adding methods to the class
that match the interface’s methods. In this case, you can’t add a method called
Drive() because each interface defines the exact same method. Therefore, C#
allows you to define which interface method you’re implementing by explicitly
stating the method along with the interface name (string IGolfer.Drive(), for
example). This is known as explicit interface inheritance, and the resulting CIL
looks like this:

.method private hidebysig newslot final virtual

instance string DriveInterfaces.IGolfer.Drive() cil managed

{

.override [DriveInterfaces]DriveInterfaces.IGolfer::Drive

// Code size 7 (0x7)

.maxstack 1

IL_0000: ldarg.0

IL_0001: call instance string CSharpDrivers.BadDriver::Drive()

IL_0006: ret

} // end of method BadDriver::DriveInterfaces.IGolfer.Drive

Note that the method name includes the interface name along with the interface’s
assembly name. The method is private, so you can’t access the method from
outside the class, nor can you access the method from within the class:

// This works

this.Drive();

// This doesn’t

this.DriveInterfaces.IGolfer.Drive();

Chapter 6

210

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 210

The technique works well if the methods don’t share implementations, as is
the case with StockCarGolfer. However, you’ll note that in BadDriver, both
methods call the same implementation. In C#, there’s no way to state that a
method implements more than one interface method. With VB .NET, though, you
have more flexibility in terms of how you implement the interface’s methods.
Listing 6-7 shows the implementation of the two classes in VB .NET.

Listing 6-7. Interface Implementation in VB .NET

Public Class StockCarGolfer

Implements IStockCarRacer, IGolfer

Public Sub New()

End Sub

Private Function StockCarDrive() As String _

Implements IStockCarRacer.Drive

Return "Without rubbing you ain't got racing!"

End Function

Public Function GolfDrive() As String _

Implements IGolfer.Drive

Return "350 yards right down the middle of the fairway..."

End Function

End Class

Public Class BadDriver

Implements ISundayDriver, IGolfer

Public Sub New()

End Sub

Public Function Drive() As String _

Implements ISundayDriver.Drive, IGolfer.Drive

Return "I'm a bad driver no matter what I do."

End Function

End Class

.NET Languages and CIL

211

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 211

With the Implements keyword you can specify which methods will be
implemented by the current method. In this case, the implementation of Drive()
in BadDriver looks like this in CIL:

.method public newslot final virtual instance string

Drive() cil managed

{

.override [DriveInterfaces]DriveInterfaces.ISundayDriver::Drive

.override [DriveInterfaces]DriveInterfaces.IGolfer::Drive

// Code size 6 (0x6)

.maxstack 1

.locals init (string V_0)

IL_0000: ldstr "I'm a bad driver no matter what I do."

IL_0005: ret

} // end of method BadDriver::Drive

Note that the method is also declared as public, so it’s possible to use the
method as a client of BadDriver as well as from within the type:

' External

Dim bd As BadDriver = new BadDriver

bd.Drive

' Internal

Me.Drive()

Oberon has the same abilities that VB .NET does when it comes to imple-
menting interface methods . . . or so the documentation says. However, the results
are quite striking. Listing 6-8 shows the same two types defined in Oberon.

Listing 6-8. Interface Implementation in Oberon

MODULE OberonDrivers;

TYPE StockCarGolfer* = OBJECT

IMPLEMENTS DriveInterfaces.IStockCarRacer, DriveInterfaces.IGolfer;

PROCEDURE StockCarDrive() : System.String

IMPLEMENTS DriveInterfaces.IStockCarRacer.Drive;

BEGIN

RETURN "Without rubbing you ain't got racing!";

END StockCarDrive;

PROCEDURE GolfDrive*() : System.String

IMPLEMENTS DriveInterfaces.IGolfer.Drive;

Chapter 6

212

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 212

BEGIN

RETURN "350 yards right down the middle of the fairway...";

END GolfDrive;

END StockCarGolfer;

TYPE BadDriver* = OBJECT

IMPLEMENTS DriveInterfaces.ISundayDriver, DriveInterfaces.IGolfer;

PROCEDURE SundayDrive() : System.String

IMPLEMENTS DriveInterfaces.ISundayDriver.Drive;

BEGIN

RETURN "I'm a bad driver no matter what I do.";

END SundayDrive;

PROCEDURE GolferDrive() : System.String

IMPLEMENTS DriveInterfaces.IGolfer.Drive;

BEGIN

RETURN "I'm a bad driver no matter what I do.";

END GolferDrive;

END BadDriver;

END OberonDrivers.

