
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
Cocoa in a Nutshell

By Michael Beam, James Duncan Davidson

Publisher: O'Reilly

Date
Published

: May 2003

ISBN: 0-596-00462-1

Pages: 566

Cocoa in a Nutshell begins with a complete overview of Cocoa's object classes. It provides developers who may be
experienced with other application toolkits the grounding they'll need to start developing Cocoa applications. A
complement to Apple's documentation, it is the only reference to the classes, functions, types, constants, protocols, and
methods that make up Cocoa's Foundation and Application Kit frameworks, based on the Jaguar release (Mac OS X
10.2).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
Cocoa in a Nutshell

By Michael Beam, James Duncan Davidson

Publisher: O'Reilly

Date
Published

: May 2003

ISBN: 0-596-00462-1

Pages: 566

 Copyright

 Preface

 What Is Cocoa?

 How This Book Is Organized

 Conventions Used in This Book

 How the Quick Reference Was Generated

 Comments and Questions

 Acknowledgments

 Part I: Introducing Cocoa

 Chapter 1. Objective-C

 Section 1.1. Objects

 Section 1.2. Messaging

 Section 1.3. Classes

 Section 1.4. Creating Object Instances

 Section 1.5. Memory Management

 Section 1.6. Deallocating Objects

 Section 1.7. Categories

 Section 1.8. Naming Conventions

 Chapter 2. Foundation

 Section 2.1. Data

 Section 2.2. Key-Value Coding

 Section 2.3. Working with Files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 2.4. Bundles and Resource Management

 Section 2.5. Archiving Objects

 Section 2.6. User Defaults

 Section 2.7. Notifications

 Section 2.8. Operating System Interaction

 Section 2.9. Threaded Programming

 Chapter 3. The Application Kit

 Section 3.1. AppKit Design Patterns

 Section 3.2. Nibs

 Section 3.3. Application Architecture

 Section 3.4. Controls

 Section 3.5. Menus

 Section 3.6. Sheets

 Section 3.7. Drawers

 Section 3.8. Toolbars

 Section 3.9. Event Handling

 Section 3.10. Document-Based Applications

 Chapter 4. Drawing and Imaging

 Section 4.1. The Role of Quartz

 Section 4.2. Coordinate Systems

 Section 4.3. Graphics Contexts

 Section 4.4. Working with Paths

 Section 4.5. Drawing Text

 Section 4.6. Working with Color

 Section 4.7. Working with Images

 Section 4.8. Transformations

 Chapter 5. Text Handling

 Section 5.1. Text System Architecture

 Section 5.2. Assembling the Text System

 Chapter 6. Networking

 Section 6.1. Hosts

 Section 6.2. URL Resources

 Section 6.3. Rendezvous Network Services

 Section 6.4. Sockets

 Section 6.5. NSFileHandle

 Chapter 7. Interapplication Communication

 Section 7.1. NSPipe

 Chapter 8. Other Frameworks

 Section 8.1. AddressBook

 Section 8.2. The Message Framework

 Section 8.3. Disc Recording Frameworks

 Section 8.4. Third-Party Frameworks

 Part II: API Quick Reference

 Chapter 9. Foundation Types and Constants

 Section 9.1. Data Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 9.2. Enumerations

 Section 9.3. Global Variables

 Section 9.4. Constants

 Section 9.5. Exceptions

 Chapter 10. Foundation Functions

 Section 10.1. Assertions

 Section 10.2. Bundles

 Section 10.3. Byte Ordering

 Section 10.4. Decimals

 Section 10.5. Java Setup

 Section 10.6. Hash Tables

 Section 10.7. HFS File Types

 Section 10.8. Map Tables

 Section 10.9. Object Allocation

 Section 10.10. Objective-C Runtime

 Section 10.11. Path Utilities

 Section 10.12. Points

 Section 10.13. Ranges

 Section 10.14. Rects

 Section 10.15. Sizes

 Section 10.16. Uncaught Exceptions

 Section 10.17. Zones

 Chapter 11. Application Kit Types and Constants

 Section 11.1. Data Types

 Section 11.2. Enumerations

 Section 11.3. Global Variables

 Section 11.4. Exceptions

 Chapter 12. Application Kit Functions

 Section 12.1. Accessibility

 Section 12.2. Applications

 Section 12.3. Events

 Section 12.4. Fonts

 Section 12.5. Graphics: General

 Section 12.6. Graphics: Window Depth

 Section 12.7. Interface Styles

 Section 12.8. OpenGL

 Section 12.9. Panels

 Section 12.10. Pasteboards

 Section 12.11. System Beep

 Chapter 13. Foundation Classes

 NSAppleEventDescriptor

 NSAppleEventManager

 NSAppleScript

 NSArchiver

 NSArray

 NSAssertionHandler

 NSAttributedString

 NSAutoreleasePool

 NSBundle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSCalendarDate

 NSCharacterSet

 NSClassDescription

 NSCloneCommand

 NSCloseCommand

 NSCoder

 NSConditionLock

 NSConnection

 NSCountCommand

 NSCountedSet

 NSCreateCommand

 NSData

 NSDate

 NSDateFormatter

 NSDecimalNumber

 NSDecimalNumberHandler

 NSDeleteCommand

 NSDeserializer

 NSDictionary

 NSDirectoryEnumerator

 NSDistantObject

 NSDistantObjectRequest

 NSDistributedLock

 NSDistributedNotificationCenter

 NSEnumerator

 NSException

 NSExistsCommand

 NSFileHandle

 NSFileManager

 NSFormatter

 NSGetCommand

 NSHost

 NSIndexSpecifier

 NSInvocation

 NSKeyedArchiver

 NSKeyedUnarchiver

 NSLock

 NSLogicalTest

 NSMachBootstrapServer

 NSMachPort

 NSMessagePort

 NSMessagePortNameServer

 NSMethodSignature

 NSMiddleSpecifier

 NSMoveCommand

 NSMutableArray

 NSMutableAttributedString

 NSMutableCharacterSet

 NSMutableData

 NSMutableDictionary

 NSMutableSet

 NSMutableString

 NSNameSpecifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSNameSpecifier

 NSNetService

 NSNetServiceBrowser

 NSNotification

 NSNotificationCenter

 NSNotificationQueue

 NSNull

 NSNumber

 NSNumberFormatter

 NSObject

 NSPipe

 NSPort

 NSPortCoder

 NSPortMessage

 NSPortNameServer

 NSPositionalSpecifier

 NSProcessInfo

 NSPropertyListSerialization

 NSPropertySpecifier

 NSProtocolChecker

 NSProxy

 NSQuitCommand

 NSRandomSpecifier

 NSRangeSpecifier

 NSRecursiveLock

 NSRelativeSpecifier

 NSRunLoop

 NSScanner

 NSScriptClassDescription

 NSScriptCoercionHandler

 NSScriptCommand

 NSScriptCommandDescription

 NSScriptExecutionContext

 NSScriptObjectSpecifier

 NSScriptSuiteRegistry

 NSScriptWhoseTest

 NSSerializer

 NSSet

 NSSetCommand

 NSSocketPort

 NSSocketPortNameServer

 NSSpecifierTest

 NSSpellServer

 NSString

 NSTask

 NSThread

 NSTimer

 NSTimeZone

 NSUnarchiver

 NSUndoManager

 NSUniqueIDSpecifier

 NSURL

 NSURLHandle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSUserDefaults

 NSValue

 NSWhoseSpecifier

 Chapter 14. Foundation Protocols

 NSCoding

 NSComparisonMethods

 NSCopying

 NSDecimalNumberBehaviors

 NSKeyValueCoding

 NSLocking

 NSMutableCopying

 NSObjCTypeSerializationCallBack

 NSObject

 NSScriptingComparisonMethods

 NSScriptKeyValueCoding

 NSScriptObjectSpecifiers

 NSURLHandleClient

 Chapter 15. Application Kit Classes

 NSActionCell

 NSAffineTransform

 NSApplication

 NSBezierPath

 NSBitmapImageRep

 NSBox

 NSBrowser

 NSBrowserCell

 NSButton

 NSButtonCell

 NSCachedImageRep

 NSCell

 NSClipView

 NSColor

 NSColorList

 NSColorPanel

 NSColorPicker

 NSColorWell

 NSComboBox

 NSComboBoxCell

 NSControl

 NSCursor

 NSCustomImageRep

 NSDocument

 NSDocumentController

 NSDrawer

 NSEPSImageRep

 NSEvent

 NSFileWrapper

 NSFont

 NSFontManager

 NSFontPanel

 NSForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSForm

 NSFormCell

 NSGlyphInfo

 NSGraphicsContext

 NSHelpManager

 NSImage

 NSImageCell

 NSImageRep

 NSImageView

 NSInputManager

 NSInputServer

 NSLayoutManager

 NSMatrix

 NSMenu

 NSMenuItem

 NSMenuItemCell

 NSMenuView

 NSMovie

 NSMovieView

 NSMutableParagraphStyle

 NSNibConnector

 NSNibControlConnector

 NSNibOutletConnector

 NSOpenGLContext

 NSOpenGLPixelFormat

 NSOpenGLView

 NSOpenPanel

 NSOutlineView

 NSPageLayout

 NSPanel

 NSParagraphStyle

 NSPasteboard

 NSPDFImageRep

 NSPICTImageRep

 NSPopUpButton

 NSPopUpButtonCell

 NSPrinter

 NSPrintInfo

 NSPrintOperation

 NSPrintPanel

 NSProgressIndicator

 NSQuickDrawView

 NSResponder

 NSRulerMarker

 NSRulerView

 NSSavePanel

 NSScreen

 NSScroller

 NSScrollView

 NSSecureTextField

 NSSecureTextFieldCell

 NSSimpleHorizontalTypesetter

 NSSlider

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSSliderCell

 NSSound

 NSSpellChecker

 NSSplitView

 NSStatusBar

 NSStatusItem

 NSStepper

 NSStepperCell

 NSTableColumn

 NSTableHeaderCell

 NSTableHeaderView

 NSTableView

 NSTabView

 NSTabViewItem

 NSText

 NSTextAttachment

 NSTextAttachmentCell

 NSTextContainer

 NSTextField

 NSTextFieldCell

 NSTextStorage

 NSTextTab

 NSTextView

 NSToolbar

 NSToolbarItem

 NSTypesetter

 NSView

 NSWindow

 NSWindowController

 NSWorkspace

 Chapter 16. Application Kit Protocols

 NSAccessibility

 NSChangeSpelling

 NSColorPickingCustom

 NSColorPickingDefault

 NSComboBoxCellDataSource

 NSComboBoxDataSource

 NSDraggingDestination

 NSDraggingInfo

 NSDraggingSource

 NSIgnoreMisspelledWords

 NSInputServerMouseTracker

 NSInputServiceProvider

 NSMenuItem

 NSMenuValidation

 NSNibAwaking

 NSOutlineViewDataSource

 NSServicesRequests

 NSTableDataSource

 NSTextAttachmentCell

 NSTextInput

 NSTextStorageScripting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSTextStorageScripting

 NSToolbarItemValidation

 NSToolTipOwner

 NSUserInterfaceValidations

 NSValidatedUserInterfaceItem

 NSWindowScripting

 Method Index

 A

 B

 C

 D

 E

 F

 G

 H

 I

 J

 K

 L

 M

 N

 O

 P

 Q

 R

 S

 T

 U

 V

 W

 XYZ

 Part III: Appendix

 Appendix A. Appendix: Resources for Cocoa Developers

 Section A.1. Apple Documentation

 Section A.2. Related Books

 Section A.3. Web Sites

 Section A.4. Mailing Lists

 Section A.5. Partnering with Apple

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps. The association between the image of an Irish setter
and the topic of Cocoa is a trademark of O'Reilly & Associates, Inc.

Apple Computer, Inc. boldly combined open source technologies with its own programming efforts to create Mac OS X,
one of the most versatile and stable operating systems now available. In the same spirit, Apple has joined forces with
O'Reilly & Associates to bring you an indispensable collection of technical publications. The ADC logo indicates that the
book has been technically reviewed by Apple engineers and is recommended by the Apple Developer Connection.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Carbon, Cocoa, ColorSync, Finder, FireWire, iBook, iMac,
iPod, Mac, Mac logo, Macintosh, PowerBook, QuickTime, QuickTime logo, Sherlock, and WebObjects are trademarks of
Apple Computer, Inc., registered in the United States and other countries. The "keyboard" Apple logo () is used with

permission of Apple Computer, Inc.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
It's practically impossible to know Cocoa inside and out. There was once a discussion between two programmers about
Cocoa's large APIs: one was a veteran Perl programmer, the other a Cocoa programmer. The Perl programmer
grumbled about the intimidating and verbose Cocoa APIs, saying there was simply too much to remember. Bemused,
the Cocoa programmer retorted: "You don't remember Cocoa; you look it up!"

The point the Cocoa programmer was trying to impress upon the Perl programmer was that understanding object-
oriented programming (OOP) concepts and the architecture of the frameworks is more important than remembering the
wordy and numerous method and class names in the Cocoa frameworks.

This book is a compact reference that will hopefully grow worn beside your keyboard. Split into two parts, Cocoa in a
Nutshell first provides an overview of the frameworks that focuses on both common programming tasks and how the
parts of the framework interact with one another. The second part of the book is an API quick reference that frees you
from having to remember method and class names so you can spend more time hacking code. This book covers the
Cocoa frameworks—Foundation and Application Kit (AppKit)—as of Mac OS X 10.2 (Jaguar).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What Is Cocoa?
Cocoa is a complete set of classes and application programming interfaces (APIs) for building Mac OS X applications and
tools. With over 240 classes, Cocoa is divided into two essential frameworks: the Foundation framework and the
Application Kit.

The Foundation framework provides a fundamental set of tools for representing fundamental data types, accessing
operating system services, threading, messaging, and more. The Application Kit provides the functionality to build
graphical user interfaces (GUI) for Cocoa applications. It provides access to the standard Aqua interface components
ranging from menus, buttons, and text fields—the building blocks of larger interfaces—to complete, prepackaged
interfaces for print dialogs, file operation dialogs, and alert dialogs. The Application Kit also provides higher-level
functionality to implement multiple document applications, text handling, and graphics.

Classes are not the only constituents of the Cocoa frameworks. Some programming tasks, such as sounding a system
beep, are best accomplished with a simple C function. Cocoa includes a number of functions for accomplishing tasks
such as manipulating byte orders and drawing simple graphics. Additionally, Cocoa defines a number of custom data
types and constants to provide a higher degree of abstraction to many method parameters.

The Cocoa Development Environment

Project Builder and Interface Builder are the two most important applications used in Cocoa development. Project
Builder is the interactive development environment (IDE) for Mac OS X used to manage and edit source files, libraries,
frameworks, and resources. Additionally, it provides an interface to the Objective-C compiler, gcc, and the GNU
debugger, gdb.

Interface Builder is used to create GUIs for Cocoa applications by allowing developers to manipulate UI components
(such as windows and buttons) graphically using drag and drop. It provides assistance for laying out components by
providing visual cues that conform to Apple's Aqua Human Interface Guidelines. From an inspector panel, the behavior
and appearance of these components can be tweaked in almost every way the component supports. Interface Builder
provides an intuitive way to connect objects by letting the user drag wires between objects. This way, you set up the
initial network of objects in the interface. In addition, you can interface without having to compile a single bit of code.

Interface components are not the only objects that can be manipulated with Interface Builder. You can subclass any
Cocoa class and create instances of the subclasses. More importantly, you can give these classes instance variables,
known as outlets, and methods, called actions, and hook them up to user interface components. Interface Builder can
then create source files for these subclasses, complete header files, and an implementation file including stubs for the
action methods. There is much more to Interface Builder and Project Builder than we can cover in this book, but as you
can begin to imagine, the tight integration of these two applications create a compelling application development
environment.

Cocoa Design Patterns

Cocoa uses many design patterns. Design patterns are descriptions of common object-oriented programming practices.
Effective application development requires that you know how and where to use patterns in Cocoa. Cocoa in a Nutshell
discusses these patterns in the context in which they are used. Here is a brief list of the design patterns you will
encounter in the book:

Delegation

In this pattern, one object, the delegate, acts on behalf of another object. Delegation is used to alter the
behavior of an object that takes a delegate. The developer's job is to implement any number of methods that
may be invoked in the delegate. Delegation minimizes the need to subclass objects to extend their functionality.

Singleton

This pattern ensures that only one object instance of a class exists in the system. A singleton method is an
object constructor that creates an instance of the class and maintains a reference to that object. Subsequent
invocations of the singleton constructor return the existing object, rather than create a new one.

Notification

Notifications allow decoupling of message senders from multiple message receivers. Cocoa implements this
pattern in the notification system used throughout the frameworks. It is discussed in Chapter 2.

Model-View-Control

The Model-View-Controller (MVC) pattern is used extensively in the Application Kit to separate an application
into logically distinct units: a model, which knows how to work with application data, the view, which is
responsible for presenting the data to the user, and the controller, which handles interaction between the model
and the view. Chapter 3 discusses MVC in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and the view. Chapter 3 discusses MVC in more detail.

Target/action

The target/action pattern decouples user-interface components, such as buttons and menu items, with the
objects (the targets) that implement their actions. In this pattern, an activated control sends an action message
to its target. Chapter 3 discusses this topic further.

Responder chain

The responder chain pattern is used in the event handling system to give multiple objects a chance to respond
to an event. This topic is discussed in Chapter 3.

Key-value coding

Key-value coding provides an interface for accessing an object's properties indirectly by name. Chapter 2 covers
key-value coding more thoroughly.

Benefits

These days, application developers expect a lot from their tools, and users expect a lot from any application they use.
Any application or application toolkit that neglects these needs is destined for failure. Cocoa comes through grandly by
providing the features needed in applications now and in the future, including:

Framework-based development

Cocoa development is based on its frameworks: the Foundation framework and the Application Kit. With
framework-based programming, the system takes a central role in the life of an application by calling out to
code that you provide. This role allows the frameworks to take care of an application's behind-the-scene details
and lets you focus on providing the functionality that makes your application unique.

"For free" features

Cocoa provides a lot of standard application functionality "for free" as part of the frameworks. These features
not only include the large number of user-interface components, but larger application subsystems such as the
text-handling system and the document-based application architecture. Because Apple has gone to great
lengths to provide these features as a part of Cocoa, developers can spend less time doing the repetitive work
that is common between all applications, and more time adding unique value to their application.

The development environment

As discussed earlier, Project Builder and Interface Builder provide a development environment that is highly
integrated with the Cocoa frameworks. Interface Builder is used to quickly build user interfaces, which means
less tedious work for the developer.

Cocoa's most important benefit is that it lets you develop applications dramatically faster than with other application
frameworks.

Languages

Cocoa's native language is Objective-C. The Foundation and Application Kit frameworks are implemented in Objective-
C, and using Objective-C provides access to all features of the frameworks. Chapter 1 covers Objective-C in depth.

Objective-C is not, however, the only language through which you can access the Cocoa frameworks. Through the Java
Bridge, Apple provides a way to access the Cocoa frameworks using the Java language. The Java Bridge does not
provide a complete solution since many of Cocoa's advanced features, such as the distributed objects system, are not
available with Java. This book will not discuss Cocoa application development with Java.

Another option for working with Cocoa is AppleScript. AppleScript has traditionally been associated with simple scripting
tasks, but with Mac OS X, Apple enabled AppleScript access to the Cocoa frameworks via AppleScript Studio.
AppleScript Studio provides hooks into the Cocoa API so scripters can take their existing knowledge of AppleScript,
write an application in Project Builder, and use Interface Builder to give their applications an Aqua interface—all without
having to learn Objective-C. This exposes Cocoa to a completely new base of Macintosh developers, who know enough
AppleScript to build simple task-driven applications for solving common problems. For more information about
AppleScript Studio, see http://www.apple.com/applescript/studio.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How This Book Is Organized
This book is split into two parts: the overview of Cocoa familiarizes developers with Cocoa's structure, and the API quick
reference contains method name listings and brief descriptions for all Foundation and Application Kit framework classes.

Part I is divided into the following eight chapters:

Chapter 1, Objective-C

This chapter introduces the use of Objective-C language. Many object-oriented concepts you may be familiar
with from other languages are discussed in the context of Objective-C, which lets you leverage your previous
knowledge.

Chapter 2, Foundation

This chapter discusses the Foundation framework classes that all programs require for common programming
tasks such as data handling, process control, run loop management, and interapplication communication.

Chapter 3, The Application Kit

This chapter introduces the Application Kit and details larger abstractions of the Application Kit, such as how
events are handled with responder chains, the document-based application architecture, and other design
patterns that are important in Cocoa development.

Chapter 4, Drawing and Imaging

This chapter discusses Cocoa's two-dimensional (2D) graphics capabilities available in the Application Kit.

Chapter 5, Text Handling

This chapter details the architecture of Cocoa's advanced text-handling system, which provides a rich level of
text-handling functionality for all Cocoa developers.

Chapter 6, Networking

This chapter summarizes networking technologies, such as Rendezvous and URL services, that are accessible
from a Cocoa application.

Chapter 7, Interapplication Communication

This chapter discusses interapplication communication techniques, including distributed objects, pipes, and
distributed notifications.

Chapter 8, Other Frameworks

This chapter provides information about the many Objective-C frameworks that can be used in conjunction with
Cocoa. These frameworks include those that are part of Mac OS X, such as AddressBook and DiscRecording, as
well as frameworks supplied by third-party developers.

Part II contains Foundation and AppKit framework references and, as such, makes up the bulk of the book. First, there's
an explanation of the organization of chapters in Part II and how class information is referenced. The rest of the section
is divided into eight chapters and a method index. Each chapter focuses on a different part of the Cocoa API.

Chapter 9, Foundation Types and Constants

This chapter lists the data types and constants defined by the Foundation framework.

Chapter 10, Foundation Functions

This chapter lists the functions defined by the Foundation framework.

Chapter 11, Application Kit Types and Constants

This chapter lists the data types and constants defined by the Application Kit.

Chapter 12, Application Kit Functions

This chapter lists the functions defined by the Application Kit.

Chapter 13, Foundation Classes

This chapter contains the API quick-reference Foundation framework classes.

Chapter 14, Foundation Protocols

This smaller chapter covers the handful of protocols declared as part of the Foundation framework.

Chapter 15, Application Kit Classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15, Application Kit Classes

This chapter provides the API quick reference for Application Kit classes.

Chapter 16, Application Kit Protocols

This chapter provides reference to the protocols defined and used in the AppKit.

Chapter 17, Method Index

This index contains an alphabetical listing of every method in the Foundation framework and Application Kit.
Each method name in the index has a list of classes that implement that method.

Unlike the rest of the book's sections, there is but one short appendix in Part III. Regardless of your experience level as
a Mac developer, this section contains valuable resources for Cocoa programmers, including details on how you can
partner with Apple to market your application.

Appendix A

This appendix lists vital resources for Cocoa developers, including Apple developer documentation, web sites,
mailing lists, books, and details on how to partner with Apple to gain exposure for your applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
This book uses the following typographical conventions:

Italic

Used to indicate new terms, URLs, filenames, file extensions, directories, commands, options, and program
names, and to highlight comments in examples. For example, a filesystem path will appear as
/Applications/Utilities.

Constant width

Used to show the contents of files or output from commands.

Constant-width bold

Used in examples and tables to show commands or other text that the user should type literally.

Constant-width italic

Used in examples and tables to show text that should be replaced with user-supplied values, and also to
highlight comments in code.

Menus/navigation

Menus and their options are referred to in the text as File Open, Edit Copy, etc. Arrows will also
signify a navigation path in window options—for example, System Preferences Screen Effects
Activation means that you would launch System Preferences, click on the icon for the Screen Effects
preferences panel, and select the Activation pane within that panel.

Pathnames

Pathnames show the location of a file or application in the filesystem. Directories (or folders for Mac and
Windows users) are separated by a forward slash. For example, if you see something like, "...launch the
Terminal application (/Applications/Utilities)" in the text, you'll know that the Terminal application can be found
in the Utilities subfolder of the Applications folder.

%, #

The percent sign (%) shows the user prompt for the default tcsh shell; the hash mark (#) is the prompt for the
root user.

Menu symbols

When looking at the menus for any application, you will see symbols associated with keyboard shortcuts for a
particular command. For example, to open a document in Microsoft Word, go to the File menu and select Open
(File Open), or issue the keyboard shortcut, -O.

Figure P-1 shows the symbols used in various menus to denote a shortcut.

Figure P-1. Keyboard accelerators for issuing commands

You'll rarely see the Control symbol used as a menu command option; it's more often used in association with mouse
clicks or for working with the tcsh shell.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Indicates a warning or caution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How the Quick Reference Was Generated
You'd have to be a madman to write this book's quick reference by hand. Madmen we are not, so following the example
of David Flanagan, author of O'Reilly's Java in a Nutshell, Mike wrote a program that would take care of most of the
tedious work.

The idea is to attack the problem in two stages. In the first stage, the code enumerates each header file of each
Framework that is to be ripped (Foundation and AppKit) and runs each line of each header through a parser. This parser
would look for key elements that identify parts of the header, such as @interface, + for class methods, - for instance
methods, and so forth. Every discovered element was assembled into a cross-linked hierarchy of framework names,
class names, or method names. When all headers had been processed, the hierarchy was output into a property list file,
which, at the end of the day, weighed in at just over 41,500 lines of text!

Stage two involved reading the contents of this file and running it through several formatting routines that output the
XML-formatted text required by the O'Reilly production team.

Each class has a little class hierarchy figure. These figures were autogenerated by drawing into a view (using
NSBezierPath) and saving the PDF representation of the view contents to a file. The input data for the program that did
all of the drawing was the same property list used to create the API quick reference entries.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You can access this page
at:

http://www.oreilly.com/catalog/cocoaian

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the O'Reilly web site
at:

http://www.oreilly.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments
The authors would like to acknowledge the many people who helped make this book possible.

From Mike

Writing this book has been quite an experience, and it was made possible only by the efforts and support of the people
I worked with. My editor, Chuck Toporek, put in a lot of time on this book and kept this first-time author on course and
in the right frame of mind with his kind words of encouragement and level-headed advice. He has become a good friend
over the past year that we've worked together on this project.

I am grateful to Duncan for his efforts in helping me shape up the book and for contributing the material on Objective-
C. Duncan is quite a person to work with, and I look forward to working with him on this book in the future. Any
success of this book is due in no small part to both Chuck and Duncan. These two make a great team, and I am
fortunate to have the opportunity to work with them.

Thanks to the tech reviewers: Scott Anguish, Sherm Pendley, and the engineers and technical writers at Apple who
were kind enough to take time out of their busy lives to review the book. Special thanks go to Malcolm Crawford for
going above and beyond the call of duty by providing in-depth comments and suggestions and working closely with us
to give the book its final polish. His upbeat attitude and British charm helped us all bring this book to completion.

Derrick Story at the O'Reilly Network took an amazing chance with me by letting me write about Cocoa for
www.macdevcenter.com, which gave me the opportunity to get my foot in the door when I was least expecting it. Why
he did this baffles me to this day, but I am grateful for it and for his encouragement over the past two years.

Ryan Dionne introduced me to Macs when we were freshman at UT Austin, and he quickly changed my attitude about
them (I was a switcher before switching was fashionable). Shortly after that, John Keto of the University of Texas, my
teacher and employer, was tricked, by some of the grad students I worked with, into believing that I was some sort of
Linux and C guru; let's just say that I quickly became one! I suppose that if either of these things hadn't happened, you
wouldn't be reading this acknowledgment. Life's funny sometimes.

All remaining thanks, and all that I am, go to my family and my friends: Mom and Dad, for the love, encouragement,
and support during the whole process; my sisters Kristin and Jennifer; and my future parents-in-law, Bill and Lauren,
for their love and support; Ryan, Paige, and Tommy for putting up with me and my antisocial behaviors during the past
year, and for always having an eye on me and knowing when I needed to get some lunch. As always, my love and
appreciation to my fiancée, Heather, (until July 2003!) for being incredibly patient, supportive, and caring during the
past year.

From Duncan

I'd like to thank Mike and Chuck for letting me contribute Chapter 1 to the book. They were both very patient and
attentive to all of the feedback I contributed to the rest of the book, even when they must have become annoyed by all
my suggestions. Chuck, you're a great editor and you've helped me develop as an author, a skill that I never thought
I'd have. Mike, I'm honored to have helped you with this book, and I look forward to working with you on it again in the
future.

mmalcolm Crawford provided an invaluable service by checking the Objective-C chapter, as well as the rest of the book,
in detail, and he really helped shape it into the what you see today. His dinner table discussions, and plenty of red ink
stemming from many years of experience, have illuminated several areas of Cocoa and Objective-C for me. This book
would not be the book it is without his valuable help.

Finally, thanks to my family and friends who put up with me disappearing during the crunch time leading up to the
production of this book. You guys know who you are.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: Introducing Cocoa
This part of the book provides a series of chapters that provide a general overview of Cocoa, helping
you to quickly come up to speed. The chapters in this part of the book include:

Chapter 1, Objective-C

Chapter 2, Foundation

Chapter 3, The Application Kit

Chapter 4, Drawing and Imaging

Chapter 5, Text Handling

Chapter 6, Networking

Chapter 7, Interapplication Communication

Chapter 8, Other Frameworks

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Objective-C
Objective-C is a highly dynamic, message-based object-oriented language. Consisting of a small number of additions to
ANSI C, Objective-C is characterized by its deferral of many decisions until runtime, supporting its key features of
dynamic dispatch, dynamic typing, and dynamic loading. These features support many of the design patterns Cocoa
uses, including delegation, notification, and Model-View-Controller (MVC). Because it is an extension of C, existing C
code and libraries, including those based on C++,[1] can work with Cocoa-based applications without losing any of the
effort that went into their original development.

[1] For more information on using C++ with Objective-C, see the Objective-C++ documentation contained in
/Developer/Documentation/ReleaseNotes/Objective-C++.html.

This chapter is an overview of Objective-C's most frequently used features. If you need more detail about these
features or want to see the full language specification, read through Apple's document, The Objective-C Programming
Language, which is installed as part of the Developer Tools in /Developer/Documentation/Cocoa/ObjectiveC.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 Objects
The base unit of activity in all object-oriented languages is the object—an entity that associates data with operations
that can be performed on that data. Objective-C provides a distinct data type, id, defined as a pointer to an object's
data that allows you to work with objects. An object may be declared in code as follows:

id anObject;

For all object-oriented constructs of Objective-C, including method return values, id replaces the default C int as the
default return data type.

1.1.1 Dynamic Typing

The id type is completely nonrestrictive. It says very little about an object, indicating only that it is an entity in the
system that can respond to messages and be queried for its behavior. This type of behavior, known as dynamic typing,
allows the system to find the class to which the object belongs and resolve messages into method calls.

1.1.2 Static Typing

Objective-C also supports static typing, in which you declare a variable using a pointer to its class type instead of id, for
example:

NSObject *object;

This declaration will turn on some degree of compile time checking to generate warnings when a type mismatch is
made, as well as when you use methods not implemented by a class. Static typing can also clarify your intentions to
other developers who have access to your source code. However, unlike other languages' use of the term, static typing
in Objective-C is used only at compile time. At runtime, all objects are treated as type id to preserve dynamism in the
system.

There are no class-cast exceptions like those present in more strongly typed languages,
such as Java. If a variable declared as a Dog turns out to be a Cat, but responds to the
messages called on it at runtime, then the runtime won't complain.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 Messaging
Objects in Objective-C are largely autonomous, self-contained, opaque entities within the scope of a program. They are
not passive containers for state behavior, nor data and a collection of functions that can be applied to that data. The
Objective-C language reinforces this concept by allowing any message—a request to perform a particular action—to be
passed to any object. The object is then expected to respond at runtime with appropriate behavior. In object-oriented
terminology, this is called dynamic binding.

When an object receives a message at runtime, it can do one of three things:

Perform the functionality requested, if it knows how.

Forward the message to some other object that might know how to perform the action.

Emit a warning (usually stopping program execution), stating that it doesn't know how to respond to the
message.

A key feature here is that an object can forward messages that it doesn't know how to deal with to other objects. This
feature is one of the significant differences between Objective-C and other object-oriented languages such as Java and
C++.

Dynamic binding, as implemented in Objective-C, is different than the late binding provided by Java and C++. While the
late binding provided by those languages does provide flexibility, it comes with strict compile-time constraints and is
enforced at link time. In Objective-C, binding is performed as messages are resolved to methods and is free from
constraints until that time.

1.2.1 Structure of a Message

Message expressions in Objective-C are enclosed in square brackets.[2]

[2] This convention is known as infix syntax; it is borrowed from Smalltalk.

The expression consists of the following parts: the object to which the message is sent (the receiver), the message
name, and optionally any arguments. For example, the following message can be verbalized as "send a play message to
the object identified by the iPod variable":

[iPod play];

Any arguments in a message expression appear after colons in a message name. For example, to tell the iPod object to
set the volume, send it the following message:

[iPod setVolume:11];

If a message contains multiple arguments, the arguments are typically separated in the message name and follow
colons after the corresponding component of the message. For example:

[iPod usePlaylist:@"Techno" shuffle:YES];

The name of this message is usePlaylist:shuffle:. The colons are part of the method name. If you aren't familiar with this
syntax, it may appear a bit odd at first. However, experience shows that structuring messages this way helps code be
more self-documenting than in languages such as Java or C++ where parameters are lumped together without
appropriate labeling.

1.2.1.1 Nested messages

Messages can be nested so the return value from one message can become the receiver or parameter for another. For
example, to assign the playlist for an iPod to play to the value of an iTunes playlist name without an intermediate
variable, use the following:

[iPod usePlaylist:[iTunes currentPlaylist]];

1.2.1.2 Messaging nil

Messaging an uninitialized (or cleared) object variable (i.e., one with a value of nil) is not an error. If a message doesn't
have a return value, nothing will happen. If the message returns an object pointer, it will return nil. If the message

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

have a return value, nothing will happen. If the message returns an object pointer, it will return nil. If the message
returns a scalar value such as an int, it will return 0. Otherwise, the return value is unspecified.

1.2.2 How Messages Are Resolved into Methods

When a message is sent to an object, a search determines the implemented method that should be called. The logic of
this search is:

1. The runtime inspects the message's target object to determine the object's class.

2. If the class contains an instance method with the same name as the message, the method is executed.

3. If the class does not have a method, the search is moved to the superclass. If a method with the same name as
the message is found in the superclass, it is executed. This search is continued up the inheritance tree until a
match is found.

4. If no match is found, the receiver object is sent the forwardInvocation: message. If the object implements this
method, it has the dynamic ability to resolve the problem. This method's default implementation in NSObject
simply announces (with an error) that the object doesn't handle the message.

1.2.3 Selectors

While user-friendly names refer to methods in source code, the runtime uses a much more efficient mechanism. At
compile time, each method is given a unique value of type SEL called a selector. When the runtime performs the
message dispatch described in the previous section, it resolves the message to a selector, which is then used to execute
the method.

You can use selectors to indicate which method should be called on an object. The following example shows how to use
the @selector declaration to get a selector and perform its method on an object:

SEL playSelector = @selector(play);
[iPod performSelector:playSelector];

A selector identifies a method and is not associated with any particular class. Assuming that a Child class is defined and
implements a play method, the following would be valid:

[aChild performSelector:playSelector];

Using selectors directly can be helpful when you want to execute the same action on a collection of objects. For
example, a case of iPod objects, held in an array, could all be told to play by sending the following message to the
array:

[iPodArray makeObjectsPerformSelector:playSelector];

You will also see selectors in the Cocoa framework used in the Target/Action paradigm. For more information about
using selectors to call methods on objects, see the NSInvocation class documentation in Chapter 14.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Classes
Objects in Objective-C are defined in terms of a class. New classes of objects are specializations of a more general
class. Each new class is the accumulation of the class definitions that it inherits from and can expand on that definition
by adding new methods and instance variables or redefining existing methods to perform new or expanded
functionality. Like Java and Smalltalk, but unlike C++, Objective-C is a single inheritance language, meaning that a
class can inherit functionality only from a single class.

A class is not just a blueprint for building objects; it is itself an object in the runtime that knows how to build new
objects. These new objects are instances of the class.

1.3.1 The Root Class

Every class hierarchy begins with a root class that has no superclass. While it is possible to define your own root class in
Objective-C, the classes you define should inherit, directly or indirectly, from the NSObject class provided by the
Foundation framework. The NSObject class defines the behavior required for an object to be used by the Cocoa
framework and provides the following functionality:

Defines the low-level functionality needed to handle object initialization, duplication, and destruction.

Provides mechanisms to aid Cocoa's memory management model.

Defines functionality for an object to identify its class membership and provide a reasonable description of the
object.

1.3.2 Defining a Class

In Objective-C, classes are defined in two parts, usually separated into two different files:

An interface, which declares a class's methods and instance variables, and names its superclass. The interface is
usually specified in a file with the .h suffix typical of C header files.

An implementation, which contains the code that defines the class's methods. By convention, files containing
the implementation of a class have a .m suffix.

1.3.2.1 The interface

To declare a class and give all the information other classes (and other programs) need to use it, an interface file needs
to contain the following information:

The class that is being inherited from

The instance variables, if any, that the class adds

A list of method declarations, if any, indicating what methods the class adds or modifies significantly

Example 1-1 shows simple header file, saved by convention as Song.h, containing the interface for the Song class.

Example 1-1. A simple header file for the Song class

#import <Cocoa/Cocoa.h> // 1

@interface Song : NSObject { // 2
 id title; // 3
}

- (id)title; // 4
- (void)setTitle:(id)aTitle; // 5

@end; // 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@end; // 6

Each line is defined as follows:

1. Imports the definitions for the Cocoa frameworks. This line is similar to the #include directive in C, except the
compiler ensures that it doesn't include a header file more than once.

2. Declares the name of the class, Song, and specifies NSObject as its superclass.

3. Declares an instance variable named title. The id type indicates that the variable is an object. If we wanted the
compiler to enforce type checking for us, we could declare its type as NSString *.

4. Declares an instance method named title that returns an object. The - (minus sign) before the method name
indicates that the method is an instance method.

5. Declares an instance method named setTitle that takes an object argument and doesn't return anything.

6. The @end; statement indicates to the compiler the end of the Song class interface.

1.3.2.2 Scoping instance variables

The object-oriented principle of encapsulation means that other programmers shouldn't need to know a class's instance
variables. Instead, they need to know only the messages that can be sent to a class. The inclusion of instance variables
in the interface file, while required by C, would seem to break encapsulation.

To give a class the ability to enforce encapsulation even though the variables are declared in the header file, the
compiler limits the scope of the class's instance variables to the class that declares them and its subclasses. This
enforcement can be changed by using the following set of compiler directives:

@private

These instances are accessible within the class from which they are declared. Subclasses will not be able to
access them.

@protected

These instances are available within the class that declares them and within classes that inherit from them. This
is a variable's default scope.

@public

These instances are available to any class and can be used by code as if they were a field in a C structure.
However, the directive should not be used except when absolutely necessary, because it defeats the purpose of
encapsulation.

For example, to ensure that subclasses of the Song class could not directly access the title instance variable, use the
@private directive as shown in Example 1-2.

Example 1-2. Constraining a variable's scope

#import <Cocoa/Cocoa.h>

@interface Song : NSObject {
@private
 id title;
}

- (id)title;
- (void)setTitle:(id)aTitle;

@end;

1.3.2.3 The implementation

To define how the class works, an implementation file needs to contain implementations of the methods defined in the
interface file. Example 1-3 shows the implementation, contained in the source file Song.m by convention, of the Song
class.

Example 1-3. Implementation of the Song class

#import Song.h // 1

@implementation Song // 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@implementation Song // 2

- (id)title { // 3
 return title;
}
- (void)setTitle:(id)aTitle { // 4
 [title autorelease];
 title = [aTitle retain];
}

@end // 5

Here is a detailed explanation of each part of this code:

1. Imports the header file that contains the interface for the file. Every implementation must import its own
interface.

2. Declares that what follows is the implementation of the Song class.

3. Implementation of the title method. This method simply returns the title variable's value. The contents of a
method are defined, like C functions, between a pair of braces. Also, the class's instance variables are in the
scope of the method and can be referred to directly.

4. Implementation of the setTitle method. This method sets the title variable to the aTitle argument after performing
some steps, using the retain and autorelease messages required for proper memory management. For more
information about memory management, see Section 1.5, later in this chapter.

5. Indicates to the compiler the end of the Song class implementation.

Notice that the implementation doesn't need to repeat the superclass name or the instance variable declarations.

1.3.3 Special Variables

In addition to a class's instance variables, several other instance variables are defined within the scope of instance
methods. These variables are:

isa

Defined by the NSObject class, the isa variable contains a pointer to the class object. This lets an object
introspect itself. It is also what lets the runtime determine what kind of object it is when it resolves messages to
methods.

self

A variable set by the runtime to point at the object the action is performed on—the receiver object of the
message. This allows the functionality within a method to send messages to the object on which the method
acts.

super

A variable set by the runtime that behaves similarly to self, except that the resolution of message to method
starts with the object's superclass. This allows you to call the functionality of superclasses.

_cmd

The selector used to call the current method.

1.3.4 Class Methods

Since classes are objects, you can define methods that will act when messages are sent to a class. Class methods are
defined in the same way as instance methods, except you use a plus symbol (+) at the beginning of the method
declaration instead of a hyphen or minus sign (-). For example, if the Song class keeps track of the number of songs
created, a numberOfSongs class method could be provided, as shown in Example 1-4.

Example 1-4. Defining a class method

#import <Cocoa/Cocoa.h>

@interface Song : NSObject {
 id title;
}

+ (int)numberOfSongs;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+ (int)numberOfSongs;
- (id)title;
- (void)setTitle:(id)aTitle;

@end;

Similarly, this method's implementation is placed between the @implementation and @end directives in the
implementation (.m) file. Since a class method operates on the class object, the isa, self, super, and _cmd variables are
defined the same way as instance variables.

There is no class variable concept in Objective-C. However, you can achieve much the
same effect by declaring a C-style static variable in the same file as the class
implementation. This limits the scope of the variable to the .m file that contains it.

1.3.5 Overriding Superclass Methods

When a new class is defined, a method can be implemented with the same name as a method in one of the
superclasses up the inheritance hierarchy. This new method overrides the original when messages with the method
name are sent to the derived class's object. When overriding methods, you can access the superclass's method
functionality by sending a message to the special variable super.

For example, if the class of iPod inherits from a more generic MP3Player class that also defines the play method, the
subclass's play method may require that the superclass functionality is executed. Example 1-5 shows how this could be
achieved by using the super variable.

Example 1-5. Overriding a superclass method

- (void)play {
 [self setPlayIndicator:YES];
 [super play];
}

When a superclass method is overridden, the method doesn't need to be declared again in the interface (.h) file. By
convention, an overridden method is listed in the interface file only if you significantly change the way the method
works.

Even though you can override methods of a superclass, you cannot override an inherited
variable by declaring a new one with the same name. The compiler will complain if you try.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 Creating Object Instances
One of the principal functions of a class object is to serve as a factory for creating new instances. When new objects are
created, memory is allocated and its instance variables are initialized. This is accomplished by using the alloc method,
defined by the NSObject class, as follows:

Song song = [song alloc];

The alloc class method dynamically allocates memory, sets the isa variable to a pointer to the class's class object, sets
all other variables to 0, and then returns the new object instance. This takes care of the system level tasks that need to
be performed when an object is created, but doesn't allow the object to properly initialize itself. To give an opportunity
for object-specific initialization, the NSObject class provides the init instance method. To fully create an instance of the
Song class, use the following code:

Song song = [[song alloc] init];

The init method can be overridden in a subclass to assign defaults to instance variables and to take care of other tasks
that need to be performed before an object is used.

You can call the alloc and init methods by using separate lines of code. However, since
object allocation and initialization are interlinked, calling both methods with one line of
code is good practice.

When you override the init method, the superclass's init method (or designated initializer, as covered in the next
section) should always be called to ensure that the superclass is initialized properly. Initialization methods should also
return self, the object being initialized. Example 1-6 shows an init method for the Song class.

Example 1-6. An initialization method for the Song class

- (id)init { // 1
 self = [super init]; // 2
 // ... Song-specific initialization code
 return self; // 3
}

The code shown in Example 1-6 performs the following tasks:

1. Declares the init method, which returns an object of type id. The returned object is the newly initialized object.

2. Calls the init method of the superclass (super) to let it properly configure its state. The self variable is set to the
return value of the init method because it might return a different instance than the one currently being worked
with.

3. Returns the object using the self variable.

Initialization methods return an object of type id so an initialization method can actually return a different object of a
different type, if necessary. For example, if a class needs to return a more specialized subtype to better take advantage
of a system's runtime configuration, it can release the object originally created, create a new one of the subtype, and
return it. This is why programs need to use the object returned by the init method and not the object returned by the
alloc method, and why you should make sure that self is set to the init method's return value.

The ability for an initialization method to return a subtype allows for a programming
pattern known as class clusters. This allows for a large amount of functionality to be
exposed behind a small and easy to understand public class definition. For example, there
are many different string classes that are represented by the public NSString class.

1.4.1 Designated initializers

A class can provide multiple initialization methods to allow varying levels of customization. When you have multiple
initializers, only the designated initializer should call the superclass' initializer method. All other initializers must call the
designated initializer. This will ensure that your classes always behave properly.

For example, if an initWithTitle: method is defined for the Song class, the more general init method would first need to be
called to allow proper initialization of both the Song class and its parent classes before proceeding with specific
initialization. Example 1-7 shows an example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initialization. Example 1-7 shows an example.

Example 1-7. Calling a designated initializer

-(id)initWithTitle:(NSString *)aTitle {
 self = [self init];
 [self setTitle:aTitle];
 return self;
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.5 Memory Management
To properly manage memory, Cocoa provides a reference counting mechanism, supported by the NSObject and
NSAutoreleasePool classes. As its name suggests, reference counting maintains a count of how many references there are
to an object—indicating how many other objects are interested in keeping the object around. Reference counting is not
automatic; the compiler has no way to determine an object's lifetime. Therefore, the following NSObject reference
counting methods must be called to indicate the level of interest in an object to the memory management system:

retain

Increments the object's reference count by 1. When you want to register interest in an object that you did not
create or copy, indicate interest in it by calling this method.

release

Decrements the object's reference count by 1. This message is sent to objects created with the alloc method or
sent a retain message when you are no longer interested in using them. If this causes the retain count to reach
0, the runtime deallocates the object.

autorelease

Adds the object to the current autorelease pool. This allows you to release your interest in an object without
immediately causing the retain count to reach 0. When the autorelease pool is itself released, it sends the
release message to every object it contains. This is most useful when you want to pass the object to another
object as a return value and won't have the opportunity to release the object later by yourself.

The following set of rules will help you perform accurate reference counting and avoid either leaking memory or
prematurely destroying objects:

Objects created by alloc or copy have a retain count of 1.

If you want to keep an object received from another mechanism, send it a retain message.

When you are done with an object created by alloc or copy, or retained by the retain message, send it a release
message.

When you add an object to a collection, such as an array or dictionary (described in Chapter 2), the collection
retains it. You are no longer responsible for the object, and you may safely release any interest in it.

If you need to release interest in an object but need to ensure that it is not immediately destroyed, send an
autorelease message so the object is put in the autorelease pool for later release.

Once you have released interest in an object, you shouldn't send any messages to it. If an
object is deallocated because its retain count reached 0, sending a message to the object
will cause an error.

1.5.1 Retaining Objects in Accessor Methods

Accessor methods require a bit of caution, especially those where an object's instance variables are set. Because an
object passed to a set method may already be held, you must be careful about how memory management is
performed. Releasing an object before retaining it can lead to unfortunate side effects and can be the source of much
frustration. To ensure that memory management is performed correctly, send the autorelease method to an old object
reference before replacing it with a new reference. Example 1-8 shows how this rule is applied in the Song class's
setTitle: method.

Example 1-8. Memory management in accessor methods

- (void)setTitle:(NSString *)aTitle {
 [title autorelease];
 title = [aTitle retain];
}

Another way to ensure proper memory management and further increase encapsulation is to make a copy of the
parameter, as shown in Example 1-9. This ensures that even if a mutable subtype of NSString were given, any
modifications to that parameter would not change the contents of the title variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modifications to that parameter would not change the contents of the title variable.

Example 1-9. Copying a parameter to enforce encapsulation

- (void)setTitle:(NSString *)aTitle {
 [title autorelease];
 title = [newTitle copy];
}

These practices ensure proper memory management in almost all situations you are likely to encounter. However, some
fringe cases require care in handling. For more details, see http://www.stepwise.com/Articles/Technical/2002-06-
11.01.html.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.6 Deallocating Objects
When an object is ready to be destroyed (as determined by the reference counting mechanism), the system will give
the object an opportunity to clean up after itself by calling the dealloc method defined by NSObject. If the object has
created or retained any other objects' reference by its instance variables, it must implement this method and perform
the appropriate tasks to maintain integrity of the reference counting system.

In Example 1-8, the Song class retains the title instance variable in the setTitle: method. To properly implement memory
management, you need to balance this retain with a release. Example 1-10 shows the release performed in the Song
class's dealloc method.

Example 1-10. Implementing a dealloc method

- (void)dealloc {
 [title release];
 [super dealloc];
}

This provides proper balance in the reference counting mechanism.

You should never call the dealloc method yourself. Always let the memory management
methods do it.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.7 Categories
Inheritance is not the only way to add functionality to a class. With an Objective-C language construct called a category,
you can add methods to an existing class, thereby extending its functionality—and the functionality of its subclasses.

A category interface declaration looks like a class interface declaration, with one exception: the category name is listed
in parentheses after the class name, and the superclass is not mentioned. For example, if you wanted to add a rot13
method to the NSString class to get the rot13 version of any string, the category interface would be defined as shown in
Example 1-11.

Example 1-11. Defining a category interface

#import "NSString.h"

@interface NSString (Obfuscation)

- (NSString *)rot13;

@end

The category's implementation looks like the implementation of a class itself. Example 1-12 shows an interface
implementation.

Example 1-12. Implementation of a category

#import "Obfuscation.h"

@implementation NSString (Obfuscation)

- (NSString *)rot13 {
 NSString * rot13string;

 // Perform logic to shift each character by 13
 return rot13string;
}

@end

Remember that a category can't declare new instance variables for a class; it can only add methods to an existing class.

A category is not a substitute for a subclass. You should not redefine methods already in a
class or a class's superclass—add only new methods to the class.

1.7.1 Protocols

Class and category interfaces define the methods that belong to a particular class. However, you might want many
different classes, otherwise unrelated to one another, to perform the same set of methods. Objective-C does not
support multiple inheritance, but because of the language's dynamic nature, its support for protocols (declaration of a
group of methods under a name) fills the need. A protocol defines the methods that a class is expected to implement in
order to function appropriately while leaving the implementation of those methods to the class.

Like classes and categories, protocols are defined in interface header (.h) files. To define a set of methods that apply to
objects controlled by a media player, define the protocol as shown in Example 1-13.

Example 1-13. Defining a protocol

@protocol Playable
- (void)play;
- (void)stop;
@end

A class adopts a protocol by listing the protocols in the file's interface declaration. Example 1-14 shows the syntax used
in the interface declaration to indicate that the Song class conforms to the Playable protocol.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the interface declaration to indicate that the Song class conforms to the Playable protocol.

Example 1-14. Conforming to a protocol in a class interface

#import <Cocoa/Cocoa.h>
#import "Playable.h"

@interface Song : NSObject <Playable> {
 id title;
}

- (id)title;
- (void)setTitle:(id)aTitle;

@end;

A class or category that adopts a protocol must implement all methods defined by that protocol. The compiler issues a
warning if this requirement is not satisfied. Additionally, you can check whether or not objects conform to a particular
protocol. If a media player wants to make sure that the Song class conforms to the Playable protocol, the check in
Example 1-15 could be used.

Example 1-15. Checking to see if an object conforms to a protocol

if([song conformsTo:@protocol(Playable)]) {
 [song play];
} else {
 // Issue a warning or do something else reasonable here
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.8 Naming Conventions
Several naming conventions have become widespread within the Objective-C community. To create code that your
peers can maintain more easily, try to use the following conventions:

Always capitalize class names.

Begin variable and method names with lowercase letters. If a variable or method name consists of multiple
words, capitalize the first letter of the second and any following words. This practice is known as camelcase.

Begin accessor methods that set an instance variable value with the word "set," and make sure the instance
variable name follows in camelcase.

Give accessor methods that return the value of an instance variable the same name as the variable. It is also
acceptable—though uncommon—to prefix the variable name with the word "get" and have the instance variable
name follow in camelcase.

Do not begin method names that you create with an underscore. By convention, Apple uses underscores to
implement system level private functionality.

We've implemented these conventions throughout the book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Foundation
The Foundation framework provides support for a variety of basic functionalities and data types, including the following:

Strings, numbers, and collections

Dates and time

Binary data

Means of working with files, including accessing data and working with bundles

Distributed event notification

Operating system interaction

Threading

This chapter discusses these subjects and provides several short examples that demonstrate of the most common
methods of the key classes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 Data
The Foundation framework provides many classes and protocols that extend the capabilities of the Objective-C
language to represent and work with basic data types, such as strings and numbers, in an object-oriented fashion.
Additionally, the Foundation framework provides application programming interfaces (APIs) for working with more
complex data types, such as dates and collections.

2.1.1 Immutable Versus Mutable Classes

Classes such as NSString and NSArray are immutable classes; instances of these classes cannot be altered after they are
initialized. Each immutable class, however, has a mutable subclass: for example, NSString has the mutable subclass
NSMutableString, and NSArray has the subclass NSMutableArray. Mutable subclasses extend their superclass's functionality
to allow modification after initialization. Immutable classes are more efficient, but mutable classes are more flexible.

2.1.2 Basic Types

Two of the most basic data types in an application are strings and numbers. The Foundation framework provides object
abstractions in the form of NSString and NSNumber, and an extensive API to manipulate them.

2.1.2.1 Strings

Foundation's primary class used to represent and manipulate strings is NSString. Instances of NSString can be considered,
at their core, an immutable array of Unicode characters, and can represent characters from the alphabets of nearly
every written language, past and present. In fact, NSString is a class cluster, which shields the developer from a number
of underlying implementation details that make string handling more efficient. This abstraction is generally relevant only
when subclassing NSString, so it will not be considered further here.

Objective-C provides a syntax shortcut to create strings in code that is of the form @"...". In code, this looks like:

NSString *str = @"Hello";

When interpreted by the compiler, this syntax translates into an NSString object that is initialized with the 7-bit ASCII
encoded string between the quotes. This string object is created at compile-time and exists for the life of the
application. While you may send retain and release messages to an NSString object created from the literal syntax, such
an object will never be deallocated. Example 2-1 shows several NSString methods. For more information on using printf-
style formatting, see
/Developer/Documentation/Cocoa/TasksAndConcepts/ProgrammingTopics/DataFormatting/iFormatStrings.html.

Example 2-1. Creating instances of, and working with, NSString

// The literal syntax for an NSString object
NSString *str = @"Hello";

// Create one string from another string
NSString *str2 = [NSString stringWithString:str];

// You can also create a string using printf style formatting
str = [NSString stringWithFormat:@"%d potatoes", 10];

// The contents of a text file may be used to initialize a string
str = [NSString stringWithContentsOfFile:@"/path/to/file"];

// C character arrays may be used to create a string as well
char *cStr = "Hello again";
str = [NSString stringWithCString:cStr];

// How to get a C string from an NSString
char cStr = [str UTFString];

// Determine the length of a string, which is a count of the
// number of Unicode characters in the string
unsigned int strLength = [str length];

// Append one NSString to another
// str2 = "Hello, World!"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// str2 = "Hello, World!"
str2 = [str stringByAppendingString:@", World!"];

// Append a format to an NSString
// str3 = "Hello, World! 2003"
NSString *str3 = [str2 stringByAppendingFormat:@" %d", 2003];

// Extract substrings; returns characters 6 to the end
// subStr = @"World! 2003"
NSString *subStr = [str3 substringFromIndex7];

// Returns characters from beginning to character 5
// subStr = @"Hello"
subStr = [str3 substringToIndex:5];

// Returns 6 characters starting at index 7;
// Also see the comment that accompanies NSRange
// subStr = @"World!"
subStr = [str3 substringWithRange:NSMakeRange(7, 6)];

// Case conversion; returns capitalization: "Hello, World"
NSString *firstcaps = [str2 capitalizedString];

// Case conversion; returns lowercase: "hello, world!"
NSString *lower = [str2 lowercaseString];

// Case conversion; returns uppercase: "HELLO, WORLD!"
NSString *upper = [str2 uppercaseString];

// Searching for substrings; returns NSRange {0, 2}
NSRange loc = [str2 rangeOfString:@"He"];

// Searching for substrings; returns NSRange {NSNotFound, 0}
loc = [str2 rangeOfString:@"and"];

// Checking whether a string is a prefix or suffix of another
BOOL r = [str2 hasPrefix:@"Hello, W"]; // Returns YES
BOOL r = [str2 hasSuffix:@"What?"]; // Returns NO

NSRange is a Foundation data type used to specify a portion of a series. NSRange is defined
as:

typedef struct _NSRange {
 unsigned int location;
 unsigned int length;
} NSRange;

The location is the starting index of the portion, and the length is the number of elements
of the series in the range. Methods that return NSRanges set the location of the range to
NSNotFound to indicate an invalid range in the context of the operation.

To initialize an NSString from Unicode characters, first assemble a C array of the Unicode character codes, which are of
the type unichar. Example 2-2 shows how to use hexadecimal character codes to specify the Unicode characters for the
string "abgd ":

Example 2-2. Working with Unicode strings and NSString objects

// Create the unichar string "abgd "
unichar uc[5] = {0x03b1, 0x03b2, 0x03b3, 0x03b4, 0x03b5};

// Initialize an NSString with a Unicode string
NSString *uStr = [NSString stringWithCharacters:&uc length:5];

// Copy the Unicode characters into a buffer
unichar uc2[5] = [uStr characterAtIndex:0];

The entire Unicode character set catalog is available at http://www.unicode.org. This site
offers a way for you to find the hexadecimal code for any character. In addition, Mac OS X
also provides the Character Palette utility, found in the Input Menu, which can be used to
look up character codes of any Unicode character. In Example 2-2, the Unicode characters
were specified by their hexadecimal code because the default text encoding of source files
(Mac OS Roman or another 8-bit encoding) doesn't allow direct representation of Unicode
characters. However, Project Builder lets you specify Unicode (UTF-16 and UTF-8) as the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characters. However, Project Builder lets you specify Unicode (UTF-16 and UTF-8) as the
text encoding for a source file, which would let you enter the Unicode characters directly
into source strings with the Character Palette. The file encoding is specified globally in the
Project Builder preferences, or on a per-file basis in the file's Project Builder info panel.

NSString includes a method used to break a string apart into components, based on a given separator character or
string. This might be useful if you need to parse a record line from a text file whose fields are delimited by a character
or string. Example 2-3 shows how this works for a string with colon-separated fields.

Example 2-3. Breaking a string up into its components

// A sample record from some record set
NSString *rec = @"John:Doe:Austin:TX:etc";

// Break the string into components separated by colons
// Returns the array {John, Doe, Austin, TX, etc}
NSArray *fields = [str componentsSeperatedByString:@":"];

// NSArray can be used to rejoin the components into one string
// Returns "John*Doe*Austin*TX*etc"
NSString *rec2 = [fields componentsJoinedByString:@"*"];

NSMutableString extends NSString's functionality to support in-place modification. This additional flexibility is provided at
the expense of decreased efficiency. Example 2-4 illustrates several commonly used methods in NSMutableString.

Example 2-4. Using NSMutableString

// Create a mutable string from an immutable string
NSString *str = @"Hello, World";
NSMutableString *ms = [NSMutableString stringWithString:str];

// Append one string to another, ms is now "Hello, World!"
[ms appendString:@"!"];

// Insert strings within a string
// ms is now "He_garbage_llo, World!"
[ms insertString:@"_garbage_" atIndex:2];

// Delete part of a string, ms is now "Hello, World!"
[ms deleteCharactersInRange:NSMakeRange(2,9)];

// Replace part of a string with another string
// ms is now "Hello, World."
[ms replaceCharactersInRange:NSMakeRange(12,1) withString:@"."];

// Replace the contents of a string with another string
[ms setString:@"That's all for now."];

2.1.2.2 Comparing strings

NSString provides several methods for comparing strings and testing equality. NSObject declares the method isEqual: to
test general object equality. This method works with NSString objects, but the NSString method isEqualToString: more
efficiently tests the equality of two objects known to be strings. Using it returns YES if the ids of the two strings are
equal (which implies that the variables point to the same object) or if the result of a lexical comparison between the
strings is NSOrderedSame.

A comparison that determines the lexical ordering of two strings is carried out with any of several methods, each of
which provides varying degrees of control over the scope of the comparison. The method that provides the greatest
amount of control is compare:options:range:. The options: argument takes one or both of the following two constants (both
can be used with the C bitwise OR operator, |):

NSCaseInsensitiveSearch

Makes the comparison case insensitive.

NSLiteralSearch

Compares the two strings on a byte-by-byte, rather than character-by-character, basis. This comparison can
improve speed for some operations, but differing literal sequences may not match when they otherwise would.
For example, accented characters may be represented by a composite character (e.g., é), or a combined
sequence of two Unicode characters (e.g., e and ´).

The range: argument restricts the comparison to a substring of the receiver. If you want to compare only the first two

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The range: argument restricts the comparison to a substring of the receiver. If you want to compare only the first two
string characters, specify an NSRange of (0,2) in the range: argument.

Two other related methods are compare:options: and compare:. The first method passes options: to compare:options:range:
and makes the range equal to the entire length of the receiver. The second, compare:, passes no options, and again
uses the full extent of the receiver as the range. Example 2-5 shows different ways to compare strings.

Example 2-5. Comparing strings

NSString *a = @"Right";

// Test for equality; returns YES
BOOL v = [a isEqualToString:@"Right"];

// Determine lexical order of two strings; returns NSOrderedSame
NSComparisonResult r = [a compare:@"Right"];

// Returns NSOrderedDescending; light comes before Right
r = [a compare:@"light"];

// Returns NSOrderedAscending; sight comes after Right
r = [a compare:@"sight"];

// Literal, case-insensitive comparison by setting options
r = [a compare:@"right"
 options:NSCaseInsensitiveSearch | NSLiteralSearch];

// Easier case-insensitive comparison; returns NSOrderedSame
r = [@"next" caseInsensitiveCompare:@"NeXT"];

2.1.2.3 Attributed strings

NSAttributedString provides an API for text strings that contain information about graphical attributes of the text, such as
its font, color, size, and kerning. Attributes can be applied to individual characters, ranges of characters, or to the entire
length of the string. Like NSString, NSAttributedString is an immutable class with a mutable subclass,
NSMutableAttributeString.

The functionality of NSAttributedString as it exists in the Foundation framework is fairly basic. Foundation's functionality is
limited to keeping track of the string contents, as well as the various sets of attributes that apply to different ranges of
the string. The Application Kit provides most functionality of NSAttributedString related to drawing and displaying text,
and is covered more in Chapter 3 and Chapter 4.

2.1.2.4 Working with strings: character sets and scanners

In addition to a rich abstraction for strings, Foundation includes two classes that support string processing: NSScanner
and NSCharacterSet.

2.1.2.5 NSCharacterSet

An NSCharacterSet represents a collection of Unicode characters. A number of sets are predefined and accessible through
class methods, including:

alphanumericCharacterSet

capitalizedLetterCharacterSet

controlCharacterSet

decimalDigitCharacterSet

letterCharacterSet

punctuationCharacterSet

whitespaceAndNewlineCharacterSet

whitespaceCharacterSet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

whitespaceCharacterSet

You can also create a new character set from a string, using characterSetWithCharactersInString:, load in a set from a file
with characterSetWithContentsOfFile:, or invert an existing set with invertedSet:.

NSCharacterSet's mutable subclass, NSMutableCharacterSet, allows you to, amongst other modifications, add or remove
string characters to or from a set and form a union or intersection with another set. Mutable character sets are,
however, less efficient than immutable character sets. If you do not need to change a character set after establishing it,
create an immutable copy with copy, and use that.

You would typically use NSCharacterSets to group characters, to let you find part of a particular set when searching an
NSString object. You might use NString's rangeOfCharacterFromSet:options:range: method (or a variant thereof) to find the
range in the receiver of the first (or in the case of a backwards search, last) character found from the set argument.
NSCharacterSets are also used extensively with NSScanner.

2.1.2.6 NSScanner

An NSScanner object lets you search an NSString object for string and number values, with options for scanning up to or
past characters from a given set or string. You would usually initialize a scanner with the string to scan, using
scannerWithString: or initWithString. You can configure it to be case-sensitive, or not, with setCaseSensitive; establish a
starting point with setScanLocation:; or set its locale with setLocale:. A scanner's locale affects the way it interprets values
from the string. In particular, a scanner uses the locale's decimal separator to distinguish the integer and fractional
parts of floating-point representations.

After it is configured, a scanner can read numeric values from its string into a variable, using methods such as scanInt:,
scanFloat:, and scanDecimal: (the first two methods read scalars; scanDecimal: creates an NSDecimalNumber object). You
can search for particular strings or characters by using any of the following methods:

scanString:intoString:

scanUpToString:intoString:

scanCharactersFromSet:intoString:

scanUpToCharactersFromSet:intoString:

All of these methods return a Boolean value to indicate the operation's success. Pass a pointer to the variable as the
argument to these methods, or pass nil to skip a value. Finally, check whether you have reached the end of the input
string with the isAtEnd method. For example, assume a file, ~/scannerTest.txt, of the form:

EmpId: 7830480 FirstName: Jo LastName: Wong
EmpId: 67567456 FirstName: Toni LastName: Jones
EmpId: 546776 FirstName: Dylan LastName: Blimp

Example 2-6 shows how the file may be parsed with NSScanner.

Example 2-6. Using NSScanner and NSCharacterSet

NSCharacterSet * letterSet , *whiteSet;
letterSet = [NSCharacterSet letterCharacterSet];
whiteSet = [NSCharacterSet whitespaceAndNewlineCharacterSet];

NSString *filePath, *fileString;
NSScanner *scanner;

filePath = [@"~/scannerTest.txt" stringByExpandingTildeInPath];

fileString = [NSString stringWithContentsOfFile:filePath];

scanner = [NSScanner scannerWithString:fileString];

while (![scanner isAtEnd]) {
 NSString *fName, *lName;
 int empId;

 if ([scanner scanString:@"EmpId: " intoString:nil]) {

 [scanner scanInt:&empId];

 [scanner scanString:@"FirstName: " intoString:nil];
 [scanner scanCharactersFromSet:letterSet intoString:&fName];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [scanner scanCharactersFromSet:letterSet intoString:&fName];

 [scanner scanString:@"LastName: " intoString:nil];
 [scanner scanCharactersFromSet:letterSet intoString:&lName];

 NSLog(@"%@ %@, EmpID: %d", fName, lName, empId);

 [scanner scanCharactersFromSet:whiteSet intoString:nil];
 }
}

The code in Example 2-6 produces the following output:

Jo Wong, EmpID: 7830480
Toni Jones, EmpID: 67567456
Dylan Blimp, EmpID: 546776

2.1.2.7 Numbers

For many numerical operations dealing with calculations, using C's primitive numerical data types is the easiest and
most efficient way to represent numerical data. However, you might need to treat a number as an object to store it in a
collection or to store a number in the user defaults database. For such situations, the Foundation framework provides
the class NSNumber, which is an Objective-C wrapper class for the standard numeric data types in C. You can initialize
instances of NSNumber with a scalar and retrieve a scalar value from a number object. Example 2-7 shows many of the
methods used to work with NSNumbers.

Example 2-7. Working with NSNumber

// NSNumbers can contain any primitive C type
NSNumber *iN = [NSNumber numberWithInt:1];
NSNumber *fN = [NSNumber numberWithFloat:50.5f];
NSNumber *dN = [NSNumber numberWithDouble:100.45];
NSNumber *cN = [NSNumber numberWithChar:100];
NSNumber *lN = [NSNumber numberWithLong:100];
NSNumber *usN = [NSNumber numberWithUnsignedShort:30];

// Access the value of an NSNumber object
int i = [iN intValue]; // Returns 1
float f = [fN floatValue]; // Returns 50.5
double d = [dN doubleValue]; // Returns 100.45
char c = [cN charValue]; // Returns 100
long l = [lN longValue]; // Returns 100
unsigned short us = [usN unsignedShortValue]; // Returns 30

// Test for equality of two numbers; returns YES
BOOL b = [nc isEqualToNumber:nl];

// Determine how one number compares to another in order
NSComparisonResult r = [nc compare:nus]; // NSOrderedDescending
r = [nus compare:ns]; // NSOrderedAscending

NSDecimalNumber extends the capabilities of NSNumber with APIs to perform base-10 arithmetic, and it provides methods
to initialize an instance in terms of the number's basic components. Example 2-8 shows how to work with
NSDecimalNumber.

Example 2-8. Working with NSDecimalNumber

// Planck's Constant (1.04e-34)
NSDecimalNumber *h = [NSDecimalNumber
 decimalNumberWithManitssa:104
 exponent:-36
 isNegative:NO];

// NSDecimalNumber has methods for returning commonly used numbers
NSDecimalNumber *one = [NSDecimalNumber one]; // 1.0
NSDecimalNumber *zero = [NSDecimalNumber zero]; // 0.0

// NSNumbers that represent system limits
NSDecimalNumber *max = [NSDecimalNumber maximumDecimalNumber];
NSDecimalNumber *min = [NSDecimalNumber minimumDecimalNumber];

// Methods to operate on the numbers
NSDecimalNumber *n;
n = [one decimalNumberByAdding:zero]; // n = 1.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

n = [one decimalNumberByAdding:zero]; // n = 1.0
n = [one decimalNumberBySubtracting:zero]; // n = 1.0
n = [h decimalNumberByMultiplyingBy:c]; // n = 3.16e-26
n = [h decimalNumberByDividingBy:one]; // n = 1.05e-34
n = [c decimalNumberByRaisingToThePower:2]; // n = 9.0e16

Each method has corresponding methods that let you determine how to handle rounding and errors (typically by using
instances of NSDecimalNumberHandler), which is known as the number's behavior. Numbers round to the nearest integer
by default; an exception is raised if there is division by zero, or if the result of a calculation exceeds the maximum or
minimum numbers that can be represented.

2.1.3 Collections

The Foundation framework offers several important classes for creating and manipulating collections of objects. The
primary collection classes are NSArray, NSDictionary, and NSSet:

NSArray

Stores an ordered, immutable collection of objects, where each member is referenced by its index number. Any
given object may appear in an array more than once.

NSSet

Stores an immutable, unordered collection of unique objects, which support the mathematical idea of a set.
NSSet objects are useful when your collection requires you to test an object for membership; NSSet provides a
more efficient implementation for testing object membership over that of other collection classes.

NSDictionary

Stores a collection of objects as key-value pairs; each member has an associated key that identifies that
member object.

Each class has subclasses that extend their interfaces to provide mutability.

2.1.3.1 Arrays

Instances of NSArray represent an ordered collection objects. An index number identifies each member object in the
array; indexing begins at zero, just as in C arrays. Example 2-9 gives an overview of NSArray's capabilities.

Example 2-9. Creating and working with NSArray objects

// Create an array from several objects
// Objects are separated by commas, and the list must end with nil
NSArray *a = [NSArray arrayWithObjects:@"Hello",@"how",@"are", @"you",nil];

// If you need an array with one object
NSArray *b = [NSArray arrayWithObject:@"One object"];

// Create an array from the contents of an XML property list
b = [NSArray arrayWithContentsOfFile:@"/path/to/plist"];

// Test arrays for equality
BOOL r = [a isEqualToArray:b]; // Returns NO

// Determine the number of memebers in a collection
int n = [a count]; // Returns 4

// Access elements of the array
NSString *one = [a objectAtIndex:0]; // Returns @"Hello"
NSString *end = [a lastObject]; // Returns @"you"

// Discover the index of an object
unsigned idx = [a indexOfObject:@"how"]; // Returns 1

// Find out if an array contains some object
BOOL result = [a containsObject:@"today"]; // Returns NO

// Obtain a new array by adding an object
NSArray *newA = [a arrayByAddingObject:@"today"];

// Extract subarrays
NSArray *subA = [a subarrayWithRange:NSMakeRange(1,2)];

NSMutableArray extends NSArray by adding support for arrays whose contents can be changed after their initialization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSMutableArray extends NSArray by adding support for arrays whose contents can be changed after their initialization.
Example 2-10 shows how a small set of the mutability methods works.

Example 2-10. A sampling of NSMutableArray methods

// Create a mutable array from an immutable array
NSMutableArray *ma = [NSMutableArray arrayWithArray:a];

// Create an empty mutable array
NSMutableArray *ma = [NSMutableArray array];

// Exercise mutability
[ma addObject:@"World"]; // ma is {World}
[ma insertObject:@"Hello" atIndex:0]; // ma is {Hello, World}
[ma removeObjectAtIndex:0]; // ma is {World}
[ma removeLastObject]; // ma is {}

2.1.3.2 Sets

NSSet declares an interface to unordered collections of unique objects. The Foundation framework implements two
subclasses of NSSet: NSMutableSet and NSSCountedSet, which is a child class of NSMutableSet. Like arrays and dictionaries,
the contents of a set can be any Objective-C object. Example 2-11 shows how to use NSSet.

Example 2-11. Using NSSet

// Create a set from the contents of an array
NSSet *set1 = [NSSet setWithArray:anArray];

// Create a set from arbitrary objects
set1 = [NSSet setWithObjects:@"a", @"b", @"c",@"d", nil];

// Create a set from a single object
NSSet *set2 = [NSSet setWithObject:@"a"];

// Determine the size of the set
unsigned int n = [set1 count]; // Returns 4

// Access set members; creates an NSArray from the set contents
NSArray *setObjs = [set1 allObjects];

// You can have a set randomly (essentially) return a member
id object = [set1 anyObject];

// Test for membership, the strength of NSSet; returns YES
BOOL b = [set1 containsObject:@"a"];
b = [set1 containsObject:@"z"]; // Returns NO
id mem = [set1 member:@"a"]; // Returns @"a"
id mem = [set1 member:@"z"]; // Returns nil

// Compare two sets
NSSet *set3 = [NSSet setWithObjects:@"c", @"d", @"e", @"f", nil];
BOOL b = [set2 isSubsetOf:set1]; // Returns YES
b = [set2 intersectsSet:set1]; // Returns YES
b = [set3 intersectsSet:set1]; // Returns NO
b = [set1 isEqualToSet:set2]; // Returns NO

Example 2-12 shows what NSMutableSet adds to NSSet.

Example 2-12. Methods provided by NSMutableSet

// Add and remove member objects
[set1 addObject:@"e"]; // set1 now [a, b, c, d, e]
[set1 removeObject:@"a"]; // set1 now [b, c, d, e]
[set2 removeAllObjects]; // set1 now []

// Combine sets
[set1 unionSet:set3]; // set1 now [b, c, d, e, f]
[set1 minusSet:set3]; // set1 now [b]
[set1 intersectSet:set3]; // set1 now []
[set1 setSet:set3]; // set1 now [c, d, e, f]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[set1 setSet:set3]; // set1 now [c, d, e, f]

NSCountedSet is based on a slightly different idea of a set than its superclasses. In a standard set, each member object
must be unique. Counted sets remove the constraint on uniqueness, making it possible to add an object to a counted
set more than once. However, a counted set does not keep multiple references to an object; rather, it keeps a count of
the number of times an object was added to the set. Whenever an object is added to the set of which it is already a
member, the count for that object is incremented. When an object is removed from a counted set, its count is
decremented until it reaches zero, at which point the object is no longer a member of the set. The code in Example 2-
13 demonstrates the functionality added by NSCountedSet.

Example 2-13. Methods provided by NSCountedSet

// Add and remove objects; inherits methods from NSMutableSet
[set3 addObject:@"b"]; // set3 now [b, c, d, e, f]
[set3 addObject:@"b"]; // Increments count for b to 2
[set3 addObject:@"b"]; // Count for b now 3
[set3 countForObject:@"b"]; // Returns 3
[set3 removeObject:@"b"];
[set3 countForObject:@"b"]; // Returns 2

2.1.3.3 Dictionaries

Cocoa dictionaries provide a collection class that implements the idea of key-value pairs. In a dictionary, member
objects are associated with a unique identifier key, used to identify and access the object. Although keys are typically
NSString objects, both keys and values may be of any class. Example 2-14 summarizes several commonly used methods
of NSDictionary.

Example 2-14. Working with NSDictionary

// Create an empty dictionary, useful for
// creating empty mutable dictionaries
NSDictionary *d = [NSDictionary dictionary];

// Initialize a dictionary with contents of an XML property list
d = [NSDictionary dictionaryWithContentsOfFile:@"pList"];

// Create a dictionary from one object with a key
d = [NSDictionary dictionaryWithObject:@"a" forKey:@"A"];

// Create a dictionary with many objects and keys
d = [NSDictionary dictionaryWithObjects:@"a", @"b", nil
 forKeys:@"A", @"B", nil];

// Count the number of objects in the dictionary;
int n = [d count]; // Returns 2

// Access objects and keys;
id obj = [d objectForKey:@"A"]; // Returns "a"

// Returns nil since "a" is not a valid key
obj = [d objectForKey:@"a"];

// Returns an array whose members are the keys of the receiver
NSArray *k = [d allKeys];

// Returns an array with the dictionary's objects
NSArray *v = [d allValues];

// Returns an enumerator for the receiver's keys
NSEnumerator *e = [d keyEnumerator];

// Returns enumerator for objects in dictionary
e = [d objectEnumerator];

// Write contents of dictionary to a file formatted
// as an XML property list
[d writeToFile:@"/path/to/file" atomically:YES];

Example 2-15 shows how to work with mutable dictionaries.

Example 2-15. Working with NSMutableDictionary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-15. Working with NSMutableDictionary

// Create a mutable dictionary from an immutable dictionary
NSMutableDictionary *md;
md = [NSMutableDictionary dictionaryFromDictionary:d];

// Add a key-value pair
[md setObject:@"c" forKey:@"C"];

// Remove an object from the dictionary
[md removeObjectForKey:@"A"];

// You can also remove all objects in one fell swoop
[md removeAllObjects];

// Finally, replace the current contents with the
// contents of another dictionary
[md setDictionary:d];

2.1.3.4 Enumerators

Traditionally, a for-loop is used to enumerate the contents of a collection, which provides access to each member by its
index. Since the for-loop technique depends on indexed collection contents, it won't work for non-indexed collections,
such as sets and dictionaries. NSEnumerator provides an object-oriented way of iterating over the contents of any
collection. Each Foundation collection type implements the method objectEnumerator, which returns an enumerator for
the receiver.

To illustrate how NSEnumerator is used in place of the for-loop, consider Examples Example 2-16 and Example 2-17.
Example 2-16 shows how an array is traditionally enumerated using a for-loop.

Example 2-16. Using a for-loop to enumerate an array's contents

// Assume NSArray *array exists
int i;
id object;

for (i = 0; i < [array count]; i++) {
 object = [array objectAtIndex:i];

 // Do something with the object
}

Example 2-17 shows how the NSEnumerator class accomplishes the same task.

Example 2-17. Using NSEnumerator to enumerate an array's contents

// Assume NSArray *array exists
NSEnumerator *e = [array objectEnumerator];
id object;

while (object = [e nextObject]) {

 // Do something with the object
}

Some collection classes have variations on the standard objectEnumerator method. For example, the
reverseObjectEnumerator method of NSArray lets you access the array's contents from the last item to the first. Another
variation is NSDictionary's keyEnumerator method, which lets you enumerate the dictionary's keys instead of its values.

Since the members of an array are indexed, expect an enumerator to return the contents of an array in a predictable
order. NSDictionary and NSSet, on the other hand, don't store their contents in a meaningful order, so the order in which
the enumerators return the members is unpredictable.

2.1.3.5 Memory management in collections

Whenever an object is added to a collection, the collection object sends that object a retain message, asserting some
ownership over the object that is now a member of the collection. This is true whether the object is added as part of the
collection initialization, or at a later point with the addObject:-based methods in mutable collection classes. Objects that
are removed from collections receive a release message, as the collection no longer has any interest in maintaining
ownership over the object. When a collection is deallocated, all member objects are sent a release message. Example
2-18 shows how this works in practice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2-18 shows how this works in practice.

Example 2-18. Collection memory management

// anObject has reference count of 1
id anObject = [[ObjectClass alloc] init];

// Assume anArray is an existing mutable array; reference
// count of anObject is now 2.
[anArray addObject:anObject];

// anObject reference count now 1, still valid because of
// retain sent by the array in addObject:
[anObject release];

// Either of these actions will cause anObject to be released
[anArray removeObject:anObject];
[anArray release];

2.1.4 Dates and Time

Cocoa provides three classes to represent date and time information: NSDate, NSCalendarDate, and NSTimeZone. NSDate
represents an instant in time, to millisecond precision, as the number of seconds since the absolute reference time,
midnight (GMT), January 1, 2001. Many NSDate methods work with time intervals. A time interval is represented by the
Foundation data type NSTimeInterval (which is a redefinition of the primitive type double). NSTimeIntervals specify a length
of time in units of seconds. Example 2-19 shows how to use NSDate.

Example 2-19. Fundamental methods of NSDate

// Create an NSDate set to the current date
NSDate *today = [NSDate date];

// Obtain a date that is many centuries in the future
NSDate *future = [NSDate distantFuture];

// Similarly, obtain a date that is many centuries in the past
NSDate *past = [NSDate distantPast];

// A date that is some number of seconds past the system reference
// date (or before if you supply a negative value)
NSDate *intvl = [NSDate dateWithTimeIntervalSinceReferenceDate:60];

// Check for equality of two dates; returns NO
BOOL b = [today isEqualToDate:intvl];

// These methods return either the earlier or
// the later of the two dates involved.
NSDate *d = [today earlierDate:past]; // Returns past
NSDate *d = [today laterDate:future]; // Returns future

// Obtain Time Intervals
NSTimeInterval d = [intvl timeIntervalSinceReferenceDate];

// Number of seconds between receiver date and current date
d = [today timeIntervalSinceNow];

// Number of seconds between the two dates
d = [today timeIntervalSinceDate:[NSDate date]];

// Number of seconds since 1970, another reference date
d = [today timeIntervalSince1970];

NSDate is a lightweight class that represents dates as points in time. NSCalendarDate, a subclass of NSDate, can
additionally perform date arithmetic based on the Western Gregorian calendar. NSCalendarDate expands the functionality
of NSDate to provide methods that work with dates in terms of days, weeks, months, and years. Example 2-20
summarizes what you can do with NSCalendarDate.

Example 2-20. Working with NSCalendarDate

// Create an NSCalendarDate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Create an NSCalendarDate
NSCalendarDate *cd = [NSCalendarDate calendarDate];

// Create an arbitrary calendar date
cd = [NSCalendarDate dateWithYear:2002 month:4 day:10 hour:20
 minute:3 second:0
 timeZone:[NSTimeZone systemTimeZone]];

// Retrieve elements of a calendar date
int dce = [cd dayOfCommonEra]; // Returns 730950
int dm = [cd dayOfMonth]; // Returns 10
int dw = [cd dayOfWeek]; // Returns 3
int d = [cd dayOfYear]; // Returns 100
int h = [cd hourOfDay]; // Returns 20
int m = [cd minuteOfHour]; // Returns 3
int s = [cd secondOfMinute]; // Returns 0
int y = [cd yearOfCommonEra]; // Returns 2002

Associated with every NSCalendarDate object is an NSTimeZone object. Instances of NSTimeZone capture information about
geographic time zones across the planet, such as their name, abbreviation, and "distance" from the reference time
zone, GMT, in seconds. Additionally, NSTimeZone is aware of daylight savings time, and capable of translating dates
between time zones. NSCalendarDate still stores a date in its lowest form as a time interval from the reference date,
which is behavior it inherits from NSDate. NSTimeZone translates that time interval from GMT to a specific time zone. The
systemTimeZone method used in Example 2-20 is just one method of NSTimeZone that returns the time zone set on your
system. In addition to this method, NSTimeZone declares several other methods, some of which are shown in Example 2-
21.

Example 2-21. Working with NSTimeZone

// Create time zone objects
NSTimeZone *tz = [NSTimeZone timeZoneWithAbbreviation:@"CST"];

// Obtain the geo-political name of the time zone
// Returns "America/Chicago"
NSString *name = [tz name];

// Get the time zone's abbreviation; Returns CST
NSString *abv = [tz abbreviation];

// Returns whether or not it is daylight saving time; returns NO
BOOL b = [tz isDaylightSavingTime];

// The time difference relative to GMT in seconds; Returns -18000
int s = [tz secondsFromGMT];

2.1.5 Binary Data

NSData encapsulates a buffer of bytes. Many Foundation framework classes have methods that let you initialize an
object from an instance of NSData or convert the object's contents into an NSData object. NSData is a generic object that
lets you store and transport data of any kind, any way you like. Example 2-22 gives an example.

Example 2-22. Working with NSData

// NSData objects can be created to hold the contents of any data
// buffer, such as a static C character string
char *cData = "This is data, a string of bytes";
NSData *data = [NSData dataWithBytes:cData length:strlen(cData)];

// Create NSData objects from files
data = [NSData dataWithContentsOfFile:@"/path/to/file"];

// Create data objects from resources located by NSURL objects
data = [NSData dataWithContentsOfURL:URLObject];

// Get a C pointer to the data object contents
void *p = [data bytes];

// Copy the contents of data object into a buffer
char buffer[50];
[data getBytes:(void *)buffer];

// Copy a specified number of bytes into the buffer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Copy a specified number of bytes into the buffer
[data getBytes:buffer length:4];

// Copy a range of bytes from the data object into the buffer
[data getBytes:buffer range:NSMakeRange(5,2)];

// Determine the number of bytes in the data
unsigned l = [data length];

Note in the second line that despite initializing an NSData object with a C string, the NSData object is not a string. The
data object has no idea what its contents represent, only that it is a collection of bytes. The client that interacts with the
data object is responsible for knowing how to interpret the contents.

Like many other Foundation classes, NSData is an immutable class that has a mutable child class, NSMutableData.
NSMutableData adds methods to change the length of the stored data (how many bytes are in there) and append data to
the stored data, as illustrated in Example 2-23.

Example 2-23. Working with NSMutableData

// Create an empty NSData object
NSMutableData *mData = [NSMutableData data];

// Set the size of the internal NSData buffer to 29 bytes
[mData setLength:29];

// Take the data from a buffer and place it
// into the NSData object
[mData appendBytes:cData length:29];

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Key-Value Coding
Key-value coding lets you access the properties of an object (such as the instance variables) indirectly by using strings
referred to as keys. Although key-value coding can access instance variables directly, it first tries to use accessor
methods to access a property. However, accessor methods are not necessarily mapped to instance variables, which
means that an accessor may provide a property value that is computed (perhaps from instance variables).

Key-value coding is a powerful feature of Cocoa that forms the basis of many important technologies. For example,
Cocoa's scripting capability is heavily based on the functionality of key-value coding.

The methods that provide an interface to key-value coding are declared in the Foundation framework's NSKeyValueCoding
protocol. The principal methods are valueForKey: and takeValue:forKey:, which get and set the instance variable associated
with the specified key. NSObject provides default implementations of the methods of NSKeyValueCoding. These default
implementations associate keys with instance variables based on a simple set of rules. The methods that return a value,
valueForKey: for instance, attempt to access the property specified by the string @"key" using the following means:

1. A public accessor of either the form key or getKey.

2. A private accessor method of either the form _key or _getKey.

3. An instance variable named either key or _key.

4. Finally, if none of these first three attempts results in anything, the method invokes handleQueryWithUnboundKey:.
The default implementation raises an exception; classes may choose to provide another implementation suitable
to their needs.

Methods that set the values of properties, such as takeValue:forKey:, attempt to access those properties in a similar
fashion, assuming again that the key is the string @"key":

1. A public accessor of the form setKey:.

2. A private accessor of the form _setKey:.

3. An instance variable named either key or _key.

4. Finally, if none of these first three rules results in anything, the methods invoke handleTakeValue:forKey:. The
default implementation raises an exception; classes may choose to provide another implementation suitable to
their needs.

Example 2-24 shows the interface for a class with three instance variables, a public accessor to one of the instance
variables, and a private accessor to another.

Example 2-24. Using key-value coding in a class called KVExample

@interface KVExample : NSObject {
 id property1;
 id property2;
 id property3;
}
- (id)property1; // Public accessor; could be getProperty1
- (id)_property2; // The private accessor; could be _getProperty2
@end

@implementation KVExample
- (id)init
{
 self = [super init];

 if (self) {
 property1 = @"Property 1";
 property2 = @"Property 2";
 property3 = @"Property 3";
 }
 return self;
}

// These two methods return instance variable values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// These two methods return instance variable values
- (id)property1
{
 return property1;
}

- (id)_property2
{
 return property2;
}

// This method returns a property value that is computed,
// rather than stored in an instance variable
-(NSArray *)allProperties
{
 return [NSArray arrayWithObjects:property1, property2, property3, nil];
}
@end

Example 2-25 shows how to access each accessor using the key-value coding interface.

Example 2-25. Accessing properties of a class using key-value coding

id kv = [[KVExample alloc] init];

NSLog([kv valueForKey:@"property1"]; // Prints "Property 1"
NSLog([kv valueForKey:@"property2"]; // Prints "Property 2"
NSLog([kv valueForKey:@"property3"]; // Prints "Property 3"

// Prints "{Property1, Property2, Property 3}"
NSLog([kv valueForKey:@"allProperties"]);

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Working with Files
The Foundation framework provides access to data stored in files in several ways. All of the basic data classes have
methods for initializing objects from the contents of files, and for writing the data represented by the object to a file. In
addition to these convenience facilities, Foundation provides two classes that provide a much higher level of interaction
with files and the filesystem: NSFileManager and NSFileHandle.

2.3.1 The File Manager

The NSFileManager class is an interface that applications use to access and manipulate files and directories in the
filesystem; instances of NSFileManager provide a doorway to the filesystem for application developers. Several of
NSFileManager's methods call for a handler: argument. The handler is an object that should implement
fileManager:willProcessPath: and fileManager:shouldProceedAfterError: methods. These callback methods allow for error
handling and confidence testing with respect to the operation being performed. In Example 2-26, nil is passed to
handler: for the sake of clarity.

Additionally, methods that deal with movement around in the filesystem and perform operations on files and directories
typically return a BOOL value, to indicate an operation's success or failure. Finally, methods that create new files or
directories usually take a dictionary with file attributes as an argument. The attributes dictionary may take values to set
the file's owner, group owner, modification date, POSIX permissions; determine whether the extension is hidden; and
finally, set the HFS type and creator codes. Any unspecified attribute will take on the default value. Example 2-26
shows how to work with file managers and the filesystem.

Example 2-26. Working with NSFileManager

// Return the default manager for the filesystem
NSFileManager *fm = [NSFileManager defaultManager];

// Change the current directory; returns YES if successful
BOOL b = [fm changeCurrentDirectoryPath:@"/usr"];

// Return the path to the current directory; returns "/usr"
NSString *p = [fm currentDirectoryPath];

// Create a new directory at the path with default attributes
b = [fm createDirectoryAtPath:@"/usr/newDir" attributes:nil];

// Working with file attributes using a mutable dictionary
NSMutableDictionary *attr = [NSMutableDictionary dictionary];
[attr setObject:@"mike" forKey:NSFileOwnerAccountName];
[attr setObject:@"admin" forKey:NSFileGroupOwnerAccountName];
[attr setObject:660 forKey:NSFilePosixPermissions];

// Create a new file with these attributes
b = [fm createFileAtPath:@"/usr/newDir/newFile"
 contents:data attributes:attr];

// Carry out practical filesystem tasks
NSString *p1 = @"/Users/mike/file"
NSString *p2 = @"/Users/mike/Documents/file"
b = [fm movePath:p1 toPath:p2 handler:nil];
b = [fm copyPath:p2 toPath:p1 handler:nil];
b = [fm removeFileAtPath:p2 handler:nil];

// Determine whether a file exists
b = [fm fileExistsAtPath:p1];

// Determine whether a file exists and if it is a directory
// Returns YES; sets dir = NO
BOOL dir;
b = [fm fileExistsAtPath:p1 isDirectory:&dir];

// Check whether the current user can read file at path
b = [fm isReadableAtPath:p1];

// Check whether the current user can write to file at path
b = [fm isWritableAtPath:p1];

// Check whether the current user can execute file at path

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Check whether the current user can execute file at path
b = [fm isExecutableAtPath:p1];

// Check whether the current user can delete file at path
b = [fm isDeletableAtPath:p1];

// Discover the contents of directory at path
NSArray *contents = [fm directoryContentsAtPath:@"/"];

// Determine the directories contained within a directory
NSArray *subpaths = [fm subpathsAtPath:@"/"];

// An enumerator that enumerates the contents at a given path
NSEnumerator *de = [fm enumeratorAtPath:@"/"];

Filesystem paths are represented as NSString objects. Any path that you pass to an NSFileManager method must be an
absolute path. This means that files in a user's home directory must be referenced as /Users/username/file, rather than
~/file. To aid in path manipulation and standardization, NSString provides a number of methods specific to these tasks,
many of which are demonstrated in Example 2-27.

Example 2-27. Path manipulation with NSString

// The starting path
NSString *p1 = @"~/Documents/class.m";

// Expand the tilde; returns "/Users/mike/Documents/class.m"
p1 = [p1 stringByExpandingTildeInPath];

// Get the last path component; returns "class.m"
p1 = [p1 lastPathComponent];

// This is how you determine the path extension; returns "m"
p1 = [p1 pathExtension];

// Delete the extension; returns "class"
p1 = [p1 stringByDeletingPathExtension];

// Add a path component to a path; returns "/Users/mike/class"
p1 = [@"/Users/mike" stringByAppendingPathComponent:p1];

// Place the tilde back in; returns "~/class"
p1 = [p1 stringByAbbreviatingWithTildeInPath];

// Add an extension; returns "~/class.h"
p1 = [p1 stringByAppendingPathExtension:@"h"];

The Foundation framework also provides several functions that return paths to common locations in the filesystem.
NSHomeDirectory returns the path to the home directory of the currently logged-in user. NSHomeDirectoryForUser takes a
username as an argument and returns the home directory for that user. The function NSTemporaryDirectory returns a
string that is the path to the current temporary directory, typically /tmp.

2.3.2 File Handles

NSFileHandle lets developers access and manipulate file data with a fine degree of control by providing methods for
moving a pointer within a file, as well as inserting, deleting, and extracting data from the file. Moreover, in the true
spirit of Unix, NSFileHandle can represent a gateway to communication channels such as pipes, sockets, and devices
(such as /dev/null, /dev/stderr, /dev/console). NSFileHandle is covered further in Chapter 6, where methods for
asynchronous reading and writing are discussed. Example 2-28 explores some uses of NSFileHandle.

Example 2-28. Working with NSFileHandle

// Create a file handle for reading an arbitrary file
NSFileHandle *fh = [NSFileHandle fileHandleForReadingAtPath:p1];
fh = [NSFileHandle fileHandleForReadingAtPath:@"/dev/srandom"];

// Create a file handle for writing to a file
fh = [NSFileHandle fileHandleForWritingAtPath:p2];
fh = [NSFileHandle fileHandleForWritingAtPath:@"/dev/null"];

// Create commonly used file handles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Create commonly used file handles
fh = [NSFileHandle fileHandleWithStandardError];
fh = [NSFileHandle fileHandleWithStandardInput];
fh = [NSFileHanfle fileHandleWithStandardOutput];
fh = [NSFileHandle fileHandleWithNullDevice];

// Write data to a file handle
NSString *str = @"Other Unix boxes";
NSData *data = [str dataUsingEncoding:NSASCIIStringEncoding];
[fh writeData:data];

// Read data from a file handle;
// this could be used for something like % echo "Hello" | ThisApp
fh = [NSFileHandle fileHandleWithStandardInput];

// Read all available data and converting it to a string
NSData *data = [fh availableData];
NSString *str = [NSString stringWithData:data];

// You can also read a specified number of bytes
data = [fh readDataOfLength:400];

// Or you can read up to an end-of-file
data = [fh readDataToEndOfFile];

// And close it when finished
[fh closeFile];

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 Bundles and Resource Management
A bundle is an abstraction that represents a collection of resources, such as image files, nib files, or loadable code,
stored within a folder. Bundles are used pervasively in Mac OS X—applications are themselves bundles, as are
preference pane and screensaver modules and application plug-ins. Although bundles are directories, the Finder often
presents them to the user as a single file. For a more in-depth discussion of bundles and their usage in Mac OS X, see
Inside Mac OS X: System Overview (/Developer/Documentation/Essentials/SystemOverview/SystemOverview.pdf).

NSBundle provides an interface to bundles in the filesystem. Every Cocoa application has at least one bundle—the main
bundle, accessed using the mainBundle method—that represents the application. To load other bundles, use the methods
initWithPath: or bundleWithPath:. To access a bundle containing a given class, use bundleForClass:.

2.4.1 Loading Resources

Using NSBundle, you can obtain the paths to resources without knowledge of a bundle's internal directory structure or
what localization is used. Methods that find a resource come in two flavors: those that retrieve individual resources,
whose names are on the base method name pathForResource:ofType:, and those that return all resources of a type, which
are based on the method name pathsForResourceOfType:. The paths returned by these methods are absolute paths in the
filesystem. For example, consider the method pathForResource:ofType:. Given the name of the resource (resource file
name sans extension) and, optionally, the type (the extension may pass nil or @"" here), this method will return the full
path to the specified resource in the main resources directory, which is at BundleName/Contents/Resources. If the
resource is not found there, then any .lproj folders are searched in order according to the user's Language setting in
Preferences.

If you want to specify a directory to search in for the resource (as it may not be contained in the Resources directory),
use the method pathForResource:ofType:inDirectory:. If the resource is not present in the specified directory, the method
returns nil. If nil is passed for the parameter inDirectory:, a search is performed through a prioritized list of directories.
See the NSBundle documentation for the search order.

In addition to containing resources, bundles may contain other bundles in the form of plug-ins, frameworks, and other
applications. Plug-ins and frameworks are generally located in the /BundleName/Contents/PlugIns and
/BundleName/Contents/Frameworks directories, respectively. You can discover these paths by using the
builtInPlugInsPath, privateFrameworksPath and sharedFrameworksPath methods.

Example 2-29 shows how to use these methods to access resources contained within a bundle.

Example 2-29. Accessing bundle resources

NSString *imagePath;
NSImage *anImage;
NSBundle *bundle = [NSBundle mainBundle];

// Locate and load a resource
if (imagePath = [bundle pathForResource:@"mug_shot"
 ofType:@"tiff"]) {
 anImage = [[NSImage alloc] initWithContentsOfFile:imagePath];
 // Do something with anImage
}

// The path to the frameworks directory
NSString *fPath = [bundle sharedFrameworksPath];
fPath = [bundle privateFrameworksPath];

// Path of the bundle itself
NSString *bPath = [bundle bundlePath];

// Path to bundle executable
NSString *ePath = [bundle executablePath];

// Obtain the Info.plist dictionary for the bundle
NSDictioanry *iDict = [bundle infoDictionary];

2.4.2 Loading Code

Bundles also load new classes into the runtime system. Several methods that do this are provided: load, principalClass,
and classNamed:. The load method loads a bundle's executable code into the runtime, if it has not been loaded
previously. The method will return YES if loading is successful or if the executable has been loaded already, and NO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

previously. The method will return YES if loading is successful or if the executable has been loaded already, and NO
otherwise.

The principalClass and classNamed: methods not only load a bundle's executable code, but they return a class object for
the specified class. In classNamed:, the returned class object is specified by name in an NSString. If no class by the
specified name can be located in the bundle, Nil will be returned (Nil is the equivalent of nil for class objects).

The principalClass method returns a class object that is determined by the bundle itself. The bundle's principal class is the
class that is generally responsible for the other classes within a bundle. For example, the principal class of most
standard Cocoa applications is NSApplication. A bundle's Info.plist file contains an entry that identifies the principal class
with the key NSPrincipalClass. Bundle developers can specify a class name here for the principal class. If this entry is not
present, principalClass returns the class object for the first class loaded in the bundle. Developers can specify the load
order of classes by arranging class files in a project in the desired order. Like classNamed:, this method returns Nil if
there is an error loading the code or if no executable is found within the bundle.

Example 2-30 shows how to load executable code with NSBundle.

Example 2-30. Loading code using NSBundle

Class exampleClass;
id newObject;

// The main bundle
NSBundle *bundle = [NSBundle mainBundle];

// Obtain and instantiate the principal class
if (exampleClass = [bundle principalClass]) {
 newObject = [[exampleClass alloc] init];
 // Do something with newObject
}

// Obtain and instantiate a class by name
if (exampleClass = [bundle classNamed:@"MyClass"]) {
 newObject = [[exampleClass alloc] init];
 // Do something with newObject
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.5 Archiving Objects
Archiving an object (or a collection of interconnected objects, known as a graph) into a NSData representation is often
useful or necessary. Objects that are archived into an NSData object can be transported over network connections or
interprocess communication channels and saved to the filesystem. Later, the original graph of objects can be
reconstituted from the archive data.

Foundation provides five classes to support the creation and extraction of archives, all subclasses of NSCoder:

NSArchiver

NSUnarchiver

NSKeyedArchiver

NSKeyedUnarchiver

NSPortCoder

NSCoder declares the common interface for encoding and decoding objects and other Objective-C data types. For
example, the encodeObject method encodes an object into an archive, and methods such as encodeInt: and encodeRect:
support encoding C data types such as integers and common Cocoa data structures.

NSCoder does not implement these methods; it is an abstract class. Rather, subclasses implement the appropriate
methods for their particular purpose. NSArchiver and NSUnarchiver provide a straightforward way of encoding and
decoding objects and scalars, but they have limitations. The biggest limitation is that objects in an archive can be
decoded only in the same order in which they were encoded. Because of this constraint, changing an encoding system
is difficult once it has been established publicly.

2.5.1 Keyed Archiving

The NSKeyedArchiver and NSKeyedUnarchiver classes solve this problem by associating keys with each object and scalar
encoded in an archive. Decoders can use these keys to access an archive's contents in a convenient order that isn't
constrained by a design decision made in a previous version of the application.

Keyed archiving is not available in versions prior to Mac OS X 10.2. If your application
supports Mac OS X 10.1, then check whether the coder passed in initWithCoder: or
encodeWithCoder: supports keyed archiving. To do this, use the NSCoder method
allowsKeyedCoding, which returns YES if keyed coding is supported, and NO otherwise.

The last NSCoder subclass, NSPortCoder, encodes and decodes object proxies in the distributed objects system.
NSConnection uses this class, and as such, you should never have to interact with it. Chapter 6 discusses the distributed
objects system in more detail.

Consider Examples Example 2-31 and Example 2-32. Example 2-31 shows the interface for a hypothetical Employee
class. Note in this example that the interface declaration indicates that Employee conforms to the NSCoding protocol.

Example 2-31. Employee class with support for the NSCoding protocol

@interface Employee : NSObject < NSCoding > {
 NSString *firstName;
 NSString *lastName;
 int employeeNumber;
}
// Methods left out
@end

Example 2-32 shows a way to implement the NSCoding protocol for the Employee class.

Example 2-32. Implementing NSCoding in the Employee class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-32. Implementing NSCoding in the Employee class

@implementation Employee

- (void)setFirstName:(NSString *)newName
{
 [newName retain];
 [firstName autorelease];
 firstName = newName;
}

- (void)setLastName:(NSString *)newName
{
 [newName retain];
 [lastName autorelease];
 lastName = newName;
}

- (void)encodeWithCoder:(NSCoder *)encoder
{
 if ([encoder allowsKeyedCoding]) {
 [encoder encodeObject:firstName forKey:@"First"];
 [encoder encodeObject:lastName forKey:@"Last"];
 [encoder encodeInt: employeeNumber forKey:@"Number"];
 } else {
 [encoder encodeObject:firstName];
 [encoder encodeObject:lastName];
 [encoder encodeValueOfObjCType:@encode(int)
 at:&employeeNumber];
 }
}

- (id)initWithCoder:(NSCoder *)decoder
{
 if ([decoder allowsKeyedCoding]) {
 // These may be decoded in any order you like
 employeeNumber = [decoder decodeIntForKey:@"Number"];

 // Returned values are autoreleased
 [self setFirstName: [decoder decodeObjectForKey:@"First"]];
 [self setLastName: [decoder decodeObjectForKey:@"Last"]];
 } else {
 // These must be decoded in the same order that they
 // were encoded
 [self setFirstName: [decoder decodeObject]];
 [self setLastName: [decoder decodeObject]];
 [decoder decodeValueOfObjCType:@encode(int)
 at:&employeeNumber];
 }
 return self;
}

@end
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.6 User Defaults
User defaults is another term for user application preferences. Mac OS X has a well-designed user defaults system that
is accessed in Cocoa through the Foundation class NSUserDefaults. Working with NSUserDefaults is similar to working with
an NSDictionary. Default values are stored in the database by keys that the application developer defines in the
application. The defaults database is actually a collection of property list files; every application has its own property list
file where defaults are stored. You can view these files in ~/Library/Preferences.

Defaults are organized into domains, which are groupings of default values that have varying degrees of visibility to
applications. A domain is either persistent or volatile. Defaults in a persistent domain are stored in the defaults
database, while defaults in a volatile domain are applicable only during the lifetime of the NSUserDefaults object that
contains those values. NSUserDefaults has five standard domains:

NSArgumentDomain

Set values for defaults in the argument domain by passing key-value pairs to the application as arguments on
the command line, (e.g., % MyApp -KeyName Value). The argument domain is volatile, so arguments affect the
application only during the application session for which they were specified.

Application

Application-specific defaults are stored here and kept persistently in the user's defaults database.

NSGlobalDomain

Defaults stored in the global domain are applicable to all applications run by the user. This persistent domain is
stored in the defaults database.

Languages

The languages domain stores defaults that pertain to language choice and localization.

NSRegistrationDomain

The registration domain is the lowest-level domain containing application-provided defaults (or "factory
settings") used when a default value is otherwise unspecified in a higher domain.

When a default is requested, the domains are searched for the value in order, starting with NSArgumentDomain and
ending with NSRegistrationDomain. The search ends at the first discovery of a default value. Thus, if many domains have
values for the same default, NSUserDefaults returns the default that occurred in the higher-level domain. You can exploit
the search order as a debugging aid by overriding any default by specifying a value in the NSArgumentDomain.

User defaults are capable of storing only what property lists can store, namely NSData, NSNumber, NSString, NSDate,
NSArray, and NSDictionary (although convenience methods are also provided to get and set scalar values). Using these
data types, you can store information, such as dates, numbers, and text, as well as any object that is archiveable.
Example 2-33 shows how to interact with the user defaults system.

Example 2-33. Interacting with the user defaults system using NSUserDefaults

// Create an instance of NSUserDefaults
NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];

// Store and retrieve a string
[prefs setObject:@"Mike Beam" forKey:@"Author"];
NSString *author = [prefs stringForKey:@"Author"];

// Store and retrieve a number
[prefs setFloat:1373.50 forKey:@"NASDAQ"];
[prefs setInt:2002 forKey:@"Year"];
float level = [prefs floatForKey:@"NASDAQ"];
int year = [prefs intForKey:@"Year"];

// Store and retrieve dates
[prefs setObject:[NSDate date] forKey:@"Last Opened"];
NSDate *lastOpenDate = [prefs objectForKey:@"Last Opened"];

// Store collections
[prefs setObject:dictionary forKey:@"A Dictionary"];
[prefs setObject:array forKey:@"An Array"];

// Retrieve collections

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Retrieve collections
NSArray *array = [prefs arrayForKey:@"An Array"];
NSDictionary *dict = [prefs dictionaryForKey:@"A Dictionary"];

// Use the following if you want mutable objects...
NSMutableArray *mArray = [NSMutableArray
 arrayWithArray: [prefs arrayForKey:@"An Array"]];
NSMutableDictionary *mDict = [NSMutableDictionary
 dictionaryWithDictionary: [prefs dictionaryForKey:@"A Dictionary"]];

All applications should establish factory default settings in the registration domain. This is done with the registerDefaults
method. Establishing defaults in the registration domain often takes place in an overridden initialize class method of one
of the first classes loaded in your application. This method works well because it is used to initialize classes when they
are first loaded by the runtime system, and it is thus one of the earliest entry points in code execution. This example
shows how it might be done for a small number of defaults:

+ (void)initialize
{
 NSUserDefaults *prefs;
 NSMutableDictionary *defs;

 prefs = [NSUserDefaults standardUserDefaults];
 [defs setObject:@"May" ForKey:@"Month"];
 [defs setInteger:2002 ForKey:"Year"];
 [prefs registerDefaults:defs];
}

If you need to register a large number of defaults, hardcoding them this way might prove cumbersome. For these
situations, it may be more convenient to store factory settings in a property list included with the application, which is
then read into a dictionary and registered with user defaults:

+ (void)initialize
{
 NSString *prefsFile;
 NSUserDefaults *prefs;
 NSDictionary *defs;

 // The factory defaults file is a resource in the application
 // bundle. The path is retrieved using NSBundle.
 prefsFile = [[NSBundle mainBundle]
 pathForResource:@"FactoryDefaults"
 ofType:@"plist"];

 defs = [NSDictionary dictionaryithContentsOfFile:prefsFile];
 prefs = [NSUserDefaults standardUserDefaults];
 [prefs registerDefaults:defs];
}

One commonly stored preference is an NSColor. There are, however, no provisions for storing a color directly in the
defaults database. One way to store information about colors in the defaults database is to store the color space name
and a dictionary of the color component values.. All of these data types are supported by NSUserDefaults. A better
solution is to archive the NSColor object into an NSData instance and store it in the preferences, as shown in Example 2-
34.

Example 2-34. Storing an NSColor to user defaults

// Assume NSColor object color exists
// Store the color
NSUserDefaults *prefs = [NSUserDefaults standardUserDefaults];
NSData *colorData;
colorData = [NSArchiver archivedDataWithRootObject:color];
[prefs setObject:colorData forKey:@"Text Color"];

// Retrieve the color
colorData = [prefs dataForKey:@"Text Color"];
id color = [NSUnarchiver unarchiveObjectWithData:colorData];

This technique is not limited to only NSColor. It can work with any class of object that conforms to the NSCoding protocol,
the prerequisite for compatibility with Foundation's archiving system.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.7 Notifications
Notifications provide a mechanism for distributing information about events within an application. Notifications provide
an alternative to messaging as a means for communicating between objects. Messaging requires that the sender of the
message know who the receiver is when the message is dispatched. Effectively, the notifications system decouples the
message sender from the message receiver. With notifications, a broadcast paradigm is implemented in which objects
post notifications to a notification center, which then sends messages to objects (known as observers) which have
registered their interest in the type of event, or the originating object.

The notification center is an instance of the NSNotificationCenter class; notifications are instances of the NSNotification
class. Every notification object has a name identifying the notification type, an object associated with the notification
that provides context for the notification, and an optional userInfo dictionary with which posters may pass additional
information. When an observer registers with the notification center, it specifies a method to be invoked in response to
the posting of a notification. Upon receiving a notification, the notification center identifies the observers of the specific
named notification and invokes a predetermined method in each observer.

To obtain an instance of NSNotificationCenter, use the class method defaultCenter. This returns an application's default
notification center. To register an object with the notification center, invoke the NSNotificationCenter method
addObserver:selector:name:object:. The first argument in this method is the object that is added as an observer; this object
is usually self. The selector: argument provides a method selector for the method that needs to be invoked in response
to the notification. The parameter name: is the name of the notification, while the final argument lets you specify the
object whose notifications you want to be notified of.

Observers can be flexible when specifying the granularity of which notifications they would like to respond to in the
addObserver:selector:name:object: method. For example, if nil is passed to object:, then the observer is notified of all
notifications of the specified name, regardless of the originating object. Alternatively, nil can be passed for the
notification name and an object can be specified, which causes the observer to be notified of all notifications posted by
the indicated object.

Objects that have registered with the notification center are responsible for removing themselves when they no longer
wish to receive notifications or when being destroyed. It is particularly important to remove an observer object in the
object's dealloc method, since the notification center does not retain observers. If you do not remove objects before
they are destroyed, the notification center will attempt to send messages to objects that no longer exist, resulting in a
runtime error.

To remove an object from the notification center, use either removeObserver: or removeObserver:name:object:. The first
removes the specified object as an observer of all notifications from all objects; this is the method you should use
before an object is deallocated. The second method selectively removes the specified object from the notification
center.

NSNotificationQueue is a class that lets you change a notification center's delivery behavior. Each thread has its own
notification queue, which has two duties. The first is to coalesce notifications so multiple notifications of the same name
posted within a short time of one another are posted to the notification center only once. Second, the notification queue
allows for asynchronous posting; the standard behavior of NSNotificationCenter handles notifications synchronously.

Cocoa uses notifications extensively. Most objects post notifications of some sort that other objects can use to
coordinate actions between objects. For example, Chapter 7 shows how NSFileHandle uses notifications to handle
asynchronous communication with a socket. Because of the large number of predefined notifications, we frequently find
ourselves registering objects as observers to these notifications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.8 Operating System Interaction
The Foundation framework provides many services through a small set of classes that allow developers to interact with
the underlying operating system in several ways. NSTask is an object-oriented interface to configure and launch a
process as a subprocess of the current application. NSProcessInfo lets an application discover information about its
current process.

2.8.1 Process Info

Example 2-35 shows some of the information you can obtain by using NSProcessInfo.

Example 2-35. Using NSProcessInfo

// Get the shared process info object for the current process
NSProcessInfo *proc = [NSProcessInfo processInfo];

// The name and PID of the process
NSString *name = [proc processName];
int pid = [proc processIdentifier];

// The arguments launched with the process
NSArray *args = [proc arguments];

// A dictionary of the environment variables for the process
NSDictionary *env = [proc environment];

// The host name for the host running the process
NSString *host = [proc hostName];

// The operating system version string
// Note: this string is NOT appropriate for parsing
NSString *ver = [proc operatingSystemVersionString];

2.8.2 Tasks

NSTask is a class that lets a program configure, launch, and communicate with another program as a subprocess. This is
something you'll see every time you execute an application you work on from within Project Builder.

An NSTask is launched in a fully configurable execution environment where environment variables, command line
options, and other key points of a task may be set. By default, if no environment configuration is provided for a new
task, the task inherits the environment of the parent process that launched it.

Setting up and running a task is straightforward. For example, you could run ls on the root directory, as shown in
Example 2-36.

Example 2-36. The quick and dirty NSTask

NSArray *args = [NSArray arrayWithObject:@"/"];
NSTask *task = [NSTask launchedTaskWithLaunchPath:@"/bin/ls
 arguments:args];

Since no environment was set up for the task, the environment of the parent process is used, which includes sending
the standard output of the child process to the standard output of the parent process. The issue of interprocess
communication becomes important when working with multiple tasks in an application, since tasks do not share
memory space with one another, as do multiple threads of an application. You could improve Example 2-33 so the
standard output data can be read from a file handle, rather than being forwarded to the parent processes' standard
output. Example 2-37 illustrates the flexibility Cocoa offers for configuring and launching new processes.

Example 2-37. A more complex use of NSTask

NSData *data;

// Instantiate and initialize a new task

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Instantiate and initialize a new task
NSTask *task = [[NSTask alloc] init];

// Create a pipe to communicate with the task
NSPipe *pipe = [NSPipe pipe];

// Get a file handle to read from the pipe
NSFileHandle *fh = [pipe fileHandleForReading];

// Set the path to launch the task at
[task setLaunchPath:@"/bin/ls"];

// Set the arguments; ls takes the directory to list
[task setArguments:[NSArray arrayWithObject:@"/"]];

// Connect the pipe to the task's stdout
[task setStandardOutput:pipe];

// Finally, launch it
[task launch];

// Once its launched we can read data from the pipe
data = [fh availableData];
NSLog(@"%s", [data bytes]);

If you compile and run this code, you will find the result to be the same as that from Example 2-36. The point of this
exercise, however, was to demonstrate how to fine tune a task in every practical manner.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.9 Threaded Programming
Cocoa uses the NSThread class to provide multiple threads of execution in applications. Threads are useful if you want to
perform a computationally intensive or time-consuming procedure in the background while allowing the main thread of
execution to continue normally. When executing code in the main thread of the application, the flow of execution must
stop while that code completes execution. If code takes a long time to execute, the user will notice that the application
user interface controls freeze and do not respond to any actions.

To correct this problem, you could isolate the time-consuming code into its own method, and then execute that method
in its own thread. This is how NSThread works—using the detachNewThreadSelector:toTarget:withObject: method, as shown in
Example 2-38.

Example 2-38. Multithreading an application

// This method is invoked in response to some user action
- (void)someActionMethod:(id)sender
{
 [NSThread detachNewThreadSelector:@selector(longCode)
 toTarget:self withObject:nil];
}

- (void)longCode
{
 NSAutoreleasePool *pool;
 pool = [[NSAutoreleasePool alloc] init];
 BOOL keepGoing = YES;

 while (keepGoing) {
 // Do something here that will eventually stop by
 // setting keepGoing to NO
 }

 [pool release];
}

As illustrated in Example 2-38, threads exit after the natural completion of a method. If the threaded method is to
integrate properly with Cocoa objects, then that method is responsible for setting up and destroying its own autorelease
pool.

You can also cause a thread to exit before the natural completion of a method's execution by invoking the exit method.
In fact, this is the method NSThread uses to cause a thread to exit normally at the end of a method. For example, you
could insert a conditional into your threaded processing loop, as shown in Example 2-39.

Example 2-39. Using NSThread's exit method

- (void)longCode
{
 NSAutoreleasePool *pool;
 pool = [[NSAutoreleasePool alloc] init];
 BOOL exitEarly = NO;

 while (YES) {
 // Your code here, which may set exitEarly = YES

 if (exitEarly) {
 [pool release];
 [NSThread exit];
 }

 [pool release];
}

NSThread also declares the sleepUntilDate: method, which instructs the thread to take a break until the indicated date is
reached. This is demonstrated in Example 2-40.

Example 2-40. Using NSThread's sleepUntilDate: method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 2-40. Using NSThread's sleepUntilDate: method

- (void)longCode
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 BOOL keepGoing = YES;

 while (keepGoing) {
 // Put the thread to sleep for 10 seconds
 NSDate *d = [NSDate dateWithTimeIntervalFromNow:10.0];
 [NSThread sleepUntilDate:d];

 // Do something here that will eventually stop by
 // setting keepGoing to NO
 }

 [pool release];
}

Another useful method of NSThread lets you specify the priority for a thread in the same sense that you can specify a
priority for a process using the commands nice and renice. The method is setThreadPriority:, which takes as its argument
a float between 0.0 and 1.0. A value of 1.0 gives the thread highest priority, while 0.0 gives the thread lowest priority.

Examples Example 2-38 through Example 2-40 indicate that when working with objects in a threaded method, you
should always create and destroy an autorelease pool manually for that thread. NSApplication defines a thread
convenience constructor, which detaches a thread for a specified method, managing the autorelease pool for that
thread. This method, declared in NSApplication, is detachDrawingThread:toTarget:withObject:. The arguments used by this
method are the same as NSThread's detachNewThreadSelector:toTarget:withObject:, discussed previously in this section.

2.9.1 Locks

One of the difficulties of making applications multithreaded is making certain that data accessible from multiple threads
(such as class instance variables) is not accessed simultaneously by multiple threads. Cocoa provides a solution to this
problem through the class NSLock, which provides a mechanism for coordinating the actions of multiple threads.

Foundation defines the NSLocking protocol and three classes that conform to this protocol: NSLock, NSRecursiveLock, and
NSConditionLock. For a class to conform to the NSLocking protocol, it must implement the lock and unlock methods. The
three classes that do conform to this protocol add methods of their own, as described later in this section.

How Locks Work
Before a thread can execute code that was protected by a lock, a thread must first acquire the lock. A
thread acquires a lock by sending a lock message to an object that conforms to the NSLocking protocol. If a
thread has acquired a lock and hasn't yet relinquished it, then any other threads wishing to acquire the
lock must stop in their tracks until the current thread releases the lock. By setting a lock in a thread, you
prevent other threads from executing a section of code until the lock is removed. Thus, you can prevent
threads from simultaneously accessing data by either protecting a common access point to the data with a
lock, or by protecting every part of the code that accesses a certain variable with the same lock. This can
be done in as shown in Example 2-37. Note that locks are generally created before an application becomes
multithreaded, not when the lock is about to be used.

Using locks is one way to make data sharing between threads safe. Using Cocoa's distributed objects
system, discussed at the end of this chapter, is another way to transfer data between threads safely.

2.9.1.1 NSLock

NSLock is the simplest lock in the Foundation framework. Example 2-41 shows how it works.

Example 2-41. Using NSLock to coordinate threads

NSLock *aLock = [[NSLock alloc] init]; // Previously created

[aLock lock]; // Set the lock
[anObject setSomeData:toThisData];
[aLock unlock]; // Relinquish the lock

One shortcoming of the code fragment in Example 2-27 is that if one thread has acquired the lock, aLock, and hasn't yet
relinquished it, then other threads attempting to execute this code will be stopped cold while they wait to acquire the
lock. This behavior would be undesirable in many situations. Using NSLock's tryLock method is one potential solution. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lock. This behavior would be undesirable in many situations. Using NSLock's tryLock method is one potential solution. This
method attempts to acquire a lock, but doesn't sit around waiting for it. If the lock is immediately available for
acquisition, the lock is acquired and tryLock returns YES. If another thread has the lock at the time tryLock is invoked, NO
is returned and execution resumes. Thus, you could base the following conditional execution of code on the ability for a
thread to acquire a lock:

// Use the same aLock from Example 2-41

if ([aLock tryLock]) {
 // Run your code here
 [aLock unlock];
}

2.9.1.2 NSRecursiveLock

Sometimes, in sufficiently complex code that has portions protected by locks, a thread attempts to acquire a lock more
than once. However, if the thread has already acquired a lock and attempts to do so again, that thread freezes while it
waits for the lock to become free. This lock never becomes free, since the thread needs to relinquish it, but the thread
is frozen waiting for the lock to become available, ad infinitum.

The solution to this problem is to use a lock that is an instance of the NSRecursiveLock class. This lock lets a thread
acquire a single lock multiple times, thus saving itself from the deadlock that would result in the use of NSLock. Example
2-42 shows an example in which a single lock might be acquired more than once by the same thread; this would fail
when using an NSLock, so use NSRecursiveLock.

Example 2-42. Using NSRecursiveLock when NSLock would deadlock a thread

id rLock = [[NSRecursiveLock alloc] init];
int i;

[rLock lock];

for (i = 0; i < 10000; i++) {
// Perform some thread-worthy, time-consuming computations

 if (someCondition == YES) {
 [rLock lock];
// Do something here
 [rLock unlock];
 }
}
[rLock unlock];

2.9.1.3 NSConditionLock

The third Foundation class that conforms to the NSLocking protocol is the NSConditionLock class. NSConditionLock lets you
assign an arbitrary condition when the lock is initialized using initWithCondition:; the condition is just an integer. To
acquire the lock, the thread sends the lock either a lockWhenCondition: or a tryLockWhenCondition: message (which are
analogous in behavior to lock and tryLock). If the condition passed in these messages is equal to the condition of the
receiver lock, then the lock is acquired. Additionally, when relinquishing the lock, you can use the method
unlockWithCondition: rather than unlock; this sets the condition of the receiver to the new condition. Example 2-43 shows
how to employ NSConditionLock.

Example 2-43. Conditional locking with NSConditionLock

id cLock = [[NSConditionLock alloc] initWithCondition:1];

[cLock lock];
// Do something here whose state you want to record
// as a condition in the lock
[cLock unlockWithCondition:0];
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. The Application Kit
The bulk of the Application Kit (or AppKit) is comprised of classes for user interface components, from windows and
widgets to colors and fonts. From the perspective of an application, the central class is NSApplication, which manages
much of the basic application architecture, from loading user interface definitions to setting up the run loop to handle
events, which relieves you of much of the nitty-gritty often associated with simply making an application tick. The
AppKit also provides many architecture-related classes for document management, printing, and interaction with the
workspace.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 AppKit Design Patterns
Besides leveraging the design patterns and methodologies used with the Foundation framework, the Application Kit
relies heavily on several others. Two that merit special attention are Model-View-Controller and Target/Action.

3.1.1 Model-View-Controller

The Model-View-Controller (MVC) pattern is the driving design pattern in the Application Kit.[1] The premise of this
pattern is that code may be split up into logically distinct units that each perform a specific role:

[1] MVC traces its lineage to the first object-oriented programming language, Smalltalk, and has been important
ever since.

The model is an object that encapsulates data and provides logic that manipulates that data.

The view is a separate object that only knows how to display data.

The controller is an arbiter between the model and the view. The controller's job is to take data from the model
and pass it to the view where it can be displayed. If the view is interactive—able to accept user input—then the
controller will interpret those actions and instruct the data model to do something in response.

Many views in the MVC pattern may subscribe to the controller, giving the application flexibility to display data in
different contexts and formats without heavy modification of the modeling and control logic. This idea is illustrated in
Figure 3-1, which shows two views of the same data: a table view of the data and a chart view.

Figure 3-1. MVC used to display two different views of the same data

3.1.2 Target/Action

The Application Kit uses the target/action pattern to decouple UI widgets (controls—typically subclasses of NSControl)
from the code that is executed when the user activates the control. In this pattern, a control keeps a reference to a
target object that receives an action message. The action message is stored as a selector in an instance variable of the
control object. When the user activates the control, the action message is sent to the target. Action messages and
targets are generally established in Interface Builder; however, you can change a control's behavior by using the
setAction: and setTarget: methods of NSControl. The current target and action of a control may be ascertained
programmatically by using the methods target and action.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Nibs
One of the crown jewels of the Cocoa development environment is Interface Builder, a tool for building graphical user
interfaces.

Interface Builder creates and stores user interfaces in nib files. Perhaps one of the most important aspects of Interface
Builder is that it does not generate source code. Nibs are bundles that contain information and archived objects (in this
context often referred to as "freeze-dried") that constitute the elements of the user interface (such as windows, widgets
and menus, as well as non-UI objects) as they were arranged and configured with Interface Builder. When a nib file is
loaded at run time, the elements are reconstituted exactly as they were in Interface Builder.

Every application has a MainMenu.nib file that contains the application's main menu structure. For simple applications,
this nib might also contain the application's main window. More advanced applications generally have a number of nib
files, each of which defines part of the user interface.

From a design perspective, creating a nib for each window (or logical group of windows) facilitates reuse. From a
performance perspective, loading nibs into memory takes time, so it is best to keep them small. Thus, when the
application launches, it needs to load only the nib containing the first window the user sees, rather than every window
in the application, many of which the user may never open (such as the About Box).

3.2.1 Outlets and Actions

Nib files contain definitions for objects that can send messages to other objects in the nib file and be assigned to
instance variables of other objects. An object instance variable in Interface Builder is known as an outlet. Outlets can be
connected to other objects within the nib, and the source code for the class containing the outlet can reference those
other nib objects through the outlet instance variable. Objects in nibs also have actions, which are methods that other
objects may invoke in response to some event, such as a user clicking a button.

When designing a class in Interface Builder, you can create skeleton source files containing instance variables and stubs
for action method definitions. In the header file of a class defined in Interface Builder, outlet instance variables have the
IBOutlet type modifier and action methods have an IBAction return type, which is synonymous with void. These modifiers
help Interface Builder parse class interfaces when importing classes.

When importing class interfaces, Interface Builder recognizes any instance variable of type id as an outlet. You can
statically type an instance variable and have Interface Builder import it as an outlet by prepending the type with the
IBOutlet modifier. Both of these instance variables are recognized as an outlet:

id statusTextField;
IBOutlet NSTextField *statusTextField;

However, the following instance variable will not be recognized as an outlet, since it is statically typed and doesn't have
the IBOutlet modifier:

NSTextField *statusTextField;

Interface Builder recognizes methods as actions if they have a void return type and a single parameter named sender.
The type of the sender parameter can be id, or a class such as NSButton. Interface Builder looks for the sender parameter
name as keyword when parsing methods for actions. If you want more meaningful argument names you can explicitly
state that a method is an action using the IBAction return type. Interface Builder would recognize the following lines as
action methods:

- (void)anAction:(id)sender;
- (void)aButtonAction:(NSButton *)sender;
- (IBAction)aButtonAction:(NSButton *)aButton;

However, the following example is not recognized as an action, since the argument is statically typed, not named
sender, and the return type is not IBAction:

- (void)aButtonAction:(NSButton *)aButton;

At any point during the execution of an application, you can load additional nibs. The Application Kit extends the
Foundation class NSBundle (discussed in Chapter 2) to provide the ability to load nibs. The most straightforward way to
load a nib is with the method loadNibName:owner:. This method searches the application bundle for the best localized nib
file variant with the specified name and loads it into memory.

The owner: parameter lets you specify an object that will be the nib's owner. This object can be referenced by other
objects in the nib file through the File's Owner proxy object, as illustrated in Figure 3-2. By importing the header for the
class of object that will load the nib, you can assign the class for the File's Owner from the Info panel's Custom Class
pane. This lets you use the outlets and actions of this class to define connections to objects within the nib.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pane. This lets you use the outlets and actions of this class to define connections to objects within the nib.

File's Owner is only a "promise." It does not guarantee that at runtime, the object will be
an instance of the specified class. The developer is responsible for ensuring that the object
specified in owner: is an instance of the appropriate class.

Figure 3-2. The File's Owner relationship between a nib and an object in an
application

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 Application Architecture
The Application Kit's basic architecture is primarily implemented in three classes: NSApplication, NSWindow, and NSView.
Figure 3-3 shows the class hierarchy for these classes. Individually, these three classes provide the means for an
application to interface with the operating system (and ultimately, the user) via connections to Quartz, the window
server, and underlying Unix libraries through Core Foundation. Taken as a whole, these classes form the backbone of
the Application Kit's event-handling infrastructure.

Figure 3-3. The hierarchical relationship between NSApplication, NSWindow, and
NSView; these three classes all have a common parent in NSResponder

3.3.1 The Application

Fundamental to every Cocoa application is a singleton instance of NSApplication (accessible by using the class method
sharedApplication or the global variable, NSApp). NSApplication provides a link to the window server and other essential
operating system services. One of its most important responsibilities is management of the application's run loop and
event handling. Run loops have the job of managing input from sources such as the mouse and keyboard (through the
window server), ports, and timers. As the owner of the application's main run loop, NSApplication is the first stop for
event processing in an application. Through a direct connection to the window server, NSApplication accepts events,
packages them as Cocoa objects (instances of NSEvent), and dispatches them to the appropriate responder. NSApplication
is also responsible for managing autorelease pools.

NSApplication is also concerned with other details, such as managing the main menu of an application, managing an
application's Dock menu and icon, opening windows and sheets in modal run loops, hiding and unhiding the application,
and application activation and deactivation. NSApplication also enables an application to connect to Mac OS X system
services found in its Services menu.

3.3.1.1 NSApplicationMain

Every application begins with the same function, named main, that every C program starts execution at. Project Builder
places this function in the file main.m by default, and it has the following very simple implementation:

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

The NSApplicationMain function is responsible for bootstrapping an application and getting it running; it performs three
tasks:

1. Instantiates the shared instance of NSApplication.

2. Loads the application's main nib file (specified in the application bundle's Info.plist under the key NSMainNibFile).

3. Starts the main run loop by invoking NSApplication's run method.

3.3.1.2 The application delegate

Like many Cocoa classes, NSApplication can take a delegate object that allows customization of how the application
behaves without requiring you to create a subclass. For example, you can tell an application that it should quit after the
last window closes by assigning a delegate that implements the applicationShouldTerminateAfterLastWindowIsClosed: method
to return YES. This behavior is practiced in many single-window, utility applications that are intended for short-term,
transient use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

transient use.

The following delegate methods give you other opportunities to respond to various changes in the state of the
application:

applicationDidFinishLaunching:

applicationWillHide:

applicationDidUnhide:

applicationWillResignActive:

applicationDidBecomeActive:

applicationWillTerminate:

The easiest way to assign a delegate to your application's NSApplication object is from within Interface Builder.
MainMenu.nib's File's Owner represents the shared application instance, so you can connect an object directly by using
its delegate outlet. It is also possible to assign an application delegate programmatically using NSApplication's setDelegate:
method.

3.3.1.3 The run loop

Run loops monitor the various sources of input for an application—including timers, ports (receiving messages from
other applications), Distributed Objects connections, and keyboard and mouse events from the window system—and
dispatch them to the various parts of an application for handling. Because of their role in receiving and dispatching
events, run loops are often referred to as event loops. NSApplication is responsible for creating and managing an
application's main run loop.

Run loops work by polling each input source to see if there is input that needs to be processed. Multiple input sources
are handled in successive passes through the run loop. If an input source does require processing, then the run loop
takes the necessary action to handle that input source. For example, if the run loop determines that a timer needs to be
handled, it invokes the method specified by the timer in a target specified by the timer. Once this method invocation
has returned, the run loop continues processing input. Figure 3-4 illustrates how this process occurs.

Figure 3-4. How run loops process input sources

The Foundation class NSRunLoop is used as the interface to run loops. Generally you don't need to create or manage run
loops, as this is taken care of by the application. Every thread in an application has a run loop created for it. However,
NSApplication starts only the main application thread. If you create a new thread that needs to monitor input sources,
you can obtain a reference to the run loop by using NSRunLoop's method currentRunLoop; a run message to this run loop
will set it in motion.

3.3.2 The Window

In Cocoa, the window is the foundation of all drawing, and it is a crucial link in the path of an event. Windows are
instances of the class NSWindow, or one of its subclasses. The NSWindow class implements many parts of an application's
machinery, such as the control of a window's level relative to other windows, window zooming and resizing,
miniaturization, hiding and unhiding, activation, and deactivation. A subclass of NSWindow, NSPanel, adds behaviors to
windows that make them suitable for utility purposes. The AppKit implements several NSPanel subclasses that give
access to standard Mac OS X user interfaces, such Open and Save dialogs in NSOpenPanel and NSSavePanel, the font
panel with NSFontPanel, and the Print dialog with NSPrintPanel.

3.3.2.1 Delegate methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3.2.1 Delegate methods

Like NSApplication, NSWindow defines delegate methods that let you modify the window's default behavior. For example, a
controller managing a document might change a window's default closing behavior, as shown in Example 3-1.

Example 3-1. Altering the default closing behavior of a window

- (BOOL)windowShouldClose:(NSWindow *)window
{
 // If the document is clean, let the window close
 if (![documentData hasUnsavedChanges]) {
 return YES;
 } else {
 // Run an alert panel to ask the user if they want to
 // save changes; return appropriate value
 }
}

3.3.3 The View

NSView, an abstract class that provides support for Cocoa's basic drawing, event-handling, and printing architecture, is
the third class in the AppKit trifecta. It is the parent class of every control in Cocoa, from buttons and sliders to tables
and color wells. Due to NSView's status as a child class of NSResponder (see Figure 3-2), all NSView subclasses can handle
events. Additionally, NSView is the portal to Quartz; all custom drawing and graphics are handled by subclasses of
NSView (Chapter 4 discusses NSView's relationship with Quartz and drawing graphics with NSView).

In the Application Kit, an interface's hierarchical composition is manifested as a view hierarchy in which every NSView is
nested within a parent NSView. Any view may contain zero, one, or several subviews, and every subview has exactly
one superview. The exception is the top-level view at the root of the hierarchy, which is the parent window's content
view . To access the content view, use the NSWindow methods contentView and setContentView:.

For an example of a view hierarchy, consider the main window of Mail, shown in Figure 3-5. Mail has a fairly simple
view hierarchy. The window's top-level content view has two subviews: the NSTextField that displays the number of
messages and an NSSplitView. This split view, in turn, has as its subviews an NSTableView and an NSTextView.

Figure 3-5. View hierarchy of a simple Mail window

There are actually two more view layers in the hierarchy between the split view, the table
view, and the text view. Both NSTableView and NSTextView are generally contained within an
NSClipView, which is then contained within NSScrollView. The scroll views are the true
subviews of the NSSplitView. Thus, for the NSTableView the true hierarchy is NSSplitView
NSScrollView NSClipView NSTableView. Furthermore, a clip view is not the only child
of a scroll view. The two scrollers are also view objects that are children of the scroll view.

Fortunately, Interface Builder interacts with NSTableView and NSTextView objects that are
already part of the scroll view hierarchy, so you don't normally have to interact with the
mechanics of scroll and clip views.

3.3.3.1 Managing the view hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3.3.1 Managing the view hierarchy

NSView declares a number of methods that manage the view hierarchy. To add a subview to a view, use the method
addSubview:, or addSubview:positioned: relativeTo:. To remove a subview invoke in the subview to remove the method
removeFromSuperview. You can easily determine the superview of a view by sending that view a superview message;
likewise, the subviews of a viewcan be returned as an NSArray of NSViews by sending that view a subviews message.
When building an interface, you don't usually have to interact with the view hierarchy, as Interface Builder takes care of
the details.

More important than knowing how to work with the view hierarchy is understanding how a view's geometry is defined
both in terms of its coordinate system and the coordinate system of its superview. When a view is added to the
hierarchy, it claims a rectangular region of its superview, known as the frame, as its own and takes responsibility for
drawing in that region and handling events that originate in that region. The view's frame defines the position and size
of the view within the coordinate system of its superview. You can modify the view's frame with methods such as
setFrame: and setFrameOrigin:.

Another rectangle parameterizes the geometry of a view: the bounds rectangle. The bounds rectangle defines the view
in terms of its own coordinate system. Another way of looking at it is that the frame gives an external description of the
view while the bounds gives an interior description of the view. NSView declares the methods frame and bounds for
retrieving these rectangles, which are of type NSRect.

You will often need to convert coordinates in one view's coordinate system to that of another view. NSView provides
several methods for converting points, sizes, and rects between coordinate systems. For example, convertPoint:fromView:
converts the specified point from the coordinate system of fromView: into the coordinate system of the receiver. The
method convertPoint:toView: does the opposite, converting from the receiver's coordinate system to that of toView:.
Similar methods convert NSSizes and NSRects.

NSView, being a subclass of NSResponder, is a key component of the event handling system. By subclassing NSView,
developers provide event-handling capabilities by simply implementing the relevant event-handling methods (declared
in NSResponder), such as mouseMoved:. The event-handling system invokes these methods automatically, when
appropriate.