You’ll be able to compile the code, but if you try to use them in another appli-
cation, you’ll be in for a rude shock. Here’s a piece of test code that I created in C#
to see what would happen with these types:

StockCarGolfer scg = new StockCarGolfer();

IStockCarRacer ISCGStock = scg;

Console.WriteLine("Calling Drive() on StockCarGolfer via IStockCarRacer = " +

ISCGStock.Drive());

IGolfer ISCGGolf = scg;

Console.WriteLine("Calling Drive() on StockCarGolfer via IGolfer = " +

ISCGGolf.Drive());

Console.WriteLine("Calling GolfDrive() on StockCarGolfer = " +

scg.GolfDrive());

Console.WriteLine("Calling StockCarDrive() on StockCarGolfer = " +

scg.StockCarDrive());

I had similar code for BadDriver, but it doesn’t pay to show it, because the test
code won’t execute. When I ran this code, I got a TypeLoadException. The reason
becomes clear when you look at the type’s methods in ILDasm:

.method public final virtual instance string

StockCarDrive() cil managed

{

.NET Languages and CIL

213

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 213

// Code size 6 (0x6)

.maxstack 11

IL_0000: ldstr "Without rubbing you ain't got racing!"

IL_0005: ret

} // end of method StockCarGolfer::StockCarDrive

Because no .override directive is present, the runtime can’t determine that you’re
actually trying to override Drive() from IStockCarDriver, so it gives up.7 In fact,
PEVerify doesn’t like this assembly either:

peverify /il /md OberonDrivers.dll

Microsoft (R) .NET Framework PE Verifier Version 1.0.3705.0

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

[IL]: Error: [token 0x02000002] Type load failed.

[IL]: Error: [token 0x02000003] Type load failed.

2 Errors Verifying OberonDrivers.dll

I think this is an excellent example of verifying assemblies that you receive
from vendors. In this case, if I ran PEVerify on OberonDrivers.dll, I would’ve seen
a problem before I spent the time to create a test harness.8

SOURCE CODE The DriveInterfaces project contains the interface
definitions, and the CSharpDrivers, VBDrivers, and OberonDrivers
projects contain the implementations of these interfaces.

On Error Resume Next, or How to Create a Lot of CIL

If you’d ever programmed in VB before .NET, you know that error handling was
pretty rudimentary. You had to use the goto statement and then you usually
jumped to a label:

7. The reason this worked with the Oberon example in Chapter 1 is because the interface and
class methods matched, so the runtime was able to determine that the interface was imple-
mented correctly.

8. I think that most vendors will do this before they publish their assemblies. However, it
doesn’t hurt to do a quick check on them before you use them—the time it takes to run
PEVerify on an assembly relative to the time it may take to figure out why something isn’t
working as expected is worth it in my book.

Chapter 6

214

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 214

Sub GotoErrorHandling(ByVal X As Integer, ByVal Y As Integer)

On Error GoTo ErrorHandler

Dim Z As Integer

Z = X \ Y

Exit Sub

ErrorHandler:

End Sub

This syntax is still preserved in VB .NET, but VB .NET also allows you to
handle exceptions via the Try-Catch-End Try blocks:

Sub NewErrorHandling(ByVal X As Integer, ByVal Y As Integer)

Try

Dim Z As Integer

Z = X \ Y

Catch e As Exception

End Try

End Sub

Of course, you can simply ignore errors if you want:

Sub NoErrorHandling(ByVal X As Integer, ByVal Y As Integer)

Dim Z As Integer

Z = X \ Y

End Sub

However, if a DivideByZeroException occurs, you’re sunk, unless somewhere up
the call stack a method will catch the exception. To allow code to execute without
letting an exception trickle up the stack, you can use On Error Resume Next:

Sub ResumeNextErrorHandling(ByVal X As Integer, ByVal Y As Integer)

On Error Resume Next

Dim Z As Integer

Z = X \ Y

End Sub

.NET Languages and CIL

215

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 215

Although you may be tempted to use On Error Resume Next,9 I would strongly
recommend another approach. For one, you may be suppressing exceptions that
simply should not be suppressed. If you’re trying to open a file and the runtime
won’t let you for security reasons, it’s far better to catch that exception than it is to
have your file processing code continue. The other reason is the code bloat that
happens, even with two lines of VB .NET code, as just demonstrated. Let’s look at
each method in detail to see what’s going on. First, take a look at NoErrorHandling():

.method public static void NoErrorHandling(int32 X,

int32 Y) cil managed

{

// Code size 5 (0x5)

.maxstack 2

.locals init (int32 V_0)

IL_0000: ldarg.0

IL_0001: ldarg.1

IL_0002: div

IL_0003: stloc.0

IL_0004: ret

} // end of method ErrorResumeNext::NoErrorHandling

Nothing surprising here—the two arguments are loaded and then X is divided by
Y. Now let’s look at the new, modern way of handling exceptions in VB .NET with
NewErrorHandling():

.method public static void NewErrorHandling(int32 X,

int32 Y) cil managed

{

// Code size 21 (0x15)

.maxstack 2

.locals init (int32 V_0,

class [mscorlib]System.Exception V_1)

.try

{

IL_0000: ldarg.0

IL_0001: ldarg.1

IL_0002: div

IL_0003: stloc.0

IL_0004: leave.s IL_0014

} // end .try

catch [mscorlib]System.Exception

9. I have to admit, I’ve used it on VB projects in the past, primarily in the error handling code
itself. But I’ve made a resolution to never use this feature as long as I live, especially after
seeing what happens when it’s used!