Another feature of NSView is tracking rectangles. Tracking rectangles are regions in a view that generate special events
as the mouse moves through the rectangle. When the mouse enters a tracking rectangle, a mouse-entered event is
generated. When the mouse exits the rectangle, a mouse-exited event is generated. Implement the methods
mouseEntered: and mouseExited: to handle these events. Tracking rectangles are defined with the methods
addTrackingRect:owner: userData:assumeInside:. This method returns a tag identifying the tracking rectangle. A tracking
rectangle may be removed by specifying the tag in the removeTrackingRect: method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.4 Controls
The most visible aspects of an application are the controls that users interact with. In Cocoa, control objects such as
buttons, tables, sliders, and text fields all have a common parent class: NSControl, which is itself a subclass of NSView.
Figures Figure 3-6 and 3-7 show the class hierarchies for NSCell and NSControl, and Table 3-1 describes the control
classes implemented in the Application Kit.

Figure 3-6. NSControl class hierarchy

In general, a Cocoa control must have the ability to do several things:

Draw itself on the screen.

Respond to basic events such as a mouseclick or a drag.

Send action messages to arbitrary objects in response to events.

NSControl gives some amount of control over when and how a control sends the action message to its target.
Specifically, you can specify whether the action is to be sent only after the user has finished clicking the control (i.e.,
when the mouse button is raised), or if the action is to be sent continuously while the mouse button is depressed. You
can set this behavior either in Interface Builder or by using the method setContinuous:.

3.4.1 Cells

Most AppKit controls have associated cell classes, and in those cases the cell implements all drawing and event
handling, while the control serves as a container within which the cell is drawn. A cursory comparison of NSCell to
NSControl makes it appear as though these classes unnecessarily duplicate each other's behavior (see Figure 3-7). For
example, both classes declare methods such as intValue, floatValue, doubleValue, stringValue, alignment, and font. The
impression is strengthened when considering NSCell's responsibility for drawing many Application Kit controls, and that it
takes over other similar roles you would expect from an NSControl. To understand the division of labor between cells and
controls, consider the issues of performance and flexibility.

Figure 3-7. NSCellclass hierarchy

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because NSControl is a subclass of NSView, it comes with a lot of baggage (inherited instance variables and data
structures) that take memory. As a result, the performance of an application can degrade as the number of NSView
instances in an interface increases. NSCell, however, is a much more lightweight object.

Consider now the class NSMatrix. NSMatrix is a subclass of NSControl that manages a rectangular array of NSCells. It is
often used in situations when several similar controls are needed, such as for the keypad in the Calculator application,
or in a spreadsheet. Consider the case of a 10-column by 10-row spreadsheet. Implementing such a spreadsheet with
text views would require 100 instances of NSTextField. However, if you were to build a spreadsheet with an NSMatrix you
would have just one instance of an NSView subclass and 100 instances of NSTextFieldCell, a decidedly lighter-weight class
than NSTextField. Moreover, when drawing the matrix, there is just a single graphics context switch (as opposed to one
context switch per view). You can see the advantage of using cells over views as the size of the spreadsheet increases.

Cells also facilitate the creation of composite controls that are composed of many different parts, such as table or
browser views. NSTableView, for example, draws the contents of table columns with NSTextFieldCells. This can be changed
to display the contents of a column using NSComboBoxCell or NSButtonCell.

Table 3-1 summarizes the various Application Kit control and cell classes.

Table 3-1. Various Application Kit control and cell classes
Control class Cell class Description

NSControl NSCell The parent class of all controls; as an abstract class, it does not correspond to
a real control

NSBrowser NSBrowserCell Displays hierarchical data with levels arranged in columns

NSButton NSButtonCell A simple push button

NSPopUpButton NSPopUpButtonCell Implements a pop-up or pull-down menu

NSColorWell N/A Selects and displays an NSColor

NSImageView NSImageCell Displays an image and allows dragging images to and from the control

NSMatrix N/A Displays rows and columns of controls, such as radio button controls

NSForm NSFormCell An NSMatrix of NSFormCells that are made up of an input text field and a label

NSScroller N/A A scrollbar control used in NSScrollViews

NSSlider NSSliderCell A slider control

NSTableView N/A A control that displays data arranged in rows and columns

NSOutlineView N/A Displays hierarchical data in an expandable/collapsible list

NSStepper NSStepperCell A control with two buttons that increment or decrement its value

NSTextField NSTextFieldCell Displays and inputs text

NSComboBox NSComboBoxCell A control that lets you enter text directly or click an attached arrow to reveal a
pop-up menu list of items

NSSecureTextField NSSecureTextFieldCell A NSTextField subclass that displays all characters as dots

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.5 Menus
The NSMenu and NSMenuItem classes implement menus in Cocoa. NSMenu provides an implementation for actual menus,
while NSMenuItem represents individual items within menus. An application's menus appear in the main menu bar across
the top of the screen. By and large, an application's main menu is assembled in Interface Builder, which provides
facilities for editing menu structures and setting menu item targets and actions. Additionally, Interface Builder has
several pre-configured menus, such as File and Edit that contain standard menu items familiar to users. An application's
main menu is contained in the main nib of an application.

Every application also has a Dock menu, which pops up when you right-click on an application's Dock icon. Dock menus
are easily created in Interface Builder by connecting an instance of NSMenu to the File's Owner's dockMenu outlet.
Alternatively, the application delegate can supply a Dock menu by implementing the method applicationDockMenu: (this is
useful if you want to dynamically reconfigure the menu). A third way of specifying a Dock menu is to assemble the
NSMenu object in a nib and specify the nib's file name in the application's Info.plist file under the AppleDockMenu key.

NSView objects manage contextual menus. In Interface Builder, every view has a menu outlet, which can be connected
to an NSMenu object. The menu that you connect to this outlet will appear as a contextual menu when you right-click
over the view. Contextual menus can be assigned to a view by overriding the method menuForEvent: in NSView
subclasses. This method has an NSEvent object as the parameter and should be implemented to return an NSMenu.
Because an event object is provided in this method, you can use it to return a menu based, for example, on the location
of the event within the view. Example 3-5, in Section 3.9.1, shows how to extract this information from an NSEvent
object.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.6 Sheets
Sheets implement window modal (as opposed to application modal) dialogs that are attached to the window. Thus,
when a dialog pops up asking for attention, it blocks interaction only with that particular window, not the entire
application. When a sheet is opened or closed, it appears to slide out of the title bar. Because the sheet is attached to
another window, such as a document window, the user never loses track of what dialog belongs with which window.
Figure 3-8 shows an example of a sheet.

Figure 3-8. A TextEdit sheet asking if you want to save changes

The Application Kit defines a number of convenient functions for displaying standard alert and message sheets,
including NSBeginAlertSheet, NSBegin-InformationalAlertSheet, and NSBeginCriticalAlertSheet. Each function takes the same
parameters; they differ only in the icon displayed on the left of the sheet. The function prototype for NSBeginAlertSheet is
the following:

void NSBeginAlertSheet(NSString *title,
 NSString *defaultButton,
 NSString *alternateButton,
 NSString *otherButton,
 NSWindow *docWindow,
 id modalDelegate,
 SEL didEndSelector,
 SEL didDismissSelector,
 void *contextInfo,
 NSString *msg, ...)

Table 3-2 describes each parameter.

Table 3-2. Parameters for alert sheet functions
Parameter Description

Title The title of the sheet, displayed at the top of the sheet in bold-faced font.

defaultButton The title of the sheet's default button, generally "OK". Passing nil or an empty string will give a
localized default button title (i.e., "OK" in English).

alternateButton The title of the sheet's alternate button, such as "Don't Save," that appears on the left side of the
sheet when three buttons are present. Passing nil causes this button to not be created.

otherButton Title for a third button, such as "Cancel", that appears in the middle. Passing nil causes this button
to not be created.

docWindow The window to which the sheet is attached.

modalDelegate The object that handles user interaction with the sheet.

didEndSelector A selector of the method implemented by the modal delegate that will be invoked when the modal
session is ended, but before the sheet is dismissed.

didDismissSelector Selector of the method implemented by the modal delegate is invoked after the sheet is dismissed.
This may be NULL if you don't want to end a didDismissSelector.

contextInfo Pointer to additional data to be passed to didEndSelector or didDismissSelector.

msg A printf formatted message to be displayed in the sheet. Optional printf-style arguments may follow
the message.

An alert similar to the one in Figure 3-8 can be created with a call to NSBeginInformationalAlertSheet, as shown in Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An alert similar to the one in Figure 3-8 can be created with a call to NSBeginInformationalAlertSheet, as shown in Example
3-2.

Example 3-2. Creating an alert sheet with NSBeginInformationalAlertSheet

NSBeginInformationalAlertSheet(
 @"Do you want to save changes to \
 this document before closing?"
 @"Save",
 @"Don't Save",
 @"Cancel",
 mainWindow,
 self,
 @selector(sheetDidEnd:returnCode:contextInfo:),
 NULL,
 NULL,
 @"If you don't save, your changes will be lost.");

You can display any window as a sheet by using APIs provided by NSApplication. To display a sheet, invoke the following
method:

beginSheet:modalForWindow:
 modalDelegate:didEndSelector:contextInfo:

The first argument, beginSheet:, is the NSWindow we wish to display as a sheet. The modalForWindow: argument specifies
the window to which the sheet is attached. Since application execution continues while a sheet is open, the sheet uses a
modal delegate to handle user interaction. This delegate is assigned in the modalDelegate: argument. The callback
method is indicated in didEndSelector: and has the following signature:

- (void)sheetDidEnd:(NSWindow *)sheet
 returnCode:(int)returnCode
 contextInfo:(void *)contextInfo;

In this method, contextInfo: is the object passed in the NSApplication method used to open the sheet. It is used to
optionally pass arbitrary information between the creator of the sheet and the modal delegate.

To end a document modal session, use NSApplication's methods endSheet: or endSheet:returnCode:. Each method takes the
sheet window as a parameter. The second, endSheet:returnCode:, also takes an integer return code that is passed to the
didEndSelector: method. Example 3-3 shows how to open and close a sheet in an application.

Example 3-3. Using sheets in an application

/*
 * This method is invoked to open a sheet.
 * Assume sheetWindow and mainWindow are Interface Builder
 * outlet instance variables connected to windows in a nib.
 */
- (void)openSheet:(id)sender
{
 SEL selector = @selector(sheetDidEnd:returnCode:contextInfo:);

 [NSApp beginSheet:sheetWindow
 modalForWindow:mainWindow
 modalDelegate:self
 didEndSelector:selector
 contextInfo:NULL];
}

/*
 * This could be the action of the "Cancel" button of the sheet
 * in Figure 3-8.
 */
- (void)cancelSheet:(id)sender
{
 [NSApp endSheet:sheetWindow returnCode:NSCancelButton];
}

/*
 * This could be the action of the "Save" button of the sheet
 * in Figure 3-8.
 */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 */
- (void)acceptSheet:(id)sender
{
 [NSApp endSheet:sheetWindow returnCode:NSOKButton];
}

- (void)sheetDidEnd:(NSWindow *)sheet
 returnCode:(int)returnCode
 contextInfo:(void *)contextInfo
{
 /*
 * Can do something here based on the value of returnCode
 * or do something in the button actions themselves.
 */
 if (returnCode == NSOKButton) {
 // If OK was clicked...
 } else if (returnCode == NSCancelButton) {
 // If Cancel was clicked....
 }

 [sheet orderOut:nil];
}

In this example, NSOKButton and NSCancelButton are global constants often used to identify those buttons in a dialog. The
endSheet: methods only end the document modal session; they do not remove the sheet from the screen. To hide the
sheet, send an orderOut: message to the sheet window, which Example 3-3 does in the callback method
sheetDidEnd:returnCode:contextInfo:.

Finally, there are yet more ways to display sheets: the AppKit classes that implement standard Mac OS X user
interfaces, such as NSPrintPanel and NSOpenPanel, all provide ways to display their respective interfaces as document
modal sheets.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.7 Drawers
Drawers provide additional window space for an application's interface, and can easily be tucked away from view when
not in use. Drawers are ideal for controls that are frequently used, but don't need to be visible at all times. Figure 3-9
shows an example of a drawer in Mail.

Figure 3-9. The mailboxes drawer from Mail.app

The class NSDrawer defines the behavior of drawers. Interface Builder provides the ability to create drawers and attach
them to windows. The window that a drawer is associated with is called the parent window. Like windows, drawers
contain a view hierarchy. The top-level view of this hierarchy is the drawer's content view. NSDrawer objects in Interface
Builder have outlets connected to the drawer's parent window and content view. Alternatively, you can set a drawer's
parent window of a drawer with the method setParentWindow: and set the content view with setContentView:.

When a drawer opens or closes, it slides from an edge of the parent window. Drawers have a preferred edge of the
parent window on which they try to open. Without sufficient room between the preferred edge and the adjacent edge of
the screen display, the drawer opens on the opposite side of the window. The preferred edge may be any side of the
window: top, bottom, left, or right. You can access this property with setPreferredEdge: and preferredEdge. In these
methods, the edge is represented by the data type NSRectEdge, which has the possible constant values NSMinXEdge,
NSMaxXEdge, NSMinYEdge, and NSMaxYEdge.

A drawer's state is determined by the state method. The state of a drawer can be specified with NSDrawerClosedState,
NSDrawerOpenState, NSDrawerClosingState, or NSDrawerOpeningState. To open a drawer, send an open message. If the
drawer is open, nothing happens. To close a drawer, invoke close, which will do nothing if the drawer is already closed.
Each method has an counterpart that is appropriate for use as the action of an interface object: open: and close:.
Additionally, the toggle: action method closes an open drawer and opens a closed drawer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.8 Toolbars
Cocoa implements toolbars in the NSToolbar and NSToolbarItem classes. NSToolbar implements the toolbar itself, while
NSToolbarItem represents the individual icons and controls within the toolbar.

Unfortunately, as of the December 2002 release of the Developer Tools, toolbars cannot
be created within Interface Builder. Instead, you have to create them manually with code.

To create a toolbar, instantiate an instance of NSToolbar and initialize it with the method initWithIdentifier:. The identifier
in this method is a string that identifies the toolbar within an application (it is used, for example, in document-based
applications to reflect changes in a toolbar in one document window in all the toolbars of all open document-windows).
To attach a toolbar to a window, invoke NSWindow's setToolbar:; the toolbar method of NSWindow returns a window's
assigned toolbar.

NSWindow provides a two action methods for interacting with toolbars. The method toggleToolbarShown: hides and shows
the toolbar. This is the action for the "Hide Toolbar" menu item (as well as the pill-shaped button on the right side of
the window's title bar). Note that toggleToolbarShown: causes the title of this menu item to alternate between "Hide
Toolbar" and "Show Toolbar". This method relies on NSToolbar's isVisible and setVisible: methods. isVisible returns YES if the
toolbar is present, and NO otherwise; setVisible: takes a BOOL indicating whether the toolbar should be hidden or shown.

NSWindow's runToolbarCustomizationPalette: method is the action method for the "Customize Toolbar..." menu item. It uses
NSToolbar's runCustomizationPalette: and customizationPaletteIsRunning methods. The runCustomizationPalette: opens a sheet for
the customization palette and dismisses the sheet when the user is done.

NSToolbarItem represents the buttons, icons, and controls within a toolbar. The initWithItemIdentifier: method initializes
instances of NSToolbarItem. The item identifier is a string that uniquely identifies the toolbar item. The Application Kit
provides a number of standard toolbar items, such as the "Colors" and "Fonts" items, as well as separator and space
items. Passing one of the string constants listed in Table 3-3 creates these standard toolbar items.

Table 3-3. Standard toolbar item identifiers
Item identifier Description

NSToolbarSeparatorItemIdentifier The Separator item

NSToolbarSpaceItemIdentifier The Space item

NSToolbarFlexibleSpaceItemIdentifier The Flexible Space item

NSToolbarShowColorsItemIdentifier The Color item, which displays the color panel

NSToolbarShowFontsItemIdentifier The Fonts item, which displays the font panel

NSToolbarCustomizeToolbarItemIdentifier The Customize item, which opens the toolbar customization palette

NSToolbarPrintItemIdentifier The Print item, which sends a printDocument: message to firstResponder

You can set many attributes in a toolbar item. Minimally, you should assign the toolbar item a label, an image, an
action, and a target. The item label is set with the method setLabel:. This label appears under the item image in the
toolbar. You can also give the toolbar item a more descriptive label that appears in the customization palette by using
the method setPaletteLabel:. The icon image of the toolbar item is set with setImage:, which takes an NSImage as its
argument. To set the target/action pair of the toolbar item, use setTarget: and setAction:. If you do not set the target,
the action of the toolbar item is invoked in the first responder that implements it.

A toolbar item can be either a simple icon button, such as the Mailboxes and Junk icons shown in Figure 3-10, or a
custom NSView containing any control you wish. The Search field in Figure 3-10 is an example of a toolbar item that
uses a custom view rather than an icon button. The simple icon buttons are created by giving the toolbar item an
image, as discussed in the last paragraph. To assign a custom view to a toolbar item, use the method setView:.

Figure 3-10. The Mail toolbar

NSToolbar relies on a delegate object to supply the toolbar items that populate the toolbar and the customization palette.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSToolbar relies on a delegate object to supply the toolbar items that populate the toolbar and the customization palette.
The delegate should be able to return an NSToolbarItem for every control that might appear in the toolbar. You can set
this delegate by sending a setDelegate: message to the toolbar. The delegate is required to implement the following
three methods:

toolbar:itemForItemIdentifier:willBeInsertedIntoToolbar:

This method should return a fully configured instance of NSToolbarItem for the specified toolbar and item
identifier. The willBeInsertedIntoToolbar: flag indicates whether the item is about to be inserted into the toolbar. If
this parameter is YES, you can expect that the delegate method toolbarWillAddItem: will be called soon.

toolbarAllowedItemIdentifiers:

This method should return an NSArray of item identifier strings for all items that may go into the toolbar. The
order of the item identifiers in the returned array determines the order in which the items appear in the
customization palette.

toolbarDefaultItemIdentifiers:

This method returns an NSArray of item identifiers for the items that make up the default toolbar. The order of
the item identifiers in this array determines the order in which items appear in the default toolbar.

Optionally, the toolbar delegate may implement the following two methods:

toolbarWillAddItem:

Called just before a toolbar item is added to a toolbar. The parameter is a notification posted by the toolbar.
The object of this notification is the toolbar to which the item will be added. The toolbar item is available in the
userInfo dictionary under the key @"item".

toolbarDidRemoveItem:

Called just after a toolbar item is removed from a toolbar. The parameter is a notification posted by the toolbar.
The object of this notification is the toolbar from which the item will be removed. The toolbar item is available in
the userInfo dictionary under the key @"item".

Example 3-4 shows how a toolbar delegate is implemented to create a simple toolbar.

Example 3-4. Implementing a toolbar delegate

- (NSArray *)toolbarAllowedItemIdentifiers:(NSToolbar*)toolbar
{
 return [NSArray arrayWithObjects:@"Item1",
 @"Item2",
 NSToolbarSeparatorItemIdentifier,
 NSToolbarSpaceItemIdentifier,
 NSToolbarFlexibleSpaceItemIdentifier,
 NSToolbarShowColorsItemIdentifier,
 NSToolbarCustomizeToolbarItemIdentifier,
 nil];
}

- (NSArray *)toolbarDefaultItemIdentifiers:(NSToolbar*)toolbar
{
 return [NSArray arrayWithObjects:@" Item1",
 NSToolbarFlexibleSpaceItemIdentifier,
 @"Item2", nil];
}

- (NSToolbarItem *)toolbar:(NSToolbar *)toolbar
 itemForItemIdentifier:(NSString *)itemIdentifier
 willBeInsertedIntoToolbar:(BOOL)flag
{
 NSToolbarItem *item = [[NSToolbarItem alloc]
 initWithIdentifer:itemIdentifier];

 /*
 * If customize the item based on the identifier;
 * Standard toolbar items fall through and are returned
 */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 */
 if ([itemIdentifier isEqualToString:@"Item1") {
 [item setLabel:@"Do This"];
 [item setAction:@selector(doThis)];
 [item setImage:[NSImage imageNamed:@"DoThis"]];
 } else if ([itemIdentifier isEqualToString:@"Item12") {
 [item setLabel:@"Do That"];
 [item setAction:@selector(doThat)];
 [item setImage:[NSImage imageNamed:@"DoThat"]];
 }
 return [item autorelease];
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.9 Event Handling
Earlier in this chapter, you learned that NSApplication, NSWindow, and NSView share a common parent class: NSResponder.
This class plays a central role in the AppKit event handling system, as it declares the interface to any class that can
respond to events.

To handle events, it is often sufficient to understand how to create a suitable subclass of NSResponder (a custom view,
for example) and implement the relevant methods (e.g., mouseDown:). The application framework is responsible for
ensuring that the appropriate method is invoked on the right object.

The event handling architecture is built on three major ideas: event messages, action messages, and the responder
chain. As discussed earlier, events enter an application through the window server and are dispatched by NSApplication,
with the method sendEvent:, to forward the event to the appropriate object.

The event model also deals with action messages. Objects, usually interface controls, create actions within the
application that can be routed to a target object. The method used to dispatch action messages is NSApplication's
sendAction:to:from:. The sendAction: parameter is a selector for the action method to be invoked in the target, the to:
parameter is the action's target, and from: is the sender of the action. It is possible that the target is unspecified, in
which case the action is sent up the full responder chain, and the first responder object that implements the message
responds to it.

As for event handling, a window may be the key window, the main window, or both. At any point in time, there is only
one key and one main window (they may be the same). NSApplication always sends mouse and key events to the key
window. NSWindow implements the method sendEvent: to route the event to the proper view within the window. This
view is the most tightly nested view within the hierarchy over which the event occurred. If the view does not handle the
event, then the event is sent to the view's next responder, which is usually its superview.

Action messages, on the other hand, are sent first to the key window's first responder, and follow the responder chain
up to the window's content view. If no part of the responder chain handles the action, the window object and window
delegate are given a chance to respond to the action. If the main window differs from the key window, the process
repeats for the main window. Finally, if the main window and its responder chain do not respond to the action, the
NSApplication object and its delegate are given a chance to respond. Thus, mouse and key events are always directed to
the key window. If the key window is different from the main window, the main window is not given a chance to handle
mouse and key events.

3.9.1 Event Objects

Every event responder method has the event object as its single argument. From this object, you can extract relevant
information about the event, such as where the mouse is located in the window, or which key on the keyboard was
pressed. Example 3-5 shows how to work with mouse-generated events.

Example 3-5. Working with mouse events

- (void)mouseDown:(NSEvent *)theEvent
{
 NSPoint winLoc = [theEvent locationInWindow];
 NSPoint viewLoc = [self convertPoint:winLoc fromView:nil];
}

In this example, the locationInWindow method returns an NSPoint object, which gives the location of the event in the
window's coordinate system. In the next line, you use the NSView method, convertPoint:fromView:, to convert the point
from the coordinate system of one view to the coordinate system of the receiver. By passing nil as the second
argument, you convert the point from the base coordinate system of the window to that of the receiver view.

Responding to keyboard events is similar, although the important characteristic is not the location, but the key that is
pressed. Example 3-6 shows how to respond to key events. To discover which specific key was pressed, use the
characters method.

Example 3-6. Responding to key events

- (void)keyDown:(NSEvent *)theEvent
{
 NSString *key = [theEvent characters];

 if ([key isEqualToString:@"c"]) {
 // Handle event here for the 'c' key pressed
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

3.9.2 The Responder Chain

The final piece of the event model—the glue that holds it all together—is the responder chain. The responder chain
gives objects that may potentially respond to an event or action a chance to do so. This results in an extremely flexible
response model, as the originator of the event or action is decoupled from the ultimate destination.

The responder chain is a series of linked NSResponder objects. When an event or an action occurs, it is dispatched to
what is known as the first responder, which is given the first chance to respond to the event or action. If the first
responder is incapable of responding, then the next responder object in the chain is given a chance to respond. Events
and actions are sent up the responder chain until an object is found that can respond to the message. Typically the
Application Kit picks the first responder automatically in response to normal user interaction with the interface. In other
words, the object that is clicked or that receives typing is the first responder.

When constructing an interface in Interface Builder, you typically assign a specific object as the target for a control's
action. Interface Builder provides a mechanism for actions to be sent to the responder chain, rather than a specific
target object. This is done by connecting an object's action to the First Responder proxy object in the nib window.

First Responder represents nil. If a control has a value for its target, it sends its action directly to that target. If the
target is nil, this results in a "nil-targeted-action", denoting that the action should be passed to the responder chain
(equivalent to passing nil as the message recipient in NSApplication's sendAction:to:from:).

The responder chain pattern is especially convenient when your interface and controller classes are split among several
nib files. Using the First Responder in Interface Builder lets you send actions from a control in one nib to an object in
another. This is common when working with document-based applications that have the main menu in one nib and the
document interface and class in another.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.10 Document-Based Applications
Most applications create, manage, and edit documents. A document can be anything that stores persistent data.
Moreover, these applications all duplicate common functionality, such as the ability to create new documents, open
existing documents, and manage multiple open documents. Cocoa provides a multiple-document application
architecture that implements most of the basic functionality shared by all document-based applications. Cocoa
document-based application architecture centers on the NSDocument, NSDocumentController, and NSWindowController
classes.

When developing a document-based application, most development effort is likely to be spent implementing subclasses
of NSDocument; any document-based application must have at least one NSDocument subclass, but may have more (think
of AppleWorks, for example). In MVC terminology, an NSDocument is a controller object; it manages a document's
persistent data, and to project that data into a view. This means that minimally an NSDocument subclass must know how
to load data into a form useable by the application, as well as how to store this data into a persistent form. A well-
implemented document subclass also provides support for printing, undo/redo operations, and edited status tracking.

An NSDocumentController instance is the administrator of a document-based application. It is responsible for servicing
user requests to create, open, and save documents. NSDocumentController serves the integral role of the document
factory. NSDocument knows how to load a file's contents as the document's data, and NSDocumentController knows how to
create NSDocument objects under different circumstances. For example, File New is wired to tell
NSDocumentController to create an instance of the application's NSDocument subclass with no initial data. When you choose
a file via File Open, you tell NSDocumentController to create an instance of the document class and load the selected
file's contents into that document.

If an application has more than one NSDocument subclass (say, to support different document and data formats),
NSDocumentController knows which subclass to instantiate based on the requested document type. Document types are
mapped to NSDocument subclasses in the application's Info.plist. Each subclass of NSDocumentis tailored to support a
different data model (i.e., file format). Instances of the document-based application architecture classes relate to one
another in a multi-tier tree. At runtime, a document-based application has a single instance of NSDocumentController
(accessed using the sharedDocumentController class method). This instance of NSDocumentController owns and manages
zero, one, or more instances of NSDocument. Each NSDocument instance, in turn, owns and manages one or more
instances of NSWindowController, which each own an instance of NSWindow. Figure 3-11 shows this arrangement.

Figure 3-11. The runtime relationship of NSDocumentController, NSDocument,
NSWindowController, and NSWindow objects

In simple document-based applications, where every document has just a single window, there may be no need to
implement custom NSWindowController classes. The document architecture, however, allows you to create applications
where there may be different or replicated views of the same data, e.g., a 3D drawing app where different windows
may contain views and controls for wire frame, rendered and points-in-space representations; or a text editor where
two windows might show different parts of the same file. In this variation of MVC, two controller classes work with
together: NSDocument is the data model controller, and NSWindowController is the view controller. Your NSDocument
subclass should manage the data model, and one or more subclasses of NSWindowController manage the windows that
present the data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Drawing and Imaging
The Application Kit has a diverse set of graphics classes. These classes range from NSQuickDrawView, which lets
developers use legacy graphics code based on the QuickDraw APIs in their Cocoa application, to NSOpenGLView, which
provides a way to display OpenGL-based 3D graphics. The focus of this chapter, however, is on the 2D drawing and
imaging classes that provide a high-level interface to Mac OS X's graphics system, Quartz. Table 4-1 enumerates the
classes discussed in this chapter.

Table 4-1. Application Kit drawing and imaging classes
Class Description

NSAffineTransform Defines an interface for creating and applying affine transforms that map points in one coordinate
space to another

NSBezierPath Draws PostScript-style lines and curves that enable the construction of arbitrary paths

NSBitmapImageRep Interprets bitmapped image data, such as those stored as TIFF, BMP, GIF, JPEG, or PNG file types

NSCachedImageRep Stores image data as a cached representation

NSColor Represents a color as an object with support for several color spaces and color calibration

NSCustomImageRep An image representation that allows the client to determine how the image is rendered

NSEPSImageRep An image representation subclass that represents PostScript (EPS) formatted image data

NSGraphicsContext Represents configurations for Quartz's graphics rendering engine and allows the client to
determine how characteristics of graphics objects, such as Bezier paths, are rendered

NSImage Stores and draws an image to screen

NSImageRep Lets NSImage simultaneously represent an image's data in several formats defined by its six
concrete subclasses

NSPDFImageRep Represents image data stored as a PDF

NSPICTImageRep Represents image data in Macintosh PICT format

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 The Role of Quartz
Quartz is the foundation of Cocoa's 2D graphics capabilities. It provides many advanced graphics capabilities, including
color management, path-based drawing, transparency, and anti-aliasing. It uses the same fundamental model of
drawing as Adobe's Portable Document Format (PDF).

Quartz is actually two individual pieces of software in Mac OS X—Quartz Compositor and Quartz 2D. The Quartz
Compositor is the underlying system service responsible for drawing the graphical user interface to screen from sources
such as Quartz 2D, QuickTime, OpenGL, and QuickDraw. Quartz 2D, on the other hand, is an Application Programming
Interface (API) for drawing and manipulating 2D graphics. This chapter concentrates on Quartz 2D's drawing
functionality.

You can access the Quartz 2D API directly through the CoreGraphics framework, but it is far more convenient to use the
Cocoa classes that provide an easy-to-use interface to Quartz, including NSBezierPath, NSView, NSImage, and
NSGraphicsContext. These classes provide the functionality to render paths, text, and images to screen or to the printed
page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 Coordinate Systems
All drawing is performed within an instance of NSView. Each view defines its own coordinate system. By default, the
origin (0, 0) is in the lower-left corner of the view with positive y-values extending up from, and positive x-values
extending to the right of, the origin. Figure 4-1 illustrates this system.

Figure 4-1. View coordinate systems

These coordinates are not tied to any particular output device, but are expressed in terms of points (a unit that is 1/72
of an inch). When Quartz renders graphics, it maps what is drawn in the device-independent coordinate system into the
coordinate system of the device. One point is equivalent to one screen pixel.

As covered in Chapter 3, views are arranged in a nested hierarchy, with subviews contained within a superview. Two
rectangles characterize a view. The size and position of a view within its superview is determined by its frame
rectangle. The bounds rectangle defines the coordinate system within the view itself. By default, the origin of the
bounds rectangle is at (0, 0), and it has the same height and width as the view's frame rectangle. You can access a
view's frame using the methods frame and setFrame:, and access the bounds rectangle with bounds and setBounds:. Figure
4-2 shows how the frame and bounds rectangles are related.

Figure 4-2. The frame and bounds of a view

Resizing the bounds rectangle independently of the frame rectangle lets developers define coordinate systems that are
natural for their application, instead of being forced to work in screen coordinates. Additionally, coordinate systems
within a view may be translated and rotated independent of other coordinate systems.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Graphics Contexts
A graphics context is a low-level component of the drawing system representing a destination for drawing commands
that will be executed and rendered. Instances of the NSGraphicsContext class represent these contexts. The graphics
context also provides an interface to manage graphics states and configure a number of rendering options, such as
anti-aliasing, image interpolation, and various settings for drawing paths such as line width and join styles.

At any time in the execution of an application, a current context defines the graphics context for all graphics operations.
You can obtain this object using the class method currentContext. Multiple graphics contexts are stored on a stack, so
that different parts of an application may configure a context specific to their needs. To push a new context onto the
stack, use the method saveGraphicsState. Contexts lower in the stack are restored by invoking restoreGraphicsState, which
pulls the current context off the stack, making the next lower one current.

You can use a graphics context to determine whether or not the screen is the current drawing destination. This is useful
if you have to handle onscreen and off-screen drawing differently (e.g., to a printer). The isDrawingToScreen method
returns YES if drawing is done onscreen, and NO otherwise. The convenience class method currentContextDrawingToScreen
does the same thing, saving you the step of first invoking currentContext.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.4 Working with Paths
Drawing lines is the most basic function you can perform with Cocoa's drawing classes. The Application Kit encapsulates
the low-level, Quartz path-based drawing API in the NSBezierPath class. Minimally, NSBezierPath lets you draw straight
lines and Bezier paths, and using this functionality, you can construct any shape you like.

Bezier curves, or paths, are curved lines based on the mathematics of third-degree
polynomials. Because Bezier paths are based on equations, they are resolution-
independent and can be scaled to any size without the loss of detail or quality generally
experienced with bitmapped graphics.

Drawing with NSBezierPath is in some respects similar to drawing on a sheet of paper with a pencil. Before you can draw
a line, you have to place the pencil lead at a point on the page. Drawing a line requires moving the pencil from one
point to another. To draw a disjointed line, you pick up the pencil tip from the paper and move it to another location.
You might then complete a diagram by drawing a line back to the first point. These actions are reflected in the following
NSBezierPath methods, used to construct a path:

moveToPoint:

lineToPoint:

curveToPoint:controlPoint1:controlPoint2:

closePath

The arguments to the first three methods are all of type NSPoint, a C structure that encapsulates a coordinate pair.
Example 4-1 shows the struct declaration for NSPoint.

Example 4-1. The NSPoint struct

typedef struct _NSPoint {
 float x;
 float y;
} NSPoint;

At any time, there is a current point. The method moveToPoint: moves the current point to the specified point. The
methods lineToPoint: and curveToPoint: controlPoint1:controlPoint2: both extend a path from the current point.

Bezier curves (a subset of Bezier paths) are defined by two endpoints and two control
points. The line segment connecting an end point to its control point is tangent to the
curve at the end point and defines the path's direction. Figure 4-4, later in this chapter,
shows the lines connecting each endpoint to their associated control point for the curve
that makes up the bottom of the triangle.

Drawing with NSBezierPaths is fundamentally different from drawing with a pencil in that constructing a path is not the
same as drawing a path. You can think of a path as an abstract representation that can be rendered into one, or many,
views. NSBezierPath provides two methods to render a path: stroke, and fill. stroke draws the outline of the path, while the
fill method fills the interior of the path with a color or pattern.

To illustrate this, consider Example 4-2, which draws the image shown in Figure 4-3.

Example 4-2. Code to construct a complex shape using NSBezierPath

// The three vertices of a triangle
NSPoint p1 = NSMakePoint(100, 100);
NSPoint p2 = NSMakePoint(200, 300);
NSPoint p3 = NSMakePoint(300, 100);

// Control points
NSPoint c1 = NSMakePoint(200, 200);
NSPoint c2 = NSMakePoint(200, 0);

// Constructing the path for the triangle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Constructing the path for the triangle
NSBezierPath *bp = [NSBezierPath bezierPath];
[bp moveToPoint:p1];
[bp lineToPoint:p2];
[bp lineToPoint:p3];
[bp curveToPoint:p1 controlPoint1:c1 controlPoint2:c2];
[bp closePath];
[bp stroke];

Figure 4-3. The bold line shows the shape resulting from the path in Example 4-2
(the points are labeled with the variable names from Example 4-2)

For simple drawing, such as constructing rectangles or ellipses, NSBezierPath has two methods: bezierPathWithRect: and
bezierPathWithOvalInRect:. Both methods take an NSRect as an argument. In the first method, the NSRect defines the
constructed rectangle. In the second method, the specified rectangle determines the boundary of the ellipse. In addition
to these two constructors, appendBezierPathWithOvalInRect: and appendBezierPathWithRect: add an ellipse or rectangle to an
existing path.

You can also construct arcs with the following three methods:

appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:clockwise:

appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:

appendBezierPathWithArcFromPoint:toPoint:radius:

These methods measure angles in degrees. The first draws an arc centered at the specified center point with a given
radius. The arc extends from startAngle: to endAngle:, clockwise or counterclockwise, depending on the value of the
clockwise argument. The second method is a wrapper around the first, where clockwise: is NO.

The third method, appendBezierPathWithArcFromPoint:toPoint:radius:, draws an arc from a circle that is inscribed within the
angle specified by the current point in a path and the two points specified in the method. The parameter radius: specifies
the radius of the circle used to build the arc. This method is more complicated than the other two, so it is illustrated by
example. Example 4-3 shows the code used to build the path in Figure 4-4, shown with a bold line.

Example 4-3. Drawing arcs

NSPoint p0 = NSMakePoint(100, 100);
NSPoint p1 = NSMakePoint(100, 250);
NSPoint p2 = NSMakePoint(200, 250);

path = [NSBezierPath bezierPath];
[path moveToPoint:p0];
[path appendBezierPathWithArcFromPoint:p1 toPoint:p2 radius:50];
[path stroke];

Figure 4-4. The bold line represents the path constructed in Example 4-3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4. The bold line represents the path constructed in Example 4-3

4.4.1 Drawing to Views

To draw in a given view, you must first lock focus on the view by sending it a lockFocus message. Quartz interprets all
subsequent drawing commands in the context of that view. Once the drawing is done, balance the lockFocus with a
matching unlockFocus to the same view.

Custom drawing is implemented in a subclass of NSView. When subclassing NSView, all drawing code is called from an
overridden drawRect: method. This method of NSView does nothing by default, but the NSView graphics system is set up
to automatically invoke this method at the appropriate times.

While drawRect: does the drawing work, it should never be invoked directly. Instead, to force an immediate redraw of a
view, you can send a display message to the view. This causes the receiver to lock its focus, invoke drawRect:, and then
unlock its focus before returning control to the caller. To this end, display is functionally similar to the implementation
shown in Example 4-4.

Example 4-4. Functional implementation of NSView's display

- (void)display
{
 [self lockFocus];
 [self drawRect:[self bounds]];
 [self unlockFocus];
}

However, display is still not the interface you usually use to tell a view to redraw its contents. A better method of
redrawing tells the view that the contents have changed and lets the view redraw itself the next time through the run
loop. You do this by sending the view a setNeedsDisplay: message, with the argument YES to indicate that the view
should invoke display in the next run loop pass. If you want to cancel a drawing request, invoke this method passing NO.
This allows Quartz to decide the proper time to redraw the contents of a view.

In some circumstances it may be more efficient still to send the view a setNeedsDisplayInRect: message, where the
argument is a "dirty" area that needs to be updated. The display system can then determine what rectangle to pass as
the argument to a view's drawRect:. In your drawing code, you then ensure that you only update parts of the view that
need to be refreshed. Other methods used to cause view updates include:

- (void)displayIfNeeded;
- (void)displayIfNeededIgnoringOpacity;
- (void)displayRect:(NSRect)rect;
- (void)displayIfNeededInRect:(NSRect)rect;
- (void)displayRectIgnoringOpacity:(NSRect)rect;
- (void)displayIfNeededInRectIgnoringOpacity:(NSRect)rect;

4.4.2 Line Attributes

NSBezierPath lets you change several path-rendering options, such as the line thickness, join style, dash count, miter
limit, cap style, and winding rules. You can change a path's attributes with a class method or an instance method. The
instance method changes the attributes of only the receiving instance, while the class method changes the default
attribute for all instances in the graphics context.

For example, to change the width of a line, use either setLineWidth: or setDefaultLineWidth:. The first changes the line
width of the instance to which you send that particular method, while the second class method sets the line width in the
graphics context that applies to subsequent renderings of any instance of NSBezierPath.

NSBezierPath provides methods for changing the following attributes:

Line width

Path flatness

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Path flatness

Line dashes and phase

Line cap style

Line join style

Miter limit

Winding rule

You can change any of these attributes for a single instance or for the graphics context, as shown earlier.

4.4.2.1 Path flatness

Flatness is one attribute that can be set for a curve. A path's flatness indicates to the rendering engine how accurately it
should reproduce the curve; that is, the flatness is a metric of the curve's granularity or resolution as it is rendered. A
higher flatness value corresponds to a rougher curve, which can be rendered more quickly; a lower value corresponds
to a smoother curve, which comes at the expense of rendering time. Figure 4-5 shows a curve that is stroked with the
default flatness of 0.6, and again with a larger flatness of 100 using a thicker line. Example 4-5 shows the code you
need to change the flatness.

Example 4-5. Changing the flatness of a Bezier path

- (void)drawRect:(NSRect)aRect
{
 NSBezierPath *path = [NSBezierPath bezierPath];

 [path moveToPoint:NSMakePoint(0, 200)];
 [path curveToPoint:NSMakePoint(500, 200)
 controlPoint1:NSMakePoint(500, 800)
 controlPoint2:NSMakePoint(0, -400)];

 [path setFlatness:100];
 [path stroke];
}

Figure 4-5. The thinner, smooth curve has a default flatness of 0.6; the thicker
curve has a flatness of 100

How jagged a curve appears depends on the flatness and the absolute size of the curve.
Endpoints of the curve in Figure 4-5 are 500 pixels apart; if the absolute size of the curve
were 10 times as large, a flatness of 100 would create less dramatic jaggedness.

Related to setting the flatness of a rendered curve is the method bezierPathByFlatteningPath. This method returns a Bezier
path that represents the receiver with all curves approximated as a series of straight lines similar to how changing the
flatness renders the curve.

4.4.2.2 Line dashes and phase

The method setLineDash:count:phase: takes three parameters to define a dash pattern for a stroked Bezier path. The first
argument is a C array of floats that specifies the lengths of alternating stroked and unstroked segments. The second

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

argument is a C array of floats that specifies the lengths of alternating stroked and unstroked segments. The second
argument indicates the number of elements in the dash pattern array. The final argument indicates where in the dash
pattern drawing begins. Consider the three dash patterns in Example 4-6 and the resulting lines in Figure 4-6.

Example 4-6. The code used to generate three dashed lines

float pattern1[2] = {50.0, 25.0};
float pattern2[3] = {50.0, 25.0, 75.0};

// The top line in Figure 4-6
[aPath setLineDash:pattern1 count:2 phase:0];

// The middle line in Figure 4-6
[aPath setLineDash:pattern2 count:3 phase:0];

// Bottom line in Figure 4-6
[aPath setLineDash:pattern1 count:2 phase:25];

Figure 4-6. Line dash patterns: each line is 400 points long with a line thickness of
10 points

4.4.2.3 Line cap style

You can render Bezier paths with several line cap styles, which are set using either setLineCapStyle: or
setDefaultLineCapStyle:. The line cap style NSButtLineCapStyle makes the ends of the rendered line flush with the end of the
path. NSRoundLineCapStyle renders the line with a radius equal to half the thickness of the line, centered at the end of the
path. Finally, NSSquareLineCapStyle extends the line past the end of the path by a length equal to half of the line width.
The default line cap style is NSButtLineCapStyle. Figure 4-7 shows various line cap styles on a path that is 200 pixels long
and a width of 30 pixels; the white line indicates the path to highlight the position of the endpoints (which is critical
when discussing the differences between NSButtLineCapStyle and NSSquareLineCapStyle).

Figure 4-7. Line cap styles

4.4.2.4 Line join styles

Another property of Bezier paths is the way lines are joined. You can set this property for path objects with
setLineJoinStyle:, or set it for the graphics context with setDefaultLineJoinStyle:. The default line join style is
NSMiterLineJoinStyle, in which the outside edges of the lines are extended to a sharp point. You can also create rounded
and beveled line join styles using the constants NSRoundLineJoinStyle and NSBevelLineJoinStyle. Figure 4-8 shows examples
of the three lines join styles.

Figure 4-8. From left to right: NSMiterLineJoinStyle, NSRoundLineJoinStyle, and
NSBevelLineJoinStyle

4.4.2.5 Miter limit

Miter join styles have a special problem: the join appears as a spike when the angle between the two joined lines is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Miter join styles have a special problem: the join appears as a spike when the angle between the two joined lines is
extraordinarily acute (since the join is rendered by extending the outer line edges outward until they meet). To prevent
this problem, the graphics context has a miter limit that defines a threshold for how small an angle can be before the
line join style is changed to a bevel joint. The miter limit is the ratio of the miter length (the diagonal length of the
miter extension) to the line width; by default, this is value is 10. To alter this value, use NSBezierPath's class method
setDefaultMiterLimit:, or the instance method setMiterLimit:.

Figure 4-9 illustrates a small-angle joint. The joint with the miter join style is drawn with the default miter limit of 10,
while the miter limit that produces the bevel joint is reduced to 6. In each example, the line thickness is 20 and the
angle between the two lines is about 9.5 degrees.

Figure 4-9. The effect of the miter limit

4.4.2.6 Winding rule

When filling a path, there is another graphics context characteristic to consider: the winding rule. For simple paths such
as rectangles and circles, the region that should be filled is unambiguous. However, for complex paths, such as a star
with many intersecting line segments, the area that should be filled is less clear. Thus, winding rules are used to
determine which regions of a complex intersecting path should be filled.

The two winding rules are non-zero (the default) and even-odd. The even-odd winding rule works by taking a test point
within the region and counting the number of times a ray extending from that point crosses the path. If the number of
crossings is odd, then the point is considered "inside" the shape, and its region will be filled. If the number of crossing is
even, then the point is considered "outside" the shape, and its enclosing region is not filled.

The non-zero winding rule counts crossings based on the direction of the crossed path. A ray extending from the test
point increments its crossing count when it crosses a left-to-right path; it decrements its crossing count when crossing a
right-to-left path. If the number of crossings is 1, then the point is "inside;" if the number of crossings is zero, then the
point is "outside." Figure 4-10 shows an example of these two winding rules at work.

Figure 4-10. Stars illustrating (from left) the path with no fill, the default non-zero
winding rule, and the even-odd winding rule

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.5 Drawing Text
For many applications that use text, AppKit's NSTextField or NSTextView classes are sufficient. However, when you need
to draw text as part of some custom graphics, you may want to use Cocoa's string drawing functionality, provided by
AppKit's extensions to the NSString and NSAttributedString.

The Application Kit adds three methods to the NSString class—drawAtPoint: withAttributes:, drawInRect:withAttributes:, and
sizeWithAttributes:—that let you draw strings in views easily. The string being drawn is placed in the view to locate the
upper-left corner of its bounding box at the point specified in drawAtPoint:withAttributes:. When using
drawInRect:withAttributes:, the text is drawn within the rectangle. If the bounding box of the string is larger than the
rectangle, then the string is clipped.

4.5.1 Attributed strings

Attributes are associated with a string by the Foundation class NSAttributedString. Table 4-2 enumerates these attributes.

Table 4-2. Standard Cocoa attributes for NSAttributedString
Attribute identifier Type Default value

NSAttachmentAttributeName NSTextAttachment No default

NSBackgroundColorAttributeName NSColor No default

NSBaselineOffsetAttributeName NSNumber 0.0

NSFontAttributeName NSFont Helvetica 12 points

NSForegroundColorAttributeName NSColor Black

NSKernAttributeName NSNumber 0.0

NSLigatureAttributeName NSNumber 1

NSLinkAttributeName id No default

NSParagraphAttributeName NSParagraphStyle [NSParagraphStyle
defaultParagraphStyle]

NSSuperscriptAttributeName NSNumber 0

NSUnderlineStyleAttributeName NSNumber 0

To create an attributed string, initialize the string with text and assigning to it any of the attributes listed in Table 4-2.
Any combination of attributes may be assigned to any subset of characters. For example, the first half of an attributed
string might use Lucida Grande with 12-point type, while the second half could use 24-point Tengwar.

Once you have set up the attributes of the string satisfactorily, the string can be drawn in the currently focused view by
sending it either a drawAtPoint: or drawInRect: message. These methods are AppKit extensions to NSAttributedString. These
methods work in the same way as the NSString extensions discussed previously. You can also determine the size of the
bounding box by sending a size message to the attributed string.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.6 Working with Color
Colors in the Application Kit are represented by instances of the NSColor class, which provides an interface for creating
colors and setting the color used by the current graphics context. AppKit supports several color spaces that fall into
three categories:

Device-dependent

Color spaces support colors that may appear differently on different devices (such as a color printer or
monitor).

Device-independent

Colors are calibrated so they appear the same on any output device.

Named

Color spaces represent colors that don't correspond to numerical values, but are referenced in a catalogue of
named colors.

The six color spaces supported by the Application Kit are based on these three categories, as detailed in Table 4-3.

Table 4-3. Color spaces supported by the Application Kit
Color space name Description

NSDeviceCMYKColorSpace Cyan, magenta, yellow, black, and alpha components

NSDeviceRGBColorSpace Red, green, blue, and alpha components; or hue, saturation, brightness, and alpha
components

NSCalibratedRGBColorSpace Red, green, blue, and alpha components; or hue, saturation, brightness, and alpha
components

NSDeviceWhiteColorSpace White and alpha components (grayscale)

NSCalibratedWhiteColorSpace White and alpha components (grayscale)

NSNamedColorSpace Catalog name and color name components

The color spaces that are NSDevice... are device-dependent color spaces, while those that are NSCalibrated... color spaces
are device-independent. Table 4-3 lists constant names defined by AppKit to identify color spaces in code.

To create an instance of NSColor, use any colorWith... class method that takes component values for the color spaces
indicated by the method name, such as colorWithCalibratedRed:green:blue:alpha. The parameters passed to these methods
as component values are floats ranging between 0 and 1. Values that fall below 0 are interpreted as black, and those
above 1 are interpreted as the pure color. Several class methods are also named after colors, such as redColor and
blueColor. These methods return an instance of NSColor whose components are set for the specified color and whose
color space is NSCalibratedRGBColorSpace.

Example 4-7 shows different ways to create color objects.

Example 4-7. Various ways to create color objects

NSColor *c;

// Apple-menu blue in RGB colorspaces
c = [NSColor colorWithCalibratedRed:0.243 green:0.505
 blue:0.863 alpha:1.0];

// Same color in CMYK colorspace
c = [NSColor colorWithDeviceCyan:0.76 magenta:0.50
yellow:0.14 black:0.0 alpha:1.0];

NSColor's set method sets the receiver as the current graphics context's color. All subsequent drawing is done in the
color that was last set. By default, all drawing is done in black. Example 4-8 demonstrates how this is done in a
drawRect: method.

Example 4-8. Setting the color of a graphics context and rendering a path

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 4-8. Setting the color of a graphics context and rendering a path

- (void)drawRect:(NSRect)rect
{
 // Construct path

 [[NSColor greyColor] set];
 [bp fill];

 [[NSColor blackColor] set];
 [bp stroke];
}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.7 Working with Images
NSImage and NSImageRep are Cocoa's image-handling workhorses. NSImage provides a convenient and easy-to-use
frontend to a powerful and flexible backend comprised of NSImageRep's many subclasses. NSImage provides a high level
interface for loading, saving, and drawing images onscreen. NSImageRep and its subclasses, on the other hand, provide
interfaces for working with specific image formats.

4.7.1 NSImage

NSImage provides the high-level interface for working with images, which includes the ability to load and save images
and draw them to screen. With NSImage, you don't need to worry about image formats, which are handled internally by
NSImage and the NSImageRep set of classes. To initialize instances of NSImage use these methods:

initByReferencingFile:

initByReferencingURL:

initWithContentsOfFile:

initWithContentsOfURL:

initWithData:

initWithPasteboard:

initWithSize:

When you initialize anything by reference, as with the first two methods, the data is not loaded until the object actually
needs it. This contrasts with initWithContents..., which loads the data and initializes the object immediately. The last
method, initWithSize:, initializes an empty image.

imageNamed: is a useful method for creating image objects with images contained in the application bundle. With this
method, you don't have to provide a path to the file or include the file extension in the name—NSImage knows where to
find it within the bundle.

NSImageView
NSImageView is a subclass of NSControl, and as such, is related to the interface as a control, rather than to
graphics, as its name suggests. NSImageView is a small extension to NSControl that lets you display an
image. You can set various attributes, such as how the image should scale to fit in the view (i.e., no
scaling, proportionally, or stretched) or how it should be aligned in the view (left, right, center, etc.). One
of NSImageView's most useful features is its ability to be dragging source and destination; that is, you can
drag the image from the view to some other application or document, and when properly implemented,
you can drag an image to be displayed in the view.

4.7.1.1 Compositing

You can also use NSImage to composite images to the screen through Quartz. Earlier in the chapter, we saw that all
drawing had to be done within the locked focus of an NSView. Like NSView, NSImage interacts directly with Quartz to
accomplish drawing. Compositing combines a source image, your NSImage object, with a destination image, the existing
image displayed on the screen, according to a given operation. Table 4-4 lists the various compositing operations.

Table 4-4. Compositing operations and constants
Operation Effect on destination image

NSCompositeClear Makes the destination transparent.

NSCompositeCopy Copies the source image over to the destination image.

NSCompositeDestinationAtop
Draws the destination image wherever both the source and destination images are
opaque, and shows the source image wherever the source image is opaque and
destination image is transparent. If the overlapping regions of both images are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSCompositeDestinationAtop destination image is transparent. If the overlapping regions of both images are
transparent, the composited image is transparent.

NSCompositeDestinationIn Draws the destination image where overlapping regions of both images are opaque, and is
transparent everywhere else.

NSCompositeDestinationOut Draws the destination image wherever it is opaque but the source image is transparent,
and transparent elsewhere.

NSCompositeDestinationOver Draws the destination image wherever it is opaque, and draws the source image
elsewhere.

NSCompositePlusDarker Draws the sum of the destination and source images, with summed color values
approaching 0 (black).

NSCompositePlusLighter Draws the sum of source and destination images with summed color values approaching 1
(white).

NSCompositeSourceAtop
Draws the source image wherever both images are opaque, draws destination image
wherever destination image is opaque but source is transparent, and transparent
elsewhere.

NSCompositeSourceIn Draws the source image wherever both images are opaque, and transparent elsewhere.

NSCompositeSourceOut Draws the source image wherever it is opaque but the destination is transparent, and
draws transparent elsewhere.

NSCompositeSourceOver Draws the source image wherever it is opaque, and destination elsewhere.

NSCompositeXOR Draws the exclusive OR of the source and destination image. Works only with black and
white images and is thus not recommended for use in color contexts.

The Developer Tools installation includes several sample applications that demonstrate various aspects of the available
frameworks. CompositeLab, found in /Developer/Examples/AppKit/CompositeLab, lets you combine two images with
any of the compositing operations listed in Table 4-4; the result is immediate, and you can easily experiment with
NSImage compositing. The source code is also available, so you can see how it's implemented. Figure 4-11 shows
CompositeLab in action.

Figure 4-11. The CompositeLab demo application

You can composite an NSImage to screen with any of the following methods:

compositeToPoint:operation:

compositeToPoint:fromRect:operation:

compositeToPoint:fromRect:operation:fraction:

compositeToPoint:operation:fraction:

In each method, the operation: argument is one of the constants given in Table 4-4. The first argument,
compositeToPoint:, is an NSPoint structure indicating where the origin of the image should be placed in the coordinate
system of the view whose focus is currently locked; the origin is the lower-left corner of the image. By using a method
with a fromRect: parameter, you can specify a cropped portion of the source image to be composited to the point.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with a fromRect: parameter, you can specify a cropped portion of the source image to be composited to the point.
Finally, the fraction: parameter seen in the last two methods in the list indicates the degree of blending that should occur
between the source image and the destination image. This parameter is useful, for example, in an application in which
you need to cross-fade between two images, as is often seen in Aqua. The following two methods are also useful for
this task:

(void)dissolveToPoint:fraction:

(void)dissolveToPoint:fromRect:fraction:

You can also use the following two methods to draw an image:

drawAtPoint:fromRect:operation:fraction:

drawInRect:fromRect:operation:fraction:

These methods differ from the compositing methods because they consider the rotation and scaling of the destination
coordinate system, drawing the image with the appropriate scaling and rotation applied. The fromRect:, operation:, and
fraction: parameters behave as compositing methods.

Example 4-9 demonstrates how to create an NSImage and composite it to a point on screen using the NSCompositeCopy
operation.

Example 4-9. Using NSImage

// Use a named image
NSImage *image = [NSImage imageNamed:@"buttonImage"];
[image compositeToPoint:NSZeroPoint operation:NSCompositeCopy];

4.7.1.2 Drawing into an image

Compositing an image is considerably faster than rendering a Bezier path or drawing text. Many graphics are static,
which means that you don't have to necessarily reconstruct and render a path every time a view is redrawn.
Applications can take advantage of the capability to make an instance of NSImage a drawing destination (rather than a
view). You can draw a path to an image, and then composite this image to the view. The advantage is that the path
need only be rendered once, since redrawing the view involves compositing only the image containing the rendered
path. Example 4-10 shows how to accomplish this.

Example 4-10. Drawing to an image

NSImage *image = [[NSImage alloc] initWithSize:NSMakeSize(400, 400)];

// Lock focus of image, make it a destination for drawing
[image lockFocus];

// Set background color to white
[[NSColor whiteColor] set];
NSRectFill(NSMakeRect(0, 0, 400, 400)));

// Construct and draw path as you would in drawRect:
[self drawMyPath];
[image unlockFocus];

// Now draw in a view by compositing
[image compositeToPoint:NSZeroPoint operation:NSCompositeCopy];

4.7.2 NSImageRep

The relationship between NSImage and NSImageRep in the Application Kit is powerful and has important architectural
ramifications. NSImage provides a high-level interface to Cocoa's image manipulation capabilities by defining
functionality that is independent of the image's data format. This functionality includes drawing and compositing, which
was discussed previously, as well as tasks such as loading and saving image data (which may seem to depend on the
data's format, but is implemented in a way that hides the details from clients) and setting/getting attributes of the
image such as its display size.

A browse through NSImage's methods reveals that many are used to manage image representations. Image
representations are instance of subclasses of NSImageRep; they are bridges between the high-level abstraction of
NSImage and the image's data-dependent representation. That is, NSImageRep and its subclasses let NSImage work with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSImage and the image's data-dependent representation. That is, NSImageRep and its subclasses let NSImage work with
multiple formats of data, ranging from EPS and PDF formats to the most prevalent bitmapped image data formats.

AppKit provides six subclasses of NSImageRep; they were described in Table 4-1, and are listed again as follows:

NSPDFImageRep

NSEPSImageRep

NSPictImageRep

NSCachedImageRep

NSCustomImageRep

NSBitmapImageRep

A key feature in the NSImage/NSImageRep relationship is that NSImage usually stores and uses multiple instances of
NSImageRep. Some image representations, such as NSEPSImageRep or NSPDFImageRep, are well suited for printing, while
others are better suited for onscreen display. For example, it might be best for a bitmap image representation to
display an image to a full-color screen, while an EPS image representation would be better suited for output to a
PostScript printer due to the ability of EPS to reproduce high resolution graphics.

By keeping multiple image representations handy, a single instance of NSImage can adapt to a variety of display
situations, including the ability to adapt to various color depths and output resolutions.

NSImageRep provides a base implementation for image representations that lets you determine many image properties,
such as the number of bits in each pixel sample, whether or not the image has an alpha (transparency) channel, the
size of the image in pixels, and the name of the color space for the image. Equivalent methods set these image
representation properties.

With NSImageRep, you can also draw the image to a view as you can in NSImage by using the draw, drawAtPoint:, and
drawInRect: in NSImageRep methods. Most importantly, several class methods let you create an image rep instance from
various data sources, such as a file, URL, an NSData object, and even the pasteboard.

Two categories of class methods create new image representations. The methods that begin with imageRep... return an
image rep object that most appropriately represents the given data. They are:

imageRepWithContentsOfFile:

imageRepWithPasteboard:

imageRepWithContentsOfURL:

Another set of these convenience constructors include:

imageRepsWithContentsOfFile:

imageRepsWithPasteboard:

imageRepsWithContentsOfURL:

These methods return an array of NSImageRep objects that are initialized with data from the specified source.

Also of note are the set of class methods that include:

imageRepClassForData:

imageRepClassForFileType:

imageRepClassForPasteboardType:

These methods return the class object for the NSImageRep subclass that best represents the given data.

NSImage provides several methods that manage image representations used by the image object. The methods,
addRepresentation: and addRepresentations:, are add image representations to an image. The first takes a single
NSImageRep, and the second takes an array of NSImageRep instances. You can find the representations managed by an
image by invoking the method representations and remove a representation by using removeRepresentation:.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7.3 NSBitmapImageRep

Bitmapped graphics are the types of images you will probably use most. The NSBitmapImageRep class recognizes the
following image file formats:

TIFF

BMP

JPEG

PNG

Raw image data

Like its parent class, NSBitmapImageRep includes methods that initialize an instance from existing data. To create an
empty image data buffer from scratch that creates new images, use the method shown in Example 4-11.

Example 4-11. Creating an empty image data buffer

- (id)initWithBitmapDataPlanes:(unsigned char **)planes
 pixelsWide:(int)width
 pixelsHigh:(int)height
 bitsPerSample:(int)bps
 samplesPerPixel:(int)spp
 hasAlpha:(BOOL)alpha
 isPlanar:(BOOL)isPlanar
 colorSpaceName:(NSString *)colorSpaceName
 bytesPerRow:(int)rowBytes
 bitsPerPixel:(int)pixelBits

With over 125 characters in the method name, this is the longest public method name in
Cocoa.

You can use the method shown in Example 4-11 to initialize a new blank instance of NSBitmapImageRep with the given
properties. Then use either bitmapData or getBitmapDataPlanes: (which one you use depends on whether you passed YES
or NO as the isPlanar: argument) to access the data buffers where the actual image data is stored, to give you the
means to manipulate bitmap images byte-by-byte. The former returns a pointer of type unsigned char *, and the latter
takes an unsigned char ** pointer, which is set to the beginning of the planar (2D) image data. Example 4-12 shows how
to manipulate an image's data to invert the image's colors.

Example 4-12. Manipulating an image's data on a byte level

// srcImageRep is the NSBitmapImageRep of the source image
int n = [srcImageRep bitsPerPixel] / 8; // Bytes per pixel
int w = [srcImageRep pixelsWide];
int h = [srcImageRep pixelsHigh];
int rowBytes = [srcImageRep bytesPerRow];
int i;

NSImage *destImage = [[NSImage alloc] initWithSize:NSMakeSize(w, h)];
NSBitmapImageRep *destImageRep = [[[NSBitmapImageRep alloc]
 initWithBitmapDataPlanes:NULL
 pixelsWide:w
 pixelsHigh:h
 bitsPerSample:8
 samplesPerPixel:n
 hasAlpha:[srcImageRep hasAlpha]
 isPlanar:NO
 colorSpaceName:[srcImageRep colorSpaceName]
 bytesPerRow:rowBytes
 bitsPerPixel:NULL] autorelease];

unsigned char *srcData = [srcImageRep bitmapData];
unsigned char *destData = [destImageRep bitmapData];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for (i = 0; i < rowBytes * h; i++)
 *(destData + i) = 255 - *(srcData + i);

[destImage addRepresentation:destImageRep];

This example works by first creating a new instance of NSBitmapImageRep with the properties you want out of the image.
Since the properties will be the same as the source image, use several NSBitmapImageRep methods to determine those
properties and use them in the initialization of destImageRep. Next, in the for-statement, use C pointer arithmetic to
traverse the buffers obtained immediately before the for-loop, and do the math necessary to invert the image. In this
case, subtract the value of each source pixel from 255 and store the result as the value of the destination pixel. Finally,
finish things off by adding NSBitmapImageRep's destImageRep to NSImage's destImage. This is a common paradigm for
working with bitmap image data in which only the algorithms limit you to operating on the image data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.8 Transformations
NSAffineTransform provides an interface for defining and applying affine transforms to various parts of the graphics
system, such as view coordinate systems, individual Bezier paths or NSPoints. An affine transform is a type of mapping
between coordinate systems in which a shape's parallel lines are preserved, but not necessarily the length of line
segments or the angles between lines. Out-of-the-box, NSAffineTransform is capable of rotating, translating, and scaling.

To create an affine transform, use the transform convenience constructor. The following example shows how you can
create an affine transform object and make a rotation transformation:

NSAffineTransform * at = [NSAffineTransform transform];
[at rotateByDegrees:77];

To transform a Bezier path using this affine transform object, invoke transformBezierPath:

NSBezierPath *newPath = [at transformBezierPath:bp];

This method takes the Bezier path to transform as a parameter and returns a new Bezier path that is the
transformation of the original. Using a method of NSBezierPath, you can transform a path directly without having a new
object returned. The method is transformUsingAffineTransform:, and is used in the following way:

[bp transformUsingAffineTransform:rat];

Here is how you transform an NSPoint structure:

at = [NSAffineTransform transform];
[at translateXBy:100 yBy:50];
NSPoint point = NSMakePoint(0, 0);
NSPoint newPoint = [at transformPoint:point];

To transform an NSSize, do the following:

at = [NSAffineTransform transform];
[at scaleXBy:0.5 yBy:1.5];
NSSize size = NSMakeSize(100, 100);
NSSize newSize = [at transforSize:size];

The beginning of this chapter discussed graphics contexts and how they control drawing destination properties. One of
these properties is a global transformation matrix that is the concatenation of all scaling, translation, and rotation
applied by windows and views between and including the screen and the current view.

NSAffineTransform implements two methods that let you alter the graphic context's transformation matrix: set and concat.
The first, set, lets you replace the current context's transformation matrix. This is usually not a good idea, since the
replacement destroys all information about transformations between windows and views. The other, concat, appends the
transformation represented by the receiver to the current context's transformation. All drawing operations subsequent
to the invocation of either method have the new transformation applied. Be sure to save the current context before
using these methods, and restore that context whenever you complete a drawing operation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Text Handling
Cocoa's text system contains a rich set of features such as text input, layout, display, editing, copying and pasting, and
font management. It also includes support for advanced typesetting features such as kerning and ligature, multilingual
support with Unicode, and sophisticated layout capabilities.

This chapter discusses the primary classes of Cocoa's text handling system and how they relate to one another. Figure
5-1 shows the hierarchy of classes related to the text system.

Figure 5-1. Hierarchy of text system class

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 Text System Architecture
The following four classes make up the core architecture of Cocoa's text handling system:

NSTextStorage is the backbone data model responsible for storing text.

NSTextView is responsible for presentation in the view.

NSLayoutManager and NSTextContainer act as controllers between the model and the view.

The relationship between these core classes is based on the same Model-View-Controller (MVC) pattern used
throughout the Application Kit (and discussed in Chapter 3). Figure 5-2 shows the division of responsibilities in these
four classes using the MVC pattern.

Figure 5-2. How the four core text system classes relate to one another in the MVC
pattern

Figure 5-2 shows the relationship between the four classes, but doesn't show the one-to-many relationship that may
exist between instances of these classes. Instances of NSTextStorage own and manage one or more NSLayoutManager
objects. Similarly, each instance of NSLayoutManager owns one or more NSTextContainer objects, while each text container
object is paired with an NSTextView object. The nature of these relationships is what gives Cocoa's text handling system
much of its flexibility and power.

5.1.1 NSTextView

NSTextView represents the view, or presentation, layer of the text system; it is the class that facilitates user interaction
with the text system. User interaction consists of displaying text onscreen and allowing the user to manipulate what is
seen in the text view. NSTextView is a subclass of NSText, which inherits from NSView, which means that text rendering is
handled by Quartz. NSTextView provides support for more advanced interactivity features such as drag and drop, rulers,
spell checking, cut-and-paste, and speech. It is not only the frontend to the text system, but it is an interface between
the text system and almost every relevant Mac OS X technology.

You can create instances of NSTextView within Interface Builder or by using one of two methods:

initWithFrame:

This method creates the entire network of objects, including the text storage object, layout manager, and text
container. When you create a text view within Interface Builder, the entire collection of text system objects is
set up in this way.

initWithFrame:textContainer:

This method sets the text-view frame and associates the text view with the specified text container. This
method is the designated initializer for NSTextView.

5.1.2 NSTextStorage

NSTextStorage makes up the data storage layer for the text system. NSTextStorage's data is stored as a sequence of
Unicode characters, which makes the text system capable of localizing an application in any language. Unicode also
contains character sets for mathematics and other technical fields. To see the huge number of characters that Unicode
can represent,[1] launch Mac OS X's Character Palette from the Input menu, as shown in Figure 5-3.

[1] You can find out more information about Unicode, including the characters that can be represented, at
http://www.unicode.org.

Figure 5-3. A tiny selection of Unicode characters in the Character Palette

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-3. A tiny selection of Unicode characters in the Character Palette

NSTextStorage is a subclass of NSMutableAttributedString. Every character in the text storage, therefore, is associated with a
set of attributes that define appearance characteristics such as font and color (a single attributes dictionary will
probably be applicable to a range of characters, but it might have a different set of attributes for each character). Cocoa
defines a standard set of attributes, which were enumerated in Table 4-2. Additionally, developers may choose to
assign their own application specific attributes to text, which could support features such as syntax coloring.

As mentioned earlier, NSTextView contains action methods that let controls change the appearance and layout of a
selected region of text. These action methods let controls in the user interface (such as a bold-italic-underline button
group, or the font and color panels) interact with the contents of the text view. However, using NSTextView's API to
effect these attribute changes programmatically is inefficient since those methods are intended for use as user interface
actions; it is preferable to use the API provided by NSMutableAttributedString. For example, the method setAttributes:range:
takes a dictionary with attribute key-value pairs and a range to which these attributes should be applied. Chapter 2
discusses attributed strings in more detail.

5.1.3 NSLayoutManager

The job of NSLayoutManager is to accurately map characters and glyphs and lay out the resulting glyphs in text
containers managed by the layout manager. Figure 5-4 shows a ligature for "Th" in the font Snell Roundhand and
illustrates the mapping of characters into glyphs.

Figure 5-4. Mapping Unicode character codes into glyphs

The distinction between characters and glyphs is important, as it represents the intersection between the text-system's
data and view layers. Glyphs, unlike Unicode character codes, can take on many forms, the visual appearance of which
depends on the attributes of a particular character such as its font, the other characters around that character, and how
ligatures are handled in the font being rendered. For example, the glyph for the letter "T" in the Times font is quite
different for the glyph the Zapfino font defines for the same letter. Moreover, multiple characters in a sequence may
actually define a single glyph. This is especially true in nonwestern alphabets and in fonts that define ligatures for
certain pairs of letters.

You can find an extreme case of a multi-character glyph in the Zapfino font. Open a
TextEdit window, change the active font to Zapfino, and then type the font's name. You'll
see multiple glyph substitutions as you type the word, culminating in the use of a single
glyph for the entire word—Zapfino's signature.

The flow of information with NSLayoutManager goes in two directions. You just read about the flow from the data model

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The flow of information with NSLayoutManager goes in two directions. You just read about the flow from the data model
to the view; however, experience shows that information must flow from the view to the data layer whenever you alter
the content by typing, making selections, or changing formatting. To facilitate this, NSLayoutManager must be able
reconcile the position of selections and the cursor in the glyph stream with character ranges in the storage layer.

The NSLayoutManager class has nearly 100 instance methods. Most of these methods are responsible for mapping
characters to glyphs, setting attributes of glyphs, and controlling how they are laid out in the view. The API discussed
here are the methods that control the text containers that define where text is laid out.

5.1.4 NSTextContainer

NSTextContainer defines regions for text display. NSTextContainer's default implementation defines rectangular text
regions. However, developers may subclass NSTextContainer to provide an implementation that supports irregular
layouts. For example, you could subclass NSTextContainer to support text layout on circular pages instead of rectangular
—strange, but true.

Layout managers store text containers in an indexed array—the order of the text containers in the array is significant,
as it determines the order in which the layout manager fills the containers with text. When the first container is filled
with text, the layout manager moves to the next, and continues with the remaining containers.

5.1.5 How Text Is Laid Out

When laying out text, NSLayoutManager first converts a run of characters into a mapped sequence of glyphs. Once the
layout manager knows exactly what needs to be laid out within a text container, it can check with the text container
object for guidance in this layout. To do this, NSLayoutManager determines the bounding rectangle of the line of glyphs
and passes it to the current text container as a proposed layout rectangle. The text container looks at this proposed
rectangle and compares it to its own bounding rectangle. For example, if the proposed rectangle is too long, the text
container returns the largest available rectangle for the current line in the text container to the layout manager.
Additionally, the text container returns a remainder rectangle, which is the difference between the proposed rectangle
and the accepted rectangle. NSLayoutManager repeats the proposal process with the remainder rectangle, and each
successive remainder rectangle until the layout is complete.

When determining how to modify the proposed rectangle, NSTextContainer takes into account the direction in which the
glyphs are sequenced in a line, and the direction lines are placed relative to their preceding lines. These directions are
referred to as the line sweep direction and line movement direction, respectively. When a text container modifies the
proposed rectangle, the text container can shorten the rectangle from the direction of the line sweep, and it is allowed
to shift the rectangle in the direction of the line movement. By adhering to these rules, NSTextContainer and
NSLayoutManager can break up a continuous line of glyphs into an arranged set of lines that can be rendered in a view.
There is a clear division of responsibility here:

NSLayoutManager is responsible for mapping the characters to glyphs with all the attributes applied.

NSTextContainer is used by the layout manager to break up the glyph line into a series of lines that fit snugly into
the region represented by the text container.

The method in NSTextContainer that performs these functions is:

lineFragmentRectForProposedRect:sweepDirection:
 movementDirection:remainingRect:

The sweepDirection: argument is of type NSLineSweepDirection, and the movementDirection: argument is of type
NSLineMovementDirection. NSTextContainer returns the remainder rectangle to the sender through the remainingRect:
argument, which is a pointer to an NSRect structure. Subclasses override this method to perform custom layout. If the
text container object determines that the proposed rectangle cannot fit into the container, then the constant NSZeroRect
is returned.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Assembling the Text System
For many applications that work with text, using NSTextView as the frontend interface to the text provides a great deal of
functionality. This is by far the easiest way of working with the text system: you only need to drop a text view into your
interface using Interface Builder, and you're ready to go.

Using NSTextView's APIs as the sole means of working with the text system does not offer the flexibility that can be
achieved by assembling the individual components manually. By starting with an NSTextStorage object and adding layout
managers, text containers, and text views, document layouts can have multiple columns and pages, have irregular
areas of text, or present the same text in two different layouts.

Before exploring the manually assembly of text components, consider these rules that tell you what you can and cannot
do:

A text storage object may have one or more layout manager objects that it manages.

Each layout manager instance may manage one or more instances of NSTextContainer.

Each text container has exactly one text view associated with it.

By varying the structure of the network with respect to the first two rules, you can create the possibilities mentioned
earlier.

Several methods in NSTextStorage, NSLayoutManager, and NSTextContainer facilitate assembly and management of the
object network.

NSTextStorage

This class offers the following methods for managing its layout managers:

addLayoutManager:

Adds the specified layout manager to the list of layout managers owned by the text storage object

removeLayoutManager:

Removes the specified layout manager from the collection of layout managers owned by the text
storage object

layoutManagers

Returns an NSArray of layout managers currently managed by the text storage object

NSLayoutManager

This class defines the following four methods for managing its collection of NSTextContainers:

addTextContainer:

Adds the specified text container to the end of the list of text containers managed by the layout
manager

insertTextContainer:atIndex:

Inserts a text container at the indicated array index into the layout manager's text container array

removeTextContainerAtIndex:

Removes the text container found at the specified index from the layout manager

textContainers

Returns an array of text containers managed by the layout manager

The nature of these methods is differs from those declared by NSTextStorage for managing layout managers. The order
of text containers in a layout manager defines the order in which text containers will be filled with text: containers at
lower indices will be filled before those at higher indices.

Finally, NSTextContainer associates itself with its partner text view object by using setTextView:. Later, the text view is
retrieved with the textView method.

5.2.1 Layout Scenarios

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Having control over the layout managers and text containers allows a great deal of flexibility over how a body of text
appears onscreen or in print. The possibilities increase when you introduce subclasses of NSTextContainer to the system
for defining irregular, or nonrectangular layout regions.

5.2.1.1 Simple layout

The simplest layout consists of a single view that displays a continuous body of text. This is the layout favored by
applications that deal with plain text, such as source code or HTML, as they have little interest in how the text might
appear on the printed page. Figure 5-5 shows the object configuration that establishes this "normal" view.

Figure 5-5. Configuration of the core classes for displaying a body of continuous
text

Figure 5-5 shows one instance of each of the four core text classes: one text storage object that manages a single
layout manager, which in turn manages one text container/text view object pair. The text view exists as a subview of
an NSScrollView, which allows the user to scroll through the contents of a larger document that cannot be displayed in
one screen. You can build this simply by adding a text view to the application in Interface Builder or by using
NSTextView's initWithFrame:.

5.2.1.2 Paginating text

A more complex text layout, shown in Figure 5-6, is the so-called "page-view," in which the text is displayed onscreen
as a series of pages.

Figure 5-6. A more complex configuration that presents text in a "page-view"

This layout is common in word processors, such as Microsoft Word or TextEdit, where text layout on multiple pages is
important. This layout is implemented with a pair of NSTextContainer and NSTextView objects for each page of the
document. The layout manager determines the order in which to fill each page according to the order of NSTextContainers
in the layout manager's array of text containers. The mechanism NSLayoutManager uses to notify a delegate that the
current text container is filled can be a cue to create a new text container/text view pair and accommodate more text.
From the user's perspective, this mechanism allows pages to be added to the document and displayed on screen
dynamically.

5.2.1.3 Multicolumn text

The pattern introduced in Figure 5-6 can apply to the situation in Figure 5-7: a multicolumn, multipage document. In
this configuration, a pair of NSTextContainer and NSTextView objects represents each column. The order in which columns
and pages are filled depends on the order of NSTextContainer objects in the NSLayoutManager instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and pages are filled depends on the order of NSTextContainer objects in the NSLayoutManager instance.

Figure 5-7. Objects involved in creating a multicolumn, multipage document

This gives the illusion of four pages of text, which you might see in a Print Preview window. To create the appearance of
a true multicolumn, multipage document (as in Figure 5-7), the column text views are grouped within a regular NSView
which represents a page. That page (NSView) may be the same color of the column (the NSTextViews), which means that
you only see the text on a solid background. Again, the collection of views that represent a single page is arranged on a
gray background view that is a child view of a scroll view.

5.2.1.4 Multiple simultaneous layouts

As mentioned earlier, NSTextStorage objects are not limited to just one layout manager; they can have many layout
managers, if necessary. This scenario lets you lay out the same body of text in multiple styles specified by each layout
manager. Figure 5-8 illustrates how multiple layout managers can present text in two layouts simultaneously.

Figure 5-8. Using multiple layout managers to display text data in different layouts

The flexibility achieved through cleverly arranging NSTextViews within NSViews can create many effects, resulting in
endless possibilities, as shown in Figure 5-9.

Figure 5-9. You can create complex networks of objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2.2 NSLayoutManager Delegation

NSLayoutManager employs a delegate object that may respond to two methods:

layoutManager:didCompleteLayoutForTextContainer:atEnd:

layoutManagerDidInvalidateLayout:

The first method notifies the delegate when the layout manager finishes formatting the text in the specified text
container object. This method can be used to control the appearance of progress indicators in the user interface, or it
can enable or disable buttons that control text layout. NSLayoutManager passes nil as the text container argument when it
has no more room to lay out its text in the existing text container. This information can be used tohelp you create a
new text container/text view pair, which is added to the NSLayoutManager's list of managed text containers.

Example 5-1 demonstrates how to implement layoutManager:didCompleteLayoutForTextContainer:atEnd:. The code in Example
5-1 creates the layout situation shown in Figure 5-6. When a text container fills up with text, the delegate responds by
using this method to create additional layout space.

Example 5-1. Creating text containers dynamically

- (void)layoutManager:(NSLayoutManager *)lm
 didCompleteLayoutForTextContainer:(NSTextContainer *)tc
 atEnd:(BOOL)flag
{
 if (!tc) {
 NSSize tcSize = NSMakeSize(300, 500);
 NSTextContainer *cont = [[NSTextContainer alloc]
 initWithContainerSize: tcSize];
 [[[textStorage layoutManagers]
 lastObject] addTextContainer: cont];

 NSTextView *tv = [[NSTextView alloc]
 initWithFrame:[self frameForNewTextView];
 textContainer:cont];
 [canvas addSubview:tv];
 }
}

The delegate method in Example 5-1 is invoked every time the current text container fills up. However, your
implementation will work only when the text container passed to you in the argument list is nil, which indicates that the
layout manager has filled its current text container. This method deals with a filled text container by creating a new one
and adding it to the list of text containers managed by the layout manager. This is accomplished with the
NSTextContainer initializer, initWithContainerSize:.

The textStorage variable is an instance variable of the class in which this method is implemented. This instance variable
is assigned to the text storage object for the application. To add the new text container, cont, to the list of text
containers managed by the layout manager, obtain the layout manager with the layoutManagers method. Since this
method returns an NSArray of layout managers, even if there is just one, a lastObject method is sent to get an instance of
NSLayoutManager, which receives an addTextContainer: message with cont as the argument.

To create a text view to pair with the text container, use the designate initializer of NSTextView. This initializer requires a
frame for the text view, as well as the text container it needs to associate with the text view. Example 5-1 relies on
another hypothetical method, frameForNewTextView, to return a frame rect that places the new text view below the
previous one. The text view is then added as a subview of canvas. In this example, canvas is best represented by the
gray region of Figure 5-7; individual text views are pages displayed in a series on this background view.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Networking
Networking is a critical component of many applications today. Networking APIs can take many forms, including TCP/IP
communications with the sockets library or interprocess communications using Cocoa's distributed objects system. Mac
OS X's Darwin layer includes all standard Unix networking technologies and APIs, which are fully accessible from any
Cocoa application. In addition to being able to access the Unix APIs, the Foundation framework implements several
classes that give applications a higher-level interface for working with networking technologies. This chapter
summarizes Foundation's networking classes, shown in Figure 6-1.

Figure 6-1. Hierarchy of networking-related classes in the Foundation framework

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 Hosts
NSHost provides services that find host names from addresses and addresses from host names. NSHost relies on the
network services available to the operating system, such as LDAP, NetInfo, or the Domain Name Service (DNS).
Example 6-1 shows how to use NSHost.

Example 6-1. Using NSHost

// Get the NSHost object for the current host
NSHost *host = [NSHost currentHost];

// Get the name of a host
NSString *name = [host name];

// Get the address of a host; returns "xxx.xxx.xxx.xxx" string
NSString *addr = [host address];

// Other ways to create a host object
NSHost *host = [NSHost hostWithAddress:@"www.oreilly.com"];
NSHost *host = [NSHost hostWithName:@"209.204.146.22"];

// If a host has multiple names or address, use the following
NSArray *names = [host names];
NSArray *addrs = [host addresses];

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 URL Resources
Foundation has two classes that facilitate working with URLs: NSURL and NSURLHandle. NSURL represents a Uniform
Resource Locator (URL). This class lets applications create, manipulate, and pick apart URLs. NSURLHandle accesses data
and resources specified by an instance of NSURL. This class can access resources provided by HTTP, FTP,[1] and file
services.

[1] FTP support in NSURLHandle was added in Mac OS X 10.2 and is not available in earlier versions of Mac OS X.

6.2.1 Working with URLs

NSURL represents a URL—the human-readable host names and paths that various network clients use to locate
resources on the local filesystem or over the Internet. NSURL provides a number of methods and initializers that let you
create instances in many different ways, as shown in Example 6-2.

Core Foundation has a type, CFURL, that is "toll-free bridged" to NSURL. As such, the two
types can be used interchangeably. CFURL and NSURL are essentially equivalent: NSURL
objects can be used in Core Foundation calls that ask for a CFURL, and vice versa. NSURL is
just one of several Foundation classes that have a bridged Core Foundation equivalent.

Example 6-2. Creating and initializing instances of NSURL

// From a string...
NSURL *url = [NSURL URLWithString:@"http//www.macdevcenter.com"];
url = [[NSURL alloc]
 initWithString: :@"http//www.macdevcenter.com"];

// From a file path...
url = [NSURL fileURLWithPath:@"/Users/mike/Pictures/pic.tiff"];
url = [[NSURL alloc]
 initFileURLWithPath: :@"/Users/mike/Pictures/pic.tiff"];

// Access a URL with scheme, host, and path
url = [[NSURL alloc] initWithScheme:@" FTP" host:@"localhost"
 path:@"/Some/Path"];

In Example 6-2, the last initializer, initWithScheme:host:path:, specifies the scheme used by the host the URL points to. In
this case, an FTP address was specified; however, the backend to NSURL's data transfer functionality, NSURLHandle,
supports HTTP and file URL schemes as well.

NSURL includes an assortment of methods that let you pick apart URLs to extract pieces of information from them, such
as the URL path, the host name, the base URL, and the query string. Example 6-3 illustrates several NSURL methods.

Example 6-3. NSURL methods

NSURL *url = [NSURL URLWithString:@"http//www.google.com/
search?hl=en&ie=ISO-8859-1&q=NSURL&btnG=Google+Search"];

NSString *s;
s = [url host]; // Returns "www.google.com"
s = [url scheme]; // Returns "HTTP"
s = [url path]; // Returns "/search"

// Returns "//www.google.com/search?hl=en&ie=ISO-8859-1&q=NSURL&btnG=Google+Search"
s = [url resourceSpecifier];

// Returns "hl=en&ie=ISO-8859-1&q=NSURL&btnG=Google+Search"
s = [url query];

While NSURLHandle implements data transfer functionality, NSURL provides a handful of convenience methods that can
transfer data without having to instantiate NSURLHandle. These methods, whose usage is shown in Example 6-4, include:

resourceDataUsingCache:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resourceDataUsingCache:

setResourceData:

loadResourceDataNotifyingClient:usingCache:

Example 6-4. Using NSURL data access methods

// Create an instance of NSURL from an NSString
NSString *urlStr = @"http//host_address/image.jpg";
NSURL *url = [NSURL URLWithString:urlStr];

// Download data from the resource located by a URL
NSData *data = [url resourceDataUsingCache:NO];
NSImage *img = [[NSImage alloc] initWithData:data];

// Write data to a resource located by a URL
NSData *data = [img TIFFRepresentation];
[url setResourceData:data];

If YES is passed to the resourceDataUsingCache: method, NSURL attempts to load the resource from the cache if it was
loaded previously. If the resource was not loaded, then the host will load it. Passing NO to this method tells NSURL to
always fetch the data from the host, even if it has done so already.

Many Cocoa classes that work with files have methods that let clients interact with files
through standard file paths or URLs. For example, you could have replaced the middle two
lines of code in Example 6-4 with NSImage's initializer initWithContentsOfURL:, supplying url
as the argument.

6.2.2 URL Handles

NSURLHandle provides an interface for uploading and downloading data to and from a resource specified by an instance
of NSURL. NSURLHandle actually offloads much of this work to subclasses that implement NSURLHandle's interface to work
with various schemes. NSURLHandle's subclasses include NSFileURLHandle, NSFTPURLHandle, and NSHTTPURLHandle. These
three subclasses are private—all interaction with them is through NSURLHandle's public interface, which creates the
proper subclass based on the provided NSURL object's scheme. For most purposes, the interface provided by NSURL
should be sufficient for resource access. NSURLHandle is most useful when you need to create a new subclass to support
a URL scheme other than file, FTP, or HTTP.

6.2.2.1 Managing subclasses

NSURLHandle's subclasses are responsible for implementing the resource acquisition mechanics needed by a URL
scheme. When created, that subclass needs to be registered with NSURLHandle using the class method
registerURLHandleClass:. The registration process makes NSURLHandle aware of a subclass's availability to handle a new
URL scheme.

To determine whether NSURLHandle handles a particular URL scheme, use the class method canInitWithURL:. Additionally,
you can retrieve the actual class object used by NSURLHandle for a particular URL scheme by invoking the class method
URLHandleClassForURL:.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Rendezvous Network Services
Rendezvous is Apple's implementation of zero-configuration networking (Zeroconf). Introduced with the Jaguar release
of Mac OS X, Rendezvous brings AppleTalk's ease of use to standard IP networking. This gives the user the ability to
browse for printing, file sharing, or any other IP-based services much as was done with the Chooser in earlier versions
of the Mac OS.

For more information on Rendezvous networking, see Apple's Rendezvous developer page
at http://developer.apple.com/macosx/rendezvous/, or visit the Zeroconf working group
web site at http://www.zeroconf.org.

Foundation provides access to Rendezvous' low-level APIs through the classes NSNetService and NSNetServiceBrowser. An
application registers, or publishes, a service on the network by using NSNetService. The class NSNetServiceBrowser
searches for and discovers services that are registered elsewhere. This section provides an overview of how these
classes fit into an application.

6.3.1 NSNetService

NSNetService represents a network service that applications either publish or use as a client. A network service can be
FTP, Telnet, SSH, HTTP, or something of your own design.

The Picture Sharing application included with the Foundation example code found in the Developer Tools installation
(/Developer/Examples/Foundation/PictureSharing) is an example of a custom Rendezvous service. This example has
two applications: a server application that publishes a picture sharing service and a client application that browses for
picture sharing services.

To set up NSNetService, you must do the following:

1. Configure a listening server socket that clients will connect to.

2. Initialize an NSNetService object with the service domain, type, name and port.

3. Assign a delegate object to this instance.

4. Handle any messages received by the delegate.

Before a service can be published, you must first create a network socket to which clients connect to access the service.
While the Net Services API (which collectively refers to NSNetService and NSNetServiceBrowser) has little to do with data
transfer between hosts, it has everything to do with advertising a service's existence on a local network. On Mac OS X,
several APIs can create a socket: NSSocketPort provides an Objective-C API for sockets, CoreFoundation provides the
CFSocket API, and Darwin has the BSD Sockets API. Since this book focuses on how to accomplish tasks with Cocoa, a
discussion of the use of NSSocketPort is relevant and will be discussed later, while the Unix and CoreFoundation APIs are
beyond the scope of this book.

6.3.1.1 Initializing NSNetService for publication

NSNetService has two initializers:

initWithDomain:type:name:port:

initWithDomain:

NSNetService's publication-appropriate initializer is initWithDomain:type:name:port:. The first argument to this method is the
domain in which the service is registered. As of Mac OS X 10.2, only the local registration domain, .local., is supported.
Since the Zeroconf working group is still hammering out the details of zero-configuration networking, the local domain
may not always be .local. As such, passing an empty string to initWithDomain: is preferable to passing .local. as the
domain. Doing so tells NSNetService to register the services under the default domain.

The type: argument specifies the service type and transport protocol. This string takes the form _servicetype._tcp.,
where _servicetype can be any standard service such as HTTP, FTP, or Telnet, or it may be an arbitrary service type
specific to your application, such as _myservice.

The Internet Assigned Numbers Authority maintains a catalog of service names and a list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Internet Assigned Numbers Authority maintains a catalog of service names and a list
of ports where applications can find these services. You can find this catalog at
http://www.iana.org/assignments/port-numbers. The /etc/services file contains a similar
catalog of service names and port numbers.

The third argument, name:, is the human-readable name for the service displayed in service browser lists. It can be any
UTF8 string you like. Finally, port: is the port number to which the service socket is bound. To publish a service, invoke
NSNetService's publish method. To remove a service from the network, send a stop message to the service instance.
Example 6-5 shows how an application can create and publish a service.

Example 6-5. Creating and publishing a network service

// Socket used for listening for incoming connections bound to port 631
NSSocketPort *s = [[NSSocketPort alloc] initWithTCPPort:631];

NSNetService *serv = [[NSNetService alloc] initWithDomain:@""
 type:@"_ipp._tcp"
 name:@"R&D Printer"
 port:631];

[serv setDelegate:delegateObject];
[serv publish];

// Remove the service from the network
[serv stop];

NSNetService tells interested parties that the designated host has a socket listening for connections on the specified port.
NSNetService multicasts the address and port information for an open socket to the network. The response message from
the Rendezvous host contains additional information that identifies the service name and type. Whether or not a socket
is listening on that port is another question; NSNetService puts us on the honor system to make sure everything is
configured properly.

The Net Services API uses delegation to drive an application's user interface and for error handling. Setting the delegate
of an instance of NSNetService or NSNetServiceBrowser is essential for using these classes effectively.

6.3.1.2 NSNetService delegate methods

NSNetService declares that the delegates should implement the following methods:

netServiceWillPublish:

Notifies the delegate that the service is about to be published. The NSNetService that invoked this method is
passed in the argument.

netService:didNotPublish:

Notifies the delegate of an error that occurred while attempting to publish the service. The netService: argument
is the NSNetService object that produced the error, and the didNotPublish: argument is an error dictionary
containing information about the error. The dictionary contains objects for the keys NSNetServiceErrorCode and
NSNetServiceErrorDomain.

netServiceWillResolve:

Invoked in the delegate when the network is ready to resolve the service. This method is invoked only after
sending a resolve message to the service object. The argument is the NSNetService that received the resolve
message.

netService:didResolve:

Notifies the delegate that the service was successfully resolved and is now ready to use. At this point, the
address used to connect to the service has been verified and is ready to use.

netService:didNotResolve:

If an error occurs while attempting to resolve a service, the delegate is notified via this method. The netService:
argument is the service instance that produced the error, and the didNotResolve: argument contains the error
dictionary. The dictionary keys NSNetServiceErrorCode and NSNetServiceErrorDomain provide information about the
error.

netServiceDidStop:

This method is invoked in the delegate when invoking the stop method in an NSNetService that previously
received a publish or resolve message.

Instances of NSNetService either publish or resolve a service, and thus far this chapter has only shown how to publish a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Instances of NSNetService either publish or resolve a service, and thus far this chapter has only shown how to publish a
service. Services meant for publication can't be used for resolution, and those meant for resolution can't be used for
publication.

The delegate methods of NSNetService reflect this division. The three methods netServiceWillResolve:, netService:didResolve:,
and netService:didNotResolve: notify the delegate of the status of a service resolution request (in response to a resolve
message). The remaining methods, netServiceWillPublish:, netService: didNotPublish:, and netServiceDidStop:, notify the
delegate of a publish operation's status. Services meant for publication do not invoke resolution-specific delegate
methods, and those services meant for resolution won't ever invoke publication-specific delegate methods.

Implementing these delegate methods is not necessary for a functioning instance of NSNetService. Net services can be
published and resolved without having been assigned a delegate; however, without a delegate, there is no way of
knowing a particular net service object's status.

6.3.1.3 Errors

NSNetService declares the delegate methods netService:didNotPublish: and netService:didNotResolve:. These methods notify
the delegate of an error that may have occurred in a publish or resolve operation. Each method passes the net service
object invoking the methods in the first argument, and a dictionary describing the nature of the error in the second
argument.

The error dictionary contains two keys: NSNetServicesErrorDomain and NSNetServicesErrorCode. The first key is for an object
that shows where the error occurred: in the lower-level networking layer or in the NSNetService implementation. The
NSNetServicesErrorCode key reflects the nature of the error by returning an NSNumber, which corresponds to one of the
constants described in Table 6-1.

Table 6-1. Net services error codes
Error code Description

NSNetServicesUnknownError An unknown error occurred.

NSNetServicesCollisionError This error results when a service tries to register a service under a name that is
already taken.

NSNetServicesNotFoundError The service (attempting to be resolved) could not be found on the network.

NSNetServicesActivityInProgress The net service is busy and cannot process the request.

NSNetServicesBadArgumentError An invalid argument was used when initializing the NSNetService instance.

NSNetServicesCancelledError The client cancelled the action.

NSNetServicesInvalidError The net service was configured improperly.

6.3.2 NSNetServiceBrowser

The NSNetServiceBrowser class is an implementation of Rendezvous' service discovery protocol. This class depends
heavily on a delegate, which is the only means of alerting an application to the discovery of a service.
NSNetServiceBrowser searches for domains as well as services and uses the same mechanisms in the delegate object to
report discovered domains. The methods that a delegate of NSNetServiceBrowser may implement are as follows:

netServiceBrowser:didFindDomain:moreComing:

Notifies the delegate that a domain was discovered.

netServiceBrowser:didRemoveDomain:moreComing:

Notifies the delegate when a previously discovered domain becomes unavailable.

netServiceBrowser:didFindService:moreComing:

Notifies the delegate that a service was discovered.

netServiceBrowser:didRemoveService:moreComing:

Notifies the delegate objects that a previously discovered service was removed from the network while
searching.

netServiceBrowser:didNotSearch:

If an error occurs, this method notifies the delegate. The first argument is the service browser instance
reporting the error, and the second argument is the error dictionary that contains information about the nature
of the error.

netServiceBrowserWillSearch:

Notifies the delegate that the network is ready and the search is about to commence. The method is passed the
service browser instance that is about to begin searching.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

service browser instance that is about to begin searching.

netServiceBrowserDidStopSearch:

Notifies the delegate that a search ended as a result of a stop message to the service browser object. It can
perform housekeeping tasks when the search completes.

Several of the delegate methods for NSNetServiceBrowser listed here include the moreComing: argument. This argument
contains a BOOL value indicating whether or not more services are to be reported (NSNetServiceBrowser may discover
services faster than they can be reported). The utility of this flag has to do with how the information is reported through
the user interface. The idea is that the user interface should be updated with all available information in one fell swoop.
Rather than adding a service name to the browser list every time one is discovered, the delegate method should update
the interface only if moreComing: reports back with NO, saying that there are no further services to report at the time.

6.3.2.1 Searching for domains

NSNetServiceBrowser searches for domains and for services. The previous section discussed the service discovery aspect
of NSNetServiceBrowser. When searching for domains, you can look for either all domains using the searchForAllDomains
method or only for those for which you have registration authority with the searchForRegistrationDomains method.
Example 6-6 shows how to set up a class to search for domains using these methods.

Example 6-6. Searching for domains using NSNetServiceBrowser

// Assume the following instance method exists and has been initialized.
NSMutableArray *domains;

- (void)beginDomainSearch
{
 // Assume browser is an instance variable
 browser = [[NSNetServiceBrowser alloc] init];
 [browser searchForAllDomains];

 // Or use [browser searchForRegistrationDomains];
}

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing
{
 [domains addObject:domainString];

 if (moreComing == NO)
 [self updateUI];
}

- (void)netServiceBrowser:(NSNetServiceBrowser *) browser
 didRemoveDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing
{
 [domains removeObject:domainString];

 if (moreComing == NO)
 [self updateUI];
}

In Example 6-6, note the "Or" comment in the method beginDomainSearch. The comment appears to be relatively
innocuous, but it brings up an important point about the capabilities of NSNetServiceBrowser. NSNetServiceBrowser may
perform only one search at a time, and this holds true for domain and service searches. If you want to perform multiple
searches, either wait for a search to stop and restart your desired search or create multiple instances of
NSNetServiceBrowser.

Once the list of domains is obtained, use these strings to specify the domain you would like to search in for services.
You also have the option of passing an empty string to indicate that you would like to search in the default domain, as
was true when initializing an instance of NSNetService.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Sockets
It is possible to interact with Darwin's BSD sockets API in all of Mac OS X's C-based application environments, including
Cocoa. This API is declared primarily in the headers sys/socket.h and netinet/in.h, and is discussed at length in Unix
Network Programming, by W. Richard Stevens (Prentice Hall, 1998). Core Foundation also provides an API to sockets
with CFSocket. However, discussion of CFSocket is beyond the scope this book. Instead, the next section provides shows
how to interact with sockets using the Foundation class NSSocketPort.

In earlier versions of Mac OS X (prior to Mac OS X 10.2), NSSocketPort was used exclusively as part of Cocoa's
distributed objects architecture. NSSocketPort created sockets-based distributed objects connections across a network.
However, now NSSocketPort provides a convenient alternative to the C sockets API for raw messaging.

NSSocketPort makes it possible to create sockets configured either as local listening sockets (server sockets) or sockets
connected to a remote host (client sockets). The simplest way to initialize a listening socket port object is using the
method initWithTCPPort:. This method takes a port number as an argument and returns an NSSocketPort object
representing a TCP/IP streaming socket. If 0 is passed as the port number, then the operating system selects a port to
bind to the socket.

Initialize an NSSocketPort to connect to a remote socket with the method initWithRemoteTCPPort:host:. This method takes
as arguments the port number you connect to on the host specified in the second argument. A connection to the
remote host is not actually established until data is sent. The hostname may be either a domain-name-like hostname,
such as www.oreilly.com, or an IPv4-style address, such as 208.201.239.36.

Several of NSSocketPort's methods provide information about the socket, including:

address

This method returns an NSData object that contains the socket's sockaddr structure, which provides information
about the sockets address.

protocol

This method returns an int specifying the protocol used by the receiver, and protocolFamily returns an int
specifying the protocol family used by the receiver.

socketType

This method returns an int that identifies the receiver's socket type.

The values returned by these methods are the same as the values of the constants used in the BSD sockets API. If
you're familiar with socket programming on a Unix system, you should feel right at home with NSSocketPort.

The socket method returns a native OS socket file descriptor, which can then be used with the standard C functions read
and write, or to initialize an NSFileHandle. Example 6-7 demonstrates how to use NSSocketPort to create sockets.

Example 6-7. Making sockets with NSSocketPort

// Local TCP/IP socket of type SOCK_STREAM listening on port 52279
NSSocketPort *sock= [[NSSocketPort alloc] initWithTCPPort:52279];

// Socket to connect to remote host
sock = [[NSSocketPort alloc]
 initRemoteWithTCPPort:52279 host:@"10.0.1.3"];

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.5 NSFileHandle
NSFileHandle provides methods that let you read and write data from a file or communication channel asynchronously in
the background. Chapter 2 discussed file access with NSFileHandle. This section describes NSFileHandle's asynchronous
communications features and how they apply to networking.

You can obtain a socket file descriptor from an instance of NSSocketPort by sending a socket message to the socket port
object. With the socket descriptor, you are able to initialize an instance of NSFileHandle with the method
initWithFileDescriptor:. The initWithFileDescriptor:closeOnDealloc: method is an extension of this method that specifies
whether or not the file descriptor will close when the file handle object is deallocated. By default, the file handle object
does not close the file descriptor and ownership of that descriptor remains with the object that created the file handle.
To determine an NSFileHandle instance's file descriptor, invoke the method fileDescriptor.

NSFileHandle provides the following three methods for performing asynchronous background communication:

acceptConnectionInBackgroundAndNotify

This method is valid only for NSFileHandle instances initialized with a socket file descriptor (of type
SOCK_STREAM), and causes the socket represented by the file handle to listen for new connections. This method
returns immediately while a background thread accepts client connections over the socket. Observers are
notified of new connections by registering for the notification NSFileHandleAcceptedConnectionNotification. The
notification's userInfo dictionary contains a new socket file handle connected to the client that initiated the
connection, which frees the listening socket to accept additional connections. You can obtain the socket from
the userInfo dictionary through the key NSFileHandleNotificationFileHandleItem.

readInBackgroundAndNotify

This method begins an asynchronous read operation on a socket in the background by invoking the method
availableData. This method is generally invoked in the file handle object that represents the socket connected to
the client that is obtained from the NSFileHandleAcceptedConnectionNotification userInfo dictionary. When data is
read, the connected socket file handle posts an NSFileHandleReadCompletionNotification, whose userInfo dictionary
contains the data that was read. You can obtain this NSData object by using the NSFileHandleNotificationDataItem
key.

readToEndOfFileInBackgroundAndNotify

This method behaves similarly to readInBackgroundAndNotify, except the NSFileHandle method readToEndOfFile is
invoked. When all data has finished being read, the file handle posts an
NSFileHandleReadToEndOfFileCompletionNotification notification. You can obtain the read data from the userInfo
dictionary by using the NSFileHandleNotificationDataItem key.

NSFileHandle declares three additional methods that include a ForModes: argument:

acceptConnectionInBackgroundAndNotifyForModes:

readInBackgroundAndNotifyForModes:

readToEndOfFileInBackgroundAndNotifyForModes:

The ForModes: argument specifies which run loop modes each method's notification may be posted in. This specification
provides finer control over operation of the notification process.

Example 6-8 shows how to use NSFileHandle to implement a simple server infrastructure.

Example 6-8. Using NSFileHandle for server socket communication

- (void)startServer
{
 NSSocketPort *sockPort;
 sockPort = [[NSSocketPort alloc] initWithTCPPort:12345];
 int socketFD = [sockPort socket];

 NSFileHandle *listeningSocket;
listeningSocket = [[NSFileHandle alloc]
 initWithFileDescriptor:socketFD];

 NSNotificationCenter *nc;
 nc = [NSNotificationCenter defaultNotificationCenter];
 [nc addObserver:self
 selector:@selector(spawnChildConnection:)
 name:NSFileHandleConnectionAcceptedNotification

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 name:NSFileHandleConnectionAcceptedNotification
 object:listeningSocket];

 [listeningSocket acceptConnectionInBackgroundAndNotify];
}

 /*
 * This method is invoked in response to
 * NSFileHandleConnectionAcceptedNotification
 */
- (void)spawnChildConnection:(NSNotification *)note
{
NSFileHandle *connectedSocket = [[note userInfo]
 objectForKey:NSFileHandleNotificationFileHandleItem];

 NSNotificationCenter *nc;
 nc = [NSNotificationCenter defaultNotificationCenter];

 [nc addObserver:self
 selector:@selector(processClientData:)
 name:NSFileHandleReadCompletionNotification
 object:connectedSocket];

 // Send a message to the client, acknowledging that the connection was accepted
 [connectedSocket writeData:ackData];

 [connectedSocket readInBackgroundAndNotify];
}

 /*
 * This method is invoked in response to
 * NSFileHandleReadCompletionNotification
 */
- (void)processClientData:(NSNotification *)note
{
 NSData *data = [[note userInfo]
 objectForKey:NSFileHandleNotificationDataItem];

 // Do something here with your data

 // Tell file handle to continue waiting for data
 [[note object] readInBackgroundAndNotify];
}

Example 6-9 shows a client infrastructure using NSFileHandle.

Example 6-9. Using NSFileHandle on the client side

- (void)startClient
{
 NSSocketPort *sockPort;
 sockPort = [[NSSocketPort alloc]
 initRemoteWithTCPPort:12345 host:@"10.0.1.3"];
 int sockFD = [sockPort socket];

 NSFileHandle *clientSocket;
 clientSocket = [[NSFileHandle alloc]
 initWithFileDescriptor:sockFD];

 NSNotificationCenter *nc;
 nc = [NSNotificationCenter defaultNotificationCenter];
 [nc addObserver:self
 selector:@selector(processServerData:)
 name: NSFileHandleReadCompletionNotification
 object: clientSocket];

 [clientSocket writeData:dataToWrite];
 [clientSocket readInBackgroundAndNotify];
}

 /*
 * This method is invoked in response to
 * NSFileHandleReadCompletionNotification
 */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 */
- (void) processServerData:(NSNotification *)note
{
 NSData *data = [[note userInfo]
 objectForKey:NSFileHandleNotificationDataItem];

 // Do something here with your data

 // Tell file handle to continue waiting for data
 [[note object] readInBackgroundAndNotify];
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Interapplication Communication
Several of Cocoa's classes provide support for interapplication and interthread communication. The Foundation class
NSPipe provides an interface to Unix pipes, a long-time staple of Unix interprocess communication (IPC). The Foundation
framework also implements a distributed notification system whereby notifications (discussed in Chapter 2) are sent
between applications. The NSDistributedNotificationCenter class registers observers with the distributed notification system.

Finally, Cocoa provides a means for high-level IPC, known as distributed objects, that permits object sharing across
process boundaries, even on different computers. Figure 7-1 shows the classes involved in interprocess communication.

Figure 7-1. IPC classes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 NSPipe
Instances of NSPipe represent a one-way channel for communication between two tasks. While one task pours data into
one end of the pipe, another process reads that data out. You can create a pipe in two ways: with the convenience
constructor pipe or with alloc and init. Every pipe has a read and a write end that objects connect to by retrieving
NSFileHandle instances using the methods fileHandleForReading and fileHandleForWriting.

NSPipe is also buffered, which means that it can store data poured into the write end of the pipe up to a maximum
amount that is defined by the underlying operating system. Example 7-1 shows you how to create a pipe by using
NSPipe and NSTask.

Example 7-1. Using NSPipe to get data from an NSTask instance

// Instantiate and initialize a new task
NSTask *task = [[NSTask alloc] init];

// Create a pipe to communicate with the task
NSPipe *pipe = [[NSPipe alloc] init];

// Get a file handle to read from the pipe
NSFileHandle *readEnd = [pipe fileHandleForReading];

// Set the path to launch the task at
[task setLaunchPath:@"/bin/ls"];

// Set the arguments; ls takes the directory to list
[task setArguments:[NSArray arrayWithObject:@"/"]];

// Connect the pipe to the task's stdout
[task setStandardOutput:pipe];

// Launch the task
[task launch];

// Once it's launched we can read data from the pipe
NSData *stdOutData = [readEnd availableData];
NSLog(@"%s", [stdOutData bytes]);

7.1.1 Distributed Notifications

As noted in Chapter 2, the Foundation framework's notification system, supported by NSNotification and
NSNotificationCenter, coordinates the actions of isolated objects within an application. NSDistributedNotificationCenter is used
to receive and dispatch notifications sent between applications, making it possible for objects in one application to
respond to changes to the operating environment made by another (see Figure 7-2).

Figure 7-2. Distributed notification centers and notification centers

Distributed notifications are distributed only as far as applications on the local machine.
They are not distributed in the same sense as distributed objects, for which
communications can occur across a network.

NSDistributedNotificationCenter is a subclass of NSNotificationCenter, and its APIs are almost identical: both require observers
to register for notifications, have a default center that is obtained with the defaultCenter class method, and use instances

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to register for notifications, have a default center that is obtained with the defaultCenter class method, and use instances
of NSNotification as the vehicle for communication.

Distributed notifications may be posted with standard NSNotificationCenter methods invoked in the distributed notification
center:

postNotificationName:object:

postNotificationName:object:userInfo:

NSDistributedNotificationCenter provides an additional method: postNotification-Name:object:userInfo:deliverImmediately:

Posting with deliverImmediately set to NO permits normal suspension behavior (described later) of observers. If set to
YES, the notification is delivered immediately to all observers, regardless of their suspension behavior or suspension
state.

When considering the arguments to these methods, remember the two following points: First, since the "object" is
passed to another process, which does not share the same address space, distributed notification filtering is based on
an object's string value. Second, the userInfo dictionary is serialized as a property list, so it can be passed to another
task (where it is deserialized back into a dictionary). This serialization imposes the restriction that you can only place
objects that conform to the NSCoding protocol in the dictionary.

Example 7-2 shows how to set up a distributed notification.

Example 7-2. Using distributed notifications

/*
 * In one application we would register with the default
 * distributed notification center...
 */
- (void)registerForNotes
{
 NSDistributedNotificationCenter *dnc;
 dnc = [NSDistributedNotificationCenter defaultCenter];

 [dnc addObserver:self
 selector:@selector(handleDistributedNote:)
 name:@"CocoaNutDistributedNote"
 object:nil];
}

- (void)handleDistributedNote:(NSNotification *)note
{
 NSLog(@"Received Distributed Notification!");
}

/*
 * ...and another application might post the notification
 */
- (void)postNotes
{
 NSDistributedNotificationCenter *dnc;
 dnc = [NSDistributedNotificationCenter defaultCenter];
 [dnc postNotificationName:@"CocoaNutDistributedNote"
 object:nil];
}

7.1.1.1 Suspending delivery

Distributed notification centers can suspend notification delivery. This is done automatically by NSApplication when an
application is not active. To suspend or resume notification delivery manually, use the method setSuspended:, passing
YES or NO as appropriate. To inquire into the suspension state of a distributed notification center, use the suspended
method.

Suspending a distributed notification center only suspends delivery of notifications by the distributed notification center,
not the reception of distributed notifications. In addition to NSNotificationCenter's addObserver:selector: name:object:, the
NSDistributedNotificationCenter method addObserver: selector:name:object:suspensionBehavior: can add observers to a
distributed notification center. This lets you specify how notifications that would otherwise be sent to the observer
should be handled when delivery is suspended.

NSDistributedNotificationCenter has four constants, which are used to specify suspension behaviors:

NSNotificationSuspensionBehaviorDrop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSNotificationSuspensionBehaviorDrop

Notifications to observers with this suspension behavior are dropped without further consideration when
notification delivery is suspended; it would be as if the notification were never received by the application.

NSNotificationSuspensionBehaviorCoalesce

This suspension behavior causes multiple, identical notifications destined for the observer during suspension to
be delivered as a single notification when suspension is lifted.

NSNotificationSuspensionBehaviorHold

Any notification received during delivery suspension is held and delivered to the observer when delivery
suspension is removed.

NSNotificationSuspensionBehaviorDeliverImmediately

This behavior causes notifications to the observer to be delivered regardless of the suspension state.

When YES is passed to the postNotificationName:object:userInfo:deliverImmediately: method, the notification is delivered to all
observers regardless of the suspension state of the respective distributed notification centers. Here notification posters
have the power to override suspension, whereas observers can override suspension by using the last suspended
behavior in the previous list.

7.1.2 Distributed Objects

Cocoa's distributed objects (DO) architecture provides a very high-level interface to interprocess communication. It also
lets objects in one application transparently send messages to an object in another application, whether it is on the
same or a different computer. Instances of NSDistantObject represent objects in a remote application. NSDistantObject is a
subclass of NSProxy (the only other root class in Cocoa besides NSObject). NSDistantObject relies on the underlying
architecture to forward messages and receive return values or exceptions.

7.1.2.1 DO architecture

Several Foundation classes participate in the distributed objects system. The primary interface for distributed objects,
however, is through the class NSConnection, which vends objects on the server-side and connects to vended objects on
the client-side. Each thread has a shared NSConnection object that is obtained through the class method defaultConnection.

NSConnection relies on several classes to provide support for distributed objects. The lowest-level communication in
distributed objects occurs between a pair of NSPort objects. NSPort is an abstract class that provides an interface for raw
messaging. Foundation implements three concrete subclasses of NSPort: NSMachPort, NSMessagePort, and NSSocketPort.
These subclasses each implement the NSPort interface using a different technology. NSSocketPort, for example, supports
port communications with BSD sockets.

NSConnection objects rely on port name registration services to contact one another and distribute objects.
NSPortNameServer provides the interface to port name registration services. Foundation implements a subclass of
NSPortNameServer for each of the three types of ports: NSMachBootstrapServer, NSMessagePortNameServer, and
NSSocketPortNameServer.

Figure 7-3 shows how distributed object system classes interact.

Figure 7-3. The distributed objects system (classes are shown in bold)

7.1.2.2 Setting up a server

To set up a server with an NSConnection instance, set the root object (the object to be vended) and register the
connection. To set the root object, send the NSConnection instance a setRootObject: message. This method makes the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection. To set the root object, send the NSConnection instance a setRootObject: message. This method makes the
specified object available to other processes as a distributed object. To register the connection, send it either
registerName: or registerName:withNameServer:. The specified name is the one clients will use to access the vended object;
the latter method also lets you specify an NSPortNameServer (see Example 7-3).

When a connection object vends a distributed object, it takes all necessary steps to create the port object and register
the port with the port name registration server so other connection objects can locate the vended object.

Example 7-3. How a server vends an object

id anObject; // Assume this object exists

// Get the default connection for the main thread
NSConnection *conn = [NSConnection defaultConnection];

// Set anObject as the root object of the connection
[conn setRootObject:anObject];

// Register the name of the connection so clients can get anObject
if ([conn registerName:@"Server"] == NO) {
 // If the name could not be registered, NO is returned
 // and we can handle the error
}

7.1.2.3 Connecting to a remote object

NSConnection instances also provide the route to remote objects from the client side. The class method
rootProxyForConnectionWithRegisteredName:host: returns a proxy—an NSDistantObject--for the root object of the NSConnection
with the specified name and host, registered with the default NSPortNameServer. You can also specify a port name server
with rootProxyForConnectionWithRegisteredName:host:usingNameServer:. The host name should be an Internet address, such
as myserver.mydomain.com. Alternatively, by passing "*" as the host, you can specify that the connection should look
for an object on all valid hosts. If the host name is nil or empty, then only the local host is searched.

Example 7-4 demonstrates the process by which a client obtains a vended distributed object.

Example 7-4. How a client acquires a vended object

id remoteObject;

// Get a proxy to the root object of the connection registered to the name "Server"
remoteObject = [[NSConnection
 rootProxyForConnectionWithRegisteredName:@"Server"
 host:@"*"] retain];

7.1.2.4 DO and threads

Distributed objects can be used to communicate between two threads in the same application the same as it can
communicate between two applications on hosts separated by great distances. When using distributed objects to
communicate between two threads in the same application, consider the following points: For an NSConnection to run as
a server, a run loop must handle incoming messages and requests. If you create the connection in the main thread of
an NSApplication-based application, this is taken care of. However, if you vend an object from a different thread, you
must tell the thread's run loop to start by sending a run message to the currentRunLoop of the thread.

7.1.2.5 Making DO more efficient and reliable

Although DO lets you send arbitrary messages to a remote object, doing so creates additional overhead. To encode a
message's arguments for transmission over the network, the argument types must be known in advance. If they're not
known, the system must send an initial message just to get them, doubling the network traffic for every new message
sent. Setting a protocol, by sending the proxy object a setProtocolForProxy: message, removes the need to define
methods by the protocol.

// Set the protocol of the proxy
[remoteObject setProtocolForProxy:@protocol(rObjectProtocol)];

You can still send messages that are not declared in the protocol, but they will incur the additional message overhead.
Establishing a protocol for the proxy has the additional benefit of imposing a known API. This reduces the risk that a
message will be sent that the remote object does not implement.

You can also make the communication more efficient by employing special Objective-C keywords for distributed
messaging. The oneway keyword, for example, is used with methods that return void. The following method might be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messaging. The oneway keyword, for example, is used with methods that return void. The following method might be
implemented on a server:

-(void oneway)receiveString:(NSString *)string
{
 [self appendString:string];
}

When the client sends the proxy a receiveString: message, it does not require a return value. Without the oneway
keyword, at least two messages will be sent across the network: the message itself, and a receipt. If the client does not
need confirmation, the second message, and attendant overhead, are omitted.

Other keywords are: in, out, and inout, bycopy and byref, the latter two may only be used in protocol definitions. For more
information, see /Developer/Documentation/Cocoa/ObjectiveC/4objc_runtime_overview/Remote_Messaging.html.

7.1.2.6 Handling communication failures

Most errors in distributed systems behave the way they would in a standalone application. If you send a message to a
remote object that the remote object does not implement, an exception is raised. One additional complication with
distributed systems, however, is that the remote application might terminate. In the event of a communication failure—
because the remote application has quit, or it has simply ceased to respond—the NSConnection object sends an
NSConnectionDidDieNotification to the still-running application's default notification center. Registering for this notification
might help you handle connection failures gracefully. You should also implement an applicationWillTerminate method to
inform remote objects of your impending disappearance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Other Frameworks
Until this point, this book has focused on Cocoa's core frameworks, Foundation and Application Kit. However, Mac OS X
contains many frameworks that you can leverage. Just look in /System/Libraray/Frameworks to see how many there
are, or launch the Apple System Profiler (/Applications/Utilities) and click on the Frameworks tab.

Not all frameworks, however, are implemented in Objective-C, as are the Foundation framework and Application Kit.
Most Mac OS X frameworks are implemented in C since that language provides the most universal API that can be
accessed by the widest range of application environments, including Cocoa. Several newer frameworks provide
Objective-C interfaces in addition to C.

This chapter looks at some of the Objective-C frameworks provided by Apple. However, Apple isn't the only provider of
frameworks. Many free and commercially available Objective-C frameworks are offered by other developers. Several of
these third-party frameworks will be mentioned at the end of the chapter. This chapter covers additional Objective-C
frameworks, including:

AddressBook

Provides classes that allow applications to interface with Mac OS X's global Address Book database.

Message

This small framework provides services to applications for sending email messages.

DiscRecording and DiscRecordingUI

These two frameworks provide access to the system's disc recording APIs, giving any Cocoa application the
ability to burn data to CDs and DVDs.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 AddressBook
The AddressBook framework was released with Mac OS X 10.2. This framework provides a consistent, system-wide
interface to a user's database of personal contacts. Using the AddressBook framework, applications can access the
same information used in Apple's own suite of personal information management applications, including Mail, Address
Book, iChat, iCal, and iSync. Figure 8-1 shows the AddressBook framework's class hierarchy.

Figure 8-1. The AddressBook framework class hierarchy

ABAddressBook is the main class representing the contacts database. The ABAddressBook class provides access to a
collection of records, of two types: people and groups, represented by the classes ABPerson and ABGroup. ABPerson and
ABGroup inherit from the class ABRecord, as shown in Figure 8-1. Records are like souped-up dictionaries that store
information in property-value pairs (similar to NSDictionary's key-value pairs, but ABRecord properties provide additional
functionality).

Both people and group objects store properties, but they are not the same set of properties since a group does not
share the characteristics of an individual. To retrieve the value of a property associated with a record, invoke the
method valueForProperty: in the ABRecord object in question. To store a value for a record's property, use the method
setValue:forProperty:.

ABAddressBook provides methods that access records in the database. The method people returns an NSArray filled with all
ABPerson type records, while the method groups returns an NSArray containing all the Address Book's ABGroup type
records. Records are added and removed using addRecord: and removeRecord:. Example 8-1 shows how to work with the
AddressBook API.

Example 8-1. Working with the AddressBook framework

// Instantiate ABAddressBook
ABAddressBook *ab = [ABAddressBook sharedAddressBook];

// Access property values
ABPerson *me = [ab me];
NSString *fName = [me valueForProperty:kABFirstNameProperty];
NSString *lName = [me valueForProperty:kABLastNameProperty];

// Set a property value
[me setValue:@"Michael" forProperty:kABFirstNameProperty];

// Get an array of all people in Address Book
NSArray *everyone = [ab people];

// ...and all groups
NSArray *groups = [ab groups];

// Create a new record
ABPerson *newPerson = [[ABPerson alloc] init];

// Add a record to the Address Book
[ab addRecord: newPerson];

// Remove a record from the Address Book
[ab removeRecord: me];

// Set "me"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Set "me"
[ab setMe:newPerson];

// Save changes to disk
[ab save];

Tables Table 8-1 and Table 8-2 show the property strings predefined by the AddressBook framework. Table 8-1
contains properties used exclusively by ABPerson objects, while Table 8-2 lists properties common to people and groups.
ABGroup has an additional exclusive property, kABGroupNameProperty, which is the name of the group record.

Table 8-1. Property keys used in the AddressBook framework specific to ABPerson
records

Property key Description

kABFirstNameProperty A person's first name as an NSString

kABLastNameProperty A person's last name as an NSString

kABFirstNamePhoneticProperty The phonetic spelling of the person's first name to aid pronunciation

kABLastNamePhoneticProperty The phonetic spelling of the person's last name to aid pronunciation

kABBirthdayProperty The person's birthday as an NSDate

kABOrganizationProperty The person's affiliation as an NSString

kABJobTitleProperty The job title of the person as an NSString

kABHomePageProperty The home page of the person as an NSString

kABEmailProperty The email property for a person as an ABMultiValue of NSStrings (multistring). Values are
labeled by kABEmailWorkLabel and kABEmailHomeLabel

kABAddressProperty The address of a person as an NSDictionary multivalue with the labels kABAddressHomeLabel
and kABAddressWorkLabel

kABPhoneProperty
Phone numbers of person as a multistring with the following labels: kABPhoneWorkLabel,
kABPhoneHomeLabel, kABPhoneMobileLabel, kABPhoneMainLabel, kABPhoneHomeFAXLabel,
kABPhoneWorkFAXLabel, and kABPhonePagerLabel

kABAIMInstantProperty The AIM screen name of person as a multistring with two labels: kABAIMWorkLabel, and
kABAIMHomeLabel

kABJabberInstantProperty The Jabber screen name of person as a multistring with two labels: kABJabberWorkLabel
and kABJabberHomeLabel

kABMSNInstantProperty The MSN screen name of person as a multistring with two labels: kABMSNWorkLabel and
kABMSNHomeLabel

kABYahooInstantProperty The Yahoo screen name of person as a multistring with two labels: kABYahooWorkLabel
and kABYahooHomeLabel

kABICQInstantProperty The ICQ screen name of person as a multistring with two labels: kABICQWorkLabel and
kABICQHomeLabel

kABNoteProperty The property whose values are an NSString note about the record

Table 8-2. Properties applicable to ABRecord objects (people and groups)
Property key Description

kABUIDProperty The UID (unique identifier) property of a record as an NSString

kABCreationDateProperty The date on which the record was created as an NSDate

kABModificationDateProperty NSDate specifies the last modification date of the record

In Example 8-1, the save method is invoked in the last line of code, saving changes to the database. Until the save
method is invoked, changes only exist in memory, and are not reflected on disk. Once the changes are saved, other
applications that use the AddressBook framework are notified that changes have been made to the database (see
Section 8.1.4 later in this chapter for more information on how this is accomplished).

8.1.1 Working with Multiple-Value Objects

Many property values in the AddressBook are typed as ABMultiValue, which is an object that stores multiple values for a
single property. To understand why this might be useful, consider that people tend to have several phone numbers,
email addresses, and a work and home address. Rather than create several separate properties for a work and home
address, AddressBook defines a generic address property with an ABMultiValue value type.

An ABMultiValue stores the multiple values for a property by index. Each property has a unique identifier, a string label,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An ABMultiValue stores the multiple values for a property by index. Each property has a unique identifier, a string label,
and a value. Generally, the label is a combination of the property name and "home" or "work" (as shown in Table 8-1).
However, it is possible to customize labels for additional values in the multivalue object (such as a summer vacation
home address in addition to home and work addresses).

A primary identifier, associated with each multivalued property, identifies the subvalue of the multivalue property that a
user most strongly associates with a person. For example, if you interact with a person purely on a professional basis,
then the primary identifier for that contact's phone property would be for the work value. You can set this identifier in a
ABMutableMultiValue with the method setPrimaryIdentifier:.

You can access values in an ABMultiValue object by index with valueAtIndex:. It is also possible to access the label and
identifier of the object at a particular index with labelAtIndex: and identifierAtIndex:.

To demonstrate the use of multivalue objects, look closely at kABAddressProperty, which is of particular interest since
itcontains NSDictionary objects as values rather than simple strings. The AddressBook API defines keys used to store
values within an address property dictionary. Table 8-3 lists the keys that access values in the dictionaries for
kABAddressProperty.

Table 8-3. Keys of the address dictionary
Dictionary key Description

kABAddressStreetKey The person's street name and number

kABAddressCityKey The person's city

kABAddressStateKey The person's state

kABAddressZIPKey The zip code of the address

kABAddressCountryKey The country name of the address

kABAddressCountryCodeKey The two character country code. These standard ISO country codes can be found in the
header file ABGlobals.h

Example 8-2 shows how to work with the address property and other multi-valued properties in ABPerson.

Example 8-2. Working with multivalued properties such as kABAddressProperty

ABMultiValue *addr = [p valueForProperty:kABAddressProperty];
int i = [addr indexForIdentifier:[addr primaryIdentifier]];
NSDictionary *prim = [addr valueAtIndex:i];
NSString *street = [prim objectForKey:kABAddressStreetKey];
NSString *state = [prim objectForKey:kABAddressStateKey];

ABMultiValue *aim = [p valueForProperty:kABAIMInstantProperty];

// This statement determines the number of values in the multi-value
int n = [aim count];

NSString *aim1 = [aim valueAtIndex:0];

8.1.2 Defining New Properties

It is possible to define your own application-specific keys to store data about a person or group in the contacts
database. Because the database contains structured data that can hold values of any property name, the only
applications that need know about these additional properties are those that actively look for them. Thus, there is no
need to have two separate interfaces for interacting with AddressBook information and information specific to your
application.

Add properties to a record by invoking the ABGroup or ABPerson class method addPropertiesAndTypes:. The argument for
this method is a dictionary containing the property names as keys and the property types as values. The property type
may be one of the following single or multivalue types shown in Table 8-4.

Table 8-4. Single- and multiple-value types
Data type Single value Multiple value

NSString KABStringProperty kABMultiStringProperty

NSNumber (int) KABIntegerProperty kABMultiIntegerProperty

NSNumber (float) KABRealProperty kABMultiRealProperty

NSDate KABDateProperty kABMultiDateProperty

NSArray KABArrayProperty kABMultiArrayProperty

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSDictionary KABDictionaryProperty kABMultiDictionaryProperty

NSData KABDataProperty kABMultiDataProperty

Example 8-3 shows how to add property-value pairs to a record.

Example 8-3. Defining new properties for a record

NSMutableDictionary *newProps = [NSMutableDictionary dictionary];
[newProps setObject:kABStringProperty forKey:@"College"];
[newProps setObject:kABDateProperty forKey:@"Grad Date"];
[ABPerson addPropertiesAndTypes:newProps];

ABAddressBook *ab = [ABAddressBook sharedAddressBook];
ABPerson *me = [ab me];
NSString *c = @"The University of Texas at Austin";
NSDate *d = [NSDate dateWithNaturalLanguageString:@"12/12/02"];
[me setValue:c forProperty:@"College"];
[me setValue:d forProperty:@"Grad Date"];

8.1.3 Searching

The AddressBook framework supports searching with the ABSearchElement class. You can create instances of this class
with the ABPerson or ABGroup class method searchElementForProperty:label:key:value:comparison:, to which you supply the
following search criteria:

searchElementForProperty:

The record property that will be searched for.

label:

If the property has multiple values, a label can be specified to restrict the search to one particular element of
the multivalue.

key:

If the property value is a dictionary, the search will be done on the value of the dictionary key specified in this
parameter. For example, you could pass kABAddressCityKey here if you want to perform a search against the city
of the contact.

value:

The value you are searching for in the property.

comparison:

This parameter specifies how the search process identifies a value as a match. Table 8-5 lists the comparison
constants for this parameter.

The searchElementForProperty:label:key:value:comparison: method searches for people or groups, depending on whether it is
implemented in the ABPerson or ABGroup class object, respectively.

A search is performed on the AddressBook database by ABAddressBook method recordsMatchingSearchElement:, to which
you supply the search element object containing your search criteria. This method returns an array of ABPeople objects
or ABGroup objects—depending on which of these two classes you created the search element in—that contains the
search results.

Table 8-5. Comparison constants used by ABSearchElement
Comparison constant Description

kABEqual Returns records equal to the search value

kABNotEqual Returns records not equal to the search element value

kABEqualCaseInsensitive Returns records equal when case is ignored

kABLessThan Searches for records whose value is less than the search value

kABLessThanOrEqual Searches for elements less than or equal to the value

kABGreaterThan Searches for elements greater than the search value

kABGreaterThanOrEqual Searches for elements greater than or equal to the search value

kABContainsSubStringCaseInsensitive Searches for records whose value contains the search value as a substring,
disregarding case

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

kABContainsSubStringCaseInsensitive disregarding case

kABPrefixMatch Searches for elements that contain the search value as a prefix

kABPrefixMatchCaseInsensitive Same as kABPrefixMatch, except case-insensitive

ABSearchElement's searchElementForConjunction:children: method can create arbitrarily complex searches by combining
search elements into composite search elements using either the kABAndSearch or the kABOrSearch conjunction. The
search elements to be combined into the complex search are passed as an array in the children: argument.

Example 8-4 shows how to perform searches in the AddressBook framework.

Example 8-4. Constructing and performing searches

ABSearchElement *se1, *se2, *se3;
NSArray *results, *seChildren;

ABAddressBook *ab = [ABAddressBook sharedAddressBook];

// Search against a simple, single-value property
se1 = [ABPerson searchElementForProperty:kABFirstNameProperty
 label:nil
 key:nil
 value:@"Michael"
 comparison:kABEqual];
results = [ab recordsMatchingSearchElement:se1];

// Search against a key of the kABAddressProperty
se2 = [ABPerson searchElementForProperty:kABAddressProperty
 label:nil
 key:kABAddressCityKey
 value:@"Houston"
 comparison:kABEqual];
results = [ab recordsMatchingSearchElement:se2];

// Perform a complex search by combining search elements
seChildren = [NSArray arrayWithObjects:se1, se2, nil];
se3 = [ABSearchElement searchElementForConjunction:kABAndSearch
 children: seChildren];

8.1.4 Notifications

The AddressBook framework API defines two notifications that applications may register to observe so they may be
notified of changes to the AddressBook database:

kABDatabaseChangedNotification

Notifies observers of changes the application makes to the database

kABDatabaseChangedExternallyNotification

Notifies an observer that another application has changed the database

8.1.5 Odds and Ends

You can perform a couple of other operations with records beyond just storing name/value pairs: importing and
exporting a vCard representation or associating an image with a person.

8.1.5.1 Creating a vCard from a record

Creating a vCard is easily accomplished by using the ABRecord method vCardRepresentation. This method returns an
NSData object whose data is formatted in the vCard format. This data is written to disk, where it can be read by any
number of applications that recognize the vCard format. Going the other way, you can initialize an ABRecord object with
vCard data using initWithVCardRepresentation:. This method takes as a parameter an NSData object, which could be
initialized with the contents of a vCard file on disk.

8.1.5.2 Adding an image to a record

To associate an image with a person in the AddressBook, use the methods setTIFFImageData: and TIFFImageData to set

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To associate an image with a person in the AddressBook, use the methods setTIFFImageData: and TIFFImageData to set
and get the person's picture. These methods work with NSData objects whose data is formatted as a TIFF image. These
methods interface well with the NSImage methods TIFFRepresentation, which returns an TIFF-formatted NSData object, and
initWithData:, which initializes an NSImage object with image data. Example 8-5 shows how to access image data in an
Address Book record.

Example 8-5. Accessing image data in a record

// Assign an image to a record
NSData *imageData = [[NSData alloc]
 initWithContentsOfFile:@"image.tiff"];
ABAddressBook *ab = [ABAddressBook sharedAddressBook];
ABRecord *me = [ab me];

[me setTIFFImageData: imageData];
[ab save];

// Retrieve a record's image
NSImage *anImage = [[NSImage alloc] initWithData: [me imageData]];
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 The Message Framework
The message framework, consisting of the single NSMailDelivery class, provides the functionality needed to send email
messages from within an application. The NSMailDelivery class defines three methods:

hasDeliveryClassBeenConfigured

deliverMessage:headers:format:protocol:

deliverMessage:subject:to:

The first method, hasDeliveryClassBeenConfigured, returns a BOOL value that indicates whether the operating system is
configured to send messages. To make sure that any attempt to send a message is not in vain, invoke this method
before sending a message, and handle appropriately if NO is returned. Message sending is enabled by configuring a
default email account in the Internet System Preferences pane.

The second method, deliverMessage:headers:format:protocol:, delivers a message whose text is contained in an
NSAttributedString. The standard message headers, such as "To", "From", and "Subject", are passed in the headers:
parameter as a dictionary. In this dictionary, the key is the header name. For example, the recipient's email address
would be an NSString value in the dictionary for the key @"To". Example 8-6 shows how to use this dictionary and the
mail delivery methods.

The third parameter specifies the message's format, which can be one of two constants: NSASCIIMailFormat or
NSMIMEMailFormat. If NSASCIIMailFormat is specified as the format, then the attributed string is stripped of any rich text
formatting information. NSMIMEMailFormat, on the other hand, preserves the rich text formatting when sending the
message.

The final argument specifies the protocol used to deliver the message. Passing nil, which causes the delivery to default
to the system default protocol, is preferable. The other choice is to pass the constant NSSMTPDeliveryProtocol, specifying
that the method should be delivered with the SMTP protocol.

The final method defined in NSMailDelivery is deliverMessage:subject:to:. This convenience method sends the first
argument's plain text NSString to the sender specified in the last argument. The subject: argument specifies a subject for
the message.

Example 8-6. Using the message framework class NSMailDelivery

BOOL status = NO;

// Send an attribute string message
NSAttributedString *msg = [[NSAtrributedString strin alloc]
 initWithString:@"This is a message with no formatting."];

NSMutableDictionary * hdrs = [NSMutableDictionary dictionary];
[hdrs setObject:@"someone@someplace.com" forKey:@"To"];
[hdrs setObject:@"me@myplace.com" forKey:@"From"];
[hdrs setObject:@"Boring email" forKey:@"Subject"];

status = [NSMailDelivery deliverMessage:msg
 headers:hdrs
 format:NSASCIIMailFormat
 protocol:nil];

// Use the convenience method
status = [NSMailDelivery deliverMessage:@"This is another boring email message."
 subject:@"Nothing to important"
 to:@"someone@somplace.com"];

In this example, the variable status was set to the return value of the message delivery methods. The return values
from these two methods indicate whether or not the message was successfully sent.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Disc Recording Frameworks
The ability to burn data to CDs and DVDs is a centerpiece of the Mac and Apple's Digital Hub strategy. Nearly every Mac
sold today can record to CD or DVD media. This creates an opportunity for application developers to provide features in
their applications that take advantage of a system's built-in disc burning capabilities.

With Mac OS X 10.2, Apple released two Objective-C frameworks that let applications take advantage of disc capabilities
present in most new Macs. These frameworks are DiscRecording and DiscRecordingUI. Together, they provide an API
for assembling content in preparation for recording and performing disc burn and erase operations.

The functionality of the Disc Recoding API is split between two frameworks for a good reason. DiscRecording provides
the bulk of the API used for creating content and managing burn operations. DiscRecordingUI, on the other hand,
provides no more than several NSPanel subclasses that implement standard user interfaces that applications can use to
quickly configure and perform burn and erase operations. By separating the presentation from the mechanics, non-GUI
applications can use the DiscRecording APIs. This section begins with a discussion of the DiscRecording framework and
finishes with an overview of DiscRecordingUI.

8.3.1 The DiscRecording Framework

The DiscRecording framework provides classes that represent the fundamental parts of a recording process.
DiscRecording has APIs that assemble filesystem hierarchies that will be recorded to disc, and APIs that record audio.
Figure 8-2 shows this framework's class hierarchy.

Figure 8-2. DiscRecording framework class hierarchy

The DiscRecording API provides a means to perform two primary tasks that people need their disc recording hardware
to accomplish: burning a disc and erasing a disc's contents. These two tasks are represented by the classes DRBurn and
DRErase.

8.3.1.1 DRBurn

DRBurn manages the process of burning a disc. The interface for this class provides several methods used to configure
the burn process. Specifically, DRBurn lets you control the behavior of the burn process and specify how media should
be handled after it is recorded to (i.e., should the disc be ejected or mounted as a filesystem).

To initialize a DRBurn object, use the method initWithDevice:. This initializer takes a DRDevice object, which represents the
physical hardware device used for recording. All DRErase and DRBurn objects have an associated instance of DRDevice
that provides information about and controls the hardware. Generally, you won't need to interact with DRDevice objects,
except when you need to obtain information about the device, such as its make and model number. Device objects are
configured and used mainly by the burning engine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

configured and used mainly by the burning engine.

Use setProperties: to configure burn objects. Table 8-6 enumerates the keys used in this dictionary.