Chapter 6

216

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 216

{

IL_0006: dup

IL_0007: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::SetProjectError(

class [mscorlib]System.Exception)

IL_000c: stloc.1

IL_000d: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::ClearProjectError()

IL_0012: leave.s IL_0014

} // end handler

IL_0014: ret

} // end of method ErrorResumeNext::NewErrorHandling

You’ve seen .try blocks in CIL before, but the code that was added to the catch
block wasn’t expected. SetProjectError() and ClearProjectError() are methods
that are used by the VB .NET runtime (Microsoft.VisualBasic.dll) to set the current
exception object (Err) because you don’t have to specify an exception variable in
the catch statement as I am doing. This is a holdover from pre-.NET VB syntax in
which a global exception object was available; in VB .NET, the Err object is still
available and can be used in the exception handler to catch the (probable)
DivideByZeroException.

Let’s move on to GotoErrorHandler(), which is shown in Listing 6-9.

Listing 6-9. “On Error Goto” Results in CIL

.method public static void GotoErrorHandling(int32 X,

int32 Y) cil managed

{

// Code size 84 (0x54)

.maxstack 2

.locals init (int32 V_0,

class [mscorlib]System.Exception V_1,

int32 V_2,

int32 V_3)

IL_0000: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::ClearProjectError()

IL_0005: ldc.i4.1

IL_0006: stloc.3

IL_0007: ldarg.0

IL_0008: ldarg.1

IL_0009: div

IL_000a: stloc.0

IL_000b: leave.s IL_004b

IL_000d: leave.s IL_004b

.NET Languages and CIL

217

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 217

IL_000f: isinst [mscorlib]System.Exception

IL_0014: brfalse.s IL_001f

IL_0016: ldloc.3

IL_0017: brfalse.s IL_001f

IL_0019: ldloc.2

IL_001a: brtrue.s IL_001f

IL_001c: ldc.i4.1

IL_001d: br.s IL_0020

IL_001f: ldc.i4.0

IL_0020: endfilter

IL_0022: castclass [mscorlib]System.Exception

IL_0027: dup

IL_0028: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::SetProjectError(

class [mscorlib]System.Exception)

IL_002d: stloc.1

IL_002e: ldloc.2

IL_002f: brfalse.s IL_0033

IL_0031: leave.s IL_004b

IL_0033: ldc.i4.m1

IL_0034: stloc.2

IL_0035: ldloc.3

IL_0036: switch (

IL_0045,

IL_0047)

IL_0043: leave.s IL_0049

IL_0045: leave.s IL_0049

IL_0047: leave.s IL_000d

IL_0049: rethrow

IL_004b: ldloc.2

.try IL_0000 to IL_000f filter IL_000f handler IL_0022 to IL_004b

IL_004c: brfalse.s IL_0053

IL_004e: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::ClearProjectError()

IL_0053: ret

} // end of method ErrorResumeNext::GotoErrorHandling

Basically, VB .NET’s compiler adds a .try block with a filter block to imple-
ment the jump to the ErrorHandler label when an exception occurs. The exception
code that VB .NET emits is pretty interesting to trace. The filter starts at IL_000f. If
the thrown object is an Exception type (which it always should be), then V_3’s
value is loaded (which is set to 1 at IL_0006). This is not false, so the break at
IL_0017 doesn’t occur. V_2’s value is loaded, which is 0 (it’s never changed up to
this point since it’s been initalized). Because brtrue won’t cause a break to occur,

Chapter 6

218

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 218

a 1 is loaded, and you break to endfilter. Now a value of 1 is on the stack, so this
causes the handler’s code to execute. As before, VB .NET stores the exception
information via SetProjectData(). When V_2 is loaded again at IL_002e, the
following brfalse causes the code to jump to IL_0033, where V_2 is set to –1. V_3 is
loaded again, and a switch statement occurs. Since V_3 is still 1, the filter block is
left at IL_0047, which causes another jump at IL_000d to IL_004b, where the
method finally finished execution. Just seeing this code should motivate you to
use the new syntax.

Finally, here’s the CIL for ResumeNextErrorHandling(), which is shown in
Listing 6-10. Because the CIL gets pretty long, I’ve added the original
VB .NET code so you can see where the CIL is added to handle the
On Error Resume Next construct within the method.

Listing 6-10. “On Error Resume Next” Results in CIL

// Sub ResumeNextErrorHandling(ByVal X As Integer, ByVal Y As Integer)

.method public static void ResumeNextErrorHandling(int32 X,

int32 Y) cil managed

{

// Code size 113 (0x71)

.maxstack 2

.locals init (int32 V_0,

int32 V_1,

class [mscorlib]System.Exception V_2,

int32 V_3,

int32 V_4)

// On Error Resume Next

IL_0000: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::ClearProjectError()

IL_0005: ldc.i4.1

IL_0006: stloc.s V_4

// Dim Z As Integer

// Z = X \ Y

IL_0008: ldc.i4.1

IL_0009: stloc.1

IL_000a: ldarg.0

IL_000b: ldarg.1

IL_000c: div

IL_000d: stloc.0

IL_000e: leave.s IL_0068

IL_0010: ldloc.3

IL_0011: ldc.i4.1

IL_0012: add

IL_0013: ldc.i4.0

.NET Languages and CIL

219

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 219

IL_0014: stloc.3

IL_0015: switch (

IL_0000,

IL_0008,

IL_000e)

IL_0026: leave.s IL_0066

IL_0028: isinst [mscorlib]System.Exception

IL_002d: brfalse.s IL_0039

IL_002f: ldloc.s V_4

IL_0031: brfalse.s IL_0039

IL_0033: ldloc.3

IL_0034: brtrue.s IL_0039

IL_0036: ldc.i4.1

IL_0037: br.s IL_003a

IL_0039: ldc.i4.0

IL_003a: endfilter

IL_003c: castclass [mscorlib]System.Exception

IL_0041: dup

IL_0042: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::SetProjectError(

class [mscorlib]System.Exception)

IL_0047: stloc.2

IL_0048: ldloc.3

IL_0049: brfalse.s IL_004d

IL_004b: leave.s IL_0066

IL_004d: ldloc.1

IL_004e: stloc.3

IL_004f: ldloc.s V_4

IL_0051: switch (

IL_0060,

IL_0062)

IL_005e: leave.s IL_0064

IL_0060: leave.s IL_0064

IL_0062: leave.s IL_0010

IL_0064: rethrow

IL_0066: ldloc.2

.try IL_0000 to IL_0028 filter IL_0028 handler IL_003c to IL_0066

IL_0067: throw

// End Sub

IL_0068: ldloc.3

IL_0069: brfalse.s IL_0070

IL_006b: call void [Microsoft.VisualBasic]

Microsoft.VisualBasic.CompilerServices.ProjectData::ClearProjectError()

IL_0070: ret

} // end of method ErrorResumeNext::ResumeNextErrorHandling

Chapter 6

220

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 220

Wow, did that bloat the code! If someone insists on using this approach to
error handling, just ask him or her if all of this code is really worth it just to
prevent an exception from being raised if someone makes the following call:

ResumeNextErrorHandling(3, 0)

I think not. If your language of choice is VB .NET, I strongly recommend using
the new exception handling mechanisms rather than using the old constructs. To
me, having a code size of 21 (for NewErrorHandling()) is much more appealing that
113 (for ResumeNextErrorHandling()).

SOURCE CODE The ErrorResumeNext project contains the methods
described in this section.

Active Objects

You may know that .NET supports threading—that is, you can create threads that
will process work separate from the main thread. In C# and VB .NET, you have to
manage threads in native .NET code. Oberon, however, tries to abstract some of
the details away with the concept of an active object. Let’s take a look at how this
works via the example shown in Listing 6-11.

Listing 6-11. Creating an Active Object in Oberon

MODULE GuidGen;

TYPE Generator* = OBJECT {ACTIVE}

CONST waitTime = 1000;

VAR quit : BOOLEAN;

curGuid : System.Guid;

PROCEDURE GetGuid*() : System.Guid;

BEGIN

RETURN curGuid;

END GetGuid;

PROCEDURE Stop*();

BEGIN

quit := TRUE;

END Stop;

.NET Languages and CIL

221

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 221

BEGIN

quit := FALSE;

WHILE ~quit DO

curGuid := System.Guid.NewGuid();

System.Threading.Thread.Sleep(waitTime);

END

END Generator;

END GuidGen.

This assembly will contain a type called Generator. However, note that the
type is adorned with the ACTIVE directive. This attribute tells the compiler to run
the code that is contained in the type’s BEGIN...END block on a separate thread.
This code creates a new Guid every second. To exit the loop, the client must call
Stop().

From the client’s perspective, it’s oblivious that it spawns a new thread when
it creates an instance of Generator. However, the way Oberon currently generates
the code to handle this thread processing is a bit odd. Figure 6-3 shows what a
typical .NET developer will see if he or she looks at Generator in VS .NET’s Object
Browser.

Figure 6-3. Generator’s methods

See that run() method? This is the method that Generator’s constructor passes
to a ThreadStart delegate to state which method should be run on a separate
thread:

Chapter 6

222

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 222

.method public specialname rtspecialname

instance void .ctor() cil managed

{

// Code size 39 (0x27)

.maxstack 11

IL_0000: ldarg 0

IL_0004: call instance void [mscorlib]System.Object::.ctor()

IL_0009: ldarg 0

IL_000d: ldarg 0

IL_0011: ldvirtftn instance void GuidGen.Generator::run()

IL_0017: newobj instance void

[mscorlib]System.Threading.ThreadStart::.ctor(object,

native int)

IL_001c: newobj instance void

[mscorlib]System.Threading.Thread::.ctor(

class [mscorlib]System.Threading.ThreadStart)

IL_0021: callvirt instance void

[mscorlib]System.Threading.Thread::Start()

IL_0026: ret

} // end of method Generator::.ctor

However, there’s no reason to make run() public, and in this case, it would
cause the client a lot of pain if he or she called it on the same thread. run() enters
a WHILE...END loop that will only stop when quit is set to TRUE. Unless the client
happened to call Stop() before run(), the method would never return, and the
client would hang.