Table 8-6. Keys used in the burn properties dictionary
Key Description

DRBurnRequestedSpeedKey NSNumber containing a float that specifies the burn speed in kilobytes per second. The
default is DRDeviceBurnSpeedMax.

DRBurnAppendableKey BOOL specifying whether the disc should be appendable after the initial burn. The default
is NO.

DRBurnVerifyDiscKey BOOL specifying whether the burn should be verified. The default is YES.

DRBurnCompletionActionKey Specifies the action that should occur after the burn is completed. The options are the
default, DRBurnCompletionActionEject, and DRBurnCompletionActionMount.

DRBurnUnderrunProtectionKey BOOL that turns run protection on and off for devices that support it. The default is YES.

DRBurnTestingKey BOOL specifying if the burn should be run as a test burn. The default is NO.

DRSynchronousBehaviorKey BOOL specifying if burn operations will behave synchronously. The default is NO.

8.3.1.2 DRErase

DRErase represents a disc erasure operation. Like DRBurn objects, DRErase instances are initialized with initWithDevice:.
The DiscRecording API supports two types of operations: a quick erase and a complete erase. A quick erase does the
minimum amount of work needed to make a disc appear blank, while a complete erase makes sure that every byte of
data on the disc is erased. Quick erases, the default type for DRErase, take a couple of minutes to perform, whereas a
complete erase can take up to a half an hour.

These two erase types are specified in the API by the constant NSString objects DREraseTypeQuick and
DREraseTypeComplete. To specify the type of erase, use the method setEraseType:. The eraseType method returns the
current type.

Once an erase object is configured, the erasure operation executes by invoking the start method. This method returns
control to the sender immediately. The sender can retrieve information about the progress of an erase operation by
polling the status method or listening for notifications.

8.3.1.3 DRTrack

DRTrack provides the burn with data and describes the track used to burn the data to disc. Instances of DRTrack do not
actually store the data that will be recorded; rather, track objects are used as an interface to a data producer that
provides the actual data. The DiscRecording framework defines the DRTrackDataProduction protocol to which classes
should conform if they want to provide data for a DRTrack object.

Providing data is only part of DRTrack's responsibility. It is also responsible for providing properties of the actual track
that will be written to disk. This is done by setting track properties with the setProperties: method. This method takes a
dictionary, whose keys come from those listed in Table 8-7. Each key listed in this table must have a value assigned to
it, or the burn will fail. The Mt. Fuji (IFF-8090i) specification for CD/DVD devices defines the values these properties
may take.

Table 8-7. Required properties for a fully configured DRTrack object
Property key Description

DRTrackLengthKey Length of the track

DRBlockSizeKey Size of each block measured in bytes

DRBlockTypeKey Type of each block in the track

DRDataFormKey Data form of each track block

DRSessionFormatKey Session format of the track

DRTrackModeKey Mode of the track

DRTrack provides two convenience constructors that prepare a DRTrack to burn audio to a disc or the data contained in a
directory structure: trackWithAudioOfLength:producer: for audio and trackForRootFolder: for data.

8.3.1.4 Preparing audio content

trackWithAudioOfLength:producer: provides audio content to record. In the first parameter, the length's value is specified

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

trackWithAudioOfLength:producer: provides audio content to record. In the first parameter, the length's value is specified
as an instance of the class DRMSF. This subclass of NSNumber represents lengths and positions on a disc by minutes,
seconds, and frames (thus the MSF moniker). A frame is a subdivision of a second, and there are 75 frames in a
second. A frame corresponds to one block on a track, and is thus the smallest possible division of space on a disc. The
producer: parameter is an object that conforms to the DRTrackDataProduction protocol. The data producer prepares data
and provides it to the track during the burn process.

8.3.1.5 Preparing data content

The second DRTrack convenience constructor is trackForRootFolder:. This method takes a single parameter, which is of
type DRFolder. DRFolder is one of two subclasses of the class DRFSObject, which represents a generic filesystem object.
The other subclass is DRFile. DRFile and DRFolder both construct a filesystem that will be reproduced on a CD or DVD.

To successfully create a data track, you need to know that files and folders are related to one another in a one-to-
many, parent-child relationship, and are arranged in trees. Thus, each folder in the structure may have many children,
which are folders or files, and each child has exactly one parent, which must be a folder. Only folders may have
children; files may not. This mirrors the organization of any filesystem you're used to working with. Additionally, files
and folders may either be real or virtual. A real file or folder corresponds to a real file or folder that exists on the user's
source volume. Because they represent actual objects in the source filesystem, real filesystem objects may not be
modified once they are added to the data track preparation.

To create a real DRFile, use either the convenience constructor fileWithPath: or the initializer initWithPath:. Both methods
take as an argument the path to an actual file on disk. A DRFile object is capable of representing real files, aliases, and
symbolically linked files. Similarly, to create a real DRFolder, use either the convenience constructor folderWithPath: or the
initializer initWithPath:.

A virtual filesystem object is a placeholder for a file or folder that will be created when the filesystem is written to the
disc. The process of assembling virtual files and folders is often referred to as creating a filesystem in the API, referring
to the methods in DRFile and DRFolder used to construct the filesystem. Using virtual folders, a program can construct a
filesystem that will be created on the disc by adding children to folder objects. These children may be real or virtual
DRFSObjects. Virtual DRFolders are the only filesystem objects that may contain children. Thus real files and folders, and
virtual files, are all leaf nodes in the filesystem.

When a virtual filesystem object is created, a name is assigned to the object that will be the file or folder name in the
end product. Virtual files are also assigned an NSData object that contains what will become the file contents on the
destination media. Alternatively, a virtual file object can be associated with an object that conforms to the
DRDataTrackProduction protocol as a means of creating a file's contents. You can create a virtual folder by invoking the
DRFolder class method folderWithName: or the initializer initWithName:. Virtual files may be created with
virtualFileWithName:data: or virtualFileWithName:dataProducer:. In the former method, the parameter is an NSData object,
while the latter method requires an object that conforms to the DRTrackDataProduction protocol. There are also equivalent
initializers, initWithName:data: and initWithName:dataProducer:.

Children are added to a DRFolder by invoking the method addChild:, and they are removed using the method
removeChild:. The count method returns the number of children within a folder.. children returns an NSArray of a folder's
children. While a real folder may not have any children, you can convert a real folder into a virtual folder to add children
to the directory structure. When a folder is converted from real to virtual, the converted folder's pre-existing contents
remain real. Real folders are made virtual by invoking makeVirtual. Once a filesystem structure is created—by choosing a
real file or folder or building one from scratch using a combination of real and virtual filesystem objects—the root
DRFolder of the tree creates a DRTrack with the convenience constructor trackForRootFolder:.

Example 8-7 shows how to prepare data to be burned to disc.

Example 8-7. Preparing data for burning

// Prepare a real folder or file
DRFolder *rFolder = [DRFolder folderWithPath:@"/Users/mike"];
DRFile *rFile = [DRFile fileWithPath:@"/Users/mike/someDoc.txt"];

// Work with virtual filesystem objects
DRFolder *root = [DRFolder folderWithName:@"Root Folder"];
DRFile *vFile = [DRFile fileWithName:@"Fake File" data:someNSData];

[rFolder makeVirtual];
[rFolder addChild:vFile];
[root addChild:rFolder];
[root addChild:rFile];

// Create a DRTrack object to hold the data
DRTrack *track = [DRTrack trackForRootFolder:root];

8.3.2 The DiscRecordingUI Framework

DiscRecordingUI implements a standard front-end interface to the DiscRecording framework. From reading the previous
section, you know that instances of the classes DRBurn and DRErase represent burn and erase operations. The classes of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

section, you know that instances of the classes DRBurn and DRErase represent burn and erase operations. The classes of
DiscRecordingUI provide an interface to configure instances of DRBurn and DRErase, as well as monitor the progress of
recording and erase operations.

Figure 8-3 shows the classes of the DiscRecordingUI framework. Each one is a subclass of NSPanel. DRSetupPanel is an
abstract superclass that provides facilities for device selection and handling needed by burn and erase setup panels.

Figure 8-3. DiscRecordingUI framework class hierarchy

DRBurnSetupPanel, shown in Figure 8-4, is an interface that configures and executes a burn operation. DREraseSetupPanel,
shown in Figure 8-5, provides an interface for configuring and executing disc erase operations.

Figure 8-4. The burn disc panel

Figure 8-5. The erase disc panel

8.3.2.1 How to record

To create a burn or erase setup panel, invoke setupPanel in either DRBurnSetupPanel or DREraseSetupPanel. Once an
instance of either class is obtained, invoke the DRSetupPanel method runSetupPanel, which displays the panel on the
screen. Setup panels run as modal windows, which means you can't interact with any other part of the application while
the window is open.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the window is open.

The method runSetupPanel is blocking, so execution in the thread it was invoked in stops until the user clicks the panel's
Cancel or Burn/Erase buttons. This method returns with an int, indicating which button the user clicked. The return
value is equal to one of the constants NSOKButton or NSCancelButton. This return value determines the next course of
action: either continue on with our application or begin a burn/erase operation.

In the case of a burn setup panel, after determining that the Burn button was pressed, we can obtain an instance of
DRBurn whose state reflects the configuration made in the setup panel. This object is obtained with the method
burnObject.

The next step, after preparing your layout is to instantiate DRBurnProgressPanel and start the burn process. To create a
burn progress panel, invoke the class method progressPanel. You can start burn operations by using
beginProgressPanelForBurn:layout:, to which you supply our burn object and the object representing your layout. Example
8-8 performs these tasks in code.

Example 8-8. Using setup panels in DiscRecordingUI

- (IBAction)showBurnPanel:(id)sender
{
 DRBurnSetupPanel *bp = [DRBurnSetupPanel setupPanel];
 int status = [bp runSetupPanel];

 if (status == NSOKButton) {
 DRBurn *burn = [bp burnObject];
 DRBurnProgressPanel *pp = [DRBurnProgressPanel progressPanel];

 // Assume aLayout has been prepared previously
 [pp beginProgressPanelForBurn: burn layout:aLayout];
 }
}

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.4 Third-Party Frameworks
In addition to the frameworks provided by Apple, several third-party objective frameworks are available. One of the
most notable is the collection of frameworks from The Omni Group. Omni makes not only the same frameworks
developers use in their applications, but also the source code for the frameworks.

Omni provides the following frameworks, whose source code can be downloaded from Omni's developer web site
(http://www.omnigroup.com/developer/sourcecode):

OmniBase

This framework provides several low-level classes that provide allocation and initialization debugging aids,
classes that aid interaction with the Objective-C runtime, and an exception handling mechanism that is an
alternative to the standard one provided in Cocoa.

OmniFoundation

This framework provides several extensions to Cocoa's Foundation framework, including classes that handle
strings, scanning, and regular expressions.

OmniNetworking

This framework is an Objective-C wrapper to the networking libraries that already exist in Mac OS X.
OmniNetworking supports major networking protocols such as Multicast, TCP, and UDP.

OmniAppKit

This framework provides lots of neat controls, such as a calendar and chasing arrows, as well as larger
application components such as a skeletal preferences system and Find panel.

OWF

The Omni Web Framework is the base architecture for OmniWeb that handles all content retrieval and parsing,
and other functions related to Internet application development. Omni says: "If OmniFoundation is the
Objective-C programmer's Swiss Army Knife, then OWF is their double barrel, rotary laser cannon."

OmniHTML

This framework handles HTML parsing and is also used in OmniWeb.

These frameworks provide no documentation. However, with the source code available, learning how to use them
should be fun.

Another notable framework is the MiscKit, maintained by the Object Foundation. The framework contains a plethora of
miscellany. Undoubtedly, many of you will find the offerings of the MiscKit useful and interesting. Information about
MiscKit, as well as resources and the actual framework, is available at http://www.misckit.com.

In addition to these larger frameworks, many smaller collections of classes are constantly growing and improving. The
Cocoa development community is outputting several free, open source classes. The Softtrak software database,
available on Stepwise's site (http://www.stepwise.com), maintains information about the third-party frameworks
available for Cocoa.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: API Quick Reference
This part of the book provides a quick reference to Cocoa's primary frameworks: Foundation and
Application Kit. This part starts out with a quick overview of how to use the Cocoa quick reference to
better help you understand its organization and structure. The chapters in this part aren't meant to be
read from start to finish, but instead are intended to be used as a reference to keep by your side while
programming.

Chapters in this part of the book include:

Chapter 9, Foundation Types and Constants

Chapter 10, Foundation Functions

Chapter 11, Application Kit Types and Constants

Chapter 12, Application Kit Functions

Chapter 13, Foundation Classes

Chapter 14, Foundation Protocols

Chapter 15, Application Kit Classes

Chapter 16, Application Kit Protocols

Additionally, Part II begins with an explanation of How to Use This Quick Reference, and wraps up with
an index (Method Index) that contains an alphabetical listing of every method in the Foundation and
Application Kit frameworks, called the Method Index.

How to Use This Quick Reference
Part II crams a great deal of information about Cocoa into a relatively small space. In this chapter we
take a look at how this information is organized and how to read the quick-reference entries.

Organization of the Quick Reference

Chapter 13 and Chapter 15 cover the classes of the Foundation and Application Kit frameworks. Chapter
14 and Chapter 16 contain quick-reference entries for the protocols of these two frameworks. Within
these four chapters quick-reference entries are arranged alphabetically. Finally, the Method Index
contains an alphabetical listing of every method in the Foundation framework and Application Kit. Each
method name in the index has a list of classes that implement that method. Here's how to read a quick
reference entry.

Description

Following the title of each quick-reference entry is a brief description of the class or protocol.
Descriptions may be as short as a couple of lines, or as long as several paragraphs of text.

Hierarchy

Every class in the quick reference has a figure illustrating the hierarchy of the class, and any protocols
adopted by the class or its ancestors. In the hierarchy figure classes appear as rectangles containing the
name of the class, and formal Objective-C protocols appear as rectangles with rounded corners. The
root object of each hierarchy (either NSObject or NSProxy) is at the left of the figure, with subclasses
extending horizontally to the right. Subclasses are connected by a solid line, which denotes an
inheritance relationship. The protocols adopted by any class in the hierarchy appear vertically beneath
the class. Note that the hierarchy only shows the superclasses of a class. Subclasses of the class, if any
exist, are listed after the class synopsis in the "Subclasses" cross-reference.

Synopsis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Synopsis

The synopsis is the most important part of the class reference, providing a list of the methods that are
part of the class interface. Additionally, the class synopsis provides a list of methods that a delegate
object might implement, as well as a list of notifications that the class can post. Each class synopsis
begins with the class interface declaration as it would appear in the class header file. The interface
declaration displays the class name, superclass name, and any protocols that the class adopts. For
example, NSDate has the following interface declaration in its class synopsis:

@interface NSDate : NSObject <NSCoding, NSCopying>

Following the interface declaration is a list of methods that are a part of the class's interface. This
includes all methods that may be declared in a category of a method. The class interface method list is
ended with @end . Following the class method list is a list of methods a delegate object may implement,
and a list of notifications that instances of the class may post to the notification center.

Protocol synopses take on two forms, depending on whether the protocol is formal or informal. Formal
protocols enclose the method list as follows:

@protocol ProtocolName

// Methods

@end

While an informal protocol synopsis appears as a category interface declaration:

@interface NSObject (ProtocolName)

// Methods

@end

Functional grouping of methods

Methods in the class synopsis are broken up into several optional categories, within which the methods
are listed alphabetically. A class may have groups of convenience constructors, initializers, and property
accessor methods, in addition to class and instance methods. Additionally, the synopsis lists methods a
class expects its delegate to respond to, as well as notifications posted by instances of the class. Method
groups are separated in the synopsis with C comments, such as // Initializers , // Class Methods , and //
Notifications . Protocol synopses group methods either as instance or class methods. Not every class has
methods that fall under each of these categorizes. The various categories are as follows (in the same
order they would appear in the class synopsis):

Convenience constructors

Lists any convenience constructors of a class. Convenience constructors are class methods that
combine object allocation and initialization into one step. By convention, objects returned by
convenience constructor have already been sent an autorelease method, and will be released at
the end of the event-loop. If you wish to use an object for a longer period of time you must
send a retain message to the returned object. Generally speaking, convenience constructors
very nearly mirror the initializers of a class. A class may have other factory methods listed in
the Class Methods grouping in addition to these convenience constructors.

Initializers

This grouping lists all of the initializers of a class, which is any method that begins with init .
When instantiating an class with alloc , you must initialize the new object with one of the class's
initializers before it is used. Objects created and initialized in this way have a reference count of
1, unlike objects returned by convenience constructors, which have been autoreleased before
they are returned.

Accessor methods

This section lists methods that are used to access the properties of a class. Any instance
method that begins with set... is listed here; these are used to set the property indicated in the
method name. Conventionally, methods used to access properties are named after the property.
For example, NSBezierPath has the method setLineWidth: to set the line width of the path. The
associated get-property instance method is lineWidth —the name of the property. Accessor
methods are listed alphabetically by the property name, so that the "set" methods appear
grouped with their respective property query methods.

Class methods

This section of the synopsis lists all class methods that are not constructors or accessor
methods.

Instance methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Instance methods

This section lists all instance methods that are not initializers or accessor methods.

Implementing methods

This section groups methods that implement the same protocol. For each protocol adopted by
the class, there is one subgroup of methods.

Delegate methods

This section lists any methods a delegate of the class may optionally implement. Delegate
methods are not part of the class interface; generally, they are declared as a category of the
root class, NSObject .

Notifications

This section lists the symbolic names of any notification that the class may post during its
lifetime.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Foundation Types and Constants
This chapter describes the data types and constants found in the Foundation framework, and is divided into the
following sections:

Data types
Enumerations
Global variables
Constants
Exception names

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 Data Types
This section lists the data types defined by and used in the Foundation framework.

NSCalculationError

typedef enum {
 NSCalculationNoError = 0,
 NSCalculationLossOfPrecision,
 NSCalculationUnderflow,
 NSCalculationOverflow,
 NSCalculationDivideByZero
} NSCalculationError;

NSComparisonResult

typedef enum _NSComparisonResult {
 NSOrderedAscending = -1,
 NSOrderedSame,
 NSOrderedDescending
} NSComparisonResult;

NSDecimal

typedef struct {
 signed int _exponent:8;
 unsigned int _length:4;
 unsigned int _isNegative:11;
 unsigned int _isCompact:1;
 unsigned int _reserved:18;
 unsigned short _mantissa[NSDecimalMaxSize];
} NSDecimal;

NSHashEnumerator

typedef struct {
 unsigned _pi;
 unsigned _si void *_bs;
} NSHashEnumerator;

NSHashTable

typedef struct _NSHashTable
NSHashTable;

NSHashTableCallBacks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef struct {
 unsigned (*hash)(NSHashTable *table, const void *);
 BOOL (*isEqual)(NSHashTable *table, const void *, const void *);
 void (*retain)(NSHashTable *table, const void *);
 void (*release)(NSHashTable *table, void *);
 NSString *(*describe)(NSHashTable *table, const void *);
} NSHashTableCallBacks;

NSInsertionPosition

typedef enum {
 NSPositionAfter,
 NSPositionBefore,
 NSPositionBeginning,
 NSPositionEnd,
 NSPositionReplace
} NSInsertionPosition;

NSMapEnumerator

typedef struct {
 unsigned _pi;
 unsigned _si;
 void *_bs;
} NSMapEnumerator;

NSMapTable

typedef struct _NSMapTable NSMapTable;

NSMapTableKeyCallBacks

typedef struct {
 unsigned (*hash)(NSMapTable *table, const void *);
 BOOL (*isEqual)(NSMapTable *table, const void *, const void *);
 void (*retain)(NSMapTable *table, const void *);
 void (*release)(NSMapTable *table, void *);
 NSString *(*describe)(NSMapTable *table, const void *);
 const void *notAKeyMarker;
} NSMapTableKeyCallBacks;

NSMapTableValueCallBacks

typedef struct {
 void (*retain)(NSMapTable *table, const void *);
 void (*release)(NSMapTable *table, void *);
 NSString *(*describe)(NSMapTable *table, const void *);
} NSMapTableValueCallBacks;

NSNetServicesError

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum {
 NSNetServicesUnknownError = -72000,
 NSNetServicesCollisionError = -72001,
 NSNetServicesNotFoundError = -72002,
 NSNetServicesActivityInProgress = -72003,
 NSNetServicesBadArgumentError = -72004,
 NSNetServicesCancelledError = -72005,
 NSNetServicesInvalidError = -72006
} NSNetServicesError;

NSNotificationCoalescing

typedef enum {
 NSNotificationNoCoalescing = 0,
 NSNotificationCoalescingOnName = 1,
 NSNotificationCoalescingOnSender = 2
} NSNotificationCoalescing;

NSNotificationSuspensionBehavior

typedef enum {
 NSNotificationSuspensionBehaviorDrop = 1,
 NSNotificationSuspensionBehaviorCoalesce = 2,
 NSNotificationSuspensionBehaviorHold = 3,
 NSNotificationSuspensionBehaviorDeliverImmediately = 4
} NSNotificationCoalescing;

NSObjCValue

typedef struct {
 enum _NSObjCValueType type;
 union {
 char charValue;
 short shortValue;
 long longValue;
 long long longlongValue;
 float floatValue;
 double doubleValue;
 bool boolValue;
 SEL selectorValue;
 id objectValue;
 void *pointerValue;
 void *structLocation;
 char *cStringLocation;
 } value;
} NSObjCValue;

NSPoint

typedef struct _NSPoint {
 float x;
 float y;
} NSPoint;

NSPointArray

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef NSPoint *NSPointArray;

NSPointPointer

typedef NSPoint *NSPointPointer;

NSPostingStyle

typedef enum {
 NSPostWhenIdle = 1,
 NSPostASAP = 2,
 NSPostNow = 3
} NSPostingStyle;

NSPropertyListFormat

typedef enum {
 NSPropertyListOpenStepFormat = kCFPropertyListOpenStepFormat,
 NSPropertyListXMLFormat_v1_0 = kCFPropertyListXMLFormat_v1_0,
 NSPropertyListBinaryFormat_v1_0 = kCFPropertyListBinaryFormat_v1_0
} NSPropertyListFormat;

NSPropertyListMutabilityOptions

typedef enum {
 NSPropertyListImmutable = kCFPropertyListImmutable,
 NSPropertyListMutableContainers = kCFPropertyListMutableContainers,
 NSPropertyListMutableContainersAndLeaves = kCFPropertyListMutableContainersAndLeaves
} NSPropertyListMutabilityOptions;

NSRange

typedef struct _NSRange {
 unsigned int location;
 unsigned int length;
} NSRange;

NSRangePointer

typedef NSRange *NSRangePointer;

NSRect

typedef struct _NSRect {
 NSPoint origin;
 NSSize size;
} NSRect;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSRectArray

typedef NSRect *NSRectArray;

NSRectEdge

typedef enum _NSRectEdge {
 NSMinXEdge = 0,
 NSMinYEdge = 1,
 NSMaxXEdge = 2,
 NSMaxYEdge = 3
} NSRectEdge;

NSRectPointer

typedef NSRect *NSRectPointer;

NSRelativePosition

typedef enum {
 NSRelativeAfter = 0,
 NSRelativeBefore
} NSRelativePosition;

NSRoundingMode

typedef enum {
 NSRoundPlain,
 NSRoundDown,
 NSRoundUp,
 NSRoundBankers
} NSRoundingMode;

NSSaveOptions

typedef enum {
 NSSaveOptionsYes = 0,
 NSSaveOptionsNo,
 NSSaveOptionsAsk,
} NSSaveOptions;

NSSearchPathDirectory

typedef enum {
 NSApplicationDirectory = 1,
 NSDemoApplicationDirectory,
 NSDeveloperApplicationDirectory,
 NSAdminApplicationDirectory,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSAdminApplicationDirectory,
 NSLibraryDirectory,
 NSDeveloperDirectory,
 NSUserDirectory,
 NSDocumentationDirectory,
 NSDocumentDirectory,
 NSAllApplicationsDirectory = 100,
 NSAllLibrariesDirectory = 101
} NSSearchPathDirectory;

NSSearchPathDomainMask

typedef enum {
 NSUserDomainMask = 1,
 NSLocalDomainMask = 2,
 NSNetworkDomainMask = 4,
 NSSystemDomainMask = 8,
 NSAllDomainsMask = 0x0ffff,
} NSSearchPathDomainMask;

NSSize

typedef struct _NSSize {
 float width;
 float height;
} NSSize;

NSSizeArray

typedef NSSize *NSSizeArray;

NSSizePointer

typedef NSSize *NSSizePointer;

NSStringEncoding

typedef unsigned NSStringEncoding;

NSSwappedDouble

typedef struct {
 unsigned long long v;
} NSSwappedDouble;

NSSwappedFloat

typedef struct {
 unsigned long v;
} NSSwappedFloat;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

} NSSwappedFloat;

NSTestComparisonOperation

typedef enum {
 NSEqualToComparison = 0,
 NSLessThanOrEqualToComparison,
 NSLessThanComparison,
 NSGreaterThanOrEqualToComparison,
 NSGreaterThanComparison,
 NSBeginsWithComparison,
 NSEndsWithComparison,
 NSContainsComparison,
} NSTestComparisonOperation;

NSTimeInterval

typedef double NSTimeInterval;

NSUncaughtExceptionHandler

typedef volatile void NSUncaughtExceptionHandler(NSException *exception);

NSURLHandleStatus

typedef enum {
 NSURLHandleNotLoaded = 0,
 NSURLHandleLoadSucceeded,
 NSURLHandleLoadInProgress,
 NSURLHandleLoadFailed
} NSURLHandleStatus;

NSWhoseSubelementIdentifier

typedef enum {
 NSIndexSubelement = 0,
 NSEverySubelement = 1,
 NSMiddleSubelement = 2,
 NSRandomSubelement = 3,
 NSNoSubelement = 4
} NSWhoseSubelementIdentifier;

NSZone

typedef struct _NSZone NSZone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Enumerations
This section lists the enumeration constants defined by and used in the Foundation framework.

NSNotFound

enum {
 NSNotFound = 0x7fffffff
};

NSOpenStepUnicodeReservedBase

enum {
 NSOpenStepUnicodeReservedBase = 0xF400
};

NSProcessInfo (Operating Systems)

enum {
 NSWindowsNTOperatingSystem = 1,
 NSWindows95OperatingSystem,
 NSSolarisOperatingSystem,
 NSHPUXOperatingSystem,
 NSMACHOperatingSystem,
 NSSunOSOperatingSystem,
 NSOSF1OperatingSystem
};

NSScriptCommand (General Command Execution
Errors)

enum {
 NSNoScriptError = 0,
 NSReceiverEvaluationScriptError,
 NSKeySpecifierEvaluationScriptError,
 NSArgumentEvaluationScriptError,
 NSReceiversCantHandleCommandScriptError,
 NSRequiredArgumentsMissingScriptError,
 NSArgumentsWrongScriptError,
 NSUnknownKeyScriptError,
 NSInternalScriptError,
 NSOperationNotSupportedForKeyScriptError,
 NSCannotCreateScriptCommandError
};

NSScriptObjectSpecifier (Specifier Evaluation Errors)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enum {
 NSNoSpecifierError = 0,
 NSNoTopLevelContainersSpecifierError,
 NSContainerSpecifierError,
 NSUnknownKeySpecifierError,
 NSInvalidIndexSpecifierError,
 NSInternalSpecifierError,
 NSOperationNotSupportedForKeySpecifierError
};

NSUndoCloseGroupingRunLoopOrdering

enum {
 NSUndoCloseGroupingRunLoopOrdering = 350000
};

Search Types

enum {
 NSCaseInsensitiveSearch = 1,
 NSLiteralSearch = 2,
 NSBackwardsSearch = 4,
 NSAnchoredSearch = 8
};

String Encodings

enum {
 NSASCIIStringEncoding = 1,
 NSNEXTSTEPStringEncoding = 2,
 NSJapaneseEUCStringEncoding = 3,
 NSUTF8StringEncoding = 4,
 NSISOLatin1StringEncoding = 5,
 NSSymbolStringEncoding = 6,
 NSNonLossyASCIIStringEncoding = 7,
 NSShiftJISStringEncoding = 8,
 NSISOLatin2StringEncoding = 9,
 NSUnicodeStringEncoding = 10,
 NSWindowsCP1251StringEncoding = 11,
 NSWindowsCP1252StringEncoding = 12,
 NSWindowsCP1253StringEncoding = 13,
 NSWindowsCP1254StringEncoding = 14,
 NSWindowsCP1250StringEncoding = 15,
 NSISO2022JPStringEncoding = 21,
 NSMacOSRomanStringEncoding = 30,
 NSProprietaryStringEncoding = 65536
};
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Global Variables
This section lists the global variable defined by and used in the Foundation framework.

File Attribute Keys

extern NSString *NSFileType;
extern NSString *NSFileSize;
extern NSString *NSFileModificationDate;
extern NSString *NSFileReferenceCount;
extern NSString *NSFileDeviceIdentifier;
extern NSString *NSFileOwnerAccountNumber;
extern NSString *NSFileGroupOwnerAccountNumber;
extern NSString *NSFilePosixPermissions;
extern NSString *NSFileSystemFileNumber;
extern NSString *NSFileExtensionHidden;
extern NSString *NSFileHFSCreatorCode;
extern NSString *NSFileHFSTypeCode;
extern NSString *NSFileImmutable;
extern NSString *NSFileAppendOnly;
extern NSString *NSFileCreationDate;
extern NSString *NSFileOwnerAccountID;
extern NSString *NSFileGroupOwnerAccountID;

Filesystem Attribute Keys

extern NSString *NSFileSystemSize;
extern NSString *NSFileSystemFreeSize;
extern NSString *NSFileSystemNodes;
extern NSString *NSFileSystemFreeNodes;
extern NSString *NSFileSystemNumber;

File Type Attribute Keys

extern NSString *NSFileTypeDirectory;
extern NSString *NSFileTypeRegular;
extern NSString *NSFileTypeSymbolicLink;
extern NSString *NSFileTypeSocket;
extern NSString *NSFileTypeCharacterSpecial;
extern NSString *NSFileTypeBlockSpecial;
extern NSString *NSFileTypeUnknown;

Language-Dependent Date/Time Information

extern NSString *NSWeekDayNameArray;
extern NSString *NSShortWeekDayNameArray;
extern NSString *NSMonthNameArray;
extern NSString *NSShortMonthNameArray;
extern NSString *NSTimeFormatString;
extern NSString *NSDateFormatString;
extern NSString *NSTimeDateFormatString;
extern NSString *NSShortTimeDateFormatString;
extern NSString *NSAMPMDesignation;
extern NSString *NSHourNameDesignations;
extern NSString *NSYearMonthWeekDesignations;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extern NSString *NSYearMonthWeekDesignations;
extern NSString *NSEarlierTimeDesignations;
extern NSString *NSLaterTimeDesignations;
extern NSString *NSThisDayDesignations;
extern NSString *NSNextDayDesignations;
extern NSString *NSNextNextDayDesignations;
extern NSString *NSPriorDayDesignations;
extern NSString *NSDateTimeOrdering;
extern NSString *NSShortDateFormatString;

Language-Dependent Numeric Information

extern NSString *NSCurrencySymbol;
extern NSString *NSDecimalSeparator;
extern NSString *NSThousandsSeparator;
extern NSString *NSInternationalCurrencyString;
extern NSString *NSPositiveCurrencyFormatString;
extern NSString *NSNegativeCurrencyFormatString;
extern NSString *NSDecimalDigits;

NSAppleEvent Timeouts

extern const double NSAppleEventTimeOutDefault;
extern const double NSAppleEventTimeOutNone;

NSConnectionReplyMode

extern NSString *NSConnectionReplyMode;

NSDefaultRunLoopMode

extern NSString *NSDefaultRunLoopMode;

NSJavaSetup Information

extern NSString * const NSJavaClasses;
extern NSString * const NSJavaRoot;
extern NSString * const NSJavaPath;
extern NSString * const NSJavaUserPath;
extern NSString * const NSJavaLibraryPath;
extern NSString * const NSJavaOwnVirtualMachine;
extern NSString * const NSJavaPathSeparator;

NSHashTable Callbacks

extern const NSHashTableCallBacks NSIntHashCallBacks;
extern const NSHashTableCallBacks NSNonOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSNonRetainedObjectHashCallBacks;
extern const NSHashTableCallBacks NSObjectHashCallBacks;
extern const NSHashTableCallBacks NSOwnedObjectIdentityHashCallBacks;
extern const NSHashTableCallBacks NSOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSPointerToStructHashCallBacks;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSLocalNotificationCenterType

extern NSString * const NSLocalNotificationCenterType;

NSMapTable Key Call Backs

extern const NSMapTableKeyCallBacks NSIntMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerOrNullMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonRetainedObjectMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSObjectMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSOwnedPointerMapKeyCallBacks;

NSMapTable Value Callbacks

extern const NSMapTableValueCallBacks NSIntMapValueCallBacks;
extern const NSMapTableValueCallBacks NSNonOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSObjectMapValueCallBacks;
extern const NSMapTableValueCallBacks NSNonRetainedObjectMapValueCallBacks;
extern const NSMapTableValueCallBacks NSOwnedPointerMapValueCallBacks;

NSNetServices Errors

extern NSString *NSNetServicesErrorCode;
extern NSString *NSNetServicesErrorDomain;

NSURL Schemes

extern NSString *NSURLFileScheme;

NSURLHandle FTP Property Keys

extern NSString *NSFTPPropertyUserLoginKey;
extern NSString *NSFTPPropertyUserPasswordKey;
extern NSString *NSFTPPropertyActiveTransferModeKey;
extern NSString *NSFTPPropertyFileOffsetKey;

NSURLHandle HTTP Property Keys

extern NSString *NSHTTPPropertyStatusCodeKey;
extern NSString *NSHTTPPropertyStatusReasonKey;
extern NSString *NSHTTPPropertyServerHTTPVersionKey;
extern NSString *NSHTTPPropertyRedirectionHeadersKey;
extern NSString *NSHTTPPropertyErrorPageDataKey;
extern NSString *NSHTTPPropertyHTTPProxy;

NSUserDefaults Domains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extern NSString *NSGlobalDomain;
extern NSString *NSArgumentDomain;
extern NSString *NSRegistrationDomain;

Zero Constants

extern const NSPoint NSZeroPoint;
extern const NSSize NSZeroSize;
extern const NSRect NSZeroRect;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.4 Constants
This section lists the constant macros defined by and used in the Foundation framework.

NSDecimalMaxSize

#define NSDecimalMaxSize (8)

NSDecimalNoScale

#define NSDecimalNoScale SHRT_MAX

NSNotAnIntMapKey

#define NSNotAnIntMapKey((const void *)0x80000000)

NSNotAPointerMapKey

#define NSNotAPointerMapKey((const void *)0xffffffff)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.5 Exceptions
This section lists the names of exceptions raised by Foundation classes.

Archiving

extern NSString *NSInconsistentArchiveException;

Connection

extern NSString *NSFailedAuthenticationException;

General Foundation Exception Names

extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;
extern NSString *NSInternalInconsistencyException;
extern NSString *NSMallocException;
extern NSString *NSObjectInaccessibleException;
extern NSString *NSObjectNotAvailableException;
extern NSString *NSDestinationInvalidException;
extern NSString *NSPortTimeoutException;
extern NSString *NSInvalidSendPortException;
extern NSString *NSInvalidReceivePortException;
extern NSString *NSPortSendException;
extern NSString *NSPortReceiveException;
extern NSString *NSOldStyleException;

Keyed Archiving

extern NSString *NSInvalidArchiveOperationException;
extern NSString *NSInvalidUnarchiveOperationException;

NSDecimalNumber

extern NSString *NSDecimalNumberExactnessException;
extern NSString *NSDecimalNumberOverflowException;
extern NSString *NSDecimalNumberUnderflowException;
extern NSString *NSDecimalNumberDivideByZeroException;

NSFileHandle

extern NSString *NSFileHandleOperationException;

NSScriptKeyValueCoding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extern NSString *NSOperationNotSupportedForKeyException;

NSString Handling

extern NSString *NSParseErrorException;
extern NSString *NSCharacterConversionException;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Foundation Functions
This chapter lists the functions defined by the Foundation framework. The functions are grouped into the following
categories:

Assertions
Bundles
Byte ordering
Decimals
Java setup
Hash tables
HFS file types
Map tables
Object allocation
Objective-C runtime
Path utilities
Points
Ranges
Rects
Sizes
Uncaught exceptions
Zones

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Assertions
The assertion macros are used within Objective-C methods or C functions to check a condition, and generate an
assertion failure if the condition is false. The NSAssert macros are used within Objective-C methods, while the NSCAssert
macros are used within C functions. The assertion macros work with a thread's assertion handler, which is an instance
of the class NSAssertionHandler. When an assertion is generated the assertion handler will print an error message with
the name of the method and class or function in which the assertion failure occurred. The description strings take printf
style formatting.

NSAssert

NSAssert(condition, NSString *description)

NSAssert1 through NSAssert5

NSAssert1(condition, NSString *description, arg1)

NSAssert2(condition, NSString *description, arg1, arg2)

NSAssert3(condition, NSString *description, arg1, arg2, arg3)

NSAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)

NSAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

NSCAssert

NSCAssert(condition, NSString *description)

NSCAssert1 through NSCAssert5

NSCAssert1(condition, NSString *description, arg1)

NSCAssert2(condition, NSString *description, arg1, arg2)

NSCAssert3(condition, NSString *description, arg1, arg2, arg3)

NSCAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)

NSCAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

NSCParameterAssert

NSCParameterAssert(condition)

NSParameterAssert

NSParameterAssert(condition)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Bundles
The bundle functions are used to access localized string resources contained in an application bundle.

NSLocalizedString

NSString *NSLocalizedString(NSString *key, NSString *comment)

NSLocalizedStringFromTable

NSString *NSLocalizedStringFromTable(NSString *key, NSString *tableName, NSString *comment)

NSLocalizedStringFromTableInBundle

NSString *NSLocalizedStringFromTableInBundle(NSString *key, NSString *tableName, NSBundle *bundle, NSString *comment)

NSLocalizedStringWithDefaultValue

NSString NSLocalizedStringWithDefaultValue(NSString *key, NSString *tableName, NSBundle *bundle, NSString *value,
NSString *comment)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 Byte Ordering
The byte ordering functions are used to convert primitive data type values from big-endian to little-endian, and vice
versa.

NSConvertHostDoubleToSwapped

NSSwappedDouble NSConvertHostDoubleToSwapped(double x)

NSConvertHostFloatToSwapped

NSSwappedFloat NSConvertHostFloatToSwapped(float x)

NSConvertSwappedDoubleToHost

double NSConvertSwappedDoubleToHost(NSSwappedDouble x)

NSConvertSwappedFloatToHost

float NSConvertSwappedFloatToHost(NSSwappedFloat x)

NSHostByteOrder

unsigned int NSHostByteOrder(void)

NSSwapBigDoubleToHost

double NSSwapBigDoubleToHost(NSSwappedDouble x)

NSSwapBigFloatToHost

float NSSwapBigFloatToHost(NSSwappedFloat x)

NSSwapBigIntToHost

unsigned int NSSwapBigIntToHost(unsigned int x)

NSSwapBigLongLongToHost

unsigned long long NSSwapBigLongLongToHost(unsigned long long x)

NSSwapBigLongToHost

unsigned long NSSwapBigLongToHost(unsigned long x)

NSSwapBigShortToHost

unsigned short NSSwapBigShortToHost(unsigned short x)

NSSwapDouble

NSSwappedDouble NSSwapDouble(NSSwappedDouble x)

NSSwapFloat

NSSwappedFloat NSSwapFloat(NSSwappedFloat x)

NSSwapHostDoubleToBig

NSSwappedDouble NSSwapHostDoubleToBig(double x)

NSSwapHostDoubleToLittle

NSSwappedDouble NSSwapHostDoubleToLittle(double x)

NSSwapHostFloatToBig

NSSwappedFloat NSSwapHostFloatToBig(float x)

NSSwapHostFloatToLittle

NSSwappedFloat NSSwapHostFloatToLittle(float x)

NSSwapHostIntToBig

unsigned int NSSwapHostIntToBig(unsigned int x)

NSSwapHostIntToLittle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsigned int NSSwapHostIntToLittle(unsigned int x)

NSSwapHostLongLongToBig

unsigned long long NSSwapHostLongLongToBig(unsigned long long x)

NSSwapHostLongLongToLittle

unsigned long long NSSwapHostLongLongToLittle(unsigned long long x)

NSSwapHostLongToBig

unsigned long NSSwapHostLongToBig(unsigned long x)

NSSwapHostLongToLittle

unsigned long NSSwapHostLongToLittle(unsigned long x)

NSSwapHostShortToBig

unsigned short NSSwapHostShortToBig(unsigned short x)

NSSwapHostShortToLittle

unsigned short NSSwapHostShortToLittle(unsigned short x)

NSSwapInt

unsigned int NSSwapInt (unsigned int inv)

NSSwapLittleDoubleToHost

double NSSwapLittleDoubleToHost(NSSwappedDouble x)

NSSwapLittleFloatToHost

float NSSwapLittleFloatToHost(NSSwappedFloat x)

NSSwapLittleIntToHost

unsigned int NSSwapLittleIntToHost(unsigned int x)

NSSwapLittleLongLongToHost

unsigned long long NSSwapLittleLongLongToHost(unsigned long long x)

NSSwapLittleLongToHost

unsigned long NSSwapLittleLongToHost(unsigned long x)

NSSwapLittleShortToHost

unsigned short NSSwapLittleShortToHost(unsigned short x)

NSSwapLong

unsigned long NSSwapLong(unsigned long inv)

NSSwapLongLong

unsigned long long NSSwapLongLong(unsigned long long inv)

NSSwapShort

unsigned short NSSwapShort (unsigned short inv)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 Decimals
These functions are used to perform decimal arithmetic with NSDecimal type structs. The Foundation class
NSDecimalNumber may also be used for decimal arithmetic.

NSDecimalAdd

NSCalculationError NSDecimalAdd(NSDecimal *result, const NSDecimal *leftOperand, const NSDecimal *rightOperand,
NSRoundingMode roundingMode)

NSDecimalCompact

void NSDecimalCompact(NSDecimal *number)

NSDecimalCompare

NSComparisonResult NSDecimalCompare(const NSDecimal *leftOperand, const NSDecimal *rightOperand)

NSDecimalCopy

void NSDecimalCopy(NSDecimal *destination, const NSDecimal *source)

NSDecimalDivide

NSCalculationError NSDecimalDivide(NSDecimal *result, const NSDecimal *leftOperand, const NSDecimal *rightOperand,
NSRoundingMode roundingMode)

NSDecimalMultiply

NSCalculationError NSDecimalMultiply(NSDecimal *result, const NSDecimal *leftOperand, const NSDecimal *rightOperand,
NSRoundingMode roundingMode)

NSDecimalMultiplyByPowerOf10

NSCalculationError NSDecimalMultiplyByPowerOf10(NSDecimal *result, const NSDecimal *number, short power,
NSRoundingMode roundingMode)

NSDecimalNormalize

NSCalculationError NSDecimalNormalize(NSDecimal *number1, NSDecimal *number2, NSRoundingMode roundingMode)

NSDecimalPower

NSCalculationError NSDecimalPower(NSDecimal *result, const NSDecimal *number, unsigned power, NSRoundingMode
roundingMode)

NSDecimalRound

void NSDecimalRound(NSDecimal *result, const NSDecimal *number, int scale, NSRoundingMode roundingMode)

NSDecimalString

NSString *NSDecimalString(const NSDecimal *dcm, NSDictionary *locale)

NSDecimalSubtract

NSCalculationError NSDecimalSubtract(NSDecimal *result, const NSDecimal *leftOperand, const NSDecimal *rightOperand,
NSRoundingMode roundingMode)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.5 Java Setup
These functions are used to interact with a Java Virtual Machine, Java classes, and the Java-to-Objective-C bridge.

NSJavaBundleCleanup

void NSJavaBundleCleanup(NSBundle *bundle, NSDictionary *plist)

NSJavaBundleSetup

id NSJavaBundleSetup(NSBundle *bundle, NSDictionary *plist)

NSJavaClassesForBundle

NSArray *NSJavaClassesForBundle(NSBundle *bundle, BOOL usesyscl, id *vm)

NSJavaClassesFromPath

NSArray *NSJavaClassesFromPath(NSArray *path, NSArray *wanted, BOOL usesyscl, id *vm)

NSJavaNeedsToLoadClasses

BOOL NSJavaNeedsToLoadClasses(NSDictionary *plist)

NSJavaNeedsVirtualMachine

BOOL NSJavaNeedsVirtualMachine(NSDictionary *plist)

NSJavaObjectNamedInPath

id NSJavaObjectNamedInPath(NSString *name, NSArray *path)

NSJavaProvidesClasses

BOOL NSJavaProvidesClasses(NSDictionary *plist)

NSJavaSetup

id NSJavaSetup(NSDictionary *plist)

NSJavaSetupVirtualMachine

id NSJavaSetupVirtualMachine(void)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.6 Hash Tables
These functions are used to create and manipulate hash tables, which are structs of type NSHashTable.

NSAllHashTableObjects

NSArray *NSAllHashTableObjects(NSHashTable *table)

NSCompareHashTables

BOOL NSCompareHashTables(NSHashTable *table1, NSHashTable *table2)

NSCopyHashTableWithZone

NSHashTable *NSCopyHashTableWithZone(NSHashTable *table, NSZone *zone)

NSCountHashTable

unsigned NSCountHashTable(NSHashTable *table)

NSCreateHashTable

NSHashTable *NSCreateHashTable(NSHashTableCallBacks callBacks, unsigned capacity)

NSCreateHashTableWithZone

NSHashTable *NSCreateHashTableWithZone(NSHashTableCallBacks callBacks, unsigned capacity, NSZone *zone)

NSEndHashTableEnumeration

void NSEndHashTableEnumeration(NSHashEnumerator *enumerator)

NSEnumerateHashTable

NSHashEnumerator NSEnumerateHashTable(NSHashTable *table)

NSFreeHashTable

void NSFreeHashTable(NSHashTable *table)

NSHashGet

void *NSHashGet(NSHashTable *table, const void *pointer)

NSHashInsert

void NSHashInsert(NSHashTable *table, const void *pointer)

NSHashInsertIfAbsent

void *NSHashInsertIfAbsent(NSHashTable *table, const void *pointer)

NSHashInsertKnownAbsent

void NSHashInsertKnownAbsent(NSHashTable *table, const void *pointer)

NSHashRemove

void NSHashRemove(NSHashTable *table, const void *pointer)

NSNextHashEnumeratorItem

void *NSNextHashEnumeratorItem(NSHashEnumerator *enumerator)

NSResetHashTable

void NSResetHashTable(NSHashTable *table)

NSStringFromHashTable

NSString *NSStringFromHashTable(NSHashTable *table)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.7 HFS File Types
These functions are used to determine the HFS file type of a file, as well as to convert between HFS file types and HFS
file codes.

NSFileTypeForHFSTypeCode

NSString *NSFileTypeForHFSTypeCode(OSType hfsFileTypeCode)

NSHFSTypeCodeFromFileType

OSType NSHFSTypeCodeFromFileType(NSString *fileTypeString)

NSHFSTypeOfFile

NSString *NSHFSTypeOfFile(NSString *fullFilePath)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.8 Map Tables
These functions are used to create and manipulate map tables, which are structs of type NSMapTable.

NSAllMapTableKeys

NSArray *NSAllMapTableKeys(NSMapTable *table)

NSAllMapTableValues

NSArray *NSAllMapTableValues(NSMapTable *table)

NSCompareMapTables

BOOL NSCompareMapTables(NSMapTable *table1, NSMapTable *table2)

NSCopyMapTableWithZone

NSMapTable *NSCopyMapTableWithZone(NSMapTable *table, NSZone *zone)

NSCountMapTable

unsigned NSCountMapTable(NSMapTable *table)

NSCreateMapTable

NSMapTable *NSCreateMapTable(NSMapTableKeyCallBacks keyCallBacks, NSMap-TableValueCallBacks valueCallBacks,
unsigned capacity)

NSCreateMapTableWithZone

NSMapTable *NSCreateMapTableWithZone(NSMapTableKeyCallBacks keyCallBacks, NSMapTableValueCallBacks valueCallBacks,
unsigned capacity, NSZone *zone)

NSEndMapTableEnumeration

void NSEndMapTableEnumeration(NSMapEnumerator *enumerator)

NSEnumerateMapTable

NSMapEnumerator NSEnumerateMapTable(NSMapTable *table)

NSFreeMapTable

void NSFreeMapTable(NSMapTable *table)

NSMapGet

void *NSMapGet(NSMapTable *table, const void *key)

NSMapInsert

void NSMapInsert(NSMapTable *table, const void *key, const void *value)

NSMapInsertIfAbsent

void *NSMapInsertIfAbsent(NSMapTable *table, const void *key, const void *value)

NSMapInsertKnownAbsent

void NSMapInsertKnownAbsent(NSMapTable *table, const void *key, const void *value)

NSMapMember

BOOL NSMapMember(NSMapTable *table, const void *key, void **originalKey, void **value)

NSMapRemove

void NSMapRemove(NSMapTable *table, const void *key)

NSNextMapEnumeratorPair

BOOL NSNextMapEnumeratorPair(NSMapEnumerator *enumerator, void **key, void **value)

NSResetMapTable

void NSResetMapTable(NSMapTable *table)

NSStringFromMapTable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSStringFromMapTable

NSString *NSStringFromMapTable(NSMapTable *table)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.9 Object Allocation
These functions may be used to create and destroy Objective-C objects, as well as to manage the reference counts of
objects.

NSAllocateObject

id NSAllocateObject(Class aClass, unsigned extraBytes, NSZone *zone)

NSCopyObject

id NSCopyObject(id object, unsigned extraBytes, NSZone *zone)

NSDeallocateObject

void NSDeallocateObject(id object)

NSDecrementExtraRefCountWasZero

BOOL NSDecrementExtraRefCountWasZero(id object)

NSExtraRefCount

unsigned NSExtraRefCount(id object)

NSIncrementExtraRefCount

void NSIncrementExtraRefCount(id object)

NSShouldRetainWithZone

BOOL NSShouldRetainWithZone(id anObject, NSZone *requestedZone)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.10 Objective-C Runtime
These functions are used to obtain Objective-C runtime data types such as selectors and class objects. NSLog and
NSLogv are used to print information to the standard output of an application.

NSClassFromString

Class NSClassFromString(NSString *aClassName)

NSGetSizeAndAlignment

const char *NSGetSizeAndAlignment(const char *typePtr, unsigned int *sizep, unsigned int *alignp)

NSLog

void NSLog(NSString *format, ...)

NSLogv

void NSLogv(NSString *format, va_list args)

NSSelectorFromString

SEL NSSelectorFromString(NSString *aSelectorName)

NSStringFromClass

NSString *NSStringFromClass(Class aClass)

NSStringFromSelector

NSString *NSStringFromSelector(SEL aSelector)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.11 Path Utilities
These functions are used to get filesystem paths to common files and directories such as the current user's home
directory. NSFullUserName is used to obtain the long username of the current username, while NSUserName returns a
user's short username.

NSFullUserName

NSString *NSFullUserName(void)

NSHomeDirectory

NSString *NSHomeDirectory(void)

NSHomeDirectoryForUser

NSString *NSHomeDirectoryForUser(NSString *userName)

NSOpenStepRootDirectory

NSString *NSOpenStepRootDirectory(void)

NSSearchPathForDirectoriesInDomains

NSArray *NSSearchPathForDirectoriesInDomains(NSSearchPathDirectory directory, NSSearchPathDomainMask domainMask,
BOOL expandTilde)

NSTemporaryDirectory

NSString *NSTemporaryDirectory(void)

NSUserName

NSString *NSUserName(void)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.12 Points
These functions are used to create and manipulate NSPoint structures.

NSEqualPoints

BOOL NSEqualPoints(NSPoint aPoint, NSPoint bPoint)

NSMakePoint

NSPoint NSMakePoint(float x, float y)

NSPointFromString

NSPoint NSPointFromString(NSString *aString)

NSStringFromPoint

NSString *NSStringFromPoint(NSPoint aPoint)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.13 Ranges
These functions are used to create and manipulate NSRange structures.

NSEqualRanges

BOOL NSEqualRanges(NSRange range1, NSRange range2)

NSIntersectionRange

NSRange NSIntersectionRange(NSRange range1, NSRange range2)

NSLocationInRange

BOOL NSLocationInRange(unsigned int index, NSRange aRange)

NSMakeRange

NSRange NSMakeRange(unsigned int location, unsigned int length)

NSMaxRange

unsigned int NSMaxRange(NSRange range)

NSRangeFromString

NSRange NSRangeFromString(NSString *aString)

NSStringFromRange

NSString *NSStringFromRange(NSRange range)

NSUnionRange

NSRange NSUnionRange(NSRange range1, NSRange range2)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.14 Rects
These functions are used to create and manipulate NSRect structures.

NSContainsRect

BOOL NSContainsRect(NSRect aRect, NSRect bRect)

NSDivideRect

void NSDivideRect(NSRect inRect, NSRect *slice, NSRect *rem, float amount, NSRectEdge edge)

NSEqualRects

BOOL NSEqualRects(NSRect aRect, NSRect bRect)

NSHeight

float NSHeight(NSRect aRect)

NSInsetRect

NSRect NSInsetRect(NSRect aRect, float dX, float dY)

NSIntegralRect

NSRect NSIntegralRect(NSRect aRect)

NSIntersectionRect

NSRect NSIntersectionRect(NSRect aRect, NSRect bRect)

NSIntersectsRect

BOOL NSIntersectsRect(NSRect aRect, NSRect bRect)

NSIsEmptyRect

BOOL NSIsEmptyRect(NSRect aRect)

NSMakeRect

NSRect NSMakeRect(float x, float y, float w, float h)

NSMaxX

float NSMaxX(NSRect aRect)

NSMaxY

float NSMaxY(NSRect aRect)

NSMidX

float NSMidX(NSRect aRect)

NSMidY

float NSMidY(NSRect aRect)

NSMinX

float NSMinX(NSRect aRect)

NSMinY

float NSMinY(NSRect aRect)

NSMouseInRect

BOOL NSMouseInRect(NSPoint aPoint, NSRect aRect, BOOL isFlipped)

NSOffsetRect

NSRect NSOffsetRect(NSRect aRect, float dX, float dY)

NSPointInRect

BOOL NSPointInRect(NSPoint aPoint, NSRect aRect)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BOOL NSPointInRect(NSPoint aPoint, NSRect aRect)

NSRectFromString

NSRect NSRectFromString(NSString *aString)

NSStringFromRect

NSString *NSStringFromRect(NSRect aRect)

NSUnionRect

NSRect NSUnionRect(NSRect aRect, NSRect bRect)

NSWidth

float NSWidth(NSRect aRect)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.15 Sizes
These functions are used to create and manipulate NSSize structures.

NSEqualSizes

BOOL NSEqualSizes(NSSize aSize, NSSize bSize)

NSMakeSize

NSSize NSMakeSize(float width, float height)

NSSizeFromString

NSSize NSSizeFromString(NSString *aString)

NSStringFromSize

NSString *NSStringFromSize(NSSize aSize)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.16 Uncaught Exceptions
These two functions are used to get and set the function that an application uses to handle uncaught exceptions.

NSGetUncaughtExceptionHandler

NSUncaughtExceptionHandler *NSGetUncaughtExceptionHandler(void)

NSSetUncaughtExceptionHandler

void NSSetUncaughtExceptionHandler(NSUncaughtExceptionHandler *)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.17 Zones
These functions are used to manipulate memory zones, represented by the data type NSZone.

NSAllocateMemoryPages

void *NSAllocateMemoryPages(unsigned bytes)

NSCopyMemoryPages

void NSCopyMemoryPages(const void *source, void *dest, unsigned bytes)

NSCreateZone

NSZone *NSCreateZone(unsigned startSize, unsigned granularity, BOOL canFree)

NSDeallocateMemoryPages

void NSDeallocateMemoryPages(void *ptr, unsigned bytes)

NSDefaultMallocZone

NSZone *NSDefaultMallocZone(void)

NSLogPageSize

unsigned NSLogPageSize(void)

NSPageSize

unsigned NSPageSize(void)

NSRealMemoryAvailable

unsigned NSRealMemoryAvailable(void)

NSRecycleZone

void NSRecycleZone(NSZone *zone)

NSReturnAddress

void *NSReturnAddress(unsigned frame)

NSRoundDownToMultipleOfPageSize

unsigned NSRoundDownToMultipleOfPageSize(unsigned bytes)

NSRoundUpToMultipleOfPageSize

unsigned NSRoundUpToMultipleOfPageSize(unsigned bytes)

NSSetZoneName

void NSSetZoneName(NSZone *zone, NSString *name)

NSZoneCalloc

void *NSZoneCalloc(NSZone *zone, unsigned numElems, unsigned byteSize)

NSZoneFree

void NSZoneFree(NSZone *zone, void *ptr)

NSZoneFromPointer

NSZone *NSZoneFromPointer(void *ptr)

NSZoneMalloc

void *NSZoneMalloc(NSZone *zone, unsigned size)

NSZoneName

NSString *NSZoneName(NSZone *zone)

NSZoneRealloc

void *NSZoneRealloc(NSZone *zone, void *ptr, unsigned size)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void *NSZoneRealloc(NSZone *zone, void *ptr, unsigned size)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. Application Kit Types and Constants
This chapter describes the data types and constants found in the Foundation framework, and is divided into the
following sections:

Data types
Enumerations
Global variables
Exception names

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Data Types
This section lists the data types defined by and used in the Application Kit.

NSAffineTransformStruct

typedef struct _NSAffineTransformStruct {
 float m11, m12, m21, m22;
 float tX, tY;
} NSAffineTransformStruct;

NSApplicationTerminateReply

typedef enum NSApplicationTerminateReply {
 NSTerminateCancel = 0,
 NSTerminateNow = 1,
 NSTerminateLater = 2
} NSApplicationTerminateReply;

NSBackingStoreType

typedef enum _NSBackingStoreType {
 NSBackingStoreRetained = 0,
 NSBackingStoreNonretained = 1,
 NSBackingStoreBuffered = 2
} NSBackingStoreType;

NSBezelStyle

typedef enum _NSBezelStyle {
 NSRoundedBezelStyle = 1,
 NSRegularSquareBezelStyle = 2,
 NSThickSquareBezelStyle = 3,
 NSThickerSquareBezelStyle = 4,
 NSShadowlessSquareBezelStyle = 6,
 NSCircularBezelStyle = 7
} NSBezelStyle;

NSBezierPathElement

typedef enum {
 NSMoveToBezierPathElement,
 NSLineToBezierPathElement,
 NSCurveToBezierPathElement,
 NSClosePathBezierPathElement
} NSBezierPathElement;

NSBitmapImageFileType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum _NSBitmapImageFileType {
 NSTIFFFileType,
 NSBMPFileType,
 NSGIFFileType,
 NSJPEGFileType,
 NSPNGFileType
} NSBitmapImageFileType;

NSBorderType

typedef enum _NSBorderType {
 NSNoBorder = 0,
 NSLineBorder = 1,
 NSBezelBorder = 2,
 NSGrooveBorder = 3
} NSBorderType;

NSBoxType

typedef enum {
 NSBoxPrimary = 0,
 NSBoxSecondary = 1,
 NSBoxSeparator =2,
 NSBoxOldStyle =3
}NSBoxType;

NSButtonType

typedef enum _NSButtonType {
 NSMomentaryLightButton = 0,
 NSPushOnPushOffButton = 1,
 NSToggleButton = 2,
 NSSwitchButton = 3,
 NSRadioButton = 4,
 NSMomentaryChangeButton = 5,
 NSOnOffButton = 6,
 NSMomentaryPushInButton = 7
} NSButtonType;

NSCellAttribute

typedef enum _NSCellAttribute {
 NSCellDisabled = 0,
 NSCellState = 1,
 NSPushInCell = 2,
 NSCellEditable = 3,
 NSChangeGrayCell = 4,
 NSCellHighlighted = 5,
 NSCellLightsByContents = 6,
 NSCellLightsByGray = 7,
 NSChangeBackgroundCell = 8,
 NSCellLightsByBackground = 9,
 NSCellIsBordered = 10,
 NSCellHasOverlappingImage = 11,
 NSCellHasImageHorizontal = 12,
 NSCellHasImageOnLeftOrBottom = 13,
 NSCellChangesContents = 14,
 NSCellIsInsetButton = 15,
 NSCellAllowsMixedState= 16
} NSCellAttribute;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSCellImagePosition

typedef enum _NSCellImagePosition {
 NSNoImage = 0,
 NSImageOnly = 1,
 NSImageLeft = 2,
 NSImageRight = 3,
 NSImageBelow = 4,
 NSImageAbove = 5,
 NSImageOverlaps = 6
} NSCellImagePosition;

NSCellState

typedef enum _NSCellState {
 NSMixedState = -1,
 NSOffState = 0,
 NSOnState = 1
} NSCellStateValue;

NSCellType

typedef enum _NSCellType {
 NSNullCellType = 0,
 NSTextCellType = 1,
 NSImageCellType = 2
} NSCellType;

NSCharacterCollection

typedef enum {
 NSIdentityMappingCharacterCollection = 0,
 NSAdobeCNS1CharacterCollection = 1,
 NSAdobeGB1CharacterCollection = 2,
 NSAdobeJapan1CharacterCollection = 3,
 NSAdobeJapan2CharacterCollection = 4,
 NSAdobeKorea1CharacterCollection = 5,
} NSCharacterCollection;

NSCompositingOperation

typedef enum _NSCompositingOperation {
 NSCompositeClear = 0,
 NSCompositeCopy = 1,
 NSCompositeSourceOver = 2,
 NSCompositeSourceIn = 3,
 NSCompositeSourceOut = 4,
 NSCompositeSourceAtop = 5,
 NSCompositeDestinationOver = 6,
 NSCompositeDestinationIn = 7,
 NSCompositeDestinationOut = 8,
 NSCompositeDestinationAtop = 9,
 NSCompositeXOR = 10,
 NSCompositePlusDarker = 11,
 NSCompositeHighlight = 12,
 NSCompositePlusLighter = 13
} NSCompositingOperation;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

} NSCompositingOperation;

NSControlSize

typedef enum _NSControlSize {
 NSRegularControlSize,
 NSSmallControlSize
} NSControlSize;

NSControlTint

typedef enum _NSControlTint {
 NSDefaultControlTint = 0,
 NSClearControlTint = 7
} NSControlTint;

NSDocumentChangeType

typedef enum _NSDocumentChangeType {
 NSChangeDone = 0,
 NSChangeUndone = 1,
 NSChangeCleared = 2
} NSDocumentChangeType;

NSDragOperation

typedef unsigned int NSDragOperation;

NSDrawerState

typedef enum _NSDrawerState {
 NSDrawerClosedState = 0,
 NSDrawerOpeningState = 1,
 NSDrawerOpenState = 2,
 NSDrawerClosingState = 3
} NSDrawerState;

NSEventType

typedef enum _NSEventType {
 NSLeftMouseDown = 1,
 NSLeftMouseUp = 2,
 NSRightMouseDown = 3,
 NSRightMouseUp = 4,
 NSMouseMoved = 5,
 NSLeftMouseDragged = 6,
 NSRightMouseDragged = 7,
 NSMouseEntered = 8,
 NSMouseExited = 9,
 NSKeyDown = 10,
 NSKeyUp = 11,
 NSFlagsChanged = 12,
 NSAppKitDefined = 13,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSAppKitDefined = 13,
 NSSystemDefined = 14,
 NSApplicationDefined = 15,
 NSPeriodic = 16,
 NSCursorUpdate = 17,
 NSScrollWheel = 22,
 NSOtherMouseDown = 25,
 NSOtherMouseUp = 26,
 NSOtherMouseDragged = 27
} NSEventType;

NSFocusRingPlacement

typedef enum {
 NSFocusRingOnly = 0,
 NSFocusRingBelow = 1,
 NSFocusRingAbove = 2
} NSFocusRingPlacement;

NSFontAction

typedef enum _NSFontAction {
 NSNoFontChangeAction = 0,
 NSViaPanelFontAction = 1,
 NSAddTraitFontAction = 2,
 NSSizeUpFontAction = 3,
 NSSizeDownFontAction = 4,
 NSHeavierFontAction = 5,
 NSLighterFontAction = 6,
 NSRemoveTraitFontAction = 7
} NSFontAction;

NSFontTraitMask

typedef unsigned int NSFontTraitMask;

NSGlyph

typedef unsigned int NSGlyph;

NSGlyphInscription

typedef enum {
 NSGlyphInscribeBase = 0,
 NSGlyphInscribeBelow = 1,
 NSGlyphInscribeAbove = 2,
 NSGlyphInscribeOverstrike = 3,
 NSGlyphInscribeOverBelow = 4
} NSGlyphInscription;

NSGlyphLayoutMode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum _NSGlyphLayoutMode {
 NSGlyphLayoutAtAPoint = 0,
 NSGlyphLayoutAgainstAPoint,
 NSGlyphLayoutWithPrevious
} NSGlyphLayoutMode;

NSGlyphRelation

typedef enum _NSGlyphRelation {
 NSGlyphBelow = 1,
 NSGlyphAbove = 2
} NSGlyphRelation;

NSGradientType

typedef enum _NSGradientType {
 NSGradientNone = 0,
 NSGradientConcaveWeak = 1,
 NSGradientConcaveStrong = 2,
 NSGradientConvexWeak = 3,
 NSGradientConvexStrong = 4
} NSGradientType;

NSImageAlignment

typedef enum {
 NSImageAlignCenter = 0,
 NSImageAlignTop,
 NSImageAlignTopLeft,
 NSImageAlignTopRight,
 NSImageAlignLeft,
 NSImageAlignBottom,
 NSImageAlignBottomLeft,
 NSImageAlignBottomRight,
 NSImageAlignRight
} NSImageAlignment;

NSImageCacheMode

typedef enum {
 NSImageCacheDefault,
 NSImageCacheAlways,
 NSImageCacheBySize,
 NSImageCacheNever
} NSImageCacheMode;

NSImageFrameStyle

typedef enum {
 NSImageFrameNone = 0,
 NSImageFramePhoto,
 NSImageFrameGrayBezel,
 NSImageFrameGroove,
 NSImageFrameButton
} NSImageFrameStyle;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSImageInterpolation

typedef enum {
 NSImageInterpolationDefault,
 NSImageInterpolationNone,
 NSImageInterpolationLow,
 NSImageInterpolationHigh
} NSImageInterpolation;

NSImageLoadStatus

typedef enum {
 NSImageLoadStatusCompleted,
 NSImageLoadStatusCancelled,
 NSImageLoadStatusInvalidData,
 NSImageLoadStatusUnexpectedEOF,
 NSImageLoadStatusReadError
} NSImageLoadStatus;

NSImageRepLoadStatus

typedef enum {
 NSImageRepLoadStatusUnknownType = -1,
 NSImageRepLoadStatusReadingHeader = -2,
 NSImageRepLoadStatusWillNeedAllData = -3,
 NSImageRepLoadStatusInvalidData = -4,
 NSImageRepLoadStatusUnexpectedEOF = -5,
 NSImageRepLoadStatusCompleted = -6
} NSImageRepLoadStatus;

NSImageScaling

typedef enum {
 NSScaleProportionally = 0,
 NSScaleToFit,
 NSScaleNone
} NSImageScaling;

NSInterfaceStyle

typedef enum {
 NSNoInterfaceStyle = 0,
 NSNextStepInterfaceStyle = 1,
 NSWindows95InterfaceStyle = 2,
 NSMacintoshInterfaceStyle = 3
} NSInterfaceStyle;

NSLayoutDirection

typedef enum _NSLayoutDirection {
 NSLayoutLeftToRight = 0,
 NSLayoutRightToLeft
} NSLayoutDirection;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

} NSLayoutDirection;

NSLayoutStatus

typedef enum _NSLayoutStatus {
 NSLayoutNotDone = 0,
 NSLayoutDone,
 NSLayoutCantFit,
 NSLayoutOutOfGlyphs
} NSLayoutStatus;

NSLineBreakMode

typedef enum _NSLineBreakMode {
 NSLineBreakByWordWrapping = 0,
 NSLineBreakByCharWrapping,
 NSLineBreakByClipping,
 NSLineBreakByTruncatingHead,
 NSLineBreakByTruncatingTail,
 NSLineBreakByTruncatingMiddle
} NSLineBreakMode;

NSLineCapStyle

typedef enum {
 NSButtLineCapStyle = 0,
 NSRoundLineCapStyle = 1,
 NSSquareLineCapStyle = 2
} NSLineCapStyle;

NSLineJoinStyle

typedef enum {
 NSMiterLineJoinStyle = 0,
 NSRoundLineJoinStyle = 1,
 NSBevelLineJoinStyle = 2
} NSLineJoinStyle;

NSLineMovementDirection

typedef enum {
 NSLineDoesntMove = 0,
 NSLineMovesLeft = 1,
 NSLineMovesRight = 2,
 NSLineMovesDown = 3,
 NSLineMovesUp = 4
} NSLineMovementDirection;

NSLineSweepDirection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum {
 NSLineSweepLeft = 0,
 NSLineSweepRight = 1,
 NSLineSweepDown = 2,
 NSLineSweepUp = 3
} NSLineSweepDirection;

NSMatrixMode

typedef enum _NSMatrixMode {
 NSRadioModeMatrix = 0,
 NSHighlightModeMatrix = 1,
 NSListModeMatrix = 2,
 NSTrackModeMatrix =3
} NSMatrixMode;

NSModalSession

typedef struct _NSModalSession *NSModalSession;

NSMultibyteGlyphPacking

typedef enum _NSMultibyteGlyphPacking {
 NSOneByteGlyphPacking,
 NSJapaneseEUCGlyphPacking,
 NSAsciiWithDoubleByteEUCGlyphPacking,
 NSTwoByteGlyphPacking,
 NSFourByteGlyphPacking,
 NSNativeShortGlyphPacking
} NSMultibyteGlyphPacking;

NSOpenGLContextAuxiliary

typedef struct _CGLContextObject NSOpenGLContextAuxiliary;

NSOpenGLContextParameter

typedef enum {
 NSOpenGLCPSwapRectangle = 200,
 NSOpenGLCPSwapRectangleEnable = 201,
 NSOpenGLCPRasterizationEnable = 221,
 NSOpenGLCPSwapInterval = 222,
 NSOpenGLCPSurfaceOrder = 235,
 NSOpenGLCPSurfaceOpacity = 236,
 NSOpenGLCPStateValidation = 301
} NSOpenGLContextParameter;

NSOpenGLGlobalOption

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum {
 NSOpenGLGOFormatCacheSize = 501,
 NSOpenGLGOClearFormatCache = 502,
 NSOpenGLGORetainRenderers = 503,
 NSOpenGLGOResetLibrary = 504
} NSOpenGLGlobalOption;

NSOpenGLPixelFormatAttribute

typedef enum {
 NSOpenGLPFAAllRenderers = 1,
 NSOpenGLPFADoubleBuffer = 5,
 NSOpenGLPFAStereo = 6,
 NSOpenGLPFAAuxBuffers = 7,
 NSOpenGLPFAColorSize = 8,
 NSOpenGLPFAAlphaSize = 11,
 NSOpenGLPFADepthSize = 12,
 NSOpenGLPFAStencilSize = 13,
 NSOpenGLPFAAccumSize = 14,
 NSOpenGLPFAMinimumPolicy = 51,
 NSOpenGLPFAMaximumPolicy = 52,
 NSOpenGLPFAOffScreen = 53,
 NSOpenGLPFAFullScreen = 54,
 NSOpenGLPFASampleBuffers = 55,
 NSOpenGLPFASamples = 56,
 NSOpenGLPFAAuxDepthStencil = 57,
 NSOpenGLPFARendererID = 70,
 NSOpenGLPFASingleRenderer = 71,
 NSOpenGLPFANoRecovery = 72,
 NSOpenGLPFAAccelerated = 73,
 NSOpenGLPFAClosestPolicy = 74,
 NSOpenGLPFARobust = 75,
 NSOpenGLPFABackingStore = 76,
 NSOpenGLPFAMPSafe = 78,
 NSOpenGLPFAWindow = 80,
 NSOpenGLPFAMultiScreen = 81,
 NSOpenGLPFACompliant = 83,
 NSOpenGLPFAScreenMask = 84,
 NSOpenGLPFAVirtualScreenCount = 128
} NSOpenGLPixelFormatAttribute;

NSOpenGLPixelFormatAuxiliary

typedef struct _CGLPixelFormatObject NSOpenGLPixelFormatAuxiliary;

NSPopUpArrowPosition

typedef enum {
 NSPopUpNoArrow = 0,
 NSPopUpArrowAtCenter = 1,
 NSPopUpArrowAtBottom = 2
} NSPopUpArrowPosition;

NSPrinterTableStatus

typedef enum _NSPrinterTableStatus {
 NSPrinterTableOK = 0,
 NSPrinterTableNotFound = 1,
 NSPrinterTableError = 2
} NSPrinterTableStatus;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSPrintingOrientation

typedef enum {
 NSPortraitOrientation = 0,
 NSLandscapeOrientation = 1
} NSPrintingOrientation;

NSPrintingPageOrder

typedef enum _NSPrintingPageOrder {
 NSDescendingPageOrder = (-1),
 NSSpecialPageOrder = 0,
 NSAscendingPageOrder = 1,
 NSUnknownPageOrder = 2
} NSPrintingPageOrder;

NSPrintingPaginationMode

typedef enum {
 NSAutoPagination = 0,
 NSFitPagination = 1,
 NSClipPagination = 2
} NSPrintingPaginationMode;

NSProgressIndicatorStyle

typedef enum _NSProgressIndicatorStyle {
 NSProgressIndicatorBarStyle = 0,
 NSProgressIndicatorSpinningStyle = 1
} NSProgressIndicatorStyle;

NSProgressIndicatorThickness

typedef enum _NSProgressIndicatorThickness {
 NSProgressIndicatorPreferredThickness = 14,
 NSProgressIndicatorPreferredSmallThickness = 10,
 NSProgressIndicatorPreferredLargeThickness = 18,
 NSProgressIndicatorPreferredAquaThickness = 12
} NSProgressIndicatorThickness;

NSQTMovieLoopMode

typedef enum {
 NSQTMovieNormalPlayback,
 NSQTMovieLoopingPlayback,
 NSQTMovieLoopingBackAndForthPlayback
} NSQTMovieLoopMode;

NSRequestUserAttentionType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum {
 NSCriticalRequest = 0,
 NSInformationalRequest = 10
} NSRequestUserAttentionType;

NSRulerOrientation

typedef enum {
 NSHorizontalRuler,
 NSVerticalRuler
} NSRulerOrientation;

NSSaveOperationType

typedef enum _NSSaveOperationType {
 NSSaveOperation = 0,
 NSSaveAsOperation = 1,
 NSSaveToOperation = 2
} NSSaveOperationType;

NSScreenAuxiliaryOpaque

typedef struct NSScreenAuxiliary NSScreenAuxiliaryOpaque;

NSScrollArrowPosition

typedef enum _NSScrollArrowPosition {
 NSScrollerArrowsDefaultSetting = 0,
 NSScrollerArrowsNone = 2
} NSScrollArrowPosition;

NSScrollerArrow

typedef enum _NSScrollerArrow {
 NSScrollerIncrementArrow = 0,
 NSScrollerDecrementArrow = 1
} NSScrollerArrow;

NSScrollerPart

typedef enum _NSScrollerPart {
 NSScrollerNoPart = 0,
 NSScrollerDecrementPage = 1,
 NSScrollerKnob = 2,
 NSScrollerIncrementPage = 3,
 NSScrollerDecrementLine = 4,
 NSScrollerIncrementLine = 5,
 NSScrollerKnobSlot = 6
} NSScrollerPart;

NSSelectionAffinity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum _NSSelectionAffinity {
 NSSelectionAffinityUpstream = 0,
 NSSelectionAffinityDownstream = 1
} NSSelectionAffinity;

NSSelectionDirection

typedef enum _NSSelectionDirection {
 NSDirectSelection = 0,
 NSSelectingNext,
 NSSelectingPrevious
} NSSelectionDirection;

NSSelectionGranularity

typedef enum _NSSelectionGranularity {
 NSSelectByCharacter = 0,
 NSSelectByWord = 1,
 NSSelectByParagraph = 2
} NSSelectionGranularity;

NSTableViewDropOperation

typedef enum {
 NSTableViewDropOn,
 NSTableViewDropAbove
} NSTableViewDropOperation;

NSTabState

typedef enum _NSTabState {
 NSSelectedTab = 0,
 NSBackgroundTab = 1,
 NSPressedTab = 2
} NSTabState;

NSTabViewItemAuxiliaryOpaque

typedef struct NSTabViewItemAuxiliary NSTabViewItemAuxiliaryOpaque;

NSTabViewType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum _NSTabViewType {
 NSTopTabsBezelBorder = 0,
 NSLeftTabsBezelBorder = 1,
 NSBottomTabsBezelBorder = 2,
 NSRightTabsBezelBorder = 3,
 NSNoTabsBezelBorder = 4,
 NSNoTabsLineBorder= 5,
 NSNoTabsNoBorder = 6
} NSTabViewType;

NSTextAlignment

typedef enum _NSTextAlignment {
 NSLeftTextAlignment = 0,
 NSRightTextAlignment = 1,
 NSCenterTextAlignment = 2,
 NSJustifiedTextAlignment = 3,
 NSNaturalTextAlignment = 4
} NSTextAlignment;

NSTextFieldBezelStyle

typedef enum {
 NSTextFieldSquareBezel = 0,
 NSTextFieldRoundedBezel = 1
} NSTextFieldBezelStyle;

NSTextTabType

typedef enum _NSTextTabType {
 NSLeftTabStopType = 0,
 NSRightTabStopType,
 NSCenterTabStopType,
 NSDecimalTabStopType
} NSTextTabType;

NSTickMarkPosition

typedef enum _NSTickMarkPosition {
 NSTickMarkBelow = 0,
 NSTickMarkAbove = 1,
 NSTickMarkLeft = NSTickMarkAbove,
 NSTickMarkRight = NSTickMarkBelow
} NSTickMarkPosition;

NSTIFFCompression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum _NSTIFFCompression {
 NSTIFFCompressionNone = 1,
 NSTIFFCompressionCCITTFAX3 = 3,
 NSTIFFCompressionCCITTFAX4 = 4,
 NSTIFFCompressionLZW = 5,
 NSTIFFCompressionJPEG = 6,
 NSTIFFCompressionNEXT = 32766,
 NSTIFFCompressionPackBits = 32773,
 NSTIFFCompressionOldJPEG = 32865
} NSTIFFCompression;

NSTitlePosition

typedef enum _NSTitlePosition {
 NSNoTitle = 0,
 NSAboveTop = 1,
 NSAtTop = 2,
 NSBelowTop = 3,
 NSAboveBottom = 4,
 NSAtBottom = 5,
 NSBelowBottom = 6
} NSTitlePosition;

NSToolbarDisplayMode

typedef enum {
 NSToolbarDisplayModeDefault,
 NSToolbarDisplayModeIconAndLabel,
 NSToolbarDisplayModeIconOnly,
 NSToolbarDisplayModeLabelOnly
} NSToolbarDisplayMode;

NSToolbarSizeMode

typedef enum {
 NSToolbarSizeModeDefault,
 NSToolbarSizeModeRegular,
 NSToolbarSizeModeSmall
} NSToolbarSizeMode;

NSToolTipTag

typedef int NSToolTipTag;

NSTrackingRectTag

typedef int NSTrackingRectTag;

NSTypesetterBehavior

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef enum {
 NSTypesetterLatestBehavior = -1,
 NSTypesetterOriginalBehavior = 0,
 NSTypesetterBehavior_10_2_WithCompatibility = 1,
 NSTypesetterBehavior_10_2 = 2,
} NSTypesetterBehavior;

NSTypesetterGlyphInfo

typedef struct _NSTypesetterGlyphInfo {
 NSPoint curLocation;
 float extent;
 float belowBaseline;
 float aboveBaseline;
 unsigned glyphCharacterIndex;
 NSFont *font;
 NSSize attachmentSize;
 struct {
 BOOL defaultPositioning:1;
 BOOL dontShow:1;
 BOOL isAttachment:1;
 } _giflags;
} NSTypesetterGlyphInfo;

NSUsableScrollerParts

typedef enum _NSUsableScrollerParts {
 NSNoScrollerParts = 0,
 NSOnlyScrollerArrows = 1,
 NSAllScrollerParts = 2
} NSUsableScrollerParts;

NSWindingRule

typedef enum {
 NSNonZeroWindingRule = 0,
 NSEvenOddWindingRule = 1
} NSWindingRule;

NSWindowAuxiliaryOpaque

typedef struct NSWindowAuxiliary NSWindowAuxiliaryOpaque;

NSWindowButton

typedef enum {
 NSWindowCloseButton,
 NSWindowMiniaturizeButton,
 NSWindowZoomButton,
 NSWindowToolbarButton,
 NSWindowDocumentIconButton
} NSWindowButton;

NSWindowDepth

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef int NSWindowDepth;

NSWindowOrderingMode

typedef enum _NSWindowOrderingMode {
 NSWindowAbove = 1,
 NSWindowBelow = -1,
 NSWindowOut = 0
} NSWindowOrderingMode;

NSWritingDirection

typedef enum _NSWritingDirection {
 NSWritingDirectionLeftToRight = 0,
 NSWritingDirectionRightToLeft
} NSWritingDirection;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 Enumerations
This section lists the enumeration constants defined by and used in the Application Kit.

NSApplication (Modal Session Return Values)

enum {
 NSRunStoppedResponse = (-1000),
 NSRunAbortedResponse = (-1001),
 NSRunContinuesResponse = (-1002)
};

NSAttributedString (Underlining)

enum {
 NSNoUnderlineStyle = 0,
 NSSingleUnderlineStyle
};

NSCell (Data Entry Types)

enum {
 NSAnyType = 0,
 NSIntType = 1,
 NSPositiveIntType = 2,
 NSFloatType = 3,
 NSPositiveFloatType = 4,
 NSDoubleType = 6,
 NSPositiveDoubleType = 7
};

NSCell (State Masks)

enum {
 NSNoCellMask = 0,
 NSContentsCellMask = 1,
 NSPushInCellMask = 2,
 NSChangeGrayCellMask = 4,
 NSChangeBackgroundCellMask = 8
};

NSColorPanel (Modes)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enum {
 NSGrayModeColorPanel = 0,
 NSRGBModeColorPanel = 1,
 NSCMYKModeColorPanel = 2,
 NSHSBModeColorPanel = 3,
 NSCustomPaletteModeColorPanel = 4,
 NSColorListModeColorPanel = 5,
 NSWheelModeColorPanel = 6,
 NSCrayonModeColorPanel = 7
};

NSColorPanel (Mode Masks)

enum {
 NSColorPanelGrayModeMask = 0x00000001,
 NSColorPanelRGBModeMask = 0x00000002,
 NSColorPanelCMYKModeMask = 0x00000004,
 NSColorPanelHSBModeMask = 0x00000008,
 NSColorPanelCustomPaletteModeMask = 0x00000010,
 NSColorPanelColorListModeMask = 0x00000020,
 NSColorPanelWheelModeMask = 0x00000040,
 NSColorPanelCrayonModeMask = 0x00000080,
 NSColorPanelAllModesMask = 0x0000ffff
};

NSDragging (Operations)

enum {
 NSDragOperationNone = 0,
 NSDragOperationCopy = 1,
 NSDragOperationLink = 2,
 NSDragOperationGeneric = 4,
 NSDragOperationPrivate = 8,
 NSDragOperationMove = 16,
 NSDragOperationDelete = 32,
 NSDragOperationEvery = UINT_MAX
};

NSEvent (Action Flags)

enum {
 NSLeftMouseDownMask = 1 << NSLeftMouseDown,
 NSLeftMouseUpMask = 1 << NSLeftMouseUp,
 NSRightMouseDownMask = 1 << NSRightMouseDown,
 NSRightMouseUpMask = 1 << NSRightMouseUp,
 NSMouseMovedMask = 1 << NSMouseMoved,
 NSLeftMouseDraggedMask = 1 << NSLeftMouseDragged,
 NSRightMouseDraggedMask = 1 << NSRightMouseDragged,
 NSMouseEnteredMask = 1 << NSMouseEntered,
 NSMouseExitedMask = 1 << NSMouseExited,
 NSKeyDownMask = 1 << NSKeyDown,
 NSKeyUpMask = 1 << NSKeyUp,
 NSFlagsChangedMask = 1 << NSFlagsChanged,
 NSAppKitDefinedMask = 1 << NSAppKitDefined,
 NSSystemDefinedMask = 1 << NSSystemDefined,
 NSApplicationDefinedMask = 1 << NSApplicationDefined,
 NSPeriodicMask = 1 << NSPeriodic,
 NSCursorUpdateMask = 1 << NSCursorUpdate,
 NScrollWheelMask = 1 << NSScrollWheel,
 NSOtherMouseDownMask = 1 << NSOtherMouseDown,
 NSOtherMouseUpMask = 1 << NSOtherMouseUp,
 NSOtherMouseDraggedMask = 1 << NSOtherMouseDragged,
 NSAnyEventMask = 0xffffffffU
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSEvent (Function Key Unicodes)

enum {
 NSUpArrowFunctionKey = 0xF700,
 NSDownArrowFunctionKey = 0xF701,
 NSLeftArrowFunctionKey = 0xF702,
 NSRightArrowFunctionKey = 0xF703,
 NSF1FunctionKey = 0xF704,
 NSF2FunctionKey = 0xF705,
 NSF3FunctionKey = 0xF706,
 NSF4FunctionKey = 0xF707,
 NSF5FunctionKey = 0xF708,
 NSF6FunctionKey = 0xF709,
 NSF7FunctionKey = 0xF70A,
 NSF8FunctionKey = 0xF70B,
 NSF9FunctionKey = 0xF70C,
 NSF10FunctionKey = 0xF70D,
 NSF11FunctionKey = 0xF70E,
 NSF12FunctionKey = 0xF70F,
 NSF13FunctionKey = 0xF710,
 NSF14FunctionKey = 0xF711,
 NSF15FunctionKey = 0xF712,
 NSF16FunctionKey = 0xF713,
 NSF17FunctionKey = 0xF714,
 NSF18FunctionKey = 0xF715,
 NSF19FunctionKey = 0xF716,
 NSF20FunctionKey = 0xF717,
 NSF21FunctionKey = 0xF718,
 NSF22FunctionKey = 0xF719,
 NSF23FunctionKey = 0xF71A,
 NSF24FunctionKey = 0xF71B,
 NSF25FunctionKey = 0xF71C,
 NSF26FunctionKey = 0xF71D,
 NSF27FunctionKey = 0xF71E,
 NSF28FunctionKey = 0xF71F,
 NSF29FunctionKey = 0xF720,
 NSF30FunctionKey = 0xF721,
 NSF31FunctionKey = 0xF722,
 NSF32FunctionKey = 0xF723,
 NSF33FunctionKey = 0xF724,
 NSF34FunctionKey = 0xF725,
 NSF35FunctionKey = 0xF726,
 NSInsertFunctionKey = 0xF727,
 NSDeleteFunctionKey = 0xF728,
 NSHomeFunctionKey = 0xF729,
 NSBeginFunctionKey = 0xF72A,
 NSEndFunctionKey = 0xF72B,
 NSPageUpFunctionKey = 0xF72C,
 NSPageDownFunctionKey = 0xF72D,
 NSPrintScreenFunctionKey = 0xF72E,
 NSScrollLockFunctionKey = 0xF72F,
 NSPauseFunctionKey = 0xF730,
 NSSysReqFunctionKey = 0xF731,
 NSBreakFunctionKey = 0xF732,
 NSResetFunctionKey = 0xF733,
 NSStopFunctionKey = 0xF734,
 NSMenuFunctionKey = 0xF735,
 NSUserFunctionKey = 0xF736,
 NSSystemFunctionKey = 0xF737,
 NSPrintFunctionKey = 0xF738,
 NSClearLineFunctionKey = 0xF739,
 NSClearDisplayFunctionKey = 0xF73A,
 NSInsertLineFunctionKey = 0xF73B,
 NSDeleteLineFunctionKey = 0xF73C,
 NSInsertCharFunctionKey = 0xF73D,
 NSDeleteCharFunctionKey = 0xF73E,
 NSPrevFunctionKey = 0xF73F,
 NSNextFunctionKey = 0xF740,
 NSSelectFunctionKey = 0xF741,
 NSExecuteFunctionKey = 0xF742,
 NSUndoFunctionKey = 0xF743,
 NSRedoFunctionKey = 0xF744,
 NSFindFunctionKey = 0xF745,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSFindFunctionKey = 0xF745,
 NSHelpFunctionKey = 0xF746,
 NSModeSwitchFunctionKey = 0xF747
};

NSEvent (Modifier Flags)

enum {
 NSAlphaShiftKeyMask = 1 << 16,
 NSShiftKeyMask = 1 << 17,
 NSControlKeyMask = 1 << 18,
 NSAlternateKeyMask = 1 << 19,
 NSCommandKeyMask = 1 << 20,
 NSNumericPadKeyMask = 1 << 21,
 NSHelpKeyMask = 1 << 22,
 NSFunctionKeyMask = 1 << 23
};

NSEvent (Types Defined by the Application Kit)

enum {
 NSWindowExposedEventType = 0,
 NSApplicationActivatedEventType = 1,
 NSApplicationDeactivatedEventType = 2,
 NSWindowMovedEventType = 4,
 NSScreenChangedEventType = 8,
 NSAWTEventType = 16
};

NSEvent (Types Defined by the System)

enum {
 NSPowerOffEventType = 1
};

NSFont (Traits)

enum {
 NSItalicFontMask = 0x00000001,
 NSBoldFontMask = 0x00000002,
 NSUnboldFontMask = 0x00000004,
 NSNonStandardCharacterSetFontMask = 0x00000008,
 NSNarrowFontMask = 0x00000010,
 NSExpandedFontMask = 0x00000020,
 NSCondensedFontMask = 0x00000040,
 NSSmallCapsFontMask = 0x00000080,
 NSPosterFontMask = 0x00000100,
 NSCompressedFontMask = 0x00000200,
 NSFixedPitchFontMask = 0x00000400,
 NSUnitalicFontMask = 0x01000000
};

NSGraphics (Alpha Values)

enum {
 NSAlphaEqualToData = 1,
 NSAlphaAlwaysOne = 2
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

NSGlyph (Reserved Glyph Codes)

enum {
 NSControlGlyph = 0x00FFFFFF,
 NSNullGlyph = 0x0
};

NSImageRep (Display Device Matching)

enum {
 NSImageRepMatchesDevice
};

NSOutlineView (Drop on Index)

enum {
 NSOutlineViewDropOnItemIndex = -1
};

NSPanel (Alert Panel Return Values)

enum {
 NSAlertDefaultReturn = 1,
 NSAlertAlternateReturn = 0,
 NSAlertOtherReturn = -1,
 NSAlertErrorReturn = -2
};

NSPanel (Modal Panel Return Values)

enum {
 NSOKButton = 1,
 NSCancelButton = 0
};

NSPanel (Style Mask)

enum {
 NSUtilityWindowMask = 1 << 4,
 NSDocModalWindowMask = 1 << 6,
 NSNonactivatingPanelMask = 1 << 7
};

NSRunLoop (Ordering Modes for NSApplication)

enum {
 NSUpdateWindowsRunLoopOrdering
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

NSRunLoop (Ordering Modes for NSWindow)

enum {
 NSDisplayWindowRunLoopOrdering,
 NSResetCursorRectsRunLoopOrdering
};

NSSavePanel (Tags for Subviews)

enum {
 NSFileHandlingPanelImageButton = 150,
 NSFileHandlingPanelTitleField = 151,
 NSFileHandlingPanelBrowser = 152,
 NSFileHandlingPanelCancelButton = NSCancelButton,
 NSFileHandlingPanelOKButton = NSOKButton,
 NSFileHandlingPanelForm = 155
};

NSText (Important Unicodes)

enum {
 NSParagraphSeparatorCharacter = 0x2029,
 NSLineSeparatorCharacter = 0x2028,
 NSTabCharacter = 0x0009,
 NSFormFeedCharacter = 0x000c,
 NSNewlineCharacter = 0x000a,
 NSCarriageReturnCharacter = 0x000d,
 NSEnterCharacter = 0x0003,
 NSBackspaceCharacter = 0x0008,
 NSBackTabCharacter = 0x0019,
 NSDeleteCharacter = 0x007f
};

NSText (Movement Codes)

enum {
 NSIllegalTextMovement = 0,
 NSReturnTextMovement = 0x10,
 NSTabTextMovement = 0x11,
 NSBacktabTextMovement = 0x12,
 NSLeftTextMovement = 0x13,
 NSRightTextMovement = 0x14,
 NSUpTextMovement = 0x15,
 NSDownTextMovement = 0x16
};

NSTextAttachment (Attachment Character)

enum {
 NSAttachmentCharacter = 0xfffc
};

NSTextStorage (Editing)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enum {
 NSTextStorageEditedAttributes = 1,
 NSTextStorageEditedCharacters = 2
};

NSView (Resizing)

enum {
 NSViewNotSizable = 0,
 NSViewMinXMargin = 1,
 NSViewWidthSizable = 2,
 NSViewMaxXMargin = 4,
 NSViewMinYMargin = 8,
 NSViewHeightSizable = 16,
 NSViewMaxYMargin = 32
};

NSWindow (Border Masks)

enum {
 NSBorderlessWindowMask = 0,
 NSTitledWindowMask = 1 << 0,
 NSClosableWindowMask = 1 << 1,
 NSMiniaturizableWindowMask = 1 << 2,
 NSResizableWindowMask = 1 << 3,
 NSTexturedBackgroundWindowMask= 1 << 8
};

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Global Variables
This section lists the global variables defined by and used in the Application Kit.

Color Space Names

NSString *NSCalibratedWhiteColorSpace;
NSString *NSCalibratedBlackColorSpace;
NSString *NSCalibratedRGBColorSpace;
NSString *NSDeviceWhiteColorSpace;
NSString *NSDeviceBlackColorSpace;
NSString *NSDeviceRGBColorSpace;
NSString *NSDeviceCMYKColorSpace;
NSString *NSNamedColorSpace;
NSString *NSPatternColorSpace;
NSString *NSCustomColorSpace;

Display Device (Descriptions)

NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

NSAccessibility (Actions)

NSString *NSAccessibilityPressAction;
NSString *NSAccessibilityIncrementAction;
NSString *NSAccessibilityDecrementAction;
NSString *NSAccessibilityConfirmAction;
NSString *NSAccessibilityPickAction;

NSAccessibility (Attributes)

NSString *NSAccessibilityRoleAttribute;
NSString *NSAccessibilityRoleDescriptionAttribute;
NSString *NSAccessibilitySubroleAttribute;
NSString *NSAccessibilityHelpAttribute;
NSString *NSAccessibilityTitleAttribute;
NSString *NSAccessibilityValueAttribute;
NSString *NSAccessibilityMinValueAttribute;
NSString *NSAccessibilityMaxValueAttribute;
NSString *NSAccessibilityEnabledAttribute;
NSString *NSAccessibilityFocusedAttribute;
NSString *NSAccessibilityParentAttribute;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSString *NSAccessibilityParentAttribute;
NSString *NSAccessibilityChildrenAttribute;
NSString *NSAccessibilityWindowAttribute;
NSString *NSAccessibilitySelectedChildrenAttribute;
NSString *NSAccessibilityVisibleChildrenAttribute;
NSString *NSAccessibilityPositionAttribute;
NSString *NSAccessibilitySizeAttribute;
NSString *NSAccessibilityContentsAttribute;
NSString *NSAccessibilityPreviousContentsAttribute;
NSString *NSAccessibilityNextContentsAttribute;
NSString *NSAccessibilitySelectedTextAttribute;
NSString *NSAccessibilitySelectedTextRangeAttribute;
NSString *NSAccessibilityMainAttribute;
NSString *NSAccessibilityMinimizedAttribute;
NSString *NSAccessibilityCloseButtonAttribute;
NSString *NSAccessibilityZoomButtonAttribute;
NSString *NSAccessibilityMinimizeButtonAttribute;
NSString *NSAccessibilityToolbarButtonAttribute;
NSString *NSAccessibilityProxyAttribute;
NSString *NSAccessibilityGrowAreaAttribute;
NSString *NSAccessibilityMenuBarAttribute;
NSString *NSAccessibilityWindowsAttribute;
NSString *NSAccessibilityFrontmostAttribute;
NSString *NSAccessibilityHiddenAttribute;
NSString *NSAccessibilityMainWindowAttribute;
NSString *NSAccessibilityFocusedWindowAttribute;
NSString *NSAccessibilityFocusedUIElementAttribute;
NSString *NSAccessibilityHeaderAttribute;
NSString *NSAccessibilityEditedAttribute;
NSString *NSAccessibilityTabsAttribute;
NSString *NSAccessibilityTitleUIElementAttribute;
NSString *NSAccessibilityHorizontalScrollBarAttribute;
NSString *NSAccessibilityVerticalScrollBarAttribute;
NSString *NSAccessibilityOverflowButtonAttribute;
NSString *NSAccessibilityIncrementButtonAttribute;
NSString *NSAccessibilityDecrementButtonAttribute;
NSString *NSAccessibilityFilenameAttribute;
NSString *NSAccessibilityExpandedAttribute;
NSString *NSAccessibilitySelectedAttribute;
NSString *NSAccessibilityColumnTitlesAttribute;
NSString *NSAccessibilitySplittersAttribute;
NSString *NSAccessibilityDocumentAttribute;
NSString *NSAccessibilityOrientationAttribute;
NSString *NSAccessibilityRowsAttribute;
NSString *NSAccessibilityVisibleRowsAttribute;
NSString *NSAccessibilitySelectedRowsAttribute;
NSString *NSAccessibilityColumnsAttribute;
NSString *NSAccessibilityVisibleColumnsAttribute;
NSString *NSAccessibilitySelectedColumnsAttribute;
NSString *NSAccessibilitySortDirectionAttribute;
NSString *NSAccessibilityDisclosingAttribute;
NSString *NSAccessibilityDisclosedRowsAttribute;
NSString *NSAccessibilityDisclosedByRowAttribute;

NSAccessibility (Exception Error Code Key)

NSString *NSAccessibilityErrorCodeExceptionInfo;

NSAccessibility (Notifications)

NSString *NSAccessibilityMainWindowChangedNotification;
NSString *NSAccessibilityFocusedUIElementChangedNotification;
NSString *NSAccessibilityApplicationActivatedNotification;
NSString *NSAccessibilityApplicationDeactivatedNotification;
NSString *NSAccessibilityApplicationHiddenNotification;
NSString *NSAccessibilityApplicationShownNotification;
NSString *NSAccessibilityWindowCreatedNotification;
NSString *NSAccessibilityWindowMovedNotification;
NSString *NSAccessibilityWindowResizedNotification;
NSString *NSAccessibilityWindowMiniaturizedNotification;
NSString *NSAccessibilityWindowDeminiaturizedNotification;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSString *NSAccessibilityWindowDeminiaturizedNotification;
NSString *NSAccessibilityValueChangedNotification;
NSString *NSAccessibilityUIElementDestroyedNotification;

NSAccessibility (Orientations)

NSString *NSAccessibilityHorizontalOrientationValue;
NSString *NSAccessibilityVerticalOrientationValue;

NSAccessibility (Roles)

NSString *NSAccessibilityUnknownRole;
NSString *NSAccessibilityButtonRole;
NSString *NSAccessibilityRadioButtonRole;
NSString *NSAccessibilityCheckBoxRole;
NSString *NSAccessibilitySliderRole;
NSString *NSAccessibilityTabGroupRole;
NSString *NSAccessibilityTextFieldRole;
NSString *NSAccessibilityStaticTextRole;
NSString *NSAccessibilityTextAreaRole;
NSString *NSAccessibilityScrollAreaRole;
NSString *NSAccessibilityPopUpButtonRole;
NSString *NSAccessibilityMenuButtonRole;
NSString *NSAccessibilityTableRole;
NSString *NSAccessibilityApplicationRole;
NSString *NSAccessibilityGroupRole;
NSString *NSAccessibilityRadioGroupRole;
NSString *NSAccessibilityListRole;
NSString *NSAccessibilityScrollBarRole;
NSString *NSAccessibilityValueIndicatorRole;
NSString *NSAccessibilityImageRole;
NSString *NSAccessibilityMenuBarRole;
NSString *NSAccessibilityMenuRole;
NSString *NSAccessibilityMenuItemRole;
NSString *NSAccessibilityColumnRole;
NSString *NSAccessibilityRowRole;
NSString *NSAccessibilityToolbarRole;
NSString *NSAccessibilityBusyIndicatorRole;
NSString *NSAccessibilityProgressIndicatorRole;
NSString *NSAccessibilityRelevanceIndicatorRole;
NSString *NSAccessibilityWindowRole;
NSString *NSAccessibilityWindowTitleRole;
NSString *NSAccessibilityWindowProxyRole;
NSString *NSAccessibilityDrawerRole;
NSString *NSAccessibilitySystemWideRole;
NSString *NSAccessibilityOutlineRole;
NSString *NSAccessibilityIncrementorRole;
NSString *NSAccessibilityBrowserRole;
NSString *NSAccessibilityComboBoxRole;
NSString *NSAccessibilitySplitGroupRole;
NSString *NSAccessibilitySplitterRole;
NSString *NSAccessibilityColorWellRole;
NSString *NSAccessibilityGrowAreaRole;
NSString *NSAccessibilitySheetRole;

NSAccessibility (Subroles)

NSString *NSAccessibilityUnknownSubrole;
NSString *NSAccessibilityCloseButtonSubrole;
NSString *NSAccessibilityZoomButtonSubrole;
NSString *NSAccessibilityMinimizeButtonSubrole;
NSString *NSAccessibilityToolbarButtonSubrole;
NSString *NSAccessibilityTableRowSubrole;
NSString *NSAccessibilityOutlineRowSubrole;
NSString *NSAccessibilitySecureTextFieldSubrole;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSApplication (Shared Application Object)

id NSApp;

NSAttributedString (Attributes)

NSString *NSFontAttributeName;
NSString *NSParagraphStyleAttributeName;
NSString *NSForegroundColorAttributeName;
NSString *NSUnderlineStyleAttributeName;
NSString *NSSuperscriptAttributeName;
NSString *NSBackgroundColorAttributeName;
NSString *NSAttachmentAttributeName;
NSString *NSLigatureAttributeName;
NSString *NSBaselineOffsetAttributeName;
NSString *NSKernAttributeName;
NSString *NSLinkAttributeName;

NSAttributedString (Character Shape Attribute)

NSString *NSCharacterShapeAttributeName;

NSAttributedString (Document Type)

NSString *NSPlainTextDocumentType;
NSString *NSRTFTextDocumentType;
NSString *NSRTFDTextDocumentType;
NSString *NSMacSimpleTextDocumentType;
NSString *NSHTMLTextDocumentType;

NSAttributedString (Glyph Info Attribute)

NSString *NSGlyphInfoAttributeName;

NSAttributedString (Underline Masks)

unsigned NSUnderlineByWordMask;
unsigned NSUnderlineStrikethroughMask;

NSBitmapImageRep (Attributes)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSString *NSImageCompressionMethod;
NSString *NSImageCompressionFactor;
NSString *NSImageDitherTransparency;
NSString *NSImageRGBColorTable;
NSString *NSImageInterlaced;
NSString *NSImageColorSyncProfileData;
NSString *NSImageFrameCount;
NSString *NSImageCurrentFrame;
NSString *NSImageCurrentFrameDuration;

NSColor (Grayscale Values)

const float NSWhite;
const float NSLightGray;
const float NSDarkGray;
const float NSBlack;

NSFont (Keys to the AFM Dictionary)

NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMNotice;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMEncodingScheme;
NSString *NSAFMCharacterSet;
NSString *NSAFMCapHeight;
NSString *NSAFMXHeight;
NSString *NSAFMAscender;
NSString *NSAFMDescender;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMItalicAngle;
NSString *NSAFMMappingScheme;

NSFont (PostScript Transformation Matrix)

const float *NSFontIdentityMatrix;

NSGraphicsContext (Attributes)

NSString *NSGraphicsContextDestinationAttributeName;
NSString *NSGraphicsContextRepresentationFormatAttributeName;
NSString *NSGraphicsContextPSFormat;
NSString *NSGraphicsContextPDFFormat;

NSInterfaceStyleDefault

NSString *NSInterfaceStyleDefault;

NSPasteboard (Names)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSString *NSGeneralPboard;
NSString *NSFontPboard;
NSString *NSRulerPboard;
NSString *NSFindPboard;
NSString *NSDragPboard;

NSPasteboard (Types for Sound Data)

NSString *NSSoundPboardType;

NSPasteboard (Types for Standard Data)

NSString *NSStringPboardType;
NSString *NSFilenamesPboardType;
NSString *NSPostScriptPboardType;
NSString *NSTIFFPboardType;
NSString *NSRTFPboardType;
NSString *NSTabularTextPboardType;
NSString *NSFontPboardType;
NSString *NSRulerPboardType;
NSString *NSFileContentsPboardType;
NSString *NSColorPboardType;
NSString *NSRTFDPboardType;
NSString *HTMLPboardType;
NSString *NSPICTPboardType;
NSString *NSURLPboardType;
NSString *NSPDFPboardType;
NSString *NSVCardPboardType;
NSString *NSFilesPromisePboardType;

NSPrintInfo (Dictionary Keys)

NSString *NSPrintPaperName;
NSString *NSPrintPaperSize;
NSString *NSPrintMustCollate;
NSString *NSPrintOrientation;
NSString *NSPrintLeftMargin;
NSString *NSPrintRightMargin;
NSString *NSPrintTopMargin;
NSString *NSPrintBottomMargin;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintVerticallyCentered;
NSString *NSPrintHorizontalPagination;
NSString *NSPrintVerticalPagination;
NSString *NSPrintScalingFactor;
NSString *NSPrintAllPages;
NSString *NSPrintReversePageOrder;
NSString *NSPrintFirstPage;
NSString *NSPrintLastPage;
NSString *NSPrintCopies;
NSString *NSPrintPrinter;
NSString *NSPrintJobDisposition;
NSString *NSPrintSavePath;
NSString *NSPrintSpoolJob;
NSString *NSPrintPreviewJob;
NSString *NSPrintSaveJob;
NSString *NSPrintCancelJob;

NSPrintPanel (Job Style Hints)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSString *NSPrintPhotoJobStyleHint;

NSRunLoop (Modes)

NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

NSToolbarItem (Standard Identifiers)

NSString *NSToolbarSeparatorItemIdentifier;
NSString *NSToolbarSpaceItemIdentifier;
NSString *NSToolbarFlexibleSpaceItemIdentifier;
NSString *NSToolbarShowColorsItemIdentifier;
NSString *NSToolbarShowFontsItemIdentifier;
NSString *NSToolbarCustomizeToolbarItemIdentifier;
NSString *NSToolbarPrintItemIdentifier;

NSWindow (Sizes)

NSSize NSIconSize;
NSSize NSTokenSize;

NSWindow (Window Levels)

NSString *NSNormalWindowLevel
NSString *NSFloatingWindowLevel
NSString *NSSubmenuWindowLevel
NSString *NSTornOffMenuWindowLevel
NSString *NSMainMenuWindowLevel
NSString *NSStatusWindowLevel
NSString *NSModalPanelWindowLevel
NSString *NSPopUpMenuWindowLevel
NSString *NSScreenSaverWindowLevel

NSWorkspace (File Operation Constants)

NSString *NSWorkspaceMoveOperation;
NSString *NSWorkspaceCopyOperation;
NSString *NSWorkspaceLinkOperation;
NSString *NSWorkspaceCompressOperation;
NSString *NSWorkspaceDecompressOperation;
NSString *NSWorkspaceEncryptOperation;
NSString *NSWorkspaceDecryptOperation;
NSString *NSWorkspaceDestroyOperation;
NSString *NSWorkspaceRecycleOperation;
NSString *NSWorkspaceDuplicateOperation;

NSWorkspace (File Types)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSString *NSPlainFileType;
NSString *NSDirectoryFileType;
NSString *NSApplicationFileType;
NSString *NSFilesystemFileType;
NSString *NSShellCommandFileType;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.4 Exceptions
This section lists the names of exceptions raised by Application Kit classes.

NSString *NSTextLineTooLongException;
NSString *NSTextNoSelectionException;
NSString *NSWordTablesWriteException;
NSString *NSWordTablesReadException;
NSString *NSTextReadException;
NSString *NSTextWriteException;
NSString *NSPasteboardCommunicationException;
NSString *NSPrintingCommunicationException;
NSString *NSAbortModalException;
NSString *NSAbortPrintingException;
NSString *NSIllegalSelectorException;
NSString *NSAppKitVirtualMemoryException;
NSString *NSBadRTFDirectiveException;
NSString *NSBadRTFFontTableException;
NSString *NSBadRTFStyleSheetException;
NSString *NSTypedStreamVersionException;
NSString *NSTIFFException;
NSString *NSPrintPackageException;
NSString *NSBadRTFColorTableException;
NSString *NSDraggingException;
NSString *NSColorListIOException;
NSString *NSColorListNotEditableException;
NSString *NSBadBitmapParametersException;
NSString *NSWindowServerCommunicationException;
NSString *NSFontUnavailableException;
NSString *NSPPDIncludeNotFoundException;
NSString *NSPPDParseException;
NSString *NSPPDIncludeStackOverflowException;
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Application Kit Functions
This chapter lists the functions defined by the Application Kit. These functions a grouped into the following categories:

Accessibility
Applications
Events
Fonts
Graphics: general
Graphics: window depth
Interface styles
OpenGL
Panels
Pasteboards
System beep

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Accessibility
The NSAccessibilityPostNotification function is used to post an accessibility notification, which cannot be posted to the
default notification center. The remaining functions are used by the accessibility system in Cocoa to manage what
objects are visible to assistive applications.

NSAccessibilityPostNotification

void NSAccessibilityPostNotification(id element, NSString *notification)

NSAccessibilityUnignoredAncestor

id NSAccessibilityUnignoredAncestor(id element)

NSAccessibilityUnignoredChildren

NSArray *NSAccessibilityUnignoredChildren(NSArray *originalChildren)

NSAccessibilityUnignoredChildrenForOnlyChild

NSArray *NSAccessibilityUnignoredChildrenForOnlyChild(id originalChild)

NSAccessibilityUnignoredDescendant

id NSAccessibilityUnignoredDescendant(id element)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Applications
These functions are used for various application level tasks, such as loading and running an application, and managing
the Services menu for an application.

NSApplicationLoad

BOOL NSApplicationLoad(void)

NSApplicationMain

int NSApplicationMain(int argc, const char *argv[])

NSPerformService

BOOL NSPerformService(NSString *itemName, NSPasteboard *pboard)

NSRegisterServicesProvider

void NSRegisterServicesProvider(id provider, NSString *name)

NSShowsServicesMenuItem

BOOL NSShowsServicesMenuItem(NSString * itemName)

NSSetShowsServicesMenuItem

int NSSetShowsServicesMenuItem(NSString * itemName, BOOL enabled)

NSUnRegisterServicesProvider

void NSUnRegisterServicesProvider(NSString *name)

NSUpdateDynamicServices

void NSUpdateDynamicServices(void)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Events
This single event-related function is used to obtain an event mask for the specified event type.

NSEventMaskFromType

unsigned int NSEventMaskFromType(NSEventType type)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Fonts
These two functions are used to manipulate font glyphs.

NSConvertGlyphsToPackedGlyphs

int NSConvertGlyphsToPackedGlyphs(NSGlyph *glBuf, int count, NSMultibyteGlyphPacking packing, char *packedGlyphs)

NSGlyphInfoAtIndex

void NSGlyphInfoAtIndex(int IX)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.5 Graphics: General
These functions provide a number of convenient wrappers to common graphics and drawing tasks, such as erasing the
contents of a rectangle, drawing various borders, and more.

NSCopyBits

void NSCopyBits(int srcGState, NSRect srcRect, NSPoint destPoint)

NSCountWindows

void NSCountWindows(int *count)

NSCountWindowsForContext

void NSCountWindowsForContext(int context, int *count)

NSDottedFrameRect

void NSDottedFrameRect(NSRect aRect)

NSDrawBitmap

void NSDrawBitmap(const NSRect rect, int pixelsWide, int pixelsHigh, int bitsPerSample, int samplesPerPixel, int bitsPerPixel,
int bytesPerRow, BOOL isPlanar, BOOL hasAlpha, NSColorSpace colorSpace, const unsigned char *const data[5])

NSDrawButton

void NSDrawButton(const NSRect aRect, const NSRect clipRect)

NSDrawColorTiledRects

NSRect NSDrawColorTiledRects(NSRect boundsRect, NSRect clipRect, const NSRectEdge *sides, NSColor **colors, int count)

NSDrawDarkBezel

void NSDrawDarkBezel(NSRect boundsRect, NSRect clipRect)

NSDrawGrayBezel

void NSDrawGrayBezel(NSRect boundsRect, NSRect clipRect)

NSDrawGroove

void NSDrawGroove(NSRect boundsRect, NSRect clipRect)

NSDrawLightBezel

void NSDrawLightBezel(NSRect boundsRect, NSRect clipRect)

NSDrawTiledRects

NSRect NSDrawTiledRects(NSRect boundsRect, NSRect clipRect, const NSRectEdge *sides, const float *grays, int count);

NSDrawWhiteBezel

void NSDrawWhiteBezel(NSRect aRect, NSRect clipRect)

NSDrawWindowBackground

void NSDrawWindowBackground(NSRect aRect)

NSEraseRect

void NSEraseRect(const NSRect aRect)

NSFrameRect

void NSFrameRect(NSRect aRect)

NSFrameRectWithWidth

void NSFrameRectWithWidth(NSRect aRect, float frameWidth)

NSFrameRectWithWidthUsingOperation

void NSFrameRectWithWidthUsingOperation(NSRect aRect, float frameWidth, NSCompositingOperation op)

NSGetWindowServerMemory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSGetWindowServerMemory

int NSGetWindowServerMemory(int context, int *virtualMemory, int *window-BackingMemory, NSString
**windowDumpStream)

NSHighlightRect

void NSHighlightRect(const NSRect aRect)

NSReadPixel

NSColor *NSReadPixel(NSPoint passedPoint)

NSRectClip

void NSRectClip(NSRect aRect)

NSRectClipList

void NSRectClipList(const NSRect *rects, int count)

NSRectFill

void NSRectFill(const NSRect aRect)

NSRectFillList

void NSRectFillList(const NSRect *rects, int count)

NSRectFillListWithColors

void NSRectFillListWithColors(const NSRect *rects, NSColor **colors, int count)

NSRectFillListWithGrays

void NSRectFillListWithGrays(const NSRect *rects, const float *grays, int count)

NSRectFillUsingOperation

void NSRectFillUsingOperation(NSRect aRect, NSCompositingOperation op)

NSRectFillListUsingOperation

void NSRectFillListUsingOperation(const NSRect *rects, int count, NSCompositingOperation op)

NSRectFillListWithColorsUsingOperation

void NSRectFillListWithColorsUsingOperation(const NSRect *rects, NSColor **colors, int count, NSCompositingOperation op)

NSSetFocusRingStyle

void NSSetFocusRingStyle(NSFocusRingPlacement placement)

NSWindowList

void NSWindowList(int size, int list[])

NSWindowListForContext

void NSWindowListForContext(int context, int size, int list[])

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.6 Graphics: Window Depth
These functions are used to obtain information about the bit-depth of windows.

NSAvailableWindowDepths

const NSWindowDepth *NSAvailableWindowDepths(void)

NSBestDepth

NSWindowDepth NSBestDepth(NSString *colorSpace, int bps, int bpp, BOOL planar, BOOL *exactMatch)

NSBitsPerPixelFromDepth

int NSBitsPerPixelFromDepth(NSWindowDepth depth)

NSBitsPerSampleFromDepth

int NSBitsPerSampleFromDepth(NSWindowDepth depth)

NSColorSpaceFromDepth

NSString *NSColorSpaceFromDepth(NSWindowDepth depth)

NSNumberOfColorComponents

int NSNumberOfColorComponents(NSString *colorSpaceName)

NSPlanarFromDepth

BOOL NSPlanarFromDepth(NSWindowDepth depth)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.7 Interface Styles
Thie function returns the interface style for the specified key and responder objects. Interface styles are described by
the NSInterfaceStyle enumerator type, which may be one of the following constants:

NSNoInterfaceStyle

NSNextStepInterfaceStyle

NSWindows95InterfaceStyle

NSMacintoshInterfaceStyle

NSInterfaceStyleForKey

NSInterfaceStyle

NSInterfaceStyleForKey(NSString *key, NSResponder *responder)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.8 OpenGL
These functions are used to set and get global OpenGL options, as well as to obtain the version number of the installed
OpenGL libraries.

NSOpenGLGetOption

void NSOpenGLGetOption(NSOpenGLGlobalOption pname, long *param)

NSOpenGLGetVersion

void NSOpenGLGetVersion(long *major, long *minor)

NSOpenGLSetOption

void NSOpenGLSetOption(NSOpenGLGlobalOption pname, long param)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.9 Panels
These functions provide a convenient way to display common alert panels and sheets. These functions let us create
panels or sheets for informational purposes, to inform the user of an alert, and to inform the user of a critical alert.

NSBeginAlertSheet

void NSBeginAlertSheet(NSString *title, NSString *defaultButton, NSString *alternateButton, NSString *otherButton,
NSWindow *docWindow, id modalDelegate, SEL didEndSelector, SEL didDismissSelector, void *contextInfo, NSString *msg,
...)

NSBeginCriticalAlertSheet

void NSBeginCriticalAlertSheet(NSString *title, NSString *defaultButton, NSString *alternateButton, NSString *otherButton,
NSWindow *docWindow, id modalDelegate, SEL didEndSelector, SEL didDismissSelector, void *contextInfo, NSString *msg,
...)

NSBeginInformationalAlertSheet

void NSBeginInformationalAlertSheet(NSString *title, NSString *defaultButton, NSString *alternateButton, NSString
*otherButton, NSWindow *docWindow, id modalDelegate, SEL didEndSelector, SEL didDismissSelector, void *contextInfo,
NSString *msg, ...);

NSGetAlertPanel

id NSGetAlertPanel(NSString *title, NSString *msg, NSString *default-Button, NSString *alternateButton, NSString
*otherButton, ...)

NSGetCriticalAlertPanel

id NSGetCriticalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString *alternateButton, NSString
*otherButton, ...)

NSGetInformationalAlertPanel

id NSGetInformationalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString *alternateButton, NSString
*otherButton, ...)

NSReleaseAlertPanel

void NSReleaseAlertPanel(id alertPanel)

NSRunAlertPanel

int NSRunAlertPanel(NSString *title, NSString *msg, NSString *default-Button, NSString *alternateButton, NSString
*otherButton, ...)

NSRunCriticalAlertPanel

int NSRunCriticalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString *alternateButton, NSString
*otherButton, ...)

NSRunInformationalAlertPanel

int NSRunInformationalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString *alternateButton,
NSString *otherButton, ...)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.10 Pasteboards
These functions provide a means to manage pasteboard file types.

NSCreateFileContentsPboardType

NSString *NSCreateFileContentsPboardType(NSString *fileType)

NSCreateFilenamePboardType

NSString *NSCreateFilenamePboardType(NSString *fileType)

NSGetFileType

NSString *NSGetFileType(NSArray *pboardType)

NSGetFileTypes

NSArray *NSGetFileTypes(NSArray *pboardType)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.11 System Beep
This function is used to sound the system alert sound selected by the user in the Sound system preferences. See the
Application Kit class NSSound for more information.

NSBeep

void NSBeep(void)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Foundation Classes
This chapter covers the classes of the Foundation framework. The Foundation framework implements a basic set of
classes used in data management, application coordination, networking and inter-application communication, as well as
for interacting with core operating system services. Chapter 2 discussed in depth many Foundation classes. Chapter 6
discussed several of the Foundation classes related to networking.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAppleEventDescriptor Mac OS X 10.0

This class is primarily used to retrieve information about an Apple Event in a Cocoa application. A handful of methods in
the scripting classes of the Foundation framework either take an event descriptor object or return one. For example, in
the class NSAppleScript we expect an NSAppleEventDescriptor object to be returned by the script execution methods. This
class is only useful for creating event descriptor objects to return to other objects, or to extract information about an
Apple Event descriptor. Currently, Cocoa has no mechanism for sending raw Apple Events; for that you must rely on the
Carbon Apple Event APIs.

@interface NSAppleEventDescriptor : NSObject <NSCopying>

 // Initializers

 - (id)initListDescriptor;

 - (id)initRecordDescriptor;

 - (id)initWithAEDescNoCopy:(const AEDesc *)aeDesc;

 - (id)initWithDescriptorType:(DescType)descriptorType bytes:(const void *)bytes length:(unsigned int)byteCount;

 - (id)initWithDescriptorType:(DescType)descriptorType data:(NSData *)data;

 - (id)initWithEventClass:(AEEventClass)eventClass eventID:(AEEventID)eventID
 targetDescriptor:(NSAppleEventDescriptor *)targetDescriptor returnID:(AEReturnID)returnID
 transactionID:(AETransactionID)transactionID;

 // Accessor Methods

 - (void)setDescriptor:(NSAppleEventDescriptor *)descriptor forKeyword:(AEKeyword)keyword;

 - (void)setAttributeDescriptor:(NSAppleEventDescriptor *)descriptor forKeyword:(AEKeyword)keyword;

 - (void)setParamDescriptor:(NSAppleEventDescriptor *)descriptor forKeyword:(AEKeyword)keyword;

 // Class Methods

 + (NSAppleEventDescriptor *)appleEventWithEventClass:(AEEventClass)eventClass eventID:(AEEventID)eventID
 targetDescriptor:(NSAppleEventDescriptor *)targetDescriptor returnID:(AEReturnID)returnID
 transactionID:(AETransactionID)transactionID; transactionID:(AETransactionID)transactionID;

 + (NSAppleEventDescriptor *)descriptorWithBoolean:(Boolean)boolean;

 + (NSAppleEventDescriptor *)descriptorWithDescriptorType:(DescType)descriptorType
 bytes:(const void *)bytes length:(unsigned int)byteCount;

 + (NSAppleEventDescriptor *)descriptorWithDescriptorType:(DescType)descriptorType data:(NSData *)data;

 + (NSAppleEventDescriptor *)descriptorWithEnumCode:(OSType)enumerator;

 + (NSAppleEventDescriptor *)descriptorWithInt32:(SInt32)signedInt;

 + (NSAppleEventDescriptor *)descriptorWithString:(NSString *)string;

 + (NSAppleEventDescriptor *)descriptorWithTypeCode:(OSType)typeCode;

 + (NSAppleEventDescriptor *)listDescriptor;

 + (NSAppleEventDescriptor *)nullDescriptor;

 + (NSAppleEventDescriptor *)recordDescriptor;

 // Instance Methods

 - (NSAppleEventDescriptor *)coerceToDescriptorType:(DescType)descriptorType;

 - (const AEDesc *)aeDesc;

 - (NSAppleEventDescriptor *)attributeDescriptorForKeyword:(AEKeyword)keyword;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (Boolean)booleanValue;

 - (NSData *)data;

 - (NSAppleEventDescriptor *)descriptorAtIndex:(long int)index;

 - (NSAppleEventDescriptor *)descriptorForKeyword:(AEKeyword)keyword;

 - (DescType)descriptorType;

 - (OSType)enumCodeValue;

 - (AEEventClass)eventClass;

 - (AEEventID)eventID;

 - (void)insertDescriptor:(NSAppleEventDescriptor *)descriptor atIndex:(long int)index;

 - (SInt32)int32Value;

 - (AEKeyword)keywordForDescriptorAtIndex:(long int)index;

 - (int)numberOfItems;

 - (NSAppleEventDescriptor *)paramDescriptorForKeyword:(AEKeyword)keyword;

 - (void)removeDecriptorAtIndex:(long int)index;

 - (void)removeDescriptorAtIndex:(long int)index;

 - (void)removeDescriptorWithKeyword:(AEKeyword)keyword;

 - (void)removeParamDescriptorWithKeyword:(AEKeyword)keyword;

 - (AEReturnID)returnID;

 - (NSString *)stringValue;

 - (AETransactionID)transactionID;

 - (OSType)typeCodeValue;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAppleEventManager Mac OS X 10.0

This class is used to register objects as handlers of raw Apple Events in a Cocoa application. Instances of this class are
not only responsible for registering and unregistering handlers, but are also responsible for dispatching events to the
appropriate handler object. An application has a single instance of NSAppleEventManager that is shared among its objects;
this event manager is obtained using the class method sharedAppleEventManager.

@interface NSAppleEventManager : NSObject

 // Accessor Methods

 - (void)setEventHandler:(id)handler andSelector:(SEL)handleEventSelector forEventClass:(AEEventClass)eventClass
 andEventID:(AEEventID)eventID;

 // Class Methods

 + (NSAppleEventManager *)sharedAppleEventManager;

 // Instance Methods

 - (OSErr)dispatchRawAppleEvent:(const AppleEvent *)theAppleEvent withRawReply:(AppleEvent *)theReply
 handlerRefCon:(UInt32)handlerRefCon;

 - (void)removeEventHandlerForEventClass:(AEEventClass)eventClass andEventID:(AEEventID)eventID;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAppleScript Mac OS X 10.2

This class gives clients the ability to load, compile, and run AppleScripts. This class provides methods to initialize the
class with either text source code, or with a precompiled script. With an initialized object, clients can compile or execute
scripts. The Application Kit declares an extension to the NSAppleScript class that is used to obtain colored source code for
a given script.

@interface NSAppleScript : NSObject <NSCopying>

 // Initializers

 - (id)initWithContentsOfURL:(NSURL *)url error:(NSDictionary **)errorInfo;

 - (id)initWithSource:(NSString *)source;

 // Instance Methods

 - (BOOL)compileAndReturnError:(NSDictionary **)errorInfo;

 - (NSAppleEventDescriptor *)executeAndReturnError:(NSDictionary **)errorInfo;

 - (NSAppleEventDescriptor *)executeAppleEvent:(NSAppleEventDescriptor *)event error:(NSDictionary **)errorInfo;

 - (BOOL)isCompiled;

 - (NSAttributedString *)richTextSource;

 - (NSString *)source;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSArchiver Mac OS X 10.0

This class is a concrete subclass of NSCoder used to archive a network of interconnected objects (an object tree) into a
data format that can be written to disk. The archive operation returns an NSMutableData object containing this data. To
archive an object, the class method archivedDataWithRootObject: is used, which returns an NSData object containing the
archived object. Alternatively, we can archive directly to a file using the class method archiveRootObject:toFile:. It is also
possible to initialize an instance of NSArchiver with a pointer to an instance of NSMutableData using
initForWritingWithMutableData:, thus providing a more persistent archiving engine than if we simply used the class
methods.

To retrieve objects from an archive, we use another subclass of NSCoder: NSUnarchiver. NSArchiver and NSUnarchiver
support an archival scheme where objects and variables must be unarchived in the same order that they were archived.
Mac OS X 10.2 introduced keyed-archiving, whereby every object and variable in an archive has an associated key that
frees us from having to be strictly bound to the original archive format. This has great benefits for improving the
compatability of data files between versions of an application.

For instances of a class to be archivable, that class must conform to the NSCoding protocol. See the NSCoding protocol
description and Chapter 2 for more information about archiving.

@interface NSArchiver : NSCoder

 // Initializers

 - (id)initForWritingWithMutableData:(NSMutableData *)mdata;

 // Class Methods

 + (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path;

 + (NSData *)archivedDataWithRootObject:(id)rootObject;

 // Instance Methods

 - (NSMutableData *)archiverData;

 - (NSString *)classNameEncodedForTrueClassName:(NSString *)trueName;

 - (void)encodeClassName:(NSString *)trueName intoClassName:(NSString *)inArchiveName;

 - (void)encodeConditionalObject:(id)object;

 - (void)encodeRootObject:(id)rootObject;

 - (void)replaceObject:(id)object withObject:(id)newObject;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSArray Mac OS X 10.0

This class manages an immutable ordered collection of objects. Objects are stored in an array by reference. That is, the
pointer to the object is stored rather than the object itself. When the object is added to an array, the array retains it by
sending a retain message to the object. When the array is released it sends a release message to each of its members.

There are many methods for querying the contents of the array. The method objectAtIndex: is commonly used to access
an object at some position in the array. Conversely, we can determine the index of some object using the method
indexOfObject:, which returns the lowest index of the member that is equivalent the specified object. To determine the
number of objects contained within the array the count method is invoked.

To enumerate the contents of an array, create an NSEnumerator object for the array using one of two methods:
objectEnumerator or reverseObjectEnumerator. A standard object enumerator will return the objects in the order that they
exist within the array, while the reverse enumerator will return members starting from the last object and working its
way forward. See the NSEnumerator class description for more information on enumerating collections.

Often we want to invoke some method in each member of a collection. NSArray provides a method that saves us from
the burden of having to enumerate the contents of the array and send the message manually. This method is
makeObjectsPerformSelector:, which will cause the method matching the selector to be invoked in each member of the
collection. If you need to invoke a method that takes an argument, then use the method
makeObjectsPerformSelector:withObject:.

NSArray is an immutable class. The class NSMutableArray supports ordered collections whose contents can be changed
after initialization.

NSArray is toll-free bridged with the Core Foundation type CFArray. As such, NSArray objects can be used interchangeably
with the CFArray pointer type, CFArrayRef.

@interface NSArray : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Convenience Constructors

 + (id)array;

 + (id)arrayWithArray:(NSArray *)array;

 + (id)arrayWithContentsOfFile:(NSString *)path;

 + (id)arrayWithContentsOfURL:(NSURL *)url;

 + (id)arrayWithObject:(id)anObject;

 + (id)arrayWithObjects:(id *)objs count:(unsigned)cnt;

 + (id)arrayWithObjects:(id)firstObj, ...;

 // Initializers

 - (id)initWithArray:(NSArray *)array;

 - (id)initWithArray:(NSArray *)array copyItems:(BOOL)flag;

 - (id)initWithContentsOfFile:(NSString *)path;

 - (id)initWithContentsOfURL:(NSURL *)url;

 - (id)initWithObjects:(id *)objects count:(unsigned)count;

 - (id)initWithObjects:(id)firstObj, ...;

 // Instance Methods

 - (NSArray *)arrayByAddingObject:(id)anObject;

 - (NSArray *)arrayByAddingObjectsFromArray:(NSArray *)otherArray;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSArray *)arrayByAddingObjectsFromArray:(NSArray *)otherArray;

 - (NSString *)componentsJoinedByString:(NSString *)separator;

 - (BOOL)containsObject:(id)anObject;

 - (unsigned)count;

 - (NSString *)description;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale indent:(unsigned)level;

 - (id)firstObjectCommonWithArray:(NSArray *)otherArray;

 - (void)getObjects:(id *)objects;

 - (void)getObjects:(id *)objects range:(NSRange)range;

 - (unsigned)indexOfObject:(id)anObject;

 - (unsigned)indexOfObject:(id)anObject inRange:(NSRange)range;

 - (unsigned)indexOfObjectIdenticalTo:(id)anObject;

 - (unsigned)indexOfObjectIdenticalTo:(id)anObject inRange:(NSRange)range;

 - (BOOL)isEqualToArray:(NSArray *)otherArray;

 - (id)lastObject;

 - (void)makeObjectsPerformSelector:(SEL)aSelector;

 - (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)argument;

 - (id)objectAtIndex:(unsigned)index;

 - (NSEnumerator *)objectEnumerator;

 - (NSArray *)pathsMatchingExtensions:(NSArray *)filterTypes;

 - (NSEnumerator *)reverseObjectEnumerator;

 - (NSData *)sortedArrayHint;

 - (NSArray *)sortedArrayUsingFunction:(int (*)(id, id, void *))comparator context:(void *)context;

 - (NSArray *)sortedArrayUsingFunction:(int (*)(id, id, void *))comparator context:(void *)
 context hint:(NSData *)hint;

 - (NSArray *)sortedArrayUsingSelector:(SEL)comparator;

 - (NSArray *)subarrayWithRange:(NSRange)range;

 - (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile;

 - (BOOL)writeToURL:(NSURL *)url atomically:(BOOL)atomically;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableArray

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAssertionHandler Mac OS X 10.0

The NSAssertionHandler class is responsible for assertions that are created using the Foundation framework assertion
macros. Every thread has its own assertion handler object that is obtained through the class method currentHandler.
NSAssertionHandler provides the methods handleFailureInMethod:object:file:lineNumber:description: and
handleFailureInFunction:file:lineNumber:description: to log error messages in response to assertion failures within methods
and functions, respectively.

The assertion macros allow the user to check for a given condition—that is, assert that a condition must be true—and if
the condition is false, a string is passed to the assertion handler, and the handler is notified of the failed assertion.
When the assertion handler receives notification of a failed assertion it will print an error message that includes the
user-specified string, as well as the class and method names where the assertion failure occurred. Additionally, an
NSInternalInconsistencyException is raised. If this exception is not handled by the application, the application will exit.

The Foundation framework defines six assertion macros that can be used within an Objective-C method (NSAssert,
NSAssert1, NSAssert2, etc.) and six macros that may be used within a C function (NSCAssert, NSCAssert1, NSCAssert2, etc.).
Each of these macros takes a condition that will be asserted, and a string that will be printed as part of the error
message. The numbered macros allow the client to pass additional parameters for printf- style formatted strings.

@interface NSAssertionHandler : NSObject

 // Class Methods

 + (NSAssertionHandler *)currentHandler;

 // Instance Methods

 - (void)handleFailureInFunction:(NSString *)functionName file:(NSString *)fileName lineNumber:(int)line
 description:(NSString *)format,...;

 - (void)handleFailureInMethod:(SEL)selector object:(id)object file:(NSString *)fileName
 lineNumber:(int)line description:(NSString *)format,...;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAttributedString Mac OS X 10.0

This class represents a string with associated attributes that describe the styled appearance of the string. Attributes are
stored in a dictionary. Cocoa defines several keys to identify common attributes such as the font, foreground color, text
alignment, line spacing, and more; these keys are listed below in the constants. This class has many methods for
querying the attributes of ranges of text within the string. For example, the method attributesAtIndex:effectiveRange:
returns a dictionary of attributes for the character at index, and by reference the range that the attribute applies to is
returned in the second parameter.

The Application Kit implements many extensions to NSAttributedString to support more graphical uses of this class. In
particular, the AppKit extensions provide support for initializing an attributed string with RTF-formatted data, as well as
converting an attributed string to such data. Additionally, these extensions provide for drawing attributed strings into a
view, and for managing graphics attributes such as font and ruler characteristics.

NSAttributedString is an immutable class. Mutability is supported in the subclass NSMutable-AttributedString.

@interface NSAttributedString : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Initializers

 - (id)initWithAttributedString:(NSAttributedString *)attrStr;

 - (id)initWithHTML:(NSData *)data baseURL:(NSURL *)base documentAttributes:(NSDictionary **)dict;

 - (id)initWithHTML:(NSData *)data documentAttributes:(NSDictionary **)dict;

 - (id)initWithPath:(NSString *)path documentAttributes:(NSDictionary **)dict;

 - (id)initWithRTF:(NSData *)data documentAttributes:(NSDictionary **)dict;

 - (id)initWithRTFD:(NSData *)data documentAttributes:(NSDictionary **)dict;

 - (id)initWithRTFDFileWrapper:(NSFileWrapper *)wrapper documentAttributes:(NSDictionary **)dict;

 - (id)initWithString:(NSString *)str;

 - (id)initWithString:(NSString *)str attributes:(NSDictionary *)attrs;

 - (id)initWithURL:(NSURL *)url documentAttributes:(NSDictionary **)dict;

 // Class Methods

 + (NSAttributedString *)attributedStringWithAttachment:(NSTextAttachment *)attachment;

 + (NSArray *)textFileTypes;

 + (NSArray *)textPasteboardTypes;

 + (NSArray *)textUnfilteredFileTypes;

 + (NSArray *)textUnfilteredPasteboardTypes;

 // Instance Methods

 - (NSFileWrapper *)RTFDFileWrapperFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict;

 - (NSData *)RTFDFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict;

 - (NSData *)RTFFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict;

 - (id)attribute:(NSString *)attrName atIndex:(unsigned int)location effectiveRange:(NSRangePointer)range;

 - (id)attribute:(NSString *)attrName atIndex:(unsigned int)location longestEffectiveRange:(NSRangePointer)range
 inRange:(NSRange)rangeLimit; inRange:(NSRange)rangeLimit;

 - (NSAttributedString *)attributedSubstringFromRange:(NSRange)range;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSDictionary *)attributesAtIndex:(unsigned)location effectiveRange:(NSRangePointer)range;

 - (NSDictionary *)attributesAtIndex:(unsigned)location longestEffectiveRange:(NSRangePointer)range
 inRange:(NSRange)rangeLimit;

 - (BOOL)containsAttachments;

 - (NSRange)doubleClickAtIndex:(unsigned)location;

 - (void)drawAtPoint:(NSPoint)point;

 - (void)drawInRect:(NSRect)rect;

 - (NSDictionary *)fontAttributesInRange:(NSRange)range;

 - (BOOL)isEqualToAttributedString:(NSAttributedString *)other;

 - (unsigned)length;

 - (unsigned)lineBreakBeforeIndex:(unsigned)location withinRange:(NSRange)aRange;

 - (unsigned)nextWordFromIndex:(unsigned)location forward:(BOOL)isForward;

 - (NSDictionary *)rulerAttributesInRange:(NSRange)range;

 - (NSSize)size;

 - (NSString *)string;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableAttributedString

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAutoreleasePool Mac OS X 10.0

This class is used by Cocoa's memory management system to store objects that have been sent autorelease messages
until the end of the current event-loop. At the end of the each pass through the event-loop the autorelease pool is
deallocated, thereby releasing any objects referenced by the pool. At the beginning of each pass through the run-loop,
a new instance of NSAutoreleasePool is created.

For Cocoa's memory management system to function properly there must be an autorelease pool present. If there is no
autorelease pool present then your code will begin to leak memory, as objects will not be released. In this same vein,
when you detach a new thread, that thread is responsible for creating its own autorelease pool. Autorelease pools are
created just like any other object, using alloc and init. Multiple autorelease pools in a single thread of execution are
maintained in a stack whereby objects being autoreleased are sent to the pool at the top of the stack.

The operational method of NSAutoreleasePool is addObject:, which adds the specified object to the pool, causing the object
to be released when the pool is itself released. If an object is added multiple times, it will be sent a release message for
each time it was added to the pool. You should never have to invoke addObject: yourself; that's the purpose of NSObject's
autorelease method.

@interface NSAutoreleasePool : NSObject

 // Class Methods

 + (void)addObject:(id)anObject;

 + (unsigned int)autoreleasedObjectCount;

 + (void)enableFreedObjectCheck:(BOOL)enable;

 + (void)enableRelease:(BOOL)enable;

 + (unsigned int)poolCountHighWaterMark;

 + (unsigned int)poolCountHighWaterResolution;

 + (void)resetTotalAutoreleasedObjects;

 + (void)setPoolCountHighWaterMark:(unsigned int)count;

 + (void)setPoolCountHighWaterResolution:(unsigned int)res;

 + (void)showPools;

 + (unsigned int)topAutoreleasePoolCount;

 + (unsigned)totalAutoreleasedObjects;

 // Instance Methods

 - (void)addObject:(id)anObject;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSBundle Mac OS X 10.0

This class represents directories in the filesystem that contain executable binaries, and any resources needed by the
executable, such as images, sounds, or nibs. For more information about NSBundle, see Chapter 2.

@interface NSBundle : NSObject

 // Convenience Constructors

 + (NSBundle *)bundleForClass:(Class)aClass;

 + (NSBundle *)bundleWithIdentifier:(NSString *)identifier;

 + (NSBundle *)bundleWithPath:(NSString *)path;

 // Initializers

 - (id)initWithPath:(NSString *)path;

 // Class Methods

 + (NSArray *)allBundles;

 + (NSArray *)allFrameworks;

 + (BOOL)loadNibFile:(NSString *)fileName externalNameTable:(NSDictionary *)context withZone:(NSZone *)zone;

 + (BOOL)loadNibNamed:(NSString *)nibName owner:(id)owner;

 + (NSBundle *)mainBundle;

 + (NSString *)pathForResource:(NSString *)name ofType:(NSString *)ext inDirectory:(NSString *)path;

 + (NSArray *)pathsForResourcesOfType:(NSString *)ext inDirectory:(NSString *)subpath;

 + (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray;

 + (NSArray *)preferredLocalizationsFromArray:(NSArray *)localizationsArray
 forPreferences:(NSArray *)preferencesArray;

 // Instance Methods

 - (NSString *)builtInPlugInsPath;

 - (NSString *)bundleIdentifier;

 - (NSString *)bundlePath;

 - (Class)classNamed:(NSString *)className;

 - (NSAttributedString *)contextHelpForKey:(NSString *)key;

 - (NSString *)developmentLocalization;

 - (NSString *)executablePath;

 - (NSDictionary *)infoDictionary;

 - (BOOL)isLoaded;

 - (BOOL)load;

 - (BOOL)loadNibFile:(NSString *)fileName externalNameTable:(NSDictionary *)context withZone:(NSZone *)zone;

 - (NSArray *)localizations;

 - (NSDictionary *)localizedInfoDictionary;

 - (NSString *)localizedStringForKey:(NSString *)key value:(NSString *)value table:(NSString *)tableName;

 - (id)objectForInfoDictionaryKey:(NSString *)key;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSString *)pathForAuxiliaryExecutable:(NSString *)executableName;

 - (NSString *)pathForImageResource:(NSString *)name;

 - (NSString *)pathForResource:(NSString *)name ofType:(NSString *)ext;

 - (NSString *)pathForResource:(NSString *)name ofType:(NSString *)ext inDirectory:(NSString *)subpath;

 - (NSString *)pathForResource:(NSString *)name ofType:(NSString *)ext inDirectory:(NSString *)subpath
 forLocalization:(NSString *)localizationName;

 - (NSString *)pathForSoundResource:(NSString *)name;

 - (NSArray *)pathsForResourcesOfType:(NSString *)ext inDirectory:(NSString *)subpath;

 - (NSArray *)pathsForResourcesOfType:(NSString *)ext inDirectory:(NSString *)subpath
 forLocalization:(NSString *)localizationName;

 - (NSArray *)preferredLocalizations;

 - (Class)principalClass;

 - (NSString *)privateFrameworksPath;

 - (NSString *)resourcePath;

 - (NSString *)sharedFrameworksPath;

 - (NSString *)sharedSupportPath;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCalendarDate Mac OS X 10.0

This subclass of NSDate represents dates as users would recognize them on the Western Gregorian calendar. Like
NSDate, NSCalendarDate stores a date as the number of seconds since an absolute reference date. However, unlike
NSDate, this class is able to return information about the date in terms of minutes, hours, days, weeks, months, and
years. For example, using the method dayOfYear we can determine the day of the year a date represents (1 through
366). NSCalendarDate is also capable of providing string representations of dates using the description... methods.

In addition to storing a date value, NSCalendarDate maintains a reference to an NSTimeZone object so that dates may be
accurately converted according to the user's time zone. This time zone object is accessed with the methods setTimeZone:
and timeZone.

@interface NSCalendarDate : NSDate

 // Initializers

 - (id)initWithString:(NSString *)description;

 - (id)initWithString:(NSString *)description calendarFormat:(NSString *)format;

 - (id)initWithString:(NSString *)description calendarFormat:(NSString *)format locale:(NSDictionary *)dict;

 - (id)initWithYear:(int)year month:(unsigned)month day:(unsigned)day hour:(unsigned)hour
 minute:(unsigned)minute second:(unsigned)second timeZone:(NSTimeZone *)aTimeZone;

 // Accessor Methods

 - (void)setTimeZone:(NSTimeZone *)aTimeZone;

 - (NSTimeZone *)timeZone;

 - (void)setCalendarFormat:(NSString *)format;

 - (NSString *)calendarFormat;

 // Class Methods

 + (id)calendarDate;

 + (id)dateWithString:(NSString *)description calendarFormat:(NSString *)format;

 + (id)dateWithString:(NSString *)description calendarFormat:(NSString *)format locale:(NSDictionary *)dict;

 + (id)dateWithYear:(int)year month:(unsigned)month day:(unsigned)day hour:(unsigned)hour
 minute:(unsigned)minute second:(unsigned)second timeZone:(NSTimeZone *)aTimeZone;

 // Instance Methods

 - (NSCalendarDate *)dateByAddingYears:(int)year months:(int)month days:(int)day hours:(int)hour
 minutes:(int)minute seconds:(int)second;

 - (int)dayOfCommonEra;

 - (int)dayOfMonth;

 - (NSString *)description;

 - (NSString *)descriptionWithCalendarFormat:(NSString *)format;

 - (int)dayOfWeek;

 - (int)dayOfYear;

 - (NSString *)descriptionWithCalendarFormat:(NSString *)format locale:(NSDictionary *)locale;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale;

 - (int)hourOfDay;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (int)minuteOfHour;

 - (int)monthOfYear;

 - (int)secondOfMinute;

 - (int)yearOfCommonEra;

 - (void)years:(int *)yp months:(int *)mop days:(int *)dp hours:(int *)hp minutes:(int *)mip seconds:(int *)sp
 sinceDate:(NSCalendarDate *)date;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCharacterSet Mac OS X 10.0

A character set represents a collection of Unicode characters. An instance of NSCharacterSet is a static entity;
NSCharacterSet's subclass NSMutableCharacterSet defines an interface to a dynamic set of Unicode characters.

NSCharacterSet is toll-free bridged with the Core Foundation type CFCharacterSet. As such, NSCharacterSet objects can be
used interchangeably with the CFCharacterSet pointer type, CFCharacterSetRef.

@interface NSCharacterSet : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Class Methods

 + (NSCharacterSet *)alphanumericCharacterSet;

 + (NSCharacterSet *)capitalizedLetterCharacterSet;

 + (NSCharacterSet *)characterSetWithBitmapRepresentation:(NSData *)data;

 + (NSCharacterSet *)characterSetWithCharactersInString:(NSString *)aString;

 + (NSCharacterSet *)characterSetWithContentsOfFile:(NSString *)fName;

 + (NSCharacterSet *)characterSetWithRange:(NSRange)aRange;

 + (NSCharacterSet *)controlCharacterSet;

 + (NSCharacterSet *)decimalDigitCharacterSet;

 + (NSCharacterSet *)decomposableCharacterSet;

 + (NSCharacterSet *)illegalCharacterSet;

 + (NSCharacterSet *)letterCharacterSet;

 + (NSCharacterSet *)lowercaseLetterCharacterSet;

 + (NSCharacterSet *)nonBaseCharacterSet;

 + (NSCharacterSet *)punctuationCharacterSet;

 + (NSCharacterSet *)uppercaseLetterCharacterSet;

 + (NSCharacterSet *)whitespaceAndNewlineCharacterSet;

 + (NSCharacterSet *)whitespaceCharacterSet;

 // Instance Methods

 - (NSData *)bitmapRepresentation;

 - (BOOL)characterIsMember:(unichar)aCharacter;

 - (BOOL)hasMemberInPlane:(uint8_t)thePlane;

 - (NSCharacterSet *)invertedSet;

 - (BOOL)isSupersetOfSet:(NSCharacterSet *)theOtherSet;

 - (BOOL)longCharacterIsMember:(UTF32Char)theLongChar;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableCharacterSet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSClassDescription Mac OS X 10.0

This class provides an intelligent interface to Foundation's key-value coding capabilities (see NSKeyValueCoding in Chapter
2). The main purpose of this class is to provide an interface for objects to determine the properties and characteristics
of a class. NSClassDescription is an abstract class, upon which Foundation implements the concrete subclass
NSScriptClassDescription.

@interface NSClassDescription : NSObject

 // Class Methods

 + (NSClassDescription *)classDescriptionForClass:(Class)aClass;

 + (void)invalidateClassDescriptionCache;

 + (void)registerClassDescription:(NSClassDescription *)description forClass:(Class)aClass;

 // Instance Methods

 - (NSArray *)attributeKeys;

 - (NSArray *)attributeKeys;

 - (NSClassDescription *)classDescription;

 - (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey;

 - (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey;

 - (NSArray *)toManyRelationshipKeys;

 - (NSArray *)toManyRelationshipKeys;

 - (NSArray *)toOneRelationshipKeys;

 - (NSArray *)toOneRelationshipKeys;

// Notifications

 NSClassDescriptionNeededForClassNotification;

Subclasses

NSScriptClassDescription

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCloneCommand Mac OS X 10.0

Instances of this class clone the specified object and then insert the cloned object into the location specified in the
script. If no location is specified, the default location is used. This class is used in Cocoa's implementation of built-in
AppleScript support, and as such clients should not need to access instances of this class directly.

@interface NSCloneCommand : NSScriptCommand

 // Accessor Methods

 - (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef;

 // Instance Methods

 - (NSScriptObjectSpecifier *)keySpecifier;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCloseCommand Mac OS X 10.0

Instances of this class close the specified object, which in Cocoa is generally an instance of NSWindow or NSDocument.
This class is used in Cocoa's implementation of built-in AppleScript support, and as such clients should not need to
access instances of this class directly.

@interface NSCloseCommand : NSScriptCommand

 // Instance Methods

 - (NSSaveOptions)saveOptions;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCoder Mac OS X 10.0

This class defines an abstract interface for subclasses that implement object archival functionality. The Foundation
framework implements five concreate subclasses: NSArchiver and NSUnarchiver are used for non-keyed archiving, while
NSKeyedArchiver and NSKeyedUnarchiver provide support for keyed-archiving. NSPortCoder is used by the distributed objects
system to send object proxies across a connection. For more information, see the class references for these five
classes, the protocol reference for the NSCoding protocol, and Chapter 2.

@interface NSCoder : NSObject

 // Accessor Methods

 - (void)setObjectZone:(NSZone *)zone;

 - (NSZone *)objectZone;

 // Instance Methods

 - (BOOL)allowsKeyedCoding;

 - (void)decodeArrayOfObjCType:(const char *)itemType count:(unsigned)count at:(void *)array;

 - (BOOL)decodeBoolForKey:(NSString *)key;

 - (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(unsigned *)lengthp;

 - (void *)decodeBytesWithReturnedLength:(unsigned *)lengthp;

 - (NSData *)decodeDataObject;

 - (double)decodeDoubleForKey:(NSString *)key;

 - (float)decodeFloatForKey:(NSString *)key;

 - (int32_t)decodeInt32ForKey:(NSString *)key;

 - (int64_t)decodeInt64ForKey:(NSString *)key;

 - (int)decodeIntForKey:(NSString *)key;

 - (NSColor *)decodeNXColor;

 - (id)decodeNXObject;

 - (id)decodeObject;

 - (id)decodeObjectForKey:(NSString *)key;

 - (NSPoint)decodePoint;

 - (NSPoint)decodePointForKey:(NSString *)key;

 - (id)decodePropertyList;

 - (NSRect)decodeRect;

 - (NSRect)decodeRectForKey:(NSString *)key;

 - (NSSize)decodeSize;

 - (NSSize)decodeSizeForKey:(NSString *)key;

 - (void)decodeValueOfObjCType:(const char *)type at:(void *)data;

 - (void)decodeValuesOfObjCTypes:(const char *)types, ...;

 - (void)encodeArrayOfObjCType:(const char *)type count:(unsigned)count at:(const void *)array;

 - (void)encodeBool:(BOOL)boolv forKey:(NSString *)key;

 - (void)encodeBycopyObject:(id)anObject;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)encodeByrefObject:(id)anObject;

 - (void)encodeBytes:(const uint8_t *)bytesp length:(unsigned)lenv forKey:(NSString *)key;

 - (void)encodeBytes:(const void *)byteaddr length:(unsigned)length;

 - (void)encodeConditionalObject:(id)object;

 - (void)encodeConditionalObject:(id)objv forKey:(NSString *)key;

 - (void)encodeDataObject:(NSData *)data;

 - (void)encodeDouble:(double)realv forKey:(NSString *)key;

 - (void)encodeFloat:(float)realv forKey:(NSString *)key;

 - (void)encodeInt32:(int32_t)intv forKey:(NSString *)key;

 - (void)encodeInt64:(int64_t)intv forKey:(NSString *)key;

 - (void)encodeInt:(int)intv forKey:(NSString *)key;

 - (void)encodeNXObject:(id)object;

 - (void)encodeObject:(id)object;

 - (void)encodeObject:(id)objv forKey:(NSString *)key;

 - (void)encodePoint:(NSPoint)point;

 - (void)encodePoint:(NSPoint)point forKey:(NSString *)key;

 - (void)encodePropertyList:(id)aPropertyList;

 - (void)encodeRect:(NSRect)rect;

 - (void)encodeRect:(NSRect)rect forKey:(NSString *)key;

 - (void)encodeRootObject:(id)rootObject;

 - (void)encodeSize:(NSSize)size;

 - (void)encodeSize:(NSSize)size forKey:(NSString *)key;

 - (void)encodeValueOfObjCType:(const char *)type at:(const void *)addr;

 - (void)encodeValuesOfObjCTypes:(const char *)types, ...;

 - (BOOL)containsValueForKey:(NSString *)key;

 - (unsigned)systemVersion;

 - (unsigned)versionForClassName:(NSString *)className;

Subclasses

NSArchiver, NSKeyedArchiver, NSKeyedUnarchiver, NSPortCoder, NSUnarchiver
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSConditionLock Mac OS X 10.0

NSConditionLock is a class that implements the NSLocking protocol and is used to perform thread locks that are associated
with specific, user-defined conditions. The idea behind NSConditionLock is that a thread can acquire a lock only if some
arbitrary condition has been satisfied. See Chapter 2.

@interface NSConditionLock : NSObject <NSLocking>

 // Initializers

 - (id)initWithCondition:(int)condition;

 // Instance Methods

 - (int)condition;

 - (BOOL)lockBeforeDate:(NSDate *)limit;

 - (void)lockWhenCondition:(int)condition;

 - (BOOL)lockWhenCondition:(int)condition beforeDate:(NSDate *)limit;

 - (BOOL)tryLock;

 - (BOOL)tryLockWhenCondition:(int)condition;

 - (void)unlockWithCondition:(int)condition;

 // Methods Implementing NSLocking

 - (void)lock;

 - (void)unlock;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSConnection Mac OS X 10.0

This class declares the interface to objects that manage communications between objects that reside in separate
processes. The NSConnection class forms the groundwork for Cocoa's distributed objects system, which is described in
more detail in Chapter 6. NSConnection supports inter-process communication on the local host, as well as between two
hosts over a network. NSConnection is frequently used to facilitate communication between threads in a multithreaded
application. Clients use the NSConnection class primarily for vending objects (making them available to other processes),
accessing vended objects, and for fine-tuning communication parameters.

@interface NSConnection : NSObject

 // Convenience Constructors

 + (NSConnection *)connectionWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort;

 + (NSConnection *)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName;

 + (NSConnection *)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName
 usingNameServer:(NSPortNameServer *)server;

 // Initializers

 - (id)initWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort;

 // Accessor Methods

 - (void)setRequestTimeout:(NSTimeInterval)ti;

 - (NSTimeInterval)requestTimeout;

 - (void)setReplyTimeout:(NSTimeInterval)ti;

 - (NSTimeInterval)replyTimeout;

 - (void)setRootObject:(id)anObject;

 - (id)rootObject;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setIndependentConversationQueueing:(BOOL)yorn;

 - (BOOL)independentConversationQueueing;

 // Class Methods

 + (NSArray *)allConnections;

 + (id)currentConversation;

 + (NSConnection *)defaultConnection;

 + (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name host:(NSString *)hostName;

 + (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name host:(NSString *)hostName
 usingNameServer:(NSPortNameServer *)server;

 // Instance Methods

 - (void)invalidate;

 - (void)addRunLoop:(NSRunLoop *)runloop;

 - (void)enableMultipleThreads;

 - (void)addRequestMode:(NSString *)rmode;

 - (BOOL)isValid;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSArray *)localObjects;

 - (BOOL)multipleThreadsEnabled;

 - (NSPort *)receivePort;

 - (BOOL)registerName:(NSString *)name;

 - (BOOL)registerName:(NSString *)name withNameServer:(NSPortNameServer *)server;

 - (NSArray *)remoteObjects;

 - (void)removeRequestMode:(NSString *)rmode;

 - (void)removeRunLoop:(NSRunLoop *)runloop;

 - (NSArray *)requestModes;

 - (NSDistantObject *)rootProxy;

 - (void)runInNewThread;

 - (NSPort *)sendPort;

 - (NSDictionary *)statistics;

// Methods Implemented by the Delegate

 - (BOOL)authenticateComponents:(NSArray *)components withData:(NSData *)signature;

 - (NSData *)authenticationDataForComponents:(NSArray *)components;

 - (BOOL)connection:(NSConnection *)ancestor shouldMakeNewConnection:(NSConnection *)conn;

 - (BOOL)connection:(NSConnection *)connection handleRequest:(NSDistantObjectRequest *)doreq;

 - (id)createConversationForConnection:(NSConnection *)conn;

 - (BOOL)makeNewConnection:(NSConnection *)conn sender:(NSConnection *)ancestor;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCountCommand Mac OS X 10.0

Instances of this class serve to count the number of objects contained within the container object specified as part of
this command. This class is used in Cocoa's implementation of built-in AppleScript support, and as such clients should
not need to access instances of this class directly.

@interface NSCountCommand : NSScriptCommand

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCountedSet Mac OS X 10.0

This class extends the functionality of NSMutableSet by associating with each member of the set a count of how many
times the object has been added to the set. By keeping a count with each object, NSCountedSet essentially removes the
restriction that every member of a set must be unique. NSCountedSet reimplements several of NSMutableSet's methods to
support the object counter. The one new method in NSCountedSet is countForObject:, which will return the counter value
for the specified object. If the object is not a member of the set, this method returns 0. This count can be viewed as the
number of occurences of the object within the set.

@interface NSCountedSet : NSMutableSet

 // Initializers

 - (id)initWithArray:(NSArray *)array;

 - (id)initWithCapacity:(unsigned)numItems;

 - (id)initWithSet:(NSSet *)set;

 // Instance Methods

 - (void)addObject:(id)object;

 - (unsigned)countForObject:(id)object;

 - (NSEnumerator *)objectEnumerator;

 - (void)removeObject:(id)object;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCreateCommand Mac OS X 10.0

This class provides support for the Make AppleScript command, which is used to create new instances of the specified
object. This class is used in Cocoa's implementation of built-in AppleScript support, and as such clients should not need
to access instances of this class directly.

@interface NSCreateCommand : NSScriptCommand

 // Instance Methods

 - (NSScriptClassDescription *)createClassDescription;

 - (NSDictionary *)resolvedKeyDictionary;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSData Mac OS X 10.0

This class is used to store immutable data as a string of bytes. In essence, NSData is an Objective-C wrapper around a C
data buffer. To access the buffer directly, use the bytes method, which returns a pointer to the buffer. The number of
bytes contained in the buffer is found by invoking the length method. Additionally, NSData provides a handful of methods
for copy bytes from the data object into a buffer. These methods include getBytes:, getBytes:length:, and getBytes:range:.
All three of these methods take in the first parameter a generic C pointer to the buffer in which the bytes are copied.

NSData is toll-free bridged with the Core Foundation type CFData. As such, NSData objects can be used interchangeably
with the CFData pointer type, CFDataRef.

Note that NSData is an immutable class, which means the contents of the data object cannot be changed after
initialization.

@interface NSData : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Convenience Constructors

 + (id)data;

 + (id)dataWithBytes:(const void *)bytes length:(unsigned)length;

 + (id)dataWithBytesNoCopy:(void *)bytes length:(unsigned)length;

 + (id)dataWithBytesNoCopy:(void *)bytes length:(unsigned)length freeWhenDone:(BOOL)b;

 + (id)dataWithContentsOfFile:(NSString *)path;

 + (id)dataWithContentsOfMappedFile:(NSString *)path;

 + (id)dataWithContentsOfURL:(NSURL *)url;

 + (id)dataWithData:(NSData *)data;

 // Initializers

 - (id)initWithBytes:(const void *)bytes length:(unsigned)length;

 - (id)initWithBytesNoCopy:(void *)bytes length:(unsigned)length;

 - (id)initWithBytesNoCopy:(void *)bytes length:(unsigned)length freeWhenDone:(BOOL)b;

 - (id)initWithContentsOfFile:(NSString *)path;

 - (id)initWithContentsOfMappedFile:(NSString *)path;

 - (id)initWithContentsOfURL:(NSURL *)url;

 - (id)initWithData:(NSData *)data;

 // Instance Methods

 - (const void *)bytes;

 - (NSString *)description;

 - (unsigned)deserializeAlignedBytesLengthAtCursor:(unsigned *)cursor;

 - (void)deserializeBytes:(void *)buffer length:(unsigned)bytes atCursor:(unsigned *)cursor;

 - (void)deserializeDataAt:(void *)data ofObjCType:(const char *)type atCursor:(unsigned *)cursor
 context:(id <NSObjCTypeSerializationCallBack>)callback;

 - (int)deserializeIntAtCursor:(unsigned *)cursor;

 - (int)deserializeIntAtIndex:(unsigned)index;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)deserializeInts:(int *)intBuffer count:(unsigned)numInts atCursor:(unsigned *)cursor;

 - (void)deserializeInts:(int *)intBuffer count:(unsigned)numInts atIndex:(unsigned)index;

 - (void)getBytes:(void *)buffer;

 - (void)getBytes:(void *)buffer length:(unsigned)length;

 - (void)getBytes:(void *)buffer range:(NSRange)range;

 - (BOOL)isEqualToData:(NSData *)other;

 - (unsigned)length;

 - (NSData *)subdataWithRange:(NSRange)range;

 - (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile;

 - (BOOL)writeToURL:(NSURL *)url atomically:(BOOL)atomically;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableData

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDate Mac OS X 10.0

This class represents a date and time as the number of seconds since the absolute reference date, which is defined as
midnight, January 1, 2001, GMT. This class allows you to compare dates, compute time intervals between dates, and
obtain string representations of the NSDate object. The dates represented by NSDate are not suitable for presentation to
human users. NSDateFormatter objects are used by NSCell objects to convert raw dates into human readable
representations. If your application requires the ability to work with date information in terms of a calendar—that is,
days, weeks, months, years, and so on—the Foundation framework provides the NSDate subclass NSCalendarDate.

NSDate is toll-free bridged with the Core Foundation type CFDate. As such, NSDate objects can be used interchangeably
with the CFDate pointer type, CFDateRef.

See the NSCalendarDate class description for more information. Additionally, Chapter 2 provides more detailed
information on the use of NSDate.

@interface NSDate : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (id)date;

 + (id)dateWithString:(NSString *)aString;

 + (id)dateWithTimeIntervalSince1970:(NSTimeInterval)secs;

 + (id)dateWithTimeIntervalSinceNow:(NSTimeInterval)secs;

 + (id)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)secs;

 // Initializers

 - (id)init;

 - (id)initWithString:(NSString *)description;

 - (id)initWithTimeInterval:(NSTimeInterval)secsToBeAdded sinceDate:(NSDate *)anotherDate;

 - (id)initWithTimeIntervalSinceNow:(NSTimeInterval)secsToBeAddedToNow;

 - (id)initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)secsToBeAdded;

 // Class Methods

 + (id)distantFuture;

 + (id)distantPast;

 + (id) dateWithNaturalLanguageString:(NSString *)string;

 + (id) dateWithNaturalLanguageString:(NSString *)string locale:(NSDictionary *)dict;

 + (NSTimeInterval)timeIntervalSinceReferenceDate;

 // Instance Methods

 - (id)addTimeInterval:(NSTimeInterval)seconds;

 - (NSComparisonResult)compare:(NSDate *)other;

 - (NSCalendarDate *)dateWithCalendarFormat:(NSString *)format timeZone:(NSTimeZone *)aTimeZone;

 - (NSString *)description;

 - (NSString *)descriptionWithCalendarFormat:(NSString *)format timeZone:(NSTimeZone *)aTimeZone
 locale:(NSDictionary *)locale;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSDate *)earlierDate:(NSDate *)anotherDate;

 - (BOOL)isEqualToDate:(NSDate *)otherDate;

 - (NSDate *)laterDate:(NSDate *)anotherDate;

 - (NSTimeInterval)timeIntervalSince1970;

 - (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate;

 - (NSTimeInterval)timeIntervalSinceNow;

 - (NSTimeInterval)timeIntervalSinceReferenceDate;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

Subclasses

NSCalendarDate
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDateFormatter Mac OS X 10.0

This class is used to convert NSDate values into a human-readable date and time string, as well as to convert textual
date and time representations into NSDate objects. NSDateFormatter is quite flexible in terms of the variety of supported
textual representations, including such standards as 1/1/02, January 1, 2002, and natural language expressions such as
"Today" or "Tomorrow". NSDateFormatter is used primarily by NSTextFieldCell instances to present date information to the
user in an appropriate format.

@interface NSDateFormatter : NSFormatter

 // Initializers

 - (id)initWithDateFormat:(NSString *)format allowNaturalLanguage:(BOOL)flag;

 // Instance Methods

 - (BOOL)allowsNaturalLanguage;

 - (NSString *)dateFormat;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDecimalNumber Mac OS X 10.0

This subclass of NSNumber provides an object-oriented wrapper for performing base-10 arithmetic operations. Instances
of NSDecimalNumber are created with a string such as "10.2e4" using decimalNumberWithString:, or by specifying the
mantissa, exponent, and whether or not it is negative in the method decimalNumberWith-Mantissa:exponent:isNegative:.

Arithmetic operations are performed on two decimal number objects using methods such as decimalNumberByAdding:,
decimalNumberByMultiplying:, and so forth. The value of the decimal number can be accessed as a double by sending a
doubleValue message to the object.

@interface NSDecimalNumber : NSNumber

 // Initializers

 - (id)initWithDecimal:(NSDecimal)dcm;

 - (id)initWithMantissa:(unsigned long long)mantissa exponent:(short)exponent isNegative:(BOOL)flag;

 - (id)initWithString:(NSString *)numberValue;

 - (id)initWithString:(NSString *)numberValue locale:(NSDictionary *)locale;

 // Class Methods

 + (NSDecimalNumber *)decimalNumberWithDecimal:(NSDecimal)dcm;

 + (NSDecimalNumber *)decimalNumberWithMantissa:(unsigned long long)mantissa
 exponent:(short)exponent isNegative:(BOOL)flag;

 + (NSDecimalNumber *)decimalNumberWithString:(NSString *)numberValue;

 + (NSDecimalNumber *)decimalNumberWithString:(NSString *)numberValue locale:(NSDictionary *)locale;

 + (id <NSDecimalNumberBehaviors>)defaultBehavior;

 + (NSDecimalNumber *)maximumDecimalNumber;

 + (NSDecimalNumber *)minimumDecimalNumber;

 + (NSDecimalNumber *)notANumber;

 + (NSDecimalNumber *)one;

 + (void)setDefaultBehavior:(id <NSDecimalNumberBehaviors>)behavior;

 + (NSDecimalNumber *)zero;

 // Instance Methods

 - (NSComparisonResult)compare:(NSNumber *)decimalNumber;

 - (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber;

 - (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber
 withBehavior:(id <NSDecimalNumberBehaviors>)behavior;

 - (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber;

 - (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber
 withBehavior:(id <NSDecimalNumberBehaviors>)behavior;

 - (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber;

 - (NSDecimalNumber *)decimalNumberByMultiplyingBy:(NSDecimalNumber *)decimalNumber
 withBehavior:(id <NSDecimalNumberBehaviors>)behavior;

 - (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10:(short)power
 withBehavior:(id <NSDecimalNumberBehaviors>)behavior;

 - (NSDecimalNumber *)decimalNumberByRaisingToPower:(unsigned)power;

 - (NSDecimalNumber *)decimalNumberByRaisingToPower:(unsigned)power

 withBehavior:(id <NSDecimalNumberBehaviors>)behavior;

 - (NSDecimalNumber *)decimalNumberByRoundingAccordingToBehavior:
 (id <NSDecimalNumberBehaviors>)behavior;

 - (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber;

 - (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber
 withBehavior:(id <NSDecimalNumberBehaviors>)behavior;

 - (NSDecimal)decimalValue;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale;

 - (double)doubleValue;

 - (const char *)objCType;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDecimalNumberHandler Mac OS X 10.0

This class is used to customize the behavior of NSDecimalNumber-based arithmetic without having to subclass. In
particular, NSDecimalNumberHandler allows clients to specify how NSDecimalNumber objects should handle rounding and
errors.

@interface NSDecimalNumberHandler : NSObject <NSCoding, NSDecimalNumberBehaviors>

 // Initializers

 - (id)initWithRoundingMode:(NSRoundingMode)roundingMode scale:(short)scale raiseOnExactness:(BOOL)exact
 raiseOnOverflow:(BOOL)overflow raiseOnUnderflow:(BOOL)underflow raiseOnDivideByZero:(BOOL)divideByZero;

 // Class Methods

 + (id)decimalNumberHandlerWithRoundingMode:(NSRoundingMode)roundingMode
 scale:(short)scale raiseOnExactness:(BOOL)exact raiseOnOverflow:(BOOL)overflow
 raiseOnUnderflow:(BOOL)underflow raiseOnDivideByZero:(BOOL)divideByZero;

 + (id)defaultDecimalNumberHandler;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSDecimalNumberBehaviors

 - (NSRoundingMode)roundingMode;

 - (short)scale;

 - (NSDecimalNumber *)exceptionDuringOperation:(SEL)operation error:(NSCalculationError)error
 leftOperand:(NSDecimalNumber *)leftOperand rightOperand:(NSDecimalNumber *)rightOperand;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDeleteCommand Mac OS X 10.0

Instances of this class delete the indicated object or objects. This class is used in Cocoa's implementation of built-in
AppleScript support, and as such clients should not need to access instances of this class directly.

@interface NSDeleteCommand : NSScriptCommand

 // Accessor Methods

 - (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef;

 // Instance Methods

 - (NSScriptObjectSpecifier *)keySpecifier;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDeserializer Mac OS X 10.0

This class provides an interface to objects that convert property list-formatted data into a structure of property list
objects in memory. Note that this class has been deprecated and clients should instead use the class
NSPropertyListSerialization.

@interface NSDeserializer : NSObject

 // Class Methods

 + (id)deserializePropertyListFromData:(NSData *)data atCursor:(unsigned *)cursor mutableContainers:(BOOL)mut;

 + (id)deserializePropertyListFromData:(NSData *)serialization mutableContainers:(BOOL)mut;

 + (id)deserializePropertyListLazilyFromData:(NSData *)data atCursor:(unsigned *)cursor length:(unsigned)length
 mutableContainers:(BOOL)mut;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDictionary Mac OS X 10.0

This class manages a collection of objects as key-value pairs: objects are identified by a unique key within the
dictionary. A key-value pair within a dictionary is called an entry. NSDictionary is an immutable class whose contents
cannot be altered after they have been initially set. If you need a mutable dictionary, use NSMutableDictionary instead. A
dictionary key is typically an NSString, but according to the API the key can be any object that is type id. The fact that a
key can be an object of any type opens the way for interesting design possibilities in Cocoa.

NSDictionary has three primitive methods upon which the rest of the API is based. They are count, objectForKey:, and
keyEnumerator. The count method returns the number of objects contained in the dictionary. The method objectForKey: is
used to access an object in the dictionary. Finally, keyEnumerator will return an NSEnumerator object that will enumerate
the keys of the dictionary. In addition to keyEnumerator, NSDictionary responds to objectEnumerator for enumerating the
contents of the dictionary. Note that there is no order in a dictionary as there is in an array. When enumerating the
contents of a dictionary, there is no guarantee regarding the order that member objects will be returned by the
enumerator.

Often we want to send a message to each member of a collection. NSDictionary provides a method that save us from the
burden of having to enumerate the contents of the dictionary and send the message manually. This method is
makeObjectsPerformSelector:, which will cause the method matching the selector to be invoked in each member of the
collection. If you need to invoke a method that takes an argument, then use the method
makeObjectsPerformSelector:withObject:.

NSDictionary is toll-free bridged with the Core Foundation type CFDictionary. As such, NSDictionary objects can be used
interchangeably with the CFDictionary pointer type, CFDictionaryRef.

@interface NSDictionary : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Convenience Constructors

 + (id)dictionary;

 + (id)dictionaryWithContentsOfFile:(NSString *)path;

 + (id)dictionaryWithContentsOfURL:(NSURL *)url;

 + (id)dictionaryWithDictionary:(NSDictionary *)dict;

 + (id)dictionaryWithObject:(id)object forKey:(id)key;

 + (id)dictionaryWithObjects:(NSArray *)objects forKeys:(NSArray *)keys;

 + (id)dictionaryWithObjects:(id *)objects forKeys:(id *)keys count:(unsigned)count;

 + (id)dictionaryWithObjectsAndKeys:(id)firstObject, ...;

 // Initializers

 - (id)initWithContentsOfFile:(NSString *)path;

 - (id)initWithContentsOfURL:(NSURL *)url;

 - (id)initWithDictionary:(NSDictionary *)otherDictionary;

 - (id)initWithDictionary:(NSDictionary *)otherDictionary copyItems:(BOOL)aBool;

 - (id)initWithObjects:(NSArray *)objects forKeys:(NSArray *)keys;

 - (id)initWithObjects:(id *)objects forKeys:(id *)keys count:(unsigned)count;

 - (id)initWithObjectsAndKeys:(id)firstObject, ...;

 // Instance Methods

 - (NSArray *)allKeys;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSArray *)allKeysForObject:(id)anObject;

 - (NSArray *)allValues;

 - (unsigned)count;

 - (NSString *)description;

 - (NSString *)descriptionInStringsFileFormat;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale indent:(unsigned)level;

 - (NSDate *)fileCreationDate;

 - (BOOL)fileExtensionHidden;

 - (NSNumber *)fileGroupOwnerAccountID;

 - (NSString *)fileGroupOwnerAccountName;

 - (OSType)fileHFSCreatorCode;

 - (OSType)fileHFSTypeCode;

 - (BOOL)fileIsAppendOnly;

 - (BOOL)fileIsImmutable;

 - (NSDate *)fileModificationDate;

 - (NSNumber *)fileOwnerAccountID;

 - (NSString *)fileOwnerAccountName;

 - (unsigned long)filePosixPermissions;

 - (unsigned long long)fileSize;

 - (unsigned long)fileSystemFileNumber;

 - (unsigned long)fileSystemNumber;

 - (NSString *)fileType;

 - (BOOL)isEqualToDictionary:(NSDictionary *)otherDictionary;

 - (NSEnumerator *)keyEnumerator;

 - (NSArray *)keysSortedByValueUsingSelector:(SEL)comparator;

 - (NSEnumerator *)objectEnumerator;

 - (id)objectForKey:(id)aKey;

 - (NSArray *)objectsForKeys:(NSArray *)keys notFoundMarker:(id)marker;

 - (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile;

 - (BOOL)writeToURL:(NSURL *)url atomically:(BOOL)atomically;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableDictionary
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDirectoryEnumerator Mac OS X 10.0

This subclass of NSEnumerator enumerates the contents of a directory at a specified path. The objects returned by the
directory enumerator are strings of the pathnames of all files and subdirectories contained within the directory
represented by the enumerator. Enumeration is recursive; that is, the contents of a child directory will be enumerated
when encountered. Instances of this class are returned by the NSFileManager method enumeratorAtPath:.

@interface NSDirectoryEnumerator : NSEnumerator

 // Instance Methods

 - (NSDictionary *)directoryAttributes;

 - (NSDictionary *)fileAttributes;

 - (void)skipDescendents;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDistantObject Mac OS X 10.0

This subclass of NSProxy is used in distributed objects applications to locally represent objects that have been vended by
a remote process. NSDistantObject operates by forwarding any messages it receives to the local NSConnection object,
which then passes the invocation to the NSConnection object of the remote process. Return values received by the
NSConnection object are passed to the message originator through the same instance of NSDistantObject that forwarded
the message.

@interface NSDistantObject : NSProxy <NSCoding>

 // Initializers

 - (id)initWithLocal:(id)target connection:(NSConnection *)connection;

 - (id)initWithTarget:(id)target connection:(NSConnection *)connection;

 // Accessor Methods

 - (void)setProtocolForProxy:(Protocol *)proto;

 // Class Methods

 + (NSDistantObject *)proxyWithLocal:(id)target connection:(NSConnection *)connection;

 + (NSDistantObject *)proxyWithTarget:(id)target connection:(NSConnection *)connection;

 // Instance Methods

 - (NSConnection *)connectionForProxy;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDistantObjectRequest Mac OS X 10.0

This class is used by the distributed objects system to assist handling invocations between objects that reside in
different processes. This class is used internally by the distributed objects system, and as such clients should never
need to access instances of this class. If a client needs to process events handled by an NSConnection object, they may
implement the NSConnection delegate method connection:handleRequest:.

@interface NSDistantObjectRequest : NSObject

 // Instance Methods

 - (NSConnection *)connection;

 - (id)conversation;

 - (NSInvocation *)invocation;

 - (void)replyWithException:(NSException *)exception;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDistributedLock Mac OS X 10.0

This class provides an interface to an object that can be used by multiple applications to control access to a shared
resource (such as a file). This class works by creating an entry in the filesystem at a path known to each application
that is interested in acquiring a lock to access the shared resource.

A distributed lock object is initialized with a filesystem entry using the method initWithPath:. To acquire a lock, thus
making it safe to access a resource, we use the method tryLock. This method returns a BOOL indicating whether or not it
was successful in attempting to acquire a lock. To relinquish a previously acquired lock, use the method unlock.

@interface NSDistributedLock : NSObject

 // Initializers

 - (id)initWithPath:(NSString *)path;

 // Class Methods

 + (NSDistributedLock *)lockWithPath:(NSString *)path;

 // Instance Methods

 - (void)breakLock;

 - (NSDate *)lockDate;

 - (BOOL)tryLock;

 - (void)unlock;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDistributedNotificationCenter Mac OS X 10.0

This class extends the functionality of its superclass, NSNotificationCenter, by providing a means of sending notifications to
objects in other tasks. Every task has a default distributed notification center that objects send notifications to, as well
as register themselves as observers. To obtain your application's distributed notification center object, use the factory
method defaultCenter.

To register an object as a receiver of a specified notification we use the method addObserver:selector:name:object:. The
observer is the object that wishes to be notified of the notification identified by name:. The argument selector: specifies
what method should be invoked in response to the notification. The object: parameter allows us to restrict the
notifications the observer responds to those posted by the specified object. To remove an observer, invoke the method
removeObserver:, which removes the observer for all notifications. To be selective about what notifications from which
objects to stop observing, use the method removeObserver:name:object:.

NSNotificationCenter provides three methods for posting notifications: postNotification:, postNotificationName:object:, and
postNotification-Name:object:userInfo:. Each of these methods offers different levels of control over how the notification is
posted.

For more information about the notifications system, see Chapter 2.

@interface NSDistributedNotificationCenter : NSNotificationCenter

 // Accessor Methods

 - (void)setSuspended:(BOOL)suspended;

 - (BOOL)suspended;

 // Class Methods

 + (id)defaultCenter;

 + (NSDistributedNotificationCenter *)notificationCenterForType:(NSString *)notificationCenterType;

 // Instance Methods

 - (void)addObserver:(id)observer selector:(SEL)aSelector name:(NSString *)aName object:(NSString *)anObject;

 - (void)addObserver:(id)observer selector:(SEL)selector name:(NSString *)name object:(NSString *)object
 suspensionBehavior:(NSNotificationSuspensionBehavior)suspensionBehavior;

 - (void)postNotificationName:(NSString *)aName object:(NSString *)anObject;

 - (void)postNotificationName:(NSString *)aName object:(NSString *)anObject userInfo:(NSDictionary *)aUserInfo;

 - (void)postNotificationName:(NSString *)name object:(NSString *)object userInfo:(NSDictionary *)userInfo
 deliverImmediately:(BOOL)deliverImmediately;

 - (void)removeObserver:(id)observer name:(NSString *)aName

 object:(NSString *)anObject;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSEnumerator Mac OS X 10.0

This class enumerates the contents of a collection. Instances of this class are created by the collection classes,
generally with the method objectEnumerator. NSArray declares the method reverseObjectEnumerator, and NSDictionary
declares keyEnumerator as additional methods that create instances of NSEnumerator.

To obtain the next object in an enumerator, we invoke the method nextObject. This will return an object, and advance
the enumerator position forward in the collection. When the enumerator has exhausted the collection, nextObject returns
nil. Enumerators cannot be reset; once you have enumerated a collection, you must obtain an new enumerator from the
collection to start again. The method allObjects is used to return an NSArray of the objects that have not yet been
enumerated. See Chapter 2 for more information on collections and enumerators.

@interface NSEnumerator : NSObject

 // Instance Methods

 - (NSArray *)allObjects;

 - (id)nextObject;

Subclasses

NSDirectoryEnumerator
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSException Mac OS X 10.0

This class implements the Foundation framework's exception-handling system. Exceptions are used in Cocoa as a
mechanism to deal with special conditions in the execution of a program that may require special handling. Clients can
use NSException objects to raise exceptions (creating a special condition), as well as to retrieve information about an
exception. For details on exception handling, see Chapter 2.

@interface NSException : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (NSException *)exceptionWithName:(NSString *)name reason:(NSString *)reason userInfo:(NSDictionary *)userInfo;

 // Initializers

 - (id)initWithName:(NSString *)aName reason:(NSString *)aReason userInfo:(NSDictionary *)aUserInfo;

 // Class Methods

 + (void)raise:(NSString *)name format:(NSString *)format arguments:(va_list)argList;

 + (void)raise:(NSString *)name format:(NSString *)format, ...;

 // Instance Methods

 - (NSString *)name;

 - (void)raise;

 - (NSString *)reason;

 - (NSDictionary *)userInfo;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSExistsCommand Mac OS X 10.0

Instances of this class are used to check whether or not the specified object exists. This class is used in Cocoa's
implementation of built-in AppleScript support, and as such clients should not need to access instances of this class
directly.

@interface NSExistsCommand : NSScriptCommand

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFileHandle Mac OS X 10.0

This class is used to read and write data to and from an open file or open communications channel, such as a
networking socket. The class provides methods for working with files, and contains methods and notifications useful for
implementing asynchronous background socket communication.

@interface NSFileHandle : NSObject

 // Initializers

 - (id)initWithFileDescriptor:(int)fd;

 - (id)initWithFileDescriptor:(int)fd closeOnDealloc:(BOOL)closeopt;

 - (id)initWithNativeHandle:(void *)nativeHandle;

 - (id)initWithNativeHandle:(void *)nativeHandle closeOnDealloc:(BOOL)closeopt;

 // Class Methods

 + (id)fileHandleForReadingAtPath:(NSString *)path;

 + (id)fileHandleForUpdatingAtPath:(NSString *)path;

 + (id)fileHandleForWritingAtPath:(NSString *)path;

 + (id)fileHandleWithNullDevice;

 + (id)fileHandleWithStandardError;

 + (id)fileHandleWithStandardInput;

 + (id)fileHandleWithStandardOutput;

 // Instance Methods

 - (void)acceptConnectionInBackgroundAndNotify;

 - (void)acceptConnectionInBackgroundAndNotifyForModes:(NSArray *)modes;

 - (NSData *)availableData;

 - (void)closeFile;

 - (int)fileDescriptor;

 - (void *)nativeHandle;

 - (unsigned long long)offsetInFile;

 - (NSData *)readDataOfLength:(unsigned int)length;

 - (NSData *)readDataToEndOfFile;

 - (void)readInBackgroundAndNotify;

 - (void)readInBackgroundAndNotifyForModes:(NSArray *)modes;

 - (void)readToEndOfFileInBackgroundAndNotify;

 - (void)readToEndOfFileInBackgroundAndNotifyForModes:(NSArray *)modes;

 - (unsigned long long)seekToEndOfFile;

 - (void)seekToFileOffset:(unsigned long long)offset;

 - (void)synchronizeFile;

 - (void)truncateFileAtOffset:(unsigned long long)offset;

 - (void)waitForDataInBackgroundAndNotify;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)waitForDataInBackgroundAndNotifyForModes:(NSArray *)modes;

 - (void)writeData:(NSData *)data;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFileManager Mac OS X 10.0

This class provides an interface that clients can use to interact with the filesystem. This provides all of the standard file
and directory manipulation facilities for copying, moving, changing working directories, and more.

@interface NSFileManager : NSObject

 // Class Methods

 + (NSFileManager *)defaultManager;

 // Instance Methods

 - (BOOL)changeCurrentDirectoryPath:(NSString *)path;

 - (BOOL)changeFileAttributes:(NSDictionary *)attributes atPath:(NSString *)path;

 - (NSArray *)componentsToDisplayForPath:(NSString *)path;

 - (NSData *)contentsAtPath:(NSString *)path;

 - (BOOL)contentsEqualAtPath:(NSString *)path1 andPath:(NSString *)path2;

 - (BOOL)copyPath:(NSString *)src toPath:(NSString *)dest handler:(id)handler;

 - (BOOL)createDirectoryAtPath:(NSString *)path attributes:(NSDictionary *)attributes;

 - (BOOL)createFileAtPath:(NSString *)path contents:(NSData *)data attributes:(NSDictionary *)attr;

 - (BOOL)createSymbolicLinkAtPath:(NSString *)path pathContent:(NSString *)otherpath;

 - (NSString *)currentDirectoryPath;

 - (NSArray *)directoryContentsAtPath:(NSString *)path;

 - (NSString *)displayNameAtPath:(NSString *)path;

 - (NSDirectoryEnumerator *)enumeratorAtPath:(NSString *)path;

 - (NSDictionary *)fileAttributesAtPath:(NSString *)path traverseLink:(BOOL)yorn;

 - (BOOL)fileExistsAtPath:(NSString *)path;

 - (BOOL)fileExistsAtPath:(NSString *)path isDirectory:(BOOL *)isDirectory;

 - (NSDictionary *)fileSystemAttributesAtPath:(NSString *)path;

 - (const char *)fileSystemRepresentationWithPath:(NSString *)path;

 - (BOOL)isDeletableFileAtPath:(NSString *)path;

 - (BOOL)isExecutableFileAtPath:(NSString *)path;

 - (BOOL)isReadableFileAtPath:(NSString *)path;

 - (BOOL)isWritableFileAtPath:(NSString *)path;

 - (BOOL)linkPath:(NSString *)src toPath:(NSString *)dest handler:(id)handler;

 - (BOOL)movePath:(NSString *)src toPath:(NSString *)dest handler:(id)handler;

 - (NSString *)pathContentOfSymbolicLinkAtPath:(NSString *)path;

 - (BOOL)removeFileAtPath:(NSString *)path handler:(id)handler;

 - (NSString *)stringWithFileSystemRepresentation:(const char *)str length:(unsigned)len;

 - (NSArray *)subpathsAtPath:(NSString *)path;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFormatter Mac OS X 10.0

This class declares an abstract interface for objects that an instance of NSCell can use to create, interpret, and validate a
textual representation of the cell's contents that is suited for human readability. The Foundation framework provides
two concrete classes that are used to format numeric and time and date values: NSNumberFormatter and NSDateFormatter.

@interface NSFormatter : NSObject <NSCoding, NSCopying>

 // Instance Methods

 - (NSAttributedString *)attributedStringForObjectValue:(id)obj withDefaultAttributes:(NSDictionary *)attrs;

 - (NSString *)editingStringForObjectValue:(id)obj;

 - (BOOL)getObjectValue:(id *)obj forString:(NSString *)string errorDescription:(NSString **)error;

 - (BOOL)isPartialStringValid:(NSString *)partialString newEditingString:(NSString **)newString
 errorDescription:(NSString **)error;

 - (BOOL)isPartialStringValid:(NSString **)partialStringPtr
 proposedSelectedRange:(NSRangePointer)proposedSelRangePtr originalString:(NSString *)origString
 originalSelectedRange:(NSRange)origSelRange errorDescription:(NSString **)error;

 - (NSString *)stringForObjectValue:(id)obj;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

Subclasses

NSDateFormatter, NSNumberFormatter

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSGetCommand Mac OS X 10.0

Instances of this class are used to retrieve a user-specified value from the specified object. This class is used in Cocoa's
implementation of built-in AppleScript support, and as such clients should not need to access instances of this class
directly.

@interface NSGetCommand : NSScriptCommand

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSHost Mac OS X 10.0

This class is used to perform host name lookup and IP address translation. Translations are provided by any services
available to the operating system such as NetInfo, LDAP, or DNS. Instances of NSHost are created using one of three
class methods: currentHost, hostWithAddress:, and hostWithName:. The first, currentHost, returns an NSHost object that
contains information about the host running the application process. The methods hostWithName: and hostWithAddress:
create NSHost objects for the host with the specified name or address. The name used in hostWithName: can be a simple
host name, or it can be a fully qualified domain name. When creating a host object with hostWithAddress:, the IP address
is specified as a string in dotted decimal format, such as 192.168.254.198. Once an instance of NSHost has been created,
it can be queried for the IP addresses and names that the host identifies with.

@interface NSHost : NSObject

 // Convenience Constructors

 + (NSHost *)hostWithAddress:(NSString *)address;

 + (NSHost *)hostWithName:(NSString *)name;

 // Class Methods

 + (NSHost *)currentHost;

 + (void)flushHostCache;

 + (BOOL)isHostCacheEnabled;

 + (void)setHostCacheEnabled:(BOOL)flag;

 // Instance Methods

 - (NSString *)address;

 - (NSArray *)addresses;

 - (BOOL)isEqualToHost:(NSHost *)aHost;

 - (NSString *)name;

 - (NSArray *)names;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSIndexSpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify an object in a collection according to its
indexed position in the collection.

@interface NSIndexSpecifier : NSScriptObjectSpecifier

 // Initializers

 - (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
 containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property index:(int)index;

 // Accessor Methods

 - (void)setIndex:(int)index;

 - (int)index;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSInvocation Mac OS X 10.0

This class encapsulates information about an Objective-C message such as the selector and the target of the message.
NSInvocations are useful for statically storing a message and are often used with timers, and for message forwarding.

@interface NSInvocation : NSObject <NSCoding>

 // Convenience Constructors

 + (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)sig;

 // Accessor Methods

 - (void)setSelector:(SEL)selector;

 - (SEL)selector;

 - (void)setTarget:(id)target;

 - (id)target;

 - (void)setReturnValue:(void *)retLoc;

 - (void)setArgument:(void *)argumentLocation atIndex:(int)index;

 // Instance Methods

 - (void)getReturnValue:(void *)retLoc;

 - (void)invoke;

 - (void)getArgument:(void *)argumentLocation atIndex:(int)index;

 - (BOOL)argumentsRetained;

 - (void)invokeWithTarget:(id)target;

 - (NSMethodSignature *)methodSignature;

 - (void)retainArguments;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSKeyedArchiver Mac OS X 10.2

This class is a concrete subclass of NSCoder that encodes objects and scalar values into a data format that can be stored
in a file. NSKeyedArchiver is different from NSArchiver in that each object and scalar in the archive has an associated name
or key. These keys make it possible to decode the archive piecemeal; that is, in an order that is different from the
original encoding. Clients have the option of picking and choosing which objects to decode. Non-keyed archives suffer
from the limitation that the entirety of an archive must be decoded at once, and in the order that it was encoded.
Archiving is described in greater detail in Chapter 2.

@interface NSKeyedArchiver : NSCoder

 // Initializers

 - (id)initForWritingWithMutableData:(NSMutableData *)data;

 // Accessor Methods

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 - (void)setOutputFormat:(NSPropertyListFormat)format;

 - (NSPropertyListFormat)outputFormat;

 - (void)setClassName:(NSString *)codedName forClass:(Class)cls;

 // Class Methods

 + (BOOL)archiveRootObject:(id)rootObject toFile:(NSString *)path;

 + (NSData *)archivedDataWithRootObject:(id)rootObject;

 + (NSString *)classNameForClass:(Class)cls;

 + (void)setClassName:(NSString *)codedName forClass:(Class)cls;

 // Instance Methods

 - (void)encodeConditionalObject:(id)objv forKey:(NSString *)key;

 - (void)encodeBool:(BOOL)boolv forKey:(NSString *)key;

 - (void)encodeBytes:(const uint8_t *)bytesp length:(unsigned)lenv forKey:(NSString *)key;

 - (void)encodeDouble:(double)realv forKey:(NSString *)key;

 - (void)encodeFloat:(float)realv forKey:(NSString *)key;

 - (void)encodeInt32:(int32_t)intv forKey:(NSString *)key;

 - (void)encodeInt64:(int64_t)intv forKey:(NSString *)key;

 - (void)encodeInt:(int)intv forKey:(NSString *)key;

 - (NSString *)classNameForClass:(Class)cls;

 - (void)encodeObject:(id)objv forKey:(NSString *)key;

 - (void)finishEncoding;

// Methods Implemented by the Delegate

 - (void)archiver:(NSKeyedArchiver *)archiver didEncodeObject:(id)object;

 - (id)archiver:(NSKeyedArchiver *)archiver willEncodeObject:(id)object;

 - (void)archiver:(NSKeyedArchiver *)archiver willReplaceObject:(id)object withObject:(id)newObject;

 - (void)archiverDidFinish:(NSKeyedArchiver *)archiver;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)archiverWillFinish:(NSKeyedArchiver *)archiver;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSKeyedUnarchiver Mac OS X 10.2

This concrete subclass of NSCoder provides a means to decode objects that have been encoded in a keyed archive. The
companion class NSKeyedArchiver provides the means to create such keyed archives from a set of objects. Archiving is
described in greater detail in Chapter 2.

@interface NSKeyedUnarchiver : NSCoder

 // Initializers

 - (id)initForReadingWithData:(NSData *)data;

 // Accessor Methods

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 - (void)setClass:(Class)cls forClassName:(NSString *)codedName;

 // Class Methods

 + (Class)classForClassName:(NSString *)codedName;

 + (void)setClass:(Class)cls forClassName:(NSString *)codedName;

 + (id)unarchiveObjectWithData:(NSData *)data;

 + (id)unarchiveObjectWithFile:(NSString *)path;

 // Instance Methods

 - (int32_t)decodeInt32ForKey:(NSString *)key;

 - (const uint8_t *)decodeBytesForKey:(NSString *)key returnedLength:(unsigned *)lengthp;

 - (double)decodeDoubleForKey:(NSString *)key;

 - (Class)classForClassName:(NSString *)codedName;

 - (BOOL)containsValueForKey:(NSString *)key;

 - (BOOL)decodeBoolForKey:(NSString *)key;

 - (float)decodeFloatForKey:(NSString *)key;

 - (int64_t)decodeInt64ForKey:(NSString *)key;

 - (int)decodeIntForKey:(NSString *)key;

 - (id)decodeObjectForKey:(NSString *)key;

 - (void)finishDecoding;

// Methods Implemented by the Delegate

 - (Class)unarchiver:(NSKeyedUnarchiver *)unarchiver cannotDecodeObjectOfClassName:(NSString *)name
 originalClasses:(NSArray *)classNames;

 - (id)unarchiver:(NSKeyedUnarchiver *)unarchiver didDecodeObject:(id)object;

 - (void)unarchiver:(NSKeyedUnarchiver *)unarchiver willReplaceObject:(id)object withObject:(id)newObject;

 - (void)unarchiverDidFinish:(NSKeyedUnarchiver *)unarchiver;

 - (void)unarchiverWillFinish:(NSKeyedUnarchiver *)unarchiver;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSLock Mac OS X 10.0

NSLock implements thread locks that can be used to let multiple threads in an application access the same data without
clashing. The use of NSLock, and locking in general, is discussed in detail in Chapter 2.

@interface NSLock : NSObject <NSLocking>

 // Instance Methods

 - (BOOL)lockBeforeDate:(NSDate *)limit;

 - (BOOL)tryLock;

 // Methods Implementing NSLocking

 - (void)lock;

 - (void)unlock;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSLogicalTest Mac OS X 10.0

Instances of this class represent logical operations—such as AND, OR, and NOT—on a set of Boolean tests. These
Boolean tests are represented by instances of the class NSSpecifierTest. Instances of this class are initialized with one of
three initializers: initAndTestWithTests:, initOrTestWithTests:, and initNotTestWithTest:. The AND and OR initializers both take
an NSArray of test objects, while the NOT initializer requires only one test object. When an NSLogicalTest object is
evaluated (by receiving an isTrue message), it sends isTrue messages to each of its component test objects, and then
evaluate those results based on the type of logical test being performed.

@interface NSLogicalTest : NSScriptWhoseTest

 // Initializers

 - (id)initAndTestWithTests:(NSArray *)subTests;

 - (id)initNotTestWithTest:(NSScriptWhoseTest *)subTest;

 - (id)initOrTestWithTests:(NSArray *)subTests;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMachBootstrapServer Mac OS X 10.0

This subclass of NSPortNameServer returns and accepts instances of NSMachPort. NSConnection objects use port name
servers to register and discover communication ports that can be used for distributed objects connections. Additional
subclasses of NSPortNameServer that handle other types of ports are NSSocketPortNameServer and NSMessagePortNameServer.

@interface NSMachBootstrapServer : NSPortNameServer

 // Class Methods

 + (id)sharedInstance;

 // Instance Methods

 - (NSPort *)portForName:(NSString *)name;

 - (NSPort *)portForName:(NSString *)name host:(NSString *)host;

 - (BOOL)registerPort:(NSPort *)port name:(NSString *)name;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMachPort Mac OS X 10.0

This subclass of NSPort provides an object-oriented wrapper to Mach IPC ports, which can be used either as endpoint for
distributed object connections, or for raw messaging. NSMachPort objects only support local messaging; NSSocketPort
provides support for remote messaging over a network.

@interface NSMachPort : NSPort

 // Initializers

 - (id)initWithMachPort:(int)machPort;

 // Class Methods

 + (NSPort *)portWithMachPort:(int)machPort;

 // Instance Methods

 - (int)machPort;

 - (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode;

 - (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode;

// Methods Implemented by the Delegate

 - (void)handleMachMessage:(void *)msg;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMessagePort Mac OS X 10.0

This subclass of NSPort provides an interface to objects that serve as endpoints for distributed objects connections
between processes on the same machine. NSMachPort provides similar functionality that is implemented using Mach IPC
ports, while NSSocketPort supports messaging over a network.

@interface NSMessagePort : NSPort

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMessagePortNameServer Mac OS X 10.0

This subclass of NSPortNameServer accepts and returns instances of NSMessagePort. NSConnection objects use port name
servers to register and discover communication ports that can be used for distributed objects connections. Additional
subclasses of NSPortNameServer that handle other types of ports are NSMachBootstrapServer and NSSocketPortNameServer.

@interface NSMessagePortNameServer : NSPortNameServer

 // Class Methods

 + (id)sharedInstance;

 // Instance Methods

 - (NSPort *)portForName:(NSString *)name;

 - (NSPort *)portForName:(NSString *)name

 host:(NSString *)host;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMethodSignature Mac OS X 10.0

This class provides an interface used to query information about a method including such characteristics as the number
and types of arguments, and the return type. Instances of NSMethodSignature are created using NSObject's
methodSignature-ForSelector: method.

@interface NSMethodSignature : NSObject

 // Instance Methods

 - (unsigned)frameLength;

 - (const char *)getArgumentTypeAtIndex:(unsigned)index;

 - (BOOL)isOneway;

 - (unsigned)methodReturnLength;

 - (const char *)methodReturnType;

 - (unsigned)numberOfArguments;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMiddleSpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify the object that lies in the middle of a
collection of objects.

@interface NSMiddleSpecifier : NSScriptObjectSpecifier

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMoveCommand Mac OS X 10.0

Instances of this class represent move operations and, when executed, perform such operations on the specified
objects.

@interface NSMoveCommand : NSScriptCommand

 // Accessor Methods

 - (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef;

 // Instance Methods

 - (NSScriptObjectSpecifier *)keySpecifier;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableArray Mac OS X 10.0

This class extends the API of NSArray to allow for mutable, ordered collections of objects. NSMutableArray provides five
primitive methods, which form the basis for the rest of its methods: addObject:, insertObject:atIndex:, removeLastObject,
removeObjectAtIndex:, and replaceObjectAtIndex:withObject:. When an object is added to an array, the array asserts some
ownership over the object by sending it a retain message. Likewise, when an object is removed from an array, it is sent
a release message by the array.

NSMutableArray is toll-free bridged with the Core Foundation type CFArray. As such, NSMutableArray objects can be used
interchangeably with the CFArray pointer type, CFArrayRef.

@interface NSMutableArray : NSArray

 // Initializers

 - (id)initWithCapacity:(unsigned)numItems;

 // Accessor Methods

 - (void)setArray:(NSArray *)otherArray;

 // Class Methods

 + (id)arrayWithCapacity:(unsigned)numItems;

 // Instance Methods

 - (void)addObject:(id)anObject;

 - (void)addObjectsFromArray:(NSArray *)otherArray;

 - (void)exchangeObjectAtIndex:(unsigned)idx1 withObjectAtIndex:(unsigned)idx2;

 - (void)insertObject:(id)anObject atIndex:(unsigned)index;

 - (void)removeAllObjects;

 - (void)removeLastObject;

 - (void)removeObject:(id)anObject;

 - (void)removeObject:(id)anObject inRange:(NSRange)range;

 - (void)removeObjectAtIndex:(unsigned)index;

 - (void)removeObjectIdenticalTo:(id)anObject;

 - (void)removeObjectIdenticalTo:(id)anObject inRange:(NSRange)range;

 - (void)removeObjectsFromIndices:(unsigned *)indices numIndices:(unsigned)count;

 - (void)removeObjectsInArray:(NSArray *)otherArray;

 - (void)removeObjectsInRange:(NSRange)range;

 - (void)replaceObjectAtIndex:(unsigned)index withObject:(id)anObject;

 - (void)replaceObjectsInRange:(NSRange)range withObjectsFromArray:(NSArray *)otherArray;

 - (void)replaceObjectsInRange:(NSRange)range withObjectsFromArray:(NSArray *)otherArray
 range:(NSRange)otherRange;

 - (void)sortUsingFunction:(int (*)(id, id, void *))compare

 context:(void *)context;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)sortUsingSelector:(SEL)comparator;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableAttributedString Mac OS X 10.0

NSMutableAttributedString is a subclass of NSAttributedString that allows the contents and attributes of the string to be
altered after the object has been initialized, which is normally not possible with its immutable superclass.

@interface NSMutableAttributedString : NSAttributedString

 // Accessor Methods

 - (void)setAttributes:(NSDictionary *)attrs range:(NSRange)range;

 - (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)range;

 - (void)setAttributedString:(NSAttributedString *)attrString;

 // Instance Methods

 - (void)appendAttributedString:(NSAttributedString *)attrString;

 - (void)addAttribute:(NSString *)name value:(id)value range:(NSRange)range;

 - (void)addAttributes:(NSDictionary *)attrs range:(NSRange)range;

 - (void)applyFontTraits:(NSFontTraitMask)traitMask range:(NSRange)range;

 - (void)beginEditing;

 - (void)deleteCharactersInRange:(NSRange)range;

 - (void)endEditing;

 - (void)fixAttachmentAttributeInRange:(NSRange)range;

 - (void)fixAttributesInRange:(NSRange)range;

 - (void)fixFontAttributeInRange:(NSRange)range;

 - (void)fixParagraphStyleAttributeInRange:(NSRange)range;

 - (void)insertAttributedString:(NSAttributedString *)attrString atIndex:(unsigned)loc;

 - (NSMutableString *)mutableString;

 - (BOOL)readFromURL:(NSURL *)url options:(NSDictionary *)options documentAttributes:(NSDictionary **)dict;

 - (void)removeAttribute:(NSString *)name range:(NSRange)range;

 - (void)replaceCharactersInRange:(NSRange)range withAttributedString:(NSAttributedString *)attrString;

 - (void)replaceCharactersInRange:(NSRange)range withString:(NSString *)str;

 - (void)subscriptRange:(NSRange)range;

 - (void)superscriptRange:(NSRange)range;

 - (void)unscriptRange:(NSRange)range;

 - (void)updateAttachmentsFromPath:(NSString *)path;

Subclasses

NSTextStorage
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableCharacterSet Mac OS X 10.0

This class extends the interface of NSCharacterSet to allow clients to modify the contents of the character set after it has
been initialized. Clients may add and remove characters specified in a string or numeric range, and new sets may be
created from the union or intersection of two existing sets.

@interface NSMutableCharacterSet : NSCharacterSet <NSCopying, NSMutableCopying>

 // Instance Methods

 - (void)addCharactersInRange:(NSRange)aRange;

 - (void)addCharactersInString:(NSString *)aString;

 - (void)formIntersectionWithCharacterSet:(NSCharacterSet *)otherSet;

 - (void)formUnionWithCharacterSet:(NSCharacterSet *)otherSet;

 - (void)invert;

 - (void)removeCharactersInRange:(NSRange)aRange;

 - (void)removeCharactersInString:(NSString *)aString;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableData Mac OS X 10.0

This class adds mutable functionality to NSData, allowing the contents of the data object to be altered after initialization.
NSMutableData provides two methods for adjusting the size of the underlying data buffer: increaseLengthBy:,and
setLength:. The first of these increases the size of the buffer by the indicated number of bytes, while the latter sets the
size of the buffer to the specified number of bytes.

Data is added to a mutable data object using either appendData: or appendBytes:length. appendData: joins the specified
NSData object to the end of the receiver, while appendBytes:length: appends to the receiver the number of bytes specified
in length from the buffer pointer to in the first parameter.

NSMutableData also provides replaceBytesInRange:withBytes: and replaceBytesInRange:withBytes:length: to directly alter the
contents of the underlying data buffer. If you want to zero a portion of data, use the method resetBytesInRange:.

NSMutableData is toll-free bridged with the Core Foundation type CFData. As such, NSMutableData objects can be used
interchangeably with the CFData pointer type, CFDataRef.

@interface NSMutableData : NSData

 // Initializers

 - (id)initWithCapacity:(unsigned)capacity;

 - (id)initWithLength:(unsigned)length;

 // Accessor Methods

 - (void)setData:(NSData *)data;

 - (void)setLength:(unsigned)length;

 // Class Methods

 + (id)dataWithCapacity:(unsigned)aNumItems;

 + (id)dataWithLength:(unsigned)length;

 // Instance Methods

 - (void)appendBytes:(const void *)bytes length:(unsigned)length;

 - (void)appendData:(NSData *)other;

 - (void)increaseLengthBy:(unsigned)extraLength;

 - (void *)mutableBytes;

 - (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes;

 - (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)replacementBytes
 length:(unsigned)replacementLength;

 - (void)resetBytesInRange:(NSRange)range;

 - (void)serializeAlignedBytesLength:(unsigned)length;

 - (void)serializeDataAt:(const void *)data ofObjCType:(const char *)type
 context:(id <NSObjCTypeSerializationCallBack>)callback;

 - (void)serializeInt:(int)value;

 - (void)serializeInt:(int)value atIndex:(unsigned)index;

 - (void)serializeInts:(int *)intBuffer count:(unsigned)numInts;

 - (void)serializeInts:(int *)intBuffer count:(unsigned)numInts atIndex:(unsigned)index;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)serializeInts:(int *)intBuffer count:(unsigned)numInts atIndex:(unsigned)index;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableDictionary Mac OS X 10.0

NSDictionary, being an immutable class, does not allow clients to add, remove, or replace member objects after
initialization. NSMutableDictionary, on the other hand, allows for the kinds of operations that alter the contents of the
collection. Objects can be added to a mutable dictionary by invoking setObject:forKey:, and objects may be removed
using removeObjectForKey:. When an object is added to a dictionary it is sent a retain message; when the object is
removed, the dictionary will offset the retain with a release message.

NSMutableDictionary is toll-free bridged with the Core Foundation type CFDictionary. As such, NSMutableDictionary objects can
be used interchangeably with the CFDictionary pointer type, CFDictionaryRef.

@interface NSMutableDictionary : NSDictionary

 // Initializers

 - (id)initWithCapacity:(unsigned)numItems;

 // Accessor Methods

 - (void)setObject:(id)anObject forKey:(id)aKey;

 - (void)setDictionary:(NSDictionary *)otherDictionary;

 // Class Methods

 + (id)dictionaryWithCapacity:(unsigned)numItems;

 // Instance Methods

 - (void)addEntriesFromDictionary:(NSDictionary *)otherDictionary;

 - (void)removeAllObjects;

 - (void)removeObjectForKey:(id)aKey;

 - (void)removeObjectsForKeys:(NSArray *)keyArray;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableSet Mac OS X 10.0

This class extends the functionality of NSSet by allowing objects to be added to and removed from the set; NSSet does
not allow clients to add, remove, or replace objects in a set after initialization. This mutable subclass of NSSet provides
an interface for those operations.

To add an object to a mutable set, use the method addObject:. If the object is already present in the set, this method
has no effect. When an object is added to a set, it is sent a retain message by that set. The method removeObject: will
remove the specified object from the set if it is a member. When an object is removed from a set, it is sent a release
message by the set to counteract the retain message it was sent when added to the set.

NSMutableSet also implements a number of methods that are useful for combining sets in various ways. The method
unionSet: will add each member of the parameter set into the receiver if the receiver does not already contain that
object. The method minusSet: will remove from the receiver each object that is present in both sets, while the method
intersectSet: will remove from the receiver each object that isn't a member of the set specified in the argument.

NSMutableSet is toll-free bridged with the Core Foundation type CFSet. As such, NSMutableSet objects can be used
interchangeably with the CFSet pointer type, CFSetRef.

@interface NSMutableSet : NSSet

 // Initializers

 - (id)initWithCapacity:(unsigned)numItems;

 // Accessor Methods

 - (void)setSet:(NSSet *)otherSet;

 // Class Methods

 + (id)setWithCapacity:(unsigned)numItems;

 // Instance Methods

 - (void)addObject:(id)object;

 - (void)addObjectsFromArray:(NSArray *)array;

 - (void)intersectSet:(NSSet *)otherSet;

 - (void)minusSet:(NSSet *)otherSet;

 - (void)removeAllObjects;

 - (void)removeObject:(id)object;

 - (void)unionSet:(NSSet *)otherSet;

Subclasses

NSCountedSet

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableString Mac OS X 10.0

NSString creates immutable strings that cannot be changed after the object has been created. NSMutableString adds
methods that allow the contents of NSMutableString objects to be altered after object initialization. This class provides
methods for replacing portions of a string with another string, inserting strings within the existing string, appending
strings and formats, as well as deleting portions of strings.

NSMutableString is toll-free bridged with the Core Foundation type CFString. As such, NSMutableString objects can be used
interchangeably with the CFString pointer type, CFStringRef.

@interface NSMutableString : NSString

 // Initializers

 - (id)initWithCapacity:(unsigned)capacity;

 // Accessor Methods

 - (void)setString:(NSString *)aString;

 // Class Methods

 + (id)stringWithCapacity:(unsigned)capacity;

 // Instance Methods

 - (void)appendFormat:(NSString *)format, ...;

 - (void)appendString:(NSString *)aString;

 - (void)deleteCharactersInRange:(NSRange)range;

 - (void)insertString:(NSString *)aString atIndex:(unsigned)loc;

 - (void)replaceCharactersInRange:(NSRange)range withString:(NSString *)aString;

 - (unsigned int)replaceOccurrencesOfString:(NSString *)target
 withString:(NSString *)replacement options:(unsigned)opts range:(NSRange)searchRange;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNameSpecifier Mac OS X 10.2

This class represents the scripting language reference form used to specify an object in a collection according to the
object's name.

@interface NSNameSpecifier : NSScriptObjectSpecifier

 // Initializers

 - (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
 containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property name:(NSString *)name;

 // Accessor Methods

 - (void)setName:(NSString *)name;

 - (NSString *)name;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNetService Mac OS X 10.2

NSNetService represents a network service that applications either publish or use as a client. A network service can be
anything such as FTP, Telnet, SSH, HTTP, or any of the well-known services. A service can also be something of your
own design. NSNetService provides application level access to the low-level Multicast DNS responder APIs. For more
information about Rendezvous and the Net Services APIs in Foundation, see Chapter 6.

@interface NSNetService : NSObject

 // Initializers

 - (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name;

 - (id)initWithDomain:(NSString *)domain type:(NSString *)type name:(NSString *)name port:(int)port;

 // Accessor Methods

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 - (void)setProtocolSpecificInformation:(NSString *)specificInformation;

 - (NSString *)protocolSpecificInformation;

 // Instance Methods

 - (NSString *)name;

 - (NSArray *)addresses;

 - (NSString *)domain;

 - (void)publish;

 - (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode;

 - (void)resolve;

 - (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode;

 - (void)stop;

 - (NSString *)type;

// Methods Implemented by the Delegate

 - (void)netService:(NSNetService *)sender didNotPublish:(NSDictionary *)errorDict;

 - (void)netService:(NSNetService *)sender didNotResolve:(NSDictionary *)errorDict;

 - (void)netServiceDidResolveAddress:(NSNetService *)sender;

 - (void)netServiceDidStop:(NSNetService *)sender;

 - (void)netServiceWillPublish:(NSNetService *)sender;

 - (void)netServiceWillResolve:(NSNetService *)sender;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNetServiceBrowser Mac OS X 10.2

NSNetServiceBrowser is the complement to NSNetService and it serves two purposes: searching for network domains, and
searching for network services advertised on a given domain. When searching for domains we can either look for all
domains, or only those that we have registration authority in. These searches are performed by invoking the methods
searchForAllDomains and searchForRegistrationDomains, respectively. For more information about Rendezvous and the Net
Services APIs in Foundation, see Chapter 6.

@interface NSNetServiceBrowser : NSObject

 // Initializers

 - (id)init;

 // Accessor Methods

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 // Instance Methods

 - (void)removeFromRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode;

 - (void)scheduleInRunLoop:(NSRunLoop *)aRunLoop forMode:(NSString *)mode;

 - (void)searchForAllDomains;

 - (void)searchForRegistrationDomains;

 - (void)searchForServicesOfType:(NSString *)type inDomain:(NSString *)domainString;

 - (void)stop;

// Methods Implemented by the Delegate

 - (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser didFindDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing;

 - (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing;

 - (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser didNotSearch:(NSDictionary *)errorDict;

 - (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser didRemoveDomain:(NSString *)domainString
 moreComing:(BOOL)moreComing;

 - (void)netServiceBrowser:(NSNetServiceBrowser *)aNetServiceBrowser didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing;

 - (void)netServiceBrowserDidStopSearch:(NSNetServiceBrowser *)aNetServiceBrowser;

 - (void)netServiceBrowserWillSearch:(NSNetServiceBrowser *)aNetServiceBrowser;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNotification Mac OS X 10.0

Notifications provide a mechanism for objects that have no other way to communicate with each other. The model used
is a multicast model, in which client objects register themselves with a notification center to be notified in response to a
certain event, which is encapsulated in an NSNotification object. NSNotification represents both notifications to the
notification center, and the notifications that are sent out to the observers of a particular notification.

Clients generally interact with notifications as receivers; that is, they don't create notifications, but extract key bits of
information out of received notifications. To obtain information about a notification we use the three methods name,
userInfo, and object, which return the notification name, userInfo dictionary, and the notification's associated object,
respectively.

@interface NSNotification : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (id)notificationWithName:(NSString *)aName object:(id)anObject;

 + (id)notificationWithName:(NSString *)aName object:(id)anObject userInfo:(NSDictionary *)aUserInfo;

 // Instance Methods

 - (NSString *)name;

 - (id)object;

 - (NSDictionary *)userInfo;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNotificationCenter Mac OS X 10.0

This class is the core of Cocoa's notification system. Objects register with the default notification center to receive
notifications posted by other objects. The default notification center, which is also used for system notifications, is
obtained using the class method defaultCenter.

To register an object as a receiver of a specified notification, we use the method addObserver:selector:name:object:. The
observer is the object that wishes to be notified of the notification identified by name:. The selector: argument is the
selector for the method to be invoked in Observer:. The object: parameter allows us to restrict the notifications to which
the observer responds to those posted by the specified object. To remove an observer we invoke the method
removeObserver:, which removes the observer for all notifications. If we want to be selective about what notifications
from which objects we wish to stop observing, we can use the method removeObserver:name:object:.

NSNotificationCenter provides three methods for posting notifications: postNotification:, postNotificationName:object:, and
postNotificationName:object:userInfo:. Each of these methods offers different levels of control over how the notification is
posted.

For more information about the notifications system, see Chapter 2.

@interface NSNotificationCenter : NSObject

 // Class Methods

 + (id)defaultCenter;

 // Instance Methods

 - (void)addObserver:(id)observer selector:(SEL)aSelector name:(NSString *)aName object:(id)anObject;

 - (void)postNotification:(NSNotification *)notification;

 - (void)postNotificationName:(NSString *)aName object:(id)anObject;

 - (void)postNotificationName:(NSString *)aName object:(id)anObject userInfo:(NSDictionary *)aUserInfo;

 - (void)removeObserver:(id)observer;

 - (void)removeObserver:(id)observer name:(NSString *)aName object:(id)anObject;

Subclasses

NSDistributedNotificationCenter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNotificationQueue Mac OS X 10.0

This class acts as a buffer for notification centers. Notification queues can be used to allow greater control over the
timing of notifications and how they are posted to the notification center. Each thread has its own notification queue,
which is associated with the default notification center. For more information about the notification system, see Chapter
2.

@interface NSNotificationQueue : NSObject

 // Initializers

 - (id)initWithNotificationCenter:(NSNotificationCenter *)notificationCenter;

 // Class Methods

 + (NSNotificationQueue *)defaultQueue;

 // Instance Methods

 - (void)dequeueNotificationsMatching:(NSNotification *)notification coalesceMask:(unsigned)coalesceMask;

 - (void)enqueueNotification:(NSNotification *)notification postingStyle:(NSPostingStyle)postingStyle;

 - (void)enqueueNotification:(NSNotification *)notification postingStyle:(NSPostingStyle)postingStyle
 coalesceMask:(unsigned)coalesceMask forModes:(NSArray *)modes;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNull Mac OS X 10.0

This simple class represents a NULL value as an object. The utility of this is that an instance of NSNull can be added to
any of the Foundation collections, which don't provide for the inclusion of nil. To create an instance of NSNull, simply use
the class method null.

@interface NSNull : NSObject

 // Convenience Constructors

 + (NSNull *)null;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNumber Mac OS X 10.0

NSNumber is a wrapper class for the C primitive numeric data types. Using this class, clients can store values of primitive
data types, such as int and float, in Cocoa collection classes such as NSArray or NSDictionary, which only handle Objective-
C objects.

@interface NSNumber : NSValue

 // Convenience Constructors

 + (NSNumber *)numberWithBool:(BOOL)value;

 + (NSNumber *)numberWithChar:(char)value;

 + (NSNumber *)numberWithDouble:(double)value;

 + (NSNumber *)numberWithFloat:(float)value;

 + (NSNumber *)numberWithInt:(int)value;

 + (NSNumber *)numberWithLong:(long)value;

 + (NSNumber *)numberWithLongLong:(long long)value;

 + (NSNumber *)numberWithShort:(short)value;

 + (NSNumber *)numberWithUnsignedChar:(unsigned char)value;

 + (NSNumber *)numberWithUnsignedInt:(unsigned int)value;

 + (NSNumber *)numberWithUnsignedLong:(unsigned long)value;

 + (NSNumber *)numberWithUnsignedLongLong:(unsigned long long)value;

 + (NSNumber *)numberWithUnsignedShort:(unsigned short)value;

 // Initializers

 - (id)initWithBool:(BOOL)value;

 - (id)initWithChar:(char)value;

 - (id)initWithDouble:(double)value;

 - (id)initWithFloat:(float)value;

 - (id)initWithInt:(int)value;

 - (id)initWithLong:(long)value;

 - (id)initWithLongLong:(long long)value;

 - (id)initWithShort:(short)value;

 - (id)initWithUnsignedChar:(unsigned char)value;

 - (id)initWithUnsignedInt:(unsigned int)value;

 - (id)initWithUnsignedLong:(unsigned long)value;

 - (id)initWithUnsignedLongLong:(unsigned long long)value;

 - (id)initWithUnsignedShort:(unsigned short)value;

 // Instance Methods

 - (BOOL)boolValue;

 - (char)charValue;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSComparisonResult)compare:(NSNumber *)otherNumber;

 - (NSDecimal)decimalValue;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale;

 - (double)doubleValue;

 - (float)floatValue;

 - (int)intValue;

 - (BOOL)isEqualToNumber:(NSNumber *)number;

 - (long long)longLongValue;

 - (long)longValue;

 - (short)shortValue;

 - (NSString *)stringValue;

 - (unsigned char)unsignedCharValue;

 - (unsigned int)unsignedIntValue;

 - (unsigned long long)unsignedLongLongValue;

 - (unsigned long)unsignedLongValue;

 - (unsigned short)unsignedShortValue;

Subclasses

NSDecimalNumber
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNumberFormatter Mac OS X 10.0

This concrete subclass of NSFormatter converts the numeric contents of a cell into a user-specified textual
representation; textual representations can also be converted to NSDecimalNumber objects used to store numeric cell
values.

@interface NSNumberFormatter : NSFormatter

 // Accessor Methods

 - (void)setAttributedStringForNil:(NSAttributedString *)newAttributedString;

 - (NSAttributedString *)attributedStringForNil;

 - (void)setNegativeFormat:(NSString *)format;

 - (NSString *)negativeFormat;

 - (void)setMaximum:(NSDecimalNumber *)aMaximum;

 - (NSDecimalNumber *)maximum;

 - (void)setAllowsFloats:(BOOL)flag;

 - (BOOL)allowsFloats;

 - (void)setPositiveFormat:(NSString *)format;

 - (NSString *)positiveFormat;

 - (void)setMinimum:(NSDecimalNumber *)aMinimum;

 - (NSDecimalNumber *)minimum;

 - (void)setAttributedStringForZero:(NSAttributedString *)newAttributedString;

 - (NSAttributedString *)attributedStringForZero;

 - (void)setRoundingBehavior:(NSDecimalNumberHandler *)newRoundingBehavior;

 - (NSDecimalNumberHandler *)roundingBehavior;

 - (void)setFormat:(NSString *)format;

 - (NSString *)format;

 - (void)setHasThousandSeparators:(BOOL)flag;

 - (BOOL)hasThousandSeparators;

 - (void)setLocalizesFormat:(BOOL)flag;

 - (BOOL)localizesFormat;

 - (void)setDecimalSeparator:(NSString *)newSeparator;

 - (NSString *)decimalSeparator;

 - (void)setAttributedStringForNotANumber:(NSAttributedString *)newAttributedString;

 - (NSAttributedString *)attributedStringForNotANumber;

 - (void)setTextAttributesForNegativeValues:(NSDictionary *)newAttributes;

 - (NSDictionary *)textAttributesForNegativeValues;

 - (void)setTextAttributesForPositiveValues:(NSDictionary *)newAttributes;

 - (NSDictionary *)textAttributesForPositiveValues;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setThousandSeparator:(NSString *)newSeparator;

 - (NSString *)thousandSeparator;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSObject Mac OS X 10.0

NSObject is the root class of the Cocoa frameworks. This class defines the base functionality that enables objects to work
with the Objective-C runtime.

@interface NSObject <NSObject>

 // Initializers

 - (id)init;

 // Class Methods

 + (id)alloc;

 + (id)allocWithZone:(NSZone *)zone;

 + (Class)class;

 + (BOOL)conformsToProtocol:(Protocol *)protocol;

 + (id)copyWithZone:(NSZone *)zone;

 + (NSString *)description;

 + (void)initialize;

 + (IMP)instanceMethodForSelector:(SEL)aSelector;

 + (NSMethodSignature *)instanceMethodSignatureForSelector:(SEL)aSelector;

 + (BOOL)instancesRespondToSelector:(SEL)aSelector;

 + (BOOL)isSubclassOfClass:(Class)aClass;

 + (void)load;

 + (id)mutableCopyWithZone:(NSZone *)zone;

 + (id)new;

 + (void)poseAsClass:(Class)aClass;

 + (void)setVersion:(int)aVersion;

 + (Class)superclass;

 + (int)version;

 // Instance Methods

 - (void)URL:(NSURL *)sender resourceDataDidBecomeAvailable:(NSData *)newBytes;

 - (void)URL:(NSURL *)sender resourceDidFailLoadingWithReason:(NSString *)reason;

 - (void)URLResourceDidCancelLoading:(NSURL *)sender;

 - (void)URLResourceDidFinishLoading:(NSURL *)sender;

 - (id)awakeAfterUsingCoder:(NSCoder *)aDecoder;

 - (unsigned long)classCode;

 - (Class)classForArchiver;

 - (Class)classForCoder;

 - (Class)classForKeyedArchiver;

 - (Class)classForPortCoder;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSString *)className;

 - (id)copy;

 - (void)dealloc;

 - (void)doesNotRecognizeSelector:(SEL)aSelector;

 - (void)forwardInvocation:(NSInvocation *)anInvocation;

 - (IMP)methodForSelector:(SEL)aSelector;

 - (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector;

 - (id)mutableCopy;

 - (void)performSelector:(SEL)aSelector withObject:(id)anArgument afterDelay:(NSTimeInterval)delay;

 - (void)performSelector:(SEL)aSelector withObject:(id)anArgument afterDelay:(NSTimeInterval)delay
 inModes:(NSArray *)modes;

 - (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg waitUntilDone:(BOOL)wait;

 - (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg waitUntilDone:(BOOL)wait
 modes:(NSArray *)array;

 - (id)replacementObjectForArchiver:(NSArchiver *)archiver;

 - (id)replacementObjectForCoder:(NSCoder *)aCoder;

 - (id)replacementObjectForKeyedArchiver:(NSKeyedArchiver *)archiver;

 - (id)replacementObjectForPortCoder:(NSPortCoder *)coder;

 // Methods Implementing NSObject

 - (BOOL)isEqual:(id)object;

 - (unsigned)hash;

 - (Class)superclass;

 - (Class)class;

 - (id)self;

 - (NSZone *)zone;

 - (id)performSelector:(SEL)aSelector;

 - (id)performSelector:(SEL)aSelector withObject:(id)object;

 - (id)performSelector:(SEL)aSelector withObject:(id)object1 withObject:(id)object2;

 - (BOOL)isProxy;

 - (BOOL)isKindOfClass:(Class)aClass;

 - (BOOL)isMemberOfClass:(Class)aClass;

 - (BOOL)conformsToProtocol:(Protocol *)aProtocol;

 - (BOOL)respondsToSelector:(SEL)aSelector;

 - (id)retain;

 - (oneway void)release;

 - (id)autorelease;

 - (unsigned)retainCount;

 - (NSString *)description;

Subclasses

NSObject is a root class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPipe Mac OS X 10.0

This class provides an interface to objects that represent Unix pipes that can be used to transfer data between
applications. Pipes are one-way communication channels with a read-end and a write-end. NSFileHandle objects
representing these ends of the pipes are obtained by invoking fileHandleForReading and fileHandleForWriting.

@interface NSPipe : NSObject

 // Convenience Constructors

 + (id)pipe;

 // Initializers

 - (id)init;

 // Instance Methods

 - (NSFileHandle *)fileHandleForReading;

 - (NSFileHandle *)fileHandleForWriting;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPort Mac OS X 10.0

This class is an abstract class that declares the interface to objects that serve as endpoints for communication between
two threads or tasks. Cocoa's distributed objects system implements interprocess communication using subclasses of
NSPort. The Foundation framework implements three concrete subclasses of NSPort: NSMessagePort, NSMachPort, and
NSSocketPort. NSMessagePort and NSMachPort are used for local communications only, while NSSocketPort can be used for
either local or remote communication over a network.

@interface NSPort : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (NSPort *)port;

 // Accessor Methods

 - (void)setDelegate:(id)anId;

 - (id)delegate;

 // Class Methods

 + (id)allocWithZone:(NSZone *)zone;

 // Instance Methods

 - (void)addConnection:(NSConnection *)conn toRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode;

 - (BOOL)isValid;

 - (void)invalidate;

 - (void)removeConnection:(NSConnection *)conn fromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode;

 - (void)removeFromRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode;

 - (unsigned)reservedSpaceLength;

 - (void)scheduleInRunLoop:(NSRunLoop *)runLoop forMode:(NSString *)mode;

 - (BOOL)sendBeforeDate:(NSDate *)limitDate components:(NSMutableArray *)components from:(NSPort *)receivePort
 reserved:(unsigned)headerSpaceReserved;

 - (BOOL)sendBeforeDate:(NSDate *)limitDate msgid:(unsigned)msgID components:(NSMutableArray *)components
 reserved:(unsigned)headerSpaceReserved;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

// Methods Implemented by the Delegate

 - (void)handlePortMessage:(NSPortMessage *)message;

Subclasses

NSMessagePort, NSSocketPort

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPortCoder Mac OS X 10.0

This concrete subclass of NSCoder is used by the distributed objects system to encode, transmit, and decode object
proxies between two NSConnection objects residing in separate processes (objects, too, can be transmitted using this
class).

@interface NSPortCoder : NSCoder

 // Initializers

 - (id)initWithReceivePort:(NSPort *)rcvPort sendPort:(NSPort *)sndPort components:(NSArray *)comps;

 // Class Methods

 + (id) portCoderWithReceivePort:(NSPort *)rcvPort sendPort:(NSPort *)sndPort components:(NSArray *)comps;

 // Instance Methods

 - (NSConnection *)connection;

 - (NSPort *)decodePortObject;

 - (void)dispatch;

 - (void)encodePortObject:(NSPort *)aport;

 - (BOOL)isBycopy;

 - (BOOL)isByref;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPortMessage Mac OS X 10.0

Instances of this class represent low-level interapplication communication meesages. Cocoa's distributed objects system
uses this class extensively for communications between applications on the same host machine. Associated with each
port messages is a sending NSPort, a receiving NSPort, and an array of message components that may be instances of
NSData or NSPort. Instances of this class are initialized using the method initWithSendPort:receivePort:components:. Messages
are sent by invoking the method sendBeforeDate:. Finally, the components method is used to retrieve the components of a
port message, while sendPort and receivePort are used to retrieve the port message's send and receive port objects.
Applications should make use of the high-level Distributed Objects API for interapplication communication, and resort to
raw messaging with port messages for exceptional circumstances.

@interface NSPortMessage : NSObject

 // Initializers

 - (id)initWithSendPort:(NSPort *)sendPort receivePort:(NSPort *)replyPort components:(NSArray *)components;

 // Accessor Methods

 - (void)setMsgid:(unsigned)msgid;

 - (unsigned)msgid;

 // Instance Methods

 - (NSArray *)components;

 - (NSPort *)receivePort;

 - (BOOL)sendBeforeDate:(NSDate *)date;

 - (NSPort *)sendPort;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPortNameServer Mac OS X 10.0

This class is used by the distributed objects system to provide port registration services for NSConnection objects.
Instances of NSPortNameServer are obtained using the class method systemDefaultPortNameServer. Ports are registered
using the method registerPort:name:, and unregistered with removePortForName:. To locate a port, invoke portForName: or
portForName:host:; the former is used to locate ports on the local host, while the latter is used to locate ports over a
network.

@interface NSPortNameServer : NSObject

 // Class Methods

 + (NSPortNameServer *)systemDefaultPortNameServer;

 // Instance Methods

 - (NSPort *)portForName:(NSString *)name;

 - (NSPort *)portForName:(NSString *)name host:(NSString *)host;

 - (BOOL)registerPort:(NSPort *)port name:(NSString *)name;

 - (BOOL)removePortForName:(NSString *)name;

Subclasses

NSMachBootstrapServer, NSMessagePortNameServer, NSSocketPortNameServer

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPositionalSpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify an insertion point in a collection of objects in
relation to another object in the container.

@interface NSPositionalSpecifier : NSObject

 // Initializers

 - (id)initWithPosition:(NSInsertionPosition)position objectSpecifier:(NSScriptObjectSpecifier *)specifier;

 // Accessor Methods

 - (void)setInsertionClassDescription:(NSScriptClassDescription *)classDescription;

 // Instance Methods

 - (id)insertionContainer;

 - (void)evaluate;

 - (int)insertionIndex;

 - (NSString *)insertionKey;

 - (BOOL)insertionReplaces;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSProcessInfo Mac OS X 10.0

This class provides an way for applications to discover information about their current process and host. This
information includes such things as the execution arguments, environment variables, process ID, and the process
name. Using NSProcessInfo, clients may also discover information about the host, such as the host name, and the
operating system name and version. NSProcessInfo returns the operating system version in a human-readable form that
is unsuitable for parsing.

@interface NSProcessInfo : NSObject

 // Accessor Methods

 - (void)setProcessName:(NSString *)newName;

 - (NSString *)processName;

 // Class Methods

 + (NSProcessInfo *)processInfo;

 // Instance Methods

 - (NSDictionary *)environment;

 - (NSString *)globallyUniqueString;

 - (unsigned int)operatingSystem;

 - (NSString *)operatingSystemName;

 - (NSString *)operatingSystemVersionString;

 - (int)processIdentifier;

 - (NSArray *)arguments;

 - (NSString *)hostName;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPropertyListSerialization Mac OS X 10.2

This class provides functionality to convert organizations of property list objects (NSArray, NSDictionary, NSData, NSString,
and NSNumber) to and from XML or binary data formats.

@interface NSPropertyListSerialization : NSObject

 // Class Methods

 + (NSData *)dataFromPropertyList:(id)plist format:(NSPropertyListFormat)format
 errorDescription:(NSString **)errorString;

 + (BOOL)propertyList:(id)plist isValidForFormat:(NSPropertyListFormat)format;

 + (id)propertyListFromData:(NSData *)data mutabilityOption:(NSPropertyListMutabilityOptions)opt
 format:(NSPropertyListFormat *)format errorDescription:(NSString **)errorString;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPropertySpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify an attribute of an object or a relationship
between the target object and one or more additional objects.

@interface NSPropertySpecifier : NSScriptObjectSpecifier

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSProtocolChecker Mac OS X 10.0

This class is used to provide a proxy for an object (the protocol checker's delegate) that filters messages sent to the
object based on a formal protocol. Cocoa's distributed objects system uses this class to improve the performance of a
distributed objects connection by limiting the messages sent an object to those agreed upon in a protocol. Instances of
NSProtocolChecker are initialized with the method initWithTarget:protocol:. Target: is the object the protocol check will act as
a proxy for, while protocol: is the protocol that defines what methods will be forwarded to the target object by the
protocol checker. Note that the argument type for protocol: is a protocol object: Protocol *. To obtain a pointer to a
protocol, use the @protocol(protocolName) compiler directive.

@interface NSProtocolChecker : NSProxy

 // Initializers

 - (id)initWithTarget:(NSObject *)anObject protocol:(Protocol *)aProtocol;

 // Class Methods

 + (id)protocolCheckerWithTarget:(NSObject *)anObject protocol:(Protocol *)aProtocol;

 // Instance Methods

 - (Protocol *)protocol;

 - (NSObject *)target;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSProxy Mac OS X 10.0

This class is the only other root class in the Cocoa frameworks besides NSObject. NSProxy defines an interface to objects
that stand-in for other objects. The concrete subclass, NSDistantObject, is an integral part of the distributed objects
system where proxy objects are used to represent in a process objects that have been vended by another process.

Distributed messaging is not, however, the only use of proxy objects. They can also stand-in for objects that have not
yet been created. When the proxy object receives a message for the object it is representing, then it can load the
object and replace itself with the real object. This is useful for objects that may be too expensive resource-wise to
create when their existence may not be needed.

@interface NSProxy <NSObject>

 // Class Methods

 + (id)alloc;

 + (id)allocWithZone:(NSZone *)zone;

 + (Class)class;

 + (BOOL)respondsToSelector:(SEL)aSelector;

 // Instance Methods

 - (void)dealloc;

 - (NSString *)description;

 - (void)forwardInvocation:(NSInvocation *)invocation;

 - (NSMethodSignature *)methodSignatureForSelector:(SEL)sel;

 // Methods Implementing NSObject

 - (BOOL)isEqual:(id)object;

 - (unsigned)hash;

 - (Class)superclass;

 - (Class)class;

 - (id)self;

 - (NSZone *)zone;

 - (id)performSelector:(SEL)aSelector;

 - (id)performSelector:(SEL)aSelector

 withObject:(id)object;

 - (id)performSelector:(SEL)aSelector withObject:(id)object1 withObject:(id)object2;

 - (BOOL)isProxy;

 - (BOOL)isKindOfClass:(Class)aClass;

 - (BOOL)isMemberOfClass:(Class)aClass;

 - (BOOL)conformsToProtocol:(Protocol *)aProtocol;

 - (BOOL)respondsToSelector:(SEL)aSelector;

 - (id)retain;

 - (oneway void)release;

 - (id)autorelease;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (unsigned)retainCount;

 - (NSString *)description;

Subclasses

NSProxy is a root class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSQuitCommand Mac OS X 10.0

Instances of this class causes its specified application to quit when executed. This class participates in Cocoa's scripting
system.

@interface NSQuitCommand : NSScriptCommand

 // Instance Methods

 - (NSSaveOptions)saveOptions;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSRandomSpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify an arbitrary object in a collection of objects.

@interface NSRandomSpecifier : NSScriptObjectSpecifier

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSRangeSpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify a range of objects within a collection.

@interface NSRangeSpecifier : NSScriptObjectSpecifier

 // Initializers

 - (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
 containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property
 startSpecifier:(NSScriptObjectSpecifier *)startSpec endSpecifier:(NSScriptObjectSpecifier *)endSpec;

 // Accessor Methods

 - (void)setStartSpecifier:(NSScriptObjectSpecifier *)startSpec;

 - (NSScriptObjectSpecifier *)startSpecifier;

 - (void)setEndSpecifier:(NSScriptObjectSpecifier *)endSpec;

 - (NSScriptObjectSpecifier *)endSpecifier;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSRecursiveLock Mac OS X 10.0

This class is an implementation of the NSLocking protocol that provides a lock that may be acquired multiply by a single
thread without creating a deadlock condition. See Chapter 2 for more information on how locking works.

@interface NSRecursiveLock : NSObject <NSLocking>

 // Instance Methods

 - (BOOL)lockBeforeDate:(NSDate *)limit;

 - (BOOL)tryLock;

 // Methods Implementing NSLocking

 - (void)lock;

 - (void)unlock;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSRelativeSpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify the position of one object relative to
another.

@interface NSRelativeSpecifier : NSScriptObjectSpecifier

 // Initializers

 - (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
 containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property
 relativePosition:(NSRelativePosition)relPos baseSpecifier:(NSScriptObjectSpecifier *)baseSpecifier;

 // Accessor Methods

 - (void)setRelativePosition:(NSRelativePosition)relPos;

 - (NSRelativePosition)relativePosition;

 - (void)setBaseSpecifier:(NSScriptObjectSpecifier *)baseSpecifier;

 - (NSScriptObjectSpecifier *)baseSpecifier;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSRunLoop Mac OS X 10.0

This class manages input sources for a thread. In Cocoa, input sources may include mouse and keyboard events, as
well as NSPorts, NSTimers, and NSConnections. NSRunLoop serves as an interface between an application and the rest of the
operating system. When events from the mouse, keyboard, or other peripherals are received in the operating system,
they are forwarded to the active application through that application's run-loop. The run-loop monitors all of its input
sources continuously for events, and dispatches them to the appropriate object in an application. For more information
on NSRunLoop and event handling in Cocoa, see Chapter 3.

Every instance of NSApplication creates and manages its own run-loop. This is the main run-loop of the application.
Because this run-loop is created for us, we don't need to use any of the NSRunLoop APIs. However, new threads do not
have a run-loop object associated with them. For a thread to participate in event handling and notification from other
run-loop sources, create a run-loop for any the thread. If you need to have access to a run-loop object, then you can
obtain a pointer to the run-loop of the current thread by invoking the class method currentRunLoop. If you need to start
your own run-loop in a thread, you must first create the run-loop using alloc and init, and send a run message to the
run-loop object.

NSRunLoop objects are based on Core Foundation CFRunLoop objects. The method getCFRunLoop returns an NSRunLoop's
underlying Core Foundation run-loop.

@interface NSRunLoop : NSObject

 // Class Methods

 + (NSRunLoop *)currentRunLoop;

 // Instance Methods

 - (void)acceptInputForMode:(NSString *)mode beforeDate:(NSDate *)limitDate;

 - (void)addPort:(NSPort *)aPort forMode:(NSString *)mode;

 - (void)addTimer:(NSTimer *)timer forMode:(NSString *)mode;

 - (void)cancelPerformSelector:(SEL)aSelector target:(id)target argument:(id)arg;

 - (void)cancelPerformSelectorsWithTarget:(id)target;

 - (void)configureAsServer;

 - (NSString *)currentMode;

 - (CFRunLoopRef)getCFRunLoop;

 - (NSDate *)limitDateForMode:(NSString *)mode;

 - (void)performSelector:(SEL)aSelector target:(id)target argument:(id)arg order:(unsigned)order
 modes:(NSArray *)modes;

 - (void)removePort:(NSPort *)aPort forMode:(NSString *)mode;

 - (void)run;

 - (BOOL)runMode:(NSString *)mode beforeDate:(NSDate *)limitDate;

 - (void)runUntilDate:(NSDate *)limitDate;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScanner Mac OS X 10.0

This class declares an API for objects that can interpret and convert a string into individual number and string values.
When you create a scanner object, you assign it the string to scan. Scanner objects are created with the method
scannerWithString:, or initialized with initWithString:. A scanner works by interpreting and converting string and number
values based on the scan message sent to the scanner object. For example, if the method scanInt: is invoked, the
scanner will scan through the string searching from the next available integer. Scanning usually happens within a loop,
until the entire string has been scanned. Clients can test whether or not the scanner is at the end of the string using the
method isAtEnd.

@interface NSScanner : NSObject <NSCopying>

 // Convenience Constructors

 + (id)scannerWithString:(NSString *)string;

 // Initializers

 - (id)initWithString:(NSString *)string;

 // Accessor Methods

 - (void)setCaseSensitive:(BOOL)flag;

 - (BOOL)caseSensitive;

 - (void)setScanLocation:(unsigned)pos;

 - (unsigned)scanLocation;

 - (void)setCharactersToBeSkipped:(NSCharacterSet *)set;

 - (NSCharacterSet *)charactersToBeSkipped;

 - (void)setLocale:(NSDictionary *)dict;

 - (NSDictionary *)locale;

 // Class Methods

 + (id)localizedScannerWithString:(NSString *)string;

 // Instance Methods

 - (BOOL)scanCharactersFromSet:(NSCharacterSet *)set intoString:(NSString **)value;

 - (BOOL)scanDecimal:(NSDecimal *)dcm;

 - (BOOL)isAtEnd;

 - (BOOL)scanDouble:(double *)value;

 - (BOOL)scanFloat:(float *)value;

 - (BOOL)scanHexInt:(unsigned *)value;

 - (BOOL)scanInt:(int *)value;

 - (BOOL)scanLongLong:(long long *)value;

 - (BOOL)scanString:(NSString *)string intoString:(NSString **)value;

 - (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)set intoString:(NSString **)value;

 - (BOOL)scanUpToString:(NSString *)string intoString:(NSString **)value;

 - (NSString *)string;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptClassDescription Mac OS X 10.0

This class is used by Cocoa's scripting information to encapsulate information about scriptable classes, and to provide
an interface to determine characteristics and properties of scriptable objects.

@interface NSScriptClassDescription : NSClassDescription

 // Initializers

 - (id)initWithSuiteName:(NSString *)suiteName className:(NSString *)className dictionary:(NSDictionary *)dict;

 // Instance Methods

 - (unsigned long)appleEventCode;

 - (unsigned long)appleEventCodeForKey:(NSString *)key;

 - (NSScriptClassDescription *)classDescriptionForKey:(NSString *)key;

 - (NSString *)className;

 - (NSString *)defaultSubcontainerAttributeKey;

 - (BOOL)isLocationRequiredToCreateForKey:(NSString *)toManyRelationshipKey;

 - (BOOL)isReadOnlyKey:(NSString *)key;

 - (NSString *)keyWithAppleEventCode:(unsigned long)code;

 - (BOOL)matchesAppleEventCode:(unsigned long)code;

 - (SEL)selectorForCommand:(NSScriptCommandDescription *)commandDef;

 - (NSString *)suiteName;

 - (NSScriptClassDescription *)superclassDescription;

 - (BOOL)supportsCommand:(NSScriptCommandDescription *)commandDef;

 - (NSString *)typeForKey:(NSString *)key;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptCoercionHandler Mac OS X 10.0

This class is used by Cocoa's scripting system to translate one scripting data type into another data type, which is a
common task in key-value coding operations.

@interface NSScriptCoercionHandler : NSObject

 // Class Methods

 + (NSScriptCoercionHandler *)sharedCoercionHandler;

 // Instance Methods

 - (id)coerceValue:(id)value toClass:(Class)toClass;

 - (void)registerCoercer:(id)coercer selector:(SEL)selector toConvertFromClass:(Class)fromClass toClass:(Class)toClass;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptCommand Mac OS X 10.0

This class represents a scripting statement in Cocoa's scripting system. A scripting statement is something like "set
bounds of front window to 1104, 360, 1280, 561}". When an application receives the Apple Event corresponding to this
script statement, it is translated into an instance NSScriptCommand.

@interface NSScriptCommand : NSObject <NSCoding>

 // Initializers

 - (id)initWithCommandDescription:(NSScriptCommandDescription *)commandDef;

 // Accessor Methods

 - (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef;

 - (NSScriptObjectSpecifier *)receiversSpecifier;

 - (void)setDirectParameter:(id)directParameter;

 - (id)directParameter;

 - (void)setScriptErrorNumber:(int)num;

 - (int)scriptErrorNumber;

 - (void)setScriptErrorString:(NSString *)str;

 - (NSString *)scriptErrorString;

 - (void)setArguments:(NSDictionary *)args;

 - (NSDictionary *)arguments;

 // Instance Methods

 - (NSScriptCommandDescription *)commandDescription;

 - (NSDictionary *)evaluatedArguments;

 - (id)evaluatedReceivers;

 - (id)executeCommand;

 - (BOOL)isWellFormed;

 - (id)performDefaultImplementation;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

Subclasses

NSCloneCommand, NSCloseCommand, NSCountCommand, NSCreateCommand, NSDeleteCommand, NSExistsCommand,
NSGetCommand, NSMoveCommand, NSQuitCommand, NSSetCommand

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptCommandDescription Mac OS X 10.0

This class represents a scripting command within a Cocoa application, framework, or bundle. The job of this class is to
provide information about a class and method, including all argument and return types, that is used to represent a
scripting command.

@interface NSScriptCommandDescription : NSObject <NSCoding>

 // Initializers

 - (id)initWithSuiteName:(NSString *)suiteName commandName:(NSString *)commandName
 dictionary:(NSDictionary *)commandDefDict;

 // Instance Methods

 - (unsigned long)appleEventClassCode;

 - (unsigned long)appleEventCode;

 - (unsigned long)appleEventCodeForArgumentWithName:(NSString *)argName;

 - (unsigned long)appleEventCodeForReturnType;

 - (NSArray *)argumentNames;

 - (NSString *)commandClassName;

 - (NSString *)commandName;

 - (NSScriptCommand *)createCommandInstance;

 - (NSScriptCommand *)createCommandInstanceWithZone:(NSZone *)zone;

 - (BOOL)isOptionalArgumentWithName:(NSString *)argName;

 - (NSString *)returnType;

 - (NSString *)suiteName;

 - (NSString *)typeForArgumentWithName:(NSString *)argName;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptExecutionContext Mac OS X 10.0

Every scripting command is executed within some context that determines which objects are involved in the command.
This class declares the interface to the shared application object that represents the execution context of scripting
commands.

@interface NSScriptExecutionContext : NSObject

 // Accessor Methods

 - (void)setTopLevelObject:(id)obj;

 - (id)topLevelObject;

 - (void)setObjectBeingTested:(id)obj;

 - (id)objectBeingTested;

 - (void)setRangeContainerObject:(id)obj;

 - (id)rangeContainerObject;

 // Class Methods

 + (NSScriptExecutionContext *)sharedScriptExecutionContext;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptObjectSpecifier Mac OS X 10.0

This is an abstract class for classes of objects known as object specifiers. An object specifier is a representation of a
scripting language reference form that is used to identify objects in relation to container objects. Object specifiers are
used to represent the portions of an AppleScript used to identify the object that is the target of a script command. For
example, in the AppleScript get word 3 of paragraph 15 of the front document there are three object specifiers: word 3,
paragraph 15, and front document.

Object specifiers are nested, where more general specifiers are evaluated to provide an evaluation context for their
nested child specifier. In the example, the specifier front paragraph is evaluated first to provide a container in which the
specifier paragraph 15 can be evaluated. The scripting system evaluates object specifiers in this way to determine what
object in the application should be the recipient of the command being executed.

The Foundation framework implements several subclasses of NSScriptObjectSpecifier. These subclasses implement object
specifiers that represent the various AppleScript language constructs (reference forms) used to identify the targets of
script commands.

@interface NSScriptObjectSpecifier : NSObject <NSCoding>

 // Initializers

 - (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
 containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property;

 - (id)initWithContainerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property;

 // Accessor Methods

 - (void)setEvaluationErrorNumber:(int)error;

 - (int)evaluationErrorNumber;

 - (void)setContainerIsObjectBeingTested:(BOOL)flag;

 - (BOOL)containerIsObjectBeingTested;

 - (void)setChildSpecifier:(NSScriptObjectSpecifier *)child;

 - (NSScriptObjectSpecifier *)childSpecifier;

 - (void)setKey:(NSString *)key;

 - (NSString *)key;

 - (void)setContainerIsRangeContainerObject:(BOOL)flag;

 - (BOOL)containerIsRangeContainerObject;

 - (void)setContainerClassDescription:(NSScriptClassDescription *)classDesc;

 - (NSScriptClassDescription *)containerClassDescription;

 - (void)setContainerSpecifier:(NSScriptObjectSpecifier *)subRef;

 - (NSScriptObjectSpecifier *)containerSpecifier;

 // Instance Methods

 - (NSScriptObjectSpecifier *)evaluationErrorSpecifier;

 - (int *)indicesOfObjectsByEvaluatingWithContainer:(id)container count:(int *)count;

 - (NSScriptClassDescription *)keyClassDescription;

 - (id)objectsByEvaluatingSpecifier;

 - (id)objectsByEvaluatingWithContainers:(id)containers;

 // Methods Implementing NSCoding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

Subclasses

NSIndexSpecifier, NSMiddleSpecifier, NSNameSpecifier, NSPropertySpecifier, NSRandomSpecifier, NSRangeSpecifier,
NSRelativeSpecifier, NSUniqueIDSpecifier, NSWhoseSpecifier
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptSuiteRegistry Mac OS X 10.0

Instances of this class are used to manage an application's scripting information, and as such it is an integral
component in Cocoa's built-in support for scripting. Application scripting information is supplied by script suites. A script
suite is made up of a suite definition and script terminologies. Cocoa supports the two standard script suites out of the
box: (Core and Text). Script suites define how an application may be controlled by scripting, and at a lower level the
information provided by script suite tells the application how to translate Apple Events it receives into script commands
and object specifiers. This class is used primarily internally by Cocoa's scripting system, and as such you should never
have to interact with it directly.

@interface NSScriptSuiteRegistry : NSObject

 // Class Methods

 + (void)setSharedScriptSuiteRegistry:(NSScriptSuiteRegistry *)registry;

 + (NSScriptSuiteRegistry *)sharedScriptSuiteRegistry;

 // Instance Methods

 - (NSData *)aeteResource:(NSString *)languageName;

 - (unsigned long)appleEventCodeForSuite:(NSString *)suiteName;

 - (NSBundle *)bundleForSuite:(NSString *)suiteName;

 - (NSScriptClassDescription *)classDescriptionWithAppleEventCode:(unsigned long)classCode;

 - (NSDictionary *)classDescriptionsInSuite:(NSString *)suiteName;

 - (NSScriptCommandDescription *)commandDescriptionWithAppleEventClass:(unsigned long)eventClass
 andAppleEventCode:(unsigned long)commandCode;

 - (NSDictionary *)commandDescriptionsInSuite:(NSString *)suiteName;

 - (void)loadSuiteWithDictionary:(NSDictionary *)dict fromBundle:(NSBundle *)bundle;

 - (void)loadSuitesFromBundle:(NSBundle *)bundle;

 - (void)registerClassDescription:(NSScriptClassDescription *)classDesc;

 - (void)registerCommandDescription:(NSScriptCommandDescription *)commandDef;

 - (NSString *)suiteForAppleEventCode:(unsigned long)code;

 - (NSArray *)suiteNames;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptWhoseTest Mac OS X 10.0

This class is used in Cocoa's scripting system to represent the Boolean expression of an NSScriptWhoseSpecifier.
NSScriptWhoseTest is an abstract class that defines only the single method isTrue. This method is invoked to evaluate the
expression represented by the NSScriptWhoseTest object, and returns a BOOL. Foundation implements two concrete
subclasses of this class: NSLogicalTest and NSSpecifierTest.

@interface NSScriptWhoseTest : NSObject <NSCoding>

 // Instance Methods

 - (BOOL)isTrue;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

Subclasses

NSLogicalTest, NSSpecifierTest
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSerializer Mac OS X 10.0

This class converts a collection of property-list objects (NSDictionary, NSArray, NSString, and NSData) in memory into a
form that can be saved to a file, for example. This class has been deprecated, and clients should instead use the class
NSPropertyListSerialization.

@interface NSSerializer : NSObject

 // Class Methods

 + (NSData *)serializePropertyList:(id)aPropertyList;

 + (void)serializePropertyList:(id)aPropertyList intoData:(NSMutableData *)mdata;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSet Mac OS X 10.0

This class implements a unordered collection of unique objects. NSSet is based on the mathematical idea of a set, where
each member is unique, and the order of elements is unimportant. What is important in a set is object membership.
NSSet objects are often used in situations where an application needs to quickly determine whether or not an object is a
member of a collection. As such, NSSet is able to more efficiently make this determination than NSArray.

To test whether or not an object is a member of set, use the method containsObject:, which returns a BOOL.
Alternatively, the method member can be used, which returns the specified object if it exists in the set, and nil otherwise.

To enumerate the contents of a set, we create an instance of NSEnumerator by sending an objectEnumerator message to
the set. Note that the order that objects are accessed by the enumerator is not guaranteed, and an order should not be
assumed.

Often we want to invoke some method in each member of a collection. NSSet provides a method that saves us from the
burden of having to enumerate the contents of the set and send the message to each object manually. This method is
makeObjectsPerformSelector:, which will cause the method matching the selector to be invoked in each member of the
collection. If you need to invoke a method that takes an argument, then use the method
makeObjectsPerformSelector:withObject:.

NSSet provides several methods that are useful for comparing two sets. The method isSubsetOfSet: will return YES if the
specified set contains every member of the receiver. The method intersectsSet: returns YES if at least one member of the
receiver is present in the specified set. Finally, isEqualToSet: will return YES if the contents of the receiver are equal to
the contents of the specified set.

NSSet is toll-free bridged with the Core Foundation type CFSet. As such, NSSet objects can be used interchangeably with
the CFSet pointer type, CFSetRef.

@interface NSSet : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Convenience Constructors

 + (id)set;

 + (id)setWithArray:(NSArray *)array;

 + (id)setWithObject:(id)object;

 + (id)setWithObjects:(id *)objs count:(unsigned)cnt;

 + (id)setWithObjects:(id)firstObj, ...;

 + (id)setWithSet:(NSSet *)set;

 // Initializers

 - (id)initWithArray:(NSArray *)array;

 - (id)initWithObjects:(id *)objects count:(unsigned)count;

 - (id)initWithObjects:(id)firstObj, ...;

 - (id)initWithSet:(NSSet *)set;

 - (id)initWithSet:(NSSet *)set copyItems:(BOOL)flag;

 // Instance Methods

 - (NSArray *)allObjects;

 - (id)anyObject;

 - (BOOL)containsObject:(id)anObject;

 - (unsigned)count;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (unsigned)count;

 - (NSString *)description;

 - (NSString *)descriptionWithLocale:(NSDictionary *)locale;

 - (BOOL)intersectsSet:(NSSet *)otherSet;

 - (BOOL)isEqualToSet:(NSSet *)otherSet;

 - (BOOL)isSubsetOfSet:(NSSet *)otherSet;

 - (void)makeObjectsPerformSelector:(SEL)aSelector;

 - (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)argument;

 - (id)member:(id)object;

 - (NSEnumerator *)objectEnumerator;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableSet
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSetCommand Mac OS X 10.0

Instances of this class are used in Cocoa's scripting system to set the specified properties of the specified object to the
specified value.

@interface NSSetCommand : NSScriptCommand

 // Accessor Methods

 - (void)setReceiversSpecifier:(NSScriptObjectSpecifier *)receiversRef;

 // Instance Methods

 - (NSScriptObjectSpecifier *)keySpecifier;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSocketPort Mac OS X 10.0

This subclass of NSPort provides an interface to objects that can serve as endpoints for distributed objects connections
over a network. NSSocketPort is implemented using the BSD Sockets API, which makes it useful for raw network
communications in addition to serving as a component of the distributed objects system. A socket file descriptor that is
suitable for use with the BSD Sockets API can be obtained by sending a socket message to an instance of this class.

While local communication is supported in socket ports, it is generally more efficient in terms of resource usage to use
NSMachPort or NSMessagePort for local distributed objects connections.

@interface NSSocketPort : NSPort

 // Initializers

 - (id)init;

 - (id)initRemoteWithProtocolFamily:(int)family socketType:(int)type protocol:(int)protocol address:(NSData *)address;

 - (id)initRemoteWithTCPPort:(unsigned short)port host:(NSString *)hostName;

 - (id)initWithProtocolFamily:(int)family socketType:(int)type protocol:(int)protocol address:(NSData *)address;

 - (id)initWithProtocolFamily:(int)family socketType:(int)type protocol:(int)protocol
 socket:(NSSocketNativeHandle)sock;

 - (id)initWithTCPPort:(unsigned short)port;

 // Instance Methods

 - (NSData *)address;

 - (int)protocol;

 - (int)protocolFamily;

 - (NSSocketNativeHandle)socket;

 - (int)socketType;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSocketPortNameServer Mac OS X 10.0

This subclass of NSPortNameServer accepts and returns instances of NSSocketPort. NSConnection objects use port name
servers to register and discover communication ports that can be used for distributed objects connections. Additional
subclasses of NSPortNameServer that handle other types of ports are NSMachBootstrapServer and NSMessagePortNameServer.

Unlike the other port name server classes, NSSocketPortNameServer can operate over a network. NSSocketPortNameServer is
implemented using the Foundation framework's implementation of Rendezvous found in NSNetService. Clients are able to
discover socket ports by name only.

Note: this class did not function in versions of Mac OS X prior to 10.2.

@interface NSSocketPortNameServer : NSPortNameServer

 // Accessor Methods

 - (void)setDefaultNameServerPortNumber:(unsigned short)portNumber;

 - (unsigned short)defaultNameServerPortNumber;

 // Class Methods

 + (id)sharedInstance;

 // Instance Methods

 - (NSPort *)portForName:(NSString *)name;

 - (NSPort *)portForName:(NSString *)name host:(NSString *)host;

 - (NSPort *)portForName:(NSString *)name host:(NSString *)host
 nameServerPortNumber:(unsigned short)portNumber;

 - (BOOL)registerPort:(NSPort *)port name:(NSString *)name;

 - (BOOL)registerPort:(NSPort *)port name:(NSString *)name
 nameServerPortNumber:(unsigned short)portNumber;

 - (BOOL)removePortForName:(NSString *)name;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSpecifierTest Mac OS X 10.0

This class represents a single Boolean expression. NSSpecifierTest is initialized with the method
initWithObjectSpecifier:comparisonOperator:testObject:. This method will initialize the specifier test to compare testObject: with
the object specifier by the ...ObjectSpecifier: parameter; the comparison is made using the indicated comparisonOperator:,
which is a constant of type NSTestComparisonOperation.

@interface NSSpecifierTest : NSScriptWhoseTest

 // Initializers

 - (id)initWithObjectSpecifier:(NSScriptObjectSpecifier *)obj1
 comparisonOperator:(NSTestComparisonOperation)compOp testObject:(id)obj2;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSpellServer Mac OS X 10.0

This class is used by applications to register a custom spellchecker with the operating system. Developers can use this
class to create spellchecking services for all applications that use Cocoa's spellchecking services (through the class
NSSpellChecker).

@interface NSSpellServer : NSObject

 // Accessor Methods

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 // Instance Methods

 - (BOOL)isWordInUserDictionaries:(NSString *)word caseSensitive:(BOOL)flag;

 - (BOOL)registerLanguage:(NSString *)language byVendor:(NSString *)vendor;

 - (void)run;

// Methods Implemented by the Delegate

 - (void)spellServer:(NSSpellServer *)sender didForgetWord:(NSString *)word inLanguage:(NSString *)language;

 - (void)spellServer:(NSSpellServer *)sender didLearnWord:(NSString *)word inLanguage:(NSString *)language;

 - (NSRange)spellServer:(NSSpellServer *)sender findMisspelledWordInString:(NSString *)stringToCheck
 language:(NSString *)language wordCount:(int *)wordCount countOnly:(BOOL)countOnly;

 - (NSArray *)spellServer:(NSSpellServer *)sender suggestGuessesForWord:(NSString *)word
 inLanguage:(NSString *)language;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSString Mac OS X 10.0

This is Foundation's primary class for representing and manipulating strings. At their core, instances of NSString are an
immutable array of Unicode characters. With built-in, low-level support of Unicode, Cocoa applications can represent
nearly every written language in existence, past and present. NSString is toll-free bridged with the Core Foundation type
CFString. As such, NSString objects can be used interchangeably with the CFString pointer type, CFStringRef.

@interface NSString : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Convenience Constructors

 + (id)string;

 + (id)stringWithCString:(const char *)bytes;

 + (id)stringWithCString:(const char *)bytes length:(unsigned)length;

 + (id)stringWithCharacters:(const unichar *)characters length:(unsigned)length;

 + (id)stringWithContentsOfFile:(NSString *)path;

 + (id)stringWithContentsOfURL:(NSURL *)url;

 + (id)stringWithFormat:(NSString *)format, ...;

 + (id)stringWithString:(NSString *)string;

 + (id)stringWithUTF8String:(const char *)bytes;

 // Initializers

 - (id)init;

 - (id)initWithCString:(const char *)bytes;

 - (id)initWithCString:(const char *)bytes length:(unsigned)length;

 - (id)initWithCStringNoCopy:(char *)bytes length:(unsigned)length freeWhenDone:(BOOL)freeBuffer;

 - (id)initWithCharacters:(const unichar *)characters length:(unsigned)length;

 - (id)initWithCharactersNoCopy:(unichar *)characters length:(unsigned)length freeWhenDone:(BOOL)freeBuffer;

 - (id)initWithContentsOfFile:(NSString *)path;

 - (id)initWithContentsOfURL:(NSURL *)url;

 - (id)initWithData:(NSData *)data encoding:(NSStringEncoding)encoding;

 - (id)initWithFormat:(NSString *)format arguments:(va_list)argList;

 - (id)initWithFormat:(NSString *)format locale:(NSDictionary *)dict arguments:(va_list)argList;

 - (id)initWithFormat:(NSString *)format locale:(NSDictionary *)dict, ...;

 - (id)initWithFormat:(NSString *)format, ...;

 - (id)initWithString:(NSString *)aString;

 - (id)initWithUTF8String:(const char *)bytes;

 // Class Methods

 + (const NSStringEncoding *)availableStringEncodings;

 + (NSStringEncoding)defaultCStringEncoding;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (NSString *)localizedNameOfStringEncoding:(NSStringEncoding)encoding;

 + (id)localizedStringWithFormat:(NSString *)format, ...;

 + (NSString *)pathWithComponents:(NSArray *)components;

 // Instance Methods

 - (const char *)UTF8String;

 - (const char *)cString;

 - (unsigned)cStringLength;

 - (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding;

 - (NSString *)capitalizedString;

 - (NSComparisonResult)caseInsensitiveCompare:(NSString *)string;

 - (unichar)characterAtIndex:(unsigned)index;

 - (NSString *)commonPrefixWithString:(NSString *)aString options:(unsigned)mask;

 - (NSComparisonResult)compare:(NSString *)string;

 - (NSComparisonResult)compare:(NSString *)string options:(unsigned)mask;

 - (NSComparisonResult)compare:(NSString *)string options:(unsigned)mask range:(NSRange)compareRange;

 - (NSComparisonResult)compare:(NSString *)string options:(unsigned)mask range:(NSRange)compareRange
 locale:(NSDictionary *)dict;

 - (unsigned)completePathIntoString:(NSString **)outputName caseSensitive:(BOOL)flag
 matchesIntoArray:(NSArray **)outputArray filterTypes:(NSArray *)filterTypes;

 - (NSArray *)componentsSeparatedByString:(NSString *)separator;

 - (NSData *)dataUsingEncoding:(NSStringEncoding)encoding;

 - (NSData *)dataUsingEncoding:(NSStringEncoding)encoding allowLossyConversion:(BOOL)lossy;

 - (NSString *)decomposedStringWithCanonicalMapping;

 - (NSString *)decomposedStringWithCompatibilityMapping;

 - (NSString *)description;

 - (double)doubleValue;

 - (NSStringEncoding)fastestEncoding;

 - (const char *)fileSystemRepresentation;

 - (float)floatValue;

 - (void)getCString:(char *)bytes;

 - (void)getCString:(char *)bytes maxLength:(unsigned)maxLength;

 - (void)getCString:(char *)bytes maxLength:(unsigned)maxLength range:(NSRange)aRange
 remainingRange:(NSRangePointer)leftoverRange;

 - (void)getCharacters:(unichar *)buffer;

 - (void)getCharacters:(unichar *)buffer range:(NSRange)aRange;

 - (BOOL)getFileSystemRepresentation:(char *)cname maxLength:(unsigned)max;

 - (void)getLineStart:(unsigned *)startPtr end:(unsigned *)lineEndPtr contentsEnd:(unsigned *)contentsEndPtr
 forRange:(NSRange)range;

 - (BOOL)hasPrefix:(NSString *)aString;

 - (BOOL)hasSuffix:(NSString *)aString;

 - (unsigned)hash;

 - (int)intValue;

 - (BOOL)isAbsolutePath;

 - (BOOL)isEqualToString:(NSString *)aString;

 - (NSString *)lastPathComponent;

 - (unsigned int)length;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSRange)lineRangeForRange:(NSRange)range;

 - (NSComparisonResult)localizedCaseInsensitiveCompare:(NSString *)string;

 - (NSComparisonResult)localizedCompare:(NSString *)string;

 - (const char *)lossyCString;

 - (NSString *)lowercaseString;

 - (NSArray *)pathComponents;

 - (NSString *)pathExtension;

 - (NSString *)precomposedStringWithCanonicalMapping;

 - (NSString *)precomposedStringWithCompatibilityMapping;

 - (id)propertyList;

 - (NSDictionary *)propertyListFromStringsFileFormat;

 - (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet;

 - (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet options:(unsigned int)mask;

 - (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet
 options:(unsigned int)mask range:(NSRange)searchRange;

 - (NSRange)rangeOfComposedCharacterSequenceAtIndex:(unsigned)index;

 - (NSRange)rangeOfString:(NSString *)aString;

 - (NSRange)rangeOfString:(NSString *)aString options:(unsigned)mask;

 - (NSRange)rangeOfString:(NSString *)aString options:(unsigned)mask range:(NSRange)searchRange;

 - (NSStringEncoding)smallestEncoding;

 - (NSString *)stringByAbbreviatingWithTildeInPath;

 - (NSString *)stringByAppendingFormat:(NSString *)format, ...;

 - (NSString *)stringByAppendingPathComponent:(NSString *)str;

 - (NSString *)stringByAppendingPathExtension:(NSString *)str;

 - (NSString *)stringByAppendingString:(NSString *)aString;

 - (NSString *)stringByDeletingLastPathComponent;

 - (NSString *)stringByDeletingPathExtension;

 - (NSString *)stringByExpandingTildeInPath;

 - (NSString *)stringByPaddingToLength:(unsigned)newLength withString:(NSString *)padString
 startingAtIndex:(unsigned)padIndex;

 - (NSString *)stringByResolvingSymlinksInPath;

 - (NSString *)stringByStandardizingPath;

 - (NSString *)stringByTrimmingCharactersInSet:(NSCharacterSet *)set;

 - (NSArray *)stringsByAppendingPaths:(NSArray *)paths;

 - (NSString *)substringFromIndex:(unsigned)from;

 - (NSString *)substringToIndex:(unsigned)to;

 - (NSString *)substringWithRange:(NSRange)range;

 - (NSString *)uppercaseString;

 - (BOOL)writeToFile:(NSString *)path atomically:(BOOL)useAuxiliaryFile;

 - (BOOL)writeToURL:(NSURL *)url atomically:(BOOL)atomically;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableString, NSSimpleCString
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTask Mac OS X 10.0

This class provides an interface for an application to execute other programs as subprocesses. To create an NSTask, use
alloc and init. Before a task can be executed, it must be prepared. By default a task inherits the environment of its
parent process, which includes attributes such as the current working directory. To specify what program the task
should execute, set the launch path of the program in the task using the method setLaunchPath:. Arguments for the
executable are provided in an NSArray through the method setArguments:. If you need to pass data to a task and receive
data in return, connect an NSPipe or NSFileHandle object to the executable's standard input, output, or error using
setStandardInput:, setStandardOutput:, and setStandardError:, respectively.

To execute a task, invoke the method launch. NSTask also provides methods for controlling the execution of a task
through the methods interrupt, suspend, terminate, and resume.

@interface NSTask : NSObject

 // Initializers

 - (id)init;

 // Accessor Methods

 - (void)setStandardInput:(id)input;

 - (id)standardInput;

 - (void)setLaunchPath:(NSString *)path;

 - (NSString *)launchPath;

 - (void)setEnvironment:(NSDictionary *)dict;

 - (NSDictionary *)environment;

 - (void)setCurrentDirectoryPath:(NSString *)path;

 - (NSString *)currentDirectoryPath;

 - (void)setStandardOutput:(id)output;

 - (id)standardOutput;

 - (void)setStandardError:(id)error;

 - (id)standardError;

 - (void)setArguments:(NSArray *)arguments;

 - (NSArray *)arguments;

 // Class Methods

 + (NSTask *)launchedTaskWithLaunchPath:(NSString *)path arguments:(NSArray *)arguments;

 // Instance Methods

 - (void)interrupt;

 - (void)launch;

 - (BOOL)isRunning;

 - (int)processIdentifier;

 - (BOOL)resume;

 - (BOOL)suspend;

 - (void)terminate;

 - (int)terminationStatus;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)waitUntilExit;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSThread Mac OS X 10.0

NSThread provides functionality to run processes as separate threads of execution. NSThread takes a method selector
that will be run in its own thread. Threads share the memory space of their parent processes, unlike processes
executed by NSTask instances.

@interface NSThread : NSObject

 // Convenience Constructors

 + (double)threadPriority;

 // Class Methods

 + (NSThread *)currentThread;

 + (void)detachNewThreadSelector:(SEL)selector toTarget:(id)target withObject:(id)argument;

 + (void)exit;

 + (BOOL)isMultiThreaded;

 + (BOOL)setThreadPriority:(double)priority;

 + (void)sleepUntilDate:(NSDate *)date;

 // Instance Methods

 - (NSMutableDictionary *)threadDictionary;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTimer Mac OS X 10.0

This class represents a timer in the run-loop that can be used to invoke a method in a target after some elapsed time,
or at regularly spaced intervals. The most straightforward way of creating a time is to use the method
scheduledTimerWithTime-Interval:target:selector:userInfo:repeats:, which creates the timer and add it to the current run-loop
in the default mode. To remove a timer from its run-loop and stopping it from firing again, send an invalidate message to
the timer object.

NSTimer is toll-free bridged with the Core Foundation type CFRunLoopTimer. As such, NSTimer objects can be used
interchangeably with the CFRunLoopTimer pointer type, CFRunLoopTimerRef.

The timer doesn't have good resolution; its accuracy is a function of the run-loop and what's on it.

@interface NSTimer : NSObject

 // Convenience Constructors

 + (NSTimer *)timerWithTimeInterval:(NSTimeInterval)ti invocation:(NSInvocation *)invocation
 repeats:(BOOL)yesOrNo;

 + (NSTimer *)timerWithTimeInterval:(NSTimeInterval)ti target:(id)aTarget selector:(SEL)aSelector
 userInfo:(id)userInfo repeats:(BOOL)yesOrNo;

 // Initializers

 - (id)initWithFireDate:(NSDate *)date interval:(NSTimeInterval)ti target:(id)t selector:(SEL)s
 userInfo:(id)ui repeats:(BOOL)rep;

 // Accessor Methods

 - (void)setFireDate:(NSDate *)date;

 - (NSDate *)fireDate;

 // Class Methods

 + (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)ti invocation:(NSInvocation *)invocation
 repeats:(BOOL)yesOrNo;

 + (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)ti target:(id)aTarget selector:(SEL)aSelector
 userInfo:(id)userInfo repeats:(BOOL)yesOrNo;

 // Instance Methods

 - (void)fire;

 - (NSTimeInterval)timeInterval;

 - (void)invalidate;

 - (BOOL)isValid;

 - (id)userInfo;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTimeZone Mac OS X 10.0

This class represents a time zone—objects that store information about a geographic time zone, such as the name,
abbreviation, time from GMT, whether or not daylight savings is in effect, and so on.

NSTimeZone is toll-free bridged with the Core Foundation type CFTimeZone. As such, NSTimeZone objects can be used
interchangeably with the CFTimeZone pointer type, CFTimeZoneRef.

@interface NSTimeZone : NSObject <NSCoding, NSCopying>

 // Initializers

 - (id)initWithName:(NSString *)tzName;

 - (id)initWithName:(NSString *)tzName data:(NSData *)aData;

 // Class Methods

 + (NSDictionary *)abbreviationDictionary;

 + (NSTimeZone *)defaultTimeZone;

 + (NSArray *)knownTimeZoneNames;

 + (NSTimeZone *)localTimeZone;

 + (void)resetSystemTimeZone;

 + (void)setDefaultTimeZone:(NSTimeZone *)aTimeZone;

 + (NSTimeZone *)systemTimeZone;

 + (id)timeZoneForSecondsFromGMT:(int)seconds;

 + (id)timeZoneWithAbbreviation:(NSString *)abbreviation;

 + (id)timeZoneWithName:(NSString *)tzName;

 + (id)timeZoneWithName:(NSString *)tzName data:(NSData *)aData;

 // Instance Methods

 - (NSString *)abbreviation;

 - (NSString *)abbreviationForDate:(NSDate *)aDate;

 - (NSData *)data;

 - (NSString *)description;

 - (BOOL)isDaylightSavingTime;

 - (BOOL)isDaylightSavingTimeForDate:(NSDate *)aDate;

 - (BOOL)isEqualToTimeZone:(NSTimeZone *)aTimeZone;

 - (NSString *)name;

 - (int)secondsFromGMT;

 - (int)secondsFromGMTForDate:(NSDate *)aDate;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSUnarchiver Mac OS X 10.0

This concrete subclass of NSCoder is used to convert archived data (such as the data produced by NSArchiver) into an
object tree, which is restored to the state it was in prior to archiving.

@interface NSUnarchiver : NSCoder

 // Initializers

 - (id)initForReadingWithData:(NSData *)data;

 // Accessor Methods

 - (void)setObjectZone:(NSZone *)zone;

 - (NSZone *)objectZone;

 // Class Methods

 + (NSString *)classNameDecodedForArchiveClassName:(NSString *)inArchiveName;

 + (void)decodeClassName:(NSString *)inArchiveName asClassName:(NSString *)trueName;

 + (id)unarchiveObjectWithData:(NSData *)data;

 + (id)unarchiveObjectWithFile:(NSString *)path;

 // Instance Methods

 - (NSString *)classNameDecodedForArchiveClassName:(NSString *)inArchiveName;

 - (void)decodeClassName:(NSString *)inArchiveName asClassName:(NSString *)trueName;

 - (BOOL)isAtEnd;

 - (void)replaceObject:(id)object withObject:(id)newObject;

 - (unsigned)systemVersion;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSUndoManager Mac OS X 10.0

This class provides the basis of Cocoa's undo and redo system. NSUndoManager supports two kinds of undo: simple undo
and invocation-based undo. In simple undo clients register in the undo manager a target and selector that is used to
undo the last operation. In invocation based undo the client creates an NSInvocation object that can undo the last
operation and record that in the undo manager. In either case, it is the responsibility of the client to specify how the an
operation is undone; NSUndoManager simply provides the machinery for keeping track of and executing the supplied
selectors or invocations.