Although I think there’s a lot of promise for abstracting threading details away
from the developer as Oberon does with active objects, I think the compiler
designers of Oberon have some work to do before it becomes transparent and
seamless. Giving the method that contains the threading code a public scope is
dangerous at best. If you use a language construct from any language that you’re
not completely familiar with, make sure you create a number of test cases before
you include it in a larger project. This doesn’t guarantee that you will have figured
out every possible problem, but you may catch potential issues when the damage
caused by these problems is minimal.10

10. Right before this book was published, a research paper was released on adding constructs
similar to active objects to C#. It’s titled “Modern Concurrency Abstractions for C#,” and you
can download it at http://research.microsoft.com/Users/luca/Papers/Polyphony%20ECOOP.A4.pdf.

.NET Languages and CIL

223

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 223

SOURCE CODE The GuidGen folder contains the Oberon file to create
Generator, and GuidGenTest contains a VB .NET test harness that
allows you to play with Generator.

Language Interoperability: The Real Story

Now that you’ve gone through investigating the language translations that occur
from higher-level languages to CIL via the compilers, let’s see what happens when
types from different languages are intermixed.

Inheritance with Oberon .NET Types

Let’s back up and reexamine the hypothetical coding situation I gave in Chapter 1.
I had a number of languages in use to create assemblies that other languages
expanded upon. Although the example was pretty basic, you may have been
puzzled over one of my design decisions. Recall that I had implemented an inter-
face called IPerson (written in C#) in Oberon. This new type was called Person.
Then, I inherited from IPerson to create a new interface called ICustomer, which
was implemented by a class called Customer. All of this was done in C#. Figure 6-4
shows the current design scenario.

Figure 6-4. Current interface-class relationships

Chapter 6

224

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 224

To be honest, I would never have done it this way. Figure 6-5 shows what I
would have done if I had the choice.

Figure 6-5. Preferred interface-class relationships

The difference is subtle, but it’s there. In the first case, Customer doesn’t inherit
from Person; it’s only using its functionality via containment. In the second case,
Customer inherits from Person.

So what’s stopping me from doing this? The issue lies with the Oberon
language, or, to be more precise, what Oberon’s compiler is doing with the Person
type. Recall that Person is defined as follows:

MODULE PersonImpl;

TYPE Person* = OBJECT IMPLEMENTS PersonDefinition.IPerson;

(* code goes here…*)

END Person;

END PersonImpl.

When you load the assembly into ILDasm and look at Person, you may be
surprised by what you see:

.class public auto ansi sealed Person

extends [mscorlib]System.Object

implements [PersonDefinition]PersonDefinition.IPerson

{

} // end of class Person

.NET Languages and CIL

225

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 225

The type is sealed! Therefore, there is no way that I can legally extend this
type, so that’s why I had to use a combination of containment and method
forwarding in Customer with respect to Person.11

Although language interoperability is definitely possible in .NET and is much
easier than any other solution that I have seen, in some cases, things may not
work as expected. I didn’t expect Oberon to automatically make any type sealed,
so when I tried to make Customer inherit from Person, I got an error.

Overloaded and Overridden Methods

There are some subtleties in how languages will determine which method they
call with respect to types that overload methods from base types. Such subtleties
can lead to some interesting discussions in the conference room if you don’t look
at what’s really going on.

Here’s a concrete example written in C#:

public class Chair {}

public class ComfyChair : Chair {}

public class Person

{

public string Sit(ComfyChair c)

{

MethodBase mb = MethodBase.GetCurrentMethod();

return "You called " +

mb.DeclaringType.FullName + "\n" +

"\t" + mb.ToString() + "\n" +

"from type " + this.GetType().FullName + "\n";

}

}

public class SpanishInquisitor : Person

{

public string Sit(Chair c)

{

MethodBase mb = MethodBase.GetCurrentMethod();

return "You called " +

mb.DeclaringType.FullName + "\n" +

"\t" + mb.ToString() + "\n" +

"from type " + this.GetType().FullName + "\n";

}

}

11. Technically, this is documented behavior according to a white paper from the makers
of the Oberon compiler for .NET (http://www.oberon.ethz.ch/oberon.net/whitepaper/
ActiveOberonNetWhitePaper.pdf). See Section 6.1 in the paper for details.

Chapter 6

226

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 226

Both Sit() methods are nonvirtual, so Sit() in SpanishInquisitor is not over-
riding Person’s Sit() implementation. Also note that Sit() in SpanishInquisitor
takes a Chair instance, but Sit() in Person takes a more specific type—that is,
ComfyChair.