@interface NSUndoManager : NSObject

 // Accessor Methods

 - (void)setActionName:(NSString *)actionName;

 - (void)setGroupsByEvent:(BOOL)groupsByEvent;

 - (BOOL)groupsByEvent;

 - (void)setRunLoopModes:(NSArray *)runLoopModes;

 - (NSArray *)runLoopModes;

 - (void)setLevelsOfUndo:(unsigned)levels;

 - (unsigned)levelsOfUndo;

 // Instance Methods

 - (void)beginUndoGrouping;

 - (BOOL)canRedo;

 - (BOOL)canUndo;

 - (void)disableUndoRegistration;

 - (void)enableUndoRegistration;

 - (void)endUndoGrouping;

 - (void)forwardInvocation:(NSInvocation *)anInvocation;

 - (int)groupingLevel;

 - (BOOL)isRedoing;

 - (BOOL)isUndoRegistrationEnabled;

 - (BOOL)isUndoing;

 - (id)prepareWithInvocationTarget:(id)target;

 - (void)redo;

 - (NSString *)redoActionName;

 - (NSString *)redoMenuItemTitle;

 - (NSString *)redoMenuTitleForUndoActionName:(NSString *)actionName;

 - (void)registerUndoWithTarget:(id)target selector:(SEL)selector object:(id)anObject;

 - (void)removeAllActions;

 - (void)removeAllActionsWithTarget:(id)target;

 - (void)undo;

 - (NSString *)undoActionName;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSString *)undoMenuItemTitle;

 - (NSString *)undoMenuTitleForUndoActionName:(NSString *)actionName;

 - (void)undoNestedGroup;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSUniqueIDSpecifier Mac OS X 10.2

This class represents the scripting language reference form used to specify an object in a collection based on a unique
ID.

@interface NSUniqueIDSpecifier : NSScriptObjectSpecifier

 // Initializers

 - (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
 containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property uniqueID:(id)uniqueID;

 // Accessor Methods

 - (void)setUniqueID:(id)uniqueID;

 - (id)uniqueID;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSURL Mac OS X 10.0

NSURL is a class that represents a URL—the human-readable host names and paths that various networking clients use
to locate both remote resources over a network, or resources on the local filesystem. Core Foundation has a type,
CFURL, that is toll-free bridged to NSURL, and as such the two types can be used interchangeably.

@interface NSURL : NSObject

 // Accessor Methods

 - (BOOL)setResourceData:(NSData *)data;

 - (BOOL)setProperty:(id)property forKey:(NSString *)propertyKey;

 // Class Methods

 + (NSURL *)URLFromPasteboard:(NSPasteboard *)pasteBoard;

 + (id)URLWithString:(NSString *)URLString;

 + (id)URLWithString:(NSString *)URLString relativeToURL:(NSURL *)baseURL;

 + (id)fileURLWithPath:(NSString *)path;

 // Instance Methods

 - (NSURLHandle *)URLHandleUsingCache:(BOOL)shouldUseCache;

 - (id) initWithString:(NSString *)URLString;

 - (id) initWithString:(NSString *)URLString relativeToURL:(NSURL *)baseURL;

 - (NSString *)absoluteString;

 - (NSURL *)absoluteURL;

 - (NSURL *)baseURL;

 - (NSString *)fragment;

 - (NSString *)host;

 - (BOOL)isFileURL;

 - (void)loadResourceDataNotifyingClient:(id)client usingCache:(BOOL)shouldUseCache;

 - (NSString *)parameterString;

 - (NSString *)password;

 - (id) initFileURLWithPath:(NSString *)path;

 - (NSString *)path;

 - (NSNumber *)port;

 - (id)propertyForKey:(NSString *)propertyKey;

 - (NSString *)query;

 - (NSString *)relativePath;

 - (NSString *)relativeString;

 - (NSData *)resourceDataUsingCache:(BOOL)shouldUseCache;

 - (NSString *)resourceSpecifier;

 - (NSString *)scheme;

 - (id) initWithScheme:(NSString *)scheme host:(NSString *)host path:(NSString *)path;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSURL *)standardizedURL;

 - (NSString *)user;

 - (void)writeToPasteboard:(NSPasteboard *)pasteBoard;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSURLHandle Mac OS X 10.0

NSURLHandle provides an interface for uploading and downloading data to and from a resource specified by an NSURL.
NSURLHandle actually offloads much of this work to subclasses that implement NSURLHandle's interface to work with
various schemes.

@interface NSURLHandle : NSObject

 // Class Methods

 + (Class)URLHandleClassForURL:(NSURL *)anURL;

 + (NSURLHandle *)cachedHandleForURL:(NSURL *)anURL;

 + (BOOL)canInitWithURL:(NSURL *)anURL;

 + (void)registerURLHandleClass:(Class)anURLHandleSubclass;

 // Instance Methods

 - (void)addClient:(id <NSURLHandleClient>)client;

 - (id) initWithURL:(NSURL *)anURL cached:(BOOL)willCache;

 - (NSData *)availableResourceData;

 - (void)backgroundLoadDidFailWithReason:(NSString *)reason;

 - (void)beginLoadInBackground;

 - (void)cancelLoadInBackground;

 - (void)didLoadBytes:(NSData *)newBytes loadComplete:(BOOL)yorn;

 - (void)endLoadInBackground;

 - (NSString *)failureReason;

 - (void)flushCachedData;

 - (void)loadInBackground;

 - (NSData *)loadInForeground;

 - (id)propertyForKey:(NSString *)propertyKey;

 - (id)propertyForKeyIfAvailable:(NSString *)propertyKey;

 - (void)removeClient:(id <NSURLHandleClient>)client;

 - (NSData *)resourceData;

 - (NSURLHandleStatus)status;

 - (BOOL)writeData:(NSData *)data;

 - (BOOL)writeProperty:(id)propertyValue forKey:(NSString *)propertyKey;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSUserDefaults Mac OS X 10.0

This class is the entry-point into Mac OS X's user defaults database, which is how user preferences are stored and
managed for applications. Instances of this class are created using the class method standardUserDefaults. This class
provides methods for storing and accessing arrays, dictionaries, strings, objects, numbers, and data in an application's
user defaults database.

@interface NSUserDefaults : NSObject

 // Initializers

 - (id)init;

 - (id)initWithUser:(NSString *)username;

 // Accessor Methods

 - (void)setInteger:(int)value forKey:(NSString *)defaultName;

 - (void)setVolatileDomain:(NSDictionary *)domain forName:(NSString *)domainName;

 - (void)setBool:(BOOL)value forKey:(NSString *)defaultName;

 - (void)setFloat:(float)value forKey:(NSString *)defaultName;

 - (void)setObject:(id)value forKey:(NSString *)defaultName;

 - (void)setPersistentDomain:(NSDictionary *)domain forName:(NSString *)domainName;

 // Class Methods

 + (void)resetStandardUserDefaults;

 + (NSUserDefaults *)standardUserDefaults;

 // Instance Methods

 - (void)addSuiteNamed:(NSString *)suiteName;

 - (NSArray *)arrayForKey:(NSString *)defaultName;

 - (BOOL)boolForKey:(NSString *)defaultName;

 - (NSData *)dataForKey:(NSString *)defaultName;

 - (NSDictionary *)dictionaryForKey:(NSString *)defaultName;

 - (NSDictionary *)dictionaryRepresentation;

 - (float)floatForKey:(NSString *)defaultName;

 - (int)integerForKey:(NSString *)defaultName;

 - (id)objectForKey:(NSString *)defaultName;

 - (BOOL)objectIsForcedForKey:(NSString *)key;

 - (BOOL)objectIsForcedForKey:(NSString *)key inDomain:(NSString *)domain;

 - (NSDictionary *)persistentDomainForName:(NSString *)domainName;

 - (NSArray *)persistentDomainNames;

 - (void)registerDefaults:(NSDictionary *)registrationDictionary;

 - (void)removeObjectForKey:(NSString *)defaultName;

 - (void)removePersistentDomainForName:(NSString *)domainName;

 - (void)removeSuiteNamed:(NSString *)suiteName;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)removeVolatileDomainForName:(NSString *)domainName;

 - (NSArray *)stringArrayForKey:(NSString *)defaultName;

 - (NSString *)stringForKey:(NSString *)defaultName;

 - (BOOL)synchronize;

 - (NSDictionary *)volatileDomainForName:(NSString *)domainName;

 - (NSArray *)volatileDomainNames;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSValue Mac OS X 10.0

This class provides an object-oriented interface to C and Objective-C scalar data items, such as numeric primitives, and
C structures. Providing an object-oriented wrapper for these non-object types makes it possible for clients to store
these types in any of the Foundation collection classes.

@interface NSValue : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (NSValue *)value:(const void *)value withObjCType:(const char *)type;

 + (NSValue *)valueWithBytes:(const void *)value objCType:(const char *)type;

 + (NSValue *)valueWithNonretainedObject:(id)anObject;

 + (NSValue *)valueWithPoint:(NSPoint)point;

 + (NSValue *)valueWithPointer:(const void *)pointer;

 + (NSValue *)valueWithRange:(NSRange)range;

 + (NSValue *)valueWithRect:(NSRect)rect;

 + (NSValue *)valueWithSize:(NSSize)size;

 // Initializers

 - (id)initWithBytes:(const void *)value objCType:(const char *)type;

 // Instance Methods

 - (void)getValue:(void *)value;

 - (BOOL)isEqualToValue:(NSValue *)value;

 - (id)nonretainedObjectValue;

 - (const char *)objCType;

 - (NSPoint)pointValue;

 - (void *)pointerValue;

 - (NSRange)rangeValue;

 - (NSRect)rectValue;

 - (NSSize)sizeValue;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

Subclasses

NSNumber
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSWhoseSpecifier Mac OS X 10.0

This class represents the scripting language reference form used to specify a selection of objects within a collection that
matches some provided boolean condition. NSWhoseSpecifier works in conjunction with a test object that represents the
matching condition. This test object is an instance of a subclass of NSScriptWhoseTest.

@interface NSWhoseSpecifier : NSScriptObjectSpecifier

 // Initializers

 - (id)initWithContainerClassDescription:(NSScriptClassDescription *)classDesc
 containerSpecifier:(NSScriptObjectSpecifier *)container key:(NSString *)property test:(NSScriptWhoseTest *)test;

 // Accessor Methods

 - (void)setStartSubelementIndex:(int)index;

 - (int)startSubelementIndex;

 - (void)setEndSubelementIndex:(int)index;

 - (int)endSubelementIndex;

 - (void)setEndSubelementIdentifier:(NSWhoseSubelementIdentifier)subelement;

 - (NSWhoseSubelementIdentifier)endSubelementIdentifier;

 - (void)setStartSubelementIdentifier:(NSWhoseSubelementIdentifier)subelement;

 - (NSWhoseSubelementIdentifier)startSubelementIdentifier;

 - (void)setTest:(NSScriptWhoseTest *)test;

 - (NSScglobal variables;iptWhoseTest *)test;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. Foundation Protocols
This chapter covers the protocols of the Foundation framework. The Foundation framework provides a basic set of
classes used in data management, application coordination, networking and interapplication communication, as well as
interacting with core operating system services. Chapter 2 discussed many Foundation classes in depth; Chapter 6
discussed several of the Foundation classes related to networking.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCoding Mac OS X 10.0

This protocol declares an interface is adopted by classes to provide for archiving and unarchiving of instances of the
class. The NSCoding protocol defines the two methods initWithCode: and encodeWithCode:. These two methods are the
foundation of archiving and distribution in the Foundation framework. Each of these two methods passes an NSCoder
object, which is used to perform archiving and unarchiving. The NSCoder class provides the tools to encode and decode
objects and C and Objective-C data types. See the NSCoder class description and Chapter 2 for more information.

@protocol NSCoding

 // Instance Methods

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSComparisonMethods Mac OS X 10.0

This informal protocol declares several methods that are used to perform common comparisons between two objects. In
Cocoa's scripting system, comparisons are represented by instances of NSSpecifierTest, which relies on objects
implementing either methods from this protocol, or the NSScriptingComparisonMethods protocol.

@interface NSObject (NSComparisonMethods)

 // Instance Methods

 - (BOOL)isEqualTo:(id)object;

 - (BOOL)isLessThanOrEqualTo:(id)object;

 - (BOOL)isLessThan:(id)object;

 - (BOOL)isGreaterThanOrEqualTo:(id)object;

 - (BOOL)isGreaterThan:(id)object;

 - (BOOL)isNotEqualTo:(id)object;

 - (BOOL)doesContain:(id)object;

 - (BOOL)isLike:(NSString *)object;

 - (BOOL)isCaseInsensitiveLike:(NSString *)object;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCopying Mac OS X 10.0

This protocol declares a single method for classes to implement: copyWithZone:. Classes should implement this method
to create and return a fully functioning object that is a copy of the receiver. The zone parameter indicates what memory
zone the new object should be allocated in; if this parameter is nil, then the instance is allocated in the default zone.
Clients generally make copies of objects using NSObject's copy method, which is a convenience method for invoking
copyWithZone: with nil as the zone.

@protocol NSCopying

 // Instance Methods

 - (id)copyWithZone:(NSZone *)zone;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDecimalNumberBehaviors Mac OS X 10.0

This protocol defines the interface to objects that control aspects of the behavior of NSDecimalNumber objects. In
particular, there are three methods that classes implement to specify rounding behavior, number precision, and a
means for handling calculation errors. The Foundation framework implements this protocol in the class
NSDecimalNumberHandler.

@protocol NSDecimalNumberBehaviors

 // Instance Methods

 - (NSRoundingMode)roundingMode;

 - (short)scale;

 - (NSDecimalNumber *)exceptionDuringOperation:(SEL)operation error:(NSCalculationError)error
 leftOperand:(NSDecimalNumber *)leftOperand rightOperand:(NSDecimalNumber *)rightOperand;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSKeyValueCoding Mac OS X 10.0

This informal protocol provides a way for clients to access a class's instance variables (or other properties) without
having to explicitly rely on accessor methods. NSKeyValueCoding provides indirect access to an object's instance variables
through the use of strings or keys. The two most commonly used methods in the protocol are takeValue:forKey: and
valueForKey:, which are used to set and get the value of an instance variable, respectively. This protocol, and the
associated NSScriptKeyValueCoding protocol, both form the basis of scripting in Cocoa. Chapter 2 goes into more detail
about this protocol.

@interface NSObject (NSKeyValueCoding)

 // Class Methods

 + (BOOL)accessInstanceVariablesDirectly;

 + (BOOL)useStoredAccessor;

 // Instance Methods

 - (id)valueForKey:(NSString *)key;

 - (void)takeValue:(id)value forKey:(NSString *)key;

 - (id)storedValueForKey:(NSString *)key;

 - (void)takeStoredValue:(id)value forKey:(NSString *)key;

 - (id)valueForKeyPath:(NSString *)key;

 - (void)takeValue:(id)value forKeyPath:(NSString *)key;

 - (NSDictionary *)valuesForKeys:(NSArray *)keys;

 - (void)takeValuesFromDictionary:(NSDictionary *)dictionary;

 - (id)handleQueryWithUnboundKey:(NSString *)key;

 - (void)handleTakeValue:(id)value forUnboundKey:(NSString *)key;

 - (void)unableToSetNilForKey:(NSString *)key;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSLocking Mac OS X 10.0

This protocol is adopted by a class that implements lock objects. Locks are used in multithreaded applications to
coordinate access to shared, thread-sensitive storage, or to control execution of critical portions of code (which usually
deal with these same kinds of resources) that two or more threads may attempt to access simultaneously. The protocol
declares two methods: lock and unlock. The lock message is used by clients to acquire a lock before executing critical
sections of code, and the unlock method is used to relinquish a previously acquired lock.

The Foundation framework defines three classes that adopt the NSLocking protocol: NSLock, NSConditionLock, and
NSRecursiveLock. See the class descriptions for these three classes, and Chapter 2 for more information.

@protocol NSLocking

 // Instance Methods

 - (void)lock;

 - (void)unlock;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableCopying Mac OS X 10.0

This protocol declares the single method mutableCopyWithZone:, which is implemented by classes that wish to allow
clients to make mutable copies of themselves. This protocol should be adopted only by classes that have both mutable
and immutable variants (for example, NSString and NSMutableString). Clients create mutable copies of objects through
NSObject's mutableCopy convenience method, which invokes mutableCopyWithZone: with the default zone.

@protocol NSMutableCopying

 // Instance Methods

 - (id)mutableCopyWithZone:(NSZone *)zone;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSObjCTypeSerializationCallBack Mac OS X 10.0

This protocol is adopted by classes that wish to intervene in serialization and deserialization operations. It is obsolete
and has been deprecated.

@protocol NSObjCTypeSerializationCallBack

 // Instance Methods

 - (void)serializeObjectAt:(id *)object ofObjCType:(const char *)type intoData:(NSMutableData *)data;

 - (void)deserializeObjectAt:(id *)object ofObjCType:(const char *)type fromData:(NSData *)data
 atCursor:(unsigned *)cursor;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSObject Mac OS X 10.0

This protocol defines the interface for so-called first-class objects. Objects that conform to the NSObject protocol are able
to provide a great deal of information about themselves to other objects, such as their classnames, superclass names,
and the protocols that they conform to. Additionally, this protocol declares methods that clients use to determine
whether an object can respond to an arbitrary message. Finally, the NSObject protocol declares methods that allow
objects to participate in Cocoa's memory management system. In the Foundation framework, the two root classes
NSObject and NSProxy conform to this protocol.

@protocol NSObject

 // Instance Methods

 - (BOOL)isEqual:(id)object;

 - (unsigned)hash;

 - (Class)superclass;

 - (Class)class;

 - (id)self;

 - (NSZone *)zone;

 - (id)performSelector:(SEL)aSelector;

 - (id)performSelector:(SEL)aSelector withObject:(id)object;

 - (id)performSelector:(SEL)aSelector withObject:(id)object1 withObject:(id)object2;

 - (BOOL)isProxy;

 - (BOOL)isKindOfClass:(Class)aClass;

 - (BOOL)isMemberOfClass:(Class)aClass;

 - (BOOL)conformsToProtocol:(Protocol *)aProtocol;

 - (BOOL)respondsToSelector:(SEL)aSelector;

 - (id)retain;

 - (oneway void)release;

 - (id)autorelease;

 - (unsigned)retainCount;

 - (NSString *)description;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptingComparisonMethods Mac OS X 10.0

This informal protocol declares methods that are appropriate for use in comparing scriptable objects. Many Cocoa
classes provide default implementations of these methods as part of the built-in support for scripting. This is especially
true for the Foundation classes such as NSString, NSNumber, and NSDate that represent basic data types in a scripting
environment. When a specifier test object evaluates a Boolean expression, it tries to invoke methods of this protocol in
the relevant objects. If neither of the objects implement the necessary methods, then the scripting system will try to
invoke methods from the NSComparisonMethods protocol.

@interface NSObject (NSScriptingComparisonMethods)

 // Instance Methods

 - (BOOL)scriptingIsEqualTo:(id)object;

 - (BOOL)scriptingIsLessThanOrEqualTo:(id)object;

 - (BOOL)scriptingIsLessThan:(id)object;

 - (BOOL)scriptingIsGreaterThanOrEqualTo:(id)object;

 - (BOOL)scriptingIsGreaterThan:(id)object;

 - (BOOL)scriptingBeginsWith:(id)object;

 - (BOOL)scriptingEndsWith:(id)object;

 - (BOOL)scriptingContains:(id)object;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptKeyValueCoding Mac OS X 10.0

This protocol defines additional key-value coding functionality beyond that of NSKeyValueCoding. The additional
functionality provides support for scriptability in Cocoa.

@interface NSObject (NSScriptKeyValueCoding)

 // Instance Methods

 - (id)valueAtIndex:(unsigned)index inPropertyWithKey:(NSString *)key;

 - (id)valueWithName:(NSString *)name inPropertyWithKey:(NSString *)key;

 - (id)valueWithUniqueID:(id)uniqueID inPropertyWithKey:(NSString *)key;

 - (void)replaceValueAtIndex:(unsigned)index inPropertyWithKey:(NSString *)key withValue:(id)value;

 - (void)insertValue:(id)value atIndex:(unsigned)index inPropertyWithKey:(NSString *)key;

 - (void)removeValueAtIndex:(unsigned)index fromPropertyWithKey:(NSString *)key;

 - (void)insertValue:(id)value inPropertyWithKey:(NSString *)key;

 - (id)coerceValue:(id)value forKey:(NSString *)key;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScriptObjectSpecifiers Mac OS X 10.0

This informal protocol declares two methods that classes implement to support scriptability. The two methods are
objectSpecifier and indicesOfObjectsBy-EvaluatingObjectSpecifier:. The objectSpecifier method, when implemented, should
return an instance of NSObjectSpecifier, while the second method listed below is implemented by container objects to
return an NSArray of NSNumbers indicating the indices of objects within the container that match the specifier indicated in
the argument. See the class description of NSScriptObjectSpecifier in Chapter 13 for more information.

@interface NSObject (NSScriptObjectSpecifiers)

 // Instance Methods

 - (NSScriptObjectSpecifier *)objectSpecifier;

 - (NSArray *)indicesOfObjectsByEvaluatingObjectSpecifier:(NSScriptObjectSpecifier *)specifier;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSURLHandleClient Mac OS X 10.0

This protocol defines methods that clients of NSURLHandle must implement to function as such. See Chapter 6 for more
information.

@protocol NSURLHandleClient

 // Instance Methods

 - (void)URLHandle:(NSURLHandle *)sender resourceDataDidBecomeAvailable:(NSData *)newBytes;

 - (void)URLHandleResourceDidBeginLoading:(NSURLHandle *)sender;

 - (void)URLHandleResourceDidFinishLoading:(NSURLHandle *)sender;

 - (void)URLHandleResourceDidCancelLoading:(NSURLHandle *)sender;

 - (void)URLHandle:(NSURLHandle *)sender resourceDidFailLoadingWithReason:(NSString *)reason;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Application Kit Classes
This chapter covers the classes of the Application Kit. The Application Kit implements all of the graphical user interface
components of Cocoa, including the complete standard Aqua widget set. Additionally, the Application Kit provides
classes for interacting with the Quartz 2D drawing system, and for managing and accessing resources such as colors,
fonts, and printers. The Application Kit is discusses in Chapter 3. Chapter 4 and Chapter 5 go into more detail about
aspects of the Application Kit.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSActionCell Mac OS X 10.0

This subclass of NSCell provides an implementation of the target/action mechanism that is the basis of interface
messaging in Cocoa. This mechanism operates by sending a message, often referred to as an action message to a
target object. The majority of controls in the Application Kit rely on the functionality of NSActionCell to notify clients when
the control has been activated by the user.

While NSCell implements most of the methods found in NSActionCells, it does so only passively. NSActionCell reimplements
many of NSCell's methods to provide an active target/action mechanism and to manage the target and action of a cell.
In addition to managing these attributes of a cell, NSActionCell provides the necessary implementation to provide
feedback to mouse actions, such as highlighting certain active areas of a control when the mouse hovers above them.

@interface NSActionCell : NSCell

 // Accessor Methods

 - (void)setFloatingPointFormat:(BOOL)autoRange left:(unsigned int)leftDigits right:(unsigned int)rightDigits;

 - (void)setAlignment:(NSTextAlignment)mode;

 - (void)setBordered:(BOOL)flag;

 - (void)setBezeled:(BOOL)flag;

 - (void)setEnabled:(BOOL)flag;

 - (void)setTag:(int)anInt;

 - (int)tag;

 - (void)setImage:(NSImage *)image;

 - (void)setTarget:(id)anObject;

 - (id)target;

 - (void)setAction:(SEL)aSelector;

 - (SEL)action;

 - (void)setObjectValue:(id)obj;

 - (void)setFont:(NSFont *)fontObj;

 // Instance Methods

 - (double)doubleValue;

 - (float)floatValue;

 - (int)intValue;

 - (NSString *)stringValue;

 - (NSView *)controlView;

Subclasses

NSButtonCell, NSFormCell, NSSliderCell, NSStepperCell, NSTextFieldCell

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAffineTransform Mac OS X 10.0

This class is used to perform affine transform operations on NSBezierPath objects, as well as on NSSize, and NSPoint
structures. An affine transform is an operation in which one coordinate system is mapped to another whereby the
parallelism of lines is maintained, but not necessarily their length or angles.

NSAffineTransform has methods for performing several types of operations: rotation, scaling, and translation. These
transforms are implemented in the methods scaleBy:, scaleXBy:yBy:, rotateByDegrees:, rotateByRadians:, and
translateXBy:yBy:. Additionally, applications may define their own transformation matrices using the method
setTransformStruct:. To apply a transform to an object we use transformBezierPath:, transformSize:, and transformPoint:.

@interface NSAffineTransform : NSObject <NSCoding, NSCopying>

 // Initializers

 - (id)initWithTransform:(NSAffineTransform *)transform;

 // Accessor Methods

 - (void)setTransformStruct:(NSAffineTransformStruct)transformStruct;

 - (NSAffineTransformStruct)transformStruct;

 // Class Methods

 + (NSAffineTransform *)transform;

 // Instance Methods

 - (void)invert;

 - (void)concat;

 - (void)set;

 - (void)appendTransform:(NSAffineTransform *)transform;

 - (void)prependTransform:(NSAffineTransform *)transform;

 - (void)rotateByDegrees:(float)angle;

 - (void)rotateByRadians:(float)angle;

 - (void)scaleBy:(float)scale;

 - (void)scaleXBy:(float)scaleX yBy:(float)scaleY;

 - (NSBezierPath *)transformBezierPath:(NSBezierPath *)aPath;

 - (NSPoint)transformPoint:(NSPoint)aPoint;

 - (NSSize)transformSize:(NSSize)aSize;

 - (void)translateXBy:(float)deltaX yBy:(float)deltaY;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSApplication Mac OS X 10.0

This is one of the three classes that define the overall architecture of the Application Kit, as well as the general behavior
of Cocoa applications. The other two classes are NSView and NSResponder. Every AppKit-based application has an
instance of NSApplication that is accessible through the global variable NSApp.

@interface NSApplication : NSResponder

 // Accessor Methods

 - (void)setMainMenu:(NSMenu *)aMenu;

 - (NSMenu *)mainMenu;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setWindowsNeedUpdate:(BOOL)needUpdate;

 - (void)setAppleMenu:(NSMenu *)menu;

 - (void)setApplicationIconImage:(NSImage *)image;

 - (NSImage *)applicationIconImage;

 - (void)setWindowsMenu:(NSMenu *)aMenu;

 - (NSMenu *)windowsMenu;

 - (void)setServicesMenu:(NSMenu *)aMenu;

 - (NSMenu *)servicesMenu;

 - (void)setServicesProvider:(id)provider;

 - (id)servicesProvider;

 // Class Methods

 + (void)detachDrawingThread:(SEL)selector toTarget:(id)target withObject:(id)argument;

 + (NSApplication *)sharedApplication;

 // Instance Methods

 - (NSModalSession)beginModalSessionForWindow:(NSWindow *)theWindow;

 - (void)activateContextHelpMode:(id)sender;

 - (void)abortModal;

 - (void)activateIgnoringOtherApps:(BOOL)flag;

 - (void)addWindowsItem:(NSWindow *)win title:(NSString *)aString filename:(BOOL)isFilename;

 - (void)arrangeInFront:(id)sender;

 - (NSModalSession)beginModalSessionForWindow:(NSWindow *)theWindow
 relativeToWindow:(NSWindow *)docWindow;

 - (void)beginSheet:(NSWindow *)sheet modalForWindow:(NSWindow *)docWindow modalDelegate:(id)modalDelegate
 didEndSelector:(SEL)didEndSelector contextInfo:(void *)contextInfo;

 - (void)cancelUserAttentionRequest:(int)request;

 - (void)changeColor:(id)sender;

 - (void)changeWindowsItem:(NSWindow *)win title:(NSString *)aString filename:(BOOL)isFilename;

 - (NSGraphicsContext*)context;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSEvent *)currentEvent;

 - (void)deactivate;

 - (void)discardEventsMatchingMask:(unsigned int)mask beforeEvent:(NSEvent *)lastEvent;

 - (void)endModalSession:(NSModalSession)session;

 - (void)endSheet:(NSWindow *)sheet;

 - (void)endSheet:(NSWindow *)sheet returnCode:(int)returnCode;

 - (void)finishLaunching;

 - (void)hide:(id)sender;

 - (void)hideOtherApplications:(id)sender;

 - (BOOL)isActive;

 - (BOOL)isHidden;

 - (BOOL)isRunning;

 - (NSWindow *)keyWindow;

 - (NSWindow *)mainWindow;

 - (NSWindow *)makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag;

 - (void)miniaturizeAll:(id)sender;

 - (NSWindow *)modalWindow;

 - (NSEvent *)nextEventMatchingMask:(unsigned int)mask untilDate:(NSDate *)expiration inMode:(NSString *)mode
 dequeue:(BOOL)deqFlag;

 - (void)orderFrontColorPanel:(id)sender;

 - (void)orderFrontStandardAboutPanel:(id)sender;

 - (void)orderFrontStandardAboutPanelWithOptions:(NSDictionary *)optionsDictionary;

 - (void)postEvent:(NSEvent *)event atStart:(BOOL)flag;

 - (void)preventWindowOrdering;

 - (void)registerServicesMenuSendTypes:(NSArray *)sendTypes returnTypes:(NSArray *)returnTypes;

 - (void)removeWindowsItem:(NSWindow *)win;

 - (void)replyToApplicationShouldTerminate:(BOOL)shouldTerminate;

 - (void)reportException:(NSException *)theException;

 - (int)requestUserAttention:(NSRequestUserAttentionType)requestType;

 - (void)run;

 - (int)runModalForWindow:(NSWindow *)theWindow;

 - (int)runModalForWindow:(NSWindow *)theWindow relativeToWindow:(NSWindow *)docWindow;

 - (int)runModalSession:(NSModalSession)session;

 - (void)runPageLayout:(id)sender;

 - (BOOL)sendAction:(SEL)theAction to:(id)theTarget from:(id)sender;

 - (void)sendEvent:(NSEvent *)theEvent;

 - (void)showHelp:(id)sender;

 - (void)stop:(id)sender;

 - (void)stopModal;

 - (void)stopModalWithCode:(int)returnCode;

 - (id)targetForAction:(SEL)theAction;

 - (id)targetForAction:(SEL)theAction to:(id)theTarget from:(id)sender;

 - (void)terminate:(id)sender;

 - (BOOL)tryToPerform:(SEL)anAction with:(id)anObject;

 - (void)unhide:(id)sender;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)unhideAllApplications:(id)sender;

 - (void)unhideWithoutActivation;

 - (void)updateWindows;

 - (void)updateWindowsItem:(NSWindow *)win;

 - (id)validRequestorForSendType:(NSString *)sendType

 returnType:(NSString *)returnType;

 - (NSWindow *)windowWithWindowNumber:(int)windowNum;

 - (NSArray *)windows;

// Methods Implemented by the Delegate

 - (BOOL)application:(NSApplication *)sender delegateHandlesKey:(NSString *)key;

 - (BOOL)application:(NSApplication *)sender openFile:(NSString *)filename;

 - (BOOL)application:(NSApplication *)sender openTempFile:(NSString *)filename;

 - (BOOL)application:(NSApplication *)sender printFile:(NSString *)filename;

 - (BOOL)application:(id)sender openFileWithoutUI:(NSString *)filename;

 - (void)applicationDidBecomeActive:(NSNotification *)notification;

 - (void)applicationDidChangeScreenParameters:(NSNotification *)notification;

 - (void)applicationDidFinishLaunching:(NSNotification *)notification;

 - (void)applicationDidHide:(NSNotification *)notification;

 - (void)applicationDidResignActive:(NSNotification *)notification;

 - (void)applicationDidUnhide:(NSNotification *)notification;

 - (void)applicationDidUpdate:(NSNotification *)notification;

 - (NSMenu *)applicationDockMenu:(NSApplication *)sender;

 - (BOOL)applicationOpenUntitledFile:(NSApplication *)sender;

 - (BOOL)applicationShouldHandleReopen:(NSApplication *)sender hasVisibleWindows:(BOOL)flag;

 - (BOOL)applicationShouldOpenUntitledFile:(NSApplication *)sender;

 - (NSApplicationTerminateReply)applicationShouldTerminate:(NSApplication *)sender;

 - (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)sender;

 - (void)applicationWillBecomeActive:(NSNotification *)notification;

 - (void)applicationWillFinishLaunching:(NSNotification *)notification;

 - (void)applicationWillHide:(NSNotification *)notification;

 - (void)applicationWillResignActive:(NSNotification *)notification;

 - (void)applicationWillTerminate:(NSNotification *)notification;

 - (void)applicationWillUnhide:(NSNotification *)notification;

 - (void)applicationWillUpdate:(NSNotification *)notification;

// Notifications

 NSApplicationDidBecomeActiveNotification;

 NSApplicationDidChangeScreenParametersNotification;

 NSApplicationDidFinishLaunchingNotification;

 NSApplicationDidHideNotification;

 NSApplicationDidResignActiveNotification;

 NSApplicationDidUnhideNotification;

 NSApplicationDidUpdateNotification;

 NSApplicationWillBecomeActiveNotification;

 NSApplicationWillFinishLaunchingNotification;

 NSApplicationWillHideNotification;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSApplicationWillHideNotification;

 NSApplicationWillResignActiveNotification;

 NSApplicationWillTerminateNotification;

 NSApplicationWillUnhideNotification;

 NSApplicationWillUpdateNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSBezierPath Mac OS X 10.0

This class represents Bezier paths that are vector-based paths based on polynomial formulas. Vector paths are the
basis of Quartz 2D. As such, this class provides the most general interface to Quartz 2D from Cocoa.

A Bezier path is constructed from path elements. Complex paths are constructed by appending lines and curves to the
path. It is also possible to move to a point, thus creating a broken space in the path. Lines are appended to a path
using the method lineToPoint:. Curves are appended using the method curveToPoint:controlPoint1:controlPoint2:. To move to
a new location on the canvas, use the method moveToPoint:. In all of these methods, the point referred to is the end
point of the element; the starting point is implicitly specified as the endpoint of the last element in the path. Chapter 4
provides a more detailed discussion on the use of NSBezierPath for drawing.

@interface NSBezierPath : NSObject <NSCoding, NSCopying>

 // Accessor Methods

 - (void)setMiterLimit:(float)miterLimit;

 - (float)miterLimit;

 - (void)setLineDash:(const float *)pattern count:(int)count phase:(float)phase;

 - (void)setCachesBezierPath:(BOOL)flag;

 - (BOOL)cachesBezierPath;

 - (void)setClip;

 - (void)setLineWidth:(float)lineWidth;

 - (float)lineWidth;

 - (void)setWindingRule:(NSWindingRule)windingRule;

 - (NSWindingRule)windingRule;

 - (void)setLineJoinStyle:(NSLineJoinStyle)lineJoinStyle;

 - (NSLineJoinStyle)lineJoinStyle;

 - (void)setAssociatedPoints:(NSPointArray)points atIndex:(int)index;

 - (void)setLineCapStyle:(NSLineCapStyle)lineCapStyle;

 - (NSLineCapStyle)lineCapStyle;

 - (void)setFlatness:(float)flatness;

 - (float)flatness;

 // Class Methods

 + (NSBezierPath *)bezierPath;

 + (NSBezierPath *)bezierPathWithOvalInRect:(NSRect)rect;

 + (NSBezierPath *)bezierPathWithRect:(NSRect)rect;

 + (void)clipRect:(NSRect)rect;

 + (float)defaultFlatness;

 + (NSLineCapStyle)defaultLineCapStyle;

 + (NSLineJoinStyle)defaultLineJoinStyle;

 + (float)defaultLineWidth;

 + (float)defaultMiterLimit;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (float)defaultMiterLimit;

 + (NSWindingRule)defaultWindingRule;

 + (void)drawPackedGlyphs:(const char *)packedGlyphs atPoint:(NSPoint)point;

 + (void)fillRect:(NSRect)rect;

 + (void)setDefaultFlatness:(float)flatness;

 + (void)setDefaultLineCapStyle:(NSLineCapStyle)lineCapStyle;

 + (void)setDefaultLineJoinStyle:(NSLineJoinStyle)lineJoinStyle;

 + (void)setDefaultLineWidth:(float)lineWidth;

 + (void)setDefaultMiterLimit:(float)limit;

 + (void)setDefaultWindingRule:(NSWindingRule)windingRule;

 + (void)strokeLineFromPoint:(NSPoint)point1 toPoint:(NSPoint)point2;

 + (void)strokeRect:(NSRect)rect;

 // Instance Methods

 - (void)addClip;

 - (void)appendBezierPath:(NSBezierPath *)path;

 - (void)appendBezierPathWithArcFromPoint:(NSPoint)point1;

 - (void)appendBezierPathWithArcWithCenter:(NSPoint)center radius:(float)radius;

 - (void)appendBezierPathWithArcWithCenter:(NSPoint)center radius:(float)radius;

 - (void)appendBezierPathWithGlyph:(NSGlyph)glyph inFont:(NSFont *)font;

 - (void)appendBezierPathWithGlyphs:(NSGlyph *)glyphs count:(int)count;

 - (void)appendBezierPathWithOvalInRect:(NSRect)rect;

 - (void)appendBezierPathWithPackedGlyphs:(const char *)packedGlyphs;

 - (void)appendBezierPathWithPoints:(NSPointArray)points count:(int)count;

 - (void)appendBezierPathWithRect:(NSRect)rect;

 - (NSBezierPath *)bezierPathByFlatteningPath;

 - (NSBezierPath *)bezierPathByReversingPath;

 - (NSRect)bounds;

 - (void)closePath;

 - (NSPoint)currentPoint;

 - (NSBezierPathElement)elementAtIndex:(int)index;

 - (NSBezierPathElement)elementAtIndex:(int)index;

 - (int)elementCount;

 - (void)fill;

 - (void)getLineDash:(float *)pattern count:(int *)count phase:(float *)phase;

 - (BOOL)isEmpty;

 - (void)lineToPoint:(NSPoint)point;

 - (void)moveToPoint:(NSPoint)point;

 - (void)relativeCurveToPoint:(NSPoint)endPoint;

 - (void)relativeLineToPoint:(NSPoint)point;

 - (void)relativeMoveToPoint:(NSPoint)point;

 - (void)removeAllPoints;

 - (void)stroke;

 - (void)transformUsingAffineTransform:(NSAffineTransform *)transform;

 - (BOOL)containsPoint:(NSPoint)point;

 - (NSRect)controlPointBounds;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)curveToPoint:(NSPoint)endPoint;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSBitmapImageRep Mac OS X 10.0

This subclass of NSImageRep represents bitmapped raster images. NSBitmapImageRep is able to read and write image data
in many of the popular bitmap image data formats: TIFF, JPEG, Windows Bitmap, PNG, as well as raw data. This class
allows applications to create bitmap image buffers that can be manipulated programmatically, and is thus useful for
image manipulation and filtering applications. To obtain a pointer to the image data buffer, use the method bitmapData.
If the image data is arranged in planes, rather than interlaced, use the method getBitmapDataPlanes:, which returns a C
array of pointers to the image's data planes. NSBitmapImageRep provides a number of methods for discovering
characteristics of the image data, such as the buffer size, pixel and sample formats, and more. See Chapter 4 for more
information on how Cocoa handles images.

@interface NSBitmapImageRep : NSImageRep

 // Initializers

 - (id)initForIncrementalLoad;

 - (id)initWithBitmapDataPlanes:(unsigned char **)planes pixelsWide:(int)width pixelsHigh:(int)height
 bitsPerSample:(int)bps samplesPerPixel:(int)spp hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar
 colorSpaceName:(NSString *)colorSpaceName bytesPerRow:(int)rBytes bitsPerPixel:(int)pBits;

 - (id)initWithData:(NSData *)tiffData;

 - (id)initWithFocusedViewRect:(NSRect)rect;

 // Accessor Methods

 - (void)setCompression:(NSTIFFCompression)compression factor:(float)factor;

 - (void)setProperty:(NSString *)property withValue:(id)value;

 // Class Methods

 + (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array;

 + (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array usingCompression:(NSTIFFCompression)comp

 + (void)getTIFFCompressionTypes:(const NSTIFFCompression **)list count:(int *)numTypes;

 + (id)imageRepWithData:(NSData *)tiffData;

 + (NSArray *)imageRepsWithData:(NSData *)tiffData;

 + (NSString *)localizedNameForTIFFCompressionType:(NSTIFFCompression)compression;

 + (NSData *)representationOfImageRepsInArray:(NSArray *)imageReps
 usingType:(NSBitmapImageFileType)storageType properties:(NSDictionary *)properties;

 // Instance Methods

 - (NSData *)TIFFRepresentation;

 - (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp factor:(float)factor;

 - (unsigned char *)bitmapData;

 - (int)bytesPerRow;

 - (int)bitsPerPixel;

 - (int)bytesPerPlane;

 - (BOOL)canBeCompressedUsing:(NSTIFFCompression)compression;

 - (void)colorizeByMappingGray:(float)midPoint toColor:(NSColor *)midPointColor
 blackMapping:(NSColor *)shadowColor whiteMapping:(NSColor *)lightColor;

 - (void)getBitmapDataPlanes:(unsigned char **)data;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)getBitmapDataPlanes:(unsigned char **)data;

 - (void)getCompression:(NSTIFFCompression *)compression factor:(float *)factor;

 - (int)incrementalLoadFromData:(NSData*)data complete:(BOOL)complete;

 - (BOOL)isPlanar;

 - (int)numberOfPlanes;

 - (NSData *)representationUsingType:(NSBitmapImageFileType)storageType
 properties:(NSDictionary *)properties;

 - (int)samplesPerPixel;

 - (id)valueForProperty:(NSString *)property;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSBox Mac OS X 10.0

This simple subclass of NSView performs two tasks: it can draw a border around itself, as well as title itself. By
specifying that the box should have no border or title, NSBox views can be used to transparentlly group other NSView
objects by making them subviews of the box view. Interface Builder provides facilities for using NSBox to group views.

@interface NSBox : NSView

 // Accessor Methods

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setBorderType:(NSBorderType)aType;

 - (NSBorderType)borderType;

 - (void)setBoxType:(NSBoxType)boxType;

 - (NSBoxType)boxType;

 - (void)setTitlePosition:(NSTitlePosition)aPosition;

 - (NSTitlePosition)titlePosition;

 - (void)setFrameFromContentFrame:(NSRect)contentFrame;

 - (void)setTitleFont:(NSFont *)fontObj;

 - (NSFont *)titleFont;

 - (void)setContentView:(NSView *)aView;

 - (id)contentView;

 - (void)setContentViewMargins:(NSSize)offsetSize;

 - (NSSize)contentViewMargins;

 // Instance Methods

 - (NSRect)borderRect;

 - (void)sizeToFit;

 - (id)titleCell;

 - (NSRect)titleRect;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSBrowser Mac OS X 10.0

This NSControl subclass represents an interface widget that displays hierarchical data in a series of columns, much like a
Column View in the Finder. If the data is not hierarchical, then NSBrowser displays the data as a list. Data is provided to
a browser by its delegate object.

@interface NSBrowser : NSControl

 // Accessor Methods

 - (void)setTitle:(NSString *)aString ofColumn:(int)column;

 - (void)setDoubleAction:(SEL)aSelector;

 - (SEL)doubleAction;

 - (void)setMatrixClass:(Class)factoryId;

 - (Class)matrixClass;

 - (void)setPathSeparator:(NSString *)newString;

 - (NSString *)pathSeparator;

 - (void)setCellClass:(Class)factoryId;

 - (void)setCellPrototype:(NSCell *)aCell;

 - (id)cellPrototype;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setReusesColumns:(BOOL)flag;

 - (BOOL)reusesColumns;

 - (void)setHasHorizontalScroller:(BOOL)flag;

 - (BOOL)hasHorizontalScroller;

 - (void)setSeparatesColumns:(BOOL)flag;

 - (BOOL)separatesColumns;

 - (void)setTitled:(BOOL)flag;

 - (void)setMinColumnWidth:(float)columnWidth;

 - (float)minColumnWidth;

 - (void)setMaxVisibleColumns:(int)columnCount;

 - (int)maxVisibleColumns;

 - (void)setSendsActionOnArrowKeys:(BOOL)flag;

 - (BOOL)sendsActionOnArrowKeys;

 - (void)setAllowsMultipleSelection:(BOOL)flag;

 - (BOOL)allowsMultipleSelection;

 - (void)setAllowsBranchSelection:(BOOL)flag;

 - (BOOL)allowsBranchSelection;

 - (void)setAllowsEmptySelection:(BOOL)flag;

 - (BOOL)allowsEmptySelection;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setTakesTitleFromPreviousColumn:(BOOL)flag;

 - (BOOL)takesTitleFromPreviousColumn;

 - (void)setAcceptsArrowKeys:(BOOL)flag;

 - (BOOL)acceptsArrowKeys;

 - (BOOL)setPath:(NSString *)path;

 - (NSString *)path;

 - (void)setLastColumn:(int)column;

 - (int)lastColumn;

 // Class Methods

 + (Class)cellClass;

 // Instance Methods

 - (NSRect)frameOfColumn:(int)column;

 - (void)doDoubleClick:(id)sender;

 - (void)doClick:(id)sender;

 - (void)displayColumn:(int)column;

 - (void)addColumn;

 - (void)displayAllColumns;

 - (int)columnOfMatrix:(NSMatrix *)matrix;

 - (void)drawTitleOfColumn:(int)column inRect:(NSRect)aRect;

 - (int)firstVisibleColumn;

 - (NSRect)frameOfInsideOfColumn:(int)column;

 - (BOOL)isLoaded;

 - (BOOL)isTitled;

 - (int)lastVisibleColumn;

 - (void)loadColumnZero;

 - (id)loadedCellAtRow:(int)row column:(int)col;

 - (NSMatrix *)matrixInColumn:(int)column;

 - (int)numberOfVisibleColumns;

 - (NSString *)pathToColumn:(int)column;

 - (void)reloadColumn:(int)column;

 - (void)scrollColumnToVisible:(int)column;

 - (void)scrollColumnsLeftBy:(int)shiftAmount;

 - (void)scrollColumnsRightBy:(int)shiftAmount;

 - (void)scrollViaScroller:(NSScroller *)sender;

 - (void)selectAll:(id)sender;

 - (void)selectRow:(int)row inColumn:(int)column;

 - (id)selectedCell;

 - (id)selectedCellInColumn:(int)column;

 - (NSArray *)selectedCells;

 - (int)selectedColumn;

 - (int)selectedRowInColumn:(int)column;

 - (BOOL)sendAction;

 - (void)tile;

 - (NSRect)titleFrameOfColumn:(int)column;

 - (float)titleHeight;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (float)titleHeight;

 - (NSString *)titleOfColumn:(int)column;

 - (void)updateScroller;

 - (void)validateVisibleColumns;

// Methods Implemented by the Delegate

 - (void)browser:(NSBrowser *)sender createRowsForColumn:(int)column inMatrix:(NSMatrix *)matrix;

 - (BOOL)browser:(NSBrowser *)sender isColumnValid:(int)column;

 - (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column;

 - (BOOL)browser:(NSBrowser *)sender selectCellWithString:(NSString *)title inColumn:(int)column;

 - (BOOL)browser:(NSBrowser *)sender selectRow:(int)row inColumn:(int)column;

 - (NSString *)browser:(NSBrowser *)sender titleOfColumn:(int)column;

 - (void)browser:(NSBrowser *)sender willDisplayCell:(id)cell atRow:(int)row column:(int)column;

 - (void)browserDidScroll:(NSBrowser *)sender;

 - (void)browserWillScroll:(NSBrowser *)sender;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSBrowserCell Mac OS X 10.0

Instances of this class are responsible for displaying the contents of columns in an NSBrowser, which are NSMatrix views
containing a stack of NSBrowserCell objects.

@interface NSBrowserCell : NSCell

 // Accessor Methods

 - (void)setLeaf:(BOOL)flag;

 - (void)setAlternateImage:(NSImage *)newAltImage;

 - (NSImage *)alternateImage;

 - (void)setLoaded:(BOOL)flag;

 - (void)setImage:(NSImage *)image;

 - (NSImage *)image;

 // Class Methods

 + (NSImage *)branchImage;

 + (NSImage *)highlightedBranchImage;

 // Instance Methods

 - (void)set;

 - (NSColor *)highlightColorInView:(NSView *)controlView;

 - (BOOL)isLeaf;

 - (BOOL)isLoaded;

 - (void)reset;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSButton Mac OS X 10.0

This NSControl subclass represents a button control in the user interface. A button works by sending out an action
message whenever a mouse-down and mouse-up event occurs within the button area. The associated NSCell subclass
for NSButton is NSButtonCell, described next.

@interface NSButton : NSControl

 // Accessor Methods

 - (void)setImagePosition:(NSCellImagePosition)aPosition;

 - (NSCellImagePosition)imagePosition;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setAlternateTitle:(NSString *)aString;

 - (NSString *)alternateTitle;

 - (void)setKeyEquivalentModifierMask:(unsigned int)mask;

 - (unsigned int)keyEquivalentModifierMask;

 - (void)setImage:(NSImage *)image;

 - (NSImage *)image;

 - (void)setAlternateImage:(NSImage *)image;

 - (NSImage *)alternateImage;

 - (void)setKeyEquivalent:(NSString *)charCode;

 - (NSString *)keyEquivalent;

 - (void)setAttributedTitle:(NSAttributedString *)aString;

 - (NSAttributedString *)attributedTitle;

 - (void)setAllowsMixedState:(BOOL)flag;

 - (BOOL)allowsMixedState;

 - (void)setAttributedAlternateTitle:(NSAttributedString *)obj;

 - (NSAttributedString *)attributedAlternateTitle;

 - (void)setBordered:(BOOL)flag;

 - (void)setSound:(NSSound *)aSound;

 - (NSSound *)sound;

 - (void)setPeriodicDelay:(float)delay interval:(float)interval;

 - (void)setTransparent:(BOOL)flag;

 - (void)setButtonType:(NSButtonType)aType;

 - (void)setState:(int)value;

 - (int)state;

 - (void)setNextState;

 // Instance Methods

 - (BOOL)showsBorderOnlyWhileMouseInside;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSBezelStyle)bezelStyle;

 - (void)getPeriodicDelay:(float *)delay interval:(float *)interval;

 - (void)highlight:(BOOL)flag;

 - (BOOL)isBordered;

 - (BOOL)isTransparent;

 - (void)setBezelStyle:(NSBezelStyle)bezelStyle;

 - (void)setShowsBorderOnlyWhileMouseInside:(BOOL)show;

 - (BOOL)performKeyEquivalent:(NSEvent *)key;

Subclasses

NSPopUpButton
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSButtonCell Mac OS X 10.0

This subclass of NSActionCell contains the majority of the functionality of a button control. NSButtonCell, like most NSCell
subclasses, is responsible for the appearance of the NSButton control; NSButton serves more as a view for NSButtonCell to
draw in, and most of NSButton's API is forwarded to NSButtonCell.

@interface NSButtonCell : NSActionCell

 // Accessor Methods

 - (void)setPeriodicDelay:(float)delay interval:(float)interval;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setAlternateTitle:(NSString *)aString;

 - (NSString *)alternateTitle;

 - (void)setImagePosition:(NSCellImagePosition)aPosition;

 - (NSCellImagePosition)imagePosition;

 - (void)setHighlightsBy:(int)aType;

 - (int)highlightsBy;

 - (void)setAttributedAlternateTitle:(NSAttributedString *)obj;

 - (NSAttributedString *)attributedAlternateTitle;

 - (void)setAttributedTitle:(NSAttributedString *)obj;

 - (NSAttributedString *)attributedTitle;

 - (void)setTransparent:(BOOL)flag;

 - (void)setSound:(NSSound *)aSound;

 - (NSSound *)sound;

 - (void)setKeyEquivalent:(NSString *)aKeyEquivalent;

 - (NSString *)keyEquivalent;

 - (void)setKeyEquivalentModifierMask:(unsigned int)mask;

 - (unsigned int)keyEquivalentModifierMask;

 - (void)setKeyEquivalentFont:(NSFont *)fontObj;

 - (NSFont *)keyEquivalentFont;

 - (void)setKeyEquivalentFont:(NSString *)fontName size:(float)fontSize;

 - (void)setGradientType:(NSGradientType)type;

 - (NSGradientType)gradientType;

 - (void)setImageDimsWhenDisabled:(BOOL)flag;

 - (BOOL)imageDimsWhenDisabled;

 - (void)setAlternateImage:(NSImage *)image;

 - (NSImage *)alternateImage;

 - (void)setShowsStateBy:(int)aType;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (int)showsStateBy;

 - (void)setButtonType:(NSButtonType)aType;

 - (void)setFont:(NSFont *)fontObj;

 // Instance Methods

 - (BOOL)showsBorderOnlyWhileMouseInside;

 - (BOOL)isOpaque;

 - (BOOL)isTransparent;

 - (void)getPeriodicDelay:(float *)delay interval:(float *)interval;

 - (void)performClick:(id)sender;

 - (NSBezelStyle)bezelStyle;

 - (void)mouseEntered:(NSEvent*)event;

 - (void)mouseExited:(NSEvent*)event;

 - (void)setBezelStyle:(NSBezelStyle)bezelStyle;

 - (void)setShowsBorderOnlyWhileMouseInside:(BOOL)show;

Subclasses

NSMenuItemCell
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCachedImageRep Mac OS X 10.0

This subclass of NSImageRep stores an image's data representation as an image that has been rendered into a window,
which is usually an off-screen window. Images represented by NSCachedImageRep can be redrawn very quickly as they
have already been rendered to the screen environment.

@interface NSCachedImageRep : NSImageRep

 // Initializers

 - (id)initWithSize:(NSSize)size depth:(NSWindowDepth)depth separate:(BOOL)flag alpha:(BOOL)alpha;

 - (id)initWithWindow:(NSWindow *)win rect:(NSRect)rect;

 // Instance Methods

 - (NSRect)rect;

 - (NSWindow *)window;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCell Mac OS X 10.0

This class is the base superclass for the hierarchy of lightweight objects that know how to draw into a view. Most
NSControl classes in the Application Kit defer the implementation of drawing to an associated NSCell. For example,
NSButton uses a concrete subclass of NSCell, NSButtonCell, to handle all of the drawing and event handling of a button
interface component. Cells provide a leaner alternative to using views in situations when a control appears repeatedly in
a view. The interface of NSCell is closely mirrored in NSControl; indeed, many concrete subclasses of NSControl forward
most messages to their associated NSCell object.

@interface NSCell : NSObject <NSCoding, NSCopying>

 // Initializers

 - (id)initImageCell:(NSImage *)image;

 - (id)initTextCell:(NSString *)aString;

 // Accessor Methods

 - (void)setBezeled:(BOOL)flag;

 - (void)setType:(NSCellType)aType;

 - (NSCellType)type;

 - (void)setCellAttribute:(NSCellAttribute)aParameter to:(int)value;

 - (void)setAllowsMixedState:(BOOL)flag;

 - (BOOL)allowsMixedState;

 - (void)setTarget:(id)anObject;

 - (id)target;

 - (void)setAction:(SEL)aSelector;

 - (SEL)action;

 - (void)setImportsGraphics:(BOOL)flag;

 - (BOOL)importsGraphics;

 - (void)setTag:(int)anInt;

 - (int)tag;

 - (void)setTitle:(NSString*)aString;

 - (NSString*)title;

 - (void)setAllowsEditingTextAttributes:(BOOL)flag;

 - (BOOL)allowsEditingTextAttributes;

 - (void)setEnabled:(BOOL)flag;

 - (void)setRepresentedObject:(id)anObject;

 - (id)representedObject;

 - (void)setAttributedStringValue:(NSAttributedString *)obj;

 - (NSAttributedString *)attributedStringValue;

 - (void)setSelectable:(BOOL)flag;

 - (void)setBordered:(BOOL)flag;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setDoubleValue:(double)aDouble;

 - (double)doubleValue;

 - (void)setScrollable:(BOOL)flag;

 - (void)setSendsActionOnEndEditing:(BOOL)flag;

 - (BOOL)sendsActionOnEndEditing;

 - (void)setHighlighted:(BOOL)flag;

 - (void)setAlignment:(NSTextAlignment)mode;

 - (NSTextAlignment)alignment;

 - (void)setWraps:(BOOL)flag;

 - (BOOL)wraps;

 - (void)setImage:(NSImage *)image;

 - (NSImage *)image;

 - (void)setEntryType:(int)aType;

 - (int)entryType;

 - (NSText *)setUpFieldEditorAttributes:(NSText *)textObj;

 - (void)setFloatingPointFormat:(BOOL)autoRange left:(unsigned)leftDigits right:(unsigned)rightDigits;

 - (void)setFormatter:(NSFormatter *)newFormatter;

 - (id)formatter;

 - (void)setStringValue:(NSString *)aString;

 - (NSString *)stringValue;

 - (void)setIntValue:(int)anInt;

 - (int)intValue;

 - (void)setFloatValue:(float)aFloat;

 - (float)floatValue;

 - (void)setObjectValue:(id <NSCopying>)obj;

 - (id <NSCopying>)objectValue;

 - (void)setMenu:(NSMenu *)aMenu;

 - (NSMenu *)menu;

 - (void)setFont:(NSFont *)fontObj;

 - (NSFont *)font;

 - (void)setControlSize:(NSControlSize)size;

 - (NSControlSize)controlSize;

 - (void)setContinuous:(BOOL)flag;

 - (void)setState:(int)value;

 - (int)state;

 - (void)setNextState;

 - (int)nextState;

 - (void)setEditable:(BOOL)flag;

 // Class Methods

 + (NSMenu *)defaultMenu;

 + (BOOL)prefersTrackingUntilMouseUp;

 // Instance Methods

 - (NSSize)cellSize;

 - (NSColor *)highlightColorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (NSRect)imageRectForBounds:(NSRect)theRect;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSRect)imageRectForBounds:(NSRect)theRect;

 - (BOOL)isEnabled;

 - (int)cellAttribute:(NSCellAttribute)aParameter;

 - (BOOL)isContinuous;

 - (BOOL)isEditable;

 - (BOOL)isBordered;

 - (BOOL)isBezeled;

 - (void)calcDrawInfo:(NSRect)aRect;

 - (void)endEditing:(NSText *)textObj;

 - (NSSize)cellSizeForBounds:(NSRect)aRect;

 - (void)getPeriodicDelay:(float *)delay interval:(float *)interval;

 - (BOOL)hasValidObjectValue;

 - (void)highlight:(BOOL)flag withFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (NSComparisonResult)compare:(id)otherCell;

 - (void)setControlTint:(NSControlTint)controlTint;

 - (BOOL)continueTracking:(NSPoint)lastPoint at:(NSPoint)currentPoint inView:(NSView *)controlView;

 - (NSControlTint)controlTint;

 - (NSView *)controlView;

 - (void)drawInteriorWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (NSRect)drawingRectForBounds:(NSRect)theRect;

 - (void)editWithFrame:(NSRect)aRect inView:(NSView *)controlView editor:(NSText *)textObj
 delegate:(id)anObject event:(NSEvent *)theEvent;

 - (BOOL)isEntryAcceptable:(NSString *)aString;

 - (BOOL)isHighlighted;

 - (BOOL)isOpaque;

 - (BOOL)isScrollable;

 - (BOOL)isSelectable;

 - (NSString *)keyEquivalent;

 - (NSMenu *)menuForEvent:(NSEvent *)event inRect:(NSRect)cellFrame ofView:(NSView *)view;

 - (int)mouseDownFlags;

 - (void)resetCursorRect:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)selectWithFrame:(NSRect)aRect inView:(NSView *)controlView editor:(NSText *)textObj
 delegate:(id)anObject start:(int)selStart length:(int)selLength;

 - (int)sendActionOn:(int)mask;

 - (BOOL)startTrackingAt:(NSPoint)startPoint inView:(NSView *)controlView;

 - (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint inView:(NSView *)controlView mouseIsUp:(BOOL)flag;

 - (void)takeDoubleValueFrom:(id)sender;

 - (void)takeFloatValueFrom:(id)sender;

 - (void)takeIntValueFrom:(id)sender;

 - (void)takeObjectValueFrom:(id)sender;

 - (void)takeStringValueFrom:(id)sender;

 - (NSRect)titleRectForBounds:(NSRect)theRect;

 - (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView *)controlView
 untilMouseUp:(BOOL)flag;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

Subclasses

NSActionCell, NSBrowserCell, NSImageCell, NSTextAttachmentCell

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSClipView Mac OS X 10.0

This NSView subclass is used in conjunction with NSScrollView to contain the document view of the scroll view (the
document view is the view that contains the content of the document, such as text or graphics). The primary
responsibility of NSClipView is to implement the scrolling machinery used by NSScrollView. Ordinarily, you should not need
to interact with NSClipView unless you are implementing a class that provides functionality similar to NSScrollView.

@interface NSClipView : NSView

 // Accessor Methods

 - (void)setCopiesOnScroll:(BOOL)flag;

 - (BOOL)copiesOnScroll;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

 - (void)setDocumentCursor:(NSCursor *)anObj;

 - (NSCursor *)documentCursor;

 - (void)setDocumentView:(NSView *)aView;

 - (id)documentView;

 // Instance Methods

 - (BOOL)autoscroll:(NSEvent *)theEvent;

 - (NSPoint)constrainScrollPoint:(NSPoint)newOrigin;

 - (NSRect)documentRect;

 - (NSRect)documentVisibleRect;

 - (void)scrollToPoint:(NSPoint)newOrigin;

 - (void)viewBoundsChanged:(NSNotification *)notification;

 - (void)viewFrameChanged:(NSNotification *)notification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSColor Mac OS X 10.0

This class represents a color in the Application Kit. Each color has a colorspace associated with it, and the color
components that are recognized by that color space. NSColor supports six color spaces identified by the following
constants:

NSDeviceCMYKColorSpace

NSDeviceWhiteColorSpace

NSDeviceRGBColor

NSCalibratedWhiteColorSpace

NSCalibratedRGBColorSpace

NSNamedColorSpace

Calibrated colorspaces use Apple's ColorSync technology to ensure that colors look the same on all output devices.
Device colorspaces, on the other hand, do not employ ColorSync calibration, and the appearance of colors is thus
device-dependent.

The set method is one of the most commonly used methods of NSColor, as it sets the color that all subsequent drawing
operations should use. NSColor declares a number of methods for determining the values of various color components,
converting colors between colorspaces, creating NSColor objects by changing components of an existing color object,
and more. Additionally, there are a number of convenience contructors such as blueColor, redColor, and blackColor that
return premade colors without having to specify component values.

@interface NSColor : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (NSColor *)colorForControlTint:(NSControlTint)controlTint;

 + (NSColor *)colorFromPasteboard:(NSPasteboard *)pasteBoard;

 + (NSColor *)colorWithCalibratedHue:(float)hue saturation:(float)saturation brightness:(float)brightness
 alpha:(float)alpha;

 + (NSColor *)colorWithCalibratedRed:(float)red green:(float)green blue:(float)blue alpha:(float)alpha;

 + (NSColor *)colorWithCalibratedWhite:(float)white alpha:(float)alpha;

 + (NSColor *)colorWithCatalogName:(NSString *)listName colorName:(NSString *)colorName;

 + (NSColor *)colorWithDeviceCyan:(float)cyan magenta:(float)magenta yellow:(float)yellow
 black:(float)black alpha:(float)alpha;

 + (NSColor *)colorWithDeviceHue:(float)hue saturation:(float)saturation brightness:(float)brightness
 alpha:(float)alpha;

 + (NSColor *)colorWithDeviceRed:(float)red green:(float)green blue:(float)blue alpha:(float)alpha;

 + (NSColor *)colorWithDeviceWhite:(float)white alpha:(float)alpha;

 + (NSColor*)colorWithPatternImage:(NSImage*)image;

 // Class Methods

 + (NSColor *)alternateSelectedControlColor;

 + (NSColor *)alternateSelectedControlTextColor;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (NSColor *)blackColor;

 + (NSColor *)blueColor;

 + (NSColor *)brownColor;

 + (NSColor *)clearColor;

 + (NSColor *)controlBackgroundColor;

 + (NSColor *)controlColor;

 + (NSColor *)controlDarkShadowColor;

 + (NSColor *)controlHighlightColor;

 + (NSColor *)controlLightHighlightColor;

 + (NSColor *)controlShadowColor;

 + (NSColor *)controlTextColor;

 + (NSColor *)cyanColor;

 + (NSColor *)darkGrayColor;

 + (NSColor *)disabledControlTextColor;

 + (NSColor *)grayColor;

 + (NSColor *)greenColor;

 + (NSColor *)gridColor;

 + (NSColor *)headerColor;

 + (NSColor *)headerTextColor;

 + (NSColor *)highlightColor;

 + (BOOL)ignoresAlpha;

 + (NSColor *)keyboardFocusIndicatorColor;

 + (NSColor *)knobColor;

 + (NSColor *)lightGrayColor;

 + (NSColor *)magentaColor;

 + (NSColor *)orangeColor;

 + (NSColor *)purpleColor;

 + (NSColor *)redColor;

 + (NSColor *)scrollBarColor;

 + (NSColor *)secondarySelectedControlColor;

 + (NSColor *)selectedControlColor;

 + (NSColor *)selectedControlTextColor;

 + (NSColor *)selectedKnobColor;

 + (NSColor *)selectedMenuItemColor;

 + (NSColor *)selectedMenuItemTextColor;

 + (NSColor *)selectedTextBackgroundColor;

 + (NSColor *)selectedTextColor;

 + (void)setIgnoresAlpha:(BOOL)flag;

 + (NSColor *)shadowColor;

 + (NSColor *)textBackgroundColor;

 + (NSColor *)textColor;

 + (NSColor *)whiteColor;

 + (NSColor *)windowBackgroundColor;

 + (NSColor *)windowFrameColor;

 + (NSColor *)windowFrameTextColor;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (NSColor *)windowFrameTextColor;

 + (NSColor *)yellowColor;

 // Instance Methods

 - (NSColor *)blendedColorWithFraction:(float)fraction ofColor:(NSColor *)color;

 - (float)blueComponent;

 - (void)set;

 - (float)alphaComponent;

 - (float)blackComponent;

 - (float)brightnessComponent;

 - (NSString *)catalogNameComponent;

 - (NSString *)colorNameComponent;

 - (NSString *)colorSpaceName;

 - (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace;

 - (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace device:(NSDictionary *)deviceDescription;

 - (NSColor *)colorWithAlphaComponent:(float)alpha;

 - (float)cyanComponent;

 - (void)drawSwatchInRect:(NSRect)rect;

 - (void)getCyan:(float *)cyan magenta:(float *)magenta yellow:(float *)yellow black:(float *)black
 alpha:(float *)alpha; brightness:(float *)brightness alpha:(float *)alpha;

 - (void)getHue:(float *)hue saturation:(float *)saturation

 - (void)getRed:(float *)red green:(float *)green blue:(float *)blue alpha:(float *)alpha;

 - (void)getWhite:(float *)white alpha:(float *)alpha;

 - (float)greenComponent;

 - (NSColor *)highlightWithLevel:(float)val;

 - (float)hueComponent;

 - (NSString *)localizedCatalogNameComponent;

 - (NSString *)localizedColorNameComponent;

 - (float)magentaComponent;

 - (NSImage*)patternImage;

 - (float)redComponent;

 - (float)saturationComponent;

 - (NSColor *)shadowWithLevel:(float)val;

 - (float)whiteComponent;

 - (void)writeToPasteboard:(NSPasteboard *)pasteBoard;

 - (float)yellowComponent;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSColorList Mac OS X 10.0

This class manages an ordered, named list of NSColors. The operating system itself provides several color lists, which are
visible in the Color panel of any application. To obtain an array of available color lists, use the class method
availableColorLists. To manage the colors contained within a color list we have several methods at our disposal. The
method colorWithKey: will return the color associated with the indicated key. Colors are added to the list using the
method insertColor:key:atIndex:. To remove a color, use removeColorWithKey:. To change which color is associated with a
key, use the method setColor:forKey:.

An important feature of color list objects is that they can be written to files that are kept in well-known locations in the
filesystem, thus making them easily accessed by other applications. To store a color list to file, use the method
writeToFile:. Passing nil to this method causes the color list to be stored in the users private color lists directory with the
filename listname.clr. To initialize a color list object from a stored color list, use the initializer initWithName:fromFile:.

@interface NSColorList : NSObject <NSCoding>

 // Initializers

 - (id)initWithName:(NSString *)name fromFile:(NSString *)path;

 - (id)initWithName:(NSString *)name;

 // Accessor Methods

 - (void)setColor:(NSColor *)color forKey:(NSString *)key;

 // Class Methods

 + (NSArray *)availableColorLists;

 + (NSColorList *)colorListNamed:(NSString *)name;

 // Instance Methods

 - (NSString *)name;

 - (void)removeColorWithKey:(NSString *)key;

 - (NSArray *)allKeys;

 - (NSColor *)colorWithKey:(NSString *)key;

 - (void)insertColor:(NSColor *)color key:(NSString *)key atIndex:(unsigned)loc;

 - (BOOL)isEditable;

 - (void)removeFile;

 - (BOOL)writeToFile:(NSString *)path;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

// Notifications

 NSColorListDidChangeNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSColorPanel Mac OS X 10.0

This class implements the system-wide color picker used by all applications. To obtain the shared color panel, use the
class method sharedColorPanel. NSColorPanel is a subclass of NSPanel, so to display the color panel on screen, invoke
NSWindow's orderFront: method. NSColorPanel takes a target and an action that are used to notify the application of the
user changing the color selection in the color panel. To obtain the color, use the method color.

The color panel optionally displays a slider to change the alpha value of the selected color. This behavior is set with the
method setShowsAlpha:. To determine if the color panel is set to use alpha, invoke showsAlpha. It is also possible for an
application to add a color list—which is an instance of NSColorList—to the color panel. Color lists are managed using the
methods attachColorList: and detachColorList:.

The Application Kit provides the class NSColorWell as an interface to Cocoa's color-picking system. It is generally
sufficient to use NSColorWell as an interface for users to select colors in an application, as it both displays the color
associated with it, and provides a means to open the color panel so the user can choose a new color.

@interface NSColorPanel : NSPanel

 // Accessor Methods

 - (void)setAction:(SEL)aSelector;

 - (void)setColor:(NSColor *)color;

 - (NSColor *)color;

 - (void)setAccessoryView:(NSView *)aView;

 - (NSView *)accessoryView;

 - (void)setMode:(int)mode;

 - (int)mode;

 - (void)setTarget:(id)anObject;

 - (void)setContinuous:(BOOL)flag;

 - (void)setShowsAlpha:(BOOL)flag;

 - (BOOL)showsAlpha;

 // Class Methods

 + (BOOL)dragColor:(NSColor *)color withEvent:(NSEvent *)theEvent fromView:(NSView *)sourceView;

 + (void)setPickerMask:(int)mask;

 + (void)setPickerMode:(int)mode;

 + (NSColorPanel *)sharedColorPanel;

 + (BOOL)sharedColorPanelExists;

 // Instance Methods

 - (float)alpha;

 - (void)attachColorList:(NSColorList *)colorList;

 - (void)detachColorList:(NSColorList *)colorList;

 - (BOOL)isContinuous;

// Notifications

 NSColorPanelColorDidChangeNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSColorPicker Mac OS X 10.0

This class implements the NSColorPickingDefault protocol. This class is used to add custom color pickers to the
NSColorPanel, which allows applications to add new interfaces that users can use to choose colors.

@interface NSColorPicker : NSObject <NSColorPickingDefault>

 // Initializers

 - (id)initWithPickerMask:(int)mask colorPanel:(NSColorPanel *)owningColorPanel;

 // Accessor Methods

 - (void)setMode:(int)mode;

 // Instance Methods

 - (void)attachColorList:(NSColorList *)colorList;

 - (NSColorPanel *)colorPanel;

 - (void)detachColorList:(NSColorList *)colorList;

 - (void)insertNewButtonImage:(NSImage *)newButtonImage in:(NSButtonCell *)buttonCell;

 - (NSImage *)provideNewButtonImage;

 - (void)viewSizeChanged:(id)sender;

 // Methods Implementing NSColorPickingDefault

 - (id)initWithPickerMask:(int)mask colorPanel:(NSColorPanel *)owningColorPanel;

 - (NSImage *)provideNewButtonImage;

 - (void)insertNewButtonImage:(NSImage *)newButtonImage in:(NSButtonCell *)buttonCell;

 - (void)viewSizeChanged:(id)sender;

 - (void)alphaControlAddedOrRemoved:(id)sender;

 - (void)attachColorList:(NSColorList *)colorList;

 - (void)detachColorList:(NSColorList *)colorList;

 - (void)setMode:(int)mode;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSColorWell Mac OS X 10.0

This NSControl subclass provides a user interface element that the user can use to open the color picker and select colors
the application can use. This NSControl subclass has no associated NSCell subclass, so NSColorWell controls may not
appear in NSMatrix objects, which require NSCell objects as its children. To obtain an NSColor object from the color well,
use the method color; to set the color displayed in the well, invoke setColor:.

@interface NSColorWell : NSControl

 // Accessor Methods

 - (void)setBordered:(BOOL)flag;

 - (void)setColor:(NSColor *)color;

 - (NSColor *)color;

 // Instance Methods

 - (void)activate:(BOOL)exclusive;

 - (void)deactivate;

 - (void)drawWellInside:(NSRect)insideRect;

 - (BOOL)isActive;

 - (BOOL)isBordered;

 - (void)takeColorFrom:(id)sender;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSComboBox Mac OS X 10.0

This class provides a combo box interface control to let the user enter a value into the text-field portion of the combo
box, or select a value from a pop-up list.

@interface NSComboBox : NSTextField

 // Initializers

 - (id)initWithCoder:(NSCoder *)coder;

 // Accessor Methods

 - (void)setNumberOfVisibleItems:(int)visibleItems;

 - (int)numberOfVisibleItems;

 - (void)setHasVerticalScroller:(BOOL)flag;

 - (BOOL)hasVerticalScroller;

 - (void)setCompletes:(BOOL)completes;

 - (BOOL)completes;

 - (void)setIntercellSpacing:(NSSize)aSize;

 - (NSSize)intercellSpacing;

 - (void)setItemHeight:(float)itemHeight;

 - (float)itemHeight;

 - (void)setUsesDataSource:(BOOL)flag;

 - (BOOL)usesDataSource;

 - (void)setDataSource:(id)aSource;

 - (id)dataSource;

 // Instance Methods

 - (void)deselectItemAtIndex:(int)index;

 - (void)encodeWithCoder:(NSCoder *)coder;

 - (int)indexOfItemWithObjectValue:(id)object;

 - (void)addItemWithObjectValue:(id)object;

 - (void)addItemsWithObjectValues:(NSArray *)objects;

 - (int)indexOfSelectedItem;

 - (void)insertItemWithObjectValue:(id)object atIndex:(int)index;

 - (id)itemObjectValueAtIndex:(int)index;

 - (void)noteNumberOfItemsChanged;

 - (int)numberOfItems;

 - (id)objectValueOfSelectedItem;

 - (NSArray *)objectValues;

 - (void)reloadData;

 - (void)removeAllItems;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)removeItemAtIndex:(int)index;

 - (void)removeItemWithObjectValue:(id)object;

 - (void)scrollItemAtIndexToTop:(int)index;

 - (void)scrollItemAtIndexToVisible:(int)index;

 - (void)selectItemAtIndex:(int)index;

 - (void)selectItemWithObjectValue:(id)object;

// Methods Implemented by the Delegate

 - (void)comboBoxSelectionDidChange:(NSNotification *)notification;

 - (void)comboBoxSelectionIsChanging:(NSNotification *)notification;

 - (void)comboBoxWillDismiss:(NSNotification *)notification;

 - (void)comboBoxWillPopUp:(NSNotification *)notification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSComboBoxCell Mac OS X 10.0

This class is the subclass of NSCell that provides the look and feel of the NSComboBox control.

@interface NSComboBoxCell : NSTextFieldCell

 // Initializers

 - (id)initWithCoder:(NSCoder *)coder;

 // Accessor Methods

 - (void)setNumberOfVisibleItems:(int)visibleItems;

 - (int)numberOfVisibleItems;

 - (void)setHasVerticalScroller:(BOOL)flag;

 - (BOOL)hasVerticalScroller;

 - (void)setIntercellSpacing:(NSSize)aSize;

 - (NSSize)intercellSpacing;

 - (void)setItemHeight:(float)itemHeight;

 - (float)itemHeight;

 - (void)setDataSource:(id)aSource;

 - (id)dataSource;

 - (void)setUsesDataSource:(BOOL)flag;

 - (BOOL)usesDataSource;

 - (void)setCompletes:(BOOL)completes;

 - (BOOL)completes;

 // Instance Methods

 - (void)addItemsWithObjectValues:(NSArray *)objects;

 - (void)addItemWithObjectValue:(id)object;

 - (NSString *)completedString:(NSString *)string;

 - (void)deselectItemAtIndex:(int)index;

 - (void)encodeWithCoder:(NSCoder *)coder;

 - (int)indexOfItemWithObjectValue:(id)object;

 - (int)indexOfSelectedItem;

 - (void)insertItemWithObjectValue:(id)object atIndex:(int)index;

 - (id)itemObjectValueAtIndex:(int)index;

 - (void)noteNumberOfItemsChanged;

 - (int)numberOfItems;

 - (id)objectValueOfSelectedItem;

 - (NSArray *)objectValues;

 - (void)reloadData;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)removeAllItems;

 - (void)removeItemAtIndex:(int)index;

 - (void)removeItemWithObjectValue:(id)object;

 - (void)scrollItemAtIndexToTop:(int)index;

 - (void)scrollItemAtIndexToVisible:(int)index;

 - (void)selectItemAtIndex:(int)index;

 - (void)selectItemWithObjectValue:(id)object;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSControl Mac OS X 10.0

NSControl is a subclass of NSView that is the base class of all AppKit controls like text fields (NSTextField), buttons
(NSButton), table views (NSTableView), color wells (NSColorWell), and more. Controls generally have associated cells that
are responsible for presenting the graphical appearance of the control, and responding appropriately to user interaction
with the control.

@interface NSControl : NSView

 // Initializers

 - (id)initWithFrame:(NSRect)frameRect;

 // Accessor Methods

 - (void)setTag:(int)anInt;

 - (int)tag;

 - (void)setCell:(NSCell *)aCell;

 - (id)cell;

 - (void)setNeedsDisplay;

 - (void)setTarget:(id)anObject;

 - (id)target;

 - (void)setAction:(SEL)aSelector;

 - (SEL)action;

 - (void)setFormatter:(NSFormatter *)newFormatter;

 - (id)formatter;

 - (void)setIgnoresMultiClick:(BOOL)flag;

 - (BOOL)ignoresMultiClick;

 - (void)setIntValue:(int)anInt;

 - (int)intValue;

 - (void)setStringValue:(NSString *)aString;

 - (NSString *)stringValue;

 - (void)setFloatValue:(float)aFloat;

 - (float)floatValue;

 - (void)setAttributedStringValue:(NSAttributedString *)obj;

 - (NSAttributedString *)attributedStringValue;

 - (void)setDoubleValue:(double)aDouble;

 - (double)doubleValue;

 - (void)setEnabled:(BOOL)flag;

 - (void)setFloatingPointFormat:(BOOL)autoRange left:(unsigned)leftDigits right:(unsigned)rightDigits;

 - (void)setAlignment:(NSTextAlignment)mode;

 - (NSTextAlignment)alignment;

 - (void)setObjectValue:(id)obj;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (id)objectValue;

 - (void)setContinuous:(BOOL)flag;

 - (void)setFont:(NSFont *)fontObj;

 - (NSFont *)font;

 // Class Methods

 + (Class)cellClass;

 + (void)setCellClass:(Class)factoryId;

 // Instance Methods

 - (void)calcSize;

 - (NSText *)currentEditor;

 - (BOOL)abortEditing;

 - (BOOL)isContinuous;

 - (BOOL)isEnabled;

 - (void)mouseDown:(NSEvent *)theEvent;

 - (void)selectCell:(NSCell *)aCell;

 - (id)selectedCell;

 - (int)selectedTag;

 - (BOOL)sendAction:(SEL)theAction to:(id)theTarget;

 - (int)sendActionOn:(int)mask;

 - (void)sizeToFit;

 - (void)takeDoubleValueFrom:(id)sender;

 - (void)takeFloatValueFrom:(id)sender;

 - (void)takeIntValueFrom:(id)sender;

 - (void)takeObjectValueFrom:(id)sender;

 - (void)takeStringValueFrom:(id)sender;

 - (void)updateCell:(NSCell *)aCell;

 - (void)updateCellInside:(NSCell *)aCell;

 - (void)validateEditing;

 - (void)drawCell:(NSCell *)aCell;

 - (void)drawCellInside:(NSCell *)aCell;

// Methods Implemented by the Delegate

 - (BOOL)control:(NSControl *)control didFailToFormatString:(NSString *)string errorDescription:(NSString *)error;

 - (void)control:(NSControl *)control didFailToValidatePartialString:(NSString *)string
 errorDescription:(NSString *)error;

 - (BOOL)control:(NSControl *)control isValidObject:(id)obj;

 - (BOOL)control:(NSControl *)control textShouldBeginEditing:(NSText *)fieldEditor;

 - (BOOL)control:(NSControl *)control textShouldEndEditing:(NSText *)fieldEditor;

 - (BOOL)control:(NSControl *)control textView:(NSTextView *)textView doCommandBySelector:(SEL)commandSelector;

 - (void)controlTextDidBeginEditing:(NSNotification *)obj;

 - (void)controlTextDidChange:(NSNotification *)obj;

 - (void)controlTextDidEndEditing:(NSNotification *)obj;

Subclasses

NSBrowser, NSButton, NSColorWell, NSImageView, NSMatrix, NSScroller, NSSlider, NSStepper, NSTableView, NSTextField
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCursor Mac OS X 10.0

This class represents a mouse cursor on the screen, and is used to create new cursors that can be used in place of the
default arrow cursor. NSView objects often define regions within the view in which the cursor is changed when the
mouse is present in those regions. For example, in a text view the cursor changes to an I-beam when the cursor is
inside of the text field.

@interface NSCursor : NSObject <NSCoding>

 // Initializers

 - (id)initWithImage:(NSImage *)newImage foregroundColorHint:(NSColor *)fg
 backgroundColorHint:(NSColor *)bg hotSpot:(NSPoint)hotSpot;

 - (id)initWithImage:(NSImage *)newImage hotSpot:(NSPoint)aPoint;

 // Accessor Methods

 - (void)setOnMouseEntered:(BOOL)flag;

 - (void)setOnMouseExited:(BOOL)flag;

 // Class Methods

 + (NSCursor *)IBeamCursor;

 + (NSCursor *)arrowCursor;

 + (NSCursor *)currentCursor;

 + (void)hide;

 + (void)pop;

 + (void)setHiddenUntilMouseMoves:(BOOL)flag;

 + (void)unhide;

 // Instance Methods

 - (void)set;

 - (NSPoint)hotSpot;

 - (NSImage *)image;

 - (BOOL)isSetOnMouseEntered;

 - (BOOL)isSetOnMouseExited;

 - (void)mouseEntered:(NSEvent *)theEvent;

 - (void)mouseExited:(NSEvent *)theEvent;

 - (void)pop;

 - (void)push;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSCustomImageRep Mac OS X 10.0

This subclass of NSImageRep allows you to create images from custom drawing code. For example, one might implement
a subclass of NSCustomImageRep to draw a complicated Bezier path as the image represented by the particular object.
This permits shapes to be drawn in contexts that use images instead of views.

@interface NSCustomImageRep : NSImageRep

 // Initializers

 - (id)initWithDrawSelector:(SEL)aMethod delegate:(id)anObject;

 // Instance Methods

 - (id)delegate;

 - (SEL)drawSelector;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDocument Mac OS X 10.0

This class is one of three that comprise Cocoa's document-based application architecture; the other two are
NSDocumentController and NSWindowController. NSDocument is an abstract class that defines the fundamental interface for
objects that represent documents. This interface includes methods for loading and saving a document's contents,
managing a document's windows, handling print jobs, and managing an undo manager. NSDocument is never used
directly; rather, developers subclass NSDocument and implement the key methods to tailor the document to their needs.

@interface NSDocument : NSObject

 // Initializers

 - (id)init;

 - (id)initWithContentsOfFile:(NSString *)fileName ofType:(NSString *)fileType;

 - (id)initWithContentsOfURL:(NSURL *)url ofType:(NSString *)fileType;

 // Accessor Methods

 - (void)setHasUndoManager:(BOOL)flag;

 - (BOOL)hasUndoManager;

 - (void)setFileType:(NSString *)type;

 - (NSString *)fileType;

 - (void)setFileName:(NSString *)fileName;

 - (NSString *)fileName;

 - (void)setUndoManager:(NSUndoManager *)undoManager;

 - (NSUndoManager *)undoManager;

 - (void)setPrintInfo:(NSPrintInfo *)printInfo;

 - (NSPrintInfo *)printInfo;

 - (void)setWindow:(NSWindow *)window;

 // Class Methods

 + (BOOL)isNativeType:(NSString *)type;

 + (NSArray *)readableTypes;

 + (NSArray *)writableTypes;

 // Instance Methods

 - (NSData *)dataRepresentationOfType:(NSString *)type;

 - (NSString *)displayName;

 - (void)addWindowController:(NSWindowController *)windowController;

 - (BOOL)canCloseDocument;

 - (NSDictionary *)fileAttributesToWriteToFile:(NSString *)fullDocumentPath ofType:(NSString *)documentTypeName
 saveOperation:(NSSaveOperationType)saveOperationType;

 - (void)canCloseDocumentWithDelegate:(id)delegate shouldCloseSelector:(SEL)shouldCloseSelector
 contextInfo:(void *)contextInfo;

 - (void)close;

 - (BOOL)fileNameExtensionWasHiddenInLastRunSavePanel;

 - (NSString *)fileNameFromRunningSavePanelForSaveOperation:(NSSaveOperationType)saveOperation;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSString *)fileNameFromRunningSavePanelForSaveOperation:(NSSaveOperationType)saveOperation;

 - (NSString *)fileTypeFromLastRunSavePanel;

 - (NSFileWrapper *)fileWrapperRepresentationOfType:(NSString *)type;

 - (BOOL)isDocumentEdited;

 - (BOOL)keepBackupFile;

 - (BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)type;

 - (BOOL)loadFileWrapperRepresentation:(NSFileWrapper *)wrapper ofType:(NSString *)type;

 - (void)makeWindowControllers;

 - (BOOL)preparePageLayout:(NSPageLayout *)pageLayout;

 - (BOOL)prepareSavePanel:(NSSavePanel *)savePanel;

 - (IBAction)printDocument:(id)sender;

 - (void)printShowingPrintPanel:(BOOL)flag;

 - (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)type;

 - (BOOL)readFromURL:(NSURL *)url ofType:(NSString *)type;

 - (void)removeWindowController:(NSWindowController *)windowController;

 - (IBAction)revertDocumentToSaved:(id)sender;

 - (BOOL)revertToSavedFromFile:(NSString *)fileName ofType:(NSString *)type;

 - (BOOL)revertToSavedFromURL:(NSURL *)url ofType:(NSString *)type;

 - (int)runModalPageLayoutWithPrintInfo:(NSPrintInfo *)printInfo;

 - (void)runModalPageLayoutWithPrintInfo:(NSPrintInfo *)printInfo
 delegate:(id)delegate didRunSelector:(SEL)didRunSelector contextInfo:(void *)contextInfo;

 - (void)runModalPrintOperation:(NSPrintOperation *)printOperation
 delegate:(id)delegate didRunSelector:(SEL)didRunSelector contextInfo:(void *)contextInfo;

 - (int)runModalSavePanel:(NSSavePanel *)savePanel withAccessoryView:(NSView *)accessoryView;

 - (void)runModalSavePanelForSaveOperation:(NSSaveOperationType)saveOperation
 delegate:(id)delegate didSaveSelector:(SEL)didSaveSelector contextInfo:(void *)contextInfo;

 - (IBAction)runPageLayout:(id)sender;

 - (IBAction)saveDocument:(id)sender;

 - (IBAction)saveDocumentAs:(id)sender;

 - (IBAction)saveDocumentTo:(id)sender;

 - (void)saveDocumentWithDelegate:(id)delegate didSaveSelector:(SEL)didSaveSelector
 contextInfo:(void *)contextInfo;

 - (void)saveToFile:(NSString *)fileName saveOperation:(NSSaveOperationType)saveOperation
 delegate:(id)delegate didSaveSelector:(SEL)didSaveSelector contextInfo:(void *)contextInfo;

 - (BOOL)shouldChangePrintInfo:(NSPrintInfo *)newPrintInfo;

 - (BOOL)shouldCloseWindowController:(NSWindowController *)windowController;

 - (void)shouldCloseWindowController:(NSWindowController *)windowController
 delegate:(id)delegate shouldCloseSelector:(SEL)callback contextInfo:(void *)contextInfo;

 - (BOOL)shouldRunSavePanelWithAccessoryView;

 - (void)showWindows;

 - (void)updateChangeCount:(NSDocumentChangeType)change;

 - (BOOL)validateMenuItem:(NSMenuItem *)anItem;

 - (BOOL)validateUserInterfaceItem:(id <NSValidatedUserInterfaceItem>)anItem;

 - (void)windowControllerDidLoadNib:(NSWindowController *)windowController;

 - (void)windowControllerWillLoadNib:(NSWindowController *)windowController;

 - (NSArray *)windowControllers;

 - (NSString *)windowNibName;

 - (BOOL)writeToFile:(NSString *)fileName ofType:(NSString *)type;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)writeToFile:(NSString *)fullDocumentPath ofType:(NSString *)documentTypeName
 originalFile:(NSString *)fullOriginalDocumentPath saveOperation:(NSSaveOperationType)saveOperationType;

 - (BOOL)writeToURL:(NSURL *)url ofType:(NSString *)type;

 - (BOOL)writeWithBackupToFile:(NSString *)fullDocumentPath ofType:(NSString *)documentTypeName
 saveOperation:(NSSaveOperationType)saveOperationType;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDocumentController Mac OS X 10.0

NSDocumentController is one of three classes that make up the document-based application architecture. The other two
classes are NSDocument and NSWindowController. This class is responsible for managing an applications documents, in
particular providing an implementation for the File Open and File New commands. Additionally,
NSDocumentController takes responsibility for ensuring that documents are properly saved and closed before an
application terminates.

@interface NSDocumentController : NSObject <NSCoding>

 // Initializers

 - (id)init;

 // Accessor Methods

 - (void)setShouldCreateUI:(BOOL)flag;

 - (BOOL)shouldCreateUI;

 // Class Methods

 + (id)sharedDocumentController;

 // Instance Methods

 - (BOOL)closeAllDocuments;

 - (NSArray *)URLsFromRunningOpenPanel;

 - (void)addDocument:(NSDocument *)document;

 - (IBAction)clearRecentDocuments:(id)sender;

 - (void)closeAllDocumentsWithDelegate:(id)delegate didCloseAllSelector:(SEL)didAllCloseSelector
 contextInfo:(void *)contextInfo;

 - (NSString *)currentDirectory;

 - (id)currentDocument;

 - (NSString *)displayNameForType:(NSString *)documentTypeName;

 - (Class)documentClassForType:(NSString *)documentTypeName;

 - (id)documentForFileName:(NSString *)fileName;

 - (id)documentForWindow:(NSWindow *)window;

 - (NSArray *)documents;

 - (NSArray *)fileExtensionsFromType:(NSString *)documentTypeName;

 - (NSArray *)fileNamesFromRunningOpenPanel;

 - (BOOL)hasEditedDocuments;

 - (id)makeDocumentWithContentsOfFile:(NSString *)fileName ofType:(NSString *)type;

 - (id)makeDocumentWithContentsOfURL:(NSURL *)url ofType:(NSString *)type;

 - (id)makeUntitledDocumentOfType:(NSString *)type;

 - (IBAction)newDocument:(id)sender;

 - (void)noteNewRecentDocument:(NSDocument *)document;

 - (void)noteNewRecentDocumentURL:(NSURL *)url;

 - (IBAction)openDocument:(id)sender;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (id)openDocumentWithContentsOfFile:(NSString *)fileName display:(BOOL)display;

 - (id)openDocumentWithContentsOfURL:(NSURL *)url display:(BOOL)display;

 - (id)openUntitledDocumentOfType:(NSString*)type display:(BOOL)display;

 - (NSArray *)recentDocumentURLs;

 - (void)removeDocument:(NSDocument *)document;

 - (BOOL)reviewUnsavedDocumentsWithAlertTitle:(NSString *)title cancellable:(BOOL)cancellable;

 - (void)reviewUnsavedDocumentsWithAlertTitle:(NSString *)title cancellable:(BOOL)cancellable delegate:(id)delegate
 didReviewAllSelector:(SEL)didReviewAllSelector contextInfo:(void *)contextInfo;

 - (int)runModalOpenPanel:(NSOpenPanel *)openPanel forTypes:(NSArray *)openableFileExtensions;

 - (IBAction)saveAllDocuments:(id)sender;

 - (NSString *)typeFromFileExtension:(NSString *)fileNameExtensionOrHFSFileType;

 - (BOOL)validateMenuItem:(NSMenuItem *)anItem;

 - (BOOL)validateUserInterfaceItem:(id <NSValidatedUserInterfaceItem>)anItem;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDrawer Mac OS X 10.0

This class implements the drawer interface component. Drawers are extensions to windows that contain a content view,
and can be opened and closed along one edge of a window to show and hide the contents contained within. One
example of an NSDrawer is the Mailboxes drawer in Mail.app.

@interface NSDrawer : NSResponder

 // Initializers

 - (id)initWithContentSize:(NSSize)contentSize preferredEdge:(NSRectEdge)edge;

 // Accessor Methods

 - (void)setPreferredEdge:(NSRectEdge)edge;

 - (NSRectEdge)preferredEdge;

 - (void)setParentWindow:(NSWindow *)parent;

 - (NSWindow *)parentWindow;

 - (void)setTrailingOffset:(float)offset;

 - (float)trailingOffset;

 - (void)setMinContentSize:(NSSize)size;

 - (NSSize)minContentSize;

 - (void)setLeadingOffset:(float)offset;

 - (float)leadingOffset;

 - (void)setMaxContentSize:(NSSize)size;

 - (NSSize)maxContentSize;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setContentSize:(NSSize)size;

 - (NSSize)contentSize;

 - (void)setContentView:(NSView *)aView;

 - (NSView *)contentView;

 // Instance Methods

 - (void)close;

 - (void)close:(id)sender;

 - (NSRectEdge)edge;

 - (void)open;

 - (void)open:(id)sender;

 - (void)openOnEdge:(NSRectEdge)edge;

 - (int)state;

 - (void)toggle:(id)sender;

// Methods Implemented by the Delegate

 - (void)drawerDidClose:(NSNotification *)notification;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)drawerDidOpen:(NSNotification *)notification;

 - (BOOL)drawerShouldClose:(NSDrawer *)sender;

 - (BOOL)drawerShouldOpen:(NSDrawer *)sender;

 - (void)drawerWillClose:(NSNotification *)notification;

 - (void)drawerWillOpen:(NSNotification *)notification;

 - (NSSize)drawerWillResizeContents:(NSDrawer *)sender toSize:(NSSize)contentSize;

// Notifications

 NSDrawerDidCloseNotification;

 NSDrawerDidOpenNotification;

 NSDrawerWillCloseNotification;

 NSDrawerWillOpenNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSEPSImageRep Mac OS X 10.0

This subclass of NSImageRep is capable of rendering an image from Encapsulated PostScript (EPS) data.

@interface NSEPSImageRep : NSImageRep

 // Initializers

 - (id)initWithData:(NSData *)epsData;

 // Class Methods

 + (id)imageRepWithData:(NSData *)epsData;

 // Instance Methods

 - (NSData *)EPSRepresentation;

 - (NSRect)boundingBox;

 - (void)prepareGState;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSEvent Mac OS X 10.0

This class encapsulates the data related to all events in a Cocoa application. NSEvent objects are dispatched by
NSApplication to the appropriate receiver using the method sendEvent:. Both key and mouse events are represented by
NSEvent. All classes that wish to respond to events must inherit from NSResponder.

@interface NSEvent : NSObject <NSCoding, NSCopying>

 // Class Methods

 + (NSEvent *)enterExitEventWithType:(NSEventType)type location:(NSPoint)location modifierFlags:(unsigned int)flags
 timestamp:(NSTimeInterval)time windowNumber:(int)wNum
 context:(NSGraphicsContext*)context eventNumber:(int)eNum trackingNumber:(int)tNum userData:(void *)data;

 + (NSEvent *)keyEventWithType:(NSEventType)type location:(NSPoint)location modifierFlags:(unsigned int)flags
 timestamp:(NSTimeInterval)time windowNumber:(int)wNum context:(NSGraphicsContext*)context
 characters:(NSString *)keys charactersIgnoringModifiers:(NSString *)ukeys

 + (NSEvent *)mouseEventWithType:(NSEventType)type location:(NSPoint)location modifierFlags:(unsigned int)flags
 timestamp:(NSTimeInterval)time windowNumber:(int)wNum context:(NSGraphicsContext*)context
 eventNumber:(int)eNum clickCount:(int)cNum pressure:(float)pressure;

 + (NSPoint)mouseLocation;

 + (NSEvent *)otherEventWithType:(NSEventType)type location:(NSPoint)location modifierFlags:(unsigned int)flags
 timestamp:(NSTimeInterval)time windowNumber:(int)wNum context:(NSGraphicsContext*)context
 subtype:(short)subtype data1:(int)d1 data2:(int)d2;

 + (void)startPeriodicEventsAfterDelay:(NSTimeInterval)delay withPeriod:(NSTimeInterval)period;

 + (void)stopPeriodicEvents;

 // Instance Methods

 - (int)buttonNumber;

 - (NSString *)characters;

 - (NSString *)charactersIgnoringModifiers;

 - (int)clickCount;

 - (NSGraphicsContext*)context;

 - (int)data1;

 - (int)data2;

 - (float)deltaX;

 - (float)deltaY;

 - (float)deltaZ;

 - (int)eventNumber;

 - (BOOL)isARepeat;

 - (unsigned short)keyCode;

 - (NSPoint)locationInWindow;

 - (unsigned int)modifierFlags;

 - (float)pressure;

 - (short)subtype;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSTimeInterval)timestamp;

 - (int)trackingNumber;

 - (NSEventType)type;

 - (void *)userData;

 - (NSWindow *)window;

 - (int)windowNumber;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFileWrapper Mac OS X 10.0

This class is used to represent a file, or a set of files contained in a file package, as a single unit of information in a
document or application. NSFileWrapper is often used in conjunction with subclasses of NSDocument as a means of
conveniently managing a document's data. This class provides functionality that allows clients to edit file attributes and
perform file operations. Additionally, clients may assign an icon to represent the file wrapper object in dragging
operations.

@interface NSFileWrapper : NSObject <NSCoding>

 // Initializers

 - (id)initDirectoryWithFileWrappers:(NSDictionary *)docs;

 - (id)initRegularFileWithContents:(NSData *)data;

 - (id)initSymbolicLinkWithDestination:(NSString *)path;

 - (id)initWithPath:(NSString *)path;

 - (id)initWithSerializedRepresentation:(NSData *)data;

 // Accessor Methods

 - (void)setFilename:(NSString *)filename;

 - (NSString *)filename;

 - (void)setIcon:(NSImage *)icon;

 - (NSImage *)icon;

 - (void)setFileAttributes:(NSDictionary *)attributes;

 - (NSDictionary *)fileAttributes;

 - (void)setPreferredFilename:(NSString *)filename;

 - (NSString *)preferredFilename;

 // Instance Methods

 - (NSString *)addFileWithPath:(NSString *)path;

 - (NSString *)addFileWrapper:(NSFileWrapper *)doc;

 - (NSString *)addRegularFileWithContents:(NSData *)data preferredFilename:(NSString *)filename;

 - (NSString *)addSymbolicLinkWithDestination:(NSString *)path preferredFilename:(NSString *)filename;

 - (NSDictionary *)fileWrappers;

 - (BOOL)isDirectory;

 - (BOOL)isRegularFile;

 - (BOOL)isSymbolicLink;

 - (NSString *)keyForFileWrapper:(NSFileWrapper *)doc;

 - (BOOL)needsToBeUpdatedFromPath:(NSString *)path;

 - (NSData *)regularFileContents;

 - (void)removeFileWrapper:(NSFileWrapper *)doc;

 - (NSData *)serializedRepresentation;

 - (NSString *)symbolicLinkDestination;

 - (BOOL)updateFromPath:(NSString *)path;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)writeToFile:(NSString *)path atomically:(BOOL)atomicFlag updateFilenames:(BOOL)updateFilenamesFlag;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFont Mac OS X 10.0

This class represents a single font in an application. NSAttributedString uses NSFont as an attribute that specifies which
font a string should be drawn in. NSFont provides access to all of the characteristics of a font, such as the ascender and
descender height, italic angle, underline thickness, and more.

@interface NSFont : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (NSFont *)fontWithName:(NSString *)fontName matrix:(const float *)fontMatrix;

 + (NSFont *)fontWithName:(NSString *)fontName size:(float)fontSize;

 // Class Methods

 + (float)labelFontSize;

 + (float)smallSystemFontSize;

 + (float)systemFontSize;

 + (NSFont *)boldSystemFontOfSize:(float)fontSize;

 + (NSFont *)controlContentFontOfSize:(float)fontSize;

 + (NSFont *)labelFontOfSize:(float)fontSize;

 + (NSFont *)menuFontOfSize:(float)fontSize;

 + (NSFont *)messageFontOfSize:(float)fontSize;

 + (NSFont *)paletteFontOfSize:(float)fontSize;

 + (NSArray *)preferredFontNames;

 + (void)setPreferredFontNames:(NSArray *)fontNameArray;

 + (void)setUserFixedPitchFont:(NSFont *)aFont;

 + (void)setUserFont:(NSFont *)aFont;

 + (NSFont *)systemFontOfSize:(float)fontSize;

 + (NSFont *)titleBarFontOfSize:(float)fontSize;

 + (NSFont *)toolTipsFontOfSize:(float)fontSize;

 + (void)useFont:(NSString *)fontName;

 + (NSFont *)userFixedPitchFontOfSize:(float)fontSize;

 + (NSFont *)userFontOfSize:(float)fontSize;

 // Instance Methods

 - (void)set;

 - (float)ascender;

 - (float)capHeight;

 - (float)defaultLineHeightForFont;

 - (float)descender;

 - (NSString *)encodingScheme;

 - (NSMultibyteGlyphPacking)glyphPacking;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSGlyph)glyphWithName:(NSString *)aName;

 - (BOOL)isFixedPitch;

 - (float)italicAngle;

 - (NSSize)maximumAdvancement;

 - (NSStringEncoding)mostCompatibleStringEncoding;

 - (unsigned)numberOfGlyphs;

 - (int)positionsForCompositeSequence:(NSGlyph *)someGlyphs numberOfGlyphs:(int)numGlyphs
 pointArray:(NSPointArray)points;

 - (float)underlinePosition;

 - (float)underlineThickness;

 - (float)xHeight;

 - (NSSize)advancementForGlyph:(NSGlyph)ag;

 - (NSDictionary *)afmDictionary;

 - (NSRect)boundingRectForFont;

 - (NSRect)boundingRectForGlyph:(NSGlyph)aGlyph;

 - (NSCharacterSet *)coveredCharacterSet;

 - (NSString *)displayName;

 - (NSString *)familyName;

 - (NSString *)fontName;

 - (BOOL)glyphIsEncoded:(NSGlyph)aGlyph;

 - (BOOL)isBaseFont;

 - (const float *)matrix;

 - (float)pointSize;

 - (NSPoint)positionOfGlyph:(NSGlyph)aGlyph forCharacter:(unichar)aChar struckOverRect:(NSRect)aRect;

 - (NSPoint)positionOfGlyph:(NSGlyph)aGlyph struckOverRect:(NSRect)aRect metricsExist:(BOOL *)exist;

 - (NSPoint)positionOfGlyph:(NSGlyph)curGlyph precededByGlyph:(NSGlyph)prevGlyph isNominal:(BOOL *)nominal;

 - (NSPoint)positionOfGlyph:(NSGlyph)curGlyph struckOverGlyph:(NSGlyph)prevGlyph metricsExist:(BOOL *)exist;

 - (NSPoint)positionOfGlyph:(NSGlyph)thisGlyph withRelation:(NSGlyphRelation)rel toBaseGlyph:(NSGlyph)baseGlyph
 totalAdvancement:(NSSizePointer)adv metricsExist:(BOOL *)exist;

 - (NSFont *)printerFont;

 - (NSFont *)screenFont;

 - (float)widthOfString:(NSString *)string;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFontManager Mac OS X 10.0

This class defines the interface to the system Cocoa uses to coordinate the usage of fonts in an application. Part of
NSFontManager's duty is to keep track of the currently selected font, and manage the interaction between the Font Panel,
Font menu, and text-bearing objects. To obtain an application's Font Manager, use the class method sharedFontManager.

@interface NSFontManager : NSObject

 // Accessor Methods

 - (void)setEnabled:(BOOL)flag;

 - (void)setSelectedFont:(NSFont *)fontObj isMultiple:(BOOL)flag;

 - (NSFont *)selectedFont;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setAction:(SEL)aSelector;

 - (SEL)action;

 - (void)setFontMenu:(NSMenu *)newMenu;

 // Class Methods

 + (void)setFontManagerFactory:(Class)factoryId;

 + (void)setFontPanelFactory:(Class)factoryId;

 + (NSFontManager *)sharedFontManager;

 // Instance Methods

 - (NSString *)localizedNameForFamily:(NSString *)family face:(NSString *)faceKey;

 - (void)addFontTrait:(id)sender;

 - (NSArray *)availableFontFamilies;

 - (NSArray *)availableFontNamesWithTraits:(NSFontTraitMask)someTraits;

 - (NSArray *)availableFonts;

 - (NSArray *)availableMembersOfFontFamily:(NSString *)fam;

 - (NSFont *)convertFont:(NSFont *)fontObj;

 - (NSFont *)convertFont:(NSFont *)fontObj toFace:(NSString *)typeface;

 - (NSFont *)convertFont:(NSFont *)fontObj toFamily:(NSString *)family;

 - (NSFont *)convertFont:(NSFont *)fontObj toHaveTrait:(NSFontTraitMask)trait;

 - (NSFont *)convertFont:(NSFont *)fontObj toNotHaveTrait:(NSFontTraitMask)trait;

 - (NSFont *)convertFont:(NSFont *)fontObj toSize:(float)size;

 - (NSFont *)convertWeight:(BOOL)upFlag ofFont:(NSFont *)fontObj;

 - (NSMenu *)fontMenu:(BOOL)create;

 - (BOOL)fontNamed:(NSString *)fName hasTraits:(NSFontTraitMask)someTraits;

 - (NSFontPanel *)fontPanel:(BOOL)create;

 - (NSFont *)fontWithFamily:(NSString *)family traits:(NSFontTraitMask)traits
 weight:(int)weight size:(float)size;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)isEnabled;

 - (BOOL)isMultiple;

 - (void)modifyFont:(id)sender;

 - (void)modifyFontViaPanel:(id)sender;

 - (void)orderFrontFontPanel:(id)sender;

 - (void)removeFontTrait:(id)sender;

 - (BOOL)sendAction;

 - (NSFontTraitMask)traitsOfFont:(NSFont *)fontObj;

 - (int)weightOfFont:(NSFont *)fontObj;

// Methods Implemented by the Delegate

 - (void)changeFont:(id)sender;

 - (BOOL)fontManager:(id)sender willIncludeFont:(NSString *)fontName;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFontPanel Mac OS X 10.0

This class provides an implementation for the font-panel that users interact with to select fonts in an application. The
panel provides a list of all available fonts from which the user can select a font, style, size, and preview the font as well.
NSFontPanel communicates with NSFontManager to obtain the set of available fonts, as well as to effect any changes that
may need to be done in the selected text.

@interface NSFontPanel : NSPanel

 // Accessor Methods

 - (void)setEnabled:(BOOL)flag;

 - (void)setAccessoryView:(NSView *)aView;

 - (NSView *)accessoryView;

 - (void)setPanelFont:(NSFont *)fontObj isMultiple:(BOOL)flag;

 // Class Methods

 + (NSFontPanel *)sharedFontPanel;

 + (BOOL)sharedFontPanelExists;

 // Instance Methods

 - (void)reloadDefaultFontFamilies;

 - (BOOL)isEnabled;

 - (NSFont *)panelConvertFont:(NSFont *)fontObj;

 - (BOOL)worksWhenModal;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSForm Mac OS X 10.0

This subclass of NSMatrix implements an interface component that is a stack of NSFormCells, which are a type of cell that
represents a titled text entry field.

@interface NSForm : NSMatrix

 // Accessor Methods

 - (void)setTitleAlignment:(NSTextAlignment)mode;

 - (void)setEntryWidth:(float)width;

 - (void)setInterlineSpacing:(float)spacing;

 - (void)setBordered:(BOOL)flag;

 - (void)setBezeled:(BOOL)flag;

 - (void)setTitleFont:(NSFont *)fontObj;

 - (void)setTextFont:(NSFont *)fontObj;

 - (void)setTextAlignment:(int)mode;

 // Instance Methods

 - (NSFormCell *)addEntry:(NSString *)title;

 - (NSFormCell *)insertEntry:(NSString *)title atIndex:(int)index;

 - (id)cellAtIndex:(int)index;

 - (int)indexOfCellWithTag:(int)aTag;

 - (int)indexOfSelectedItem;

 - (void)removeEntryAtIndex:(int)index;

 - (void)selectTextAtIndex:(int)index;

 - (void)drawCellAtIndex:(int)index;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSFormCell Mac OS X 10.0

This class is a subclass of NSActionCell that represents a labeled text entry field. The left of the cell consists of a title,
while the right of the cell is an editable text entry field. NSFormCells are used to implement NSForm controls.

@interface NSFormCell : NSActionCell

 // Initializers

 - (id)initTextCell:(NSString *)aString;

 // Accessor Methods

 - (void)setAttributedTitle:(NSAttributedString *)obj;

 - (NSAttributedString *)attributedTitle;

 - (void)setTitleWidth:(float)width;

 - (float)titleWidth;

 - (void)setTitleAlignment:(NSTextAlignment)mode;

 - (NSTextAlignment)titleAlignment;

 - (void)setTitleFont:(NSFont *)fontObj;

 - (NSFont *)titleFont;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 // Instance Methods

 - (BOOL)isOpaque;

 - (float)titleWidth:(NSSize)aSize;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSGlyphInfo Mac OS X 10.2

This class is used in attributed strings as a value for the attribute NSGlyphInfoAttributeName. Glyph info objects are used
to specify a mapping between a Unicode character code and a glyph ID, thus permitting clients to override the default
glyph used by a font to represent some Unicode character.

@interface NSGlyphInfo : NSObject <NSCoding>

 // Class Methods

 + (NSGlyphInfo *)glyphInfoWithCharacterIdentifier:(unsigned int)cid
 collection:(NSCharacterCollection)characterCollection baseString:(NSString *)theString;

 + (NSGlyphInfo *)glyphInfoWithGlyph:(NSGlyph)glyph forFont:(NSFont *)font baseString:(NSString *)theString;

 + (NSGlyphInfo *)glyphInfoWithGlyphName:(NSString *)glyphName
 forFont:(NSFont *)font baseString:(NSString *)theString;

 // Instance Methods

 - (NSCharacterCollection)characterCollection;

 - (unsigned int)characterIdentifier;

 - (NSString *)glyphName;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSGraphicsContext Mac OS X 10.0

This class is an interface to graphics context objects, which interpret drawing commands based on a number of
attributes that make up an environment for rendering. NSGraphicsContext can be used change a number of rendering
options, such as whether or not antialiasing should be done, or whether image smoothing and interpolation should be
used when drawing images.

@interface NSGraphicsContext : NSObject

 // Accessor Methods

 - (void)setImageInterpolation:(NSImageInterpolation)interpolation;

 - (NSImageInterpolation)imageInterpolation;

 - (void)setShouldAntialias:(BOOL)antialias;

 - (BOOL)shouldAntialias;

 - (void)setFocusStack:(void *)stack;

 - (void *)focusStack;

 - (void)setPatternPhase:(NSPoint)phase;

 - (NSPoint)patternPhase;

 // Class Methods

 + (NSGraphicsContext *)currentContext;

 + (BOOL)currentContextDrawingToScreen;

 + (NSGraphicsContext *)graphicsContextWithAttributes:(NSDictionary *)attributes;

 + (NSGraphicsContext *)graphicsContextWithWindow:(NSWindow *)window;

 + (void)restoreGraphicsState;

 + (void)saveGraphicsState;

 + (void)setCurrentContext:(NSGraphicsContext *)context;

 + (void)setGraphicsState:(int)gState;

 // Instance Methods

 - (NSDictionary *)attributes;

 - (void)flushGraphics;

 - (void *)graphicsPort;

 - (BOOL)isDrawingToScreen;

 - (void)restoreGraphicsState;

 - (void)saveGraphicsState;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSHelpManager Mac OS X 10.0

This class provides an interface to an application's help manager object used to provide online help in the application.
You won't need to use this class, as Project Builder and Interface Builder provide support for integrating help
documents with an application.

@interface NSHelpManager : NSObject

 // Accessor Methods

 - (void)setContextHelp:(NSAttributedString *)attrString forObject:(id)object;

 // Class Methods

 + (BOOL)isContextHelpModeActive;

 + (void)setContextHelpModeActive:(BOOL)active;

 + (NSHelpManager *)sharedHelpManager;

 // Instance Methods

 - (NSAttributedString *)contextHelpForObject:(id)object;

 - (void)removeContextHelpForObject:(id)object;

 - (BOOL)showContextHelpForObject:(id)object locationHint:(NSPoint)pt;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSImage Mac OS X 10.0

This class is the general interface to images in the AppKit. Instances of NSImage usually have one or more image
representations (instances of the class NSImageRep or one of its subclasses) associated with them. The purpose of
keeping multiple image representations is so the image data can be rendered on a variety of devices, with each image
representation providing rendering functionality for a specific device.

@interface NSImage : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (NSArray *)imageFileTypes;

 + (id)imageNamed:(NSString *)name;

 + (NSArray *)imagePasteboardTypes;

 + (NSArray *)imageUnfilteredFileTypes;

 + (NSArray *)imageUnfilteredPasteboardTypes;

 // Initializers

 - (id)initByReferencingFile:(NSString *)fileName;

 - (id)initByReferencingURL:(NSURL *)url;

 - (id)initWithContentsOfFile:(NSString *)fileName;

 - (id)initWithContentsOfURL:(NSURL *)url;

 - (id)initWithData:(NSData *)data;

 - (id)initWithPasteboard:(NSPasteboard *)pasteboard;

 - (id)initWithSize:(NSSize)aSize;

 // Accessor Methods

 - (void)setSize:(NSSize)aSize;

 - (NSSize)size;

 - (void)setPrefersColorMatch:(BOOL)flag;

 - (BOOL)prefersColorMatch;

 - (void)setCacheMode:(NSImageCacheMode)mode;

 - (NSImageCacheMode)cacheMode;

 - (void)setUsesEPSOnResolutionMismatch:(BOOL)flag;

 - (BOOL)usesEPSOnResolutionMismatch;

 - (void)setFlipped:(BOOL)flag;

 - (void)setBackgroundColor:(NSColor *)aColor;

 - (NSColor *)backgroundColor;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setCachedSeparately:(BOOL)flag;

 - (void)setCacheDepthMatchesImageDepth:(BOOL)flag;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)cacheDepthMatchesImageDepth;

 - (BOOL)setName:(NSString *)string;

 - (NSString *)name;

 - (void)setScalesWhenResized:(BOOL)flag;

 - (BOOL)scalesWhenResized;

 - (void)setMatchesOnMultipleResolution:(BOOL)flag;

 - (BOOL)matchesOnMultipleResolution;

 - (void)setDataRetained:(BOOL)flag;

 // Class Methods

 + (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard;

 // Instance Methods

 - (void)addRepresentation:(NSImageRep *)imageRep;

 - (NSData *)TIFFRepresentation;

 - (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp factor:(float)aFloat;

 - (void)addRepresentations:(NSArray *)imageReps;

 - (void)cancelIncrementalLoad;

 - (void)compositeToPoint:(NSPoint)point fromRect:(NSRect)rect operation:(NSCompositingOperation)op;

 - (void)compositeToPoint:(NSPoint)point fromRect:(NSRect)rect operation:(NSCompositingOperation)op
 fraction:(float)delta;

 - (void)compositeToPoint:(NSPoint)point operation:(NSCompositingOperation)op;

 - (void)compositeToPoint:(NSPoint)point operation:(NSCompositingOperation)op fraction:(float)delta;

 - (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription;

 - (void)dissolveToPoint:(NSPoint)point fraction:(float)aFloat;

 - (void)dissolveToPoint:(NSPoint)point fromRect:(NSRect)rect fraction:(float)aFloat;

 - (void)drawAtPoint:(NSPoint)point fromRect:(NSRect)fromRect operation:(NSCompositingOperation)op
 fraction:(float)delta;

 - (void)drawInRect:(NSRect)rect fromRect:(NSRect)fromRect operation:(NSCompositingOperation)op
 fraction:(float)delta;

 - (BOOL)drawRepresentation:(NSImageRep *)imageRep inRect:(NSRect)rect;

 - (BOOL)isCachedSeparately;

 - (BOOL)isDataRetained;

 - (BOOL)isFlipped;

 - (BOOL)isValid;

 - (void)lockFocus;

 - (void)lockFocusOnRepresentation:(NSImageRep *)imageRepresentation;

 - (void)recache;

 - (void)removeRepresentation:(NSImageRep *)imageRep;

 - (NSArray *)representations;

 - (void)unlockFocus;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

// Methods Implemented by the Delegate

 - (void)image:(NSImage*)image didLoadPartOfRepresentation:(NSImageRep*)rep withValidRows:(int)rows;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)image:(NSImage*)image didLoadRepresentation:(NSImageRep*)rep
 withStatus:(NSImageLoadStatus)status;

 - (void)image:(NSImage*)image didLoadRepresentationHeader:(NSImageRep*)rep;

 - (void)image:(NSImage*)image willLoadRepresentation:(NSImageRep*)rep;

 - (NSImage *)imageDidNotDraw:(id)sender inRect:(NSRect)aRect;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSImageCell Mac OS X 10.0

This cell class is responsible for drawing an image in a frame. NSImageCell provides methods that allow clients to specify
the frame style, as well as how images that do not fit in the cell bounds should be scaled.

@interface NSImageCell : NSCell <NSCoding, NSCopying>

 // Accessor Methods

 - (void)setImageAlignment:(NSImageAlignment)newAlign;

 - (NSImageAlignment)imageAlignment;

 - (void)setImageScaling:(NSImageScaling)newScaling;

 - (NSImageScaling)imageScaling;

 - (void)setImageFrameStyle:(NSImageFrameStyle)newStyle;

 - (NSImageFrameStyle)imageFrameStyle;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSImageRep Mac OS X 10.0

This is an abstract class that defines a general interface to image representations. NSImageRep subclasses allow NSImage
to work with various image data formats using the common interface declared in NSImageRep.

@interface NSImageRep : NSObject <NSCoding, NSCopying>

 // Accessor Methods

 - (void)setSize:(NSSize)aSize;

 - (NSSize)size;

 - (void)setPixelsWide:(int)anInt;

 - (int)pixelsWide;

 - (void)setBitsPerSample:(int)anInt;

 - (int)bitsPerSample;

 - (void)setOpaque:(BOOL)flag;

 - (void)setPixelsHigh:(int)anInt;

 - (int)pixelsHigh;

 - (void)setAlpha:(BOOL)flag;

 - (void)setColorSpaceName:(NSString *)string;

 - (NSString *)colorSpaceName;

 // Class Methods

 + (BOOL)canInitWithData:(NSData *)data;

 + (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard;

 + (NSArray *)imageFileTypes;

 + (NSArray *)imagePasteboardTypes;

 + (Class)imageRepClassForData:(NSData *)data;

 + (Class)imageRepClassForFileType:(NSString *)type;

 + (Class)imageRepClassForPasteboardType:(NSString *)type;

 + (id)imageRepWithContentsOfFile:(NSString *)filename;

 + (id)imageRepWithContentsOfURL:(NSURL *)url;

 + (id)imageRepWithPasteboard:(NSPasteboard *)pasteboard;

 + (NSArray *)imageRepsWithContentsOfFile:(NSString *)filename;

 + (NSArray *)imageRepsWithContentsOfURL:(NSURL *)url;

 + (NSArray *)imageRepsWithPasteboard:(NSPasteboard *)pasteboard;

 + (NSArray *)imageUnfilteredFileTypes;

 + (NSArray *)imageUnfilteredPasteboardTypes;

 + (void)registerImageRepClass:(Class)imageRepClass;

 + (NSArray *)registeredImageRepClasses;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (void)unregisterImageRepClass:(Class)imageRepClass;

 // Instance Methods

 - (BOOL)draw;

 - (BOOL)drawAtPoint:(NSPoint)point;

 - (BOOL)drawInRect:(NSRect)rect;

 - (BOOL)hasAlpha;

 - (BOOL)isOpaque;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

// Notifications

 NSImageRepRegistryDidChangeNotification;

Subclasses

NSBitmapImageRep, NSCachedImageRep, NSCustomImageRep, NSEPSImageRep, NSPDFImageRep, NSPICTImageRep

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSImageView Mac OS X 10.0

This subclass of NSView is responsible for drawing an image in a frame, and provides functionality that allows users to
set the displayed image by dropping an image over the view. Clients may access the NSImage displayed in the image
view using the methods setImage: and image. The associated cell for this class is NSImageCell.

@interface NSImageView : NSControl

 // Accessor Methods

 - (void)setImage:(NSImage *)newImage;

 - (NSImage *)image;

 - (void)setImageAlignment:(NSImageAlignment)newAlign;

 - (NSImageAlignment)imageAlignment;

 - (void)setImageFrameStyle:(NSImageFrameStyle)newStyle;

 - (NSImageFrameStyle)imageFrameStyle;

 - (void)setImageScaling:(NSImageScaling)newScaling;

 - (NSImageScaling)imageScaling;

 - (void)setEditable:(BOOL)yn;

 // Instance Methods

 - (BOOL)isEditable;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSInputManager Mac OS X 10.0

This class is a key component of Cocoa's text input system, which also consists of the classes NSInputServer and
NSTextView. This class sits between NSInputServer and NSTextView. Applications don't need to interact with this class
directly, unless they are implementing a custom text input and management system.

@interface NSInputManager : NSObject <NSTextInput>

 // Class Methods

 + (NSInputManager *)currentInputManager;

 + (void)cycleToNextInputLanguage:(id)sender;

 + (void)cycleToNextInputServerInLanguage:(id)sender;

 // Instance Methods

 - (BOOL)handleMouseEvent:(NSEvent*)theMouseEvent;

 - (NSImage *)image;

 - (NSInputManager *)initWithName:(NSString *)inputServerName host:(NSString *)hostName;

 - (NSString*)language;

 - (NSString *)localizedInputManagerName;

 - (void)markedTextAbandoned:(id)cli;

 - (void)markedTextSelectionChanged:(NSRange)newSel client:(id)cli;

 - (NSInputServer*)server;

 - (BOOL)wantsToDelayTextChangeNotifications;

 - (BOOL)wantsToHandleMouseEvents;

 - (BOOL)wantsToInterpretAllKeystrokes;

 // Methods Implementing NSTextInput

 - (void)insertText:(id)aString;

 - (void)doCommandBySelector:(SEL)aSelector;

 - (void)setMarkedText:(id)aString selectedRange:(NSRange)selRange;

 - (void)unmarkText;

 - (BOOL)hasMarkedText;

 - (long)conversationIdentifier;

 - (NSAttributedString *)attributedSubstringFromRange:(NSRange)theRange;

 - (NSRange)markedRange;

 - (NSRange)selectedRange;

 - (NSRect)firstRectForCharacterRange:(NSRange)theRange;

 - (unsigned int)characterIndexForPoint:(NSPoint)thePoint;

 - (NSArray*)validAttributesForMarkedText;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSInputServer Mac OS X 10.0

This class is a key component of the subsystem used to receive and process keystrokes, and direct the associated
characters to the active text view to be added to the displayed text. The other two key classes of Cocoa's text input
system are NSInputManager and NSTextView. This class implements the interfaces declared in the NSInputServiceProvider
and NSInputServerMouseTracker protocols. These two protocols declare the bulk of the functionality of NSInputServer. See
the descriptions for these two protocols in Chapter 3 for more information.

@interface NSInputServer : NSObject <NSInputServerMouseTracker, NSInputServiceProvider>

 // Instance Methods

 - (id) initWithDelegate:(id)aDelegate name:(NSString *)name;

 // Methods Implementing NSInputServerMouseTracker

 - (BOOL)mouseDownOnCharacterIndex:(unsigned)theIndex atCoordinate:(NSPoint)thePoint
 withModifier:(unsigned int)theFlags client:(id)sender;

 - (BOOL)mouseDraggedOnCharacterIndex:(unsigned)theIndex atCoordinate:(NSPoint)thePoint
 withModifier:(unsigned int)theFlags client:(id)sender;

 - (void)mouseUpOnCharacterIndex:(unsigned)theIndex atCoordinate:(NSPoint)thePoint
 withModifier:(unsigned int)theFlags client:(id)sender;

 // Methods Implementing NSInputServiceProvider

 - (void)insertText:(id)aString client:(id)sender;

 - (void)doCommandBySelector:(SEL)aSelector client:(id)sender;

 - (void)markedTextAbandoned:(id)sender;

 - (void)markedTextSelectionChanged:(NSRange)newSel client:(id)sender;

 - (void)terminate:(id)sender;

 - (BOOL)canBeDisabled;

 - (BOOL)wantsToInterpretAllKeystrokes;

 - (BOOL)wantsToHandleMouseEvents;

 - (BOOL)wantsToDelayTextChangeNotifications;

 - (void)inputClientBecomeActive:(id)sender;

 - (void)inputClientResignActive:(id)sender;

 - (void)inputClientEnabled:(id)sender;

 - (void)inputClientDisabled:(id)sender;

 - (void)activeConversationWillChange:(id)sender fromOldConversation:(long)oldConversation;

 - (void)activeConversationChanged:(id)sender toNewConversation:(long)newConversation;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSLayoutManager Mac OS X 10.0

NSLayoutManager is responsible for managing how text is laid out. NSLayoutManager objects manage a set of
NSTextContainer objects, and supervise how text is laid out in these containers. Additionally, NSLayoutManager is
responsible for mapping Unicode character codes into glyphs that will be displayed in an NSTextView object. In terms of
the Model-View-Controller design pattern, NSTextStorage is the model, NSTextView the view, and NSLayoutManager and
NSTextContainer are controllers between the data layer and the view layer.

@interface NSLayoutManager : NSObject <NSCoding>

 // Initializers

 - (id)init;

 // Accessor Methods

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 - (void)setDefaultAttachmentScaling:(NSImageScaling)scaling;

 - (NSImageScaling)defaultAttachmentScaling;

 - (void)setTemporaryAttributes:(NSDictionary *)attrs forCharacterRange:(NSRange)charRange;

 - (void)setAttachmentSize:(NSSize)attachmentSize forGlyphRange:(NSRange)glyphRange;

 - (void)setNotShownAttribute:(BOOL)flag forGlyphAtIndex:(unsigned)glyphIndex;

 - (void)setTypesetter:(NSTypesetter *)typesetter;

 - (NSTypesetter *)typesetter;

 - (void)setLocation:(NSPoint)location forStartOfGlyphRange:(NSRange)glyphRange;

 - (void)setCharacterIndex:(unsigned)charIndex forGlyphAtIndex:(unsigned)glyphIndex;

 - (void)setBackgroundLayoutEnabled:(BOOL)flag;

 - (BOOL)backgroundLayoutEnabled;

 - (void)setExtraLineFragmentRect:(NSRect)fragmentRect usedRect:(NSRect)usedRect
 textContainer:(NSTextContainer *)container;

 - (NSRect)extraLineFragmentRect;

 - (void)setLineFragmentRect:(NSRect)fragmentRect forGlyphRange:(NSRange)glyphRange
 usedRect:(NSRect)usedRect;

 - (void)setHyphenationFactor:(float)factor;

 - (float)hyphenationFactor;

 - (void)setUsesScreenFonts:(BOOL)flag;

 - (BOOL)usesScreenFonts;

 - (void)setIntAttribute:(int)attributeTag value:(int)val

 forGlyphAtIndex:(unsigned)glyphIndex;

 - (void)setTypesetterBehavior:(NSTypesetterBehavior)theBehavior;

 - (NSTypesetterBehavior)typesetterBehavior;

 - (void)setTextStorage:(NSTextStorage *)textStorage;

 - (NSTextStorage *)textStorage;

 - (void)setShowsControlCharacters:(BOOL)flag;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setShowsControlCharacters:(BOOL)flag;

 - (BOOL)showsControlCharacters;

 - (void)setDrawsOutsideLineFragment:(BOOL)flag forGlyphAtIndex:(unsigned)glyphIndex;

 - (void)setShowsInvisibleCharacters:(BOOL)flag;

 - (BOOL)showsInvisibleCharacters;

 - (void)setTextContainer:(NSTextContainer *)container forGlyphRange:(NSRange)glyphRange;

 // Instance Methods

 - (void)addTemporaryAttributes:(NSDictionary *)attrs forCharacterRange:(NSRange)charRange;

 - (void)addTextContainer:(NSTextContainer *)container;

 - (NSSize)attachmentSizeForGlyphAtIndex:(unsigned)glyphIndex;

 - (NSRect)boundingRectForGlyphRange:(NSRange)glyphRange inTextContainer:(NSTextContainer *)container;

 - (unsigned)characterIndexForGlyphAtIndex:(unsigned)glyphIndex;

 - (NSRange)characterRangeForGlyphRange:(NSRange)glyphRange
 actualGlyphRange:(NSRangePointer)actualGlyphRange;

 - (float)defaultLineHeightForFont:(NSFont *)theFont;

 - (void)deleteGlyphsInRange:(NSRange)glyphRange;

 - (void)drawBackgroundForGlyphRange:(NSRange)glyphsToShow atPoint:(NSPoint)origin;

 - (void)drawGlyphsForGlyphRange:(NSRange)glyphsToShow atPoint:(NSPoint)origin;

 - (void)drawUnderlineForGlyphRange:(NSRange)glyphRange underlineType:(int)underlineVal
 baselineOffset:(float)baselineOffset lineFragmentRect:(NSRect)lineRect
 lineFragmentGlyphRange:(NSRange)lineGlyphRange containerOrigin:(NSPoint)containerOrigin;

 - (BOOL)drawsOutsideLineFragmentForGlyphAtIndex:(unsigned)glyphIndex;

 - (NSTextContainer *)extraLineFragmentTextContainer;

 - (NSRect)extraLineFragmentUsedRect;

 - (NSTextView *)firstTextView;

 - (unsigned)firstUnlaidCharacterIndex;

 - (unsigned)firstUnlaidGlyphIndex;

 - (float)fractionOfDistanceThroughGlyphForPoint:(NSPoint)point inTextContainer:(NSTextContainer *)container;

 - (void)getFirstUnlaidCharacterIndex:(unsigned *)charIndex glyphIndex:(unsigned *)glyphIndex;

 - (unsigned)getGlyphs:(NSGlyph *)glyphArray range:(NSRange)glyphRange;

 - (unsigned)getGlyphsInRange:(NSRange)glyphsRange glyphs:(NSGlyph *)glyphBuffer
 characterIndexes:(unsigned *)charIndexBuffer glyphInscriptions:(NSGlyphInscription *)inscribeBuffer
 elasticBits:(BOOL *)elasticBuffer;

 - (unsigned)getGlyphsInRange:(NSRange)glyphsRange glyphs:(NSGlyph *)glyphBuffer
 characterIndexes:(unsigned *)charIndexBuffer glyphInscriptions:(NSGlyphInscription *)inscribeBuffer
 elasticBits:(BOOL *)elasticBuffer bidiLevels:(unsigned char *)bidiLevelBuffer;

 - (NSGlyph)glyphAtIndex:(unsigned)glyphIndex;

 - (NSGlyph)glyphAtIndex:(unsigned)glyphIndex isValidIndex:(BOOL *)isValidIndex;

 - (unsigned)glyphIndexForPoint:(NSPoint)point inTextContainer:(NSTextContainer *)container;

 - (unsigned)glyphIndexForPoint:(NSPoint)point inTextContainer:(NSTextContainer *)container
 fractionOfDistanceThroughGlyph:(float *)partialFraction;

 - (NSRange)glyphRangeForBoundingRect:(NSRect)bounds inTextContainer:(NSTextContainer *)container;

 - (NSRange)glyphRangeForBoundingRectWithoutAdditionalLayout:(NSRect)bounds
 inTextContainer:(NSTextContainer *)container;

 - (NSRange)glyphRangeForCharacterRange:(NSRange)charRange
 actualCharacterRange:(NSRangePointer)actualCharRange;

 - (NSRange)glyphRangeForTextContainer:(NSTextContainer *)container;

 - (void)insertGlyph:(NSGlyph)glyph atGlyphIndex:(unsigned)glyphIndex characterIndex:(unsigned)charIndex;

 - (void)insertTextContainer:(NSTextContainer *)container atIndex:(unsigned)index;

 - (int)intAttribute:(int)attributeTag forGlyphAtIndex:(unsigned)glyphIndex;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (int)intAttribute:(int)attributeTag forGlyphAtIndex:(unsigned)glyphIndex;

 - (void)invalidateDisplayForCharacterRange:(NSRange)charRange;

 - (void)invalidateDisplayForGlyphRange:(NSRange)glyphRange;

 - (void)invalidateGlyphsForCharacterRange:(NSRange)charRange changeInLength:(int)delta
 actualCharacterRange:(NSRangePointer)actualCharRange;

 - (void)invalidateLayoutForCharacterRange:(NSRange)charRange isSoft:(BOOL)flag
 actualCharacterRange:(NSRangePointer)actualCharRange;

 - (BOOL)isValidGlyphIndex:(unsigned)glyphIndex;

 - (BOOL)layoutManagerOwnsFirstResponderInWindow:(NSWindow *)window;

 - (NSRect)lineFragmentRectForGlyphAtIndex:(unsigned)glyphIndex
 effectiveRange:(NSRangePointer)effectiveGlyphRange;

 - (NSRect)lineFragmentUsedRectForGlyphAtIndex:(unsigned)glyphIndex
 effectiveRange:(NSRangePointer)effectiveGlyphRange;

 - (NSPoint)locationForGlyphAtIndex:(unsigned)glyphIndex;

 - (BOOL)notShownAttributeForGlyphAtIndex:(unsigned)glyphIndex;

 - (unsigned)numberOfGlyphs;

 - (NSRange)rangeOfNominallySpacedGlyphsContainingIndex:(unsigned)glyphIndex;

 - (NSRectArray)rectArrayForCharacterRange:(NSRange)charRange
 withinSelectedCharacterRange:(NSRange)selCharRange inTextContainer:(NSTextContainer *)container
 rectCount:(unsigned *)rectCount;

 - (NSRectArray)rectArrayForGlyphRange:(NSRange)glyphRange withinSelectedGlyphRange:(NSRange)selGlyphRange
 inTextContainer:(NSTextContainer *)container rectCount:(unsigned *)rectCount;

 - (void)removeTemporaryAttribute:(NSString *)name forCharacterRange:(NSRange)charRange;

 - (void)removeTextContainerAtIndex:(unsigned)index;

 - (void)replaceGlyphAtIndex:(unsigned)glyphIndex withGlyph:(NSGlyph)newGlyph;

 - (void)replaceTextStorage:(NSTextStorage *)newTextStorage;

 - (NSView *)rulerAccessoryViewForTextView:(NSTextView *)view paragraphStyle:(NSParagraphStyle *)style
 ruler:(NSRulerView *)ruler enabled:(BOOL)isEnabled;

 - (NSArray *)rulerMarkersForTextView:(NSTextView *)view paragraphStyle:(NSParagraphStyle *)style
 ruler:(NSRulerView *)ruler;

 - (void)showAttachmentCell:(NSCell *)cell inRect:(NSRect)rect characterIndex:(unsigned)attachmentIndex;

 - (void)showPackedGlyphs:(char *)glyphs length:(unsigned)glyphLen glyphRange:(NSRange)glyphRange
 atPoint:(NSPoint)point font:(NSFont *)font color:(NSColor *)color
 printingAdjustment:(NSSize)printingAdjustment;

 - (NSFont *)substituteFontForFont:(NSFont *)originalFont;

 - (NSDictionary *)temporaryAttributesAtCharacterIndex:(unsigned)charIndex
 effectiveRange:(NSRangePointer)effectiveCharRange;

 - (void)textContainerChangedGeometry:(NSTextContainer *)container;

 - (void)textContainerChangedTextView:(NSTextContainer *)container;

 - (NSTextContainer *)textContainerForGlyphAtIndex:(unsigned)glyphIndex
 effectiveRange:(NSRangePointer)effectiveGlyphRange;

 - (NSArray *)textContainers;

 - (void)textStorage:(NSTextStorage *)str edited:(unsigned)editedMask range:(NSRange)newCharRange
 changeInLength:(int)delta invalidatedRange:(NSRange)invalidatedCharRange;

 - (NSTextView *)textViewForBeginningOfSelection;

 - (void)underlineGlyphRange:(NSRange)glyphRange underlineType:(int)underlineVal
 lineFragmentRect:(NSRect)lineRect lineFragmentGlyphRange:(NSRange)lineGlyphRange
 containerOrigin:(NSPoint)containerOrigin;

 - (NSRect)usedRectForTextContainer:(NSTextContainer *)container;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Methods Implemented by the Delegate

 - (void)layoutManager:(NSLayoutManager *)layoutManager
 didCompleteLayoutForTextContainer:(NSTextContainer *)textContainer atEnd:(BOOL)layoutFinishedFlag;

 - (void)layoutManagerDidInvalidateLayout:(NSLayoutManager *)sender;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMatrix Mac OS X 10.0

This NSView subclass specializes in organizing groups of cells in a grid, and endowing them with various collective
behaviors such as that exhibited by radio buttons. Radio button groups are an example of an interface component
implemented with an NSMatrix and NSButtonCells.

@interface NSMatrix : NSControl

 // Initializers

 - (id)initWithFrame:(NSRect)frameRect;

 - (id)initWithFrame:(NSRect)frameRect mode:(int)aMode cellClass:(Class)factoryId numberOfRows:(int)rowsHigh
 numberOfColumns:(int)colsWide;

 - (id)initWithFrame:(NSRect)frameRect mode:(int)aMode prototype:(NSCell *)aCell numberOfRows:(int)rowsHigh
 numberOfColumns:(int)colsWide;

 // Accessor Methods

 - (void)setAllowsEmptySelection:(BOOL)flag;

 - (BOOL)allowsEmptySelection;

 - (void)setToolTip:(NSString *)toolTipString forCell:(NSCell *)cell;

 - (void)setCellClass:(Class)factoryId;

 - (Class)cellClass;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setAutoscroll:(BOOL)flag;

 - (void)setIntercellSpacing:(NSSize)aSize;

 - (NSSize)intercellSpacing;

 - (void)setValidateSize:(BOOL)flag;

 - (void)setCellBackgroundColor:(NSColor *)color;

 - (NSColor *)cellBackgroundColor;

 - (void)setMode:(NSMatrixMode)aMode;

 - (NSMatrixMode)mode;

 - (void)setSelectionByRect:(BOOL)flag;

 - (void)setSelectionFrom:(int)startPos to:(int)endPos anchor:(int)anchorPos highlight:(BOOL)lit;

 - (void)setAutosizesCells:(BOOL)flag;

 - (BOOL)autosizesCells;

 - (void)setCellSize:(NSSize)aSize;

 - (NSSize)cellSize;

 - (void)setScrollable:(BOOL)flag;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setDoubleAction:(SEL)aSelector;

 - (SEL)doubleAction;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setPrototype:(NSCell *)aCell;

 - (id)prototype;

 - (void)setState:(int)value atRow:(int)row column:(int)col;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

 - (void)setDrawsCellBackground:(BOOL)flag;

 - (BOOL)drawsCellBackground;

 // Instance Methods

 - (BOOL)acceptsFirstMouse:(NSEvent *)theEvent;

 - (void)addColumn;

 - (void)addColumnWithCells:(NSArray *)newCells;

 - (void)addRow;

 - (void)addRowWithCells:(NSArray *)newCells;

 - (id)cellAtRow:(int)row column:(int)col;

 - (NSRect)cellFrameAtRow:(int)row column:(int)col;

 - (id)cellWithTag:(int)anInt;

 - (NSArray *)cells;

 - (void)deselectAllCells;

 - (void)deselectSelectedCell;

 - (void)drawCellAtRow:(int)row column:(int)col;

 - (void)getNumberOfRows:(int *)rowCount columns:(int *)colCount;

 - (BOOL)getRow:(int *)row column:(int *)col forPoint:(NSPoint)aPoint;

 - (BOOL)getRow:(int *)row column:(int *)col ofCell:(NSCell *)aCell;

 - (void)highlightCell:(BOOL)flag atRow:(int)row column:(int)col;

 - (void)insertColumn:(int)column;

 - (void)insertColumn:(int)column withCells:(NSArray *)newCells;

 - (void)insertRow:(int)row;

 - (void)insertRow:(int)row withCells:(NSArray *)newCells;

 - (BOOL)isAutoscroll;

 - (BOOL)isSelectionByRect;

 - (NSCell *)makeCellAtRow:(int)row column:(int)col;

 - (void)mouseDown:(NSEvent *)theEvent;

 - (int)mouseDownFlags;

 - (int)numberOfColumns;

 - (int)numberOfRows;

 - (BOOL)performKeyEquivalent:(NSEvent *)theEvent;

 - (void)putCell:(NSCell *)newCell atRow:(int)row column:(int)col;

 - (void)removeColumn:(int)col;

 - (void)removeRow:(int)row;

 - (void)renewRows:(int)newRows columns:(int)newCols;

 - (void)resetCursorRects;

 - (void)scrollCellToVisibleAtRow:(int)row column:(int)col;

 - (void)selectAll:(id)sender;

 - (void)selectCellAtRow:(int)row column:(int)col;

 - (BOOL)selectCellWithTag:(int)anInt;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)selectCellWithTag:(int)anInt;

 - (void)selectText:(id)sender;

 - (id)selectTextAtRow:(int)row column:(int)col;

 - (id)selectedCell;

 - (NSArray *)selectedCells;

 - (int)selectedColumn;

 - (int)selectedRow;

 - (BOOL)sendAction;

 - (void)sendAction:(SEL)aSelector to:(id)anObject forAllCells:(BOOL)flag;

 - (void)sendDoubleAction;

 - (void)sizeToCells;

 - (void)sortUsingFunction:(int (*)(id, id, void *))compare context:(void *)context;

 - (void)sortUsingSelector:(SEL)comparator;

 - (void)textDidBeginEditing:(NSNotification *)notification;

 - (void)textDidChange:(NSNotification *)notification;

 - (void)textDidEndEditing:(NSNotification *)notification;

 - (BOOL)textShouldBeginEditing:(NSText *)textObject;

 - (BOOL)textShouldEndEditing:(NSText *)textObject;

 - (NSString *)toolTipForCell:(NSCell *)cell;

Subclasses

NSForm

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMenu Mac OS X 10.0

This class provides an interface to an application's menus. Generally, you won't have to work directly with menus since
Interface Builder provides facilities for creating an application's entire menu structure, including the main menu bar, the
Dock menu, contextual menus for views, and menus for pop-up buttons. However, if your application requires some
degree of dynamicism in its menus, then you will need to use NSMenu's API.

Menus are initialized with initWithTitle:. The string passed in this method appears as the title of the menu. A menu
manages a collection of menu items, which are instances of the class NSMenuItem. To manage a menu's items, we have
several methods at our disposal. To add an item to the end of the menu, use addItem:; to insert an item at some
position in the menu, use insertItem:atIndex:. Menu items are removed from a menu using the methods removeItem: and
removeItemAtIndex:.

Menus can also be queried for their menu items. The method itemArray returns an NSArray containing the menu's items.
Items can also be retrieved by their index, title, and tag using itemAtIndex:, itemWithTitle:, and itemWithTag:, respectively.

To add a submenu to a menu, first add a menu item to represent that submenu, and then associate another instance of
NSMenu with that menu item using the method setSubmenu:forItem:.

@interface NSMenu : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (BOOL)menuBarVisible;

 + (NSZone *)menuZone;

 // Initializers

 - (id)initWithTitle:(NSString *)aTitle;

 // Accessor Methods

 - (void)setTearOffMenuRepresentation:(id)menuRep;

 - (id)tearOffMenuRepresentation;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setSupermenu:(NSMenu *)supermenu;

 - (NSMenu *)supermenu;

 - (void)setAutoenablesItems:(BOOL)flag;

 - (BOOL)autoenablesItems;

 - (void)setSubmenu:(NSMenu *)aMenu forItem:(id <NSMenuItem>)anItem;

 - (void)setMenuRepresentation:(id)menuRep;

 - (id)menuRepresentation;

 - (void)setContextMenuRepresentation:(id)menuRep;

 - (id)contextMenuRepresentation;

 - (void)setMenuChangedMessagesEnabled:(BOOL)flag;

 - (BOOL)menuChangedMessagesEnabled;

 // Class Methods

 + (void)popUpContextMenu:(NSMenu*)menu withEvent:(NSEvent*)event forView:(NSView*)view;

 + (void)setMenuBarVisible:(BOOL)visible;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (void)setMenuZone:(NSZone *)aZone;

 // Instance Methods

 - (NSMenu *)attachedMenu;

 - (void)addItem:(id <NSMenuItem>)newItem;

 - (id <NSMenuItem>)addItemWithTitle:(NSString *)aString action:(SEL)aSelector
 keyEquivalent:(NSString *)charCode;

 - (void)helpRequested:(NSEvent *)eventPtr;

 - (int)indexOfItem:(id <NSMenuItem>)index;

 - (int)indexOfItemWithRepresentedObject:(id)object;

 - (int)indexOfItemWithSubmenu:(NSMenu *)submenu;

 - (int)indexOfItemWithTag:(int)aTag;

 - (int)indexOfItemWithTarget:(id)target andAction:(SEL)actionSelector;

 - (int)indexOfItemWithTitle:(NSString *)aTitle;

 - (void)insertItem:(id <NSMenuItem>)newItem atIndex:(int)index;

 - (id <NSMenuItem>)insertItemWithTitle:(NSString *)aString action:(SEL)aSelector
 keyEquivalent:(NSString *)charCode atIndex:(int)index;

 - (BOOL)isAttached;

 - (BOOL)isTornOff;

 - (NSArray *)itemArray;

 - (id <NSMenuItem>)itemAtIndex:(int)index;

 - (void)itemChanged:(id <NSMenuItem>)item;

 - (id <NSMenuItem>)itemWithTag:(int)tag;

 - (id <NSMenuItem>)itemWithTitle:(NSString *)aTitle;

 - (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu;

 - (int)numberOfItems;

 - (void)performActionForItemAtIndex:(int)index;

 - (BOOL)performKeyEquivalent:(NSEvent *)theEvent;

 - (void)removeItem:(id <NSMenuItem>)item;

 - (void)removeItemAtIndex:(int)index;

 - (void)sizeToFit;

 - (void)submenuAction:(id)sender;

 - (void)update;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

// Notifications

 NSMenuDidAddItemNotification;

 NSMenuDidChangeItemNotification;

 NSMenuDidRemoveItemNotification;

 NSMenuDidSendActionNotification;

 NSMenuWillSendActionNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMenuItem Mac OS X 10.0

This class declares the interface to objects that make up commands in an NSMenu. NSMenuItems have an associated
target and action, and may optionally have a key equivalent that the user can use to activate the menu item. Menu
items are also capable of maintaining a state (on, off, or mixed).

@interface NSMenuItem : NSObject <NSMenuItem>

 // Initializers

 - (id)initWithTitle:(NSString *)aString action:(SEL)aSelector keyEquivalent:(NSString *)charCode;

 // Accessor Methods

 - (void)setAction:(SEL)aSelector;

 - (SEL)action;

 - (void)setRepresentedObject:(id)anObject;

 - (id)representedObject;

 - (void)setSubmenu:(NSMenu *)submenu;

 - (NSMenu *)submenu;

 - (void)setTag:(int)anInt;

 - (int)tag;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setTitleWithMnemonic:(NSString *)stringWithAmpersand;

 - (void)setKeyEquivalent:(NSString *)aKeyEquivalent;

 - (NSString *)keyEquivalent;

 - (void)setTarget:(id)anObject;

 - (id)target;

 - (void)setKeyEquivalentModifierMask:(unsigned int)mask;

 - (unsigned int)keyEquivalentModifierMask;

 - (void)setEnabled:(BOOL)flag;

 - (void)setMixedStateImage:(NSImage *)image;

 - (NSImage *)mixedStateImage;

 - (void)setMnemonicLocation:(unsigned)location;

 - (unsigned)mnemonicLocation;

 - (void)setOffStateImage:(NSImage *)image;

 - (NSImage *)offStateImage;

 - (void)setImage:(NSImage *)menuImage;

 - (NSImage *)image;

 - (void)setState:(int)state;

 - (int)state;

 - (void)setMenu:(NSMenu *)menu;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSMenu *)menu;

 - (void)setOnStateImage:(NSImage *)image;

 - (NSImage *)onStateImage;

 // Class Methods

 + (id <NSMenuItem>)separatorItem;

 + (void)setUsesUserKeyEquivalents:(BOOL)flag;

 + (BOOL)usesUserKeyEquivalents;

 // Instance Methods

 - (BOOL)hasSubmenu;

 - (BOOL)isEnabled;

 - (BOOL)isSeparatorItem;

 - (NSString *)mnemonic;

 - (NSString *)userKeyEquivalent;

 // Methods Implementing NSMenuItem

 - (id)initWithTitle:(NSString *)aString action:(SEL)aSelector keyEquivalent:(NSString *)charCode;

 - (void)setMenu:(NSMenu *)menu;

 - (NSMenu *)menu;

 - (BOOL)hasSubmenu;

 - (void)setSubmenu:(NSMenu *)submenu;

 - (NSMenu *)submenu;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (BOOL)isSeparatorItem;

 - (void)setKeyEquivalent:(NSString *)aKeyEquivalent;

 - (NSString *)keyEquivalent;

 - (void)setKeyEquivalentModifierMask:(unsigned int)mask;

 - (unsigned int)keyEquivalentModifierMask;

 - (NSString *)userKeyEquivalent;

 - (unsigned int)userKeyEquivalentModifierMask;

 - (void)setMnemonicLocation:(unsigned)location;

 - (unsigned)mnemonicLocation;

 - (NSString *)mnemonic;

 - (void)setTitleWithMnemonic:(NSString *)stringWithAmpersand;

 - (void)setImage:(NSImage *)menuImage;

 - (NSImage *)image;

 - (void)setState:(int)state;

 - (int)state;

 - (void)setOnStateImage:(NSImage *)image;

 - (NSImage *)onStateImage;

 - (void)setOffStateImage:(NSImage *)image;

 - (NSImage *)offStateImage;

 - (void)setMixedStateImage:(NSImage *)image;

 - (NSImage *)mixedStateImage;

 - (void)setEnabled:(BOOL)flag;

 - (BOOL)isEnabled;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)isEnabled;

 - (void)setTarget:(id)anObject;

 - (id)target;

 - (void)setAction:(SEL)aSelector;

 - (SEL)action;

 - (void)setTag:(int)anInt;

 - (int)tag;

 - (void)setRepresentedObject:(id)anObject;

 - (id)representedObject;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMenuItemCell Mac OS X 10.0

This class is used to represent and draw menu items in a menu view. This class has been deprecated and should not be
used in new code. You should use the APIs provided by NSMenu and NSMenuItem instead.

@interface NSMenuItemCell : NSButtonCell

 // Accessor Methods

 - (void)setNeedsSizing:(BOOL)flag;

 - (BOOL)needsSizing;

 - (void)setNeedsDisplay:(BOOL)flag;

 - (BOOL)needsDisplay;

 - (void)setHighlighted:(BOOL)flag;

 - (void)setMenuView:(NSMenuView *)menuView;

 - (NSMenuView *)menuView;

 - (void)setMenuItem:(NSMenuItem *)item;

 - (NSMenuItem *)menuItem;

 // Instance Methods

 - (void)calcSize;

 - (void)drawBorderAndBackgroundWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)drawImageWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)drawKeyEquivalentWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)drawSeparatorItemWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)drawStateImageWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)drawTitleWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (NSRect)imageRectForBounds:(NSRect)cellFrame;

 - (float)imageWidth;

 - (BOOL)isHighlighted;

 - (NSRect)keyEquivalentRectForBounds:(NSRect)cellFrame;

 - (float)keyEquivalentWidth;

 - (NSRect)stateImageRectForBounds:(NSRect)cellFrame;

 - (float)stateImageWidth;

 - (NSRect)titleRectForBounds:(NSRect)cellFrame;

 - (float)titleWidth;

Subclasses

NSPopUpButtonCell

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMenuView Mac OS X 10.0

This subclass of NSView is used to draw menus. Like NSMenuItemCell, this class has been deprecated, and should not be
used in new code. You should use the APIs provided by NSMenu and NSMenuItem instead.

@interface NSMenuView : NSView

 // Initializers

 - (id)initAsTearOff;

 - (id)initWithFrame:(NSRect)frame;

 // Accessor Methods

 - (void)setWindowFrameForAttachingToRect:(NSRect)screenRect
 onScreen:(NSScreen *)screen preferredEdge:(NSRectEdge)edge popUpSelectedItem:(int)selectedItemIndex;

 - (void)setHorizontalEdgePadding:(float)pad;

 - (float)horizontalEdgePadding;

 - (void)setNeedsDisplayForItemAtIndex:(int)index;

 - (void)setNeedsSizing:(BOOL)flag;

 - (BOOL)needsSizing;

 - (void)setHighlightedItemIndex:(int)index;

 - (int)highlightedItemIndex;

 - (void)setHorizontal:(BOOL)flag;

 - (void)setMenu:(NSMenu *)menu;

 - (NSMenu *)menu;

 - (void)setFont:(NSFont *)font;

 - (NSFont *)font;

 - (void)setMenuItemCell:(NSMenuItemCell *)cell forItemAtIndex:(int)index;

 // Class Methods

 + (float)menuBarHeight;

 // Instance Methods

 - (void)attachSubmenuForItemAtIndex:(int)index;

 - (NSMenu *)attachedMenu;

 - (NSMenuView *)attachedMenuView;

 - (void)detachSubmenu;

 - (float)imageAndTitleOffset;

 - (float)imageAndTitleWidth;

 - (int)indexOfItemAtPoint:(NSPoint)point;

 - (NSRect)innerRect;

 - (BOOL)isAttached;

 - (BOOL)isHorizontal;

 - (BOOL)isTornOff;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)itemAdded:(NSNotification *)notification;

 - (void)itemChanged:(NSNotification *)notification;

 - (void)itemRemoved:(NSNotification *)notification;

 - (float)keyEquivalentOffset;

 - (float)keyEquivalentWidth;

 - (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu;

 - (NSMenuItemCell *)menuItemCellForItemAtIndex:(int)index;

 - (void)performActionWithHighlightingForItemAtIndex:(int)index;

 - (NSRect)rectOfItemAtIndex:(int)index;

 - (void)sizeToFit;

 - (float)stateImageOffset;

 - (float)stateImageWidth;

 - (BOOL)trackWithEvent:(NSEvent *)event;

 - (void)update;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMovie Mac OS X 10.0

This class provides an object-oriented wrapper for QuickTime movie data, which allows clients to easily load QuickTime
movies into memory. The data represented by an NSMovie object can be any format supported by the QuickTime APIs,
including video, sound, and still images. Clients can obtain a pointer to the QuickTime data by sending a QTMovie
message to the NSMovie instance; this pointer is suitable for use with any of the QuickTime APIs.

@interface NSMovie : NSObject <NSCoding, NSCopying>

 // Class Methods

 + (BOOL)canInitWithPasteboard:(NSPasteboard*)pasteboard;

 + (NSArray*)movieUnfilteredFileTypes;

 + (NSArray*)movieUnfilteredPasteboardTypes;

 // Instance Methods

 - (id)initWithMovie:(void* /*Movie*/)movie;

 - (id)initWithPasteboard:(NSPasteboard*)pasteboard;

 - (id)initWithURL:(NSURL*)url byReference:(BOOL)byRef;

 - (void*/*Movie*/)QTMovie;

 - (NSURL*)URL;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMovieView Mac OS X 10.0

This class provides a means to display an NSMovie in an Cocoa view. NSMovieView has provisions to display in the view
controls to control playback and editing of the represented movie. Additionally, action methods declared in the interface
allow you to build custom interfaces for controlling movie playback and editing.

@interface NSMovieView : NSView

 // Accessor Methods

 - (void)setMuted:(BOOL)mute;

 - (void)setRate:(float)rate;

 - (float)rate;

 - (void)setLoopMode:(NSQTMovieLoopMode)mode;

 - (NSQTMovieLoopMode)loopMode;

 - (void)setVolume:(float)volume;

 - (float)volume;

 - (void)setPlaysEveryFrame:(BOOL)flag;

 - (BOOL)playsEveryFrame;

 - (void)setPlaysSelectionOnly:(BOOL)flag;

 - (BOOL)playsSelectionOnly;

 - (void)setEditable:(BOOL)editable;

 // Instance Methods

 - (void)cut:(id)sender;

 - (void)clear:(id)sender;

 - (void)gotoBeginning:(id)sender;

 - (NSMovie*)movie;

 - (void* /*MovieController*/)movieController;

 - (NSRect)movieRect;

 - (void)setMovie:(NSMovie*)movie;

 - (void)copy:(id)sender;

 - (void)gotoEnd:(id)sender;

 - (void)gotoPosterFrame:(id)sender;

 - (BOOL)isControllerVisible;

 - (BOOL)isEditable;

 - (BOOL)isMuted;

 - (BOOL)isPlaying;

 - (void)paste:(id)sender;

 - (void)resizeWithMagnification:(float)magnification;

 - (void)selectAll:(id)sender;

 - (void)showController:(BOOL)show adjustingSize:(BOOL)adjustSize;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSSize)sizeForMagnification:(float)magnification;

 - (void)start:(id)sender;

 - (void)stepBack:(id)sender;

 - (void)stepForward:(id)sender;

 - (void)stop:(id)sender;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMutableParagraphStyle Mac OS X 10.0

This class extends the interface of NSParagraphStyle to allow for the characteristics of a paragraph style object to be
altered after the object is initialized. See the NSParagraphStyle class description later in this chapter for more information.

@interface NSMutableParagraphStyle : NSParagraphStyle

 // Accessor Methods

 - (void)setLineBreakMode:(NSLineBreakMode)mode;

 - (void)setParagraphSpacing:(float)aFloat;

 - (void)setAlignment:(NSTextAlignment)alignment;

 - (void)setBaseWritingDirection:(NSWritingDirection)writingDirection;

 - (void)setHeadIndent:(float)aFloat;

 - (void)setTailIndent:(float)aFloat;

 - (void)setParagraphStyle:(NSParagraphStyle *)obj;

 - (void)setLineSpacing:(float)aFloat;

 - (void)setMaximumLineHeight:(float)aFloat;

 - (void)setTabStops:(NSArray *)array;

 - (void)setMinimumLineHeight:(float)aFloat;

 - (void)setFirstLineHeadIndent:(float)aFloat;

 // Instance Methods

 - (void)addTabStop:(NSTextTab *)anObject;

 - (void)removeTabStop:(NSTextTab *)anObject;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNibConnector Mac OS X 10.0

This class represents a connection between two objects in Interface Builder. The Application Kit declares two subclasses
that represent the two types of connections supported in Interface Builder: NSNibControlConnection and
NSNibOutletConnection.

@interface NSNibConnector : NSObject <NSCoding>

 // Accessor Methods

 - (void)setLabel:(NSString *)label;

 - (NSString *)label;

 - (void)setSource:(id)source;

 - (id)source;

 - (void)setDestination:(id)destination;

 - (id)destination;

 // Instance Methods

 - (void)establishConnection;

 - (void)replaceObject:(id)oldObject withObject:(id)newObject;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

Subclasses

NSNibControlConnector, NSNibOutletConnector

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNibControlConnector Mac OS X 10.0

This class represents an action connection between two objects in Interface Builder.

@interface NSNibControlConnector : NSNibConnector

 // Instance Methods

 - (void)establishConnection;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNibOutletConnector Mac OS X 10.0

This class represents an outlet connection between two objects in Interface Builder.

@interface NSNibOutletConnector : NSNibConnector

 // Instance Methods

 - (void)establishConnection;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSOpenGLContext Mac OS X 10.0

This class provides an interface to objects that are responsible for interpreting and rendering calls to the OpenGL API.
NSOpenGLContext supports rendering on the full screen (as would be done in a game), off-screen, or into an instance of
NSOpenGLView (which might be useful for data visualization applications).

@interface NSOpenGLContext : NSObject

 // Initializers

 - (id)initWithFormat:(NSOpenGLPixelFormat *)format shareContext:(NSOpenGLContext *)share;

 // Accessor Methods

 - (void)setCurrentVirtualScreen:(int)screen;

 - (int)currentVirtualScreen;

 - (void)setFullScreen;

 - (void)setOffScreen:(void *)baseaddr width:(long)width height:(long)height rowbytes:(long)rowbytes;

 - (void)setValues:(const long *)vals forParameter:(NSOpenGLContextParameter)param;

 - (void)setView:(NSView *)view;

 - (NSView *)view;

 // Class Methods

 + (void)clearCurrentContext;

 + (NSOpenGLContext *)currentContext;

 // Instance Methods

 - (void)createTexture:(unsigned long/*GLenum*/)target fromView:(NSView*)view
 internalFormat:(unsigned long/*GLenum*/)format;

 - (void)clearDrawable;

 - (void)copyAttributesFromContext:(NSOpenGLContext *)context withMask:(unsigned long)mask;

 - (void)flushBuffer;

 - (void)getValues:(long *)vals forParameter:(NSOpenGLContextParameter)param;

 - (void)makeCurrentContext;

 - (void)update;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSOpenGLPixelFormat Mac OS X 10.0

This class is used by NSOpenGLContext and NSOpenGLView to specify the attributes of an OpenGL pixel format, such as
buffer size and type and rendering options.

@interface NSOpenGLPixelFormat : NSObject <NSCoding>

 // Initializers

 - (id)initWithAttributes:(NSOpenGLPixelFormatAttribute*)attribs;

 - (id)initWithData:(NSData*)attribs;

 // Accessor Methods

 - (void)setAttributes:(NSData*)attribs;

 - (NSData*)attributes;

 // Instance Methods

 - (void)getValues:(long*)vals forAttribute:(NSOpenGLPixelFormatAttribute)attrib
 forVirtualScreen:(int)screen;

 - (int)numberOfVirtualScreens;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSOpenGLView Mac OS X 10.0

This subclass of NSView allows applications to render calls to the OpenGL API into a Cocoa view hierarchy. Instances of
this class maintain NSOpenGLPixelFormat and NSOpenGLContext objects to control many OpenGL rendering options and
parameters.

@interface NSOpenGLView : NSView

 // Initializers

 - (id)initWithFrame:(NSRect)frameRect pixelFormat:(NSOpenGLPixelFormat*)format;

 // Accessor Methods

 - (void)setPixelFormat:(NSOpenGLPixelFormat*)pixelFormat;

 - (NSOpenGLPixelFormat*)pixelFormat;

 - (void)setOpenGLContext:(NSOpenGLContext*)context;

 - (NSOpenGLContext*)openGLContext;

 // Class Methods

 + (NSOpenGLPixelFormat*)defaultPixelFormat;

 // Instance Methods

 - (void)clearGLContext;

 - (void)reshape;

 - (void)update;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSOpenPanel Mac OS X 10.0

This subclass of NSSavePanel implements a Mac OS X Open panel with which users are presented a filesystem browser
interface to choose files or directories for the application to open. The Open panel is created by invoking the class
method openPanel, and is displayed onscreen using any of the runModal... or beginSheet... methods. After an Open panel
has been closed by the user, an application can obtain an array of the selected files or directories as paths or URLs
using the method filenames or URLs.

@interface NSOpenPanel : NSSavePanel

 // Accessor Methods

 - (void)setCanChooseDirectories:(BOOL)flag;

 - (BOOL)canChooseDirectories;

 - (void)setCanChooseFiles:(BOOL)flag;

 - (BOOL)canChooseFiles;

 - (void)setResolvesAliases:(BOOL)flag;

 - (BOOL)resolvesAliases;

 - (void)setAllowsMultipleSelection:(BOOL)flag;

 - (BOOL)allowsMultipleSelection;

 // Class Methods

 + (NSOpenPanel *)openPanel;

 // Instance Methods

 - (NSArray *)URLs;

 - (void)beginSheetForDirectory:(NSString *)path file:(NSString *)name types:(NSArray *)fileTypes
 modalForWindow:(NSWindow *)docWindow modalDelegate:(id)delegate didEndSelector:(SEL)didEndSelector
 contextInfo:(void *)contextInfo;

 - (NSArray *)filenames;

 - (int)runModalForDirectory:(NSString *)path file:(NSString *)name types:(NSArray *)fileTypes;

 - (int)runModalForDirectory:(NSString *)path file:(NSString *)name types:(NSArray *)fileTypes
 relativeToWindow:(NSWindow*)window;

 - (int)runModalForTypes:(NSArray *)fileTypes;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSOutlineView Mac OS X 10.0

This subclass of NSTableView implements a user interface component that can display hierarchical data (such as how a
filesystem structure is displayed in the Finder's list view). In an NSOutlineView, users can expand and collapse rows,
change the width and order of columns, and edit the contents of the outline. NSOutlineView objects rely on classes that
implement the NSOutlineViewDataSource protocol to provide the data to be displayed in the outline.

@interface NSOutlineView : NSTableView

 // Accessor Methods

 - (void)setAutosaveExpandedItems:(BOOL)save;

 - (BOOL)autosaveExpandedItems;

 - (void)setAutoresizesOutlineColumn:(BOOL)resize;

 - (BOOL)autoresizesOutlineColumn;

 - (void)setIndentationPerLevel:(float)indentationPerLevel;

 - (float)indentationPerLevel;

 - (void)setDropItem:(id)item dropChildIndex:(int)index;

 - (void)setIndentationMarkerFollowsCell:(BOOL)drawInCell;

 - (BOOL)indentationMarkerFollowsCell;

 - (void)setOutlineTableColumn:(NSTableColumn *)outlineTableColumn;

 - (NSTableColumn *)outlineTableColumn;

 // Instance Methods

 - (void)collapseItem:(id)item;

 - (void)collapseItem:(id)item collapseChildren:(BOOL)collapseChildren;

 - (void)expandItem:(id)item;

 - (void)expandItem:(id)item expandChildren:(BOOL)expandChildren;

 - (BOOL)isExpandable:(id)item;

 - (BOOL)isItemExpanded:(id)item;

 - (id)itemAtRow:(int)row;

 - (int)levelForItem:(id)item;

 - (int)levelForRow:(int)row;

 - (void)reloadItem:(id)item;

 - (void)reloadItem:(id)item reloadChildren:(BOOL)reloadChildren;

 - (int)rowForItem:(id)item;

 - (BOOL)shouldCollapseAutoExpandedItemsForDeposited:(BOOL)deposited;

// Methods Implemented by the Delegate

 - (BOOL)outlineView:(NSOutlineView *)outlineView shouldCollapseItem:(id)item;

 - (BOOL)outlineView:(NSOutlineView *)outlineView shouldEditTableColumn:(NSTableColumn *)tableColumn
 item:(id)item;

 - (BOOL)outlineView:(NSOutlineView *)outlineView shouldExpandItem:(id)item;

 - (BOOL)outlineView:(NSOutlineView *)outlineView shouldSelectItem:(id)item;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)outlineView:(NSOutlineView *)outlineView shouldSelectTableColumn:(NSTableColumn *)tableColumn;

 - (void)outlineView:(NSOutlineView *)outlineView willDisplayCell:(id)cell
 forTableColumn:(NSTableColumn *)tableColumn item:(id)item;

 - (void)outlineView:(NSOutlineView *)outlineView willDisplayOutlineCell:(id)cell
 forTableColumn:(NSTableColumn *)tableColumn item:(id)item;

 - (void)outlineViewColumnDidMove:(NSNotification *)notification;

 - (void)outlineViewColumnDidResize:(NSNotification *)notification;

 - (void)outlineViewItemDidCollapse:(NSNotification *)notification;

 - (void)outlineViewItemDidExpand:(NSNotification *)notification;

 - (void)outlineViewItemWillCollapse:(NSNotification *)notification;

 - (void)outlineViewItemWillExpand:(NSNotification *)notification;

 - (void)outlineViewSelectionDidChange:(NSNotification *)notification;

 - (void)outlineViewSelectionIsChanging:(NSNotification *)notification;

 - (BOOL)selectionShouldChangeInOutlineView:(NSOutlineView *)outlineView;

// Notifications NSOutlineViewSelectionDidChangeNotification; NSOutlineViewSelectionIsChangingNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPageLayout Mac OS X 10.0

This class implements the Mac OS X Page Layout panel, with which users can specify page layout information such as
the paper size and orientation. Page layout objects are created with the class layout pageLayout. The panel is made
visible by invoking either runModal, or runModalWithPrintInfo:. Alternatively, the page layout panel may be displayed as a
sheet.

@interface NSPageLayout : NSObject

 // Accessor Methods

 - (void)setAccessoryView:(NSView *)aView;

 - (NSView *)accessoryView;

 - (NSView *)accessoryView;

 - (void)setAccessoryView:(NSView *)aView;

 // Class Methods

 + (NSPageLayout *)pageLayout;

 + (NSPageLayout *)pageLayout;

 // Instance Methods

 - (void)beginSheetWithPrintInfo:(NSPrintInfo *)printInfo
 modalForWindow:(NSWindow *)docWindow delegate:(id)delegate didEndSelector:(SEL)didEndSelector
 contextInfo:(void *)contextInfo;

 - (void)convertOldFactor:(float *)oldFactor newFactor:(float *)newFactor;

 - (void)pickedButton:(id)sender;

 - (void)pickedOrientation:(id)sender;

 - (void)pickedPaperSize:(id)sender;

 - (void)pickedUnits:(id)sender;

 - (NSPrintInfo *)printInfo;

 - (NSPrintInfo *)printInfo;

 - (void)readPrintInfo;

 - (void)readPrintInfo;

 - (int)runModal;

 - (int)runModal;

 - (int)runModalWithPrintInfo:(NSPrintInfo *)pInfo;

 - (int)runModalWithPrintInfo:(NSPrintInfo *)pInfo;

 - (void)writePrintInfo;

 - (void)writePrintInfo;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPanel Mac OS X 10.0

This subclass extends the functionality of NSWindow that is useful for auxiliary and utility windows. In particular, panels
are different from windows in several key ways. First, NSPanels adopt the behavior that by default the panel will hide
itself when its application becomes inactive. Second, NSPanels are capable of becoming key windows, but they may
never have main window status. Additionally, NSPanel object can be made to float above all other windows, making their
contents easily accessible when other windows are in front.

@interface NSPanel : NSWindow

 // Accessor Methods

 - (void)setFloatingPanel:(BOOL)flag;

 - (void)setBecomesKeyOnlyIfNeeded:(BOOL)flag;

 - (BOOL)becomesKeyOnlyIfNeeded;

 - (void)setWorksWhenModal:(BOOL)flag;

 - (BOOL)worksWhenModal;

 // Instance Methods

 - (BOOL)isFloatingPanel;

Subclasses

NSColorPanel, NSFontPanel, NSSavePanel
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSParagraphStyle Mac OS X 10.0

Instances of this class are used in attributed strings to encapsulate paragraph and ruler characteristics to be applied to
a range of text. Paragraph style attributes included such characteristics as paragraph alignment, line height and
spacing, paragraph spacing, and more. NSParagraphStyle is an immutable class. If you require mutability, use its
subclass, NSMutableParagraphStyle.

@interface NSParagraphStyle : NSObject <NSCoding, NSCopying, NSMutableCopying>

 // Class Methods

 + (NSParagraphStyle *)defaultParagraphStyle;

 + (NSWritingDirection)defaultWritingDirectionForLanguage:(NSString *)languageName;

 // Instance Methods

 - (NSTextAlignment)alignment;

 - (NSWritingDirection)baseWritingDirection;

 - (float)firstLineHeadIndent;

 - (float)headIndent;

 - (NSLineBreakMode)lineBreakMode;

 - (float)lineSpacing;

 - (float)maximumLineHeight;

 - (float)minimumLineHeight;

 - (float)paragraphSpacing;

 - (NSArray *)tabStops;

 - (float)tailIndent;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSMutableCopying

 - (id)mutableCopyWithZone:(NSZone *)zone;

Subclasses

NSMutableParagraphStyle

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPasteboard Mac OS X 10.0

This class provides access to the pasteboard server, which allows applications to share data with one another. A general
purpose pasteboard is obtained using the class method generalPasteboard. Alternatively, clients can access one of the
standard pasteboards (general, font, ruler, find, and drag), or create a private pasteboard using the class method
pasteboardWithName:.

Data is read and written to a pasteboard using the methods dataForType: and setData:forType, respectively.

@interface NSPasteboard : NSObject

 // Convenience Constructors

 + (NSPasteboard *)pasteboardByFilteringData:(NSData *)data ofType:(NSString *)type;

 + (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename;

 + (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:(NSPasteboard *)pboard;

 + (NSPasteboard *)pasteboardWithName:(NSString *)name;

 + (NSPasteboard *)pasteboardWithUniqueName;

 // Accessor Methods

 - (BOOL)setString:(NSString *)string forType:(NSString *)dataType;

 - (BOOL)setData:(NSData *)data forType:(NSString *)dataType;

 - (BOOL)setPropertyList:(id)plist forType:(NSString *)dataType;

 // Class Methods

 + (NSPasteboard *)generalPasteboard;

 + (NSArray *)typesFilterableTo:(NSString *)type;

 // Instance Methods

 - (NSString *)availableTypeFromArray:(NSArray *)types;

 - (int)addTypes:(NSArray *)newTypes owner:(id)newOwner;

 - (int)changeCount;

 - (NSData *)dataForType:(NSString *)dataType;

 - (int)declareTypes:(NSArray *)newTypes owner:(id)newOwner;

 - (NSString *)name;

 - (id)propertyListForType:(NSString *)dataType;

 - (NSString *)readFileContentsType:(NSString *)type toFile:(NSString *)filename;

 - (NSFileWrapper *)readFileWrapper;

 - (void)releaseGlobally;

 - (NSString *)stringForType:(NSString *)dataType;

 - (NSArray *)types;

 - (BOOL)writeFileContents:(NSString *)filename;

 - (BOOL)writeFileWrapper:(NSFileWrapper *)wrapper;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPDFImageRep Mac OS X 10.0

This is a subclass of NSImageRep that understands how to manipulate, represent, and draw PDF-formatted image data.

@interface NSPDFImageRep : NSImageRep

 // Initializers

 - (id)initWithData:(NSData*)pdfData;

 // Class Methods

 + (id)imageRepWithData:(NSData*)pdfData;

 // Instance Methods

 - (int) currentPage;

 - (int) pageCount;

 - (void)setCurrentPage:(int)page;

 - (NSData*)PDFRepresentation;

 - (NSRect)bounds;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPICTImageRep Mac OS X 10.0

This is a subclass of NSImageRep that understands how to manipulate, represent, and draw Macintosh PICT-formatted
image data.

@interface NSPICTImageRep : NSImageRep

 // Initializers

 - (id)initWithData:(NSData*)pictData;

 // Class Methods

 + (id)imageRepWithData:(NSData*)pictData;

 // Instance Methods

 - (NSRect) boundingBox;

 - (NSData*)PICTRepresentation;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPopUpButton Mac OS X 10.0

This class implements a pop-up button interface component. A pop-up button is a button that displays a menu when it
is activated; the displayed menu can either be a pop-up menu that appears beneath the mouse cursor, or a pull-down
menu that is drawn below the button.

@interface NSPopUpButton : NSButton

 // Initializers

 - (id)initWithFrame:(NSRect)buttonFrame pullsDown:(BOOL)flag;

 // Accessor Methods

 - (void)setPullsDown:(BOOL)flag;

 - (BOOL)pullsDown;

 - (void)setTitle:(NSString *)aString;

 - (void)setAutoenablesItems:(BOOL)flag;

 - (BOOL)autoenablesItems;

 - (void)setPreferredEdge:(NSRectEdge)edge;

 - (NSRectEdge)preferredEdge;

 - (void)setMenu:(NSMenu *)menu;

 - (NSMenu *)menu;

 // Instance Methods

 - (void)addItemWithTitle:(NSString *)title;

 - (void)addItemsWithTitles:(NSArray *)itemTitles;

 - (int)indexOfItem:(id <NSMenuItem>)item;

 - (int)indexOfItemWithRepresentedObject:(id)obj;

 - (int)indexOfItemWithTag:(int)tag;

 - (int)indexOfItemWithTarget:(id)target andAction:(SEL)actionSelector;

 - (int)indexOfItemWithTitle:(NSString *)title;

 - (int)indexOfSelectedItem;

 - (void)insertItemWithTitle:(NSString *)title atIndex:(int)index;

 - (NSArray *)itemArray;

 - (id <NSMenuItem>)itemAtIndex:(int)index;

 - (NSString *)itemTitleAtIndex:(int)index;

 - (NSArray *)itemTitles;

 - (id <NSMenuItem>)itemWithTitle:(NSString *)title;

 - (id <NSMenuItem>)lastItem;

 - (int)numberOfItems;

 - (void)removeAllItems;

 - (void)removeItemAtIndex:(int)index;

 - (void)removeItemWithTitle:(NSString *)title;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)selectItem:(id <NSMenuItem>)item;

 - (void)selectItemAtIndex:(int)index;

 - (void)selectItemWithTitle:(NSString *)title;

 - (id <NSMenuItem>)selectedItem;

 - (void)synchronizeTitleAndSelectedItem;

 - (NSString *)titleOfSelectedItem;

// Notifications

 NSPopUpButtonWillPopUpNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPopUpButtonCell Mac OS X 10.0

This class is the associated NSCell for an NSPopUpButton object that handles the drawing and mouse-handling for the
control.

@interface NSPopUpButtonCell : NSMenuItemCell

 // Initializers

 - (id)initTextCell:(NSString *)stringValue pullsDown:(BOOL)pullDown;

 // Accessor Methods

 - (void)setAltersStateOfSelectedItem:(BOOL)flag;

 - (BOOL)altersStateOfSelectedItem;

 - (void)setTitle:(NSString *)aString;

 - (void)setArrowPosition:(NSPopUpArrowPosition)position;

 - (NSPopUpArrowPosition)arrowPosition;

 - (void)setPullsDown:(BOOL)flag;

 - (BOOL)pullsDown;

 - (void)setUsesItemFromMenu:(BOOL)flag;

 - (BOOL)usesItemFromMenu;

 - (void)setAutoenablesItems:(BOOL)flag;

 - (BOOL)autoenablesItems;

 - (void)setPreferredEdge:(NSRectEdge)edge;

 - (NSRectEdge)preferredEdge;

 - (void)setMenu:(NSMenu *)menu;

 - (NSMenu *)menu;

 // Instance Methods

 - (void)addItemWithTitle:(NSString *)title;

 - (void)addItemsWithTitles:(NSArray *)itemTitles;

 - (void)attachPopUpWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (void)dismissPopUp;

 - (int)indexOfItem:(id <NSMenuItem>)item;

 - (int)indexOfItemWithRepresentedObject:(id)obj;

 - (int)indexOfItemWithTag:(int)tag;

 - (int)indexOfItemWithTarget:(id)target andAction:(SEL)actionSelector;

 - (int)indexOfItemWithTitle:(NSString *)title;

 - (int)indexOfSelectedItem;

 - (void)insertItemWithTitle:(NSString *)title atIndex:(int)index;

 - (NSArray *)itemArray;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (id <NSMenuItem>)itemAtIndex:(int)index;

 - (NSString *)itemTitleAtIndex:(int)index;

 - (NSArray *)itemTitles;

 - (id <NSMenuItem>)itemWithTitle:(NSString *)title;

 - (id <NSMenuItem>)lastItem;

 - (int)numberOfItems;

 - (void)performClickWithFrame:(NSRect)frame inView:(NSView *)controlView;

 - (void)removeAllItems;

 - (void)removeItemAtIndex:(int)index;

 - (void)removeItemWithTitle:(NSString *)title;

 - (void)selectItem:(id <NSMenuItem>)item;

 - (void)selectItemAtIndex:(int)index;

 - (void)selectItemWithTitle:(NSString *)title;

 - (id <NSMenuItem>)selectedItem;

 - (void)synchronizeTitleAndSelectedItem;

 - (NSString *)titleOfSelectedItem;

// Notifications

 NSPopUpButtonCellWillPopUpNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPrinter Mac OS X 10.0

This class represents a printer as it is described in its PPD file. Using this class, applications can obtain information
about any of the printers found in the Print Center application. To create an instance of NSPrint, use either the method
printerWithName: or the method printerWithType:. If the printer indicated by the name or type does not exist in the Print
Center printer list, these methods will return nil. In these methods, Type refers to the make and model of the printer,
while Name refers to the name given to the printer in Print Center. Applications can obtain arrays of the names and
types of available printers by invoking the class methods printerNames and printerTypes, respectively.

@interface NSPrinter : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (NSArray *)printerNames;

 + (NSArray *)printerTypes;

 + (NSPrinter *)printerWithName:(NSString *)name;

 + (NSPrinter *)printerWithName:(NSString *)name domain:(NSString *)domain includeUnavailable:(BOOL)flag;

 + (NSPrinter *)printerWithType:(NSString *)type;

 // Instance Methods

 - (BOOL)acceptsBinary;

 - (BOOL)booleanForKey:(NSString *)key inTable:(NSString *)table;

 - (NSDictionary *)deviceDescription;

 - (NSString *)domain;

 - (float)floatForKey:(NSString *)key inTable:(NSString *)table;

 - (NSString *)host;

 - (NSRect)imageRectForPaper:(NSString *)paperName;

 - (int)intForKey:(NSString *)key inTable:(NSString *)table;

 - (BOOL)isColor;

 - (BOOL)isFontAvailable:(NSString *)faceName;

 - (BOOL)isKey:(NSString *)key inTable:(NSString *)table;

 - (BOOL)isOutputStackInReverseOrder;

 - (int)languageLevel;

 - (NSString *)name;

 - (NSString *)note;

 - (NSSize)pageSizeForPaper:(NSString *)paperName;

 - (NSRect)rectForKey:(NSString *)key inTable:(NSString *)table;

 - (NSSize)sizeForKey:(NSString *)key inTable:(NSString *)table;

 - (NSPrinterTableStatus)statusForTable:(NSString *)tableName;

 - (NSString *)stringForKey:(NSString *)key inTable:(NSString *)table;

 - (NSArray *)stringListForKey:(NSString *)key inTable:(NSString *)table;

 - (NSString *)type;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPrintInfo Mac OS X 10.0

This class encapsulates the information related to a print job, such as margin sizes, paper orientation, pagination type,
and how the view contents should be positioned on the printed output (centered vertically, horizontally, no centering,
etc.). Each application has a shared print info object that is used by default for all print jobs. This object is obtained
using the class method sharedPrintInfo.

@interface NSPrintInfo : NSObject <NSCoding, NSCopying>

 // Initializers

 - (id)initWithDictionary:(NSDictionary *)attributes;

 // Accessor Methods

 - (void)setUpPrintOperationDefaultValues;

 - (void)setHorizontallyCentered:(BOOL)flag;

 - (void)setPaperName:(NSString *)name;

 - (NSString *)paperName;

 - (void)setPaperSize:(NSSize)size;

 - (NSSize)paperSize;

 - (void)setOrientation:(NSPrintingOrientation)orientation;

 - (NSPrintingOrientation)orientation;

 - (void)setPrinter:(NSPrinter *)printer;

 - (NSPrinter *)printer;

 - (void)setJobDisposition:(NSString *)disposition;

 - (NSString *)jobDisposition;

 - (void)setHorizontalPagination:(NSPrintingPaginationMode)mode;

 - (NSPrintingPaginationMode)horizontalPagination;

 - (void)setRightMargin:(float)margin;

 - (float)rightMargin;

 - (void)setTopMargin:(float)margin;

 - (float)topMargin;

 - (void)setLeftMargin:(float)margin;

 - (float)leftMargin;

 - (void)setVerticallyCentered:(BOOL)flag;

 - (void)setVerticalPagination:(NSPrintingPaginationMode)mode;

 - (NSPrintingPaginationMode)verticalPagination;

 - (void)setBottomMargin:(float)margin;

 - (float)bottomMargin;

 // Class Methods

 + (NSPrinter *)defaultPrinter;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (void)setDefaultPrinter:(NSPrinter *)printer;

 + (void)setSharedPrintInfo:(NSPrintInfo *)printInfo;

 + (NSPrintInfo *)sharedPrintInfo;

 + (NSSize)sizeForPaperName:(NSString *)name;

 // Instance Methods

 - (NSMutableDictionary *)dictionary;

 - (NSRect)imageablePageBounds;

 - (BOOL)isHorizontallyCentered;

 - (BOOL)isVerticallyCentered;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPrintOperation Mac OS X 10.0

Instances of this class work with NSView and NSPrintInfo objects to coordinate the generation of EPS or PDF data suitable
for output to a printer device. In Cocoa's printing system, NSPrintInfo objects provide information about output settings
such as paper size and margin widths, while NSView objects are responsible for creating the actual output with the same
standard drawing APIs used for onscreen drawing.

@interface NSPrintOperation : NSObject

 // Accessor Methods

 - (void)setPageOrder:(NSPrintingPageOrder)order;

 - (NSPrintingPageOrder)pageOrder;

 - (void)setCanSpawnSeparateThread:(BOOL)canSpawnSeparateThread;

 - (BOOL)canSpawnSeparateThread;

 - (void)setJobStyleHint:(NSString *)hint;

 - (NSString *)jobStyleHint;

 - (void)setPrintInfo:(NSPrintInfo *)aPrintInfo;

 - (NSPrintInfo *)printInfo;

 - (void)setAccessoryView:(NSView *)aView;

 - (NSView *)accessoryView;

 - (void)setPrintPanel:(NSPrintPanel *)panel;

 - (NSPrintPanel *)printPanel;

 - (void)setShowPanels:(BOOL)flag;

 - (BOOL)showPanels;

 // Class Methods

 + (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
 insideRect:(NSRect)rect toData:(NSMutableData *)data;

 + (NSPrintOperation *)EPSOperationWithView:(NSView *)aView
 insideRect:(NSRect)rect toData:(NSMutableData *)data printInfo:(NSPrintInfo *)aPrintInfo;

 + (NSPrintOperation *)EPSOperationWithView:(NSView *)aView insideRect:(NSRect)rect toPath:(NSString *)path
 printInfo:(NSPrintInfo *)aPrintInfo;

 + (NSPrintOperation *)PDFOperationWithView:(NSView *)aView
 insideRect:(NSRect)rect toData:(NSMutableData *)data;

 + (NSPrintOperation *)PDFOperationWithView:(NSView *)aView
 insideRect:(NSRect)rect toData:(NSMutableData *)data printInfo:(NSPrintInfo *)aPrintInfo;

 + (NSPrintOperation *)PDFOperationWithView:(NSView *)aView insideRect:(NSRect)rect toPath:(NSString *)path
 printInfo:(NSPrintInfo *)aPrintInfo;

 + (NSPrintOperation *)currentOperation;

 + (NSPrintOperation *)printOperationWithView:(NSView *)aView;

 + (NSPrintOperation *)printOperationWithView:(NSView *)aView printInfo:(NSPrintInfo *)aPrintInfo;

 + (void)setCurrentOperation:(NSPrintOperation *)operation;

 // Instance Methods

 - (void)cleanUpOperation;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)deliverResult;

 - (NSGraphicsContext *)createContext;

 - (int)currentPage;

 - (NSGraphicsContext *)context;

 - (void)destroyContext;

 - (BOOL)isCopyingOperation;

 - (BOOL)runOperation;

 - (void)runOperationModalForWindow:(NSWindow *)docWindow delegate:(id)delegate
 didRunSelector:(SEL)didRunSelector contextInfo:(void *)contextInfo;

 - (NSView *)view;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSPrintPanel Mac OS X 10.0

This class provides the Mac OS X Print panel interface for Cocoa applications. To obtain an instance of NSPrintPanel, use
the class method printPanel. The panel is displayed and run when the runModal method is invoked, which will display the
print panel as a window. It is also possible to display the print panel as a sheet attached to the document window; this
is done with the method beginSheetWithPrintInfo:modalFor-Window: delegate:didEndSelector:contextInfo:.

Cocoa allows you to attach an accessory view to the print panel, providing an interface for users to configure options
related to how your application handles printing. To set the accessory view, use the method setAccessoryView:.

@interface NSPrintPanel : NSObject

 // Accessor Methods

 - (void)setAccessoryView:(NSView *)aView;

 - (NSView *)accessoryView;

 - (void)setJobStyleHint:(NSString *)hint;

 - (NSString *)jobStyleHint;

 // Class Methods

 + (NSPrintPanel *)printPanel;

 // Instance Methods

 - (void)beginSheetWithPrintInfo:(NSPrintInfo *)printInfo modalForWindow:(NSWindow *)docWindow
 delegate:(id)delegate didEndSelector:(SEL)didEndSelector contextInfo:(void *)contextInfo;

 - (void)finalWritePrintInfo;

 - (void)pickedAllPages:(id)sender;

 - (void)pickedButton:(id)sender;

 - (void)pickedLayoutList:(id)sender;

 - (int)runModal;

 - (void)updateFromPrintInfo;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSProgressIndicator Mac OS X 10.0

This class implements a progress bar interface component. Cocoa progress indicators may either be determinate or
indeterminate. A determinate progress indicator shows progress by filling the bar proportionate to the amount of work
that has been done. An indeterminate progress indicator displays the spinning barber pole to show that an application is
busy with a task.

@interface NSProgressIndicator : NSView

 // Accessor Methods

 - (void)setBezeled:(BOOL)flag;

 - (void)setIndeterminate:(BOOL)flag;

 - (void)setMaxValue:(double)newMaximum;

 - (double)maxValue;

 - (void)setDoubleValue:(double)doubleValue;

 - (double)doubleValue;

 - (void)setAnimationDelay:(NSTimeInterval)delay;

 - (NSTimeInterval)animationDelay;

 - (void)setUsesThreadedAnimation:(BOOL)threadedAnimation;

 - (BOOL)usesThreadedAnimation;

 - (void)setMinValue:(double)newMinimum;

 - (double)minValue;

 - (void)setControlTint:(NSControlTint)tint;

 - (NSControlTint)controlTint;

 - (void)setControlSize:(NSControlSize)size;

 - (NSControlSize)controlSize;

 // Instance Methods

 - (BOOL)isDisplayedWhenStopped;

 - (void)setDisplayedWhenStopped:(BOOL)isDisplayed;

 - (void)setStyle:(NSProgressIndicatorStyle)style;

 - (void)sizeToFit;

 - (NSProgressIndicatorStyle)style;

 - (void)animate:(id)sender;

 - (void)incrementBy:(double)delta;

 - (BOOL)isBezeled;

 - (BOOL)isIndeterminate;

 - (void)startAnimation:(id)sender;

 - (void)stopAnimation:(id)sender;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSQuickDrawView Mac OS X 10.0

This subclass of NSView provides a destination in a Cocoa view for the QuickDraw drawing commands that are part of
the Carbon APIs.

@interface NSQuickDrawView : NSView

 // Instance Methods

 - (void*)qdPort;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSResponder Mac OS X 10.0

This abstract class provides the basis of the Application Kit's event handling system. NSResponder is the superclass of the
three cornerstone classes of the AppKit: NSApplication, NSView, and NSWindow. The methods in this class are overridden
by subclasses to handle mouse and key event handling messages. For more information about AppKit event handling
with NSResponder, see Chapter 3.

@interface NSResponder : NSObject <NSCoding>

 // Accessor Methods

 - (void)setInterfaceStyle:(NSInterfaceStyle)interfaceStyle;

 - (NSInterfaceStyle)interfaceStyle;

 - (void)setMark:(id)sender;

 - (void)setNextResponder:(NSResponder *)aResponder;

 - (NSResponder *)nextResponder;

 - (void)setMenu:(NSMenu *)menu;

 - (NSMenu *)menu;

 // Instance Methods

 - (BOOL)acceptsFirstResponder;

 - (BOOL)becomeFirstResponder;

 - (void)capitalizeWord:(id)sender;

 - (void)centerSelectionInVisibleArea:(id)sender;

 - (void)changeCaseOfLetter:(id)sender;

 - (void)complete:(id)sender;

 - (void)deleteBackward:(id)sender;

 - (void)deleteForward:(id)sender;

 - (void)deleteToBeginningOfLine:(id)sender;

 - (void)deleteToBeginningOfParagraph:(id)sender;

 - (void)deleteToEndOfLine:(id)sender;

 - (void)deleteToEndOfParagraph:(id)sender;

 - (void)deleteToMark:(id)sender;

 - (void)deleteWordBackward:(id)sender;

 - (void)deleteWordForward:(id)sender;

 - (void)doCommandBySelector:(SEL)aSelector;

 - (void)flagsChanged:(NSEvent *)theEvent;

 - (void)flushBufferedKeyEvents;

 - (void)helpRequested:(NSEvent *)eventPtr;

 - (void)indent:(id)sender;

 - (void)insertBacktab:(id)sender;

 - (void)insertNewline:(id)sender;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)insertNewlineIgnoringFieldEditor:(id)sender;

 - (void)insertParagraphSeparator:(id)sender;

 - (void)insertTab:(id)sender;

 - (void)insertTabIgnoringFieldEditor:(id)sender;

 - (void)insertText:(id)insertString;

 - (void)interpretKeyEvents:(NSArray *)eventArray;

 - (void)keyDown:(NSEvent *)theEvent;

 - (void)keyUp:(NSEvent *)theEvent;

 - (void)lowercaseWord:(id)sender;

 - (void)mouseDown:(NSEvent *)theEvent;

 - (void)mouseDragged:(NSEvent *)theEvent;

 - (void)mouseEntered:(NSEvent *)theEvent;

 - (void)mouseExited:(NSEvent *)theEvent;

 - (void)mouseMoved:(NSEvent *)theEvent;

 - (void)mouseUp:(NSEvent *)theEvent;

 - (void)moveBackward:(id)sender;

 - (void)moveBackwardAndModifySelection:(id)sender;

 - (void)moveDown:(id)sender;

 - (void)moveDownAndModifySelection:(id)sender;

 - (void)moveForward:(id)sender;

 - (void)moveForwardAndModifySelection:(id)sender;

 - (void)moveLeft:(id)sender;

 - (void)moveRight:(id)sender;

 - (void)moveToBeginningOfDocument:(id)sender;

 - (void)moveToBeginningOfLine:(id)sender;

 - (void)moveToBeginningOfParagraph:(id)sender;

 - (void)moveToEndOfDocument:(id)sender;

 - (void)moveToEndOfLine:(id)sender;

 - (void)moveToEndOfParagraph:(id)sender;

 - (void)moveUp:(id)sender;

 - (void)moveUpAndModifySelection:(id)sender;

 - (void)moveWordBackward:(id)sender;

 - (void)moveWordBackwardAndModifySelection:(id)sender;

 - (void)moveWordForward:(id)sender;

 - (void)moveWordForwardAndModifySelection:(id)sender;

 - (void)noResponderFor:(SEL)eventSelector;

 - (void)otherMouseDown:(NSEvent *)theEvent;

 - (void)otherMouseDragged:(NSEvent *)theEvent;

 - (void)otherMouseUp:(NSEvent *)theEvent;

 - (void)pageDown:(id)sender;

 - (void)pageUp:(id)sender;

 - (BOOL)performKeyEquivalent:(NSEvent *)theEvent;

 - (BOOL)resignFirstResponder;

 - (void)rightMouseDown:(NSEvent *)theEvent;

 - (void)rightMouseDragged:(NSEvent *)theEvent;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)rightMouseDragged:(NSEvent *)theEvent;

 - (void)rightMouseUp:(NSEvent *)theEvent;

 - (void)scrollLineDown:(id)sender;

 - (void)scrollLineUp:(id)sender;

 - (void)scrollPageDown:(id)sender;

 - (void)scrollPageUp:(id)sender;

 - (void)scrollWheel:(NSEvent *)theEvent;

 - (void)selectAll:(id)sender;

 - (void)selectLine:(id)sender;

 - (void)selectParagraph:(id)sender;

 - (void)selectToMark:(id)sender;

 - (void)selectWord:(id)sender;

 - (BOOL)shouldBeTreatedAsInkEvent:(NSEvent *)theEvent;

 - (void)showContextHelp:(id)sender;

 - (void)swapWithMark:(id)sender;

 - (void)transpose:(id)sender;

 - (void)transposeWords:(id)sender;

 - (BOOL)tryToPerform:(SEL)anAction with:(id)anObject;

 - (NSUndoManager *)undoManager;

 - (void)uppercaseWord:(id)sender;

 - (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString *)returnType;

 - (void)yank:(id)sender;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

Subclasses

NSApplication, NSDrawer, NSView, NSWindow, NSWindowController

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSRulerMarker Mac OS X 10.0

Instances of this class are used to display symbolic markers in an NSRulerView. An example of ruler view markers are
those that text documents use to indicate the position of tab stops or table columns. Markers are initialized with an
associated ruler view, a position in that view, an image used to represent the marker in the ruler view, and an NSPoint
that specifies what point in the image should be treated as the marker origin.

@interface NSRulerMarker : NSObject <NSCoding, NSCopying>

 // Initializers

 - (id)initWithRulerView:(NSRulerView *)ruler markerLocation:(float)location image:(NSImage *)image
 imageOrigin:(NSPoint)imageOrigin;

 // Accessor Methods

 - (void)setRepresentedObject:(id <NSCopying>)representedObject;

 - (id <NSCopying>)representedObject;

 - (void)setImageOrigin:(NSPoint)imageOrigin;

 - (NSPoint)imageOrigin;

 - (void)setMarkerLocation:(float)location;

 - (float)markerLocation;

 - (void)setMovable:(BOOL)flag;

 - (void)setImage:(NSImage *)image;

 - (NSImage *)image;

 - (void)setRemovable:(BOOL)flag;

 // Instance Methods

 - (void)drawRect:(NSRect)rect;

 - (NSRect)imageRectInRuler;

 - (BOOL)isDragging;

 - (BOOL)isMovable;

 - (BOOL)isRemovable;

 - (NSRulerView *)ruler;

 - (float)thicknessRequiredInRuler;

 - (BOOL)trackMouse:(NSEvent *)mouseDownEvent adding:(BOOL)isAdding;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

// Methods Implemented by the Delegate

 - (void)rulerView:(NSRulerView *)ruler didAddMarker:(NSRulerMarker *)marker;

 - (void)rulerView:(NSRulerView *)ruler didMoveMarker:(NSRulerMarker *)marker;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)rulerView:(NSRulerView *)ruler didRemoveMarker:(NSRulerMarker *)marker;

 - (void)rulerView:(NSRulerView *)ruler handleMouseDown:(NSEvent *)event;

 - (BOOL)rulerView:(NSRulerView *)ruler shouldAddMarker:(NSRulerMarker *)marker;

 - (BOOL)rulerView:(NSRulerView *)ruler shouldMoveMarker:(NSRulerMarker *)marker;

 - (BOOL)rulerView:(NSRulerView *)ruler shouldRemoveMarker:(NSRulerMarker *)marker;

 - (float)rulerView:(NSRulerView *)ruler willAddMarker:(NSRulerMarker *)marker atLocation:(float)location;

 - (float)rulerView:(NSRulerView *)ruler willMoveMarker:(NSRulerMarker *)marker toLocation:(float)location;

 - (void)rulerView:(NSRulerView *)ruler willSetClientView:(NSView *)newClient;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSRulerView Mac OS X 10.0

This is a subclass of NSView and is used to draw rulers in an NSScrollView. A ruler view keeps track of the units used to
convert measurements between pixels and whatever unit the client specifies should be displayed by the ruler view. A
ruler view may contain ruler markers, which are instances of the class NSRulerMarker.

@interface NSRulerView : NSView

 // Initializers

 - (id)initWithScrollView:(NSScrollView *)scrollView orientation:(NSRulerOrientation)orientation;

 // Accessor Methods

 - (void)setReservedThicknessForAccessoryView:(float)thickness;

 - (float)reservedThicknessForAccessoryView;

 - (void)setScrollView:(NSScrollView *)scrollView;

 - (NSScrollView *)scrollView;

 - (void)setOriginOffset:(float)offset;

 - (float)originOffset;

 - (void)setOrientation:(NSRulerOrientation)orientation;

 - (NSRulerOrientation)orientation;

 - (void)setClientView:(NSView *)client;

 - (NSView *)clientView;

 - (void)setReservedThicknessForMarkers:(float)thickness;

 - (float)reservedThicknessForMarkers;

 - (void)setMarkers:(NSArray *)markers;

 - (NSArray *)markers;

 - (void)setRuleThickness:(float)thickness;

 - (float)ruleThickness;

 - (void)setAccessoryView:(NSView *)accessory;

 - (NSView *)accessoryView;

 - (void)setMeasurementUnits:(NSString *)unitName;

 - (NSString *)measurementUnits;

 // Class Methods

 + (void)registerUnitWithName:(NSString *)unitName abbreviation:(NSString *)abbreviation
 unitToPointsConversionFactor:(float)conversionFactor tepUpCycle:(NSArray *)stepUpCycle
 stepDownCycle:(NSArray *)stepDownCycle;

 // Instance Methods

 - (void)addMarker:(NSRulerMarker *)marker;

 - (float)baselineLocation;

 - (void)drawHashMarksAndLabelsInRect:(NSRect)rect;

 - (void)drawMarkersInRect:(NSRect)rect;

 - (void)invalidateHashMarks;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)isFlipped;

 - (void)moveRulerlineFromLocation:(float)oldLocation toLocation:(float)newLocation;

 - (void)removeMarker:(NSRulerMarker *)marker;

 - (float)requiredThickness;

 - (BOOL)trackMarker:(NSRulerMarker *)marker withMouseEvent:(NSEvent *)event;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSavePanel Mac OS X 10.0

This class is an implementation of the complete Mac OS X file Save dialog, which clients can use to present a file
browser to users for saving files. It is possible to provide an accessory view to be displayed on the bottom part of the
Save panel. Accessory views can be used to provide additional parameters that should be used in the Save operation. A
graphics application, for example, may use the accessory view to provide controls for the user to specify compression
and format options for the file to be saved.

@interface NSSavePanel : NSPanel

 // Accessor Methods

 - (void)setTreatsFilePackagesAsDirectories:(BOOL)flag;

 - (BOOL)treatsFilePackagesAsDirectories;

 - (void)setAccessoryView:(NSView *)aView;

 - (NSView *)accessoryView;

 - (void)setExtensionHidden:(BOOL)flag;

 - (void)setCanSelectHiddenExtension:(BOOL)flag;

 - (void)setDelegate:(id)anObject;

 - (void)setDirectory:(NSString *)path;

 - (NSString *)directory;

 - (void)setPrompt:(NSString *)prompt;

 - (NSString *)prompt;

 - (void)setTitle:(NSString *)title;

 - (NSString *)title;

 - (void)setRequiredFileType:(NSString *)type;

 - (NSString *)requiredFileType;

 // Class Methods

 + (NSSavePanel *)savePanel;

 // Instance Methods

 - (void)cancel:(id)sender;

 - (void)beginSheetForDirectory:(NSString *)path file:(NSString *)name modalForWindow:(NSWindow *)docWindow
 modalDelegate:(id)delegate didEndSelector:(SEL)didEndSelector contextInfo:(void *)contextInfo;

 - (NSURL *)URL;

 - (NSString *)filename;

 - (void)ok:(id)sender;

 - (int)runModal;

 - (int)runModalForDirectory:(NSString *)path file:(NSString *)name;

 - (int)runModalForDirectory:(NSString *)path file:(NSString *)name relativeToWindow:(NSWindow*)window;

 - (void)selectText:(id)sender;

 - (BOOL)isExpanded;

 - (BOOL)isExtensionHidden;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)validateVisibleColumns;

// Methods Implemented by the Delegate

 - (NSComparisonResult)panel:(id)sender compareFilename:(NSString *)file1 with:(NSString *)file2
 caseSensitive:(BOOL)caseSensitive;

 - (BOOL)panel:(id)sender isValidFilename:(NSString *)filename;

 - (BOOL)panel:(id)sender shouldShowFilename:(NSString *)filename;

 - (NSString *)panel:(id)sender userEnteredFilename:(NSString *)filename confirmed:(BOOL)okFlag;

 - (void)panel:(id)sender willExpand:(BOOL)expanding;

Subclasses

NSOpenPanel
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScreen Mac OS X 10.0

This class represents a user's monitor, and allows clients to ascertain properties of the display such as width and height
in pixels, or color bit-depth. This class works only in the presence of an instance of NSApplication; NSScreen requires that
an application have a connection to the window server to obtain information about the screen, which is provided by
NSApplication.

@interface NSScreen : NSObject

 // Convenience Constructors

 + (NSArray *)screens;

 // Class Methods

 + (NSScreen *)deepestScreen;

 + (NSScreen *)mainScreen;

 // Instance Methods

 - (NSWindowDepth)depth;

 - (NSDictionary *)deviceDescription;

 - (NSRect)frame;

 - (const NSWindowDepth *)supportedWindowDepths;

 - (NSRect)visibleFrame;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScroller Mac OS X 10.0

This class represents the scrollbar control of a scroll view, and is used to control the scrolling of a document within a
scroll view's clip view. There is usually no need to work with NSScroller objects in code, as they are completely
configured within a scroll view by Interface Builder.

@interface NSScroller : NSControl

 // Convenience Constructors

 + (float)scrollerWidth;

 + (float)scrollerWidthForControlSize:(NSControlSize)controlSize;

 // Accessor Methods

 - (void)setFloatValue:(float)aFloat knobProportion:(float)percent;

 - (void)setControlTint:(NSControlTint)controlTint;

 - (NSControlTint)controlTint;

 - (void)setArrowsPosition:(NSScrollArrowPosition)where;

 - (NSScrollArrowPosition)arrowsPosition;

 - (void)setControlSize:(NSControlSize)controlSize;

 - (NSControlSize)controlSize;

 // Instance Methods

 - (void)checkSpaceForParts;

 - (void)drawArrow:(NSScrollerArrow)whichArrow highlight:(BOOL)flag;

 - (void)drawKnob;

 - (void)drawParts;

 - (void)highlight:(BOOL)flag;

 - (NSScrollerPart)hitPart;

 - (float)knobProportion;

 - (NSRect)rectForPart:(NSScrollerPart)partCode;

 - (NSScrollerPart)testPart:(NSPoint)thePoint;

 - (void)trackKnob:(NSEvent *)theEvent;

 - (void)trackScrollButtons:(NSEvent *)theEvent;

 - (NSUsableScrollerParts)usableParts;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSScrollView Mac OS X 10.0

This subclass of NSView allows a user to view a portion of a large document view using scrollbars. Clipping of the
document view is performed by the subclass NSClipView. Horizontal and vertical scrollbars are instances of the class
NSScroller. Rulers, which are instances of the class NSRulerView, can be displayed in the left and top edges of the
scrollview.

@interface NSScrollView : NSView

 // Accessor Methods

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setPageScroll:(float)value;

 - (float)pageScroll;

 - (void)setHorizontalRulerView:(NSRulerView *)ruler;

 - (NSRulerView *)horizontalRulerView;

 - (void)setHasVerticalRuler:(BOOL)flag;

 - (BOOL)hasVerticalRuler;

 - (void)setHasHorizontalRuler:(BOOL)flag;

 - (BOOL)hasHorizontalRuler;

 - (void)setHorizontalPageScroll:(float)value;

 - (float)horizontalPageScroll;

 - (void)setBorderType:(NSBorderType)aType;

 - (NSBorderType)borderType;

 - (void)setHorizontalLineScroll:(float)value;

 - (float)horizontalLineScroll;

 - (void)setRulersVisible:(BOOL)flag;

 - (BOOL)rulersVisible;

 - (void)setScrollsDynamically:(BOOL)flag;

 - (BOOL)scrollsDynamically;

 - (void)setHasVerticalScroller:(BOOL)flag;

 - (BOOL)hasVerticalScroller;

 - (void)setHasHorizontalScroller:(BOOL)flag;

 - (BOOL)hasHorizontalScroller;

 - (void)setLineScroll:(float)value;

 - (float)lineScroll;

 - (void)setHorizontalScroller:(NSScroller *)anObject;

 - (NSScroller *)horizontalScroller;

 - (void)setDocumentCursor:(NSCursor *)anObj;

 - (NSCursor *)documentCursor;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setDocumentView:(NSView *)aView;

 - (id)documentView;

 - (void)setContentView:(NSClipView *)contentView;

 - (NSClipView *)contentView;

 - (void)setVerticalScroller:(NSScroller *)anObject;

 - (NSScroller *)verticalScroller;

 - (void)setVerticalRulerView:(NSRulerView *)ruler;

 - (NSRulerView *)verticalRulerView;

 - (void)setVerticalLineScroll:(float)value;

 - (float)verticalLineScroll;

 - (void)setVerticalPageScroll:(float)value;

 - (float)verticalPageScroll;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

 // Class Methods

 + (NSSize)contentSizeForFrameSize:(NSSize)fSize hasHorizontalScroller:(BOOL)hFlag hasVerticalScroller:(BOOL)vFlag
 borderType:(NSBorderType)aType;

 + (NSSize)frameSizeForContentSize:(NSSize)cSize hasHorizontalScroller:(BOOL)hFlag hasVerticalScroller:(BOOL)vFlag
 borderType:(NSBorderType)aType;

 + (Class)rulerViewClass;

 + (void)setRulerViewClass:(Class)rulerViewClass;

 // Instance Methods

 - (void)reflectScrolledClipView:(NSClipView *)cView;

 - (void)scrollWheel:(NSEvent *)theEvent;

 - (void)tile;

 - (NSSize)contentSize;

 - (NSRect)documentVisibleRect;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSecureTextField Mac OS X 10.0

NSSecureTextField is a subclass of NSTextField that adds the behavior of displaying the contents of the text field as a string
of dots so that the value of the string is kept hidden. This is the control a developer would use for password entry fields,
or any other text field that displays sensitive values that may need to be hidden.

@interface NSSecureTextField : NSTextField

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSecureTextFieldCell Mac OS X 10.0

This class is the cell associated with the NSSecureTextField control. NSSecureTextFieldCell is responsible for the appearance
of the secure text field control, as well as any mouse event handling that occurs over the cell.

@interface NSSecureTextFieldCell : NSTextFieldCell

 // Accessor Methods

 - (void)setEchosBullets:(BOOL)flag;

 - (BOOL)echosBullets;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSimpleHorizontalTypesetter Mac OS X 10.0

This concrete subclass of NSTypesetter supports left-to-right line layout. This class handles such things as hyphenation,
word wrapping, and line-breaking. For more information about Cocoa's text layout engine, see Chapter 5.

@interface NSSimpleHorizontalTypesetter : NSTypesetter

 // Class Methods

 + (id)sharedInstance;

 // Instance Methods

 - (void)willSetLineFragmentRect:(NSRect *)aRect forGlyphRange:(NSRange)aRange usedRect:(NSRect *)bRect;

 - (NSTypesetterGlyphInfo *)baseOfTypesetterGlyphInfo;

 - (void)breakLineAtIndex:(unsigned)location;

 - (unsigned)capacityOfTypesetterGlyphInfo;

 - (void)clearAttributesCache;

 - (void)clearGlyphCache;

 - (NSTextContainer *)currentContainer;

 - (NSLayoutManager *)currentLayoutManager;

 - (NSParagraphStyle *)currentParagraphStyle;

 - (NSTextStorage *)currentTextStorage;

 - (void)fillAttributesCache;

 - (unsigned)firstGlyphIndexOfCurrentLineFragment;

 - (void)fullJustifyLineAtGlyphIndex:(unsigned)glyphIndexForLineBreak;

 - (unsigned)glyphIndexToBreakLineByHyphenatingWordAtIndex:(unsigned)charIndex;

 - (unsigned)glyphIndexToBreakLineByWordWrappingAtIndex:(unsigned)charIndex;

 - (unsigned)growGlyphCaches:(unsigned)desiredCapacity fillGlyphInfo:(BOOL)fillGlyphInfo;

 - (void)insertGlyph:(NSGlyph)glyph atGlyphIndex:(unsigned)glyphIndex characterIndex:(unsigned)charIndex;

 - (NSLayoutStatus)layoutControlGlyphForLineFragment:(NSRect)lineFrag;

 - (NSLayoutStatus)layoutControlGlyphForLineFragment:(NSRect)lineFrag;

 - (NSLayoutStatus)layoutGlyphsInHorizontalLineFragment:(NSRect *)lineFragmentRect baseline:(float *)baseline;

 - (void)layoutGlyphsInLayoutManager:(NSLayoutManager *)layoutManager
 startingAtGlyphIndex:(unsigned)startGlyphIndex maxNumberOfLineFragments:(unsigned)maxNumLines
 nextGlyphIndex:(unsigned *)nextGlyph;

 - (void)layoutTab;

 - (void)layoutTab;

 - (unsigned)sizeOfTypesetterGlyphInfo;

 - (void)typesetterLaidOneGlyph:(NSTypesetterGlyphInfo *)gl;

 - (void)updateCurGlyphOffset;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSlider Mac OS X 10.0

This subclass of NSControl represents a slider control where a user manipulates a knob to select from a range of values:
for example, the control in the Volume menu item. The cell for NSSlider is NSSliderCell.

@interface NSSlider : NSControl

 // Accessor Methods

 - (void)setTitleFont:(NSFont *)fontObj;

 - (NSFont *)titleFont;

 - (void)setMinValue:(double)aDouble;

 - (double)minValue;

 - (void)setMaxValue:(double)aDouble;

 - (double)maxValue;

 - (void)setAltIncrementValue:(double)incValue;

 - (double)altIncrementValue;

 - (void)setTitleCell:(NSCell *)aCell;

 - (id)titleCell;

 - (void)setTitleColor:(NSColor *)newColor;

 - (NSColor *)titleColor;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setKnobThickness:(float)aFloat;

 - (float)knobThickness;

 - (void)setImage:(NSImage *)backgroundImage;

 - (NSImage *)image;

 // Instance Methods

 - (BOOL)acceptsFirstMouse:(NSEvent *)theEvent;

 - (int)isVertical;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSliderCell Mac OS X 10.0

This is the NSCell subclass for the NSSlider control class, which is an interface element that allows the user to select a
value from a range of values by sliding a knob along a track.

@interface NSSliderCell : NSActionCell

 // Accessor Methods

 - (void)setTitleColor:(NSColor *)newColor;

 - (NSColor *)titleColor;

 - (void)setMinValue:(double)aDouble;

 - (double)minValue;

 - (void)setMaxValue:(double)aDouble;

 - (double)maxValue;

 - (void)setAltIncrementValue:(double)incValue;

 - (double)altIncrementValue;

 - (void)setNumberOfTickMarks:(int)count;

 - (int)numberOfTickMarks;

 - (void)setTickMarkPosition:(NSTickMarkPosition)position;

 - (NSTickMarkPosition)tickMarkPosition;

 - (void)setKnobThickness:(float)aFloat;

 - (float)knobThickness;

 - (void)setTitleFont:(NSFont *)fontObj;

 - (NSFont *)titleFont;

 - (void)setAllowsTickMarkValuesOnly:(BOOL)yorn;

 - (BOOL)allowsTickMarkValuesOnly;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setTitleCell:(NSCell *)aCell;

 - (id)titleCell;

 // Class Methods

 + (BOOL)prefersTrackingUntilMouseUp;

 // Instance Methods

 - (double)closestTickMarkValueToValue:(double)value;

 - (void)drawBarInside:(NSRect)aRect flipped:(BOOL)flipped;

 - (void)drawKnob;

 - (void)drawKnob:(NSRect)knobRect;

 - (int)indexOfTickMarkAtPoint:(NSPoint)point;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (int)isVertical;

 - (NSRect)knobRectFlipped:(BOOL)flipped;

 - (NSRect)rectOfTickMarkAtIndex:(int)index;

 - (double)tickMarkValueAtIndex:(int)index;

 - (NSRect)trackRect;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSound Mac OS X 10.0

This class is a simple interface for playing AIFF, WAV, and NeXT sound files. An instance of this class is initialized from a
file using the method initWithContentsOfFile:byReference:. The byReference: argument relates to how the sound object
should be archived. If this argument is YES, only the name of the sound file will be archived; otherwise, the object data
will be archived. There are four methods for controlling playback of the sound: play, pause, resume, and stop. Instances
of NSSound may take a delegate object, which will be notified when the sound has finished playing.

@interface NSSound : NSObject <NSCoding, NSCopying>

 // Convenience Constructors

 + (id)soundNamed:(NSString *)name;

 + (NSArray *)soundUnfilteredFileTypes;

 + (NSArray *)soundUnfilteredPasteboardTypes;

 // Initializers

 - (id)initWithContentsOfFile:(NSString *)path byReference:(BOOL)byRef;

 - (id)initWithContentsOfURL:(NSURL *)url byReference:(BOOL)byRef;

 - (id)initWithData:(NSData *)data;

 - (id)initWithPasteboard:(NSPasteboard *)pasteboard;

 // Accessor Methods

 - (void)setDelegate:(id)aDelegate;

 - (id)delegate;

 - (BOOL)setName:(NSString *)string;

 - (NSString *)name;

 // Class Methods

 + (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard;

 // Instance Methods

 - (BOOL)isPlaying;

 - (BOOL)pause;

 - (BOOL)play;

 - (BOOL)resume;

 - (BOOL)stop;

 - (void)writeToPasteboard:(NSPasteboard *)pasteboard;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

// Methods Implemented by the Delegate

 - (void)sound:(NSSound *)sound didFinishPlaying:(BOOL)aBool;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSpellChecker Mac OS X 10.0

This class provides an interface to Cocoa's spellchecking service. A shared instance of NSSpellChecker is returned using
the class method sharedSpellChecker. To check the spelling of a length of text, invoke the method
checkSpellingOfString:startingAt:, which takes the string to check and the offset in the string where the spellcheck should
commence. This method will return an NSRange indicating the location of the first misspelled word. Clients then update
the contents of the spellchecking panel to notify the user of the discovery of the misspelled word using the method
updateSpellingPanelWithMisspelledWord:; passing an empty string here will cause the spellchecking process to terminate.
Support for spellchecking services is built into the Cocoa text handling classes. If you wish to implement support for
spellchecking into a class of your own, then you must implement the methods declared in the NSChangeSpelling and
NSIgnoreMisspelledWords protocols; see the protocol descriptions in Chapter 16 for more information.

@interface NSSpellChecker : NSObject

 // Accessor Methods

 - (void)setIgnoredWords:(NSArray *)words inSpellDocumentWithTag:(int)tag;

 - (void)setWordFieldStringValue:(NSString *)aString;

 - (BOOL)setLanguage:(NSString *)language;

 - (NSString *)language;

 - (void)setAccessoryView:(NSView *)aView;

 - (NSView *)accessoryView;

 // Class Methods

 + (NSSpellChecker *)sharedSpellChecker;

 + (BOOL)sharedSpellCheckerExists;

 + (int)uniqueSpellDocumentTag;

 // Instance Methods

 - (NSRange)checkSpellingOfString:(NSString *)stringToCheck startingAt:(int)startingOffset;

 - (int)countWordsInString:(NSString *)stringToCount language:(NSString *)language;

 - (NSRange)checkSpellingOfString:(NSString *)stringToCheck startingAt:(int)startingOffset
 language:(NSString *)language wrap:(BOOL)wrapFlag inSpellDocumentWithTag:(int)tag
 wordCount:(int *)wordCount;

 - (void)closeSpellDocumentWithTag:(int)tag;

 - (NSArray *)guessesForWord:(NSString *)word;

 - (void)ignoreWord:(NSString *)wordToIgnore inSpellDocumentWithTag:(int)tag;

 - (NSArray *)ignoredWordsInSpellDocumentWithTag:(int)tag;

 - (NSPanel *)spellingPanel;

 - (void)updateSpellingPanelWithMisspelledWord:(NSString *)word;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSSplitView Mac OS X 10.0

This NSView subclass displays two subviews either stacked vertically, or side-by-side horizontally, separated by a divider
that can be used to resize the subviews within the split view.

@interface NSSplitView : NSView

 // Accessor Methods

 - (void)setIsPaneSplitter:(BOOL)flag;

 - (BOOL)isPaneSplitter;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setVertical:(BOOL)flag;

 // Instance Methods

 - (float)dividerThickness;

 - (BOOL)isVertical;

 - (void)adjustSubviews;

 - (void)drawDividerInRect:(NSRect)aRect;

 - (BOOL)isSubviewCollapsed:(NSView *)subview;

// Methods Implemented by the Delegate

 - (BOOL)splitView:(NSSplitView *)sender canCollapseSubview:(NSView *)subview;

 - (float)splitView:(NSSplitView *)sender constrainMaxCoordinate:(float)proposedCoord ofSubviewAt:(int)offset;

 - (float)splitView:(NSSplitView *)sender constrainMinCoordinate:(float)proposedCoord ofSubviewAt:(int)offset;

 - (void)splitView:(NSSplitView *)sender resizeSubviewsWithOldSize:(NSSize)oldSize;

 - (float)splitView:(NSSplitView *)splitView constrainSplitPosition:(float)proposedPosition ofSubviewAt:(int)index;

 - (void)splitViewDidResizeSubviews:(NSNotification *)notification;

 - (void)splitViewWillResizeSubviews:(NSNotification *)notification;

// Notifications

 NSSplitViewDidResizeSubviewsNotification;

 NSSplitViewWillResizeSubviewsNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSStatusBar Mac OS X 10.0

This class defines the interface for the system status bar that appears on the right end of the main menu bar. The
individual items in the status bar are instances of the class NSStatusItem. Clients obtain the shared system status bar
instance using the class method systemStatusBar. Status items are created and added to a status bar by invoking the
method statusItemWithLength:, and applications can remove status items that they have created by invoking
removeStatusItem:.

@interface NSStatusBar : NSObject

 // Class Methods

 + (NSStatusBar*)systemStatusBar;

 // Instance Methods

 - (BOOL) isVertical;

 - (float) thickness;

 - (void)removeStatusItem:(NSStatusItem*)item;

 - (NSStatusItem*)statusItemWithLength:(float)length;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSStatusItem Mac OS X 10.0

This class represents the objects that appear in the system status bar at the right end of the main menu bar in every
application. This class provides methods to access and manage the characteristics of a status item, such as its title,
icon, length, tool tip, target, action, and more. To prevent cluttering of the status bar, status items should be used
sparingly and only when no better alternative exists.

@interface NSStatusItem : NSObject

 // Instance Methods

 - (SEL)action;

 - (NSAttributedString*)attributedTitle;

 - (BOOL)highlightMode;

 - (NSImage*)image;

 - (BOOL)isEnabled;

 - (float)length;

 - (NSMenu*)menu;

 - (void)sendActionOn:(int)mask;

 - (void)setAction:(SEL)action;

 - (void)setAttributedTitle:(NSAttributedString*)title;

 - (void)setEnabled:(BOOL)enabled;

 - (void)setHighlightMode:(BOOL)highlightMode;

 - (void)setImage:(NSImage*)image;

 - (void)setLength:(float)length;

 - (void)setMenu:(NSMenu*)menu;

 - (void)setTarget:(id)target;

 - (void)setTitle:(NSString*)title;

 - (void)setToolTip:(NSString*)toolTip;

 - (void)setView:(NSView*)view;

 - (NSStatusBar*)statusBar;

 - (id)target;

 - (NSString*)title;

 - (NSString*)toolTip;

 - (NSView*)view;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSStepper Mac OS X 10.0

This is a subclass of NSControl that allows users to change an incremental value by clicking on portions of the control
that either increment or decrement the value of the control by some predetermined amount.

@interface NSStepper : NSControl

 // Accessor Methods

 - (void)setMaxValue:(double)maxValue;

 - (double)maxValue;

 - (void)setMinValue:(double)minValue;

 - (double)minValue;

 - (void)setAutorepeat:(BOOL)autorepeat;

 - (BOOL)autorepeat;

 - (void)setIncrement:(double)increment;

 - (double)increment;

 - (void)setValueWraps:(BOOL)valueWraps;

 - (BOOL)valueWraps;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSStepperCell Mac OS X 10.0

This class is the associated cell for the NSStepper control. As an NSCell subclass, this NSStepperCell is responsible for the
appearence and event handling of an NSStepper control.

@interface NSStepperCell : NSActionCell

 // Accessor Methods

 - (void)setMaxValue:(double)maxValue;

 - (double)maxValue;

 - (void)setMinValue:(double)minValue;

 - (double)minValue;

 - (void)setAutorepeat:(BOOL)autorepeat;

 - (BOOL)autorepeat;

 - (void)setIncrement:(double)increment;

 - (double)increment;

 - (void)setValueWraps:(BOOL)valueWraps;

 - (BOOL)valueWraps;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTableColumn Mac OS X 10.0

This class represents a column in an NSTableView. In particular, NSTableColumn stores display attributes of the table
column, such as the display width, whether the table column may be resized, and whether it is editable.

Every column in a table has a unique identifier, which is accessed with the methods setIdentifier: and identifier.

Associated with a table column object are two NSCells: the header cell and the data cell. The header cell is responsible
for the appearance of the table column header. To access the table column's header cell, use the methods setHeaderCell:
and headerCell.

The data cell of a table column determines how data in the column is displayed. By default the data cell is an instance
of NSTextFieldCell, which provides for displayed and editing text data. However, you could change the data cell of a table
column to display controls other than a text field. For example, if you wanted to display Boolean information in your
table column, you could set the data cell to an instance of NSButtonCell that is configured as a checkbox. If you wanted a
column of slider controls, you could set the data cell of the column to an instance of NSSliderCell. To access the data cell
use the methods setDataCell: and dataCell.

@interface NSTableColumn : NSObject

 // Initializers

 - (id)initWithIdentifier:(id)identifier;

 // Accessor Methods

 - (void)setTableView:(NSTableView *)tableView;

 - (NSTableView *)tableView;

 - (void)setIdentifier:(id)identifier;

 - (id)identifier;

 - (void)setResizable:(BOOL)flag;

 - (void)setMinWidth:(float)minWidth;

 - (float)minWidth;

 - (void)setHeaderCell:(NSCell *)cell;

 - (id)headerCell;

 - (void)setDataCell:(NSCell *)cell;

 - (id)dataCell;

 - (void)setMaxWidth:(float)maxWidth;

 - (float)maxWidth;

 - (void)setWidth:(float)width;

 - (float)width;

 - (void)setEditable:(BOOL)flag;

 // Instance Methods

 - (id)dataCellForRow:(int)row;

 - (BOOL)isEditable;

 - (BOOL)isResizable;

 - (void)sizeToFit;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTableHeaderCell Mac OS X 10.0

NSTableHeaderCell is used by NSTableHeaderView to draw the contents of table column headers. This class may be
subclassed to customize the appearence of the column headers in a table view.

@interface NSTableHeaderCell : NSTextFieldCell

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTableHeaderView Mac OS X 10.0

This class is responsible for managing column headers in a table view. NSTableView objects use NSTableHeaderView to
draw the headers, including any labeling and highlighting. NSTableHeaderView relies on NSTableHeaderCell objects to draw
the individual header labels.

@interface NSTableHeaderView : NSView

 // Accessor Methods

 - (void)setTableView:(NSTableView *)tableView;

 - (NSTableView *)tableView;

 // Instance Methods

 - (int)columnAtPoint:(NSPoint)point;

 - (int)draggedColumn;

 - (float)draggedDistance;

 - (NSRect)headerRectOfColumn:(int)column;

 - (int)resizedColumn;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTableView Mac OS X 10.0

This subclass of NSView organizes information into rows and columns. The information displayed in the table comes from
an object that serves as the table view's data source object; data source objects must implement a minimum set of
methods declared by the NSTableDataSource informal protocol. Instances of NSTableView are composite objects that
manage NSTableColumn objects (one for each column in a table), and NSTableHeaderView objects (to draw the headers
over the table columns).

@interface NSTableView : NSControl

 // Accessor Methods

 - (void)setRowHeight:(float)rowHeight;

 - (float)rowHeight;

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 - (void)setHeaderView:(NSTableHeaderView *)headerView;

 - (NSTableHeaderView *)headerView;

 - (void)setCornerView:(NSView *)cornerView;

 - (NSView *)cornerView;

 - (void)setAllowsColumnReordering:(BOOL)flag;

 - (BOOL)allowsColumnReordering;

 - (void)setAllowsColumnResizing:(BOOL)flag;

 - (BOOL)allowsColumnResizing;

 - (void)setAutoresizesAllColumnsToFit:(BOOL)flag;

 - (BOOL)autoresizesAllColumnsToFit;

 - (void)setIntercellSpacing:(NSSize)aSize;

 - (NSSize)intercellSpacing;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setGridColor:(NSColor *)color;

 - (NSColor *)gridColor;

 - (void)setIndicatorImage:(NSImage *)anImage inTableColumn:(NSTableColumn *)tc;

 - (void)setAllowsColumnSelection:(BOOL)flag;

 - (BOOL)allowsColumnSelection;

 - (void)setAutosaveTableColumns:(BOOL)save;

 - (BOOL)autosaveTableColumns;

 - (void)setAllowsEmptySelection:(BOOL)flag;

 - (BOOL)allowsEmptySelection;

 - (void)setAllowsMultipleSelection:(BOOL)flag;

 - (BOOL)allowsMultipleSelection;

 - (void)setDropRow:(int)row dropOperation:(NSTableViewDropOperation)op;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setDataSource:(id)aSource;

 - (id)dataSource;

 - (void)setAutosaveName:(NSString *)name;

 - (NSString *)autosaveName;

 - (void)setDoubleAction:(SEL)aSelector;

 - (SEL)doubleAction;

 - (void)setHighlightedTableColumn:(NSTableColumn *)tc;

 - (NSTableColumn *)highlightedTableColumn;

 - (void)setDrawsGrid:(BOOL)flag;

 - (BOOL)drawsGrid;

 - (void)setVerticalMotionCanBeginDrag:(BOOL)flag;

 - (BOOL)verticalMotionCanBeginDrag;

 // Instance Methods

 - (void)highlightSelectionInClipRect:(NSRect)rect;

 - (void)deselectRow:(int)row;

 - (void)deselectAll:(id)sender;

 - (void)deselectColumn:(int)column;

 - (void)addTableColumn:(NSTableColumn *)column;

 - (NSImage*)dragImageForRows:(NSArray*)dragRows event:(NSEvent*)dragEvent
 dragImageOffset:(NSPointPointer)dragImageOffset;

 - (NSRect)frameOfCellAtColumn:(int)column row:(int)row;

 - (int)clickedColumn;

 - (int)clickedRow;

 - (NSImage *)indicatorImageInTableColumn:(NSTableColumn *)tc;

 - (BOOL)isColumnSelected:(int)row;

 - (BOOL)isRowSelected:(int)row;

 - (void)moveColumn:(int)column toColumn:(int)newIndex;

 - (void)noteNumberOfRowsChanged;

 - (int)numberOfColumns;

 - (int)numberOfRows;

 - (int)numberOfSelectedColumns;

 - (int)numberOfSelectedRows;

 - (void)reloadData;

 - (void)removeTableColumn:(NSTableColumn *)column;

 - (int)rowAtPoint:(NSPoint)point;

 - (NSRange)rowsInRect:(NSRect)rect;

 - (void)scrollColumnToVisible:(int)column;

 - (void)scrollRowToVisible:(int)row;

 - (void)selectAll:(id)sender;

 - (void)selectColumn:(int)column byExtendingSelection:(BOOL)extend;

 - (void)selectRow:(int)row byExtendingSelection:(BOOL)extend;

 - (int)selectedColumn;

 - (NSEnumerator *)selectedColumnEnumerator;

 - (int)selectedRow;

 - (NSEnumerator *)selectedRowEnumerator;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)sizeLastColumnToFit;

 - (NSTableColumn *)tableColumnWithIdentifier:(id)identifier;

 - (NSArray *)tableColumns;

 - (void)tile;

 - (int)columnAtPoint:(NSPoint)point;

 - (int)columnWithIdentifier:(id)identifier;

 - (NSRange)columnsInRect:(NSRect)rect;

 - (void)drawGridInClipRect:(NSRect)rect;

 - (void)drawRow:(int)row clipRect:(NSRect)rect;

 - (void)editColumn:(int)column row:(int)row withEvent:(NSEvent *)theEvent select:(BOOL)select;

 - (int)editedColumn;

 - (int)editedRow;

 - (NSRect)rectOfColumn:(int)column;

 - (NSRect)rectOfRow:(int)row;

 - (void)textDidBeginEditing:(NSNotification *)notification;

 - (void)textDidChange:(NSNotification *)notification;

 - (void)textDidEndEditing:(NSNotification *)notification;

 - (BOOL)textShouldBeginEditing:(NSText *)textObject;

 - (BOOL)textShouldEndEditing:(NSText *)textObject;

// Methods Implemented by the Delegate

 - (void)tableView:(NSTableView*)tableView didClickTableColumn:(NSTableColumn *)tableColumn;

 - (void)tableView:(NSTableView*)tableView didDragTableColumn:(NSTableColumn *)tableColumn;

 - (void)tableView:(NSTableView*)tableView mouseDownInHeaderOfTableColumn:(NSTableColumn *)tableColumn;

 - (BOOL)selectionShouldChangeInTableView:(NSTableView *)aTableView;

 - (BOOL)tableView:(NSTableView *)tableView shouldEditTableColumn:(NSTableColumn *)tableColumn row:(int)row;

 - (BOOL)tableView:(NSTableView *)tableView shouldSelectRow:(int)row;

 - (BOOL)tableView:(NSTableView *)tableView shouldSelectTableColumn:(NSTableColumn *)tableColumn;

 - (void)tableView:(NSTableView *)tableView willDisplayCell:(id)cell
 forTableColumn:(NSTableColumn *)tableColumn row:(int)row;

 - (void)tableViewColumnDidMove:(NSNotification *)notification;

 - (void)tableViewColumnDidResize:(NSNotification *)notification;

 - (void)tableViewSelectionDidChange:(NSNotification *)notification;

 - (void)tableViewSelectionIsChanging:(NSNotification *)notification;

// Notifications

 NSTableViewSelectionDidChangeNotification;

 NSTableViewSelectionIsChangingNotification;

Subclasses

NSOutlineView

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTabView Mac OS X 10.0

This NSView subclass provides a way to display pages of views that can be selected by tabs identifying each view. The
pages of a tab view are actually instances of the class NSTabViewItem, which is a small class that keeps the tab view,
page view, and related information to presenting it in the tab view.

@interface NSTabView : NSView

 // Accessor Methods

 - (void)setAllowsTruncatedLabels:(BOOL)allowTruncatedLabels;

 - (BOOL)allowsTruncatedLabels;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setTabViewType:(NSTabViewType)tabViewType;

 - (NSTabViewType)tabViewType;

 - (void)setFont:(NSFont *)font;

 - (NSFont *)font;

 - (void)setControlSize:(NSControlSize)controlSize;

 - (NSControlSize)controlSize;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

 - (void)setControlTint:(NSControlTint)controlTint;

 - (NSControlTint)controlTint;

 // Instance Methods

 - (void)addTabViewItem:(NSTabViewItem *)tabViewItem;

 - (int)indexOfTabViewItemWithIdentifier:(id)identifier;

 - (int)indexOfTabViewItem:(NSTabViewItem *)tabViewItem;

 - (void)insertTabViewItem:(NSTabViewItem *)tabViewItem atIndex:(int)index;

 - (NSSize)minimumSize;

 - (int)numberOfTabViewItems;

 - (void)removeTabViewItem:(NSTabViewItem *)tabViewItem;

 - (void)selectFirstTabViewItem:(id)sender;

 - (void)selectLastTabViewItem:(id)sender;

 - (void)selectNextTabViewItem:(id)sender;

 - (void)selectPreviousTabViewItem:(id)sender;

 - (void)selectTabViewItem:(NSTabViewItem *)tabViewItem;

 - (void)selectTabViewItemAtIndex:(int)index;

 - (void)selectTabViewItemWithIdentifier:(id)identifier;

 - (NSTabViewItem *)selectedTabViewItem;

 - (NSTabViewItem *)tabViewItemAtIndex:(int)index;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSTabViewItem *)tabViewItemAtPoint:(NSPoint)point;

 - (NSArray *)tabViewItems;

 - (void)takeSelectedTabViewItemFromSender:(id)sender;

 - (NSRect)contentRect;

// Methods Implemented by the Delegate

 - (void)tabView:(NSTabView *)tabView didSelectTabViewItem:(NSTabViewItem *)tabViewItem;

 - (BOOL)tabView:(NSTabView *)tabView shouldSelectTabViewItem:(NSTabViewItem *)tabViewItem;

 - (void)tabView:(NSTabView *)tabView willSelectTabViewItem:(NSTabViewItem *)tabViewItem;

 - (void)tabViewDidChangeNumberOfTabViewItems:(NSTabView *)TabView;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTabViewItem Mac OS X 10.0

This class represents a single tabbed pane within a tab view object. NSTabView objects maintain an array of
NSTabViewItem objects for each of its tabs. Associated with each tab view item is an identifier, a label that is drawn in
the tab itself, and a view that contains the contents of the tab view item. For most simple uses of tab views, you won't
have to interact with the NSTabView or NSTabViewItem APIs directly, as Interface Builder is capable of fully configuring a
tab view.

@interface NSTabViewItem : NSObject <NSCoding>

 // Initializers

 - (id)initWithIdentifier:(id)identifier;

 - (id)initialFirstResponder;

 // Accessor Methods

 - (void)setColor:(NSColor *)color;

 - (NSColor *)color;

 - (void)setLabel:(NSString *)label;

 - (NSString *)label;

 - (void)setIdentifier:(id)identifier;

 - (id)identifier;

 - (void)setInitialFirstResponder:(NSView *)view;

 - (void)setView:(NSView *)view;

 - (id)view;

 // Instance Methods

 - (NSSize)sizeOfLabel:(BOOL)computeMin;

 - (NSTabState)tabState;

 - (NSTabView *)tabView;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSText Mac OS X 10.0

NSText inherits from NSView and is the parent class of NSTextView. It declares the most general interface for objects that
manage and display text; however, clients generally interact with NSTextView objects rather than instances of NSText
itself.

@interface NSText : NSView <NSChangeSpelling, NSIgnoreMisspelledWords>

 // Accessor Methods

 - (void)setHorizontallyResizable:(BOOL)flag;

 - (void)setString:(NSString *)string;

 - (NSString *)string;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setSelectedRange:(NSRange)range;

 - (NSRange)selectedRange;

 - (void)setSelectable:(BOOL)flag;

 - (void)setMinSize:(NSSize)newMinSize;

 - (NSSize)minSize;

 - (void)setRichText:(BOOL)flag;

 - (void)setImportsGraphics:(BOOL)flag;

 - (BOOL)importsGraphics;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setMaxSize:(NSSize)newMaxSize;

 - (NSSize)maxSize;

 - (void)setUsesFontPanel:(BOOL)flag;

 - (BOOL)usesFontPanel;

 - (void)setFieldEditor:(BOOL)flag;

 - (void)setAlignment:(NSTextAlignment)mode;

 - (NSTextAlignment)alignment;

 - (void)setVerticallyResizable:(BOOL)flag;

 - (void)setFont:(NSFont *)obj;

 - (NSFont *)font;

 - (void)setTextColor:(NSColor *)color;

 - (NSColor *)textColor;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

 - (void)setTextColor:(NSColor *)color range:(NSRange)range;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setEditable:(BOOL)flag;

 - (void)setFont:(NSFont *)font range:(NSRange)range;

 // Instance Methods

 - (NSData *)RTFDFromRange:(NSRange)range;

 - (NSData *)RTFFromRange:(NSRange)range;

 - (void)alignLeft:(id)sender;

 - (void)alignRight:(id)sender;

 - (void)changeFont:(id)sender;

 - (void)cut:(id)sender;

 - (void)delete:(id)sender;

 - (BOOL)isEditable;

 - (void)alignCenter:(id)sender;

 - (void)checkSpelling:(id)sender;

 - (BOOL)isFieldEditor;

 - (BOOL)isHorizontallyResizable;

 - (BOOL)isRichText;

 - (BOOL)isSelectable;

 - (BOOL)isVerticallyResizable;

 - (BOOL)readRTFDFromFile:(NSString *)path;

 - (void)replaceCharactersInRange:(NSRange)range withRTF:(NSData *)rtfData;

 - (void)replaceCharactersInRange:(NSRange)range withRTFD:(NSData *)rtfdData;

 - (void)replaceCharactersInRange:(NSRange)range withString:(NSString *)aString;

 - (void)scrollRangeToVisible:(NSRange)range;

 - (void)selectAll:(id)sender;

 - (void)sizeToFit;

 - (void)subscript:(id)sender;

 - (void)superscript:(id)sender;

 - (void)toggleRuler:(id)sender;

 - (void)underline:(id)sender;

 - (void)unscript:(id)sender;

 - (void)copy:(id)sender;

 - (void)copyFont:(id)sender;

 - (void)copyRuler:(id)sender;

 - (BOOL)isRulerVisible;

 - (void)paste:(id)sender;

 - (void)pasteFont:(id)sender;

 - (void)pasteRuler:(id)sender;

 - (void)showGuessPanel:(id)sender;

 - (BOOL)writeRTFDToFile:(NSString *)path atomically:(BOOL)flag;

 // Methods Implementing NSChangeSpelling

 - (void)changeSpelling:(id)sender;

 // Methods Implementing NSIgnoreMisspelledWords

 - (void)ignoreSpelling:(id)sender;

// Methods Implemented by the Delegate

 - (void)textDidBeginEditing:(NSNotification *)notification;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)textDidBeginEditing:(NSNotification *)notification;

 - (void)textDidChange:(NSNotification *)notification;

 - (void)textDidEndEditing:(NSNotification *)notification;

 - (BOOL)textShouldBeginEditing:(NSText *)textObject;

 - (BOOL)textShouldEndEditing:(NSText *)textObject;

// Notifications

 NSTextDidBeginEditingNotification;

 NSTextDidChangeNotification;

Subclasses

NSTextView
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextAttachment Mac OS X 10.0

Instances of this class serve as values in an attributed string for the attribute NSAttachmentAttributeName. Text
attachment cells are associated with an NSFileWrapper object that may represent either a file or a URL.

@interface NSTextAttachment : NSObject <NSCoding>

 // Initializers

 - (id)initWithFileWrapper:(NSFileWrapper *)fileWrapper;

 // Accessor Methods

 - (void)setFileWrapper:(NSFileWrapper *)fileWrapper;

 - (NSFileWrapper *)fileWrapper;

 - (void)setAttachmentCell:(id <NSTextAttachmentCell>)cell;

 - (id <NSTextAttachmentCell>)attachmentCell;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextAttachmentCell Mac OS X 10.0

This class implements the interface defined by the NSTextAttachmentCell protocol.

@interface NSTextAttachmentCell : NSCell <NSTextAttachmentCell>

 // Methods Implementing NSTextAttachmentCell

 - (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (BOOL)wantsToTrackMouse;

 - (void)highlight:(BOOL)flag withFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView *)controlView
 untilMouseUp:(BOOL)flag;

 - (NSSize)cellSize;

 - (NSPoint)cellBaselineOffset;

 - (void)setAttachment:(NSTextAttachment *)anObject;

 - (NSTextAttachment *)attachment;

 - (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView characterIndex:(unsigned)charIndex;

 - (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView characterIndex:(unsigned)charIndex
 layoutManager:(NSLayoutManager *)layoutManager;

 - (BOOL)wantsToTrackMouseForEvent:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView *)controlView
 atCharacterIndex:(unsigned)charIndex;

 - (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView *)controlView
 atCharacterIndex:(unsigned)charIndex untilMouseUp:(BOOL)flag;

 - (NSRect)cellFrameForTextContainer:(NSTextContainer *)textContainer proposedLineFragment:(NSRect)lineFrag
 glyphPosition:(NSPoint)position characterIndex:(unsigned)charIndex;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextContainer Mac OS X 10.0

This class is responsible for defining a region in which text will be laid out. The class NSLayoutManager manages a set of
NSTextContainer objects and controls how text should fill these text containers. An NSTextContainer object, in turn, owns
an instance of NSTextView that is responsible for putting the text up on screen. The default implementation of
NSTextContainer defines a rectangular region of text; however, subclasses may be implemented to provide irregular
shaped regions for text. In terms of the Model-View-Controller pattern, NSTextStorage is the model, NSTextView is the
view, and NSLayoutManager and NSTextContainer serve as controllers between the data layer and the view layer. For more
information on Cocoa's text layout engine, see Chapter 5.

@interface NSTextContainer : NSObject <NSCoding>

 // Initializers

 - (id)initWithContainerSize:(NSSize)size;

 // Accessor Methods

 - (void)setLineFragmentPadding:(float)pad;

 - (float)lineFragmentPadding;

 - (void)setLayoutManager:(NSLayoutManager *)layoutManager;

 - (NSLayoutManager *)layoutManager;

 - (void)setHeightTracksTextView:(BOOL)flag;

 - (BOOL)heightTracksTextView;

 - (void)setWidthTracksTextView:(BOOL)flag;

 - (BOOL)widthTracksTextView;

 - (void)setTextView:(NSTextView *)textView;

 - (NSTextView *)textView;

 - (void)setContainerSize:(NSSize)size;

 - (NSSize)containerSize;

 // Instance Methods

 - (BOOL)containsPoint:(NSPoint)point;

 - (BOOL)isSimpleRectangularTextContainer;

 - (NSRect)lineFragmentRectForProposedRect:(NSRect)proposedRect
 sweepDirection:(NSLineSweepDirection)sweepDirection
 movementDirection:(NSLineMovementDirection)movementDirection remainingRect:(NSRectPointer)remainingRect;

 - (void)replaceLayoutManager:(NSLayoutManager *)newLayoutManager;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextField Mac OS X 10.0

This control class implements an editable text entry and display field. NSTextField's companion cell class is NSTextFieldCell,
a subclass of NSActionCell. Thus, NSTextField is capable of sending action messages to targets. By default, actions are
sent to targets when the user completes editing by pressing the Return key.

Accessing the value of a text field is done using methods inherited from NSControl (indeed, these are the methods used
to access the values of any control). To get the contents of the text field as a string, invoke stringValue. Alternatively, we
may take the value as a number using intValue, floatValue, and doubleValue. Each of these methods has a corresponding
set... method used to change the value displayed in the text field. See NSControl (earlier in this chapter) for more
information.

@interface NSTextField : NSControl

 // Accessor Methods

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setImportsGraphics:(BOOL)flag;

 - (BOOL)importsGraphics;

 - (void)setSelectable:(BOOL)flag;

 - (void)setBordered:(BOOL)flag;

 - (void)setBezeled:(BOOL)flag;

 - (void)setAllowsEditingTextAttributes:(BOOL)flag;

 - (BOOL)allowsEditingTextAttributes;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setBezelStyle:(NSTextFieldBezelStyle)style;

 - (NSTextFieldBezelStyle)bezelStyle;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

 - (void)setTextColor:(NSColor *)color;

 - (NSColor *)textColor;

 - (void)setEditable:(BOOL)flag;

 // Instance Methods

 - (BOOL)acceptsFirstResponder;

 - (BOOL)isBezeled;

 - (BOOL)isBordered;

 - (BOOL)isEditable;

 - (BOOL)isSelectable;

 - (void)selectText:(id)sender;

 - (void)textDidBeginEditing:(NSNotification *)notification;

 - (void)textDidChange:(NSNotification *)notification;

 - (void)textDidEndEditing:(NSNotification *)notification;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)textDidEndEditing:(NSNotification *)notification;

 - (BOOL)textShouldBeginEditing:(NSText *)textObject;

 - (BOOL)textShouldEndEditing:(NSText *)textObject;

Subclasses

NSComboBox, NSSecureTextField

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextFieldCell Mac OS X 10.0

This is the NSCell subclass that NSTextField objects use to draw the contents of the control.

@interface NSTextFieldCell : NSActionCell

 // Accessor Methods

 - (NSText *)setUpFieldEditorAttributes:(NSText *)textObj;

 - (void)setBezelStyle:(NSTextFieldBezelStyle)style;

 - (NSTextFieldBezelStyle)bezelStyle;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setTextColor:(NSColor *)color;

 - (NSColor *)textColor;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

Subclasses

NSComboBoxCell, NSSecureTextFieldCell, NSTableHeaderCell
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextStorage Mac OS X 10.0

This subclass of NSMutableAttributedString is the data model for Cocoa's text-handling system. NSTextStorage manages one
or more NSLayoutManagers, which are responsible for determining how the text should be displayed. Two additional
classes have an equally important role in the text-handling system, as does NSTextStorage: NSTextContainer and
NSTextView. In terms of the Model-View-Controller pattern, NSTextStorage is the model, NSTextView is the view, and
NSLayoutManager and NSTextContainer serve as controllers between the data layer and the view layer.

@interface NSTextStorage : NSMutableAttributedString

 // Accessor Methods

 - (void)setParagraphs:(NSArray *)paragraphs;

 - (NSArray *)paragraphs;

 - (void)setForegroundColor:(NSColor *)color;

 - (NSColor *)foregroundColor;

 - (void)setCharacters:(NSArray *)characters;

 - (NSArray *)characters;

 - (void)setAttributeRuns:(NSArray *)attributeRuns;

 - (NSArray *)attributeRuns;

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 - (void)setWords:(NSArray *)words;

 - (NSArray *)words;

 - (void)setFont:(NSFont *)font;

 - (NSFont *)font;

 // Instance Methods

 - (void)addLayoutManager:(NSLayoutManager *)obj;

 - (int)changeInLength;

 - (void)edited:(unsigned)editedMask range:(NSRange)range changeInLength:(int)delta;

 - (unsigned)editedMask;

 - (NSRange)editedRange;

 - (void)ensureAttributesAreFixedInRange:(NSRange)range;

 - (BOOL)fixesAttributesLazily;

 - (void)invalidateAttributesInRange:(NSRange)range;

 - (NSArray *)layoutManagers;

 - (void)processEditing;

 - (void)removeLayoutManager:(NSLayoutManager *)obj;

// Methods Implemented by the Delegate

 - (void)textStorageDidProcessEditing:(NSNotification *)notification;

 - (void)textStorageWillProcessEditing:(NSNotification *)notification;

// Notifications

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSTextStorageDidProcessEditingNotification;

 NSTextStorageWillProcessEditingNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextTab Mac OS X 10.0

This class is used by the class NSParagraphStyle to encapsulate information about a tab stop, such as alignment (left,
right, center, etc.) and location of the stop relative to the alignment edge. To create a text tab object, use the method
initWithType:location:. For more information on Cocoa's text handling infrastructure, see Chapter 5.

@interface NSTextTab : NSObject <NSCoding, NSCopying>

 // Initializers

 - (id)initWithType:(NSTextTabType)type location:(float)loc;

 // Instance Methods

 - (float)location;

 - (NSTextTabType)tabStopType;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

 - (id)initWithCoder:(NSCoder *)aDecoder;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextView Mac OS X 10.0

This class is the frontend class to Cocoa's text-manipulation architecture. For most purposes, programmers can use this
class to interface with the text system; however, if more control is desired, than they may work with the individual
component classes of the text system, which are NSTextStorage, NSTextContainer, NSLayoutManager, and this class. In
terms of the Model-View-Controller pattern, NSTextStorage is the model, NSTextView is the view, and NSLayoutManager and
NSTextContainer serve as controllers for the data layer and the view layer.

@interface NSTextView : NSText <NSTextInput>

 // Initializers

 - (id)initWithFrame:(NSRect)frameRect;

 - (id)initWithFrame:(NSRect)frameRect textContainer:(NSTextContainer *)container;

 // Accessor Methods

 - (void)setImportsGraphics:(BOOL)flag;

 - (BOOL)importsGraphics;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setAcceptsGlyphInfo:(BOOL)flag;

 - (BOOL)acceptsGlyphInfo;

 - (void)setSelectable:(BOOL)flag;

 - (void)setUsesRuler:(BOOL)flag;

 - (BOOL)usesRuler;

 - (void)setRulerVisible:(BOOL)flag;

 - (void)setRichText:(BOOL)flag;

 - (void)setTypingAttributes:(NSDictionary *)attrs;

 - (NSDictionary *)typingAttributes;

 - (void)setMarkedTextAttributes:(NSDictionary *)attributeDictionary;

 - (NSDictionary *)markedTextAttributes;

 - (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)range;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setSelectedRange:(NSRange)charRange;

 - (void)setInsertionPointColor:(NSColor *)color;

 - (NSColor *)insertionPointColor;

 - (void)setAllowsUndo:(BOOL)flag;

 - (BOOL)allowsUndo;

 - (void)setSelectedTextAttributes:(NSDictionary *)attributeDictionary;

 - (NSDictionary *)selectedTextAttributes;

 - (void)setSelectionGranularity:(NSSelectionGranularity)granularity;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSSelectionGranularity)selectionGranularity;

 - (void)setFieldEditor:(BOOL)flag;

 - (void)setUsesFontPanel:(BOOL)flag;

 - (BOOL)usesFontPanel;

 - (void)setSelectedRange:(NSRange)charRange affinity:(NSSelectionAffinity)affinity
 stillSelecting:(BOOL)stillSelectingFlag;

 - (void)setSmartInsertDeleteEnabled:(BOOL)flag;

 - (BOOL)smartInsertDeleteEnabled;

 - (void)setNeedsDisplayInRect:(NSRect)rect avoidAdditionalLayout:(BOOL)flag;

 - (void)setTextContainerInset:(NSSize)inset;

 - (NSSize)textContainerInset;

 - (void)setTextContainer:(NSTextContainer *)container;

 - (NSTextContainer *)textContainer;

 - (void)setEditable:(BOOL)flag;

 - (void)setDrawsBackground:(BOOL)flag;

 - (BOOL)drawsBackground;

 - (void)setContinuousSpellCheckingEnabled:(BOOL)flag;

 - (void)setConstrainedFrameSize:(NSSize)desiredSize;

 // Class Methods

 + (void)registerForServices;

 // Instance Methods

 - (void)cleanUpAfterDragOperation;

 - (NSArray *)acceptableDragTypes;

 - (void)clickedOnLink:(id)link v

 - (void)alignJustified:(id)sender;

 - (void)changeColor:(id)sender;

 - (void)didChangeText;

 - (BOOL)becomeFirstResponder;

 - (NSImage *)dragImageForSelectionWithEvent:(NSEvent *)event origin:(NSPointPointer)origin;

 - (unsigned int)dragOperationForDraggingInfo:(id <NSDraggingInfo>)dragInfo type:(NSString *)type;

 - (BOOL)dragSelectionWithEvent:(NSEvent *)event offset:(NSSize)mouseOffset slideBack:(BOOL)slideBack;

 - (void)insertText:(id)insertString;

 - (void)invalidateTextContainerOrigin;

 - (BOOL)isContinuousSpellCheckingEnabled;

 - (BOOL)isEditable;

 - (BOOL)isFieldEditor;

 - (BOOL)isRichText;

 - (BOOL)isSelectable;

 - (NSLayoutManager *)layoutManager;

 - (void)loosenKerning:(id)sender;

 - (void)lowerBaseline:(id)sender;

 - (NSString *)preferredPasteboardTypeFromArray:(NSArray *)availableTypes
 restrictedToTypesFromArray:(NSArray *)allowedTypes;

 - (void)raiseBaseline:(id)sender;

 - (NSRange)rangeForUserCharacterAttributeChange;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSRange)rangeForUserParagraphAttributeChange;

 - (NSRange)rangeForUserTextChange;

 - (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard;

 - (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard type:(NSString *)type;

 - (NSArray *)readablePasteboardTypes;

 - (void)replaceTextContainer:(NSTextContainer *)newContainer;

 - (BOOL)resignFirstResponder;

 - (void)drawInsertionPointInRect:(NSRect)rect color:(NSColor *)color turnedOn:(BOOL)flag;

 - (BOOL)isRulerVisible;

 - (void)pasteAsPlainText:(id)sender;

 - (void)pasteAsRichText:(id)sender;

 - (void)rulerView:(NSRulerView *)ruler didAddMarker:(NSRulerMarker *)marker;

 - (void)rulerView:(NSRulerView *)ruler didMoveMarker:(NSRulerMarker *)marker;

 - (void)rulerView:(NSRulerView *)ruler didRemoveMarker:(NSRulerMarker *)marker;

 - (void)rulerView:(NSRulerView *)ruler handleMouseDown:(NSEvent *)event;

 - (BOOL)rulerView:(NSRulerView *)ruler shouldAddMarker:(NSRulerMarker *)marker;

 - (BOOL)rulerView:(NSRulerView *)ruler shouldMoveMarker:(NSRulerMarker *)marker;

 - (BOOL)rulerView:(NSRulerView *)ruler shouldRemoveMarker:(NSRulerMarker *)marker;

 - (float)rulerView:(NSRulerView *)ruler willAddMarker:(NSRulerMarker *)marker atLocation:(float)location;

 - (float)rulerView:(NSRulerView *)ruler willMoveMarker:(NSRulerMarker *)marker toLocation:(float)location;

 - (NSSelectionAffinity)selectionAffinity;

 - (NSRange)selectionRangeForProposedRange:(NSRange)proposedCharRange
 granularity:(NSSelectionGranularity)granularity;

 - (BOOL)shouldChangeTextInRange:(NSRange)affectedCharRange replacementString:(NSString *)replacementString;

 - (BOOL)shouldDrawInsertionPoint;

 - (NSRange)smartDeleteRangeForProposedRange:(NSRange)proposedCharRange;

 - (NSString *)smartInsertAfterStringForString:(NSString *)pasteString
 replacingRange:(NSRange)charRangeToReplace;

 - (NSString *)smartInsertBeforeStringForString:(NSString *)pasteString replacingRange:(NSRange)charRangeToReplace;

 - (void)smartInsertForString:(NSString *)pasteString replacingRange:(NSRange)charRangeToReplace
 beforeString:(NSString **)beforeString afterString:(NSString **)afterString;

 - (int)spellCheckerDocumentTag;

 - (void)startSpeaking:(id)sender;

 - (void)stopSpeaking:(id)sender;

 - (NSPoint)textContainerOrigin;

 - (NSTextStorage *)textStorage;

 - (void)tightenKerning:(id)sender;

 - (void)toggleContinuousSpellChecking:(id)sender;

 - (void)toggleTraditionalCharacterShape:(id)sender;

 - (void)turnOffKerning:(id)sender;

 - (void)turnOffLigatures:(id)sender;

 - (void)updateDragTypeRegistration;

 - (void)updateFontPanel;

 - (void)updateInsertionPointStateAndRestartTimer:(BOOL)restartFlag;

 - (void)updateRuler;

 - (void)useAllLigatures:(id)sender;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)useStandardKerning:(id)sender;

 - (void)useStandardLigatures:(id)sender;

 - (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString *)returnType;

 - (NSArray *)writablePasteboardTypes;

 - (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard type:(NSString *)type;

 - (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types;

 // Methods Implementing NSTextInput

 - (void)insertText:(id)aString;

 - (void)doCommandBySelector:(SEL)aSelector;

 - (void)setMarkedText:(id)aString selectedRange:(NSRange)selRange;

 - (void)unmarkText;

 - (BOOL)hasMarkedText;

 - (long)conversationIdentifier;

 - (NSAttributedString *)attributedSubstringFromRange:(NSRange)theRange;

 - (NSRange)markedRange;

 - (NSRange)selectedRange;

 - (NSRect)firstRectForCharacterRange:(NSRange)theRange;

 - (unsigned int)characterIndexForPoint:(NSPoint)thePoint;

 - (NSArray*)validAttributesForMarkedText;

// Methods Implemented by the Delegate

 - (void)textView:(NSTextView *)textView clickedOnCell:(id <NSTextAttachmentCell>)cell
 inRect:(NSRect)cellFrame;

 - (void)textView:(NSTextView *)textView clickedOnCell:(id <NSTextAttachmentCell>)cell
 inRect:(NSRect)cellFrame atIndex:(unsigned)charIndex;

 - (BOOL)textView:(NSTextView *)textView clickedOnLink:(id)link;

 - (BOOL)textView:(NSTextView *)textView clickedOnLink:(id)link atIndex:(unsigned)charIndex;

 - (BOOL)textView:(NSTextView *)textView doCommandBySelector:(SEL)commandSelector;

 - (void)textView:(NSTextView *)textView doubleClickedOnCell:(id <NSTextAttachmentCell>)cell
 inRect:(NSRect)cellFrame;

 - (void)textView:(NSTextView *)textView doubleClickedOnCell:(id <NSTextAttachmentCell>)cell
 inRect:(NSRect)cellFrame atIndex:(unsigned)charIndex;

 - (BOOL)textView:(NSTextView *)textView shouldChangeTextInRange:(NSRange)affectedCharRange
 replacementString:(NSString *)replacementString;

 - (NSRange)textView:(NSTextView *)textView
 willChangeSelectionFromCharacterRange:(NSRange)oldSelectedCharRange
 toCharacterRange:(NSRange)newSelectedCharRange;

 - (void)textView:(NSTextView *)view draggedCell:(id <NSTextAttachmentCell>)cell
 inRect:(NSRect)rect event:(NSEvent *)event;

 - (void)textView:(NSTextView *)view draggedCell:(id <NSTextAttachmentCell>)cell inRect:(NSRect)rect
 event:(NSEvent *)event atIndex:(unsigned)charIndex;

 - (NSArray *)textView:(NSTextView *)view writablePasteboardTypesForCell:(id <NSTextAttachmentCell>)cell
 atIndex:(unsigned)charIndex;

 - (BOOL)textView:(NSTextView *)view writeCell:(id <NSTextAttachmentCell>)cell atIndex:(unsigned)charIndex
 toPasteboard:(NSPasteboard *)pboard type:(NSString *)type;

 - (void)textViewDidChangeSelection:(NSNotification *)notification;

 - (NSUndoManager *)undoManagerForTextView:(NSTextView *)view;

// Notifications

 NSTextViewDidChangeSelectionNotification;

 NSTextViewWillChangeNotifyingTextViewNotification;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSToolbar Mac OS X 10.0

This class manages a toolbar in an application window. Every toolbar has an identifier, and multiple toolbars in an
application with the same identifier (say, in multiple open document windows) will keep the same state. Toolbar objects
take a delegate that provides the toolbar with NSToolbarItems to populate the toolbar and the toolbar customization
sheet.

@interface NSToolbar : NSObject

 // Initializers

 - (id)initWithIdentifier:(NSString *)identifier;

 // Accessor Methods

 - (void)setConfigurationFromDictionary:(NSDictionary *)configDict;

 - (void)setDelegate:(id)delegate;

 - (id)delegate;

 - (void)setVisible:(BOOL)shown;

 - (void)setAllowsUserCustomization:(BOOL)allowCustomization;

 - (BOOL)allowsUserCustomization;

 - (void)setDisplayMode:(NSToolbarDisplayMode)displayMode;

 - (NSToolbarDisplayMode)displayMode;

 - (void)setSizeMode:(NSToolbarSizeMode)sizeMode;

 - (NSToolbarSizeMode)sizeMode;

 - (void)setAutosavesConfiguration:(BOOL)flag;

 - (BOOL)autosavesConfiguration;

 // Instance Methods

 - (NSDictionary *)configurationDictionary;

 - (NSString *)identifier;

 - (BOOL)customizationPaletteIsRunning;

 - (void)insertItemWithItemIdentifier:(NSString *)itemIdentifier atIndex:(int)index;

 - (BOOL)isVisible;

 - (NSArray *)items;

 - (void)removeItemAtIndex:(int)index;

 - (void)runCustomizationPalette:(id)sender;

 - (void)validateVisibleItems;

 - (NSArray *)visibleItems;

// Methods Implemented by the Delegate

 - (NSToolbarItem *)toolbar:(NSToolbar *)toolbar itemForItemIdentifier:(NSString *)itemIdentifier
 willBeInsertedIntoToolbar:(BOOL)flag;

 - (NSArray *)toolbarAllowedItemIdentifiers:(NSToolbar*)toolbar;

 - (NSArray *)toolbarDefaultItemIdentifiers:(NSToolbar*)toolbar;

 - (void)toolbarDidRemoveItem:(NSNotification *)notification;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)toolbarWillAddItem:(NSNotification *)notification;

// Notifications

 NSToolbarDidRemoveItemNotification;

 NSToolbarWillAddItemNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSToolbarItem Mac OS X 10.0

This class represents the controls that populate toolbars in the user interface. By default, a toolbar item is an icon with
a label attached. This icon functions as as simple button. Like instances of NSButton, an NSToolbarItem object sends an
action message to a target when the user clicks the item. To initialize a toolbar item, we use the method
initWithItemIdentifier:. The identifier is simply a string used to uniquely identify the toolbar item. AppKit has a number of
prebuilt toolbar items that are used for common tasks, such as opening the color panel or starting a print job. To take
advantage of these standard toolbar items, initialize the toolbar item with one of the identifier strings listed in the
constants herein.

The second type of toolbar item is a custom NSView assigned to the toolbar item. The method setView: can be used to
create a view in Interface Builder (or programatically) with a small set of controls suitable for a toolbar, and then create
a toolbar item out of this view. This allows you to put standard AppKit controls (such as sliders or radio buttons) in the
toolbar.

@interface NSToolbarItem : NSObject <NSCopying, NSValidatedUserInterfaceItem>

 // Initializers

 - (id)initWithItemIdentifier:(NSString *)itemIdentifier;

 // Accessor Methods

 - (void)setMinSize:(NSSize)size;

 - (NSSize)minSize;

 - (void)setTag:(int)tag;

 - (int)tag;

 - (void)setMaxSize:(NSSize)size;

 - (NSSize)maxSize;

 - (void)setLabel:(NSString *)label;

 - (NSString *)label;

 - (void)setTarget:(id)target;

 - (id)target;

 - (void)setPaletteLabel:(NSString *)paletteLabel;

 - (NSString *)paletteLabel;

 - (void)setEnabled:(BOOL)enabled;

 - (void)setAction:(SEL)action;

 - (SEL)action;

 - (void)setImage:(NSImage*)image;

 - (NSImage *)image;

 - (void)setToolTip:(NSString*)toolTip;

 - (NSString *)toolTip;

 - (void)setView:(NSView *)view;

 - (NSView *)view;

 - (void)setMenuFormRepresentation:(NSMenuItem *)menuItem;

 - (NSMenuItem *)menuFormRepresentation;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Instance Methods

 - (BOOL)allowsDuplicatesInToolbar;

 - (BOOL)isEnabled;

 - (NSString *)itemIdentifier;

 - (NSToolbar *)toolbar;

 - (void)validate;

 // Methods Implementing NSCopying

 - (id)copyWithZone:(NSZone *)zone;

 // Methods Implementing NSValidatedUserInterfaceItem

 - (SEL)action;

 - (int)tag;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTypesetter Mac OS X 10.0

This abstract class provides an interface to objects that NSLayoutManager uses to layout lines in a text container. The
Application Kit implements a single concrete subclass of NSTypesetter in NSSimpleHorizontalTypesetter. For more information
about Cocoa's text layout system, see Chapter 5.

@interface NSTypesetter : NSObject

 // Class Methods

 + (NSTypesetterBehavior)defaultTypesetterBehavior;

 + (NSSize)printingAdjustmentInLayoutManager:(NSLayoutManager *)layoutMgr
 forNominallySpacedGlyphRange:(NSRange)nominallySpacedGlyphsRange
 packedGlyphs:(const unsigned char *)packedGlyphs count:(unsigned)packedGlyphsCount;

 + (id)sharedSystemTypesetter;

 + (id)sharedSystemTypesetterForBehavior:(NSTypesetterBehavior)theBehavior;

 // Instance Methods

 - (float)baselineOffsetInLayoutManager:(NSLayoutManager *)layoutMgr glyphIndex:(unsigned)glyphIndex;

 - (void)layoutGlyphsInLayoutManager:(NSLayoutManager *)layoutManager
 startingAtGlyphIndex:(unsigned)startGlyphIndex maxNumberOfLineFragments:(unsigned)maxNumLines
 nextGlyphIndex:(unsigned *)nextGlyph;

Subclasses

NSSimpleHorizontalTypesetter
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSView Mac OS X 10.0

This is the Cocoa interface to Mac OS X's graphics APIs, including Quartz 2D, OpenGL (using NSOpenGLView), and
QuickDraw (using NSQuickDrawView). Anything that is drawn to screen in Cocoa is done so within a view object.
Developers can implement custom drawing behavior by subclassing NSView and overriding the drawRect: method. See
Chapter 3 for more information on how views relate to other classes in the AppKit.

@interface NSView : NSResponder

 // Initializers

 - (id)initWithFrame:(NSRect)frameRect;

 // Accessor Methods

 - (void)setBoundsSize:(NSSize)newSize;

 - (void)setFrameOrigin:(NSPoint)newOrigin;

 - (void)setFrame:(NSRect)frameRect;

 - (NSRect)frame;

 - (void)setAutoresizingMask:(unsigned int)mask;

 - (unsigned int)autoresizingMask;

 - (void)setUpGState;

 - (void)setBoundsRotation:(float)angle;

 - (float)boundsRotation;

 - (void)setAutoresizesSubviews:(BOOL)flag;

 - (BOOL)autoresizesSubviews;

 - (void)setNeedsDisplayInRect:(NSRect)invalidRect;

 - (void)setBoundsOrigin:(NSPoint)newOrigin;

 - (void)setFrameRotation:(float)angle;

 - (float)frameRotation;

 - (void)setNeedsDisplay:(BOOL)flag;

 - (BOOL)needsDisplay;

 - (void)setToolTip:(NSString *)string;

 - (NSString *)toolTip;

 - (void)setFrameSize:(NSSize)newSize;

 - (void)setBounds:(NSRect)aRect;

 - (NSRect)bounds;

 - (void)setPostsFrameChangedNotifications:(BOOL)flag;

 - (BOOL)postsFrameChangedNotifications;

 - (void)setPostsBoundsChangedNotifications:(BOOL)flag;

 - (BOOL)postsBoundsChangedNotifications;

 // Class Methods

 + (NSMenu *)defaultMenu;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + (NSView *)focusView;

 // Instance Methods

 - (BOOL)acceptsFirstMouse:(NSEvent *)theEvent;

 - (NSView *)ancestorSharedWithView:(NSView *)aView;

 - (void)addSubview:(NSView *)aView;

 - (void)addSubview:(NSView *)aView positioned:(NSWindowOrderingMode)place relativeTo:(NSView *)otherView;

 - (void)allocateGState;

 - (NSToolTipTag)addToolTipRect:(NSRect)aRect owner:(id)anObject userData:(void *)data;

 - (void)addCursorRect:(NSRect)aRect cursor:(NSCursor *)anObj;

 - (NSTrackingRectTag)addTrackingRect:(NSRect)aRect owner:(id)anObject userData:(void *)data
 assumeInside:(BOOL)flag;

 - (BOOL)autoscroll:(NSEvent *)theEvent;

 - (void)beginDocument;

 - (void)beginPageInRect:(NSRect)aRect atPlacement:(NSPoint)location;

 - (BOOL)canDraw;

 - (void)adjustPageHeightNew:(float *)newBottom top:(float)oldTop bottom:(float)oldBottom
 limit:(float)bottomLimit;

 - (void)adjustPageWidthNew:(float *)newRight left:(float)oldLeft right:(float)oldRight limit:(float)rightLimit;

 - (NSRect)adjustScroll:(NSRect)newVisible;

 - (NSRect)centerScanRect:(NSRect)aRect;

 - (NSPoint)convertPoint:(NSPoint)aPoint fromView:(NSView *)aView;

 - (NSPoint)convertPoint:(NSPoint)aPoint toView:(NSView *)aView;

 - (NSRect)convertRect:(NSRect)aRect fromView:(NSView *)aView;

 - (NSRect)convertRect:(NSRect)aRect toView:(NSView *)aView;

 - (NSSize)convertSize:(NSSize)aSize fromView:(NSView *)aView;

 - (NSSize)convertSize:(NSSize)aSize toView:(NSView *)aView;

 - (NSData *)dataWithEPSInsideRect:(NSRect)rect;

 - (NSData *)dataWithPDFInsideRect:(NSRect)rect;

 - (void)didAddSubview:(NSView *)subview;

 - (void)discardCursorRects;

 - (void)display;

 - (void)displayIfNeeded;

 - (void)displayIfNeededIgnoringOpacity;

 - (void)displayIfNeededInRect:(NSRect)rect;

 - (void)displayIfNeededInRectIgnoringOpacity:(NSRect)rect;

 - (void)displayRect:(NSRect)rect;

 - (void)displayRectIgnoringOpacity:(NSRect)rect;

 - (void)drawPageBorderWithSize:(NSSize)borderSize;

 - (void)drawRect:(NSRect)rect;

 - (void)drawSheetBorderWithSize:(NSSize)borderSize;

 - (NSScrollView *)enclosingScrollView;

 - (void)endDocument;

 - (void)endPage;

 - (int)gState;

 - (float)heightAdjustLimit;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSView *)hitTest:(NSPoint)aPoint;

 - (BOOL)inLiveResize;

 - (BOOL)isDescendantOf:(NSView *)aView;

 - (BOOL)isFlipped;

 - (BOOL)isOpaque;

 - (BOOL)isRotatedFromBase;

 - (BOOL)isRotatedOrScaledFromBase;

 - (BOOL)knowsPageRange:(NSRangePointer)range;

 - (NSPoint)locationOfPrintRect:(NSRect)aRect;

 - (void)lockFocus;

 - (BOOL)lockFocusIfCanDraw;

 - (NSMenu *)menuForEvent:(NSEvent *)event;

 - (BOOL)mouse:(NSPoint)aPoint inRect:(NSRect)aRect;

 - (BOOL)mouseDownCanMoveWindow;

 - (BOOL)needsPanelToBecomeKey;

 - (NSView *)opaqueAncestor;

 - (BOOL)performKeyEquivalent:(NSEvent *)theEvent;

 - (void)print:(id)sender;

 - (NSString *)printJobTitle;

 - (NSRect)rectForPage:(int)page;

 - (void)reflectScrolledClipView:(NSClipView *)aClipView;

 - (void)releaseGState;

 - (void)removeAllToolTips;

 - (void)removeCursorRect:(NSRect)aRect cursor:(NSCursor *)anObj;

 - (void)removeFromSuperview;

 - (void)removeFromSuperviewWithoutNeedingDisplay;

 - (void)removeToolTip:(NSToolTipTag)tag;

 - (void)removeTrackingRect:(NSTrackingRectTag)tag;

 - (void)renewGState;

 - (void)replaceSubview:(NSView *)oldView with:(NSView *)newView;

 - (void)resetCursorRects;

 - (void)resizeSubviewsWithOldSize:(NSSize)oldSize;

 - (void)resizeWithOldSuperviewSize:(NSSize)oldSize;

 - (void)rotateByAngle:(float)angle;

 - (void)scaleUnitSquareToSize:(NSSize)newUnitSize;

 - (void)scrollClipView:(NSClipView *)aClipView toPoint:(NSPoint)aPoint;

 - (void)scrollPoint:(NSPoint)aPoint;

 - (void)scrollRect:(NSRect)aRect by:(NSSize)delta;

 - (BOOL)scrollRectToVisible:(NSRect)aRect;

 - (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *)theEvent;

 - (BOOL)shouldDrawColor;

 - (void)sortSubviewsUsingFunction:(int (*)(id, id, void *))compare context:(void *)context;

 - (NSArray *)subviews;

 - (NSView *)superview;

 - (int)tag;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (int)tag;

 - (void)translateOriginToPoint:(NSPoint)translation;

 - (void)unlockFocus;

 - (void)viewDidEndLiveResize;

 - (void)viewDidMoveToSuperview;

 - (void)viewDidMoveToWindow;

 - (void)viewWillMoveToSuperview:(NSView *)newSuperview;

 - (void)viewWillMoveToWindow:(NSWindow *)newWindow;

 - (void)viewWillStartLiveResize;

 - (id)viewWithTag:(int)aTag;

 - (NSRect)visibleRect;

 - (float)widthAdjustLimit;

 - (void)willRemoveSubview:(NSView *)subview;

 - (NSWindow *)window;

 - (void)writeEPSInsideRect:(NSRect)rect toPasteboard:(NSPasteboard *)pasteboard;

 - (void)writePDFInsideRect:(NSRect)rect toPasteboard:(NSPasteboard *)pasteboard;

// Notifications

 NSViewBoundsDidChangeNotification;

 NSViewFocusDidChangeNotification;

 NSViewFrameDidChangeNotification;

 NSViewGlobalFrameDidChangeNotification;

Subclasses

NSBox, NSClipView, NSControl, NSMenuView, NSMovieView, NSOpenGLView, NSProgressIndicator, NSQuickDrawView, NSRulerView,
NSScrollView, NSSplitView, NSTabView, NSTableHeaderView, NSText
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSWindow Mac OS X 10.0

This class declares an interface to application windows and is one of the key components of the Application Kit
architecture. NSWindow objects are responsible for managing and displaying a hierarchy of views within the window, as
well as handling mouse and keyboard events that occur in the window.