Let’s create a small test harness of these types in a C# console application:

class OAOTest

{

static void Main(string[] args)

{

Chair c = new Chair();

ComfyChair cc = new ComfyChair();

Person p = new Person();

SpanishInquisitor si = new SpanishInquisitor();

Console.WriteLine(p.Sit(cc));

Console.WriteLine(si.Sit(cc));

Console.WriteLine(si.Sit(c));

}

}

Before this code is run, try to guess what the output is going to be. Done?
Okay, here’s what the console says:

You called OverrideAndOverload.Person

System.String Sit(OverrideAndOverload.ComfyChair)

from type OverrideAndOverload.Person

You called OverrideAndOverload.SpanishInquisitor

System.String Sit(OverrideAndOverload.Chair)

from type OverrideAndOverload.SpanishInquisitor

You called OverrideAndOverload.SpanishInquisitor

System.String Sit(OverrideAndOverload.Chair)

from type OverrideAndOverload.SpanishInquisitor

The first and third methods aren’t really open for discussion, as there are no
other choices for the C# compiler to pick. Here’s the pertinent CIL that represents
the second method call:

.locals init (class [OverrideAndOverload]OverrideAndOverload.Chair V_0,

class [OverrideAndOverload]OverrideAndOverload.ComfyChair V_1,

class [OverrideAndOverload]OverrideAndOverload.Person V_2,

class [OverrideAndOverload]OverrideAndOverload.SpanishInquisitor V_3)

.NET Languages and CIL

227

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 227

ldloc.3

ldloc.1

callvirt instance string [OverrideAndOverload]

OverrideAndOverload.SpanishInquisitor::Sit(

class [OverrideAndOverload]OverrideAndOverload.Chair)

In this case, C# decides to call Sit() on SpanishInquisitor. Now let’s create a
similar test harness in VB .NET:

Sub Main()

Dim c As Chair = New Chair()

Dim cc As ComfyChair = New ComfyChair()

Dim p As Person = New Person()

Dim si As SpanishInquisitor = New SpanishInquisitor()

Console.WriteLine(p.Sit(cc))

Console.WriteLine(si.Sit(cc))

Console.WriteLine(si.Sit(c))

End Sub

Looks like the same code, right? But the results are a little different—here’s the
output:

You called OverrideAndOverload.Person

System.String Sit(OverrideAndOverload.ComfyChair)

from type OverrideAndOverload.Person

You called OverrideAndOverload.Person

System.String Sit(OverrideAndOverload.ComfyChair)

from type OverrideAndOverload.SpanishInquisitor

You called OverrideAndOverload.SpanishInquisitor

System.String Sit(OverrideAndOverload.Chair)

from type OverrideAndOverload.SpanishInquisitor

And here’s the CIL:

.locals init (class [OverrideAndOverload]OverrideAndOverload.Chair V_0,

class [OverrideAndOverload]OverrideAndOverload.ComfyChair V_1,

class [OverrideAndOverload]OverrideAndOverload.Person V_2,

class [OverrideAndOverload]OverrideAndOverload.SpanishInquisitor V_3)

ldloc.3

ldloc.1

callvirt instance string

[OverrideAndOverload]OverrideAndOverload.Person::Sit(

class [OverrideAndOverload]OverrideAndOverload.ComfyChair)

Chapter 6

228

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 228

VB .NET decides to call Sit() on Person and not on SpanishInquisitor.
Note that a similar test harness in Oberon yields the same result as the VB .NET
test code:

MODULE OberonOverrideAndOverloadTest;

VAR

c: OverrideAndOverload.Chair;

cc: OverrideAndOverload.ComfyChair;

p: OverrideAndOverload.Person;

si: OverrideAndOverload.SpanishInquisitor;

BEGIN

NEW(c);

NEW(cc);

NEW(p);

NEW(si);

System.Console.WriteLine{(System.String)}(p.Sit(cc));

System.Console.WriteLine{(System.String)}(si.Sit(cc));

System.Console.WriteLine{(System.String)}(si.Sit(c));

END OberonOverrideAndOverloadTest.

So what gives? Why do Oberon and VB .NET decide to use the Sit() method
on Person, but C# uses Sit() on SpanishInquisitor? The reason is that it’s purely a
language choice—both “sides” make a valid argument. C#’s compiler looks at each
object in the inheritance tree, and as soon as it finds a match that’s good enough,
the compiler calls it. That’s why C#’s compiler calls Sit() on SpanishInquisitor;
ComfyChair descends from Chair, so that call is perfectly valid. Oberon’s and VB
.NET’s compilers look through the tree until they find the best match they can.
They therefore call Sit() on Person because that method signature takes a
ComfyChair type.

Note that nothing in the Partition docs requires a language to take one
approach or another.12 Nor could it—different languages have made different
choices in this situation before .NET came along, so it couldn’t mandate a rule
in this case. If you’re on a project where developers insist on using multiple
languages and you run into situations where discrepancies arise in behavior,
distill the problem down to its essence and consult the Partition docs. You may
find other cases where there is no hard-and-fast rule, so keep this technique
in mind.