@interface NSWindow : NSResponder

 // Initializers

 - (id)initWithContentRect:(NSRect)contentRect styleMask:(unsigned int)aStyle
 backing:(NSBackingStoreType)bufferingType defer:(BOOL)flag;

 - (id)initWithContentRect:(NSRect)contentRect styleMask:(unsigned int)aStyle
 backing:(NSBackingStoreType)bufferingType defer:(BOOL)flag screen:(NSScreen *)screen;

 - (NSWindow *)initWithWindowRef:(void * /* WindowRef */)windowRef;

 - (NSView *)initialFirstResponder;

 // Accessor Methods

 - (void)setAspectRatio:(NSSize)ratio;

 - (NSSize)aspectRatio;

 - (void)setOrderedIndex:(int)index;

 - (int)orderedIndex;

 - (void)setIsVisible:(BOOL)flag;

 - (BOOL)isVisible;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (void)setIsMiniaturized:(BOOL)flag;

 - (BOOL)isMiniaturized;

 - (void)setRepresentedFilename:(NSString *)aString;

 - (NSString *)representedFilename;

 - (void)setTitleWithRepresentedFilename:(NSString *)filename;

 - (void)setExcludedFromWindowsMenu:(BOOL)flag;

 - (void)setIsZoomed:(BOOL)flag;

 - (BOOL)isZoomed;

 - (void)setMiniwindowTitle:(NSString *)title;

 - (NSString *)miniwindowTitle;

 - (void)setDelegate:(id)anObject;

 - (id)delegate;

 - (void)setToolbar:(NSToolbar*)toolbar;

 - (NSToolbar *)toolbar;

 - (void)setDefaultButtonCell:(NSButtonCell *)defButt;

 - (NSButtonCell *)defaultButtonCell;

 - (void)setParentWindow:(NSWindow *)window;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSWindow *)parentWindow;

 - (void)setFrame:(NSRect)frameRect display:(BOOL)flag;

 - (NSRect)frame;

 - (void)setFrameOrigin:(NSPoint)aPoint;

 - (void)setFrameTopLeftPoint:(NSPoint)aPoint;

 - (void)setFrame:(NSRect)frameRect display:(BOOL)displayFlag animate:(BOOL)animateFlag;

 - (void)setResizeIncrements:(NSSize)increments;

 - (NSSize)resizeIncrements;

 - (void)setWindowController:(NSWindowController *)windowController;

 - (id)windowController;

 - (void)setMovableByWindowBackground:(BOOL)flag;

 - (void)setIgnoresMouseEvents:(BOOL)flag;

 - (BOOL)ignoresMouseEvents;

 - (void)setAcceptsMouseMovedEvents:(BOOL)flag;

 - (BOOL)acceptsMouseMovedEvents;

 - (void)setMaxSize:(NSSize)size;

 - (NSSize)maxSize;

 - (void)setMiniwindowImage:(NSImage *)image;

 - (NSImage *)miniwindowImage;

 - (void)setCanHide:(BOOL)flag;

 - (BOOL)canHide;

 - (BOOL)setFrameAutosaveName:(NSString *)name;

 - (NSString *)frameAutosaveName;

 - (BOOL)setFrameUsingName:(NSString *)name;

 - (void)setAutodisplay:(BOOL)flag;

 - (BOOL)setFrameUsingName:(NSString *)name force:(BOOL)force;

 - (void)setFrameFromString:(NSString *)string;

 - (void)setOpaque:(BOOL)isOpaque;

 - (void)setAlphaValue:(float)windowAlpha;

 - (float)alphaValue;

 - (void)setHasShadow:(BOOL)hasShadow;

 - (BOOL)hasShadow;

 - (void)setReleasedWhenClosed:(BOOL)flag;

 - (void)setDynamicDepthLimit:(BOOL)flag;

 - (void)setHidesOnDeactivate:(BOOL)flag;

 - (BOOL)hidesOnDeactivate;

 - (void)setLevel:(int)newLevel;

 - (int)level;

 - (void)setBackingType:(NSBackingStoreType)bufferingType;

 - (NSBackingStoreType)backingType;

 - (void)setOneShot:(BOOL)flag;

 - (void)setBackgroundColor:(NSColor *)color;

 - (NSColor *)backgroundColor;

 - (void)setMinSize:(NSSize)size;

 - (NSSize)minSize;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (NSSize)minSize;

 - (void)setContentView:(NSView *)aView;

 - (id)contentView;

 - (void)setDocumentEdited:(BOOL)flag;

 - (void)setInitialFirstResponder:(NSView *)view;

 - (void)setShowsResizeIndicator:(BOOL)show;

 - (BOOL)showsResizeIndicator;

 - (void)setViewsNeedDisplay:(BOOL)flag;

 - (BOOL)viewsNeedDisplay;

 - (void)setDepthLimit:(NSWindowDepth)limit;

 - (NSWindowDepth)depthLimit;

 - (void)setContentSize:(NSSize)aSize;

 // Class Methods

 + (NSRect)contentRectForFrameRect:(NSRect)fRect styleMask:(unsigned int)aStyle;

 + (NSWindowDepth)defaultDepthLimit;

 + (NSRect)frameRectForContentRect:(NSRect)cRect styleMask:(unsigned int)aStyle;

 + (void)menuChanged:(NSMenu *)menu;

 + (float)minFrameWidthWithTitle:(NSString *)aTitle styleMask:(unsigned int)aStyle;

 + (void)removeFrameUsingName:(NSString *)name;

 + (NSButton *)standardWindowButton:(NSWindowButton)b forStyleMask:(unsigned int)styleMask;

 // Instance Methods

 - (BOOL)canBecomeKeyWindow;

 - (BOOL)canBecomeMainWindow;

 - (void)becomeKeyWindow;

 - (NSArray *)childWindows;

 - (void)becomeMainWindow;

 - (void)addChildWindow:(NSWindow *)childWin ordered:(NSWindowOrderingMode)place;

 - (NSTimeInterval)animationResizeTime:(NSRect)newFrame;

 - (NSPoint)cascadeTopLeftFromPoint:(NSPoint)topLeftPoint;

 - (NSWindow *)attachedSheet;

 - (NSEvent *)currentEvent;

 - (void)cacheImageInRect:(NSRect)aRect;

 - (void)close;

 - (BOOL)canStoreColor;

 - (BOOL)areCursorRectsEnabled;

 - (void)center;

 - (NSRect)constrainFrameRect:(NSRect)frameRect toScreen:(NSScreen *)screen;

 - (NSPoint)convertBaseToScreen:(NSPoint)aPoint;

 - (NSPoint)convertScreenToBase:(NSPoint)aPoint;

 - (NSData *)dataWithEPSInsideRect:(NSRect)rect;

 - (NSData *)dataWithPDFInsideRect:(NSRect)rect;

 - (NSScreen *)deepestScreen;

 - (void)deminiaturize:(id)sender;

 - (NSDictionary *)deviceDescription;

 - (void)disableCursorRects;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)disableFlushWindow;

 - (void)disableKeyEquivalentForDefaultButtonCell;

 - (void)discardCachedImage;

 - (void)discardCursorRects;

 - (void)discardEventsMatchingMask:(unsigned int)mask beforeEvent:(NSEvent *)lastEvent;

 - (void)display;

 - (void)displayIfNeeded;

 - (void)dragImage:(NSImage *)anImage at:(NSPoint)baseLocation offset:(NSSize)initialOffset
 event:(NSEvent *)event pasteboard:(NSPasteboard *)pboard source:(id)sourceObj slideBack:(BOOL)slideFlag;

 - (NSArray *)drawers;

 - (void)enableCursorRects;

 - (void)enableFlushWindow;

 - (void)enableKeyEquivalentForDefaultButtonCell;

 - (void)endEditingFor:(id)anObject;

 - (NSText *)fieldEditor:(BOOL)createFlag forObject:(id)anObject;

 - (NSResponder *)firstResponder;

 - (void)flushWindow;

 - (void)flushWindowIfNeeded;

 - (int)gState;

 - (id)handleCloseScriptCommand:(NSCloseCommand *)command;

 - (id)handlePrintScriptCommand:(NSScriptCommand *)command;

 - (id)handleSaveScriptCommand:(NSScriptCommand *)command;

 - (BOOL)hasCloseBox;

 - (BOOL)hasDynamicDepthLimit;

 - (BOOL)hasTitleBar;

 - (void)invalidateCursorRectsForView:(NSView *)aView;

 - (void)invalidateShadow;

 - (BOOL)isAutodisplay;

 - (BOOL)isDocumentEdited;

 - (BOOL)isExcludedFromWindowsMenu;

 - (BOOL)isFloatingPanel;

 - (BOOL)isFlushWindowDisabled;

 - (BOOL)isKeyWindow;

 - (BOOL)isMainWindow;

 - (BOOL)isMiniaturizable;

 - (BOOL)isModalPanel;

 - (BOOL)isMovableByWindowBackground;

 - (BOOL)isOneShot;

 - (BOOL)isOpaque;

 - (BOOL)isReleasedWhenClosed;

 - (BOOL)isResizable;

 - (BOOL)isSheet;

 - (BOOL)isZoomable;

 - (void)keyDown:(NSEvent *)theEvent;

 - (NSSelectionDirection)keyViewSelectionDirection;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)makeFirstResponder:(NSResponder *)aResponder;

 - (void)makeKeyAndOrderFront:(id)sender;

 - (void)makeKeyWindow;

 - (void)makeMainWindow;

 - (void)miniaturize:(id)sender;

 - (NSPoint)mouseLocationOutsideOfEventStream;

 - (NSEvent *)nextEventMatchingMask:(unsigned int)mask;

 - (NSEvent *)nextEventMatchingMask:(unsigned int)mask untilDate:(NSDate *)expiration inMode:(NSString *)mode
 dequeue:(BOOL)deqFlag;

 - (void)orderBack:(id)sender;

 - (void)orderFront:(id)sender;

 - (void)orderFrontRegardless;

 - (void)orderOut:(id)sender;

 - (void)orderWindow:(NSWindowOrderingMode)place relativeTo:(int)otherWin;

 - (void)performClose:(id)sender;

 - (void)performMiniaturize:(id)sender;

 - (void)performZoom:(id)sender;

 - (void)postEvent:(NSEvent *)event atStart:(BOOL)flag;

 - (void)print:(id)sender;

 - (void)registerForDraggedTypes:(NSArray *)newTypes;

 - (void)removeChildWindow:(NSWindow *)childWin;

 - (void)resetCursorRects;

 - (void)resignKeyWindow;

 - (void)resignMainWindow;

 - (int)resizeFlags;

 - (void)restoreCachedImage;

 - (void)runToolbarCustomizationPalette:(id)sender;

 - (void)saveFrameUsingName:(NSString *)name;

 - (NSScreen *)screen;

 - (void)selectKeyViewFollowingView:(NSView *)aView;

 - (void)selectKeyViewPrecedingView:(NSView *)aView;

 - (void)selectNextKeyView:(id)sender;

 - (void)selectPreviousKeyView:(id)sender;

 - (void)sendEvent:(NSEvent *)theEvent;

 - (NSButton *)standardWindowButton:(NSWindowButton)b;

 - (NSString *)stringWithSavedFrame;

 - (unsigned int)styleMask;

 - (void)toggleToolbarShown:(id)sender;

 - (BOOL)tryToPerform:(SEL)anAction with:(id)anObject;

 - (void)unregisterDraggedTypes;

 - (void)update;

 - (void)useOptimizedDrawing:(BOOL)flag;

 - (id)validRequestorForSendType:(NSString *)sendType returnType:(NSString *)returnType;

 - (void * /*HWND*/)windowHandle;

 - (int)windowNumber;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void * /* WindowRef */)windowRef;

 - (BOOL)worksWhenModal;

 - (void)zoom:(id)sender;

// Methods Implemented by the Delegate

 - (void)windowDidBecomeKey:(NSNotification *)notification;

 - (void)windowDidBecomeMain:(NSNotification *)notification;

 - (void)windowDidChangeScreen:(NSNotification *)notification;

 - (void)windowDidDeminiaturize:(NSNotification *)notification;

 - (void)windowDidEndSheet:(NSNotification *)notification;

 - (void)windowDidExpose:(NSNotification *)notification;

 - (void)windowDidMiniaturize:(NSNotification *)notification;

 - (void)windowDidMove:(NSNotification *)notification;

 - (void)windowDidResignKey:(NSNotification *)notification;

 - (void)windowDidResignMain:(NSNotification *)notification;

 - (void)windowDidResize:(NSNotification *)notification;

 - (void)windowDidUpdate:(NSNotification *)notification;

 - (BOOL)windowShouldClose:(id)sender;

 - (BOOL)windowShouldZoom:(NSWindow *)window toFrame:(NSRect)newFrame;

 - (void)windowWillBeginSheet:(NSNotification *)notification;

 - (void)windowWillClose:(NSNotification *)notification;

 - (void)windowWillMiniaturize:(NSNotification *)notification;

 - (void)windowWillMove:(NSNotification *)notification;

 - (NSSize)windowWillResize:(NSWindow *)sender toSize:(NSSize)frameSize;

 - (id)windowWillReturnFieldEditor:(NSWindow *)sender toObject:(id)client;

 - (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)window;

 - (NSRect)windowWillUseStandardFrame:(NSWindow *)window defaultFrame:(NSRect)newFrame;

// Notifications

 NSWindowDidBecomeKeyNotification;

 NSWindowDidBecomeMainNotification;

 NSWindowDidChangeScreenNotification;

 NSWindowDidDeminiaturizeNotification;

 NSWindowDidEndSheetNotification;

 NSWindowDidMiniaturizeNotification;

 NSWindowDidMoveNotification;

 NSWindowDidResignKeyNotification;

 NSWindowDidResignMainNotification;

 NSWindowDidResizeNotification;

 NSWindowDidUpdateNotification;

 NSWindowWillBeginSheetNotification;

 NSWindowWillCloseNotification;

 NSWindowWillMiniaturizeNotification;

 NSWindowWillMoveNotification;

Subclasses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subclasses

NSPanel

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSWindowController Mac OS X 10.0

This is one of the three classes that makes up Cocoa's document-based application architecture; the other two classes
are NSDocument and NSDocumentController. Instances of NSWindowController are responsible for managing a single window
for a document. NSWindowController has a close relationship with windows contained in nib files, which is evident in the
initializer initWithWindowNibName:. This initializer will load the window in the nib and take ownership over it. See Chapter
3 for more information on NSWindowController and its role in document-based applications.

@interface NSWindowController : NSResponder <NSCoding>

 // Initializers

 - (id)initWithWindow:(NSWindow *)window;

 - (id)initWithWindowNibName:(NSString *)windowNibName;

 - (id)initWithWindowNibName:(NSString *)windowNibName owner:(id)owner;

 - (id)initWithWindowNibPath:(NSString *)windowNibPath owner:(id)owner;

 // Accessor Methods

 - (void)setWindowFrameAutosaveName:(NSString *)name;

 - (NSString *)windowFrameAutosaveName;

 - (void)setWindow:(NSWindow *)window;

 - (NSWindow *)window;

 - (void)setDocumentEdited:(BOOL)dirtyFlag;

 - (void)setShouldCloseDocument:(BOOL)flag;

 - (BOOL)shouldCloseDocument;

 - (void)setDocument:(NSDocument *)document;

 - (id)document;

 - (void)setShouldCascadeWindows:(BOOL)flag;

 - (BOOL)shouldCascadeWindows;

 // Instance Methods

 - (void)close;

 - (BOOL)isWindowLoaded;

 - (void)loadWindow;

 - (id)owner;

 - (IBAction)showWindow:(id)sender;

 - (void)synchronizeWindowTitleWithDocumentName;

 - (void)windowDidLoad;

 - (NSString *)windowNibName;

 - (NSString *)windowNibPath;

 - (NSString *)windowTitleForDocumentDisplayName:(NSString *)displayName;

 - (void)windowWillLoad;

 // Methods Implementing NSCoding

 - (void)encodeWithCoder:(NSCoder *)aCoder;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (id)initWithCoder:(NSCoder *)aDecoder;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSWorkspace Mac OS X 10.0

This class makes available to Cocoa applications many of Mac OS X's "workspace" services, which are essentially those
services provided by the Finder. NSWorkspace provides methods for discovering characteristics of the workspace, such as
what GUI applications are running and what volumes are mounted. Additionally, applications can use NSWorkspace to
open files and URLs as if they were opened in the Finder. Each application has a single shared instance of NSWorkspace
that is accessed with the method sharedWorkspace.

@interface NSWorkspace : NSObject

 // Class Methods

 + (NSWorkspace *)sharedWorkspace;

 // Instance Methods

 - (NSDictionary *)activeApplication;

 - (void)checkForRemovableMedia;

 - (int)extendPowerOffBy:(int)requested;

 - (BOOL)fileSystemChanged;

 - (void)findApplications;

 - (NSString *)fullPathForApplication:(NSString *)appName;

 - (BOOL)getFileSystemInfoForPath:(NSString *)fullPath isRemovable:(BOOL *)removableFlag
 isWritable:(BOOL *)writableFlag isUnmountable:(BOOL *)unmountableFlag description:(NSString **)description
 type:(NSString **)fileSystemType;

 - (BOOL)getInfoForFile:(NSString *)fullPath application:(NSString **)appName type:(NSString **)type;

 - (void)hideOtherApplications;

 - (NSImage *)iconForFile:(NSString *)fullPath;

 - (NSImage *)iconForFileType:(NSString *)fileType;

 - (NSImage *)iconForFiles:(NSArray *)fullPaths;

 - (BOOL)isFilePackageAtPath:(NSString *)fullPath;

 - (BOOL)launchApplication:(NSString *)appName;

 - (BOOL)launchApplication:(NSString *)appName showIcon:(BOOL)showIcon autolaunch:(BOOL)autolaunch;

 - (NSArray *)launchedApplications;

 - (NSArray *)mountNewRemovableMedia;

 - (NSArray *)mountedLocalVolumePaths;

 - (NSArray *)mountedRemovableMedia;

 - (void)noteFileSystemChanged;

 - (void)noteFileSystemChanged:(NSString *)path;

 - (void)noteUserDefaultsChanged;

 - (NSNotificationCenter *)notificationCenter;

 - (BOOL)openFile:(NSString *)fullPath;

 - (BOOL)openFile:(NSString *)fullPath fromImage:(NSImage *)anImage at:(NSPoint)point inView:(NSView *)aView;

 - (BOOL)openFile:(NSString *)fullPath withApplication:(NSString *)appName;

 - (BOOL)openFile:(NSString *)fullPath withApplication:(NSString *)appName andDeactivate:(BOOL)flag;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (BOOL)openFile:(NSString *)fullPath withApplication:(NSString *)appName andDeactivate:(BOOL)flag;

 - (BOOL)openTempFile:(NSString *)fullPath;

 - (BOOL)openURL:(NSURL *)url;

 - (BOOL)performFileOperation:(NSString *)operation source:(NSString *)source destination:(NSString *)destination
 files:(NSArray *)files tag:(int *)tag;

 - (BOOL)selectFile:(NSString *)fullPath inFileViewerRootedAtPath:(NSString *)rootFullpath;

 - (void)slideImage:(NSImage *)image from:(NSPoint)fromPoint to:(NSPoint)toPoint;

 - (BOOL)unmountAndEjectDeviceAtPath:(NSString *)path;

 - (BOOL)userDefaultsChanged;

// Notifications

 NSWorkspaceWillPowerOffNotification;

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. Application Kit Protocols
This chapter covers the protocols of the Application Kit. The Application Kit implements all of the graphical user
interface components of Cocoa, including the complete standard Aqua widget set. Additionally, the Application Kit
provides classes for interacting with the Quartz 2D drawing system, and for managing and accessing resources such as
colors, fonts, and printers. The Application Kit is introduced in Chapter 3. Chapter 4 and Chapter 5 went into more
detail about those aspects of the Application Kit.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSAccessibility Mac OS X 10.2

Cocoa provides support for accessibility, which gives Cocoa applications the ability to work with other assistive
applications, such as screen readers. This informal protocol declares the methods that classes in an application must
implement to interface with the accessibility system. The great majority of Application Kit classes implement this
protocol, meaning that Cocoa applications are largely accessible to assistive technologies. However, if you do a great
deal of customization to existing Cocoa classes, it may be necessary to implement portions of the protocol yourself.

@interface NSObject (NSAccessibility)

 // Instance Methods

 - (NSArray *)accessibilityAttributeNames;

 - (id)accessibilityAttributeValue:(NSString *)attribute;

 - (BOOL)accessibilityIsAttributeSettable:(NSString *)attribute;

 - (void)accessibilitySetValue:(id)value forAttribute:(NSString *)attribute;

 - (NSArray *)accessibilityActionNames;

 - (NSString *)accessibilityActionDescription:(NSString *)action;

 - (void)accessibilityPerformAction:(NSString *)action;

 - (BOOL)accessibilityIsIgnored;

 - (id)accessibilityHitTest:(NSPoint)point;

 - (id)accessibilityFocusedUIElement;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSChangeSpelling Mac OS X 10.0

This protocol declares the single action method changeSpelling:, implemented to receive messages from the Spelling
panel notifying them of text selections that need to be replaced. The sender of the changeSpelling: message is the
Spelling panel. Classes should implement this method to query the sender for the word that the user has selected in the
panel, and replace the current selection with that word.

@protocol NSChangeSpelling

 // Instance Methods

 - (void)changeSpelling:(id)sender;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSColorPickingCustom Mac OS X 10.0

This protocol declares an interface for classes to conform to provide custom color pickers for the color-picker panel. This
protocol is used closely with the NSColorPickingDefault protocol, which declares the basic interface for color pickers. The
most straightforward way to create a custom color picker for your application is to subclass NSColorPicker, and
implement the methods of this protocol in your subclass.

@protocol NSColorPickingCustom

 // Instance Methods

 - (BOOL)supportsMode:(int)mode;

 - (int)currentMode;

 - (NSView *)provideNewView:(BOOL)initialRequest;

 - (void)setColor:(NSColor *)newColor;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSColorPickingDefault Mac OS X 10.0

This protocol declares an interface for classes to conform to in order to provide custom color pickers for the color-picker
panel. This protocol is used closely with the NSColorPickingCustom protocol. The Application Kit implements the methods
of this protocol in the NSColorPicker class. The most straightforward way to create a custom color picker for your
application is to subclass NSColorPicker and implement the methods of NSColorPickingCustom in your subclass.

@protocol NSColorPickingDefault

 // Instance Methods

 - (id)initWithPickerMask:(int)mask colorPanel:(NSColorPanel *)owningColorPanel;

 - (NSImage *)provideNewButtonImage;

 - (void)insertNewButtonImage:(NSImage *)newButtonImage in:(NSButtonCell *)buttonCell;

 - (void)viewSizeChanged:(id)sender;

 - (void)alphaControlAddedOrRemoved:(id)sender;

 - (void)attachColorList:(NSColorList *)colorList;

 - (void)detachColorList:(NSColorList *)colorList;

 - (void)setMode:(int)mode;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSComboBoxCellDataSource Mac OS X 10.0

NSComboBox controls rely on data source objects to provide the contents of the combo box. This informal protocol
provides the interface for NSComboBoxCell data source objects to implement. It declares methods that not only provide
the contents of the combo box list, but support autocompletion behavior (where a string is returned from the data
source that matches a partially completed string typed into the combo box field). At a minimum, data source objects
must implement the methods comboBoxCell:objectValueForItemAtIndex: and numberOfItemsInComboBoxCell:.

@interface NSObject (NSComboBoxCellDataSource)

 // Instance Methods

 - (int)numberOfItemsInComboBoxCell:(NSComboBoxCell *)comboBoxCell;

 - (id)comboBoxCell:(NSComboBoxCell *)aComboBoxCell objectValueForItemAtIndex:(int)index;

 - (unsigned int)comboBoxCell:(NSComboBoxCell *)aComboBoxCell indexOfItemWithStringValue:(NSString *)string;

 - (NSString *)comboBoxCell:(NSComboBoxCell *)aComboBoxCell completedString:(NSString *)uncompletedString;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSComboBoxDataSource Mac OS X 10.0

This informal protocol provides methods for a class to implement to act as a data source for NSComboBox objects. This
protocol declares methods that not only provide the contents of the combo box list, but support autocompletion
behavior (where a string is returned from the data source that matches a partially completed string typed into the
combo box field). At a minimum, data source objects must implement the methods comboBox:objectValueForItemAtIndex:
and numberOfItemsInComboBox:.

@interface NSObject (NSComboBoxDataSource)

 // Instance Methods

 - (int)numberOfItemsInComboBox:(NSComboBox *)aComboBox;

 - (id)comboBox:(NSComboBox *)aComboBox objectValueForItemAtIndex:(int)index;

 - (unsigned int)comboBox:(NSComboBox *)aComboBox indexOfItemWithStringValue:(NSString *)string;

 - (NSString *)comboBox:(NSComboBox *)aComboBox completedString:(NSString *)string;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDraggingDestination Mac OS X 10.0

This informal protocol declares methods for objects to implement if they need to receive dragging operations. Several of
the methods of NSDraggingDestination are implemented to respond to the movement of the drag operation of an
destination object, while the remainder are implemented to execute and complete the dragging operation. Completing a
drag operation involves retrieving and handling the data appropriately. To retrieve the data one must first obtain the
NSPasteboard object in which the data is stored, for a dragging operation only knows about this pasteboard, not the data
itself. The pasteboard may be obtained with the draggingPasteboard method. This is declared by the NSDraggingInfo
protocol, and all dragging operation objects conform to this protocol. See the NSDraggingInfo protocol description and
NSPasteboard class description for more information.

@interface NSObject (NSDraggingDestination)

 // Instance Methods

 - (NSDragOperation)draggingEntered:(id <NSDraggingInfo>)sender;

 - (NSDragOperation)draggingUpdated:(id <NSDraggingInfo>)sender;

 - (void)draggingExited:(id <NSDraggingInfo>)sender;

 - (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender;

 - (BOOL)performDragOperation:(id <NSDraggingInfo>)sender;

 - (void)concludeDragOperation:(id <NSDraggingInfo>)sender;

 - (void)draggingEnded:(id <NSDraggingInfo>)sender;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDraggingInfo Mac OS X 10.0

This protocol declares methods that are used to provide an interface to objects that represent dragging sessions. When
a dragging session begins, an object that conforms to this protocol is automatically created, and is the sender of all
messages to the destination object, which implements the methods outlined in the NSDraggingDestination protocol.
NSDraggingInfo exists to publish the interface for this object that represents the dragging operation, and as such
developers never need to implement these methods.

@protocol NSDraggingInfo

 // Instance Methods

 - (NSWindow *)draggingDestinationWindow;

 - (NSDragOperation)draggingSourceOperationMask;

 - (NSPoint)draggingLocation;

 - (NSPoint)draggedImageLocation;

 - (NSImage *)draggedImage;

 - (NSPasteboard *)draggingPasteboard;

 - (id)draggingSource;

 - (int)draggingSequenceNumber;

 - (void)slideDraggedImageTo:(NSPoint)screenPoint;

 - (NSArray *)namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSDraggingSource Mac OS X 10.0

This informal protocol declares methods that a class must implement to serve as a source of data in dragging
operations. This protocol declares a number of methods, but classes need only implement the method
draggingSourceOperationMaskForLocal: to be a valid dragging operation source. Classes should implement this method to
return a dragging source operation mask, which describes how data should be handled in a dragging operation. See
NSDraggingInfo's listing (previously) for more information.

@interface NSObject (NSDraggingSource)

 // Instance Methods

 - (NSDragOperation)draggingSourceOperationMaskForLocal:(BOOL)flag;

 - (NSArray *)namesOfPromisedFilesDroppedAtDestination:(NSURL *)dropDestination;

 - (void)draggedImage:(NSImage *)image beganAt:(NSPoint)screenPoint;

 - (void)draggedImage:(NSImage *)image endedAt:(NSPoint)screenPoint operation:(NSDragOperation)operation;

 - (void)draggedImage:(NSImage *)image movedTo:(NSPoint)screenPoint;

 - (BOOL)ignoreModifierKeysWhileDragging;

 - (void)draggedImage:(NSImage *)image endedAt:(NSPoint)screenPoint deposited:(BOOL)flag;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSIgnoreMisspelledWords Mac OS X 10.0

This protocol declares the single action method ignoreSpelling:, which should be implemented by classes that need to
work with Cocoa's Spelling panel. NSSpellChecker sends this message up the responder chain. Classes implement this
method so that the Ignore button in the Spelling panel functions properly for the particular application or document
implementation.

@protocol NSIgnoreMisspelledWords

 // Instance Methods

 - (void)ignoreSpelling:(id)sender;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSInputServerMouseTracker Mac OS X 10.0

This protocol declares an interface for mouse event handling that is tailored for use by text views. The methods of this
protocol provide information about the character position of an event, in addition to the coordinates of the mouse
location in the view.

@protocol NSInputServerMouseTracker

 // Instance Methods

 - (BOOL)mouseDownOnCharacterIndex:(unsigned)theIndex atCoordinate:(NSPoint)thePoint
 withModifier:(unsigned int)theFlags client:(id)sender;

 - (BOOL)mouseDraggedOnCharacterIndex:(unsigned)theIndex atCoordinate:(NSPoint)thePoint
 withModifier:(unsigned int)theFlags client:(id)sender;

 - (void)mouseUpOnCharacterIndex:(unsigned)theIndex atCoordinate:(NSPoint)thePoint
 withModifier:(unsigned int)theFlags client:(id)sender;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSInputServiceProvider Mac OS X 10.0

This protocol declares the interface for most of the functionality implemented by NSInputServer. Clients may use this
class to implement their own input server classes, or to implement a delegate object that can be used with the standard
NSInputServer.

@protocol NSInputServiceProvider

 // Instance Methods

 - (void)insertText:(id)aString client:(id)sender;

 - (void)doCommandBySelector:(SEL)aSelector client:(id)sender;

 - (void)markedTextAbandoned:(id)sender;

 - (void)markedTextSelectionChanged:(NSRange)newSel client:(id)sender;

 - (void)terminate:(id)sender;

 - (BOOL)canBeDisabled;

 - (BOOL)wantsToInterpretAllKeystrokes;

 - (BOOL)wantsToHandleMouseEvents;

 - (BOOL)wantsToDelayTextChangeNotifications;

 - (void)inputClientBecomeActive:(id)sender;

 - (void)inputClientResignActive:(id)sender;

 - (void)inputClientEnabled:(id)sender;

 - (void)inputClientDisabled:(id)sender;

 - (void)activeConversationWillChange:(id)sender fromOldConversation:(long)oldConversation;

 - (void)activeConversationChanged:(id)sender toNewConversation:(long)newConversation;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMenuItem Mac OS X 10.0

This protocol has been deprecated in favor of the class NSMenuItem, which takes over all of the functionality associated
with this protocol. See the NSMenuItem class description for more information.

@protocol NSMenuItem

 // Instance Methods

 - (id)initWithTitle:(NSString *)aString action:(SEL)aSelector keyEquivalent:(NSString *)charCode;

 - (void)setMenu:(NSMenu *)menu;

 - (NSMenu *)menu;

 - (BOOL)hasSubmenu;

 - (void)setSubmenu:(NSMenu *)submenu;

 - (NSMenu *)submenu;

 - (void)setTitle:(NSString *)aString;

 - (NSString *)title;

 - (BOOL)isSeparatorItem;

 - (void)setKeyEquivalent:(NSString *)aKeyEquivalent;

 - (NSString *)keyEquivalent;

 - (void)setKeyEquivalentModifierMask:(unsigned int)mask;

 - (unsigned int)keyEquivalentModifierMask;

 - (NSString *)userKeyEquivalent;

 - (unsigned int)userKeyEquivalentModifierMask;

 - (void)setMnemonicLocation:(unsigned)location;

 - (unsigned)mnemonicLocation;

 - (NSString *)mnemonic;

 - (void)setTitleWithMnemonic:(NSString *)stringWithAmpersand;

 - (void)setImage:(NSImage *)menuImage;

 - (NSImage *)image;

 - (void)setState:(int)state;

 - (int)state;

 - (void)setOnStateImage:(NSImage *)image;

 - (NSImage *)onStateImage;

 - (void)setOffStateImage:(NSImage *)image;

 - (NSImage *)offStateImage;

 - (void)setMixedStateImage:(NSImage *)image;

 - (NSImage *)mixedStateImage;

 - (void)setEnabled:(BOOL)flag;

 - (BOOL)isEnabled;

 - (void)setTarget:(id)anObject;

 - (id)target;

 - (void)setAction:(SEL)aSelector;

 - (SEL)action;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 - (void)setTag:(int)anInt;

 - (int)tag;

 - (void)setRepresentedObject:(id)anObject;

 - (id)representedObject;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSMenuValidation Mac OS X 10.0

This informal protocol declares the single method validateMenuItem:, which is implemented by classes of the a menu's
target object. The class implements this method to return a BOOL specifying whether the menu item should be enabled
or disabled. Whenever a menu is displayed, each menu item will send a validateMenuItem: message to its target (if the
target responds), which then responds with YES or NO depending on whether or not the menu item should be enabled.

@interface NSObject (NSMenuValidation)

 // Instance Methods

 - (BOOL)validateMenuItem:(id <NSMenuItem>)menuItem;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSNibAwaking Mac OS X 10.0

This informal protocol declares the single method awakeFromNib:, which is implemented by classes to perform any final
initialization for objects that are being loaded from a nib. When this method is invoked, the outlets of an object are
guaranteed to be connected to their respective objects.

@interface NSObject (NSNibAwaking)

 // Instance Methods

 - (void)awakeFromNib;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSOutlineViewDataSource Mac OS X 10.0

Methods in this informal protocol are implemented by classes that provide the data contents for an NSOutlineView. An
NSOutlineView data source delegate object must implement the following four required methods of the protocol:
outlineView:child:ofItem:, outlineView:isItemExpandable:, outlineView:numberOfChildrenOfItem:,
outlineView:objectValueForTableColumn: byItem:.

In each of these four methods, outlineView: is the NSOutlineView object invoking the method. Every outline view has a
root item. In the invocation of the data source methods, an outline view indicates a root item as nil. Thus, if
outlineView:numberOfChildrenOfItem: was invoked with nil at the item, the implementation of this method would return the
number of children items for the root item.

@interface NSObject (NSOutlineViewDataSource)

 // Instance Methods

 - (id)outlineView:(NSOutlineView *)outlineView child:(int)index ofItem:(id)item;

 - (BOOL)outlineView:(NSOutlineView *)outlineView isItemExpandable:(id)item;

 - (int)outlineView:(NSOutlineView *)outlineView numberOfChildrenOfItem:(id)item;

 - (id)outlineView:(NSOutlineView *)outlineView objectValueForTableColumn:(NSTableColumn *)tableColumn
 byItem:(id)item;

 - (void)outlineView:(NSOutlineView *)outlineView v forTableColumn:(NSTableColumn *)tableColumn byItem:(id)item;

 - (id)outlineView:(NSOutlineView *)outlineView itemForPersistentObject:(id)object;

 - (id)outlineView:(NSOutlineView *)outlineView persistentObjectForItem:(id)item;

 - (BOOL)outlineView:(NSOutlineView *)olv writeItems:(NSArray*)items toPasteboard:(NSPasteboard*)pboard;

 - (NSDragOperation)outlineView:(NSOutlineView*)olv validateDrop:(id <NSDraggingInfo>)info
 proposedItem:(id)item proposedChildIndex:(int)index;

 - (BOOL)outlineView:(NSOutlineView*)olv acceptDrop:(id <NSDraggingInfo>)info item:(id)item childIndex:(int)index;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSServicesRequests Mac OS X 10.0

This informal protocol declares the two methods writeSelectionToPasteboard:types: and readSelectionFromPasteboard:, which
classes may implement to interact with system services found in the Services menu. The first of these,
writeSelectionToPasteboard:types:, is used to provide data to a service, while readSelectionFromPasteboard: is used to retrieve
data from a service.

@interface NSObject (NSServicesRequests)

 // Instance Methods

 - (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types;

 - (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTableDataSource Mac OS X 10.0

Methods in this informal protocol are implemented by classes that provide the data displayed in an NSTableView. At a
minimum, data source classes must implement the methods numberOfRowsInTableView: and
tableView:objectValueForTableColumn:row:. Both of these methods are called frequently, so they should be efficient.

@interface NSObject (NSTableDataSource)

 // Instance Methods

 - (int)numberOfRowsInTableView:(NSTableView *)tableView;

 - (id)tableView:(NSTableView *)tableView objectValueForTableColumn:(NSTableColumn *)tableColumn row:(int)row;

 - (void)tableView:(NSTableView *)tableView setObjectValue:(id)object forTableColumn:(NSTableColumn *)tableColumn
 row:(int)row;

 - (BOOL)tableView:(NSTableView *)tv writeRows:(NSArray*)rows toPasteboard:(NSPasteboard*)pboard;

 - (NSDragOperation)tableView:(NSTableView*)tv validateDrop:(id <NSDraggingInfo>)info proposedRow:(int)row
 proposedDropOperation:(NSTableViewDropOperation)op;

 - (BOOL)tableView:(NSTableView*)tv acceptDrop:(id <NSDraggingInfo>)info row:(int)row
 dropOperation:(NSTableViewDropOperation)op;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextAttachmentCell Mac OS X 10.0

This protocol declares an interface for classes that draw text attachments and handle mouse events within a text
attachment. NSCell implements all of the methods of this protocol, less three: cellBaselineOffset, setAttachment:, and
attachment. NSTextAttachmentCell extends NSCell's interface by implementing these three methods.

@protocol NSTextAttachmentCell

 // Instance Methods

 - (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (BOOL)wantsToTrackMouse;

 - (void)highlight:(BOOL)flag withFrame:(NSRect)cellFrame inView:(NSView *)controlView;

 - (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView *)controlView
 untilMouseUp:(BOOL)flag;

 - (NSSize)cellSize;

 - (NSPoint)cellBaselineOffset;

 - (void)setAttachment:(NSTextAttachment *)anObject;

 - (NSTextAttachment *)attachment;

 - (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView characterIndex:(unsigned)charIndex;

 - (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView characterIndex:(unsigned)charIndex
 layoutManager:(NSLayoutManager *)layoutManager;

 - (BOOL)wantsToTrackMouseForEvent:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView *)controlView
 atCharacterIndex:(unsigned)charIndex;

 - (BOOL)trackMouse:(NSEvent *)theEvent inRect:(NSRect)cellFrame ofView:(NSView *)controlView
 atCharacterIndex:(unsigned)charIndex untilMouseUp:(BOOL)flag;

 - (NSRect)cellFrameForTextContainer:(NSTextContainer *)textContainer proposedLineFragment:(NSRect)lineFrag
 glyphPosition:(NSPoint)position characterIndex:(unsigned)charIndex;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextInput Mac OS X 10.0

This protocol declares the methods that text view classes should implement to interface with Cocoa's input
management system. In the Application Kit, NSText and NSTextView implement the methods of this protocol.

@protocol NSTextInput

 // Instance Methods

 - (void)insertText:(id)aString;

 - (void)doCommandBySelector:(SEL)aSelector;

 - (void)setMarkedText:(id)aString selectedRange:(NSRange)selRange;

 - (void)unmarkText;

 - (BOOL)hasMarkedText;

 - (long)conversationIdentifier;

 - (NSAttributedString *)attributedSubstringFromRange:(NSRange)theRange;

 - (NSRange)markedRange;

 - (NSRange)selectedRange;

 - (NSRect)firstRectForCharacterRange:(NSRange)theRange;

 - (unsigned int)characterIndexForPoint:(NSPoint)thePoint;

 - (NSArray*)validAttributesForMarkedText;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSTextStorageScripting Mac OS X 10.0

This informal protocol declares methods for text storage classes to implement so that they may be scriptable. In the
Application Kit, NSTextStorage implements all of the methods in this protocol as part of Cocoa's built-in support for
scripting.

@interface NSObject (NSTextStorageScripting)

 // Instance Methods

 - (NSArray *)attributeRuns;

 - (void)setAttributeRuns:(NSArray *)attributeRuns;

 - (NSArray *)paragraphs;

 - (void)setParagraphs:(NSArray *)paragraphs;

 - (NSArray *)words;

 - (void)setWords:(NSArray *)words;

 - (NSArray *)characters;

 - (void)setCharacters:(NSArray *)characters;

 - (NSFont *)font;

 - (void)setFont:(NSFont *)font;

 - (NSColor *)foregroundColor;

 - (void)setForegroundColor:(NSColor *)color;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSToolbarItemValidation Mac OS X 10.0

This informal protocol declares the method validateToolbarItem:, which allows targets of toolbar item actions to decide
whether or not the toolbar item should be enabled. This method is similar in purpose and operation to the method
validaeMenuItem:, which is found in the the NSMenuValidation protocol.

@interface NSObject (NSToolbarItemValidation)

 // Instance Methods

 - (BOOL)validateToolbarItem:(NSToolbarItem *)theItem;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSToolTipOwner Mac OS X 10.0

This informal protocol declares a single method, view:stringForToolTip:point:userData:, which a class may implement to
provide a tool-tip string to be displayed. For more information on tool tips, see the NSView and the NSView method
addToolTip-Rect:owner:userData:.

@interface NSObject (NSToolTipOwner)

 // Instance Methods

 - (NSString *)view:(NSView *)view stringForToolTip:(NSToolTipTag)tag point:(NSPoint)point userData:(void *)data;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSUserInterfaceValidations Mac OS X 10.0

This protocol, in conjunction with NSValidatedUserInterfaceItem, declares methods that classes implement to provide user
interface object validation. This protocol declares the single method validateUserInterfaceItem:, which enables or disables
interface objects based on the return value.

@protocol NSUserInterfaceValidations

 // Instance Methods

 - (BOOL)validateUserInterfaceItem:(id <NSValidatedUserInterfaceItem>)anItem;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSValidatedUserInterfaceItem Mac OS X 10.0

Custom interface control objects may adopt this protocol to partake in the Application Kit's automated validation
mechanism. User interface validation works by having user interface items, such as buttons or text fields, query the
targets of their action about whether or not they should be enabled. This protocol is closely related to the
NSUserInterfaceItemValidations protocol, which declares the method validateUserInterfaceItem: for target objects to
implement.

@protocol NSValidatedUserInterfaceItem

 // Instance Methods

 - (SEL)action;

 - (int)tag;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

NSWindowScripting Mac OS X 10.0

This informal protocol declares the methods that must be implemented by window classes in order to be scriptable. The
methods of this protocol define an interface to setting and retrieving properties of the window, as well as to control
operations such as saving, printing, and closing the window. NSWindow implements all of the methods in this protocol as
part of Cocoa's built-in support for scripting.

@interface NSObject (NSWindowScripting)

 // Instance Methods

 - (BOOL)hasCloseBox;

 - (BOOL)hasTitleBar;

 - (BOOL)isFloatingPanel;

 - (BOOL)isModalPanel;

 - (BOOL)isResizable;

 - (BOOL)isZoomable;

 - (BOOL)isMiniaturizable;

 - (void)setIsZoomed:(BOOL)flag;

 - (void)setIsMiniaturized:(BOOL)flag;

 - (void)setIsVisible:(BOOL)flag;

 - (int)orderedIndex;

 - (void)setOrderedIndex:(int)index;

 - (id)handleSaveScriptCommand:(NSScriptCommand *)command;

 - (id)handleCloseScriptCommand:(NSCloseCommand *)command;

 - (id)handlePrintScriptCommand:(NSScriptCommand *)command;

@end

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Method Index
The following index allows you to look up a method and find the Cocoa class in which it is defined. Use this index when
you want to look up a method but don't know its class.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A

abbreviation

NSTimeZone

abbreviationDictionary

NSTimeZone

abbreviationForDate:

NSTimeZone

abortEditing

NSControl

abortModal

NSApplication

absoluteString

NSURL

absoluteURL

NSURL

acceptConnectionInBackgroundAndNotify

NSFileHandle

acceptConnectionInBackgroundAndNotifyForModes:

NSFileHandle

acceptInputForMode:beforeDate:

NSRunLoop

acceptableDragTypes

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

acceptsArrowKeys

NSBrowser

acceptsBinary

NSPrinter

acceptsFirstMouse:

NSSlider, NSMatrix, NSView

acceptsFirstResponder

NSResponder, NSTextField

acceptsGlyphInfo

NSTextView

acceptsMouseMovedEvents

NSWindow

accessoryView

NSSavePanel, NSPrintPanel, NSPrintOperation, NSFontPanel, NSSpellChecker, NSColorPanel, NSPageLayout,
NSRulerView

action

NSControl, NSMenuItem, NSCell, NSFontManager, NSToolbarItem, NSActionCell, NSStatusItem

activate:

NSColorWell

activateContextHelpMode:

NSApplication

activateIgnoringOtherApps:

NSApplication

activeApplication

NSWorkspace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addAttribute:value:range:

NSMutableAttributedString

addAttributes:range:

NSMutableAttributedString

addCharactersInRange:

NSMutableCharacterSet

addCharactersInString:

NSMutableCharacterSet

addChildWindow:ordered:

NSWindow

addClient:

NSURLHandle

addClip

NSBezierPath

addColumn

NSMatrix, NSBrowser

addColumnWithCells:

NSMatrix

addConnection:toRunLoop:forMode:

NSPort

addCursorRect:cursor:

NSView

addDocument:

NSDocumentController

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addEntriesFromDictionary:

NSMutableDictionary

addEntry:

NSForm

addFileWithPath:

NSFileWrapper

addFileWrapper:

NSFileWrapper

addFontTrait:

NSFontManager

addItem:

NSMenu

addItemWithObjectValue:

NSComboBoxCell, NSComboBox

addItemWithTitle:

NSPopUpButton, NSPopUpButtonCell

addItemWithTitle:action:keyEquivalent:

NSMenu

addItemsWithObjectValues:

NSComboBoxCell, NSComboBox

addItemsWithTitles:

NSPopUpButton, NSPopUpButtonCell

addLayoutManager:

NSTextStorage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addMarker:

NSRulerView

addObject:

NSAutoreleasePool, NSMutableArray, NSMutableSet, NSCountedSet

addObjectsFromArray:

NSMutableArray, NSMutableSet

addObserver:selector:name:object:

NSDistributedNotificationCenter, NSNotificationCenter

addObserver:selector:name:object:suspensionBehavior:

NSDistributedNotificationCenter

addPort:forMode:

NSRunLoop

addRegularFileWithContents:preferredFilename:

NSFileWrapper

addRepresentation:

NSImage

addRepresentations:

NSImage

addRequestMode:

NSConnection

addRow

NSMatrix

addRowWithCells:

NSMatrix

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addRunLoop:

NSConnection

addSubview:

NSView

addSubview:positioned:relativeTo:

NSView

addSuiteNamed:

NSUserDefaults

addSymbolicLinkWithDestination:preferredFilename:

NSFileWrapper

addTabStop:

NSMutableParagraphStyle

addTabViewItem:

NSTabView

addTableColumn:

NSTableView

addTemporaryAttributes:forCharacterRange:

NSLayoutManager

addTextContainer:

NSLayoutManager

addTimeInterval:

NSDate

addTimer:forMode:

NSRunLoop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addToolTipRect:owner:userData:

NSView

addTrackingRect:owner:userData:assumeInside:

NSView

addTypes:owner:

NSPasteboard

addWindowController:

NSDocument

addWindowsItem:title:filename:

NSApplication

address

NSHost, NSSocketPort

addresses

NSHost, NSNetService

adjustPageHeightNew:top:bottom:limit:

NSView

adjustPageWidthNew:left:right:limit:

NSView

adjustScroll:

NSView

adjustSubviews

NSSplitView

advancementForGlyph:

NSFont

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

aeDesc

NSAppleEventDescriptor

aeteResource:

NSScriptSuiteRegistry

afmDictionary

NSFont

alignCenter:

NSText

alignJustified:

NSTextView

alignLeft:

NSText

alignRight:

NSText

alignment

NSParagraphStyle, NSControl, NSCell, NSText

allBundles

NSBundle

allConnections

NSConnection

allFrameworks

NSBundle

allKeys

NSDictionary, NSColorList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allKeysForObject:

NSDictionary

allObjects

NSSet, NSEnumerator

allValues

NSDictionary

alloc

NSObject, NSProxy

allocWithZone:

NSObject, NSPort, NSProxy

allocateGState

NSView

allowsBranchSelection

NSBrowser

allowsColumnReordering

NSTableView

allowsColumnResizing

NSTableView

allowsColumnSelection

NSTableView

allowsDuplicatesInToolbar

NSToolbarItem

allowsEditingTextAttributes

NSCell, NSTextField

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allowsEmptySelection

NSTableView, NSMatrix, NSBrowser

allowsFloats

NSNumberFormatter

allowsKeyedCoding

NSCoder

allowsMixedState

NSCell, NSButton

allowsMultipleSelection

NSOpenPanel, NSTableView, NSBrowser

allowsNaturalLanguage

NSDateFormatter

allowsTickMarkValuesOnly

NSSliderCell

allowsTruncatedLabels

NSTabView

allowsUndo

NSTextView

allowsUserCustomization

NSToolbar

alpha

NSColorPanel

alphaComponent

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alphaValue

NSWindow

alphanumericCharacterSet

NSCharacterSet

altIncrementValue

NSSlider, NSSliderCell

alternateImage

NSBrowserCell, NSButtonCell, NSButton

alternateSelectedControlColor

NSColor

alternateSelectedControlTextColor

NSColor

alternateTitle

NSButtonCell, NSButton

altersStateOfSelectedItem

NSPopUpButtonCell

ancestorSharedWithView:

NSView

animate:

NSProgressIndicator

animationDelay

NSProgressIndicator

animationResizeTime:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

anyObject

NSSet

appendAttributedString:

NSMutableAttributedString

appendBezierPath:

NSBezierPath

appendBezierPathWithArcFromPoint:

NSBezierPath

appendBezierPathWithArcWithCenter:radius:

NSBezierPath

appendBezierPathWithGlyph:inFont:

NSBezierPath

appendBezierPathWithGlyphs:count:

NSBezierPath

appendBezierPathWithOvalInRect:

NSBezierPath

appendBezierPathWithPackedGlyphs:

NSBezierPath

appendBezierPathWithPoints:count:

NSBezierPath

appendBezierPathWithRect:

NSBezierPath

appendBytes:length:

NSMutableData

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appendData:

NSMutableData

appendFormat:...

NSMutableString

appendString:

NSMutableString

appendTransform:

NSAffineTransform

appleEventClassCode

NSScriptCommandDescription

appleEventCode

NSScriptClassDescription, NSScriptCommandDescription

appleEventCodeForArgumentWithName:

NSScriptCommandDescription

appleEventCodeForKey:

NSScriptClassDescription

appleEventCodeForReturnType

NSScriptCommandDescription

appleEventCodeForSuite:

NSScriptSuiteRegistry

appleEventWithEventClass:eventID:targetDescriptor:returnID:transactionID:

NSAppleEventDescriptor

application:delegateHandlesKey:

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application:openFile:

NSApplication

application:openFileWithoutUI:

NSApplication

application:openTempFile:

NSApplication

application:printFile:

NSApplication

applicationDidBecomeActive:

NSApplication

applicationDidChangeScreenParameters:

NSApplication

applicationDidFinishLaunching:

NSApplication

applicationDidHide:

NSApplication

applicationDidResignActive:

NSApplication

applicationDidUnhide:

NSApplication

applicationDidUpdate:

NSApplication

applicationDockMenu:

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applicationIconImage

NSApplication

applicationOpenUntitledFile:

NSApplication

applicationShouldHandleReopen:hasVisibleWindows:

NSApplication

applicationShouldOpenUntitledFile:

NSApplication

applicationShouldTerminate:

NSApplication

applicationShouldTerminateAfterLastWindowClosed:

NSApplication

applicationWillBecomeActive:

NSApplication

applicationWillFinishLaunching:

NSApplication

applicationWillHide:

NSApplication

applicationWillResignActive:

NSApplication

applicationWillTerminate:

NSApplication

applicationWillUnhide:

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

applicationWillUpdate:

NSApplication

applyFontTraits:range:

NSMutableAttributedString

archiveRootObject:toFile:

NSKeyedArchiver, NSArchiver

archivedDataWithRootObject:

NSKeyedArchiver, NSArchiver

archiver:didEncodeObject:

NSKeyedArchiver

archiver:willEncodeObject:

NSKeyedArchiver

archiver:willReplaceObject:withObject:

NSKeyedArchiver

archiverData

NSArchiver

archiverDidFinish:

NSKeyedArchiver

archiverWillFinish:

NSKeyedArchiver

areCursorRectsEnabled

NSWindow

argumentNames

NSScriptCommandDescription

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

arguments

NSProcessInfo, NSTask, NSScriptCommand

argumentsRetained

NSInvocation

arrangeInFront:

NSApplication

array

NSArray

arrayByAddingObject:

NSArray

arrayByAddingObjectsFromArray:

NSArray

arrayForKey:

NSUserDefaults

arrayWithArray:

NSArray

arrayWithCapacity:

NSMutableArray

arrayWithContentsOfFile:

NSArray

arrayWithContentsOfURL:

NSArray

arrayWithObject:

NSArray

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

arrayWithObjects:...

NSArray

arrayWithObjects:count:

NSArray

arrowCursor

NSCursor

arrowPosition

NSPopUpButtonCell

arrowsPosition

NSScroller

ascender

NSFont

aspectRatio

NSWindow

attachColorList:

NSColorPicker, NSColorPanel

attachPopUpWithFrame:inView:

NSPopUpButtonCell

attachSubmenuForItemAtIndex:

NSMenuView

attachedMenu

NSMenu, NSMenuView

attachedMenuView

NSMenuView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

attachedSheet

NSWindow

attachmentCell

NSTextAttachment

attachmentSizeForGlyphAtIndex:

NSLayoutManager

attribute:atIndex:effectiveRange:

NSAttributedString

attribute:atIndex:longestEffectiveRange: inRange:

NSAttributedString

attributeDescriptorForKeyword:

NSAppleEventDescriptor

attributeKeys

NSClassDescription

attributeRuns

NSTextStorage

attributedAlternateTitle

NSButtonCell, NSButton

attributedStringForNil

NSNumberFormatter

attributedStringForNotANumber

NSNumberFormatter

attributedStringForObjectValue:withDefaultAttributes:

NSFormatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

attributedStringForZero

NSNumberFormatter

attributedStringValue

NSControl, NSCell

attributedStringWithAttachment:

NSAttributedString

attributedSubstringFromRange:

NSAttributedString

attributedTitle

NSButtonCell, NSFormCell, NSButton, NSStatusItem

attributes

NSGraphicsContext, NSOpenGLPixelFormat

attributesAtIndex:effectiveRange:

NSAttributedString

attributesAtIndex:longestEffectiveRange: inRange:

NSAttributedString

authenticateComponents:withData:

NSConnection

authenticationDataForComponents:

NSConnection

autoenablesItems

NSPopUpButton, NSPopUpButtonCell, NSMenu

autoreleasedObjectCount

NSAutoreleasePool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

autorepeat

NSStepperCell, NSStepper

autoresizesAllColumnsToFit

NSTableView

autoresizesOutlineColumn

NSOutlineView

autoresizesSubviews

NSView

autoresizingMask

NSView

autosaveExpandedItems

NSOutlineView

autosaveName

NSTableView

autosaveTableColumns

NSTableView

autosavesConfiguration

NSToolbar

autoscroll: NSClipView,

NSView

autosizesCells

NSMatrix

availableColorLists

NSColorList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

availableData

NSFileHandle

availableFontFamilies

NSFontManager

availableFontNamesWithTraits:

NSFontManager

availableFonts

NSFontManager

availableMembersOfFontFamily:

NSFontManager

availableResourceData

NSURLHandle

availableStringEncodings

NSString

availableTypeFromArray:

NSPasteboard

awakeAfterUsingCoder:

NSObject

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B

backgroundColor

NSImage, NSWindow, NSTextFieldCell, NSTableView, NSTextView, NSScrollView, NSClipView, NSMatrix,
NSTextField, NSText

backgroundLayoutEnabled

NSLayoutManager

backgroundLoadDidFailWithReason:

NSURLHandle

backingType

NSWindow

baseOfTypesetterGlyphInfo

NSSimpleHorizontalTypesetter

baseSpecifier

NSRelativeSpecifier

baseURL

NSURL

baseWritingDirection

NSParagraphStyle

baselineLocation

NSRulerView

baselineOffsetInLayoutManager:glyphIndex:

NSTypesetter

becomeFirstResponder

NSResponder, NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSResponder, NSTextView

becomeKeyWindow

NSWindow

becomeMainWindow

NSWindow

becomesKeyOnlyIfNeeded

NSPanel

beginDocument

NSView

beginEditing

NSMutableAttributedString

beginLoadInBackground

NSURLHandle

beginModalSessionForWindow:

NSApplication

beginModalSessionForWindow:relativeToWindow:

NSApplication

beginPageInRect:atPlacement:

NSView

beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:

NSApplication

beginSheetForDirectory:file:modalForWindow:modalDelegate:didEndSelector: contextInfo:

NSSavePanel

beginSheetForDirectory:file:types:modalForWindow:modalDelegate:didEndSelector:con-textInfo:

NSOpenPanel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSOpenPanel

beginSheetWithPrintInfo:modalForWindow: delegate:didEndSelector:contextInfo:

NSPrintPanel, NSPageLayout

beginUndoGrouping

NSUndoManager

bestRepresentationForDevice:

NSImage

bezelStyle

NSTextFieldCell, NSButtonCell, NSButton, NSTextField

bezierPath

NSBezierPath

bezierPathByFlatteningPath

NSBezierPath

bezierPathByReversingPath

NSBezierPath

bezierPathWithOvalInRect:

NSBezierPath

bezierPathWithRect:

NSBezierPath

bitmapData

NSBitmapImageRep

bitmapRepresentation

NSCharacterSet

bitsPerPixel

NSBitmapImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSBitmapImageRep

bitsPerSample

NSImageRep

blackColor

NSColor

blackComponent

NSColor

blendedColorWithFraction:ofColor:

NSColor

blueColor

NSColor

blueComponent

NSColor

boldSystemFontOfSize:

NSFont

boolForKey:

NSUserDefaults

boolValue

NSNumber

booleanForKey:inTable:

NSPrinter

booleanValue

NSAppleEventDescriptor

borderRect

NSBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSBox

borderType

NSBox, NSScrollView

bottomMargin

NSPrintInfo

boundingBox

NSEPSImageRep, NSPICTImageRep

boundingRectForFont

NSFont

boundingRectForGlyph:

NSFont

boundingRectForGlyphRange:inTextContainer:

NSLayoutManager

bounds

NSPDFImageRep, NSBezierPath, NSView

boundsRotation

NSView

boxType

NSBox

branchImage

NSBrowserCell

breakLineAtIndex:

NSSimpleHorizontalTypesetter

breakLock

NSDistributedLock

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSDistributedLock

brightnessComponent

NSColor

brownColor

NSColor

browser:createRowsForColumn:inMatrix:

NSBrowser

browser:isColumnValid:

NSBrowser

browser:numberOfRowsInColumn:

NSBrowser

browser:selectCellWithString:inColumn:

NSBrowser

browser:selectRow:inColumn:

NSBrowser

browser:titleOfColumn:

NSBrowser

browser:willDisplayCell:atRow:column:

NSBrowser

browserDidScroll:

NSBrowser

browserWillScroll:

NSBrowser

builtInPlugInsPath

NSBundle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSBundle

bundleForClass:

NSBundle

bundleForSuite:

NSScriptSuiteRegistry

bundleIdentifier

NSBundle

bundlePath

NSBundle

bundleWithIdentifier:

NSBundle

bundleWithPath:

NSBundle

buttonNumber

NSEvent

bytes

NSData

bytesPerPlane

NSBitmapImageRep

bytesPerRow

NSBitmapImageRep

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C

cString

NSString

cStringLength

NSString

cacheDepthMatchesImageDepth

NSImage

cacheImageInRect:

NSWindow

cacheMode

NSImage

cachedHandleForURL:

NSURLHandle

cachesBezierPath

NSBezierPath

calcDrawInfo:

NSCell

calcSize

NSControl, NSMenuItemCell

calendarDate

NSCalendarDate

calendarFormat

NSCalendarDate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

canBeCompressedUsing:

NSBitmapImageRep

canBeConvertedToEncoding:

NSString

canBecomeKeyWindow

NSWindow

canBecomeMainWindow

NSWindow

canChooseDirectories

NSOpenPanel

canChooseFiles

NSOpenPanel

canCloseDocument

NSDocument

canCloseDocumentWithDelegate:shouldCloseSelector:contextInfo:

NSDocument

canDraw

NSView

canHide

NSWindow

canInitWithData:

NSImageRep

canInitWithPasteboard:

NSImage, NSSound, NSMovie, NSImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

canInitWithURL:

NSURLHandle

canRedo

NSUndoManager

canSpawnSeparateThread

NSPrintOperation

canStoreColor

NSWindow

canUndo

NSUndoManager

cancel:

NSSavePanel

cancelIncrementalLoad

NSImage

cancelLoadInBackground

NSURLHandle

cancelPerformSelector:target:argument:

NSRunLoop

cancelPerformSelectorsWithTarget:

NSRunLoop

cancelUserAttentionRequest:

NSApplication

capHeight

NSFont

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

capacityOfTypesetterGlyphInfo

NSSimpleHorizontalTypesetter

capitalizeWord:

NSResponder

capitalizedLetterCharacterSet

NSCharacterSet

capitalizedString

NSString

cascadeTopLeftFromPoint:

NSWindow

caseInsensitiveCompare:

NSString

caseSensitive

NSScanner

catalogNameComponent

NSColor

cell

NSControl

cellAtIndex:

NSForm

cellAtRow:column:

NSMatrix

cellAttribute:

NSCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cellBackgroundColor

NSMatrix

cellClass

NSControl, NSMatrix, NSBrowser

cellFrameAtRow:column:

NSMatrix

cellPrototype

NSBrowser

cellSize

NSCell, NSMatrix

cellSizeForBounds:

NSCell

cellWithTag:

NSMatrix

cells

NSMatrix

center

NSWindow

centerScanRect:

NSView

centerSelectionInVisibleArea:

NSResponder

changeCaseOfLetter:

NSResponder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

changeColor:

NSTextView, NSApplication

changeCount

NSPasteboard

changeCurrentDirectoryPath:

NSFileManager

changeFileAttributes:atPath:

NSFileManager

changeFont:

NSFontManager, NSText

changeInLength

NSTextStorage

changeWindowsItem:title:filename:

NSApplication

charValue

NSNumber

characterAtIndex:

NSString

characterCollection

NSGlyphInfo

characterIdentifier

NSGlyphInfo

characterIndexForGlyphAtIndex:

NSLayoutManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

characterIsMember:

NSCharacterSet

characterRangeForGlyphRange:actualGlyphRange:

NSLayoutManager

characterSetWithBitmapRepresentation:

NSCharacterSet

characterSetWithCharactersInString:

NSCharacterSet

characterSetWithContentsOfFile:

NSCharacterSet

characterSetWithRange:

NSCharacterSet

characters

NSTextStorage, NSEvent

charactersIgnoringModifiers

NSEvent

charactersToBeSkipped

NSScanner

checkForRemovableMedia

NSWorkspace

checkSpaceForParts

NSScroller

checkSpelling:

NSText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

checkSpellingOfString:startingAt:

NSSpellChecker

checkSpellingOfString:startingAt:lang-uage:wrap:inSpellDocumentWithTag:wordCount:

NSSpellChecker

childSpecifier

NSScriptObjectSpecifier

childWindows

NSWindow

class

NSObject, NSProxy

classCode

NSObject

classDescription

NSClassDescription

classDescriptionForClass:

NSClassDescription

classDescriptionForKey:

NSScriptClassDescription

classDescriptionWithAppleEventCode:

NSScriptSuiteRegistry

classDescriptionsInSuite:

NSScriptSuiteRegistry

classForArchiver

NSObject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

classForClassName:

NSKeyedUnarchiver

classForCoder

NSObject

classForKeyedArchiver

NSObject

classForPortCoder

NSObject

className

NSScriptClassDescription, NSObject

classNameDecodedForArchiveClassName:

NSUnarchiver

classNameEncodedForTrueClassName:

NSArchiver

classNameForClass:

NSKeyedArchiver

classNamed:

NSBundle

cleanUpAfterDragOperation

NSTextView

cleanUpOperation

NSPrintOperation

clear:

NSMovieView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clearAttributesCache

NSSimpleHorizontalTypesetter

clearColor

NSColor

clearCurrentContext

NSOpenGLContext

clearDrawable

NSOpenGLContext

clearGLContext

NSOpenGLView

clearGlyphCache

NSSimpleHorizontalTypesetter

clearRecentDocuments:

NSDocumentController

clickCount

NSEvent

clickedColumn

NSTableView

clickedOnLink:atIndex:

NSTextView

clickedRow

NSTableView

clientView

NSRulerView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clipRect:

NSBezierPath

close

NSWindow, NSDrawer, NSWindowController, NSDocument

close:

NSDrawer

closeAllDocuments

NSDocumentController

closeAllDocumentsWithDelegate:didCloseAllSelector:contextInfo:

NSDocumentController

closeFile

NSFileHandle

closePath

NSBezierPath

closeSpellDocumentWithTag:

NSSpellChecker

closestTickMarkValueToValue:

NSSliderCell

coerceToDescriptorType:

NSAppleEventDescriptor

coerceValue:toClass:

NSScriptCoercionHandler

collapseItem:

NSOutlineView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

collapseItem:collapseChildren:

NSOutlineView

color

NSTabViewItem, NSColorWell, NSColorPanel

colorForControlTint:

NSColor

colorFromPasteboard:

NSColor

colorListNamed:

NSColorList

colorNameComponent

NSColor

colorPanel

NSColorPicker

colorSpaceName

NSColor, NSImageRep

colorUsingColorSpaceName:

NSColor

colorUsingColorSpaceName:device:

NSColor

colorWithAlphaComponent:

NSColor

colorWithCalibratedHue:saturation:brightness:alpha:

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

colorWithCalibratedRed:green:blue:alpha:

NSColor

colorWithCalibratedWhite:alpha:

NSColor

colorWithCatalogName:colorName:

NSColor

colorWithDeviceCyan:magenta:yellow: black:alpha:

NSColor

colorWithDeviceHue:saturation:brightness: alpha:

NSColor

colorWithDeviceRed:green:blue:alpha:

NSColor

colorWithDeviceWhite:alpha:

NSColor

colorWithKey:

NSColorList

colorWithPatternImage:

NSColor

colorizeByMappingGray:toColor:blackMapping:whiteMapping:

NSBitmapImageRep

columnAtPoint:

NSTableView, NSTableHeaderView

columnOfMatrix:

NSBrowser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

columnWithIdentifier:

NSTableView

columnsInRect:

NSTableView

comboBoxSelectionDidChange:

NSComboBox

comboBoxSelectionIsChanging:

NSComboBox

comboBoxWillDismiss:

NSComboBox

comboBoxWillPopUp:

NSComboBox

commandClassName

NSScriptCommandDescription

commandDescription

NSScriptCommand

commandDescriptionWithAppleEventClass:andAppleEventCode:

NSScriptSuiteRegistry

commandDescriptionsInSuite:

NSScriptSuiteRegistry

commandName

NSScriptCommandDescription

commonPrefixWithString:options:

NSString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compare:

NSString, NSDecimalNumber, NSCell, NSNumber, NSDate

compare:options:

NSString

compare:options:range:

NSString

compare:options:range:locale:

NSString

compileAndReturnError:

NSAppleScript

complete:

NSResponder

completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:

NSString

completedString:

NSComboBoxCell

completes

NSComboBoxCell, NSComboBox

components

NSPortMessage

componentsJoinedByString:

NSArray

componentsSeparatedByString:

NSString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

componentsToDisplayForPath:

NSFileManager

compositeToPoint:fromRect:operation:

NSImage

compositeToPoint:fromRect:operation:fraction:

NSImage

compositeToPoint:operation:

NSImage

compositeToPoint:operation:fraction:

NSImage

concat

NSAffineTransform

condition

NSConditionLock

configurationDictionary

NSToolbar

configureAsServer

NSRunLoop

conformsToProtocol:

NSObject

connection

NSDistantObjectRequest, NSPortCoder

connection:handleRequest:

NSConnection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connection:shouldMakeNewConnection:

NSConnection

connectionForProxy

NSDistantObject

connectionWithReceivePort:sendPort:

NSConnection

connectionWithRegisteredName:host:

NSConnection

connectionWithRegisteredName:host:usingNameServer:

NSConnection

constrainFrameRect:toScreen:

NSWindow

constrainScrollPoint:

NSClipView

containerClassDescription

NSScriptObjectSpecifier

containerIsObjectBeingTested

NSScriptObjectSpecifier

containerIsRangeContainerObject

NSScriptObjectSpecifier

containerSize

NSTextContainer

containerSpecifier

NSScriptObjectSpecifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

containsAttachments

NSAttributedString

containsObject:

NSSet, NSArray

containsPoint:

NSBezierPath, NSTextContainer

containsValueForKey:

NSKeyedUnarchiver, NSCoder

contentRect

NSTabView

contentRectForFrameRect:styleMask:

NSWindow

contentSize

NSScrollView, NSDrawer

contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:

NSScrollView

contentView

NSWindow, NSBox, NSScrollView, NSDrawer

contentViewMargins

NSBox

contentsAtPath:

NSFileManager

contentsEqualAtPath:andPath:

NSFileManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

context

NSPrintOperation, NSApplication, NSEvent

contextHelpForKey:

NSBundle

contextHelpForObject:

NSHelpManager

contextMenuRepresentation

NSMenu

continueTracking:at:inView:

NSCell

control:didFailToFormatString:errorDescription:

NSControl

control:didFailToValidatePartialString:errorDescription:

NSControl

control:isValidObject:

NSControl

control:textShouldBeginEditing:

NSControl

control:textShouldEndEditing:

NSControl

control:textView:doCommandBySelector:

NSControl

controlBackgroundColor

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

controlCharacterSet

NSCharacterSet

controlColor

NSColor

controlContentFontOfSize:

NSFont

controlDarkShadowColor

NSColor

controlHighlightColor

NSColor

controlLightHighlightColor

NSColor

controlPointBounds

NSBezierPath

controlShadowColor

NSColor

controlSize

NSProgressIndicator, NSCell, NSTabView, NSScroller

controlTextColor

NSColor

controlTextDidBeginEditing:

NSControl

controlTextDidChange:

NSControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

controlTextDidEndEditing:

NSControl

controlTint

NSProgressIndicator, NSCell, NSTabView, NSScroller

controlView

NSCell, NSActionCell

conversation

NSDistantObjectRequest

convertBaseToScreen:

NSWindow

convertFont:

NSFontManager

convertFont:toFace:

NSFontManager

convertFont:toFamily:

NSFontManager

convertFont:toHaveTrait:

NSFontManager

convertFont:toNotHaveTrait:

NSFontManager

convertFont:toSize:

NSFontManager

convertOldFactor:newFactor:

NSPageLayout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

convertPoint:fromView:

NSView

convertPoint:toView:

NSView

convertRect:fromView:

NSView

convertRect:toView:

NSView

convertScreenToBase:

NSWindow

convertSize:fromView:

NSView

convertSize:toView:

NSView

convertWeight:ofFont:

NSFontManager

copiesOnScroll

NSClipView

copy

NSObject

copy:

NSMovieView, NSText

copyAttributesFromContext:withMask:

NSOpenGLContext

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

copyFont:

NSText

copyPath:toPath:handler:

NSFileManager

copyRuler:

NSText

copyWithZone:

NSObject

cornerView

NSTableView

count

NSDictionary, NSSet, NSArray

countForObject:

NSCountedSet

countWordsInString:language:

NSSpellChecker

coveredCharacterSet

NSFont

createClassDescription

NSCreateCommand

createCommandInstance

NSScriptCommandDescription

createCommandInstanceWithZone:

NSScriptCommandDescription

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createContext

NSPrintOperation

createConversationForConnection:

NSConnection

createDirectoryAtPath:attributes:

NSFileManager

createFileAtPath:contents:attributes:

NSFileManager

createSymbolicLinkAtPath:pathContent:

NSFileManager

createTexture:fromView:internalFormat:

NSOpenGLContext

currentContainer

NSSimpleHorizontalTypesetter

currentContext

NSGraphicsContext, NSOpenGLContext

currentContextDrawingToScreen

NSGraphicsContext

currentConversation

NSConnection

currentCursor

NSCursor

currentDirectory

NSDocumentController

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

currentDirectoryPath

NSTask, NSFileManager

currentDocument

NSDocumentController

currentEditor

NSControl

currentEvent

NSWindow, NSApplication

currentHandler

NSAssertionHandler

currentHost

NSHost

currentInputManager

NSInputManager

currentLayoutManager

NSSimpleHorizontalTypesetter

currentMode

NSRunLoop

currentOperation

NSPrintOperation

currentPage

NSPrintOperation, NSPDFImageRep

currentParagraphStyle

NSSimpleHorizontalTypesetter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

currentPoint

NSBezierPath

currentRunLoop

NSRunLoop

currentTextStorage

NSSimpleHorizontalTypesetter

currentThread

NSThread

currentVirtualScreen

NSOpenGLContext

curveToPoint:

NSBezierPath

customizationPaletteIsRunning

NSToolbar

cut:

NSMovieView, NSText

cyanColor

NSColor

cyanComponent

NSColor

cycleToNextInputLanguage:

NSInputManager

cycleToNextInputServerInLanguage:

NSInputManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D

darkGrayColor

NSColor

data

NSData, NSTimeZone, NSAppleEventDescriptor

data1

NSEvent

data2

NSEvent

dataCell

NSTableColumn

dataCellForRow:

NSTableColumn

dataForKey:

NSUserDefaults

dataForType:

NSPasteboard

dataFromPropertyList:format:errorDescription:

NSPropertyListSerialization

dataRepresentationOfType:

NSDocument

dataSource

NSTableView, NSComboBoxCell, NSComboBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dataUsingEncoding:

NSString

dataUsingEncoding:allowLossyConversion:

NSString

dataWithBytes:length:

NSData

dataWithBytesNoCopy:length:

NSData

dataWithBytesNoCopy:length: freeWhenDone:

NSData

dataWithCapacity:

NSMutableData

dataWithContentsOfFile:

NSData

dataWithContentsOfMappedFile:

NSData

dataWithContentsOfURL:

NSData

dataWithData:

NSData

dataWithEPSInsideRect:

NSWindow, NSView

dataWithLength:

NSMutableData

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dataWithPDFInsideRect:

NSWindow, NSView

date

NSDate

dateByAddingYears:months:days:hours:minutes:seconds:

NSCalendarDate

dateFormat

NSDateFormatter

dateWithCalendarFormat:timeZone:

NSDate

dateWithNaturalLanguageString:

NSDate

dateWithNaturalLanguageString:locale:

NSDate

dateWithString:

NSDate

dateWithString:calendarFormat:

NSCalendarDate

dateWithString:calendarFormat:locale:

NSCalendarDate

dateWithTimeIntervalSince1970:

NSDate

dateWithTimeIntervalSinceNow:

NSDate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dateWithTimeIntervalSinceReferenceDate:

NSDate

dateWithYear:month:day:hour:minute:second:timeZone:

NSCalendarDate

dayOfCommonEra

NSCalendarDate

dayOfMonth

NSCalendarDate

dayOfWeek

NSCalendarDate

dayOfYear

NSCalendarDate

deactivate

NSApplication, NSColorWell

dealloc

NSObject, NSProxy

decimalDigitCharacterSet

NSCharacterSet

decimalNumberByAdding:

NSDecimalNumber

decimalNumberByAdding:withBehavior:

NSDecimalNumber

decimalNumberByDividingBy:

NSDecimalNumber

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decimalNumberByDividingBy:withBehavior:

NSDecimalNumber

decimalNumberByMultiplyingBy:

NSDecimalNumber

decimalNumberByMultiplyingBy:withBehavior:

NSDecimalNumber

decimalNumberByMultiplyingByPowerOf10:

NSDecimalNumber

decimalNumberByMultiplyingByPowerOf10:withBehavior:

NSDecimalNumber

decimalNumberByRaisingToPower:

NSDecimalNumber

decimalNumberByRaisingToPower:withBehavior:

NSDecimalNumber

decimalNumberByRoundingAccordingToBehavior:

NSDecimalNumber

decimalNumberBySubtracting:

NSDecimalNumber

decimalNumberBySubtracting:withBehavior:

NSDecimalNumber

decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero:

NSDecimalNumberHandler

decimalNumberWithDecimal:

NSDecimalNumber

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decimalNumberWithMantissa:exponent:isNegative:

NSDecimalNumber

decimalNumberWithString:

NSDecimalNumber

decimalNumberWithString:locale:

NSDecimalNumber

decimalSeparator

NSNumberFormatter

decimalValue

NSDecimalNumber, NSNumber

declareTypes:owner:

NSPasteboard

decodeArrayOfObjCType:count:at:

NSCoder

decodeBoolForKey:

NSKeyedUnarchiver, NSCoder

decodeBytesForKey:returnedLength:

NSKeyedUnarchiver, NSCoder

decodeBytesWithReturnedLength:

NSCoder

decodeClassName:asClassName:

NSUnarchiver, NSUnarchiver

decodeDataObject

NSCoder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decodeDoubleForKey:

NSKeyedUnarchiver, NSCoder

decodeFloatForKey:

NSKeyedUnarchiver, NSCoder

decodeInt32ForKey:

NSKeyedUnarchiver, NSCoder

decodeInt64ForKey:

NSKeyedUnarchiver, NSCoder

decodeIntForKey:

NSKeyedUnarchiver, NSCoder

decodeNXColor

NSCoder

decodeNXObject

NSCoder

decodeObject

NSCoder

decodeObjectForKey:

NSKeyedUnarchiver, NSCoder

decodePoint

NSCoder

decodePointForKey:

NSCoder

decodePortObject

NSPortCoder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decodePropertyList

NSCoder

decodeRect

NSCoder

decodeRectForKey:

NSCoder

decodeSize

NSCoder

decodeSizeForKey:

NSCoder

decodeValueOfObjCType:at:

NSCoder

decodeValuesOfObjCTypes:...

NSCoder

decomposableCharacterSet

NSCharacterSet

decomposedStringWithCanonicalMapping

NSString

decomposedStringWithCompatibilityMapping

NSString

deepestScreen

NSScreen, NSWindow

defaultAttachmentScaling

NSLayoutManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defaultBehavior

NSDecimalNumber

defaultButtonCell

NSWindow

defaultCStringEncoding

NSString

defaultCenter

NSDistributedNotificationCenter, NSNotificationCenter

defaultConnection

NSConnection

defaultDecimalNumberHandler

NSDecimalNumberHandler

defaultDepthLimit

NSWindow

defaultFlatness

NSBezierPath

defaultLineCapStyle

NSBezierPath

defaultLineHeightForFont

NSFont

defaultLineHeightForFont:

NSLayoutManager

defaultLineJoinStyle

NSBezierPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defaultLineWidth

NSBezierPath

defaultManager

NSFileManager

defaultMenu

NSCell, NSView

defaultMiterLimit

NSBezierPath

defaultNameServerPortNumber

NSSocketPortNameServer

defaultParagraphStyle

NSParagraphStyle

defaultPixelFormat

NSOpenGLView

defaultPrinter

NSPrintInfo

defaultQueue

NSNotificationQueue

defaultSubcontainerAttributeKey

NSScriptClassDescription

defaultTimeZone

NSTimeZone

defaultTypesetterBehavior

NSTypesetter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defaultWindingRule

NSBezierPath

defaultWritingDirectionForLanguage:

NSParagraphStyle

delegate

NSImage, NSTextStorage, NSWindow, NSTableView, NSSound, NSKeyedUnarchiver, NSNetServiceBrowser, NSSplitView,
NSTextView, NSNetService, NSLayoutManager, NSFontManager, NSDrawer, NSMatrix, NSApplication, NSCustomImageRep, NSPort,
NSSpellServer, NSToolbar, NSKeyedArchiver, NSTabView, NSBrowser, NSConnection, NSTextField, NSText

delete:

NSText

deleteBackward:

NSResponder

deleteCharactersInRange:

NSMutableString, NSMutableAttributedString

deleteForward:

NSResponder

deleteGlyphsInRange:

NSLayoutManager

deleteToBeginningOfLine:

NSResponder

deleteToBeginningOfParagraph:

NSResponder

deleteToEndOfLine:

NSResponder

deleteToEndOfParagraph:

NSResponder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSResponder

deleteToMark:

NSResponder

deleteWordBackward:

NSResponder

deleteWordForward:

NSResponder

deliverResult

NSPrintOperation

deltaX

NSEvent

deltaY

NSEvent

deltaZ

NSEvent

deminiaturize:

NSWindow

depth

NSScreen

depthLimit

NSWindow

dequeueNotificationsMatching:coalesceMask:

NSNotificationQueue

descender

NSFont

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSFont

description

NSString, NSData, NSDictionary, NSTimeZone, NSObject, NSSet, NSArray, NSCalendarDate, NSDate, NSProxy

descriptionInStringsFileFormat

NSDictionary

descriptionWithCalendarFormat:

NSCalendarDate

descriptionWithCalendarFormat:locale:

NSCalendarDate

descriptionWithCalendarFormat:timeZone:locale:

NSDate

descriptionWithLocale:

NSDictionary, NSDecimalNumber, NSSet, NSArray, NSNumber, NSCalendarDate, NSDate

descriptionWithLocale:indent:

NSDictionary, NSArray

descriptorAtIndex:

NSAppleEventDescriptor

descriptorForKeyword:

NSAppleEventDescriptor

descriptorType

NSAppleEventDescriptor

descriptorWithBoolean:

NSAppleEventDescriptor

descriptorWithDescriptorType:bytes:length:

NSAppleEventDescriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSAppleEventDescriptor

descriptorWithDescriptorType:data:

NSAppleEventDescriptor

descriptorWithEnumCode:

NSAppleEventDescriptor

descriptorWithInt32:

NSAppleEventDescriptor

descriptorWithString:

NSAppleEventDescriptor

descriptorWithTypeCode:

NSAppleEventDescriptor

deselectAll:

NSTableView

deselectAllCells

NSMatrix

deselectColumn:

NSTableView

deselectItemAtIndex:

NSComboBoxCell, NSComboBox

deselectRow:

NSTableView

deselectSelectedCell

NSMatrix

deserializeAlignedBytesLengthAtCursor:

NSData

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSData

deserializeBytes:length:atCursor:

NSData

deserializeDataAt:ofObjCType:atCursor:context:

NSData

deserializeIntAtCursor:

NSData

deserializeIntAtIndex:

NSData

deserializeInts:count:atCursor:

NSData

deserializeInts:count:atIndex:

NSData

deserializePropertyListFromData:atCursor:mutableContainers:

NSDeserializer

deserializePropertyListFromData:mutableContainers:

NSDeserializer

deserializePropertyListLazilyFromData:atCursor:length:mutableContainers:

NSDeserializer

destination

NSNibConnector

destroyContext

NSPrintOperation

detachColorList:

NSColorPicker, NSColorPanel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSColorPicker, NSColorPanel

detachDrawingThread:toTarget:withObject:

NSApplication

detachNewThreadSelector:toTarget:withObject:

NSThread

detachSubmenu

NSMenuView

developmentLocalization

NSBundle

deviceDescription

NSScreen, NSWindow, NSPrinter

dictionary

NSDictionary, NSPrintInfo

dictionaryForKey:

NSUserDefaults

dictionaryRepresentation

NSUserDefaults

dictionaryWithCapacity:

NSMutableDictionary

dictionaryWithContentsOfFile:

NSDictionary

dictionaryWithContentsOfURL:

NSDictionary

dictionaryWithDictionary:

NSDictionary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSDictionary

dictionaryWithObject:forKey:

NSDictionary

dictionaryWithObjects:forKeys:

NSDictionary

dictionaryWithObjects:forKeys:count:

NSDictionary

dictionaryWithObjectsAndKeys:...

NSDictionary

didAddSubview:

NSView

didChangeText

NSTextView

didLoadBytes:loadComplete:

NSURLHandle

directParameter

NSScriptCommand

directory

NSSavePanel

directoryAttributes

NSDirectoryEnumerator

directoryContentsAtPath:

NSFileManager

disableCursorRects

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSWindow

disableFlushWindow

NSWindow

disableKeyEquivalentForDefaultButtonCell

NSWindow

disableUndoRegistration

NSUndoManager

disabledControlTextColor

NSColor

discardCachedImage

NSWindow

discardCursorRects

NSWindow, NSView

discardEventsMatchingMask:beforeEvent:

NSWindow, NSApplication

dismissPopUp

NSPopUpButtonCell

dispatch

NSPortCoder

dispatchRawAppleEvent:withRawReply:handlerRefCon:

NSAppleEventManager

display

NSWindow, NSView

displayAllColumns

NSBrowser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSBrowser

displayColumn:

NSBrowser

displayIfNeeded

NSWindow, NSView

displayIfNeededIgnoringOpacity

NSView

displayIfNeededInRect:

NSView

displayIfNeededInRectIgnoringOpacity:

NSView

displayMode

NSToolbar

displayName

NSFont, NSDocument

displayNameAtPath:

NSFileManager

displayNameForType:

NSDocumentController

displayRect:

NSView

displayRectIgnoringOpacity:

NSView

dissolveToPoint:fraction:

NSImage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSImage

dissolveToPoint:fromRect:fraction:

NSImage

distantFuture

NSDate

distantPast

NSDate

dividerThickness

NSSplitView

doClick:

NSBrowser

doCommandBySelector:

NSResponder

doDoubleClick:

NSBrowser

document

NSWindowController

documentClassForType:

NSDocumentController

documentCursor

NSScrollView, NSClipView

documentForFileName:

NSDocumentController

documentForWindow:

NSDocumentController

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSDocumentController

documentRect

NSClipView

documentView

NSScrollView, NSClipView

documentVisibleRect

NSScrollView, NSClipView

documents

NSDocumentController

doesNotRecognizeSelector:

NSObject

domain

NSPrinter, NSNetService

doubleAction

NSTableView, NSMatrix, NSBrowser

doubleClickAtIndex:

NSAttributedString

doubleValue

NSString, NSProgressIndicator, NSControl, NSDecimalNumber, NSCell, NSNumber, NSActionCell

dragColor:withEvent:fromView:

NSColorPanel

dragImage:at:offset:event:pasteboard:source:slideBack:

NSWindow

dragImageForRows:event:dragImageOffset:

NSTableView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSTableView

dragImageForSelectionWithEvent:origin:

NSTextView

dragOperationForDraggingInfo:type:

NSTextView

dragSelectionWithEvent:offset:slideBack:

NSTextView

draggedColumn

NSTableHeaderView

draggedDistance

NSTableHeaderView

draw

NSImageRep

drawArrow:highlight:

NSScroller

drawAtPoint:

NSAttributedString, NSImageRep

drawAtPoint:fromRect:operation:fraction:

NSImage

drawBackgroundForGlyphRange:atPoint:

NSLayoutManager

drawBarInside:flipped:

NSSliderCell

drawBorderAndBackgroundWithFrame:inView:

NSMenuItemCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSMenuItemCell

drawCell:

NSControl

drawCellAtIndex:

NSForm

drawCellAtRow:column:

NSMatrix

drawCellInside:

NSControl

drawDividerInRect:

NSSplitView

drawGlyphsForGlyphRange:atPoint:

NSLayoutManager

drawGridInClipRect:

NSTableView

drawHashMarksAndLabelsInRect:

NSRulerView

drawImageWithFrame:inView:

NSMenuItemCell

drawInRect:

NSAttributedString, NSImageRep

drawInRect:fromRect:operation:fraction:

NSImage

drawInsertionPointInRect:color:turnedOn:

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSTextView

drawInteriorWithFrame:inView:

NSCell

drawKeyEquivalentWithFrame:inView:

NSMenuItemCell

drawKnob

NSSliderCell, NSScroller

drawLabel:inRect:

NSTabViewItem

drawMarkersInRect:

NSRulerView

drawPackedGlyphs:atPoint:

NSBezierPath

drawPageBorderWithSize:

NSView

drawParts

NSScroller

drawRect:

NSRulerMarker, NSView

drawRepresentation:inRect:

NSImage

drawRow:clipRect:

NSTableView

drawSelector

NSCustomImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSCustomImageRep

drawSeparatorItemWithFrame:inView:

NSMenuItemCell

drawSheetBorderWithSize:

NSView

drawStateImageWithFrame:inView:

NSMenuItemCell

drawSwatchInRect:

NSColor

drawTitleOfColumn:inRect:

NSBrowser

drawTitleWithFrame:inView:

NSMenuItemCell

drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:lineFragmentGlyphRange:containerOrigin:

NSLayoutManager

drawWellInside:

NSColorWell

drawWithFrame:inView:

NSCell

drawerDidClose:

NSDrawer

drawerDidOpen:

NSDrawer

drawerShouldClose:

NSDrawer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSDrawer

drawerShouldOpen:

NSDrawer

drawerWillClose:

NSDrawer

drawerWillOpen:

NSDrawer

drawerWillResizeContents:toSize:

NSDrawer

drawers

NSWindow

drawingRectForBounds:

NSCell

drawsBackground

NSTextFieldCell, NSTextView, NSScrollView, NSClipView, NSMatrix, NSTabView, NSTextField, NSText

drawsCellBackground

NSMatrix

drawsGrid

NSTableView

drawsOutsideLineFragmentForGlyphAtIndex:

NSLayoutManager

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E

EPSOperationWithView:insideRect:toData:

NSPrintOperation

EPSOperationWithView:insideRect:toData:printInfo:

NSPrintOperation

EPSOperationWithView:insideRect:toPath:printInfo:

NSPrintOperation

EPSRepresentation

NSEPSImageRep

earlierDate:

NSDate

echosBullets

NSSecureTextFieldCell

edge

NSDrawer

editColumn:row:withEvent:select:

NSTableView

editWithFrame:inView:editor:delegate:event:

NSCell

edited:range:changeInLength:

NSTextStorage

editedColumn

NSTableView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

editedMask

NSTextStorage

editedRange

NSTextStorage

editedRow

NSTableView

editingStringForObjectValue:

NSFormatter

elementAtIndex:

NSBezierPath

elementCount

NSBezierPath

enableCursorRects

NSWindow

enableFlushWindow

NSWindow

enableFreedObjectCheck:

NSAutoreleasePool

enableKeyEquivalentForDefaultButtonCell

NSWindow

enableMultipleThreads

NSConnection

enableRelease:

NSAutoreleasePool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enableUndoRegistration

NSUndoManager

enclosingScrollView

NSView

encodeArrayOfObjCType:count:at:

NSCoder

encodeBool:forKey:

NSCoder, NSKeyedArchiver

encodeBycopyObject:

NSCoder

encodeByrefObject:

NSCoder

encodeBytes:length:

NSCoder

encodeBytes:length:forKey:

NSCoder, NSKeyedArchiver

encodeClassName:intoClassName:

NSArchiver

encodeConditionalObject:

NSCoder, NSArchiver

encodeConditionalObject:forKey:

NSCoder, NSKeyedArchiver

encodeDataObject:

NSCoder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

encodeDouble:forKey:

NSCoder, NSKeyedArchiver

encodeFloat:forKey:

NSCoder, NSKeyedArchiver

encodeInt32:forKey:

NSCoder, NSKeyedArchiver

encodeInt64:forKey:

NSCoder, NSKeyedArchiver

encodeInt:forKey:

NSCoder, NSKeyedArchiver

encodeNXObject:

NSCoder

encodeObject:

NSCoder

encodeObject:forKey:

NSCoder, NSKeyedArchiver

encodePoint:

NSCoder

encodePoint:forKey:

NSCoder

encodePortObject:

NSPortCoder

encodePropertyList:

NSCoder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

encodeRect:

NSCoder

encodeRect:forKey:

NSCoder

encodeRootObject:

NSCoder, NSArchiver

encodeSize:

NSCoder

encodeSize:forKey:

NSCoder

encodeValueOfObjCType:at:

NSCoder

encodeValuesOfObjCTypes:...

NSCoder

encodeWithCoder:

NSComboBoxCell, NSComboBox

encodingScheme

NSFont

endDocument

NSView

endEditing

NSMutableAttributedString

endEditing:

NSCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

endEditingFor:

NSWindow

endLoadInBackground

NSURLHandle

endModalSession:

NSApplication

endPage

NSView

endSheet:

NSApplication

endSheet:returnCode:

NSApplication

endSpecifier

NSRangeSpecifier

endSubelementIdentifier

NSWhoseSpecifier

endSubelementIndex

NSWhoseSpecifier

endUndoGrouping

NSUndoManager

enqueueNotification:postingStyle:

NSNotificationQueue

enqueueNotification:postingStyle:coalesceMask:forModes:

NSNotificationQueue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ensureAttributesAreFixedInRange:

NSTextStorage

enterExitEventWithType:location:modifierFlags:timetamp:windowNumber:context:eventNumber:trackingNumber:userData:

NSEvent

entryType

NSCell

enumCodeValue

NSAppleEventDescriptor

enumeratorAtPath:

NSFileManager

environment

NSProcessInfo, NSTask

establishConnection

NSNibOutletConnector, NSNibConnector, NSNibControlConnector

evaluate

NSPositionalSpecifier

evaluatedArguments

NSScriptCommand

evaluatedReceivers

NSScriptCommand

evaluationErrorNumber

NSScriptObjectSpecifier

evaluationErrorSpecifier

NSScriptObjectSpecifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

eventClass

NSAppleEventDescriptor

eventID

NSAppleEventDescriptor

eventNumber

NSEvent

exceptionWithName:reason:userInfo:

NSException

exchangeObjectAtIndex:withObjectAtIndex:

NSMutableArray

executablePath

NSBundle

executeAndReturnError:

NSAppleScript

executeAppleEvent:error:

NSAppleScript

executeCommand

NSScriptCommand

exit

NSThread

expandItem:

NSOutlineView

expandItem:expandChildren:

NSOutlineView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extendPowerOffBy:

NSWorkspace

extraLineFragmentRect

NSLayoutManager

extraLineFragmentTextContainer

NSLayoutManager

extraLineFragmentUsedRect

NSLayoutManager

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

F

failureReason

NSURLHandle

familyName

NSFont

fastestEncoding

NSString

fieldEditor:forObject:

NSWindow

fileAttributes

NSFileWrapper, NSDirectoryEnumerator

fileAttributesAtPath:traverseLink:

NSFileManager

fileAttributesToWriteToFile:ofType:saveOperation:

NSDocument

fileCreationDate

NSDictionary

fileDescriptor

NSFileHandle

fileExistsAtPath:

NSFileManager

fileExistsAtPath:isDirectory:

NSFileManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fileExtensionHidden

NSDictionary

fileExtensionsFromType:

NSDocumentController

fileGroupOwnerAccountID

NSDictionary

fileGroupOwnerAccountName

NSDictionary

fileHFSCreatorCode

NSDictionary

fileHFSTypeCode

NSDictionary

fileHandleForReading

NSPipe

fileHandleForReadingAtPath:

NSFileHandle

fileHandleForUpdatingAtPath:

NSFileHandle

fileHandleForWriting

NSPipe

fileHandleForWritingAtPath:

NSFileHandle

fileHandleWithNullDevice

NSFileHandle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fileHandleWithStandardError

NSFileHandle

fileHandleWithStandardInput

NSFileHandle

fileHandleWithStandardOutput

NSFileHandle

fileIsAppendOnly

NSDictionary

fileIsImmutable

NSDictionary

fileModificationDate

NSDictionary

fileName

NSDocument

fileNameExtensionWasHiddenInLastRunSavePanel

NSDocument

fileNameFromRunningSavePanelForSaveOperation:

NSDocument

fileNamesFromRunningOpenPanel

NSDocumentController

fileOwnerAccountID

NSDictionary

fileOwnerAccountName

NSDictionary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filePosixPermissions

NSDictionary

fileSize

NSDictionary

fileSystemAttributesAtPath:

NSFileManager

fileSystemChanged

NSWorkspace

fileSystemFileNumber

NSDictionary

fileSystemNumber

NSDictionary

fileSystemRepresentation

NSString

fileSystemRepresentationWithPath:

NSFileManager

fileType

NSDictionary, NSDocument

fileTypeFromLastRunSavePanel

NSDocument

fileURLWithPath:

NSURL

fileWrapper

NSTextAttachment

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fileWrapperRepresentationOfType:

NSDocument

fileWrappers

NSFileWrapper

filename

NSFileWrapper, NSSavePanel

filenames

NSOpenPanel

fill

NSBezierPath

fillAttributesCache

NSSimpleHorizontalTypesetter

fillRect:

NSBezierPath

finalWritePrintInfo

NSPrintPanel

findApplications

NSWorkspace

finishDecoding

NSKeyedUnarchiver

finishEncoding

NSKeyedArchiver

finishLaunching

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fire

NSTimer

fireDate

NSTimer

firstGlyphIndexOfCurrentLineFragment

NSSimpleHorizontalTypesetter

firstLineHeadIndent

NSParagraphStyle

firstObjectCommonWithArray:

NSArray

firstResponder

NSWindow

firstTextView

NSLayoutManager

firstUnlaidCharacterIndex

NSLayoutManager

firstUnlaidGlyphIndex

NSLayoutManager

firstVisibleColumn

NSBrowser

fixAttachmentAttributeInRange:

NSMutableAttributedString

fixAttributesInRange:

NSMutableAttributedString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fixFontAttributeInRange:

NSMutableAttributedString

fixParagraphStyleAttributeInRange:

NSMutableAttributedString

fixesAttributesLazily

NSTextStorage

flagsChanged:

NSResponder

flatness

NSBezierPath

floatForKey:

NSUserDefaults

floatForKey:inTable:

NSPrinter

floatValue

NSString, NSControl, NSCell, NSNumber, NSActionCell

flushBuffer

NSOpenGLContext

flushBufferedKeyEvents

NSResponder

flushCachedData

NSURLHandle

flushGraphics

NSGraphicsContext

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

flushHostCache

NSHost

flushWindow

NSWindow

flushWindowIfNeeded

NSWindow

focusStack

NSGraphicsContext

focusView

NSView

font

NSTextStorage, NSControl, NSCell, NSTabView, NSMenuView, NSText

fontAttributesInRange:

NSAttributedString

fontManager:willIncludeFont:

NSFontManager

fontMenu:

NSFontManager

fontName

NSFont

fontNamed:hasTraits:

NSFontManager

fontPanel:

NSFontManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fontWithFamily:traits:weight:size:

NSFontManager

fontWithName:matrix:

NSFont

fontWithName:size:

NSFont

foregroundColor

NSTextStorage

formIntersectionWithCharacterSet:

NSMutableCharacterSet

formUnionWithCharacterSet:

NSMutableCharacterSet

format

NSNumberFormatter

formatter

NSControl, NSCell

forwardInvocation:

NSUndoManager, NSObject, NSProxy

fractionOfDistanceThroughGlyphForPoint:inTextContainer:

NSLayoutManager

fragment

NSURL

frame

NSScreen, NSWindow, NSView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

frameAutosaveName

NSWindow

frameLength

NSMethodSignature

frameOfCellAtColumn:row:

NSTableView

frameOfColumn:

NSBrowser

frameOfInsideOfColumn:

NSBrowser

frameRectForContentRect:styleMask:

NSWindow

frameRotation

NSView

frameSizeForContentSize:hasHorizontaScroller:hasVerticalScroller:borderType:

NSScrollView

fullJustifyLineAtGlyphIndex:

NSSimpleHorizontalTypesetter

fullPathForApplication:

NSWorkspace

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

G

gState

NSWindow, NSView

generalPasteboard

NSPasteboard

getArgument:atIndex:

NSInvocation

getArgumentTypeAtIndex:

NSMethodSignature

getBitmapDataPlanes:

NSBitmapImageRep

getBytes:

NSData

getBytes:length:

NSData

getBytes:range:

NSData

getCFRunLoop

NSRunLoop

getCString:

NSString

getCString:maxLength:

NSString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getCString:maxLength:range:remainigRange:

NSString

getCharacters:

NSString

getCharacters:range:

NSString

getCompression:factor:

NSBitmapImageRep

getCyan:magenta:yellow:black:alpha:

NSColor

getFileSystemInfoForPath:isRemovable: isWritable:isUnmountable:description: type:

NSWorkspace

getFileSystemRepresentation:maxLength:

NSString

getFirstUnlaidCharacterIndex:glyphIndex:

NSLayoutManager

getGlyphs:range:

NSLayoutManager

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:

NSLayoutManager

getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits:bidiLevels:

NSLayoutManager

getHue:saturation:brightness:alpha:

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getInfoForFile:application:type:

NSWorkspace

getLineDash:count:phase:

NSBezierPath

getLineStart:end:contentsEnd:forRange:

NSString

getNumberOfRows:columns:

NSMatrix

getObjectValue:forString:errorDescription:

NSFormatter

getObjects:

NSArray

getObjects:range:

NSArray

getPeriodicDelay:interval:

NSButtonCell, NSCell, NSButton

getRed:green:blue:alpha:

NSColor

getReturnValue:

NSInvocation

getRow:column:forPoint:

NSMatrix

getRow:column:ofCell:

NSMatrix

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getTIFFCompressionTypes:count:

NSBitmapImageRep

getValue:

NSValue

getValues:forAttribute:forVirtualScreen:

NSOpenGLPixelFormat

getValues:forParameter:

NSOpenGLContext

getWhite:alpha:

NSColor

globallyUniqueString

NSProcessInfo

glyphAtIndex:

NSLayoutManager

glyphAtIndex:isValidIndex:

NSLayoutManager

glyphIndexForPoint:inTextContainer:

NSLayoutManager

glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:

NSLayoutManager

glyphIndexToBreakLineByHyphenatingWordAtIndex:

NSSimpleHorizontalTypesetter

glyphIndexToBreakLineByWordWrappingAtIndex:

NSSimpleHorizontalTypesetter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

glyphInfoWithCharacterIdentifier:collection:baseString:

NSGlyphInfo

glyphInfoWithGlyph:forFont:baseString:

NSGlyphInfo

glyphInfoWithGlypName:forFont:baseString:

NSGlyphInfo

glyphIsEncoded:

NSFont

glyphName

NSGlyphInfo

glyphPacking

NSFont

glyphRangeForBoundingRect:inTextContainer:

NSLayoutManager

glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:

NSLayoutManager

glyphRangeForCharacterRange:actualCharacterRange:

NSLayoutManager

glyphRangeForTextContainer:

NSLayoutManager

glyphWithName:

NSFont

gotoBeginning:

NSMovieView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gotoEnd:

NSMovieView

gotoPosterFrame:

NSMovieView

gradientType

NSButtonCell

graphicsContextWithAttributes:

NSGraphicsContext

graphicsContextWithWindow:

NSGraphicsContext

graphicsPort

NSGraphicsContext

grayColor

NSColor

greenColor

NSColor

greenComponent

NSColor

gridColor

NSTableView, NSColor

groupingLevel

NSUndoManager

groupsByEvent

NSUndoManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

growGlyphCaches:fillGlyphInfo:

NSSimpleHorizontalTypesetter

guessesForWord:

NSSpellChecker

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

H

handleCloseScriptCommand:

NSWindow

handleFailureInFunction:file:lineNumber:description:

NSAssertionHandler

handleFailureInMethod:object:file:lineNumber:description:

NSAssertionHandler

handleMachMessage:

NSMachPort

handleMouseEvent:

NSInputManager

handlePortMessage:

NSPort

handlePrintScriptCommand:

NSWindow

handleSaveScriptCommand:

NSWindow

hasAlpha

NSImageRep

hasCloseBox

NSWindow

hasDynamicDepthLimit

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hasEditedDocuments

NSDocumentController

hasHorizontalRuler

NSScrollView

hasHorizontalScroller

NSScrollView, NSBrowser

hasMemberInPlane:

NSCharacterSet

hasPrefix:

NSString

hasShadow

NSWindow

hasSubmenu

NSMenuItem

hasSuffix:

NSString

hasThousandSeparators

NSNumberFormatter

hasTitleBar

NSWindow

hasUndoManager

NSDocument

hasValidObjectValue

NSCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hasVerticalRuler

NSScrollView

hasVerticalScroller

NSComboBoxCell, NSScrollView, NSComboBox

hash

NSString

headIndent

NSParagraphStyle

headerCell

NSTableColumn

headerColor

NSColor

headerRectOfColumn:

NSTableHeaderView

headerTextColor

NSColor

headerView

NSTableView

heightAdjustLimit

NSView

heightTracksTextView

NSTextContainer

helpRequested:

NSMenu, NSResponder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hide

NSCursor

hide:

NSApplication

hideOtherApplications

NSWorkspace

hideOtherApplications:

NSApplication

hidesOnDeactivate

NSWindow

highlight:

NSButton, NSScroller

highlight:withFrame:inView:

NSCell

highlightCell:atRow:column:

NSMatrix

highlightColor

NSColor

highlightColorInView:

NSBrowserCell

highlightColorWithFrame:inView:

NSCell

highlightMode

NSStatusItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

highlightSelectionInClipRect:

NSTableView

highlightWithLevel:

NSColor

highlightedBranchImage

NSBrowserCell

highlightedItemIndex

NSMenuView

highlightedTableColumn

NSTableView

highlightsBy

NSButtonCell

hitPart

NSScroller

hitTest:

NSView

horizontalEdgePadding

NSMenuView

horizontalLineScroll

NSScrollView

horizontalPageScroll

NSScrollView

horizontalPagination

NSPrintInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

horizontalRulerView

NSScrollView

horizontalScroller

NSScrollView

host

NSPrinter, NSURL

hostName

NSProcessInfo

hostWithAddress:

NSHost

hostWithName:

NSHost

hotSpot

NSCursor

hourOfDay

NSCalendarDate

hueComponent

NSColor

hyphenationFactor

NSLayoutManager

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

I

IBeamCursor

NSCursor

icon

NSFileWrapper

iconForFile:

NSWorkspace

iconForFileType:

NSWorkspace

iconForFiles:

NSWorkspace

identifier

NSTableColumn, NSTabViewItem, NSToolbar

ignoreWord:inSpellDocumentWithTag:

NSSpellChecker

ignoredWordsInSpellDocumentWithTag:

NSSpellChecker

ignoresAlpha

NSColor

ignoresMouseEvents

NSWindow

ignoresMultiClick

NSControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

illegalCharacterSet

NSCharacterSet

image

NSSlider, NSBrowserCell, NSCursor, NSMenuItem, NSCell, NSToolbarItem, NSButton, NSImageView, NSRulerMarker, NSInputManager, NSStatusItem

image:didLoadPartOfRepresentation:withValidRows:

NSImage

image:didLoadRepresentation:withStatus:

NSImage

image:didLoadRepresentationHeader:

NSImage

image:willLoadRepresentation:

NSImage

imageAlignment

NSImageCell, NSImageView

imageAndTitleOffset

NSMenuView

imageAndTitleWidth

NSMenuView

imageDidNotDraw:inRect:

NSImage

imageDimsWhenDisabled

NSButtonCell

imageFileTypes

NSImage, NSImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

imageFrameStyle

NSImageCell, NSImageView

imageInterpolation

NSGraphicsContext

imageNamed:

NSImage

imageOrigin

NSRulerMarker

imagePasteboardTypes

NSImage, NSImageRep

imagePosition

NSButtonCell, NSButton

imageRectForBounds:

NSCell, NSMenuItemCell

imageRectForPaper:

NSPrinter

imageRectInRuler

NSRulerMarker

imageRepClassForData:

NSImageRep

imageRepClassForFileType:

NSImageRep

imageRepClassForPasteboardType:

NSImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

imageRepWithContentsOfFile:

NSImageRep

imageRepWithContentsOfURL:

NSImageRep

imageRepWithData:

NSPDFImageRep, NSEPSImageRep, NSBitmapImageRep, NSPICTImageRep

imageRepWithPasteboard:

NSImageRep

imageRepsWithContentsOfFile:

NSImageRep

imageRepsWithContentsOfURL:

NSImageRep

imageRepsWithData:

NSBitmapImageRep

imageRepsWithPasteboard:

NSImageRep

imageScaling

NSImageCell, NSImageView

imageUnfilteredFileTypes

NSImage, NSImageRep

imageUnfilteredPasteboardTypes

NSImage, NSImageRep

imageWidth

NSMenuItemCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

imageablePageBounds

NSPrintInfo

importsGraphics

NSTextView, NSCell, NSTextField, NSText

inLiveResize

NSView

increaseLengthBy:

NSMutableData

increment

NSStepperCell, NSStepper

incrementBy:

NSProgressIndicator

incrementalLoadFromData:complete:

NSBitmapImageRep

indent:

NSResponder

indentationMarkerFollowsCell

NSOutlineView

indentationPerLevel

NSOutlineView

independentConversationQueueing

NSConnection

index

NSIndexSpecifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indexOfCellWithTag:

NSForm

indexOfItem:

NSPopUpButton, NSPopUpButtonCell, NSMenu

indexOfItemAtPoint:

NSMenuView

indexOfItemWithObjectValue:

NSComboBoxCell, NSComboBox

indexOfItemWithRepresentedObject:

NSPopUpButton, NSPopUpButtonCell, NSMenu

indexOfItemWithSubmenu:

NSMenu

indexOfItemWithTag:

NSPopUpButton, NSPopUpButtonCell, NSMenu

indexOfItemWithTarget:andAction:

NSPopUpButton, NSPopUpButtonCell, NSMenu

indexOfItemWithTitle:

NSPopUpButton, NSPopUpButtonCell, NSMenu

indexOfObject:

NSArray

indexOfObject:inRange:

NSArray

indexOfObjectIdenticalTo:

NSArray

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indexOfObjectIdenticalTo:inRange:

NSArray

indexOfSelectedItem

NSPopUpButton, NSPopUpButtonCell, NSComboBoxCell, NSForm, NSComboBox

indexOfTabViewItem:

NSTabView

indexOfTabViewItemWithIdentifier:

NSTabView

indexOfTickMarkAtPoint:

NSSliderCell

indicatorImageInTableColumn:

NSTableView

indicesOfObjectsByEvaluatingWithContainer:count:

NSScriptObjectSpecifier

infoDictionary

NSBundle

init

NSString, NSNetServiceBrowser, NSUserDefaults, NSDocumentController, NSLayoutManager, NSObject, NSSocketPort, NSDate, NSPipe, NSTask,
NSDocument

initAndTestWithTests:

NSLogicalTest

initAsTearOff

NSMenuView

initByReferencingFile:

NSImage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initByReferencingURL:

NSImage

initDirectoryWithFileWrappers:

NSFileWrapper

initFileURLWithPath:

NSURL

initForIncrementalLoad

NSBitmapImageRep

initForReadingWithData:

NSKeyedUnarchiver, NSUnarchiver

initForWritingWithMutableData:

NSKeyedArchiver, NSArchiver

initImageCell:

NSCell

initListDescriptor

NSAppleEventDescriptor

initNotTestWithTest:

NSLogicalTest

initOrTestWithTests:

NSLogicalTest

initRecordDescriptor

NSAppleEventDescriptor

initRegularFileWithContents:

NSFileWrapper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initRemoteWithProtocolFamily:socketType:protocol:address:

NSSocketPort

initRemoteWithTCPPort:host:

NSSocketPort

initSymbolicLinkWithDestination:

NSFileWrapper

initTextCell:

NSFormCell, NSCell

initTextCell:pullsDown:

NSPopUpButtonCell

initWithAEDescNoCopy:

NSAppleEventDescriptor

initWithArray:

NSSet, NSArray, NSCountedSet

initWithArray:copyItems:

NSArray

initWithAttributedString:

NSAttributedString

initWithAttributes:

NSOpenGLPixelFormat

initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPePixel:

NSBitmapImageRep

initWithBool:

NSNumber

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithBytes:length:

NSData

initWithBytes:objCType:

NSValue

initWithBytesNoCopy:length:

NSData

initWithBytesNoCopy:length:freeWhenDone:

NSData

initWithCString:

NSString

initWithCString:length:

NSString

initWithCStringNoCopy:length:freeWhenDone:

NSString

initWithCapacity:

NSMutableArray, NSMutableData, NSMutableString, NSMutableDictionary, NSMutableSet, NSCountedSet

initWithChar:

NSNumber

initWithCharacters:length:

NSString

initWithCharactersNoCopy:length:freeWhenDone:

NSString

initWithCoder:

NSComboBoxCell, NSComboBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithCommandDescription:

NSScriptCommand

initWithCondition:

NSConditionLock

initWithContainerClassDescription:containerSpecifier:key:

NSScriptObjectSpecifier

initWithContainerClassDescription:containerSpecifier:key:index:

NSIndexSpecifier

initWithContainerClassDescription:containerSpecifier:key:name:

NSNameSpecifier

initWithContainerClassDescription:containerSpecifier:key:relativePosition:baseSpecifier:

NSRelativeSpecifier

initWithContainerClassDescription:containerSpecifier:key:startSpecifier:endSpecifier:

NSRangeSpecifier

initWithContainerClassDescription:containerSpecifier:key:test:

NSWhoseSpecifier

initWithContainerClassDescription:containerSpecifier:key:uniqueID:

NSUniqueIDSpecifier

initWithContainerSize:

NSTextContainer

initWithContainerSpecifier:key:

NSScriptObjectSpecifier

initWithContentRect:styleMask:backing:defer:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithContentRect:styleMask:backing:defer:screen:

NSWindow

initWithContentSize:preferredEdge:

NSDrawer

initWithContentsOfFile:

NSImage, NSString, NSData, NSDictionary, NSArray

initWithContentsOfFile:byReference:

NSSound

initWithContentsOfFile:ofType:

NSDocument

initWithContentsOfMappedFile:

NSData

initWithContentsOfURL:

NSImage, NSString, NSData, NSDictionary, NSArray

initWithContentsOfURL:byReference:

NSSound

initWithContentsOfURL:error:

NSAppleScript

initWithContentsOfURL:ofType:

NSDocument

initWithData:

NSImage, NSSound, NSData, NSPDFImageRep, NSEPSImageRep, NSOpenGLPixelFormat, NSBitmapImageRep, NSPICTImageRep

initWithData:encoding:

NSString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithDateFormat:allowNaturalLanguage:

NSDateFormatter

initWithDecimal:

NSDecimalNumber

initWithDelegate:name:

NSInputServer

initWithDescriptorType:bytes:length:

NSAppleEventDescriptor

initWithDescriptorType:data:

NSAppleEventDescriptor

initWithDictionary:

NSDictionary, NSPrintInfo

initWithDictionary:copyItems:

NSDictionary

initWithDomain:type:name:

NSNetService

initWithDomain:type:name:port:

NSNetService

initWithDouble:

NSNumber

initWithDrawSelector:delegate:

NSCustomImageRep

initWithEventClass:eventID:targetDescriptor:returnID:transactionID:

NSAppleEventDescriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithFileDescriptor:

NSFileHandle

initWithFileDescriptor:closeOnDealloc:

NSFileHandle

initWithFileWrapper:

NSTextAttachment

initWithFireDate:interval:target:selector:userInfo:repeats:

NSTimer

initWithFloat:

NSNumber

initWithFocusedViewRect:

NSBitmapImageRep

initWithFormat:...

NSString

initWithFormat:arguments:

NSString

initWithFormat:locale:...

NSString

initWithFormat:locale:arguments:

NSString

initWithFormat:shareContext:

NSOpenGLContext

initWithFrame:

NSTextView, NSControl, NSMatrix, NSView, NSMenuView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:

NSMatrix

initWithFrame:mode:prototype:numberOfRows:numberOfColumns:

NSMatrix

initWithFrame:pixelFormat:

NSOpenGLView

initWithFrame:pullsDown:

NSPopUpButton

initWithFrame:textContainer:

NSTextView

initWithHTML:baseURL:documentAttributes:

NSAttributedString

initWithHTML:documentAttributes:

NSAttributedString

initWithIdentifier:

NSTableColumn, NSTabViewItem, NSToolbar

initWithImage:foregroundColorHint:backgroundColorHint:hotSpot:

NSCursor

initWithImage:hotSpot:

NSCursor

initWithInt:

NSNumber

initWithItemIdentifier:

NSToolbarItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithLength:

NSMutableData

initWithLocal:connection:

NSDistantObject

initWithLong:

NSNumber

initWithLongLong:

NSNumber

initWithMachPort:

NSMachPort

initWithMantissa:exponent:isNegative:

NSDecimalNumber

initWithMovie:

NSMovie

initWithName:

NSTimeZone, NSColorList

initWithName:data:

NSTimeZone

initWithName:fromFile:

NSColorList

initWithName:host:

NSInputManager

initWithName:reason:userInfo:

NSException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithNativeHandle:

NSFileHandle

initWithNativeHandle:closeOnDealloc:

NSFileHandle

initWithNotificationCenter:

NSNotificationQueue

initWithObjectSpecifier:comparisonOperator:testObject:

NSSpecifierTest

initWithObjects:...

NSSet, NSArray

initWithObjects:count:

NSSet, NSArray

initWithObjects:forKeys:

NSDictionary

initWithObjects:forKeys:count:

NSDictionary

initWithObjectsAndKeys:...

NSDictionary

initWithPasteboard:

NSImage, NSSound, NSMovie

initWithPath:

NSBundle, NSFileWrapper, NSDistributedLock

initWithPath:documentAttributes:

NSAttributedString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithPickerMask:colorPanel:

NSColorPicker

initWithPosition:objectSpecifier:

NSPositionalSpecifier

initWithProtocolFamily:socketType:protocol:address:

NSSocketPort

initWithProtocolFamily:socketType:protocol:socket:

NSSocketPort

initWithRTF:documentAttributes:

NSAttributedString

initWithRTFD:documentAttributes:

NSAttributedString

initWithRTFDFileWrapper:documentAttributes:

NSAttributedString

initWithReceivePort:sendPort:

NSConnection

initWithReceivePort:sendPort:components:

NSPortCoder

initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero:

NSDecimalNumberHandler

initWithRulerView:markerLocation:image:imageOrigin:

NSRulerMarker

initWithScheme:host:path:

NSURL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithScrollView:orientation:

NSRulerView

initWithSendPort:receivePort:components:

NSPortMessage

initWithSerializedRepresentation:

NSFileWrapper

initWithSet:

NSSet, NSCountedSet

initWithSet:copyItems:

NSSet

initWithShort:

NSNumber

initWithSize:

NSImage

initWithSize:depth:separate:alpha:

NSCachedImageRep

initWithSource:

NSAppleScript

initWithString:

NSString, NSAttributedString, NSURL, NSDecimalNumber, NSCalendarDate, NSDate, NSScanner

initWithString:attributes:

NSAttributedString

initWithString:calendarFormat:

NSCalendarDate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithString:calendarFormat:locale:

NSCalendarDate

initWithString:locale:

NSDecimalNumber

initWithString:relativeToURL:

NSURL

initWithSuiteName:className:dictionary:

NSScriptClassDescription

initWithSuiteName:commandName:dictionary:

NSScriptCommandDescription

initWithTCPPort:

NSSocketPort

initWithTarget:connection:

NSDistantObject

initWithTarget:protocol:

NSProtocolChecker

initWithTimeInterval:sinceDate:

NSDate

initWithTimeIntervalSinceNow:

NSDate

initWithTimeIntervalSinceReferenceDate:

NSDate

initWithTitle:

NSMenu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithTitle:action:keyEquivalent:

NSMenuItem

initWithTransform:

NSAffineTransform

initWithType:location:

NSTextTab

initWithURL:byReference:

NSMovie

initWithURL:cached:

NSURLHandle

initWithURL:documentAttributes:

NSAttributedString

initWithUTF8String:

NSString

initWithUnsignedChar:

NSNumber

initWithUnsignedInt:

NSNumber

initWithUnsignedLong:

NSNumber

initWithUnsignedLongLong:

NSNumber

initWithUnsignedShort:

NSNumber

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initWithUser:

NSUserDefaults

initWithWindow:

NSWindowController

initWithWindow:rect:

NSCachedImageRep

initWithWindowNibName:

NSWindowController

initWithWindowNibName:owner:

NSWindowController

initWithWindowNibPath:owner:

NSWindowController

initWithWindowRef:

NSWindow

initWithYear:month:day:hour:minute:second:timeZone:

NSCalendarDate

initialFirstResponder

NSWindow, NSTabViewItem

initialize

NSObject

innerRect

NSMenuView

insertAttributedString:atIndex:

NSMutableAttributedString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insertBacktab:

NSResponder

insertColor:key:atIndex:

NSColorList

insertColumn:

NSMatrix

insertColumn:withCells:

NSMatrix

insertDescriptor:atIndex:

NSAppleEventDescriptor

insertEntry:atIndex:

NSForm

insertGlyph:atGlyphIndex:characterIndex:

NSSimpleHorizontalTypesetter, NSLayoutManager

insertItem:atIndex:

NSMenu

insertItemWithItemIdentifier:atIndex:

NSToolbar

insertItemWithObjectValue:atIndex:

NSComboBoxCell, NSComboBox

insertItemWithTitle:action:keyEquivalent:atIndex:

NSMenu

insertItemWithTitle:atIndex:

NSPopUpButton, NSPopUpButtonCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insertNewButtonImage:in:

NSColorPicker

insertNewline:

NSResponder

insertNewlineIgnoringFieldEditor:

NSResponder

insertObject:atIndex:

NSMutableArray

insertParagraphSeparator:

NSResponder

insertRow:

NSMatrix

insertRow:withCells:

NSMatrix

insertString:atIndex:

NSMutableString

insertTab:

NSResponder

insertTabIgnoringFieldEditor:

NSResponder

insertTabViewItem:atIndex:

NSTabView

insertText:

NSResponder, NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

insertTextContainer:atIndex:

NSLayoutManager

insertionContainer

NSPositionalSpecifier

insertionIndex

NSPositionalSpecifier

insertionKey

NSPositionalSpecifier

insertionPointColor

NSTextView

insertionReplaces

NSPositionalSpecifier

instanceMethodForSelector:

NSObject

instanceMethodSignatureForSelector:

NSObject

instancesRespondToSelector:

NSObject

int32Value

NSAppleEventDescriptor

intAttribute:forGlyphAtIndex:

NSLayoutManager

intForKey:inTable:

NSPrinter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

intValue

NSString, NSControl, NSCell, NSNumber, NSActionCell

integerForKey:

NSUserDefaults

intercellSpacing

NSTableView, NSComboBoxCell, NSMatrix, NSComboBox

interfaceStyle

NSResponder

interpretKeyEvents:

NSResponder

interrupt

NSTask

intersectSet:

NSMutableSet

intersectsSet:

NSSet

invalidate

NSTimer, NSPort, NSConnection

invalidateAttributesInRange:

NSTextStorage

invalidateClassDescriptionCache

NSClassDescription

invalidateCursorRectsForView:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

invalidateDisplayForCharacterRange:

NSLayoutManager

invalidateDisplayForGlyphRange:

NSLayoutManager

invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:

NSLayoutManager

invalidateHashMarks

NSRulerView

invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:

NSLayoutManager

invalidateShadow

NSWindow

invalidateTextContainerOrigin

NSTextView

inverseForRelationshipKey:

NSClassDescription

invert

NSMutableCharacterSet, NSAffineTransform

invertedSet

NSCharacterSet

invocation

NSDistantObjectRequest

invocationWithMethodSignature:

NSInvocation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

invoke

NSInvocation

invokeWithTarget:

NSInvocation

isARepeat

NSEvent

isAbsolutePath

NSString

isActive

NSApplication, NSColorWell

isAtEnd

NSScanner, NSUnarchiver

isAttached

NSMenu, NSMenuView

isAutodisplay

NSWindow

isAutoscroll

NSMatrix

isBaseFont

NSFont

isBezeled

NSProgressIndicator, NSCell, NSTextField

isBordered

NSCell, NSButton, NSColorWell, NSTextField

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isBycopy

NSPortCoder

isByref

NSPortCoder

isCachedSeparately

NSImage

isColor

NSPrinter

isColumnSelected:

NSTableView

isCompiled

NSAppleScript

isContextHelpModeActive

NSHelpManager

isContinuous

NSControl, NSCell, NSColorPanel

isContinuousSpellCheckingEnabled

NSTextView

isControllerVisible

NSMovieView

isCopyingOperation

NSPrintOperation

isDataRetained

NSImage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isDaylightSavingTime

NSTimeZone

isDaylightSavingTimeForDate:

NSTimeZone

isDeletableFileAtPath:

NSFileManager

isDescendantOf:

NSView

isDirectory

NSFileWrapper

isDisplayedWhenStopped

NSProgressIndicator

isDocumentEdited

NSWindow, NSDocument

isDragging

NSRulerMarker

isDrawingToScreen

NSGraphicsContext

isEditable

NSTableColumn, NSTextView, NSCell, NSMovieView, NSImageView, NSColorList, NSTextField, NSText

isEmpty

NSBezierPath

isEnabled

NSControl, NSMenuItem, NSCell, NSFontManager, NSToolbarItem, NSFontPanel, NSStatusItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isEntryAcceptable:

NSCell

isEqualToArray:

NSArray

isEqualToAttributedString:

NSAttributedString

isEqualToData:

NSData

isEqualToDate:

NSDate

isEqualToDictionary:

NSDictionary

isEqualToHost:

NSHost

isEqualToNumber:

NSNumber

isEqualToSet:

NSSet

isEqualToString:

NSString

isEqualToTimeZone:

NSTimeZone

isEqualToValue:

NSValue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isExcludedFromWindowsMenu

NSWindow

isExecutableFileAtPath:

NSFileManager

isExpandable:

NSOutlineView

isExpanded

NSSavePanel

isExtensionHidden

NSSavePanel

isFieldEditor

NSTextView, NSText

isFilePackageAtPath:

NSWorkspace

isFileURL

NSURL

isFixedPitch

NSFont

isFlipped

NSImage, NSView, NSRulerView

isFloatingPanel

NSWindow, NSPanel

isFlushWindowDisabled

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isFontAvailable:

NSPrinter

isHidden

NSApplication

isHighlighted

NSCell, NSMenuItemCell

isHorizontal

NSMenuView

isHorizontallyCentered

NSPrintInfo

isHorizontallyResizable

NSText

isHostCacheEnabled

NSHost

isIndeterminate

NSProgressIndicator

isItemExpanded:

NSOutlineView

isKey:inTable:

NSPrinter

isKeyWindow

NSWindow

isLeaf

NSBrowserCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isLoaded

NSBundle, NSBrowserCell, NSBrowser

isLocationRequiredToCreateForKey:

NSScriptClassDescription

isMainWindow

NSWindow

isMiniaturizable

NSWindow

isMiniaturized

NSWindow

isModalPanel

NSWindow

isMovable

NSRulerMarker

isMovableByWindowBackground

NSWindow

isMultiThreaded

NSThread

isMultiple

NSFontManager

isMuted

NSMovieView

isNativeType:

NSDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isOneShot

NSWindow

isOneway

NSMethodSignature

isOpaque

NSWindow, NSButtonCell, NSFormCell, NSCell, NSImageRep, NSView

isOptionalArgumentWithName:

NSScriptCommandDescription

isOutputStackInReverseOrder

NSPrinter

isPaneSplitter

NSSplitView

isPartialStringValid:newEditingString:errorDescription:

NSFormatter

isPartialStringValid:proposedSelectedRange:originalString:originalSelectedRange:errorDescription:

NSFormatter

isPlanar

NSBitmapImageRep

isPlaying

NSSound, NSMovieView

isReadOnlyKey:

NSScriptClassDescription

isReadableFileAtPath:

NSFileManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isRedoing

NSUndoManager

isRegularFile

NSFileWrapper

isReleasedWhenClosed

NSWindow

isRemovable

NSRulerMarker

isResizable

NSTableColumn, NSWindow

isRichText

NSTextView, NSText

isRotatedFromBase

NSView

isRotatedOrScaledFromBase

NSView

isRowSelected:

NSTableView

isRulerVisible

NSTextView, NSText

isRunning

NSApplication, NSTask

isScrollable

NSCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isSelectable

NSTextView, NSCell, NSTextField, NSText

isSelectionByRect

NSMatrix

isSeparatorItem

NSMenuItem

isSetOnMouseEntered

NSCursor

isSetOnMouseExited

NSCursor

isSheet

NSWindow

isSimpleRectangularTextContainer

NSTextContainer

isSubclassOfClass:

NSObject

isSubsetOfSet:

NSSet

isSubviewCollapsed:

NSSplitView

isSupersetOfSet:

NSCharacterSet

isSymbolicLink

NSFileWrapper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isTitled

NSBrowser

isTornOff

NSMenu, NSMenuView

isTransparent

NSButtonCell, NSButton

isTrue

NSScriptWhoseTest

isUndoRegistrationEnabled

NSUndoManager

isUndoing

NSUndoManager

isValid

NSImage, NSTimer, NSPort, NSConnection

isValidGlyphIndex:

NSLayoutManager

isVertical

NSSlider, NSStatusBar, NSSplitView, NSSliderCell

isVerticallyCentered

NSPrintInfo

isVerticallyResizable

NSText

isVisible

NSWindow, NSToolbar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isWellFormed

NSScriptCommand

isWindowLoaded

NSWindowController

isWordInUserDictionaries:caseSensitive:

NSSpellServer

isWritableFileAtPath:

NSFileManager

isZoomable

NSWindow

isZoomed

NSWindow

italicAngle

NSFont

itemAdded:

NSMenuView

itemArray

NSPopUpButton, NSPopUpButtonCell, NSMenu

itemAtIndex:

NSPopUpButton, NSPopUpButtonCell, NSMenu

itemAtRow:

NSOutlineView

itemChanged:

NSMenu, NSMenuView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

itemHeight

NSComboBoxCell, NSComboBox

itemIdentifier

NSToolbarItem

itemObjectValueAtIndex:

NSComboBoxCell, NSComboBox

itemRemoved:

NSMenuView

itemTitleAtIndex:

NSPopUpButton, NSPopUpButtonCell

itemTitles

NSPopUpButton, NSPopUpButtonCell

itemWithTag:

NSMenu

itemWithTitle:

NSPopUpButton, NSPopUpButtonCell, NSMenu

items

NSToolbar

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

J

jobDisposition

NSPrintInfo

jobStyleHint

NSPrintPanel, NSPrintOperation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

K

keepBackupFile

NSDocument

key

NSScriptObjectSpecifier

keyClassDescription

NSScriptObjectSpecifier

keyCode

NSEvent

keyDown:

NSWindow, NSResponder

keyEnumerator

NSDictionary

keyEquivalent

NSButtonCell, NSMenuItem, NSCell, NSButton

keyEquivalentFont

NSButtonCell

keyEquivalentModifierMask

NSButtonCell, NSMenuItem, NSButton

keyEquivalentOffset

NSMenuView

keyEquivalentRectForBounds:

NSMenuItemCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

keyEquivalentWidth

NSMenuItemCell, NSMenuView

keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:characters:charactersIgnoringModifiers:isARepeat:keyCode:

NSEvent

keyForFileWrapper:

NSFileWrapper

keySpecifier

NSDeleteCommand, NSCloneCommand, NSMoveCommand, NSSetCommand

keyUp:

NSResponder

keyViewSelectionDirection

NSWindow

keyWindow

NSApplication

keyWithAppleEventCode:

NSScriptClassDescription

keyboardFocusIndicatorColor

NSColor

keysSortedByValueUsingSelector:

NSDictionary

keywordForDescriptorAtIndex:

NSAppleEventDescriptor

knobColor

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

knobProportion

NSScroller

knobRectFlipped:

NSSliderCell

knobThickness

NSSlider, NSSliderCell

knownTimeZoneNames

NSTimeZone

knowsPageRange:

NSView

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

L

label

NSNibConnector, NSTabViewItem, NSToolbarItem

labelFontOfSize:

NSFont

labelFontSize

NSFont

language

NSSpellChecker, NSInputManager

languageLevel

NSPrinter

lastColumn

NSBrowser

lastItem

NSPopUpButton, NSPopUpButtonCell

lastObject

NSArray

lastPathComponen

NSString

lastVisibleColumn

NSBrowser

laterDate:

NSDate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

launch

NSTask

launchApplication:

NSWorkspace

launchApplication:showIcon:autolaunch:

NSWorkspace

launchPath

NSTask

launchedApplications

NSWorkspace

launchedTaskWithLaunchPath:arguments:

NSTask

layoutControlGlyphForLineFragment:

NSSimpleHorizontalTypesetter

layoutGlyphsInHorizontalLineFragment:baseline:

NSSimpleHorizontalTypesetter

layoutGlyphsInLayoutManager:startingAtGlyphIndex:maxNumberOfLineFragments:nextGlyphIndex:

NSSimpleHorizontalTypesetter, NSTypesetter

layoutManager

NSTextView, NSTextContainer

layoutManager:didCompleteLayoutForTextContainer:atEnd:

NSLayoutManager

layoutManagerDidInvalidateLayout:

NSLayoutManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

layoutManagerOwnsFirstResponderInWindow:

NSLayoutManager

layoutManagers

NSTextStorage

layoutTab

NSSimpleHorizontalTypesetter

leadingOffset

NSDrawer

leftMargin

NSPrintInfo

length

NSString, NSAttributedString, NSData, NSStatusItem

letterCharacterSet

NSCharacterSet

level

NSWindow

levelForItem:

NSOutlineView

levelForRow:

NSOutlineView

levelsOfUndo

NSUndoManager

lightGrayColor

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

limitDateForMode:

NSRunLoop

lineBreakBeforeIndex:withinRange:

NSAttributedString

lineBreakMode

NSParagraphStyle

lineCapStyle

NSBezierPath

lineFragmentPadding

NSTextContainer

lineFragmentRectForGlyphAtIndex:effectiveRange:

NSLayoutManager

lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:

NSTextContainer

lineFragmentUsedRectForGlyphAtIndex:effectiveRange:

NSLayoutManager

lineJoinStyle

NSBezierPath

lineRangeForRange:

NSString

lineScroll

NSScrollView

lineSpacing

NSParagraphStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lineToPoint:

NSBezierPath

lineWidth

NSBezierPath

linkPath:toPath:handler:

NSFileManager

listDescriptor

NSAppleEventDescriptor

load

NSBundle, NSObject

loadColumnZero

NSBrowser

loadDataRepresentation:ofType:

NSDocument

loadFileWrapperRepresentation:ofType:

NSDocument

loadInBackground

NSURLHandle

loadInForeground

NSURLHandle

loadNibFile:externalNameTable:withZone:

NSBundle

loadNibNamed:owner:

NSBundle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loadResourceDataNotifyingClient:usingCache:

NSURL

loadSuiteWithDictionary:fromBundle:

NSScriptSuiteRegistry

loadSuitesFromBundle:

NSScriptSuiteRegistry

loadWindow

NSWindowController

loadedCellAtRow:column:

NSBrowser

localObjects

NSConnection

localTimeZone

NSTimeZone

locale

NSScanner

localizations

NSBundle

localizedCaseInsensitiveCompare:

NSString

localizedCatalogNameComponent

NSColor

localizedColorNameComponent

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

localizedCompare:

NSString

localizedInfoDictionary

NSBundle

localizedInputManagerName

NSInputManager

localizedNameForFamily:face:

NSFontManager

localizedNameForTIFFCompressionType:

NSBitmapImageRep

localizedNameOfStringEncoding:

NSString

localizedScannerWithString:

NSScanner

localizedStringForKey:value:table:

NSBundle

localizedStringWithFormat:...