12. See Section 9.2 of Partition I.

.NET Languages and CIL

229

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 229

SOURCE CODE The OverrideAndOverload folder contains the
class definitions used in this section (Chair, Person, and so on).
The OverrideAndOverloadTest, VBOverrideAndOverloadTest, and
OberonOverrideAndOverloadTest folders contain the test harnesses.

The Other Property

In Chapter 2 I said in the section “Defining Properties in Types” that I would show you how a
higher-level language would handle extended property information. That is, if a property is
defined with the .otherdirective, what does C# do with it, if anything? I’ll show you in a
rather unexpected way via a COM server written in VB 6.

Let’s say you have two classes in a COM server called GetLetSet: GLS and
GLSTest. Here’s the definition of GLS:

Private m_Def As Long

Public Property Let ThisIsTheDefault(ByVal Value As Long)

m_Def = Value

End Property

Public Property Get ThisIsTheDefault() As Long

ThisIsTheDefault = m_Def

End Property

GLS has one property, ThisIsTheDefault. Now, you can’t see this from the code,
but this property is set as the default property. You can do this in the Procedure
Attributes dialog box, which you bring up by selecting Tools ➤ Procedure Attributes.
Figure 6-6 shows you where you can make a property the default one for a class.

Chapter 6

230

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 230

Figure 6-6. Setting the default property in VB 6

When (Default) is selected in the Procedure ID drop-down box, that property
will become the default.

If a property is set up as the default property, you don’t have to specify the
property name to use it. Therefore, the following code in VB 6 is perfectly valid
(albeit very confusing):

Dim g As GLS

Set g = New GLS

g = 4

After this code is complete, the private field m_Def will be set to 4. Again, this is not
obvious to a developer seeing the code for the first time, which is why few VB 6
developers ever used default properties. And it can be even worse if a developer
adds a class like GLSTest:

Dim m_GLS As GLS

Public Property Let MyGLS(Value As GLS)

m_GLS = Value

End Property

.NET Languages and CIL

231

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 231

Public Property Set MyGLS(Value As GLS)

Set m_GLS = Value

End Property

Public Property Get MyGLS() As GLS

Set MyGLS = m_GLS

End Property

Private Sub Class_Initialize()

Set m_GLS = New GLS

End Sub

By having a Let property defined for MyGLS, a VB 6 client can write convoluted
code like this:

Dim g As GLS

Set g = New GLS

g = 4

Dim gt As GLSTest

Set gt = New GLSTest

gt.MyGLS = g

At first glance, it looks like GLSTest’s private field m_GLS is being set to g, when
in reality, the last line of code is calling ThisIsTheDefault on m_GLS, setting m_Def
equal to 4. This is not what I consider self-documenting code.

However, get/set/let properties lead to an interesting scenario with COM
interoperability in .NET. If you reference the GetLetSet.dll COM server in a C#
project, you can write C# that does the same thing as the last VB 6 code snippet,
but be careful! It’s not as straightforward as it may look at first glance:

static void Main(string[] args)

{

GLS gls = new GLSClass();

gls.ThisIsTheDefault = 4;

GLSTest gt = new GLSTestClass();

GLS glRet = gt.get_MyGLS();

Console.WriteLine("Before: " +

glRet.ThisIsTheDefault.ToString());

gt.let_MyGLS(ref gls);

glRet = gt.get_MyGLS();

Console.WriteLine("After: " +

glRet.ThisIsTheDefault.ToString());

}

Chapter 6

232

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 232

The first aspect that’s different is that you must explicitly call the property
ThisIsTheDefault on gls. But the real twister is that you can’t use the property
MyGLS; you have to call the get_MyGLS() and let_MyGLS() methods. The reason is
found when you look at the .NET-to-COM interop assembly that C# creates so you
can access GetLetSet. This assembly is called Interop.GetLetSet.dll, and you can
find it in the bin directories. If you open it up in ILDasm, here’s what the MyGLS
property looks like:

.property class GetLetSet.GLS MyGLS()

{

.custom instance void

[mscorlib]System.Runtime.InteropServices.DispIdAttribute::.ctor(int32) =

(01 00 00 00 03 68 00 00) //h..

.get instance class

GetLetSet.GLS GetLetSet._GLSTest::get_MyGLS()

.set instance void

GetLetSet._GLSTest::set_MyGLS(class GetLetSet.GLS&)

.other instance void

GetLetSet._GLSTest::let_MyGLS(class GetLetSet.GLS&)

} // end of property _GLSTest::MyGLS

The .other directive is used to represent the Let version of MyGLS. However, C#
gets confused when you try to use MyGLS, as it can’t figure out if you’re really trying
to call the set_MyGLS() method or the let_MyGLS() method. That’s why an explicit
call to the property’s method is necessary.13

Admittedly, this is something you probably won’t see very often (at least, I
hope you won’t). But if you ever need to use a COM server where a property allows
you to get, let, and set a value, you’ll know how to handle it.

SOURCE CODE The GetLetSet folder contains the VB 6 definitions
of GLS and GLSTest. The GLSClient subfolder contains the C#
client code.

13. Unfortunately, IntelliSense won’t show the property methods, even though they’re public.
But if you simply type them in, everything will compile normally.

.NET Languages and CIL

233

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 233

Overloading Methods in CIL

Let’s close out this chapter with a discussion on overloading methods in CIL. Way
back in Chapter 2 in the section “Overriding Methods,” I gave a definition of a
method signature. One of the parts that made up the signature was the return
type. I didn’t make it explicit in Chapter 2, but now I’m going to show you how you
can overload methods in which the return type alone distinguishes the method
and how C# and VB .NET each handle these methods.

Let’s create a class that has two methods named GiveMeANumber(). One returns
an int32, and the other returns a float64:

.class public GetNumbers

{

.method public hidebysig

specialname rtspecialname

instance void .ctor() cil managed

{

.maxstack 1

ldarg.0

call instance void [mscorlib]System.Object::.ctor()

ret

}

.method public instance int32

GiveMeANumber() cil managed

{

.maxstack 1

ldc.i4 24

ret

}

.method public instance float64

GiveMeANumber() cil managed

{

.maxstack 1

ldc.r8 42

ret

}

}

The implementations are pretty easy. The int32 version will always return 24,
and the float64 version will always return 42.

Chapter 6

234

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 234

To call these methods from another assembly written in CIL should be second
nature for you by now. As you know, calling methods in CIL requires you to give
the type of the return value, so the ilasm compiler will have enough information
to discern which GiveMeANumber() method you’re calling, as demonstrated in
Listing 6-12.

Listing 6-12. Resolving Method Calls Based on the Return Value Types

.class public OBRTester

{

.method private hidebysig

specialname rtspecialname

instance void .ctor() cil managed

{

.maxstack 1

ldarg.0

call instance void [mscorlib]System.Object::.ctor()

ret

}

.method public static void Main()

cil managed

{

.entrypoint

.maxstack 2

.locals init (class [OverloadByReturn]GetNumbers gn)

newobj instance void [OverloadByReturn]GetNumbers::.ctor()

stloc gn

ldloc gn

call instance int32 [OverloadByReturn]GetNumbers::GiveMeANumber()

call void [mscorlib]System.Console::WriteLine(int32)

ldloc gn

call instance float64 [OverloadByReturn]GetNumbers::GiveMeANumber()

call void [mscorlib]System.Console::WriteLine(float64)

ret

}

}

When the application is run that contains OBRTester, the console should look
like this:

C:\OBRTester>OBRClient

24

42

.NET Languages and CIL

235

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 235

You get the int32 first, and then you obtain the float64 value. At each call
opcode, the return type is specified, so all is well in the .NET world.

However, things get pretty ugly in both C# and VB .NET if they encounter
GetNumbers:

// C#

class OBRTester

{

static void Main(string[] args)

{

GetNumbers gn = new GetNumbers();

int gnInt = gn.GiveMeANumber();

Console.WriteLine(gnInt);

double gnDouble = gn.GiveMeANumber();

Console.WriteLine(gnDouble);

}

}

' VB . NET

Module OBRTester

Sub Main()

Dim gn As GetNumbers = New GetNumbers()

Dim gnInt As Integer = gn.GiveMeANumber()

Console.WriteLine(gnInt)

Dim gnDouble As Double = gn.GiveMeANumber()

Console.WriteLine(gnDouble)

End Sub

End Module

Unfortunately, neither one of these code snippets will compile. When you
compile the C# code, the compiler gives you the following error:

The call is ambiguous between the following methods or properties:

'GetNumbers.GiveMeANumber()' and 'GetNumbers.GiveMeANumber()'

VB .NET’s error message is similar (although it’s a bit more verbose):

Overload resolution failed because no accessible 'GiveMeANumber'

is most specific for these arguments:

'Public Function GiveMeANumber() As Double': Not most specific.

'Public Function GiveMeANumber() As Integer': Not most specific.

Chapter 6

236

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 236

In both cases, the compiler can’t resolve the call you’re trying to make. Neither
C# nor VB .NET supports overloading methods by return value. As overloading
methods based on the return value is not CLS compliant,14 you should not expose
any methods in CIL that do this. Instead, provide a method that can internally
resolve which method should be called—this will allow languages like C# and VB
.NET to indirectly call these overloaded methods.

SOURCE CODE The OverloadByReturn folder contains the IL files that
define GetNumbers and OBRTester. The CSharpTester and VBTester
projects show how you can write code to call GetNumbers’s methods
(although the projects won’t compile).

Conclusion

In this chapter, you looked at a number of different language constructs and
interoperability situations and how they really worked at a CIL level. By knowing
how CIL works, you could easily determine why compilers make the choices that
they do to implement the developer’s wishes in a higher-level language. In the
next chapter, you’re going to start making those choices yourself when you create
your own assemblies via the Emitter classes.

14. See Section 9.2 of Partition I.

.NET Languages and CIL

237

*0414CH06_CMP3.qxd 5/20/02 4:05 PM Page 237