NSString

localizesFormat

NSNumberFormatter

location

NSTextTab

locationForGlyphAtIndex:

NSLayoutManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

locationForSubmenu:

NSMenu, NSMenuView

locationInWindow

NSEvent

locationOfPrintRect:

NSView

lockBeforeDate:

NSConditionLock, NSLock, NSRecursiveLock

lockDate

NSDistributedLock

lockFocus

NSImage, NSView

lockFocusIfCanDraw

NSView

lockFocusOnRepresentation:

NSImage

lockWhenCondition:

NSConditionLock

lockWhenCondition:beforeDate:

NSConditionLock

lockWithPath:

NSDistributedLock

longCharacterIsMember:

NSCharacterSet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

longLongValue

NSNumber

longValue

NSNumber

loopMode

NSMovieView

loosenKerning:

NSTextView

lossyCString

NSString

lowerBaseline:

NSTextView

lowercaseLetterCharacterSet

NSCharacterSet

lowercaseString

NSString

lowercaseWord:

NSResponder

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

M

machPort

NSMachPort

magentaColor

NSColor

magentaComponent

NSColor

mainBundle

NSBundle

mainMenu

NSApplication

mainScreen

NSScreen

mainWindow

NSApplication

makeCellAtRow:column:

NSMatrix

makeCurrentContext

NSOpenGLContext

makeDocumentWithContentsOfFile:ofType:

NSDocumentController

makeDocumentWithContentsOfURL:ofType:

NSDocumentController

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

makeFirstResponder:

NSWindow

makeKeyAndOrderFront:

NSWindow

makeKeyWindow

NSWindow

makeMainWindow

NSWindow

makeNewConnection:sender:

NSConnection

makeObjectsPerformSelector:

NSSet, NSArray

makeObjectsPerformSelector:withObject:

NSSet, NSArray

makeUntitledDocumentOfType:

NSDocumentController

makeWindowControllers

NSDocument

makeWindowsPerform:inOrder:

NSApplication

markedTextAbandoned:

NSInputManager

markedTextAttributes

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

markedTextSelectionChanged:client:

NSInputManager

markerLocation

NSRulerMarker

markers

NSRulerView

matchesAppleEventCode:

NSScriptClassDescription

matchesOnMultipleResolution

NSImage

matrix

NSFont

matrixClass

NSBrowser

matrixInColumn:

NSBrowser

maxContentSize

NSDrawer

maxSize

NSWindow, NSToolbarItem, NSText

maxValue

NSSlider, NSProgressIndicator, NSSliderCell, NSStepperCell, NSStepper

maxVisibleColumns

NSBrowser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

maxWidth

NSTableColumn

maximum

NSNumberFormatter

maximumAdvancement

NSFont

maximumDecimalNumber

NSDecimalNumber

maximumLineHeight

NSParagraphStyle

measurementUnits

NSRulerView

member:

NSSet

menu

NSPopUpButton, NSPopUpButtonCell, NSResponder, NSMenuItem, NSCell, NSStatusItem, NSMenuView

menuBarHeight

NSMenuView

menuBarVisible

NSMenu

menuChanged:

NSWindow

menuChangedMessagesEnabled

NSMenu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

menuFontOfSize:

NSFont

menuForEvent:

NSView

menuForEvent:inRect:ofView:

NSCell

menuFormRepresentation

NSToolbarItem

menuItem

NSMenuItemCell

menuItemCellForItemAtIndex:

NSMenuView

menuRepresentation

NSMenu

menuView

NSMenuItemCell

menuZone

NSMenu

messageFontOfSize:

NSFont

methodForSelector:

NSObject

methodReturnLength

NSMethodSignature

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

methodReturnType

NSMethodSignature

methodSignature

NSInvocation

methodSignatureForSelector:

NSObject, NSProxy

minColumnWidth

NSBrowser

minContentSize

NSDrawer

minFrameWidthWithTitle:styleMask:

NSWindow

minSize

NSWindow, NSToolbarItem, NSText

minValue

NSSlider, NSProgressIndicator, NSSliderCell, NSStepperCell, NSStepper

minWidth

NSTableColumn

miniaturize:

NSWindow

miniaturizeAll:

NSApplication

minimum

NSNumberFormatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

minimumDecimalNumber

NSDecimalNumber

minimumLineHeight

NSParagraphStyle

minimumSize

NSTabView

miniwindowImage

NSWindow

miniwindowTitle

NSWindow

minusSet:

NSMutableSet

minuteOfHour

NSCalendarDate

miterLimit

NSBezierPath

mixedStateImage

NSMenuItem

mnemonic

NSMenuItem

mnemonicLocation

NSMenuItem

modalWindow

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mode

NSMatrix, NSColorPanel

modifierFlags

NSEvent

modifyFont:

NSFontManager

modifyFontViaPanel:

NSFontManager

monthOfYear

NSCalendarDate

mostCompatibleStringEncoding

NSFont

mountNewRemovableMedia

NSWorkspace

mountedLocalVolumePaths

NSWorkspace

mountedRemovableMedia

NSWorkspace

mouse:inRect:

NSView

mouseDown:

NSResponder, NSControl, NSMatrix

mouseDownCanMoveWindow

NSView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mouseDownFlags

NSCell, NSMatrix

mouseDragged:

NSResponder

mouseEntered:

NSCursor, NSResponder, NSButtonCell

mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:eventNumber:clickCount:pressure:

NSEvent

mouseExited:

NSCursor, NSResponder, NSButtonCell

mouseLocation

NSEvent

mouseLocationOutsideOfEventStream

NSWindow

mouseMoved:

NSResponder

mouseUp:

NSResponder

moveBackward:

NSResponder

moveBackwardAndModifySelection:

NSResponder

moveColumn:toColumn:

NSTableView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

moveDown:

NSResponder

moveDownAndModifySelection:

NSResponder

moveForward:

NSResponder

moveForwardAndModifySelection:

NSResponder

moveLeft:

NSResponder

movePath:toPath:handler:

NSFileManager

moveRight:

NSResponder

moveRulerlineFromLocation:toLocation:

NSRulerView

moveToBeginningOfDocument:

NSResponder

moveToBeginningOfLine:

NSResponder

moveToBeginningOfParagraph:

NSResponder

moveToEndOfDocument:

NSResponder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

moveToEndOfLine:

NSResponder

moveToEndOfParagraph:

NSResponder

moveToPoint:

NSBezierPath

moveUp:

NSResponder

moveUpAndModifySelection:

NSResponder

moveWordBackward:

NSResponder

moveWordBackwardAndModifySelection:

NSResponder

moveWordForward:

NSResponder

moveWordForwardAndModifySelection:

NSResponder

movie

NSMovieView

movieController

NSMovieView

movieRect

NSMovieView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

movieUnfilteredFileTypes

NSMovie

movieUnfilteredPasteboardTypes

NSMovie

msgid

NSPortMessage

multipleThreadsEnabled

NSConnection

mutableBytes

NSMutableData

mutableCopy

NSObject

mutableCopyWithZone:

NSObject

mutableString

NSMutableAttributedString

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

N

name

NSImage, NSSound, NSException, NSHost, NSPrinter, NSNetService, NSTimeZone, NSNotification,
NSPasteboard, NSNameSpecifier, NSColorList

names

NSHost

nativeHandle

NSFileHandle

needsDisplay

NSMenuItemCell, NSView

needsPanelToBecomeKey

NSView

needsSizing

NSMenuItemCell, NSMenuView

needsToBeUpdatedFromPath:

NSFileWrapper

negativeFormat

NSNumberFormatter

netService:didNotPublish:

NSNetService

netService:didNotResolve:

NSNetService

netServiceBrowser:didFindDomain:moreComing:

NSNetServiceBrowser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSNetServiceBrowser

netServiceBrowser:didFindService:moreComing:

NSNetServiceBrowser

netServiceBrowser:didNotSearch:

NSNetServiceBrowser

netServiceBrowser:didRemoveDomain:moreComing:

NSNetServiceBrowser

netServiceBrowser:didRemoveService:moreComing:

NSNetServiceBrowser

netServiceBrowserDidStopSearch:

NSNetServiceBrowser

netServiceBrowserWillSearch:

NSNetServiceBrowser

netServiceDidResolveAddress:

NSNetService

netServiceDidStop:

NSNetService

netServiceWillPublish:

NSNetService

netServiceWillResolve:

NSNetService

new

NSObject

newDocument:

NSDocumentController

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSDocumentController

nextEventMatchingMask:

NSWindow

nextEventMatchingMask:untilDate:inMode:dequeue:

NSWindow, NSApplication

nextObject

NSEnumerator

nextResponder

NSResponder

nextState

NSCell

nextWordFromIndex:forward:

NSAttributedString

noResponderFor:

NSResponder

nonBaseCharacterSet

NSCharacterSet

nonretainedObjectValue

NSValue

notANumber

NSDecimalNumber

notShownAttributeForGlyphAtIndex:

NSLayoutManager

note

NSPrinter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSPrinter

noteFileSystemChanged

NSWorkspace

noteFileSystemChanged:

NSWorkspace

noteNewRecentDocument:

NSDocumentController

noteNewRecentDocumentURL:

NSDocumentController

noteNumberOfItemsChanged

NSComboBoxCell, NSComboBox

noteNumberOfRowsChanged

NSTableView

noteUserDefaultsChanged

NSWorkspace

notificationCenter

NSWorkspace

notificationCenterForType:

NSDistributedNotificationCenter

notificationWithName:object:

NSNotification

notificationWithName:object:userInfo:

NSNotification

null

NSNull

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSNull

nullDescriptor

NSAppleEventDescriptor

numberOfArguments

NSMethodSignature

numberOfColumns

NSTableView, NSMatrix

numberOfGlyphs

NSLayoutManager, NSFont

numberOfItems

NSPopUpButton, NSPopUpButtonCell, NSMenu, NSComboBoxCell, NSAppleEventDescriptor, NSComboBox

numberOfPlanes

NSBitmapImageRep

numberOfRows

NSTableView, NSMatrix

numberOfSelectedColumns

NSTableView

numberOfSelectedRows

NSTableView

numberOfTabViewItems

NSTabView

numberOfTickMarks

NSSliderCell

numberOfVirtualScreens

NSOpenGLPixelFormat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSOpenGLPixelFormat

numberOfVisibleColumns

NSBrowser

numberOfVisibleItems

NSComboBoxCell, NSComboBox

numberWithBool:

NSNumber

numberWithChar:

NSNumber

numberWithDouble:

NSNumber

numberWithFloat:

NSNumber

numberWithInt:

NSNumber

numberWithLong:

NSNumber

numberWithLongLong:

NSNumber

numberWithShort:

NSNumber

numberWithUnsignedChar:

NSNumber

numberWithUnsignedInt:

NSNumber

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSNumber

numberWithUnsignedLong:

NSNumber

numberWithUnsignedLongLong:

NSNumber

numberWithUnsignedShort:

NSNumber

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

O

objCType

NSDecimalNumber, NSValue

object

NSNotification

objectAtIndex:

NSArray

objectBeingTested

NSScriptExecutionContext

objectEnumerator

NSDictionary, NSSet, NSArray, NSCountedSet

objectForInfoDictionaryKey:

NSBundle

objectForKey:

NSUserDefaults, NSDictionary

objectIsForcedForKey:

NSUserDefaults

objectIsForcedForKey:inDomain:

NSUserDefaults

objectValue

NSControl, NSCell

objectValueOfSelectedItem

NSComboBoxCell, NSComboBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

objectValues

NSComboBoxCell, NSComboBox

objectZone

NSCoder, NSUnarchiver

objectsByEvaluatingSpecifier

NSScriptObjectSpecifier

objectsByEvaluatingWithContainers:

NSScriptObjectSpecifier

objectsForKeys:notFoundMarker:

NSDictionary

offStateImage

NSMenuItem

offsetInFile

NSFileHandle

ok:

NSSavePanel

onStateImage

NSMenuItem

one

NSDecimalNumber

opaqueAncestor

NSView

open

NSDrawer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

open:

NSDrawer

openDocument:

NSDocumentController

openDocumentWithContentsOfFile:display:

NSDocumentController

openDocumentWithContentsOfURL:display:

NSDocumentController

openFile:

NSWorkspace

openFile:fromImage:at:inView:

NSWorkspace

openFile:withApplication:

NSWorkspace

openFile:withApplication:andDeactivate:

NSWorkspace

openGLContext

NSOpenGLView

openOnEdge:

NSDrawer

openPanel

NSOpenPanel

openTempFile:

NSWorkspace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

openURL:

NSWorkspace

openUntitledDocumentOfType:display:

NSDocumentController

operatingSystem

NSProcessInfo

operatingSystemName

NSProcessInfo

operatingSystemVersionString

NSProcessInfo

orangeColor

NSColor

orderBack:

NSWindow

orderFront:

NSWindow

orderFrontColorPanel:

NSApplication

orderFrontFontPanel:

NSFontManager

orderFrontRegardless

NSWindow

orderFrontStandardAboutPanel:

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

orderFrontStandardAboutPanelWithOptions:

NSApplication

orderOut:

NSWindow

orderWindow:relativeTo:

NSWindow

orderedIndex

NSWindow

orientation

NSPrintInfo, NSRulerView

originOffset

NSRulerView

otherEventWithType:location:modifierFlags:timestamp:windowNumber:context:subtype:data1:data2:

NSEvent

otherMouseDown:

NSResponder

otherMouseDragged:

NSResponder

otherMouseUp:

NSResponder

outlineTableColumn

NSOutlineView

outlineView:shouldCollapseItem:

NSOutlineView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outlineView:shouldEditTableColumn:item:

NSOutlineView

outlineView:shouldExpandItem:

NSOutlineView

outlineView:shouldSelectItem:

NSOutlineView

outlineView:shouldSelectTableColumn:

NSOutlineView

outlineView:willDisplayCell:forTableColumn:item:

NSOutlineView

outlineView:willDisplayOutlineCell:forTableColumn:item:

NSOutlineView

outlineViewColumnDidMove:

NSOutlineView

outlineViewColumnDidResize:

NSOutlineView

outlineViewItemDidCollapse:

NSOutlineView

outlineViewItemDidExpand:

NSOutlineView

outlineViewItemWillCollapse:

NSOutlineView

outlineViewItemWillExpand:

NSOutlineView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outlineViewSelectionDidChange:

NSOutlineView

outlineViewSelectionIsChanging:

NSOutlineView

outputFormat

NSKeyedArchiver

owner

NSWindowController

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

P

PDFOperationWithView:insideRect:toData:

NSPrintOperation

PDFOperationWithView:insideRect:toData:printInfo:

NSPrintOperation

PDFOperationWithView:insideRect:toPath:printInfo:

NSPrintOperation

PDFRepresentation

NSPDFImageRep

PICTRepresentation

NSPICTImageRep

pageCount

NSPDFImageRep

pageDown:

NSResponder

pageLayout

NSPageLayout

pageOrder

NSPrintOperation

pageScroll

NSScrollView

pageSizeForPaper:

NSPrinter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pageUp:

NSResponder

paletteFontOfSize:

NSFont

paletteLabel

NSToolbarItem

panel:compareFilename:with:caseSensitive:

NSSavePanel

panel:isValidFilename:

NSSavePanel

panel:shouldShowFilename:

NSSavePanel

panel:userEnteredFilename:confirmed:

NSSavePanel

panel:willExpand:

NSSavePanel

panelConvertFont:

NSFontPanel

paperName

NSPrintInfo

paperSize

NSPrintInfo

paragraphSpacing

NSParagraphStyle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

paragraphs

NSTextStorage

paramDescriptorForKeyword:

NSAppleEventDescriptor

parameterString

NSURL

parentWindow

NSWindow, NSDrawer

password

NSURL

paste:

NSMovieView, NSText

pasteAsPlainText:

NSTextView

pasteAsRichText:

NSTextView

pasteFont:

NSText

pasteRuler:

NSText

pasteboardByFilteringData:ofType:

NSPasteboard

pasteboardByFilteringFile:

NSPasteboard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pasteboardByFilteringTypesInPasteboard:

NSPasteboard

pasteboardWithName:

NSPasteboard

pasteboardWithUniqueName

NSPasteboard

path NSURL,

NSBrowser

pathComponents

NSString

pathContentOfSymbolicLinkAtPath:

NSFileManager

pathExtension

NSString

pathForAuxiliaryExecutable:

NSBundle

pathForImageResource:

NSBundle

pathForResource:ofType:

NSBundle

pathForResource:ofType:inDirectory:

NSBundle

pathForResource:ofType:inDirectory:forLocalization:

NSBundle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pathForSoundResource:

NSBundle

pathSeparator

NSBrowser

pathToColumn:

NSBrowser

pathWithComponents:

NSString

pathsForResourcesOfType:inDirectory:

NSBundle

pathsForResourcesOfType:inDirectory:forLocalization:

NSBundle

pathsMatchingExtensions:

NSArray

patternImage

NSColor

patternPhase

NSGraphicsContext

pause

NSSound

performActionForItemAtIndex:

NSMenu

performActionWithHighlightingForItemAtIndex:

NSMenuView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performClick:

NSButtonCell

performClickWithFrame:inView:

NSPopUpButtonCell

performClose:

NSWindow

performDefaultImplementation

NSScriptCommand

performFileOperation:source:destination:files:tag:

NSWorkspace

performKeyEquivalent:

NSMenu, NSResponder, NSMatrix, NSButton, NSView

performMiniaturize:

NSWindow

performSelector:target:argument:order:modes:

NSRunLoop

performSelector:withObject:afterDelay:

NSObject

performSelector:withObject:afterDelay:inModes:

NSObject

performSelectorOnMainThread:withObject:waitUntilDone:

NSObject

performSelectorOnMainThread:withObject:waitUntilDone:modes:

NSObject

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

performZoom:

NSWindow

persistentDomainForName:

NSUserDefaults

persistentDomainNames

NSUserDefaults

pickedAllPages:

NSPrintPanel

pickedButton:

NSPrintPanel, NSPageLayout

pickedLayoutList:

NSPrintPanel

pickedOrientation:

NSPageLayout

pickedPaperSize:

NSPageLayout

pickedUnits:

NSPageLayout

pipe

NSPipe

pixelFormat

NSOpenGLView

pixelsHigh

NSImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pixelsWide

NSImageRep

play

NSSound

playsEveryFrame

NSMovieView

playsSelectionOnly

NSMovieView

pointSize

NSFont

pointValue

NSValue

pointerValue

NSValue

poolCountHighWaterMark

NSAutoreleasePool

poolCountHighWaterResolution

NSAutoreleasePool

pop

NSCursor

popUpContextMenu:withEvent:forView:

NSMenu

port

NSURL, NSPort

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

portCoderWithReceivePort:sendPort: components:

NSPortCoder

portForName:

NSSocketPortNameServer, NSMessagePortNameServer, NSMachBootstrapServer, NSPortNameServer

portForName:host:

NSSocketPortNameServer, NSMessagePortNameServer, NSMachBootstrapServer, NSPortNameServer

portForName:host:nameServerPortNumber:

NSSocketPortNameServer

portWithMachPort:

NSMachPort

poseAsClass:

NSObject

positionOfGlyph:forCharacter:struckOverRect:

NSFont

positionOfGlyph:precededByGlyph:isNominal:

NSFont

positionOfGlyph:struckOverGlyph:metricsExist:

NSFont

positionOfGlyph:struckOverRect:metricsExist:

NSFont

positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:

NSFont

positionsForCompositeSequence:numberOfGlyphs:pointArray:

NSFont

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

positiveFormat

NSNumberFormatter

postEvent:atStart:

NSWindow, NSApplication

postNotification:

NSNotificationCenter

postNotificationName:object:

NSDistributedNotificationCenter, NSNotificationCenter

postNotificationName:object:userInfo:

NSDistributedNotificationCenter, NSNotificationCenter

postNotificationName:object:userInfo:deliverImmediately:

NSDistributedNotificationCenter

postsBoundsChangedNotifications

NSView

postsFrameChangedNotifications

NSView

precomposedStringWithCanonicalMapping

NSString

precomposedStringWithCompatibilityMapping

NSString

preferredEdge

NSPopUpButton, NSPopUpButtonCell, NSDrawer

preferredFilename

NSFileWrapper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

preferredFontNames

NSFont

preferredLocalizations

NSBundle

preferredLocalizationsFromArray:

NSBundle

preferredLocalizationsFromArray:forPreferences:

NSBundle

preferredPasteboardTypeFromArray:restrictedToTypesFromArray:

NSTextView

prefersColorMatch

NSImage

prefersTrackingUntilMouseUp

NSSliderCell, NSCell

prepareGState

NSEPSImageRep

preparePageLayout:

NSDocument

prepareSavePanel:

NSDocument

prepareWithInvocationTarget:

NSUndoManager

prependTransform:

NSAffineTransform

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pressure

NSEvent

preventWindowOrdering

NSApplication

principalClass

NSBundle

print:

NSWindow, NSView

printDocument:

NSDocument

printInfo

NSPrintOperation, NSPageLayout, NSDocument

printJobTitle

NSView

printOperationWithView:

NSPrintOperation

printOperationWithView:printInfo:

NSPrintOperation

printPanel

NSPrintPanel, NSPrintOperation

printShowingPrintPanel:

NSDocument

printer

NSPrintInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

printerFont

NSFont

printerNames

NSPrinter

printerTypes

NSPrinter

printerWithName:

NSPrinter

printerWithName:domain:includeUnavailable:

NSPrinter

printerWithType:

NSPrinter

printingAdjustmentInLayoutManager:forNominallySpacedGlyphRange:packedGlyphs:count:

NSTypesetter

privateFrameworksPath

NSBundle

processEditing

NSTextStorage

processIdentifier

NSProcessInfo, NSTask

processInfo

NSProcessInfo

processName

NSProcessInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prompt

NSSavePanel

propertyForKey:

NSURL, NSURLHandle

propertyForKeyIfAvailable:

NSURLHandle

propertyList

NSString

propertyList:isValidForFormat:

NSPropertyListSerialization

propertyListForType:

NSPasteboard

propertyListFromData:mutabilityOption:format:errorDescription:

NSPropertyListSerialization

propertyListFromStringsFileFormat

NSString

protocol

NSProtocolChecker, NSSocketPort

protocolCheckerWithTarget:protocol:

NSProtocolChecker

protocolFamily

NSSocketPort

protocolSpecificInformation

NSNetService

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prototype

NSMatrix

provideNewButtonImage

NSColorPicker

proxyWithLocal:connection:

NSDistantObject

proxyWithTarget:connection:

NSDistantObject

publish

NSNetService

pullsDown

NSPopUpButton, NSPopUpButtonCell

punctuationCharacterSet

NSCharacterSet

purpleColor

NSColor

push

NSCursor

putCell:atRow:column:

NSMatrix

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Q

QTMovie

NSMovie

qdPort

NSQuickDrawView

query

NSURL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

R

RTFDFileWrapperFromRange:documentAttributes:

NSAttributedString

RTFDFromRange:

NSText

RTFDFromRange:documentAttributes:

NSAttributedString

RTFFromRange:

NSText

RTFFromRange:documentAttributes:

NSAttributedString

raise

NSException

raise:format:...

NSException

raise:format:arguments:

NSException

raiseBaseline:

NSTextView

rangeContainerObject

NSScriptExecutionContext

rangeForUserCharacterAttributeChange

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rangeForUserParagraphAttributeChange

NSTextView

rangeForUserTextChange

NSTextView

rangeOfCharacterFromSet:

NSString

rangeOfCharacterFromSet:options:

NSString

rangeOfCharacterFromSet:options:range:

NSString

rangeOfComposedCharacterSequenceAtIndex:

NSString

rangeOfNominallySpacedGlyphsContainingIndex:

NSLayoutManager

rangeOfString:

NSString

rangeOfString:options:

NSString

rangeOfString:options:range:

NSString

rangeValue

NSValue

rate

NSMovieView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readDataOfLength:

NSFileHandle

readDataToEndOfFile

NSFileHandle

readFileContentsType:toFile:

NSPasteboard

readFileWrapper

NSPasteboard

readFromFile:ofType:

NSDocument

readFromURL:ofType:

NSDocument

readFromURL:options:documentAttributes:

NSMutableAttributedString

readInBackgroundAndNotify

NSFileHandle

readInBackgroundAndNotifyForModes:

NSFileHandle

readPrintInfo

NSPageLayout, NSPageLayout

readRTFDFromFile:

NSText

readSelectionFromPasteboard:

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readSelectionFromPasteboard:type:

NSTextView

readToEndOfFileInBackgroundAndNotify

NSFileHandle

readToEndOfFileInBackgroundAndNotifyForModes:

NSFileHandle

readablePasteboardTypes

NSTextView

readableTypes

NSDocument

reason

NSException

recache

NSImage

receivePort

NSPortMessage, NSConnection

receiversSpecifier

NSScriptCommand

recentDocumentURLs

NSDocumentController

recordDescriptor

NSAppleEventDescriptor

rect

NSCachedImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:rectCount:

NSLayoutManager

rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount:

NSLayoutManager

rectForKey:inTable:

NSPrinter

rectForPage:

NSView

rectForPart:

NSScroller

rectOfColumn:

NSTableView

rectOfItemAtIndex:

NSMenuView

rectOfRow:

NSTableView

rectOfTickMarkAtIndex:

NSSliderCell

rectValue

NSValue

redColor

NSColor

redComponent

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

redo

NSUndoManager

redoActionName

NSUndoManager

redoMenuItemTitle

NSUndoManager

redoMenuTitleForUndoActionName:

NSUndoManager

reflectScrolledClipView:

NSScrollView, NSView

registerClassDescription:

NSScriptSuiteRegistry

registerClassDescription:forClass:

NSClassDescription

registerCoercer:selector:toConvertFromClass:toClass:

NSScriptCoercionHandler

registerCommandDescription:

NSScriptSuiteRegistry

registerDefaults:

NSUserDefaults

registerForDraggedTypes:

NSWindow

registerForServices

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registerImageRepClass:

NSImageRep

registerLanguage:byVendor:

NSSpellServer

registerName:

NSConnection

registerName:withNameServer:

NSConnection

registerPort:name:

NSSocketPortNameServer, NSMachBootstrapServer, NSPortNameServer

registerPort:name:nameServerPortNumber:

NSSocketPortNameServer

registerServicesMenuSendTypes:returnTypes:

NSApplication

registerURLHandleClass:

NSURLHandle

registerUndoWithTarget:selector:object:

NSUndoManager

registerUnitWithName:abbreviation:unitToPointsConversionFactor:stepUpCycle:step-DownCycle:

NSRulerView

registeredImageRepClasses

NSImageRep

regularFileContents

NSFileWrapper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relativeCurveToPoint:

NSBezierPath

relativeLineToPoint:

NSBezierPath

relativeMoveToPoint:

NSBezierPath

relativePath

NSURL

relativePosition

NSRelativeSpecifier

relativeString

NSURL

releaseGState

NSView

releaseGlobally

NSPasteboard

reloadColumn:

NSBrowser

reloadData

NSTableView, NSComboBoxCell, NSComboBox

reloadDefaultFontFamilies

NSFontPanel

reloadItem:

NSOutlineView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reloadItem:reloadChildren:

NSOutlineView

remoteObjects

NSConnection

removeAllActions

NSUndoManager

removeAllActionsWithTarget:

NSUndoManager

removeAllItems

NSPopUpButton, NSPopUpButtonCell, NSComboBoxCell, NSComboBox

removeAllObjects

NSMutableArray, NSMutableDictionary, NSMutableSet

removeAllPoints

NSBezierPath

removeAllToolTips

NSView

removeAttribute:range:

NSMutableAttributedString

removeCharactersInRange:

NSMutableCharacterSet

removeCharactersInString:

NSMutableCharacterSet

removeChildWindow:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removeClient:

NSURLHandle

removeColorWithKey:

NSColorList

removeColumn:

NSMatrix

removeConnection:fromRunLoop:forMode:

NSPort

removeContextHelpForObject:

NSHelpManager

removeCursorRect:cursor:

NSView

removeDecriptorAtIndex:

NSAppleEventDescriptor

removeDescriptorAtIndex:

NSAppleEventDescriptor

removeDescriptorWithKeyword:

NSAppleEventDescriptor

removeDocument:

NSDocumentController

removeEntryAtIndex:

NSForm

removeEventHandlerForEventClass: andEventID:

NSAppleEventManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removeFile

NSColorList

removeFileAtPath:handler:

NSFileManager

removeFileWrapper:

NSFileWrapper

removeFontTrait:

NSFontManager

removeFrameUsingName:

NSWindow

removeFromRunLoop:forMode:

NSNetServiceBrowser, NSNetService, NSPort, NSMachPort

removeFromSuperview

NSView

removeFromSuperviewWithoutNeedingDisplay

NSView

removeItem:

NSMenu

removeItemAtIndex:

NSPopUpButton, NSPopUpButtonCell, NSMenu, NSComboBoxCell, NSComboBox, NSToolbar

removeItemWithObjectValue:

NSComboBoxCell, NSComboBox

removeItemWithTitle:

NSPopUpButton, NSPopUpButtonCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removeLastObject

NSMutableArray

removeLayoutManager:

NSTextStorage

removeMarker:

NSRulerView

removeObject:

NSMutableArray, NSMutableSet, NSCountedSet

removeObject:inRange:

NSMutableArray

removeObjectAtIndex:

NSMutableArray

removeObjectForKey:

NSUserDefaults, NSMutableDictionary

removeObjectIdenticalTo:

NSMutableArray

removeObjectIdenticalTo:inRange:

NSMutableArray

removeObjectsForKeys:

NSMutableDictionary

removeObjectsFromIndices:numIndices:

NSMutableArray

removeObjectsInArray:

NSMutableArray

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removeObjectsInRange:

NSMutableArray

removeObserver:

NSNotificationCenter

removeObserver:name:object:

NSDistributedNotificationCenter, NSNotificationCenter

removeParamDescriptorWithKeyword:

NSAppleEventDescriptor

removePersistentDomainForName:

NSUserDefaults

removePort:forMode:

NSRunLoop

removePortForName:

NSSocketPortNameServer, NSPortNameServer

removeRepresentation:

NSImage

removeRequestMode:

NSConnection

removeRow:

NSMatrix

removeRunLoop:

NSConnection

removeStatusItem:

NSStatusBar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

removeSuiteNamed:

NSUserDefaults

removeTabStop:

NSMutableParagraphStyle

removeTabViewItem:

NSTabView

removeTableColumn:

NSTableView

removeTemporaryAttribute:forCharacterRange:

NSLayoutManager

removeTextContainerAtIndex:

NSLayoutManager

removeToolTip:

NSView

removeTrackingRect:

NSView

removeVolatileDomainForName:

NSUserDefaults

removeWindowController:

NSDocument

removeWindowsItem:

NSApplication

renewGState

NSView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

renewRows:columns:

NSMatrix

replaceBytesInRange:withBytes:

NSMutableData

replaceBytesInRange:withBytes:length:

NSMutableData

replaceCharactersInRange:withAttributedString:

NSMutableAttributedString

replaceCharactersInRange:withRTF:

NSText

replaceCharactersInRange:withRTFD:

NSText

replaceCharactersInRange:withString:

NSMutableString, NSMutableAttributedString, NSText

replaceGlyphAtIndex:withGlyph:

NSLayoutManager

replaceLayoutManager:

NSTextContainer

replaceObject:withObject:

NSNibConnector, NSUnarchiver, NSArchiver

replaceObjectAtIndex:withObject:

NSMutableArray

replaceObjectsInRange:withObjectsFromArray:

NSMutableArray

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replaceObjectsInRange:withObjectsFromArray:range:

NSMutableArray

replaceOccurrencesOfString:withString: options:range:

NSMutableString

replaceSubview:with:

NSView

replaceTextContainer:

NSTextView

replaceTextStorage:

NSLayoutManager

replacementObjectForArchiver:

NSObject

replacementObjectForCoder:

NSObject

replacementObjectForKeyedArchiver:

NSObject

replacementObjectForPortCoder:

NSObject

replyTimeout

NSConnection

replyToApplicationShouldTerminate:

NSApplication

replyWithException:

NSDistantObjectRequest

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reportException:

NSApplication

representationOfImageRepsInArray:usingType:properties:

NSBitmapImageRep

representationUsingType:properties:

NSBitmapImageRep

representations

NSImage

representedFilename

NSWindow

representedObject

NSMenuItem, NSCell, NSRulerMarker

requestModes

NSConnection

requestTimeout

NSConnection

requestUserAttention:

NSApplication

requiredFileType

NSSavePanel

requiredThickness

NSRulerView

reservedSpaceLength

NSPort

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reservedThicknessForAccessoryView

NSRulerView

reservedThicknessForMarkers

NSRulerView

reset

NSBrowserCell

resetBytesInRange:

NSMutableData

resetCursorRect:inView:

NSCell

resetCursorRects

NSWindow, NSMatrix, NSView

resetStandardUserDefaults

NSUserDefaults

resetSystemTimeZone

NSTimeZone

resetTotalAutoreleasedObjects

NSAutoreleasePool

reshape

NSOpenGLView

resignFirstResponder

NSResponder, NSTextView

resignKeyWindow

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resignMainWindow

NSWindow

resizeFlags

NSWindow

resizeIncrements

NSWindow

resizeSubviewsWithOldSize:

NSView

resizeWithMagnification:

NSMovieView

resizeWithOldSuperviewSize:

NSView

resizedColumn

NSTableHeaderView

resolve

NSNetService

resolvedKeyDictionary

NSCreateCommand

resolvesAliases

NSOpenPanel

resourceData

NSURLHandle

resourceDataUsingCache:

NSURL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resourcePath

NSBundle

resourceSpecifier

NSURL

respondsToSelector:

NSProxy

restoreCachedImage

NSWindow

restoreGraphicsState

NSGraphicsContext

resume

NSSound, NSTask

retainArguments

NSInvocation

returnID

NSAppleEventDescriptor

returnType

NSScriptCommandDescription

reusesColumns

NSBrowser

reverseObjectEnumerator

NSArray

revertDocumentToSaved:

NSDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

revertToSavedFromFile:ofType:

NSDocument

revertToSavedFromURL:ofType:

NSDocument

reviewUnsavedDocumentsWithAlertTitle: cancellable:

NSDocumentController

reviewUnsavedDocumentsWithAlertTitle:cancellable:delegate:didReviewAllSelector:contextInfo:

NSDocumentController

richTextSource

NSAppleScript

rightMargin

NSPrintInfo

rightMouseDown:

NSResponder

rightMouseDragged:

NSResponder

rightMouseUp:

NSResponder

rootObject

NSConnection

rootProxy

NSConnection

rootProxyForConnectionWithRegisteredName:host:

NSConnection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rootProxyForConnectionWithRegisteredName:host:usingNameServer:

NSConnection

rotateByAngle:

NSView

rotateByDegrees:

NSAffineTransform

rotateByRadians:

NSAffineTransform

roundingBehavior

NSNumberFormatter

rowAtPoint:

NSTableView

rowForItem:

NSOutlineView

rowHeight

NSTableView

rowsInRect:

NSTableView

ruleThickness

NSRulerView

ruler

NSRulerMarker

rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:

NSLayoutManager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rulerAttributesInRange:

NSAttributedString

rulerMarkersForTextView:paragraphStyle:ruler:

NSLayoutManager

rulerView:didAddMarker:

NSTextView, NSRulerMarker

rulerView:didMoveMarker:

NSTextView, NSRulerMarker

rulerView:didRemoveMarker:

NSTextView, NSRulerMarker

rulerView:handleMouseDown:

NSTextView, NSRulerMarker

rulerView:shouldAddMarker:

NSTextView, NSRulerMarker

rulerView:shouldMoveMarker:

NSTextView, NSRulerMarker

rulerView:shouldRemoveMarker:

NSTextView, NSRulerMarker

rulerView:willAddMarker:atLocation:

NSTextView, NSRulerMarker

rulerView:willMoveMarker:toLocation:

NSTextView, NSRulerMarker

rulerView:willSetClientView:

NSRulerMarker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rulerViewClass

NSScrollView

rulersVisible

NSScrollView

run

NSApplication, NSSpellServer, NSRunLoop

runCustomizationPalette:

NSToolbar

runInNewThread

NSConnection

runLoopModes

NSUndoManager

runModal

NSSavePanel, NSPrintPanel, NSPageLayout

runModalForDirectory:file:

NSSavePanel

runModalForDirectory:file:relativeToWindow:

NSSavePanel

runModalForDirectory:file:types:

NSOpenPanel

runModalForDirectory:file:types:relativeToWindow:

NSOpenPanel

runModalForTypes:

NSOpenPanel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

runModalForWindow:

NSApplication

runModalForWindow:relativeToWindow:

NSApplication

runModalOpenPanel:forTypes:

NSDocumentController

runModalPageLayoutWithPrintInfo:

NSDocument

runModalPageLayoutWithPrintInfo:delegate:didRunSelector:contextInfo:

NSDocument

runModalPrintOperation:delegate:didRunSelector:contextInfo:

NSDocument

runModalSavePanel:withAccessoryView:

NSDocument

runModalSavePanelForSaveOperation:delegate:didSaveSelector:contextInfo:

NSDocument

runModalSession:

NSApplication

runModalWithPrintInfo:

NSPageLayout

runMode:beforeDate:

NSRunLoop

runOperation

NSPrintOperation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

runOperationModalForWindow:delegate:didRunSelector:contextInfo:

NSPrintOperation

runPageLayout:

NSApplication, NSDocument

runToolbarCustomizationPalette:

NSWindow

runUntilDate:

NSRunLoop

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

S

samplesPerPixel

NSBitmapImageRep

saturationComponent

NSColor

saveAllDocuments:

NSDocumentController

saveDocument:

NSDocument

saveDocumentAs:

NSDocument

saveDocumentTo:

NSDocument

saveDocumentWithDelegate:didSaveSelector:contextInfo:

NSDocument

saveFrameUsingName:

NSWindow

saveGraphicsState

NSGraphicsContext

saveOptions

NSQuitCommand, NSCloseCommand

savePanel

NSSavePanel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

saveToFile:saveOperation:delegate:didSaveSelector:contextInfo:

NSDocument

scaleBy:

NSAffineTransform

scaleUnitSquareToSize:

NSView

scaleXBy:yBy:

NSAffineTransform

scalesWhenResized

NSImage

scanCharactersFromSet:intoString:

NSScanner

scanDecimal:

NSScanner

scanDouble:

NSScanner

scanFloat:

NSScanner

scanHexInt:

NSScanner

scanInt:

NSScanner

scanLocation

NSScanner

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scanLongLong:

NSScanner

scanString:intoString:

NSScanner

scanUpToCharactersFromSet:intoString:

NSScanner

scanUpToString:intoString:

NSScanner

scannerWithString:

NSScanner

scheduleInRunLoop:forMode:

NSNetServiceBrowser, NSNetService, NSPort, NSMachPort

scheduledTimerWithTimeInterval:invocation:repeats:

NSTimer

scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:

NSTimer

scheme

NSURL

screen

NSWindow

screenFont

NSFont

screens

NSScreen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scriptErrorNumber

NSScriptCommand

scriptErrorString

NSScriptCommand

scrollBarColor

NSColor

scrollCellToVisibleAtRow:column:

NSMatrix

scrollClipView:toPoint:

NSView

scrollColumnToVisible:

NSTableView, NSBrowser

scrollColumnsLeftBy:

NSBrowser

scrollColumnsRightBy:

NSBrowser

scrollItemAtIndexToTop:

NSComboBoxCell, NSComboBox

scrollItemAtIndexToVisible:

NSComboBoxCell, NSComboBox

scrollLineDown:

NSResponder

scrollLineUp:

NSResponder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scrollPageDown:

NSResponder

scrollPageUp:

NSResponder

scrollPoint:

NSView

scrollRangeToVisible:

NSText

scrollRect:by:

NSView

scrollRectToVisible:

NSView

scrollRowToVisible:

NSTableView

scrollToPoint:

NSClipView

scrollViaScroller:

NSBrowser

scrollView

NSRulerView

scrollWheel:

NSResponder, NSScrollView

scrollerWidth

NSScroller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scrollerWidthForControlSize:

NSScroller

scrollsDynamically

NSScrollView

searchForAllDomains

NSNetServiceBrowser

searchForRegistrationDomains

NSNetServiceBrowser

searchForServicesOfType:inDomain:

NSNetServiceBrowser

secondOfMinute

NSCalendarDate

secondarySelectedControlColor

NSColor

secondsFromGMT

NSTimeZone

secondsFromGMTForDate:

NSTimeZone

seekToEndOfFile

NSFileHandle

seekToFileOffset:

NSFileHandle

selectAll:

NSTableView, NSResponder, NSMovieView, NSMatrix, NSBrowser, NSText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

selectCell:

NSControl

selectCellAtRow:column:

NSMatrix

selectCellWithTag:

NSMatrix

selectColumn:byExtendingSelection:

NSTableView

selectFile:inFileViewerRootedAtPath:

NSWorkspace

selectFirstTabViewItem:

NSTabView

selectItem:

NSPopUpButton, NSPopUpButtonCell

selectItemAtIndex:

NSPopUpButton, NSPopUpButtonCell, NSComboBoxCell, NSComboBox

selectItemWithObjectValue:

NSComboBoxCell, NSComboBox

selectItemWithTitle:

NSPopUpButton, NSPopUpButtonCell

selectKeyViewFollowingView:

NSWindow

selectKeyViewPrecedingView:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

selectLastTabViewItem:

NSTabView

selectLine:

NSResponder

selectNextKeyView:

NSWindow

selectNextTabViewItem:

NSTabView

selectParagraph:

NSResponder

selectPreviousKeyView:

NSWindow

selectPreviousTabViewItem:

NSTabView

selectRow:byExtendingSelection:

NSTableView

selectRow:inColumn:

NSBrowser

selectTabViewItem:

NSTabView

selectTabViewItemAtIndex:

NSTabView

selectTabViewItemWithIdentifier:

NSTabView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

selectText:

NSSavePanel, NSMatrix, NSTextField

selectTextAtIndex:

NSForm

selectTextAtRow:column:

NSMatrix

selectToMark:

NSResponder

selectWithFrame:inView:editor:delegate:start:length:

NSCell

selectWord:

NSResponder

selectedCell

NSControl, NSMatrix, NSBrowser

selectedCellInColumn:

NSBrowser

selectedCells

NSMatrix, NSBrowser

selectedColumn

NSTableView, NSMatrix, NSBrowser

selectedColumnEnumerator

NSTableView

selectedControlColor

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

selectedControlTextColor

NSColor

selectedFont

NSFontManager

selectedItem

NSPopUpButton, NSPopUpButtonCell

selectedKnobColor

NSColor

selectedMenuItemColor

NSColor

selectedMenuItemTextColor

NSColor

selectedRange

NSText

selectedRow

NSTableView, NSMatrix

selectedRowEnumerator

NSTableView

selectedRowInColumn:

NSBrowser

selectedTabViewItem

NSTabView

selectedTag

NSControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

selectedTextAttributes

NSTextView

selectedTextBackgroundColor

NSColor

selectedTextColor

NSColor

selectionAffinity

NSTextView

selectionGranularity

NSTextView

selectionRangeForProposedRange:granularity:

NSTextView

selectionShouldChangeInOutlineView:

NSOutlineView

selectionShouldChangeInTableView:

NSTableView

selector

NSInvocation

selectorForCommand:

NSScriptClassDescription

sendAction

NSFontManager, NSMatrix, NSBrowser

sendAction:to:

NSControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sendAction:to:forAllCells:

NSMatrix

sendAction:to:from:

NSApplication

sendActionOn:

NSControl, NSCell, NSStatusItem

sendBeforeDate:

NSPortMessage

sendBeforeDate:components:from:reserved:

NSPort

sendBeforeDate:msgid:components:from:reserved:

NSPort

sendDoubleAction

NSMatrix

sendEvent:

NSWindow, NSApplication

sendPort

NSPortMessage, NSConnection

sendsActionOnArrowKeys

NSBrowser

sendsActionOnEndEditing

NSCell

separatesColumns

NSBrowser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

separatorItem

NSMenuItem

serializeAlignedBytesLength:

NSMutableData

serializeDataAt:ofObjCType:context:

NSMutableData

serializeInt:

NSMutableData

serializeInt:atIndex:

NSMutableData

serializeInts:count:

NSMutableData

serializeInts:count:atIndex:

NSMutableData

serializePropertyList:

NSSerializer

serializePropertyList:intoData:

NSSerializer

serializedRepresentation

NSFileWrapper

server

NSInputManager

servicesMenu

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

servicesProvider

NSApplication

set

NSBrowserCell, NSCursor, NSColor, NSSet, NSAffineTransform, NSFont

setAcceptsArrowKeys:

NSBrowser

setAcceptsGlyphInfo:

NSTextView

setAcceptsMouseMovedEvents:

NSWindow

setAccessoryView:

NSSavePanel, NSPrintPanel, NSPrintOperation, NSFontPanel, NSSpellChecker, NSColorPanel, NSPageLayout,
NSRulerView

setAction:

NSControl, NSMenuItem, NSCell, NSFontManager, NSToolbarItem, NSActionCell, NSColorPanel, NSStatusItem

setActionName:

NSUndoManager

setAlignment:

NSMutableParagraphStyle, NSControl, NSCell, NSActionCell, NSText

setAlignment:range:

NSTextView, NSMutableAttributedString

setAllowsBranchSelection:

NSBrowser

setAllowsColumnReordering:

NSTableView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setAllowsColumnResizing:

NSTableView

setAllowsColumnSelection:

NSTableView

setAllowsEditingTextAttributes:

NSCell, NSTextField

setAllowsEmptySelection:

NSTableView, NSMatrix, NSBrowser

setAllowsFloats:

NSNumberFormatter

setAllowsMixedState:

NSCell, NSButton

setAllowsMultipleSelection:

NSOpenPanel, NSTableView, NSBrowser

setAllowsTickMarkValuesOnly:

NSSliderCell

setAllowsTruncatedLabels:

NSTabView

setAllowsUndo:

NSTextView

setAllowsUserCustomization:

NSToolbar

setAlpha:

NSImageRep

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setAlphaValue:

NSWindow

setAltIncrementValue:

NSSlider, NSSliderCell

setAlternateImage:

NSBrowserCell, NSButtonCell, NSButton

setAlternateTitle:

NSButtonCell, NSButton

setAltersStateOfSelectedItem:

NSPopUpButtonCell

setAnimationDelay:

NSProgressIndicator

setAppleMenu:

NSApplication

setApplicationIconImage:

NSApplication

setArgument:atIndex:

NSInvocation

setArguments:

NSTask, NSScriptCommand

setArray:

NSMutableArray

setArrowPosition:

NSPopUpButtonCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setArrowsPosition:

NSScroller

setAspectRatio:

NSWindow

setAssociatedPoints:atIndex:

NSBezierPath

setAttachmentCell:

NSTextAttachment

setAttachmentSize:forGlyphRange:

NSLayoutManager

setAttributeDescriptor:forKeyword:

NSAppleEventDescriptor

setAttributeRuns:

NSTextStorage

setAttributedAlternateTitle:

NSButtonCell, NSButton

setAttributedString:

NSMutableAttributedString

setAttributedStringForNil:

NSNumberFormatter

setAttributedStringForNotANumber:

NSNumberFormatter

setAttributedStringForZero:

NSNumberFormatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setAttributedStringValue:

NSControl, NSCell

setAttributedTitle:

NSButtonCell, NSFormCell, NSButton, NSStatusItem

setAttributes:

NSOpenGLPixelFormat

setAttributes:range:

NSMutableAttributedString

setAutodisplay:

NSWindow

setAutoenablesItems:

NSPopUpButton, NSPopUpButtonCell, NSMenu

setAutorepeat:

NSStepperCell, NSStepper

setAutoresizesAllColumnsToFit:

NSTableView

setAutoresizesOutlineColumn:

NSOutlineView

setAutoresizesSubviews:

NSView

setAutoresizingMask:

NSView

setAutosaveExpandedItems:

NSOutlineView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setAutosaveName:

NSTableView

setAutosaveTableColumns:

NSTableView

setAutosavesConfiguration:

NSToolbar

setAutoscroll:

NSMatrix

setAutosizesCells:

NSMatrix

setBackgroundColor:

NSImage, NSWindow, NSTextFieldCell, NSTableView, NSTextView, NSScrollView, NSClipView, NSMatrix,
NSTextField, NSText

setBackgroundLayoutEnabled:

NSLayoutManager

setBackingType:

NSWindow

setBaseSpecifier:

NSRelativeSpecifier

setBaseWritingDirection:

NSMutableParagraphStyle

setBecomesKeyOnlyIfNeeded:

NSPanel

setBezelStyle:

NSTextFieldCell, NSButtonCell, NSButton, NSTextField

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSTextFieldCell, NSButtonCell, NSButton, NSTextField

setBezeled:

NSProgressIndicator, NSCell, NSForm, NSActionCell, NSTextField

setBitsPerSample:

NSImageRep

setBool:forKey:

NSUserDefaults

setBorderType:

NSBox, NSScrollView

setBordered:

NSCell, NSForm, NSButton, NSColorWell, NSActionCell, NSTextField

setBottomMargin:

NSPrintInfo

setBounds:

NSView

setBoundsOrigin:

NSView

setBoundsRotation:

NSView

setBoundsSize:

NSView

setBoxType:

NSBox

setButtonType:

NSButtonCell, NSButton

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSButtonCell, NSButton

setCacheDepthMatchesImageDepth:

NSImage

setCacheMode:

NSImage

setCachedSeparately:

NSImage

setCachesBezierPath:

NSBezierPath

setCalendarFormat:

NSCalendarDate

setCanChooseDirectories:

NSOpenPanel

setCanChooseFiles:

NSOpenPanel

setCanHide:

NSWindow

setCanSelectHiddenExtension:

NSSavePanel

setCanSpawnSeparateThread:

NSPrintOperation

setCaseSensitive:

NSScanner

setCell:

NSControl

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSControl

setCellAttribute:to:

NSCell

setCellBackgroundColor:

NSMatrix

setCellClass:

NSControl, NSMatrix, NSBrowser

setCellPrototype:

NSBrowser

setCellSize:

NSMatrix

setCharacterIndex:forGlyphAtIndex:

NSLayoutManager

setCharacters:

NSTextStorage

setCharactersToBeSkipped:

NSScanner

setChildSpecifier:

NSScriptObjectSpecifier

setClass:forClassName:

NSKeyed Unarchiver

setClassName:forClass:

NSKeyedArchiver

setClientView:

NSRulerView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSRulerView

setClip

NSBezierPath

setColor:

NSTabViewItem, NSColorWell, NSColorPanel

setColor:forKey:

NSColorList

setColorSpaceName:

NSImageRep

setCompletes:

NSComboBoxCell, NSComboBox

setCompression:factor:

NSBitmapImageRep

setConfigurationFromDictionary:

NSToolbar

setConstrainedFrameSize:

NSTextView

setContainerClassDescription:

NSScriptObjectSpecifier

setContainerIsObjectBeingTested:

NSScriptObjectSpecifier

setContainerIsRangeContainerObject:

NSScriptObjectSpecifier

setContainerSize:

NSTextContainer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSTextContainer

setContainerSpecifier:

NSScriptObjectSpecifier

setContentSize:

NSWindow, NSDrawer

setContentView:

NSWindow, NSBox, NSScrollView, NSDrawer

setContentViewMargins:

NSBox

setContextHelp:forObject:

NSHelpManager

setContextHelpModeActive:

NSHelpManager

setContextMenuRepresentation:

NSMenu

setContinuous:

NSControl, NSCell, NSColorPanel

setContinuousSpellCheckingEnabled:

NSTextView

setControlSize:

NSProgressIndicator, NSCell, NSTabView, NSScroller

setControlTint:

NSProgressIndicator, NSCell, NSTabView, NSScroller

setCopiesOnScroll:

NSClipView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSClipView

setCornerView:

NSTableView

setCurrentContext:

NSGraphicsContext

setCurrentDirectoryPath:

NSTask

setCurrentOperation:

NSPrintOperation

setCurrentPage:

NSPDFImageRep

setCurrentVirtualScreen:

NSOpenGLContext

setData:

NSMutableData

setData:forType:

NSPasteboard

setDataCell:

NSTableColumn

setDataRetained:

NSImage

setDataSource:

NSTableView, NSComboBoxCell, NSComboBox

setDecimalSeparator:

NSNumberFormatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSNumberFormatter

setDefaultAttachmentScaling:

NSLayoutManager

setDefaultBehavior:

NSDecimalNumber

setDefaultButtonCell:

NSWindow

setDefaultFlatness:

NSBezierPath

setDefaultLineCapStyle:

NSBezierPath

setDefaultLineJoinStyle:

NSBezierPath

setDefaultLineWidth:

NSBezierPath

setDefaultMiterLimit:

NSBezierPath

setDefaultNameServerPortNumber:

NSSocketPortNameServer

setDefaultPrinter:

NSPrintInfo

setDefaultTimeZone:

NSTimeZone

setDefaultWindingRule:

NSBezierPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSBezierPath

setDelegate:

NSImage, NSTextStorage, NSWindow, NSSavePanel, NSTableView, NSSound, NSKeyedUnarchiver,
NSNetServiceBrowser, NSSplitView, NSTextView, NSNetService, NSLayoutManager, NSFontManager, NSDrawer,
NSMatrix, NSApplication, NSPort, NSSpellServer, NSToolbar, NSKeyedArchiver, NSTabView, NSBrowser,
NSConnection, NSTextField, NSText

setDepthLimit:

NSWindow

setDescriptor:forKeyword:

NSAppleEventDescriptor

setDestination:

NSNibConnector

setDictionary:

NSMutableDictionary

setDirectParameter:

NSScriptCommand

setDirectory:

NSSavePanel

setDisplayMode:

NSToolbar

setDisplayedWhenStopped:

NSProgressIndicator

setDocument:

NSWindowController

setDocumentCursor:

NSScrollView, NSClipView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setDocumentEdited:

NSWindow, NSWindowController

setDocumentView:

NSScrollView, NSClipView

setDoubleAction:

NSTableView, NSMatrix, NSBrowser

setDoubleValue:

NSProgressIndicator, NSControl, NSCell

setDrawsBackground:

NSTextFieldCell, NSTextView, NSScrollView, NSClipView, NSMatrix, NSTabView, NSTextField, NSText

setDrawsCellBackground:

NSMatrix

setDrawsGrid:

NSTableView

setDrawsOutsideLineFragment:forGlyphAtIndex:

NSLayoutManager

setDropItem:dropChildIndex:

NSOutlineView

setDropRow:dropOperation:

NSTableView

setDynamicDepthLimit:

NSWindow

setEchosBullets:

NSSecureTextFieldCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setEditable:

NSTableColumn, NSTextView, NSCell, NSMovieView, NSImageView, NSTextField, NSText

setEnabled:

NSControl, NSMenuItem, NSCell, NSFontManager, NSToolbarItem, NSFontPanel, NSActionCell, NSStatusItem

setEndSpecifier:

NSRangeSpecifier

setEndSubelementIdentifier:

NSWhoseSpecifier

setEndSubelementIndex:

NSWhoseSpecifier

setEntryType:

NSCell

setEntryWidth:

NSForm

setEnvironment:

NSTask

setEvaluationErrorNumber:

NSScriptObjectSpecifier

setEventHandler:andSelector:forEventClass:andEventID:

NSAppleEventManager

setExcludedFromWindowsMenu:

NSWindow

setExtensionHidden:

NSSavePanel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setExtraLineFragmentRect:usedRect:textContainer:

NSLayoutManager

setFieldEditor:

NSTextView, NSText

setFileAttributes:

NSFileWrapper

setFileName:

NSDocument

setFileType:

NSDocument

setFileWrapper:

NSTextAttachment

setFilename:

NSFileWrapper

setFireDate:

NSTimer

setFirstLineHeadIndent:

NSMutableParagraphStyle

setFlatness:

NSBezierPath

setFlipped:

NSImage

setFloat:forKey:

NSUserDefaults

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setFloatValue:

NSControl, NSCell

setFloatValue:knobProportion:

NSScroller

setFloatingPanel:

NSPanel

setFloatingPointFormat:left:right:

NSControl, NSCell, NSActionCell

setFocusStack:

NSGraphicsContext

setFont:

NSTextStorage, NSControl, NSButtonCell, NSCell, NSTabView, NSActionCell, NSMenuView, NSText

setFont:range:

NSText

setFontManagerFactory:

NSFontManager

setFontMenu:

NSFontManager

setFontPanelFactory:

NSFontManager

setForegroundColor:

NSTextStorage

setFormat:

NSNumberFormatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setFormatter:

NSControl, NSCell

setFrame:

NSView

setFrame:display:

NSWindow

setFrame:display:animate:

NSWindow

setFrameAutosaveName:

NSWindow

setFrameFromContentFrame:

NSBox

setFrameFromString:

NSWindow

setFrameOrigin:

NSWindow, NSView

setFrameRotation:

NSView

setFrameSize:

NSView

setFrameTopLeftPoint:

NSWindow

setFrameUsingName:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setFrameUsingName:force:

NSWindow

setFullScreen

NSOpenGLContext

setGradientType:

NSButtonCell

setGraphicsState:

NSGraphicsContext

setGridColor:

NSTableView

setGroupsByEvent:

NSUndoManager

setHasHorizontalRuler:

NSScrollView

setHasHorizontalScroller:

NSScrollView, NSBrowser

setHasShadow:

NSWindow

setHasThousandSeparators:

NSNumberFormatter

setHasUndoManager:

NSDocument

setHasVerticalRuler:

NSScrollView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setHasVerticalScroller:

NSComboBoxCell, NSScrollView, NSComboBox

setHeadIndent:

NSMutableParagraphStyle

setHeaderCell:

NSTableColumn

setHeaderView:

NSTableView

setHeightTracksTextView:

NSTextContainer

setHiddenUntilMouseMoves:

NSCursor

setHidesOnDeactivate:

NSWindow

setHighlightMode:

NSStatusItem

setHighlighted: NSCell,

NSMenuItemCell

setHighlightedItemIndex:

NSMenuView

setHighlightedTableColumn:

NSTableView

setHighlightsBy:

NSButtonCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setHorizontal:

NSMenuView

setHorizontalEdgePadding:

NSMenuView

setHorizontalLineScroll:

NSScrollView

setHorizontalPageScroll:

NSScrollView

setHorizontalPagination:

NSPrintInfo

setHorizontalRulerView:

NSScrollView

setHorizontalScroller:

NSScrollView

setHorizontallyCentered:

NSPrintInfo

setHorizontallyResizable:

NSText

setHostCacheEnabled:

NSHost

setHyphenationFactor:

NSLayoutManager

setIcon:

NSFileWrapper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setIdentifier:

NSTableColumn, NSTabViewItem

setIgnoredWords:inSpellDocumentWithTag:

NSSpellChecker

setIgnoresAlpha:

NSColor

setIgnoresMouseEvents:

NSWindow

setIgnoresMultiClick:

NSControl

setImage:

NSSlider, NSBrowserCell, NSMenuItem, NSCell, NSToolbarItem, NSButton, NSImageView, NSRulerMarker,
NSActionCell, NSStatusItem

setImageAlignment:

NSImageCell, NSImageView

setImageDimsWhenDisabled:

NSButtonCell

setImageFrameStyle:

NSImageCell, NSImageView

setImageInterpolation:

NSGraphicsContext

setImageOrigin:

NSRulerMarker

setImagePosition:

NSButtonCell, NSButton

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setImageScaling:

NSImageCell, NSImageView

setImportsGraphics:

NSTextView, NSCell, NSTextField, NSText

setIncrement:

NSStepperCell, NSStepper

setIndentationMarkerFollowsCell:

NSOutlineView

setIndentationPerLevel:

NSOutlineView

setIndependentConversationQueueing:

NSConnection

setIndeterminate:

NSProgressIndicator

setIndex:

NSIndexSpecifier

setIndicatorImage:inTableColumn:

NSTableView

setInitialFirstResponder:

NSWindow, NSTabViewItem

setInsertionClassDescription:

NSPositionalSpecifier

setInsertionPointColor:

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setIntAttribute:value:forGlyphAtIndex:

NSLayoutManager

setIntValue:

NSControl, NSCell

setInteger:forKey:

NSUserDefaults

setIntercellSpacing:

NSTableView, NSComboBoxCell, NSMatrix, NSComboBox

setInterfaceStyle:

NSResponder

setInterlineSpacing:

NSForm

setIsMiniaturized:

NSWindow

setIsPaneSplitter:

NSSplitView

setIsVisible:

NSWindow

setIsZoomed:

NSWindow

setItemHeight:

NSComboBoxCell, NSComboBox

setJobDisposition:

NSPrintInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setJobStyleHint:

NSPrintPanel, NSPrintOperation

setKey:

NSScriptObjectSpecifier

setKeyEquivalent:

NSButtonCell, NSMenuItem, NSButton

setKeyEquivalentFont:

NSButtonCell

setKeyEquivalentFont:size:

NSButtonCell

setKeyEquivalentModifierMask:

NSButtonCell, NSMenuItem, NSButton

setKnobThickness:

NSSlider, NSSliderCell

setLabel:

NSNibConnector, NSTabViewItem, NSToolbarItem

setLanguage:

NSSpellChecker

setLastColumn:

NSBrowser

setLaunchPath:

NSTask

setLayoutManager:

NSTextContainer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setLeadingOffset:

NSDrawer

setLeaf:

NSBrowserCell

setLeftMargin:

NSPrintInfo

setLength:

NSMutableData, NSStatusItem

setLevel:

NSWindow

setLevelsOfUndo:

NSUndoManager

setLineBreakMode:

NSMutableParagraphStyle

setLineCapStyle:

NSBezierPath

setLineDash:count:phase:

NSBezierPath

setLineFragmentPadding:

NSTextContainer

setLineFragmentRect:forGlyphRange:usedRect:

NSLayoutManager

setLineJoinStyle:

NSBezierPath

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setLineScroll:

NSScrollView

setLineSpacing:

NSMutableParagraphStyle

setLineWidth:

NSBezierPath

setLoaded:

NSBrowserCell

setLocale:

NSScanner

setLocalizesFormat:

NSNumberFormatter

setLocation:forStartOfGlyphRange:

NSLayoutManager

setLoopMode:

NSMovieView

setMainMenu:

NSApplication

setMark:

NSResponder

setMarkedTextAttributes:

NSTextView

setMarkerLocation:

NSRulerMarker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setMarkers:

NSRulerView

setMatchesOnMultipleResolution:

NSImage

setMatrixClass:

NSBrowser

setMaxContentSize:

NSDrawer

setMaxSize:

NSWindow, NSToolbarItem, NSText

setMaxValue:

NSSlider, NSProgressIndicator, NSSliderCell, NSStepperCell, NSStepper

setMaxVisibleColumns:

NSBrowser

setMaxWidth:

NSTableColumn

setMaximum:

NSNumberFormatter

setMaximumLineHeight:

NSMutableParagraphStyle

setMeasurementUnits:

NSRulerView

setMenu:

NSPopUpButton, NSPopUpButtonCell, NSResponder, NSMenuItem, NSCell, NSStatusItem, NSMenuView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setMenuBarVisible:

NSMenu

setMenuChangedMessagesEnabled:

NSMenu

setMenuFormRepresentation:

NSToolbarItem

setMenuItem:

NSMenuItemCell

setMenuItemCell:forItemAtIndex:

NSMenuView

setMenuRepresentation:

NSMenu

setMenuView:

NSMenuItemCell

setMenuZone:

NSMenu

setMinColumnWidth:

NSBrowser

setMinContentSize:

NSDrawer

setMinSize:

NSWindow, NSToolbarItem, NSText

setMinValue:

NSSlider, NSProgressIndicator, NSSliderCell, NSStepperCell, NSStepper

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setMinWidth:

NSTableColumn

setMinimum:

NSNumberFormatter

setMinimumLineHeight:

NSMutableParagraphStyle

setMiniwindowImage:

NSWindow

setMiniwindowTitle:

NSWindow

setMiterLimit:

NSBezierPath

setMixedStateImage:

NSMenuItem

setMnemonicLocation:

NSMenuItem

setMode:

NSColorPicker, NSMatrix, NSColorPanel

setMovable:

NSRulerMarker

setMovableByWindowBackground:

NSWindow

setMovie:

NSMovieView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setMsgid:

NSPortMessage

setMuted:

NSMovieView

setName:

NSImage, NSSound, NSNameSpecifier

setNeedsDisplay

NSControl

setNeedsDisplay:

NSMenuItemCell, NSView

setNeedsDisplayForItemAtIndex:

NSMenuView

setNeedsDisplayInRect:

NSView

setNeedsDisplayInRect:avoidAdditionalLayout:

NSTextView

setNeedsSizing:

NSMenuItemCell, NSMenuView

setNegativeFormat:

NSNumberFormatter

setNextResponder:

NSResponder

setNextState

NSCell, NSButton

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setNotShownAttribute:forGlyphAtIndex:

NSLayoutManager

setNumberOfTickMarks:

NSSliderCell

setNumberOfVisibleItems:

NSComboBoxCell, NSComboBox

setObject:forKey:

NSUserDefaults, NSMutableDictionary

setObjectBeingTested:

NSScriptExecutionContext

setObjectValue:

NSControl, NSCell, NSActionCell

setObjectZone:

NSCoder, NSUnarchiver

setOffScreen:width:height:rowbytes:

NSOpenGLContext

setOffStateImage:

NSMenuItem

setOnMouseEntered:

NSCursor

setOnMouseExited:

NSCursor

setOnStateImage:

NSMenuItem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setOneShot:

NSWindow

setOpaque:

NSWindow, NSImageRep

setOpenGLContext:

NSOpenGLView

setOrderedIndex:

NSWindow

setOrientation:

NSPrintInfo, NSRulerView

setOriginOffset:

NSRulerView

setOutlineTableColumn:

NSOutlineView

setOutputFormat:

NSKeyedArchiver

setPageOrder:

NSPrintOperation

setPageScroll:

NSScrollView

setPaletteLabel:

NSToolbarItem

setPanelFont:isMultiple:

NSFontPanel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setPaperName:

NSPrintInfo

setPaperSize:

NSPrintInfo

setParagraphSpacing:

NSMutableParagraphStyle

setParagraphStyle:

NSMutableParagraphStyle

setParagraphs:

NSTextStorage

setParamDescriptor:forKeyword:

NSAppleEventDescriptor

setParentWindow:

NSWindow, NSDrawer

setPath:

NSBrowser

setPathSeparator:

NSBrowser

setPatternPhase:

NSGraphicsContext

setPeriodicDelay:interval:

NSButtonCell, NSButton

setPersistentDomain:forName:

NSUserDefaults

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setPickerMask:

NSColorPanel

setPickerMode:

NSColorPanel

setPixelFormat:

NSOpenGLView

setPixelsHigh:

NSImageRep

setPixelsWide:

NSImageRep

setPlaysEveryFrame:

NSMovieView

setPlaysSelectionOnly:

NSMovieView

setPoolCountHighWaterMark:

NSAutoreleasePool

setPoolCountHighWaterResolution:

NSAutoreleasePool

setPositiveFormat:

NSNumberFormatter

setPostsBoundsChangedNotifications:

NSView

setPostsFrameChangedNotifications:

NSView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setPreferredEdge:

NSPopUpButton, NSPopUpButtonCell, NSDrawer

setPreferredFilename:

NSFileWrapper

setPreferredFontNames:

NSFont

setPrefersColorMatch:

NSImage

setPrintInfo:

NSPrintOperation, NSDocument

setPrintPanel:

NSPrintOperation

setPrinter:

NSPrintInfo

setProcessName:

NSProcessInfo

setPrompt:

NSSavePanel

setProperty:forKey:

NSURL

setProperty:withValue:

NSBitmapImageRep

setPropertyList:forType:

NSPasteboard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setProtocolForProxy:

NSDistantObject

setProtocolSpecificInformation:

NSNetService

setPrototype:

NSMatrix

setPullsDown:

NSPopUpButton, NSPopUpButtonCell

setRangeContainerObject:

NSScriptExecutionContext

setRate:

NSMovieView

setReceiversSpecifier:

NSDeleteCommand, NSCloneCommand, NSMoveCommand, NSSetCommand, NSScriptCommand

setRelativePosition:

NSRelativeSpecifier

setReleasedWhenClosed:

NSWindow

setRemovable:

NSRulerMarker

setReplyTimeout:

NSConnection

setRepresentedFilename:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setRepresentedObject:

NSMenuItem, NSCell, NSRulerMarker

setRequestTimeout:

NSConnection

setRequiredFileType:

NSSavePanel

setReservedThicknessForAccessoryView:

NSRulerView

setReservedThicknessForMarkers:

NSRulerView

setResizable:

NSTableColumn

setResizeIncrements:

NSWindow

setResolvesAliases:

NSOpenPanel

setResourceData:

NSURL

setReturnValue:

NSInvocation

setReusesColumns:

NSBrowser

setRichText:

NSTextView, NSText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setRightMargin:

NSPrintInfo

setRootObject:

NSConnection

setRoundingBehavior:

NSNumberFormatter

setRowHeight:

NSTableView

setRuleThickness:

NSRulerView

setRulerViewClass:

NSScrollView

setRulerVisible:

NSTextView

setRulersVisible:

NSScrollView

setRunLoopModes:

NSUndoManager

setScalesWhenResized:

NSImage

setScanLocation:

NSScanner

setScriptErrorNumber:

NSScriptCommand

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setScriptErrorString:

NSScriptCommand

setScrollView:

NSRulerView

setScrollable:

NSCell, NSMatrix

setScrollsDynamically:

NSScrollView

setSelectable:

NSTextView, NSCell, NSTextField, NSText

setSelectedFont:isMultiple:

NSFontManager

setSelectedRange:

NSTextView, NSText

setSelectedRange:affinity:stillSelecting:

NSTextView

setSelectedTextAttributes:

NSTextView

setSelectionByRect:

NSMatrix

setSelectionFrom:to:anchor:highlight:

NSMatrix

setSelectionGranularity:

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setSelector:

NSInvocation

setSendsActionOnArrowKeys:

NSBrowser

setSendsActionOnEndEditing:

NSCell

setSeparatesColumns:

NSBrowser

setServicesMenu:

NSApplication

setServicesProvider:

NSApplication

setSet:

NSMutableSet

setSharedPrintInfo:

NSPrintInfo

setSharedScriptSuiteRegistry:

NSScriptSuiteRegistry

setShouldAntialias:

NSGraphicsContext

setShouldCascadeWindows:

NSWindowController

setShouldCloseDocument:

NSWindowController

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setShouldCreateUI:

NSDocumentController

setShowPanels:

NSPrintOperation

setShowsAlpha:

NSColorPanel

setShowsBorderOnlyWhileMouseInside:

NSButtonCell, NSButton

setShowsControlCharacters:

NSLayoutManager

setShowsInvisibleCharacters:

NSLayoutManager

setShowsResizeIndicator:

NSWindow

setShowsStateBy:

NSButtonCell

setSize:

NSImage, NSImageRep

setSizeMode:

NSToolbar

setSmartInsertDeleteEnabled:

NSTextView

setSound:

NSButtonCell, NSButton

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setSource:

NSNibConnector

setStandardError:

NSTask

setStandardInput:

NSTask

setStandardOutput:

NSTask

setStartSpecifier:

NSRangeSpecifier

setStartSubelementIdentifier:

NSWhoseSpecifier

setStartSubelementIndex:

NSWhoseSpecifier

setState:

NSMenuItem, NSCell, NSButton

setState:atRow:column:

NSMatrix

setString:

NSMutableString, NSText

setString:forType:

NSPasteboard

setStringValue:

NSControl, NSCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setStyle:

NSProgressIndicator

setSubmenu:

NSMenuItem

setSubmenu:forItem:

NSMenu

setSupermenu:

NSMenu

setSuspended:

NSDistributedNotificationCenter

setTabStops:

NSMutableParagraphStyle

setTabViewType:

NSTabView

setTableView:

NSTableColumn, NSTableHeaderView

setTag:

NSControl, NSMenuItem, NSCell, NSToolbarItem, NSActionCell

setTailIndent:

NSMutableParagraphStyle

setTakesTitleFromPreviousColumn:

NSBrowser

setTarget:

NSControl, NSMenuItem, NSCell, NSToolbarItem, NSActionCell, NSColorPanel, NSStatusItem, NSInvocation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setTearOffMenuRepresentation:

NSMenu

setTemporaryAttributes:forCharacterRange:

NSLayoutManager

setTest:

NSWhoseSpecifier

setTextAlignment:

NSForm

setTextAttributesForNegativeValues:

NSNumberFormatter

setTextAttributesForPositiveValues:

NSNumberFormatter

setTextColor:

NSTextFieldCell, NSTextField, NSText

setTextColor:range:

NSText

setTextContainer:

NSTextView

setTextContainer:forGlyphRange:

NSLayoutManager

setTextContainerInset:

NSTextView

setTextFont:

NSForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setTextStorage:

NSLayoutManager

setTextView:

NSTextContainer

setThousandSeparator:

NSNumberFormatter

setThreadPriority:

NSThread

setTickMarkPosition:

NSSliderCell

setTimeZone:

NSCalendarDate

setTitle:

NSSlider, NSPopUpButton, NSWindow, NSSavePanel, NSPopUpButtonCell, NSMenu, NSSliderCell, NSButtonCell,
NSBox, NSFormCell, NSMenuItem, NSCell, NSButton, NSStatusItem

setTitle:ofColumn:

NSBrowser

setTitleAlignment:

NSFormCell, NSForm

setTitleCell:

NSSlider, NSSliderCell

setTitleColor:

NSSlider, NSSliderCell

setTitleFont:

NSSlider, NSSliderCell, NSBox, NSFormCell, NSForm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSSlider, NSSliderCell, NSBox, NSFormCell, NSForm

setTitlePosition:

NSBox

setTitleWidth:

NSFormCell

setTitleWithMnemonic:

NSMenuItem

setTitleWithRepresentedFilename:

NSWindow

setTitled:

NSBrowser

setToolTip:

NSToolbarItem, NSStatusItem, NSView

setToolTip:forCell:

NSMatrix

setToolbar:

NSWindow

setTopLevelObject:

NSScriptExecutionContext

setTopMargin:

NSPrintInfo

setTrailingOffset:

NSDrawer

setTransformStruct:

NSAffineTransform

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSAffineTransform

setTransparent:

NSButtonCell, NSButton

setTreatsFilePackagesAsDirectories:

NSSavePanel

setType:

NSCell

setTypesetter:

NSLayoutManager

setTypesetterBehavior:

NSLayoutManager

setTypingAttributes:

NSTextView

setUndoManager:

NSDocument

setUniqueID:

NSUniqueIDSpecifier

setUpFieldEditorAttributes:

NSTextFieldCell, NSCell

setUpGState

NSView

setUpPrintOperationDefaultValues

NSPrintInfo

setUserFixedPitchFont:

NSFont

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSFont

setUserFont:

NSFont

setUsesDataSource:

NSComboBoxCell, NSComboBox

setUsesEPSOnResolutionMismatch:

NSImage

setUsesFontPanel:

NSTextView, NSText

setUsesItemFromMenu:

NSPopUpButtonCell

setUsesRuler:

NSTextView

setUsesScreenFonts:

NSLayoutManager

setUsesThreadedAnimation:

NSProgressIndicator

setUsesUserKeyEquivalents:

NSMenuItem

setValidateSize:

NSMatrix

setValueWraps:

NSStepperCell, NSStepper

setValues:forParameter:

NSOpenGLContext

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSOpenGLContext

setVersion:

NSObject

setVertical:

NSSplitView

setVerticalLineScroll:

NSScrollView

setVerticalMotionCanBeginDrag:

NSTableView

setVerticalPageScroll:

NSScrollView

setVerticalPagination:

NSPrintInfo

setVerticalRulerView:

NSScrollView

setVerticalScroller:

NSScrollView

setVerticallyCentered:

NSPrintInfo

setVerticallyResizable:

NSText

setView:

NSOpenGLContext, NSTabViewItem, NSToolbarItem, NSStatusItem

setViewsNeedDisplay:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSWindow

setVisible:

NSToolbar

setVolatileDomain:forName:

NSUserDefaults

setVolume:

NSMovieView

setWidth:

NSTableColumn

setWidthTracksTextView:

NSTextContainer

setWindingRule:

NSBezierPath

setWindow:

NSWindowController, NSDocument

setWindowController:

NSWindow

setWindowFrameAutosaveName:

NSWindowController

setWindowFrameForAttachingToRect:onScreen:preferredEdge:popUpSelectedItem:

NSMenuView

setWindowsMenu:

NSApplication

setWindowsNeedUpdate:

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSApplication

setWithArray:

NSSet

setWithCapacity:

NSMutableSet

setWithObject:

NSSet

setWithObjects:...

NSSet

setWithObjects:count:

NSSet

setWithSet:

NSSet

setWordFieldStringValue:

NSSpellChecker

setWords:

NSTextStorage

setWorksWhenModal:

NSPanel

setWraps:

NSCell

shadowColor

NSColor

shadowWithLevel:

NSColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSColor

sharedAppleEventManager

NSAppleEventManager

sharedApplication

NSApplication

sharedCoercionHandler

NSScriptCoercionHandler

sharedColorPanel

NSColorPanel

sharedColorPanelExists

NSColorPanel

sharedDocumentController

NSDocumentController

sharedFontManager

NSFontManager

sharedFontPanel

NSFontPanel

sharedFontPanelExists

NSFontPanel

sharedFrameworksPath

NSBundle

sharedHelpManager

NSHelpManager

sharedInstance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sharedInstance

NSSocketPortNameServer, NSSimpleHorizontalTypesetter, NSMessagePortNameServer,
NSMachBootstrapServer

sharedPrintInfo

NSPrintInfo

sharedScriptExecutionContext

NSScriptExecutionContext

sharedScriptSuiteRegistry

NSScriptSuiteRegistry

sharedSpellChecker

NSSpellChecker

sharedSpellCheckerExists

NSSpellChecker

sharedSupportPath

NSBundle

sharedSystemTypesetter

NSTypesetter

sharedSystemTypesetterForBehavior:

NSTypesetter

sharedWorkspace

NSWorkspace

shortValue

NSNumber

shouldAntialias

NSGraphicsContext

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shouldBeTreatedAsInkEvent:

NSResponder

shouldCascadeWindows

NSWindowController

shouldChangePrintInfo:

NSDocument

shouldChangeTextInRange:replacementString:

NSTextView

shouldCloseDocument

NSWindowController

shouldCloseWindowController:

NSDocument

shouldCloseWindowController:delegate:shouldCloseSelector:contextInfo:

NSDocument

shouldCollapseAutoExpandedItemsForDeposited:

NSOutlineView

shouldCreateUI

NSDocumentController

shouldDelayWindowOrderingForEvent:

NSView

shouldDrawColor

NSView

shouldDrawInsertionPoint

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shouldRunSavePanelWithAccessoryView

NSDocument

showAttachmentCell:inRect:characterIndex:

NSLayoutManager

showContextHelp:

NSResponder

showContextHelpForObject:locationHint:

NSHelpManager

showController:adjustingSize:

NSMovieView

showGuessPanel:

NSText

showHelp:

NSApplication

showPackedGlyphs:length:glyphRange:atPoint:font:color:printingAdjustment:

NSLayoutManager

showPanels

NSPrintOperation

showPools

NSAutoreleasePool

showWindow:

NSWindowController

showWindows

NSDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

showsAlpha

NSColorPanel

showsBorderOnlyWhileMouseInside

NSButtonCell, NSButton

showsControlCharacters

NSLayoutManager

showsInvisibleCharacters

NSLayoutManager

showsResizeIndicator

NSWindow

showsStateBy

NSButtonCell

size

NSImage, NSAttributedString, NSImageRep

sizeForKey:inTable:

NSPrinter

sizeForMagnification:

NSMovieView

sizeForPaperName:

NSPrintInfo

sizeLastColumnToFit

NSTableView

sizeMode

NSToolbar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sizeOfLabel:

NSTabViewItem

sizeOfTypesetterGlyphInfo

NSSimpleHorizontalTypesetter

sizeToCells

NSMatrix

sizeToFit

NSTableColumn, NSMenu, NSProgressIndicator, NSControl, NSBox, NSMenuView, NSText

sizeValue

NSValue

skipDescendents

NSDirectoryEnumerator

sleepUntilDate:

NSThread

slideImage:from:to:

NSWorkspace

smallSystemFontSize

NSFont

smallestEncoding

NSString

smartDeleteRangeForProposedRange:

NSTextView

smartInsertAfterStringForString:replacingRange:

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

smartInsertBeforeStringForString:replacingRange:

NSTextView

smartInsertDeleteEnabled

NSTextView

smartInsertForString:replacingRange:beforeString:afterString:

NSTextView

socket

NSSocketPort

socketType

NSSocketPort

sortSubviewsUsingFunction:context:

NSView

sortUsingFunction:context:

NSMutableArray, NSMatrix

sortUsingSelector:

NSMutableArray, NSMatrix

sortedArrayHint

NSArray

sortedArrayUsingFunction:context:

NSArray

sortedArrayUsingFunction:context:hint:

NSArray

sortedArrayUsingSelector:

NSArray

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sound

NSButtonCell, NSButton

sound:didFinishPlaying:

NSSound

soundNamed:

NSSound

soundUnfilteredFileTypes

NSSound

soundUnfilteredPasteboardTypes

NSSound

source

NSAppleScript, NSNibConnector

spellCheckerDocumentTag

NSTextView

spellServer:didForgetWord:inLanguage:

NSSpellServer

spellServer:didLearnWord:inLanguage:

NSSpellServer

spellServer:findMisspelledWordInString:language:wordCount:countOnly:

NSSpellServer

spellServer:suggestGuessesForWord:inLanguage:

NSSpellServer

spellingPanel

NSSpellChecker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

splitView:canCollapseSubview:

NSSplitView

splitView:constrainMaxCoordinate:ofSubviewAt:

NSSplitView

splitView:constrainMinCoordinate:ofSubviewAt:

NSSplitView

splitView:constrainSplitPosition:ofSubviewAt:

NSSplitView

splitView:resizeSubviewsWithOldSize:

NSSplitView

splitViewDidResizeSubviews:

NSSplitView

splitViewWillResizeSubviews:

NSSplitView

standardError

NSTask

standardInput

NSTask

standardOutput

NSTask

standardUserDefaults

NSUserDefaults

standardWindowButton:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standardWindowButton:forStyleMask:

NSWindow

standardizedURL

NSURL

start:

NSMovieView

startAnimation:

NSProgressIndicator

startPeriodicEventsAfterDelay:withPeriod:

NSEvent

startSpeaking:

NSTextView

startSpecifier

NSRangeSpecifier

startSubelementIdentifier

NSWhoseSpecifier

startSubelementIndex

NSWhoseSpecifier

startTrackingAt:inView:

NSCell

state

NSMenuItem, NSCell, NSDrawer, NSButton

stateImageOffset

NSMenuView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stateImageRectForBounds:

NSMenuItemCell

stateImageWidth

NSMenuItemCell, NSMenuView

statistics

NSConnection

status

NSURLHandle

statusBar

NSStatusItem

statusForTable:

NSPrinter

statusItemWithLength:

NSStatusBar

stepBack:

NSMovieView

stepForward:

NSMovieView

stop

NSSound, NSNetServiceBrowser, NSNetService

stop:

NSMovieView, NSApplication

stopAnimation:

NSProgressIndicator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stopModal

NSApplication

stopModalWithCode:

NSApplication

stopPeriodicEvents

NSEvent

stopSpeaking:

NSTextView

stopTracking:at:inView:mouseIsUp:

NSCell

string

NSString, NSAttributedString, NSScanner, NSText

stringArrayForKey:

NSUserDefaults

stringByAbbreviatingWithTildeInPath

NSString

stringByAppendingFormat:...

NSString

stringByAppendingPathComponent:

NSString

stringByAppendingPathExtension:

NSString

stringByAppendingString:

NSString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stringByDeletingLastPathComponent

NSString

stringByDeletingPathExtension

NSString

stringByExpandingTildeInPath

NSString

stringByPaddingToLength:withString:startingAtIndex:

NSString

stringByResolvingSymlinksInPath

NSString

stringByStandardizingPath

NSString

stringByTrimmingCharactersInSet:

NSString

stringForKey:

NSUserDefaults

stringForKey:inTable:

NSPrinter

stringForObjectValue:

NSFormatter

stringForType:

NSPasteboard

stringListForKey:inTable:

NSPrinter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stringValue

NSControl, NSCell, NSAppleEventDescriptor, NSNumber, NSActionCell

stringWithCString:

NSString

stringWithCString:length:

NSString

stringWithCapacity:

NSMutableString

stringWithCharacters:length:

NSString

stringWithContentsOfFile:

NSString

stringWithContentsOfURL:

NSString

stringWithFileSystemRepresentation:length:

NSFileManager

stringWithFormat:...

NSString

stringWithSavedFrame

NSWindow

stringWithString:

NSString

stringWithUTF8String:

NSString

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stringsByAppendingPaths:

NSString

stroke

NSBezierPath

strokeLineFromPoint:toPoint:

NSBezierPath

strokeRect:

NSBezierPath

style

NSProgressIndicator

styleMask

NSWindow

subarrayWithRange:

NSArray

subdataWithRange:

NSData

submenu

NSMenuItem

submenuAction:

NSMenu

subpathsAtPath:

NSFileManager

subscript:

NSText

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subscriptRange:

NSMutableAttributedString

substituteFontForFont:

NSLayoutManager

substringFromIndex:

NSString

substringToIndex:

NSString

substringWithRange:

NSString

subtype

NSEvent

subviews

NSView

suiteForAppleEventCode:

NSScriptSuiteRegistry

suiteName

NSScriptClassDescription, NSScriptCommandDescription

suiteNames

NSScriptSuiteRegistry

superclass

NSObject

superclassDescription

NSScriptClassDescription

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

supermenu

NSMenu

superscript:

NSText

superscriptRange:

NSMutableAttributedString

superview

NSView

supportedWindowDepths

NSScreen

supportsCommand:

NSScriptClassDescription

suspend

NSTask

suspended

NSDistributedNotificationCenter

swapWithMark:

NSResponder

symbolicLinkDestination

NSFileWrapper

synchronize

NSUserDefaults

synchronizeFile

NSFileHandle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

synchronizeTitleAndSelectedItem

NSPopUpButton, NSPopUpButtonCell

synchronizeWindowTitleWithDocumentName

NSWindowController

systemDefaultPortNameServer

NSPortNameServer

systemFontOfSize:

NSFont

systemFontSize

NSFont

systemStatusBar

NSStatusBar

systemTimeZone

NSTimeZone

systemVersion

NSCoder, NSUnarchiver

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

T

TIFFRepresentation

NSImage, NSBitmapImageRep

TIFFRepresentationOfImageRepsInArray:

NSBitmapImageRep

TIFFRepresentationOfImageRepsInArray:usingCompression:factor:

NSBitmapImageRep

TIFFRepresentationUsingCompression:factor:

NSImage, NSBitmapImageRep

tabState

NSTabViewItem

tabStopType

NSTextTab

tabStops

NSParagraphStyle

tabView

NSTabViewItem

tabView:didSelectTabViewItem:

NSTabView

tabView:shouldSelectTabViewItem:

NSTabView

tabView:willSelectTabViewItem:

NSTabView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tabViewDidChangeNumberOfTabViewItems:

NSTabView

tabViewItemAtIndex:

NSTabView

tabViewItemAtPoint:

NSTabView

tabViewItems

NSTabView

tabViewType

NSTabView

tableColumnWithIdentifier:

NSTableView

tableColumns

NSTableView

tableView

NSTableColumn, NSTableHeaderView

tableView:didClickTableColumn:

NSTableView

tableView:didDragTableColumn:

NSTableView

tableView:mouseDownInHeaderOfTableColumn:

NSTableView

tableView:shouldEditTableColumn:row:

NSTableView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tableView:shouldSelectRow:

NSTableView

tableView:shouldSelectTableColumn:

NSTableView

tableView:willDisplayCell:forTableColumn:row:

NSTableView

tableViewColumnDidMove:

NSTableView

tableViewColumnDidResize:

NSTableView

tableViewSelectionDidChange:

NSTableView

tableViewSelectionIsChanging:

NSTableView

tag

NSControl, NSMenuItem, NSCell, NSToolbarItem, NSActionCell, NSView

tailIndent

NSParagraphStyle

takeColorFrom:

NSColorWell

takeDoubleValueFrom:

NSControl, NSCell

takeFloatValueFrom:

NSControl, NSCell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

takeIntValueFrom:

NSControl, NSCell

takeObjectValueFrom:

NSControl, NSCell

takeSelectedTabViewItemFromSender:

NSTabView

takeStringValueFrom:

NSControl, NSCell

takesTitleFromPreviousColumn

NSBrowser

target

NSProtocolChecker, NSControl, NSMenuItem, NSCell, NSToolbarItem, NSActionCell, NSStatusItem,
NSInvocation

targetForAction:

NSApplication

targetForAction:to:from:

NSApplication

tearOffMenuRepresentation

NSMenu

temporaryAttributesAtCharacterIndex:effectiveRange:

NSLayoutManager

terminate

NSTask

terminate:

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

terminationStatus

NSTask

test

NSWhoseSpecifier

testPart:

NSScroller

textAttributesForNegativeValues

NSNumberFormatter

textAttributesForPositiveValues

NSNumberFormatter

textBackgroundColor

NSColor

textColor

NSTextFieldCell, NSColor, NSTextField, NSText

textContainer

NSTextView

textContainerChangedGeometry:

NSLayoutManager

textContainerChangedTextView:

NSLayoutManager

textContainerForGlyphAtIndex:effectiveRange:

NSLayoutManager

textContainerInset

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

textContainerOrigin

NSTextView

textContainers

NSLayoutManager

textDidBeginEditing:

NSTableView, NSMatrix, NSTextField, NSText

textDidChange:

NSTableView, NSMatrix, NSTextField, NSText

textDidEndEditing:

NSTableView, NSMatrix, NSTextField, NSText

textFileTypes

NSAttributedString

textPasteboardTypes

NSAttributedString

textShouldBeginEditing:

NSTableView, NSMatrix, NSTextField, NSText

textShouldEndEditing:

NSTableView, NSMatrix, NSTextField, NSText

textStorage

NSTextView, NSLayoutManager

textStorage:edited:range:changeInLength:invalidatedRange:

NSLayoutManager

textStorageDidProcessEditing:

NSTextStorage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

textStorageWillProcessEditing:

NSTextStorage

textUnfilteredFileTypes

NSAttributedString

textUnfilteredPasteboardTypes

NSAttributedString

textView

NSTextContainer

textView:clickedOnCell:inRect:

NSTextView

textView:clickedOnCell:inRect:atIndex:

NSTextView

textView:clickedOnLink:

NSTextView

textView:clickedOnLink:atIndex:

NSTextView

textView:doCommandBySelector:

NSTextView

textView:doubleClickedOnCell:inRect:

NSTextView

textView:doubleClickedOnCell:inRect:atIndex:

NSTextView

textView:draggedCell:inRect:event:

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

textView:draggedCell:inRect:event:atIndex:

NSTextView

textView:shouldChangeTextInRange:replacementString:

NSTextView

textView:willChangeSelectionFromCharacterRange:toCharacterRange:

NSTextView

textView:writablePasteboardTypesForCell:atIndex:

NSTextView

textView:writeCell:atIndex:toPasteboard:type:

NSTextView

textViewDidChangeSelection:

NSTextView

textViewForBeginningOfSelection

NSLayoutManager

thickness

NSStatusBar

thicknessRequiredInRuler

NSRulerMarker

thousandSeparator

NSNumberFormatter

threadDictionary

NSThread

threadPriority

NSThread

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tickMarkPosition

NSSliderCell

tickMarkValueAtIndex:

NSSliderCell

tightenKerning:

NSTextView

tile

NSTableView, NSScrollView, NSBrowser

timeInterval

NSTimer

timeIntervalSince1970

NSDate

timeIntervalSinceDate:

NSDate

timeIntervalSinceNow

NSDate

timeIntervalSinceReferenceDate

NSDate

timeZone

NSCalendarDate

timeZoneForSecondsFromGMT:

NSTimeZone

timeZoneWithAbbreviation:

NSTimeZone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

timeZoneWithName:

NSTimeZone

timeZoneWithName:data:

NSTimeZone

timerWithTimeInterval:invocation:repeats:

NSTimer

timerWithTimeInterval:target:selector:userInfo:repeats:

NSTimer

timestamp

NSEvent

title

NSSlider, NSWindow, NSSavePanel, NSMenu, NSSliderCell, NSButtonCell, NSBox, NSFormCell, NSMenuItem,
NSCell, NSButton, NSStatusItem

titleAlignment

NSFormCell

titleBarFontOfSize:

NSFont

titleCell

NSSlider, NSSliderCell, NSBox

titleColor

NSSlider, NSSliderCell

titleFont

NSSlider, NSSliderCell, NSBox, NSFormCell

titleFrameOfColumn:

NSBrowser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSBrowser

titleHeight

NSBrowser

titleOfColumn:

NSBrowser

titleOfSelectedItem

NSPopUpButton, NSPopUpButtonCell

titlePosition

NSBox

titleRect

NSBox

titleRectForBounds:

NSCell, NSMenuItemCell

titleWidth

NSFormCell, NSMenuItemCell

titleWidth:

NSFormCell

toManyRelationshipKeys

NSClassDescription

toOneRelationshipKeys

NSClassDescription

toggle:

NSDrawer

toggleContinuousSpellChecking:

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSTextView

toggleRuler:

NSText

toggleToolbarShown:

NSWindow

toggleTraditionalCharacterShape:

NSTextView

toolTip

NSToolbarItem, NSStatusItem, NSView

toolTipForCell:

NSMatrix

toolTipsFontOfSize:

NSFont

toolbar

NSWindow, NSToolbarItem

toolbar:itemForItemIdentifier:willBeInsertedIntoToolbar:

NSToolbar

toolbarAllowedItemIdentifiers:

NSToolbar

toolbarDefaultItemIdentifiers:

NSToolbar

toolbarDidRemoveItem:

NSToolbar

toolbarWillAddItem:

NSToolbar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSToolbar

topAutoreleasePoolCount

NSAutoreleasePool

topLevelObject

NSScriptExecutionContext

topMargin

NSPrintInfo

totalAutoreleasedObjects

NSAutoreleasePool

trackKnob:

NSScroller

trackMarker:withMouseEvent:

NSRulerView

trackMouse:adding:

NSRulerMarker

trackMouse:inRect:ofView:untilMouseUp:

NSCell

trackRect

NSSliderCell

trackScrollButtons:

NSScroller

trackWithEvent:

NSMenuView

trackingNumber

NSEvent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSEvent

trailingOffset

NSDrawer

traitsOfFont:

NSFontManager

transactionID

NSAppleEventDescriptor

transform

NSAffineTransform

transformBezierPath:

NSAffineTransform

transformPoint:

NSAffineTransform

transformSize:

NSAffineTransform

transformStruct

NSAffineTransform

transformUsingAffineTransform:

NSBezierPath

translateOriginToPoint:

NSView

translateXBy:yBy:

NSAffineTransform

transpose:

NSResponder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSResponder

transposeWords:

NSResponder

treatsFilePackagesAsDirectories

NSSavePanel

truncateFileAtOffset:

NSFileHandle

tryLock

NSDistributedLock, NSConditionLock, NSLock, NSRecursiveLock

tryLockWhenCondition:

NSConditionLock

tryToPerform:with:

NSWindow, NSResponder, NSApplication

turnOffKerning:

NSTextView

turnOffLigatures:

NSTextView

type

NSPrinter, NSNetService, NSCell, NSEvent

typeCodeValue

NSAppleEventDescriptor

typeForArgumentWithName:

NSScriptCommandDescription

typeForKey:

NSScriptClassDescription

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSScriptClassDescription

typeFromFileExtension:

NSDocumentController

types

NSPasteboard

typesFilterableTo:

NSPasteboard

typesetter

NSLayoutManager

typesetterBehavior

NSLayoutManager

typesetterLaidOneGlyph:

NSSimpleHorizontalTypesetter

typingAttributes

NSTextView

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

U

URL

NSSavePanel, NSMovie

URL:resourceDataDidBecomeAvailable:

NSObject

URL:resourceDidFailLoadingWithReason:

NSObject

URLFromPasteboard:

NSURL

URLHandleClassForURL:

NSURLHandle

URLHandleUsingCache:

NSURL

URLResourceDidCancelLoading:

NSObject

URLResourceDidFinishLoading:

NSObject

URLWithString:

NSURL

URLWithString:relativeToURL:

NSURL

URLs

NSOpenPanel

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

URLsFromRunningOpenPanel

NSDocumentController

UTF8String

NSString

unarchiveObjectWithData:

NSKeyedUnarchiver, NSUnarchiver

unarchiveObjectWithFile:

NSKeyedUnarchiver, NSUnarchiver

unarchiver:cannotDecodeObjectOfClassName:originalClasses:

NSKeyedUnarchiver

unarchiver:didDecodeObject:

NSKeyedUnarchiver

unarchiver:willReplaceObject:withObject:

NSKeyedUnarchiver

unarchiverDidFinish:

NSKeyedUnarchiver

unarchiverWillFinish:

NSKeyedUnarchiver

underline:

NSText

underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:containerOrigin:

NSLayoutManager

underlinePosition

NSFont

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

underlineThickness

NSFont

undo

NSUndoManager

undoActionName

NSUndoManager

undoManager

NSResponder, NSDocument

undoManagerForTextView:

NSTextView

undoMenuItemTitle

NSUndoManager

undoMenuTitleForUndoActionName:

NSUndoManager

undoNestedGroup

NSUndoManager

unhide

NSCursor

unhide:

NSApplication

unhideAllApplications:

NSApplication

unhideWithoutActivation

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unionSet:

NSMutableSet

uniqueID

NSUniqueIDSpecifier

uniqueSpellDocumentTag

NSSpellChecker

unlock

NSDistributedLock

unlockFocus

NSImage, NSView

unlockWithCondition:

NSConditionLock

unmountAndEjectDeviceAtPath:

NSWorkspace

unregisterDraggedTypes

NSWindow

unregisterImageRepClass:

NSImageRep

unscript:

NSText

unscriptRange:

NSMutableAttributedString

unsignedCharValue

NSNumber

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsignedIntValue

NSNumber

unsignedLongLongValue

NSNumber

unsignedLongValue

NSNumber

unsignedShortValue

NSNumber

update

NSWindow, NSOpenGLView, NSMenu, NSOpenGLContext, NSMenuView

updateAttachmentsFromPath:

NSMutableAttributedString

updateCell:

NSControl

updateCellInside:

NSControl

updateChangeCount:

NSDocument

updateCurGlyphOffset

NSSimpleHorizontalTypesetter

updateDragTypeRegistration

NSTextView

updateFontPanel

NSTextView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updateFromPath:

NSFileWrapper

updateFromPrintInfo

NSPrintPanel

updateInsertionPointStateAndRestartTimer:

NSTextView

updateRuler

NSTextView

updateScroller

NSBrowser

updateSpellingPanelWithMisspelledWord:

NSSpellChecker

updateWindows

NSApplication

updateWindowsItem:

NSApplication

uppercaseLetterCharacterSet

NSCharacterSet

uppercaseString

NSString

uppercaseWord:

NSResponder

usableParts

NSScroller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

useAllLigatures:

NSTextView

useFont:

NSFont

useOptimizedDrawing:

NSWindow

useStandardKerning:

NSTextView

useStandardLigatures:

NSTextView

usedRectForTextContainer:

NSLayoutManager

user

NSURL

userData

NSEvent

userDefaultsChanged

NSWorkspace

userFixedPitchFontOfSize:

NSFont

userFontOfSize:

NSFont

userInfo

NSException, NSTimer, NSNotification

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

userKeyEquivalent

NSMenuItem

usesDataSource

NSComboBoxCell, NSComboBox

usesEPSOnResolutionMismatch

NSImage

usesFontPanel

NSTextView, NSText

usesItemFromMenu

NSPopUpButtonCell

usesRuler

NSTextView

usesScreenFonts

NSLayoutManager

usesThreadedAnimation

NSProgressIndicator

usesUserKeyEquivalents

NSMenuItem

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

V

validRequestorForSendType:returnType:

NSWindow, NSResponder, NSTextView, NSApplication

validate

NSToolbarItem

validateEditing

NSControl

validateMenuItem:

NSDocumentController, NSDocument

validateUserInterfaceItem:

NSDocumentController, NSDocument

validateVisibleColumns

NSSavePanel, NSBrowser

validateVisibleItems

NSToolbar

value:withObjCType:

NSValue

valueForProperty:

NSBitmapImageRep

valueWithBytes:objCType:

NSValue

valueWithNonretainedObject:

NSValue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

valueWithPoint:

NSValue

valueWithPointer:

NSValue

valueWithRange:

NSValue

valueWithRect:

NSValue

valueWithSize:

NSValue

valueWraps

NSStepperCell, NSStepper

version

NSObject

versionForClassName:

NSCoder

verticalLineScroll

NSScrollView

verticalMotionCanBeginDrag

NSTableView

verticalPageScroll

NSScrollView

verticalPagination

NSPrintInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

verticalRulerView

NSScrollView

verticalScroller

NSScrollView

view

NSPrintOperation, NSOpenGLContext, NSTabViewItem, NSToolbarItem, NSStatusItem

viewBoundsChanged:

NSClipView

viewDidEndLiveResize

NSView

viewDidMoveToSuperview

NSView

viewDidMoveToWindow

NSView

viewFrameChanged:

NSClipView

viewSizeChanged:

NSColorPicker

viewWillMoveToSuperview:

NSView

viewWillMoveToWindow:

NSView

viewWillStartLiveResize

NSView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

viewWithTag:

NSView

viewsNeedDisplay

NSWindow

visibleFrame

NSScreen

visibleItems

NSToolbar

visibleRect

NSView

volatileDomainForName:

NSUserDefaults

volatileDomainNames

NSUserDefaults

volume

NSMovieView

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

W

waitForDataInBackgroundAndNotify

NSFileHandle

waitForDataInBackgroundAndNotifyForModes:

NSFileHandle

waitUntilExit

NSTask

wantsToDelayTextChangeNotifications

NSInputManager

wantsToHandleMouseEvents

NSInputManager

wantsToInterpretAllKeystrokes

NSInputManager

weightOfFont:

NSFontManager

whiteColor

NSColor

whiteComponent

NSColor

whitespaceAndNewlineCharacterSet

NSCharacterSet

whitespaceCharacterSet

NSCharacterSet

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

width

NSTableColumn

widthAdjustLimit

NSView

widthOfString:

NSFont

widthTracksTextView

NSTextContainer

willRemoveSubview:

NSView

willSetLineFragmentRect:forGlyphRange:usedRect:

NSSimpleHorizontalTypesetter

windingRule

NSBezierPath

window

NSCachedImageRep, NSWindowController, NSEvent, NSView

windowBackgroundColor

NSColor

windowController

NSWindow

windowControllerDidLoadNib:

NSDocument

windowControllerWillLoadNib:

NSDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

windowControllers

NSDocument

windowDidBecomeKey:

NSWindow

windowDidBecomeMain:

NSWindow

windowDidChangeScreen:

NSWindow

windowDidDeminiaturize:

NSWindow

windowDidEndSheet:

NSWindow

windowDidExpose:

NSWindow

windowDidLoad

NSWindowController

windowDidMiniaturize:

NSWindow

windowDidMove:

NSWindow

windowDidResignKey:

NSWindow

windowDidResignMain:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

windowDidResize:

NSWindow

windowDidUpdate:

NSWindow

windowFrameAutosaveName

NSWindowController

windowFrameColor

NSColor

windowFrameTextColor

NSColor

windowHandle

NSWindow

windowNibName

NSWindowController, NSDocument

windowNibPath

NSWindowController

windowNumber

NSWindow, NSEvent

windowRef

NSWindow

windowShouldClose:

NSWindow

windowShouldZoom:toFrame:

NSWindow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

windowTitleForDocumentDisplayName:

NSWindowController

windowWillBeginSheet:

NSWindow

windowWillClose:

NSWindow

windowWillLoad

NSWindowController

windowWillMiniaturize:

NSWindow

windowWillMove:

NSWindow

windowWillResize:toSize:

NSWindow

windowWillReturnFieldEditor:toObject:

NSWindow

windowWillReturnUndoManager:

NSWindow

windowWillUseStandardFrame:defaultFrame:

NSWindow

windowWithWindowNumber:

NSApplication

windows

NSApplication

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

windowsMenu

NSApplication

words

NSTextStorage

worksWhenModal

NSWindow, NSPanel, NSFontPanel

wraps

NSCell

writablePasteboardTypes

NSTextView

writableTypes

NSDocument

writeData:

NSFileHandle, NSURLHandle

writeEPSInsideRect:toPasteboard:

NSView

writeFileContents:

NSPasteboard

writeFileWrapper:

NSPasteboard

writePDFInsideRect:toPasteboard:

NSView

writePrintInfo

NSPageLayout, NSPageLayout

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

writeProperty:forKey:

NSURLHandle

writeRTFDToFile:atomically:

NSText

writeSelectionToPasteboard:type:

NSTextView

writeSelectionToPasteboard:types:

NSTextView

writeToFile:

NSColorList

writeToFile:atomically:

NSString, NSData, NSDictionary, NSArray

writeToFile:atomically:updateFilenames:

NSFileWrapper

writeToFile:ofType:

NSDocument

writeToFile:ofType:originalFile:saveOperation:

NSDocument

writeToPasteboard:

NSSound, NSColor, NSURL

writeToURL:atomically:

NSString, NSData, NSDictionary, NSArray

writeToURL:ofType:

NSDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

writeWithBackupToFile:ofType:saveOperation:

NSDocument

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

XYZ

xHeight

NSFont

yank:

NSResponder

yearOfCommonEra

NSCalendarDate

years:months:days:hours:minutes:seconds:sinceDate:

NSCalendarDate

yellowColor

NSColor

yellowComponent

NSColor

zero

NSDecimalNumber

zoom:

NSWindow

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: Appendix
Unlike the rest of the book's sections, there is only one short appendix in Part III of Cocoa in a Nutshell.
Regardless of your experience level as a Mac developer, the Appendix contains valuable resources for
Cocoa programmers, including details on how you can partner with Apple to market your application.

Appendix A: Resources for Cocoa Developers

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. Appendix: Resources for Cocoa
Developers
If your mission is to produce commercial-quality software for Mac OS X, your journey can be made easier by knowing
where to look for more information. This appendix lists information about the documents referred to in this book, and
points you to other resources that can further help your Cocoa application development. These resources include:

Developer documentation from Apple

Cocoa and Mac OS X books aimed at the general programmer audience

Articles and postings about particular Cocoa programming topics

Cocoa developer mailing lists and newsgroups

Partnership programs with Apple Computer

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.1 Apple Documentation
Many of the best resources on Cocoa development are installed on your hard drive when you install Apple's Developer
Tools. These documents, mirrored online (http://developer.apple.com/techpubs), include but aren't limited to the
following:

Mac OS X Release Notes

Updated with every release of Mac OS X, these notes are typically one step ahead of the rest of Apple's
documentation. You should read through these every time you update your system so that you can stay on top
of the latest changes to the system.

/Developer/Documentation/ReleaseNotes

The Objective-C Programming Language

This is the definitive reference for the Objective-C programming language, and is a must-read for all Cocoa
developers. HTML and PDF versions of this document can be found on the Cocoa Documentation web site and
on your system.

/Developer/Documentation/Cocoa/ObjectiveC/ObjC.pdf

Foundation Reference for Objective-C

This is a two-volume set, published by Apple through Vervanté, contains the complete reference documentation
for the Foundation framework. This is the same material found online at Apple's Cocoa documentation web site,
and on your hard drive as part of the developer tools installation.

/Developer/Documentation/Cocoa/Reference/Foundation/ObjC_classic/Foundation.pdf

Application Kit Reference for Objective-C

Like the Foundation Reference for Objective-C, this book is a three-volume set that contains the complete
reference documentation for the Application Kit framework.

/Developer/Documentation/Cocoa/Reference/ApplicationKit/ObjC_classic/AppKit.pdf

Inside Mac OS X: System Overview

This overview of Mac OS X is valuable for anyone doing software development with Cocoa. You should read
Inside Mac OS X: System Overview to familiarize yourself with the architecture of Mac OS X so you can take
advantage of its design. This guide not only describes the features and capabilities of the operating system, it
also describes concepts, facilities, and conventions common to the system's Carbon, Cocoa, Java, and BSD
application environments.

/Developer/Documentation/Essentials/SystemOverview/SystemOverview.pdf

Inside Mac OS X: Aqua Human Interface Guidelines

This book, commonly referred to as "The HIG," describes how to design your application for Mac OS X's user
interface (known as Aqua). The HIG provides examples of how to use such Aqua interface elements as windows,
controls, dialogs, and icons so that the users of your Cocoa application will be familiar and comfortable with
your product the moment they double-click its icon.

/Developer/Documentation/Essentials/AquaHIGuidelines/AquaHIGuidelines.pdf

Inside Mac OS X: Performance

This book tells you how to enhance your program to achieve maximum performance and how to use the
development tools to analyze and tune your code. Topics include: managing virtual memory; accessing files
efficiently; optimizing Carbon applications; building efficient C, C++, and Java code; using the Mac OS X
performance measurement and analysis tools; and optimizing the in-memory layout of your program.

/Developer/Documentation/Essentials/Performance/performance.pdf

Core Foundation Developer Documentation

Cocoa is built upon the Core Foundation framework. Occasionally, you will need to use functionality at the Core
Foundation level that isn't exposed in the Cocoa APIs.

/Developer/Documentation/CoreFoundation/corefoundation_carbon.html

If you prefer print over PDF, you can order printed, bound copies of many selected Apple documents, including the full
Cocoa API reference, from Apple's print-on-demand service from Vervanté. For more information, or to order an Apple
document, see:

http://www.vervante.com/apple

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

http://www.vervante.com/apple

In total, the complete bound Objective-C references for Foundation and Application Kit span 5 volumes and nearly
3,000 pages of material.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.2 Related Books
Fast on the heels of the release of Mac OS X 10.0, O'Reilly began publishing a series of books as part of its ADC series,
a joint-publishing agreement between Apple and O'Reilly. The books published in the ADC series are aimed at Mac OS X
developers. Included in this series are several excellent Cocoa books:

Cocoa Design Patterns

As more users "Switch" from Unix and Windows to the Mac, programmers need to stay ahead of the curve and
develop their applications using Apple's Cocoa frameworks. This book illustrates the core design patterns of
Cocoa programming, and transfers knowledge about the structure and rationale of Cocoa—something that isn't
covered in any other book in print. The book explains the essential patterns of objects that are used in Cocoa,
and describes problems solved by Cocoa and the consequences of each solution. At the time of this writing, this
book is still in development, but should be released by O'Reilly & Associates in the summer of 2003.

Learning Cocoa with Objective-C

Now in its second edition, Learning Cocoa with Objective-C, by James Duncan Davidson, is a great first book for
Cocoa beginners. It eases you into the experience of Cocoa development not merely by reading, but by doing.
After introductions to Project Builder and Interface Builder, you'll quickly come up to speed on the concepts of
object-oriented programming with Objective-C.

Objective-C Pocket Reference

This small book by Andrew M. Duncan provides a quick and concise introduction to Objective-C for
programmers already familiar with either C or C++. In addition to covering the essentials of Objective-C
syntax, it also covers important facets of the language such as memory management, the Objective-C runtime,
dynamic loading, distributed objects, and exception handling.

Building Cocoa Applications: A Step-by-Step Guide

This book by Simson Garfinkle and Michael Mahoney walks the reader through four full-fledged Cocoa
applications from start to finish. In the course of each application the reader is immersed in Cocoa techniques
and Mac OS X as a development platform.

In addition to Cocoa, there are several more books published by O'Reilly that are worth mentioning:

Cocoa Programming for Mac OS X

This book by Aaron Hillegass is an example driven approach to learning Cocoa that is an excellent resource for
the beginning Cocoa developer.

Cocoa Programming

If you've tapped out all of your current Cocoa resources, consider this book to take you to the next level. This
1,200-page tome by Scott Anguish, Erik M. Buck, and Don Yacktman covers many of the less-talked-about
aspects of Cocoa, including such subjects as advanced optimization and debugging techniques.

Cocoa Recipes for Mac OS X: The Vermont Recipes

This book by Bill Cheeseman builds a Cocoa application from start to finish with a practical step-by-step
approach. Each stage of the application development is explained in clear detail.

To become an effective Cocoa programmer a thorough understanding of the C language is a must. Additionally,
knowledge of object-oriented programming principles is essential. To expand the minds of all developers, Cocoa and
others alike, we heartily recommend having the following books nearby:

The C Programming Language

To be an effective Objective-C programmer, you need to know C. This book, written by the creators of the C
programming language, Kernighan and Ritchie—commonly referred to as "K&R"—is the definitive reference on
the C language. Don't let the 1988 publication date deter you; this book is an essential.

Practical C Programming

Whenever anyone asks about books for learning C, Mike always recommends this book, which is the book he
learned C from. This book covers everything that is in K&R, but from a different angle. Mike keeps both Practical
C Programming and K&R close at hand.

Design Patterns

This is the book that codified what developers had known about object-oriented programming for many years
prior to its publication. Design Patterns is hailed as a landmark book in the OOP community, and rightly so, as it
defined a language for communicating ideas about OOP at a level more abstracts than level. Cocoa developers
can take pride in the fact that NeXTSTEP (If you don't know the story yet, Cocoa is a direct descendent of
NeXTSTEP) is cited repeatedly throughout the text for its use of design patterns.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.3 Web Sites
The Web provides a cornucopia of information about Cocoa (as it does about everything else). We've found it useful to
use Google (http://www.google.com, or directly from the Safari web browser's interface) to provide help for the most
arcane of issues, including odd compiler error messages. Just type it into the search field and go.

These are the sites that we browse most often for Cocoa information:

Apple Developer Connection (ADC)

Apple uses the Developer Documentation area of this web site to post new documents, and update existing
ones, on a frequent basis. In addition, being an ADC member (the basic, online membership is free) gives you
access to the latest Developer Tools releases.

http://developer.apple.com

O'Reilly's Macintosh DevCenter

Affiliated with O'Reilly & Associates, Inc., the O'Reilly Network is home to the Mac DevCenter, a hub site that
offers news, FAQs, original articles, and other technical information for Mac developers and users alike.

http://www.macdevcenter.com

MacTech magazine

MacTech's web site contains a lot of downloadable source code and a monthly column from the print magazine
that provides online technologies and resources. These resources include links to web pages, shareware
archives, newsgroups, mailing lists, and castanet channels aimed at Macintosh programmers.

http://www.mactech.com

Stepwise

One of the original Cocoa sites, Stepwise was created as a resource for NeXTSTEP developers; it serves as an
excellent resource for Cocoa and WebObjects programming.

http://www.stepwise.com

The Vermont Recipes

Published on Stepwise, this group of articles written by Bill Cheeseman, serves as a cookbook for developing
Mac OS X applications with Cocoa using a no-nonsense, hands-on, step-by-step approach.

http://www.stepwise.com/Articles/VermontRecipes

Cocoa Dev Central

This site is updated fairly frequently with tips, tricks, and tutorials for novice Cocoa developers.

http://www.cocoadevcentral.com

CocoaDev Wiki

This user-editable web site is by and for the Mac OS X developer community. If you've never used the WikiWeb
before, this style of site gives literally anyone the capability to view and add information on the site.

http://www.cocoadev.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.4 Mailing Lists
Many programmers find online mailing lists to be the best way to stay on top of what's fresh and new in the Cocoa
community. In addition, they are an excellent place to get help on a problem; just be sure to search the archives first
before asking!

cocoa-dev

Apple's moderated email list focused exclusively on Cocoa development issues.

http://lists.apple.com/mailman/listinfo/cocoa-dev

projectbuilder-users

Apple's moderated email list focused on Project Builder issues.

http://lists.apple.com/mailman/listinfo/projectbuilder-users

macosx-dev

This mailing list is hosted by one of the premiere Cocoa development houses, The Omni Group. This list is open
to a wide variety of topics for Mac OS X developers.

http://www.omnigroup.com/developer/mailinglists/macosx-dev

MacDev-1

A source of news, information, updates, and special offers for Macintosh developers.

http://www.mactech.com/macdev-1

Mamasam's Cocoa List Archive

A browsable, searchable archive of Apple's cocoa-dev and The Omni Group's macosx-dev mailing lists.

http://cocoa.mamasam.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.5 Partnering with Apple
Apple knows that your success is Apple's success. Apple wants developers like you to create successful applications that
make customers clamor for Apple computers.

You should tap into some of the programs, products, and services offered by the Apple Developer Connection (ADC).
Aimed at both large and small developers, the stated purpose of the ADC is "to help you successfully develop, test,
market, and distribute software and hardware products for Apple platforms and technologies."

In addition to publishing the Developer web site at developer.apple.com (which includes the Cocoa Developer
Documentation suite), hosting an annual Apple Worldwide Developer's Conference (WWDC), and championing
developer needs to Apple's own development engineers, the ADC offers several program packages useful to you and
other developers.

You should become a member of one of these programs. At the minimum, sign up for the Online program... it's free!
The Online program allows you to download up-to-date development tools, gain access to certain early software
releases, and receive weekly technical updates via email.

If you'd rather have this type of information mailed to you, you can pay to become an ADC Mailing customer. You'll
then receive the latest in development tools, system software, development kits, and reference materials via a CD or
DVD series delivered to you monthly via snail mail.

A low-cost ADC Student Program is targeted at university students around the world. ADC Student developers receive
special introductory tools, access to a student community of Mac developers, and other educational opportunities,
including the chance to win scholarships to the WWDC.

The priciest ADC programs are called Select and Premier. These programs offer a multitude of plush products and
services, including fat discounts on Apple hardware and third-party products and services, as well as access to Apple's
technical support engineers.

For information on signing up for any of these programs, go to the following URL:

http://developer.apple.com/membership

ADC members also receive discounts on O'Reilly's books and conferences. For more information about the discounts
available to ADC members, go to the following URL:

http://developer.apple.com/mkt/programs/oreilly.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Cocoa in a Nutshell is an Irish setter. Bred as a sporting dog in the 19th century, the Irish
setter's agility and energy made it a prime companion for pheasant and quail hunters. By the 1890s, the dog's
attractive, silky red coat and elegant build boosted its popularity as a show dog. For the past century, breeders have
created a larger dog with a longer coat, with deep chestnut red or patches of red and white hair. The dog is also
popular as a family pet. Described as loyal, gentle, energetic, and happy, the Irish setter gets along well with children.
Some hospitals, nursing homes, and rehabilitation centers also adopt the Irish setter as a therapy dog.

Colleen Gorman was the production editor, and Colleen Gorman and Ann Schirmer were the copyeditors for Cocoa in a
Nutshell. Mary Brady, Jane Ellin, Claire Cloutier, and Linley Dolby provided quality control. Reg Aubry wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe's ITC Garamond font.

David Futato and Bret Kerr designed the interior layout. This book was converted by Andrew Savikas to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and
XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Ann Schirmer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

@private
@protected
@public

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

ABMultiValue object
ABPerson
ABRecord 2nd
ABSearchElement class
accessibility functions (Application Kit)
accessor methods
action messages
actions, defined 2nd
AddressBook framework
 access property values
 adding a record
 adding an image to a record
 comparison constants used by ABSearchElement
 create new record
 creating a vCard
 defining new properties
 getting an array of all groups
 getting an array of all people in address book
 keys of address dictionary
 notifications
 properties applicable to ABRecord objects
 property keys specific to ABPerson records
 removing a record
 saving changes to disk
 searching
 set "me"
 single- and multiple-value type properties
affine transforms 2nd
alert sheet functions
alert sound functions (Application Kit)
alloc method
API, defined
AppKit controls
Apple documentation for Cocoa
Apple Event descriptor
Apple partnering programs
AppleScript 2nd
 Make command
AppleScript Studio web site
application controls
application functions (Application Kit)
application help manager object
Application Kit
 architecture
 classes [See classes, Application Kit]
 colors
 control and cell classes
 data types [See data types, Application Kit]
 defined
 drawing and imaging classes
 enumeration constants [See enumerations, Application Kit]
 exceptions [See exceptions, Application Kit]
 functions [See functions, Application Kit]
 global variables [See variables, global, Application Kit]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 protocols [See protocols, Application Kit]
application menus
application preferences
application programming interfaces [See API]
application resources
application windows
applicationDidBecomeActive: method
applicationDidFinishLaunching: method
applicationDidUnhide: method
applications
 document-based
 process information
 quitting
applicationWillHide: method
applicationWillResignActive: method
applicationWillTerminate: method
Aqua Human Interface Guidelines
archiving 2nd
 data
 exception
 keyed
 objects
 retrieving objects from
arcs
 constructing
 drawing
Arithmetic operations
assertion macros 2nd
assistive applications
asynchronous background socket communication
attributed string, creating 2nd
audio content, preparing
autocompletion behavior
autorelease pool 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

base-10 arithmetic operations
Bezier
 curves
 paths
 vector-based paths
binary data
bitmapped raster images
Boolean
 expressions
 tests
bounds rectangle 2nd 3rd
 resizing
buffered communication
bundles
 defined
 functions
burn disc panel
burning data to CDs and DVDs
button control
byte ordering functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

calendar dates
category interface declaration
category, defined
cell classes
changing the flatness of a Bezier path
Character Palette utility
character sets, modifying contents 2nd
checking that an object conforms to a protocol
class clusters
class methods
class-cast exceptions
classes
 Application Kit
 NSActionCell
 NSAffineTransform
 NSApplication [See NSApplication class]
 NSBezierPath [See NSBezierPath class]
 NSBitmapImageRep [See NSBitmapImageRep class]
 NSBox
 NSBrowser
 NSBrowserCell
 NSButton
 NSButtonCell
 NSCachedImageRep [See NSCachedImageRep class]
 NSCell [See NSCell class]
 NSClipView [See NSClipView class]
 NSColor [See NSColor class]
 NSColorList
 NSColorPanel [See NSColorPanel class]
 NSColorPicker
 NSColorWell
 NSComboBox
 NSComboBoxCell
 NSControl [See NSControl class]
 NSCursor
 NSCustomImageRep 2nd
 NSDocument [See NSDocument class]
 NSDocumentController [See NSDocumentController class]
 NSDrawer
 NSEPSImageRep
 NSEvent [See NSEvent class]
 NSFileWrapper
 NSFont [See NSFont class]
 NSFontManager
 NSFontPanel
 NSForm
 NSFormCell
 NSGlyphInfo
 NSGraphicsContext [See NSGraphicsContext class]
 NSHelpManager
 NSImage [See NSImage class]
 NSImageCell
 NSImageRep [See NSImageRep class]
 NSImageView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSInputManager
 NSInputServer
 NSLayoutManager [See NSLayoutManager class]
 NSMatrix [See NSMatrix class]
 NSMenu [See NSMenu class]
 NSMenuItem [See NSMenuItem class]
 NSMenuItemCell
 NSMenuView
 NSMovie
 NSMovieView
 NSMutableParagraphStyle
 NSNibConnector
 NSNibControlConnector
 NSNibOutletConnector
 NSOpenGLContext
 NSOpenGLPixelFormat
 NSOpenGLView
 NSOpenPanel
 NSOutlineView [See NSOutlineView class]
 NSPageLayout
 NSPanel [See NSPanel class]
 NSParagraphStyle
 NSPasteboard [See NSPasteboard class]
 NSPDFImageRep [See NSPDFImageRep class]
 NSPictImageRep [See NSPictImageRep class]
 NSPopUpButton
 NSPopUpButtonCell
 NSPrinter
 NSPrintInfo [See NSPrintInfo class]
 NSPrintOperation
 NSPrintPanel [See NSPrintPanel class]
 NSProgressIndicator
 NSQuickDrawView
 NSResponder [See NSResponder class]
 NSRulerMarker
 NSRulerView
 NSSavePanel [See NSSavePanel class]
 NSScreen
 NSScroller
 NSScrollView [See NSScrollView class]
 NSSecureTextField
 NSSecureTextFieldCell
 NSSimpleHorizontalTypesetter
 NSSlider
 NSSliderCell
 NSSound
 NSSpellChecker
 NSSplitView
 NSStatusBar
 NSStatusItem
 NSStepper
 NSStepperCell
 NSTableColumn
 NSTableHeaderCell
 NSTableHeaderView
 NSTableView
 NSTabView
 NSTabViewItem
 NSText [See NSText class]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSTextAttachment
 NSTextAttachmentCell
 NSTextContainer [See NSTextContainer class]
 NSTextField
 NSTextFieldCell
 NSTextStorage [See NSTextStorage class]
 NSTextTab
 NSTextView [See NSTextView class]
 NSToolbar [See NSToolbar class]
 NSToolbarItem [See NSToolbarItem class]
 NSTypesetter
 NSView [See NSView class]
 NSWindow [See NSWindow class]
 NSWindowController [See NSWindowController class]
 NSWorkspace [See NSWorkspace class]
 defined
 defining
 Foundation framework
 NSAppleEventDescriptor
 NSAppleEventManager
 NSAppleScript
 NSArchiver [See NSArchiver class]
 NSArray [See NSArray class]
 NSAssertionHandler
 NSAttributedString [See NSAttributedString class]
 NSAutoreleasePool
 NSBundle [See NSBundle class]
 NSCalendarDate [See NSCalendarDate class]
 NSCharacterSet [See NSCharacterSet class]
 NSClassDescription
 NSCloneCommand
 NSCloseCommand
 NSCoder
 NSConditionLock [See NSConditionLock class]
 NSConnection [See NSConnection class]2nd
 NSCountCommand
 NSCountedSet
 NSCreateCommand
 NSData [See NSData class]
 NSDate [See NSDate class]
 NSDateFormatter
 NSDecimalNumber [See NSDecimalNumber class]
 NSDecimalNumberHandler
 NSDeleteCommand
 NSDeserializer
 NSDictionary [See NSDictionary class]
 NSDirectoryEnumerator
 NSDistantObject
 NSDistantObjectRequest
 NSDistributedLock
 NSDistributedNotificationCenter
 NSEnumerator [See NSEnumerator class]
 NSException
 NSExistsCommand
 NSFileHandle [See NSFileHandle class]
 NSFileManager [See NSFileManager class]
 NSGetCommand
 NSHost [See NSHost class]
 NSIndexSpecifier

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSInvocation
 NSKeyedArchiver [See NSKeyedArchiver class]
 NSKeyedUnarchiver [See NSKeyedUnarchiver class]
 NSLock [See NSLock class]
 NSLogicalTest
 NSMachBootstrapServer
 NSMachPort
 NSMessagePort
 NSMessagePortNameServer
 NSMethodSignature
 NSMiddleSpecifier
 NSMoveCommand
 NSMutableArray [See NSMutableArray class]
 NSMutableAttributedString
 NSMutableCharacterSet
 NSMutableData
 NSMutableDictionary
 NSMutableSet
 NSMutableString [See NSMutableString class]
 NSNameSpecifier
 NSNetService [See NSNetService class]
 NSNetServiceBrowser [See NSNetServiceBrowser class]
 NSNotification [See NSNotification class]
 NSNotificationCenter [See NSNotificationCenter class]
 NSNotificationQueue
 NSNull
 NSNumber [See NSNumber class]
 NSNumberFormatter
 NSObject
 NSPipe [See NSPipe class]
 NSPort
 NSPortCoder [See NSPortCoder class]
 NSPortMessage
 NSPortNameServer
 NSPositionalSpecifier
 NSProcessInfo
 NSPropertyListSerialization
 NSPropertySpecifier
 NSProtocolChecker
 NSProxy
 NSQuitCommand
 NSRandomSpecifier
 NSRangeSpecifier
 NSRecursiveLock [See NSRecursiveLock class]
 NSRelativeSpecifier
 NSRunLoop [See NSRunLoop class]
 NSScanner [See NSScanner class]
 NSScriptClassDescription
 NSScriptCoercionHandler
 NSScriptCommand
 NSScriptCommandDescription
 NSScriptExecutionContext
 NSScriptObjectSpecifier
 NSScriptSuiteRegistry
 NSScriptWhoseTest
 NSSerializer
 NSSet [See NSSet class]
 NSSetCommand
 NSSocketPort [See NSSocketPort class]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NSSocketPortNameServer
 NSSpecifierTest
 NSSpellServer
 NSString [See NSString class]
 NSTask [See NSTask class]
 NSThread [See NSThread class]
 NSTimer
 NSTimeZone
 NSUnarchiver [See NSUnarchiver class]
 NSUndoManager
 NSUniqueIDSpecifier
 NSURL [See NSURL class]
 NSURLHandle
 NSUserDefaults [See NSUserDefaults class]
 NSValue
 NSWhoseSpecifier
 immutable
 implementation
 interface 2nd
 mutable
 root class
cloning objects
Cocoa, defined
collections 2nd 3rd
 altering contents
 dictionaries
 enumerated
 enumerating contents
 memory management
 NSArray class
 NSDictionary class
 NSEnumerator class
 NSMutableArray class
 NSSet class 2nd
 range of objects within
 unordered
color list
color objects, creating
color panel
color pickers 2nd
color space
 classes
 names global variables
color-picker panel
colors
colorspace
column display
column headers in a table view
communication
 failures
 interapplication
 interprocess
 ports 2nd
comparing objects 2nd
composite images
CompositeLab
compositing
 operations and constants
concat

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

connecting to a remote object
Connection exception
constants
 Foundation framework
 NSDecimalMaxSize
 NSDecimalNoScale
 NSNotAnIntMapKey
 NSNotAPointerMapKey
constraining a variableÕs scope
construct a complex shape using NSBezierPath
construct arcs
constructing and performing searches in the AddressBook framework
content view 2nd
contextual menus
controller, defined
coordinate system
copying a parameter to enforce encapsulation
counting objects
creating an empty image data buffer
currentContext method
custom drawing code

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

data content, preparing
data display
data object, altering
data types
 Application Kit
 Foundation framework
 id
 numbers
 strings
date and time as an absolute reference 2nd
date and time classes
 NSCalendarDate
 NSDate
 NSTimeZone
dealloc method
decimal functions
defaultCenter method
defaults, user
defining a category interface
delegation, defined
deleting objects
deliverMessage: methods
design patterns
 defined
designated initializer
determinate progress indicator
dictionaries
directory contents
DiscRecording framework
 burn properties dictionary keys
 class hierarchy
 DRBurn class
 DRErase class
 DRTrack class
 preparing audio content
 preparing data content
DiscRecordingUI framework
 burn disc panel
 class hierarchy
 DRBurnProgressPanel class
 DRBurnSetupPanel class
 DREraseSetupPanel class
 erase disc panel
 using setup panels
Display Device class global variables
distributed lock object
distributed notifications
 center
distributed objects 2nd
 API
 applications
 architecture
 efficiency and reliability
 threads and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dock menu
document factory
document-based application architecture
document-based applications
domains
 defined
 persistent
 volatile
drag operations
dragging session
drawer interface
drawers 2nd
drawing and imaging
drawing and imaging classes
drawing arcs
drawing commands
drawing text
DRBurn class
DRErase class
DRTrack class
dynamic binding
 defined
 late binding vs.
dynamic typing, defined

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

encapsulation, defined
enumerating the contents of an array
enumerations
 Application Kit
 Foundation framework 2nd
enumerators
erase disc panel
event descriptor objects
events
 functions (Application Kit)
 handling
 keyboard
 loops
 messages
 mouse
 objects
exception-handling
exceptions
 Application Kit
 Foundation class 2nd
 uncaught
executable binaries

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

File Attribute Keys global variable
file save dialog
File Type Attribute Keys global variable
Filesystem Attribute Keys global variable
filesystem interaction
fill method
first-class objects
flatness, defined
focus
font
font functions (Application Kit)
font, ligature
for-loops
Foundation framework
 classes
 defined
 functions [See functions, Foundation framework]
 protocols [See protocols, Foundation]
frame rectangle
frame, region of a superview
frameworks
 additional
 DiscRecording
 DiscRecordingUI
 Message
 Objective-C
 third-party
functions
 Application Kit
 accessibility
 alert sounds
 application
 events
 fonts
 graphics
 interface style
 OpenGL
 panel
 pasteboard
 Foundation
 assertion macros
 bundle
 byte ordering
 decimal
 hash table
 HFS file type
 Java setup
 map table
 memory zones
 object allocation
 Objective-C runtime
 path utilities
 point
 range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 rect
 size
 uncaught exceptions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

General Foundation Exception Names exception
global variables, Application Kit [See variables, global, Application Kit]
glyphs
graphics contexts
 defined
 multiple
graphics functions (Application Kit)
grids

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

hasDeliveryClassBeenConfigured method
hash table functions
HFS file type functions
hierarchical data display
host name lookup
hosts

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

id data type
images
 composite
 drawing
 drawing into
immutable classes
implementation
 defined
 of a category
 of a class
indeterminate progress indicator
Info.plist file 2nd
init method
initialization method for a class
instance variables, scoping
instances
 @private
 @protected
 @public
 creating object
inter-process communication
interapplication and interthread communication
Interface Builder
 defined
interface header (.h) files
interface style functions (Application Kit)
interface, defined
Internet Assigned Numbers Authority catalog web site
IP address translation
IPC classes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Java Bridge
Java setup functions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

key-value coding 2nd
 defined 2nd
key-value pairs
keyboard events
keyed archiving 2nd
 exception
keys, address dictionary
keys, defined
keys, property (AddressBook framework)
keystrokes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Language-Dependent Date/Time Information global variable
Language-Dependent Numeric Information global variable
late binding
layout managers
ligature, font
line
 cap style 2nd
 dashes and phase 2nd
 join style
 join styles
 width
line attributes
line movement direction
line sweep direction
loading code with NSBundle
loadNibName:owner: method
locally represent objects
lock objects
lockFocus message
locking
locks
 explained

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Mach IPC ports
mailing lists for Cocoa developers
MainMenu.nib file
manipulating an imageÕs data on a byte level
map table functions
matrixes
measuring angles
memory management 2nd
 and collections
 in accessor methods
 web site
memory zones
menu targets
menus
menus, contextual
Message framework
 NSMailDelivery class
 deliverMessage:headers:format:protocol: method
 deliverMessage:subject:to: method
 hasDeliveryClassBeenConfigured method
messages
 arguments
 defined
 multiple arguments
 nested
 nil
 resolved into methods
 selector and target
 structure of
methods, signature
MiscKit (Object Foundation) web site
miter limit 2nd
model, defined
Model-View-Controller (MVC) design pattern 2nd
 defined
mouse cursors
mouse events 2nd
move operations
multiple-value objects
mutable copies
mutable subclass

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

naming conventions
network classes hierarchy
network domains
network services 2nd 3rd
 creating and publishing
networking
nib files
notifications 2nd 3rd
 center 2nd
 defined
 changing delivery behavior
 defined
 distributed
 observers
 removing
 suspended
NSAccessibility class
 global variables 2nd 3rd 4th 5th 6th 7th
 protocol
NSAccessibilityPostNotification function
NSAccessibilityUnignoredAncestor function
NSAccessibilityUnignoredChildren function
NSAccessibilityUnignoredChildrenForOnlyChild function
NSAccessibilityUnignoredDescendant function
NSActionCell class (Application Kit)
NSAffineTransform class 2nd
 Application Kit
NSAffineTransformStruct data type
NSAllHashTableObjects function
NSAllMapTableKeys function
NSAllMapTableValues function
NSAllocateMemoryPages function
NSAllocateObject function
NSAppleEvent Timeouts global variable
NSAppleEventDescriptor class
NSAppleEventManager class
NSAppleScript class
NSApplication class 2nd
 Application Kit
 delegate object
 enumeration
 global variables
NSApplicationLoad function
NSApplicationMain function 2nd
NSApplicationTerminateReply data type
NSArchiver class 2nd
NSArgumentDomain class
NSArray class 2nd
NSAssert function
NSAssert1 through NSAssert5 functions
NSAssertionHandler class
NSAttributedString class 2nd
 attributes
 enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 global variables 2nd 3rd 4th 5th
NSAutoreleasePool class
NSAvailableWindowDepths function
NSBackingStoreType data type
NSBeep function
NSBeginAlertSheet function
NSBeginCriticalAlertSheet function
NSBeginInformationalAlertSheet function
NSBestDepth function
NSBezelStyle data type
NSBezierPath class 2nd
 Application Kit
 constructing complex shape
NSBezierPathElement data type
NSBitmapImageFileType data type
NSBitmapImageRep class
 Application Kit
 global variables
 subclass
NSBitsPerPixelFromDepth function
NSBitsPerSampleFromDepth function
NSBorderType data type
NSBox class (Application Kit)
NSBoxType data type
NSBrowser class (Application Kit)
NSBrowserCell class (Application Kit)
NSBundle class 2nd
 loading code
 loading resources
NSButton class (Application Kit)
NSButtonCell class (Application Kit)
NSButtonType data type
NSCachedImageRep class (Application Kit)
NSCachedImageRep subclass
NSCalculationError data type
NSCalendarDate class 2nd
NSCaseInsensitiveSearch
NSCAssert function
NSCAssert1 through NSCAssert5 functions
NSCell class
 Application Kit
 enumeration 2nd
 hierarchy
NSCellAttribute data type
NSCellImagePosition data type
NSCellState data type
NSCellType data type
NSChangeSpelling protocol (Application Kit)
NSCharacterCollection data type
NSCharacterSet class 2nd
NSClassDescription class
NSClassFromString function
NSClipView class
 Application Kit
NSCloneCommand class
NSCloseCommand class
NSCoder class 2nd
NSCoding protocol
NSColor class 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Application Kit
 global variables
NSColorList class (Application Kit)
NSColorPanel class
 Application Kit
 enumeration 2nd
NSColorPicker class (Application Kit)
NSColorPickingCustom protocol (Application Kit)
NSColorPickingDefault protocol (Application Kit)
NSColorSpaceFromDepth function
NSColorWell class (Application Kit)
NSComboBox class (Application Kit)
NSComboBoxCell class (Application Kit)
NSComboBoxCellDataSource protocol (Application Kit)
NSComboBoxDataSource protocol (Application Kit)
NSCompareHashTables function
NSCompareMapTables function
NSComparisonMethods protocol
NSComparisonResult data type
NSCompositingOperation data type
NSConditionLock class 2nd
NSConnection class 2nd 3rd
NSConnectionReplyMode global variable
NSContainsRect function
NSControl class
 Application Kit
 hierarchy
NSControlSize data type
NSControlTint data type
NSConvertGlyphsToPackedGlyphs function
NSConvertHostDoubleToSwapped function
NSConvertHostFloatToSwapped function
NSConvertSwappedDoubleToHost function
NSConvertSwappedFloatToHost function
NSCopyBits function
NSCopyHashTableWithZone function
NSCopying protocol
NSCopyMapTableWithZone function
NSCopyMemoryPages function
NSCopyObject function
NSCountCommand class
NSCountedSet class
NSCountHashTable function
NSCountMapTable function
NSCountWindows function
NSCountWindowsForContext function
NSCParameterAssert function
NSCreateCommand class
NSCreateFileContentsPboardType function
NSCreateFilenamePboardType function
NSCreateHashTable function
NSCreateHashTableWithZone function
NSCreateMapTable function
NSCreateMapTableWithZone function
NSCreateZone function
NSCursor class (Application Kit)
NSCustomImageRep class
 Application Kit
 subclass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSData class 2nd
NSDate class 2nd
 convert to human-readable date and time string
NSDateFormatter class
NSDeallocateMemoryPages function
NSDeallocateObject function
NSDecimal data type
NSDecimalAdd function
NSDecimalCompact function
NSDecimalCompare function
NSDecimalCopy function
NSDecimalDivide function
NSDecimalMaxSize constant
NSDecimalMultiply function
NSDecimalMultiplyByPowerOf10 function
NSDecimalNormalize function
NSDecimalNoScale constant
NSDecimalNumber class 2nd
 exception
NSDecimalNumberBehaviors protocol
NSDecimalNumberHandler class
NSDecimalPower function
NSDecimalRound function
NSDecimalString function
NSDecimalSubtract function
NSDecrementExtraRefCountWasZero function
NSDefaultMallocZone function
NSDefaultRunLoopMode global variable
NSDeleteCommand class
NSDeserializer class
NSDictionary class 2nd
NSDirectoryEnumerator class
NSDistantObject class
NSDistantObjectRequest class
NSDistributedLock class
NSDistributedNotificationCenter class
NSDivideRect function
NSDocument class
 Application Kit
NSDocumentChangeType data type
NSDocumentController class
 Application Kit
NSDottedFrameRect function
NSDragging (Operations) enumeration
NSDraggingDestination protocol (Application Kit)
NSDraggingInfo protocol (Application Kit)
NSDraggingSource protocol (Application Kit)
NSDragOperation data type
NSDrawBitmap function
NSDrawButton function
NSDrawColorTiledRects function
NSDrawDarkBezel function
NSDrawer class
 Application Kit
NSDrawerState data type
NSDrawGrayBezel function
NSDrawGroove function
NSDrawLightBezel function
NSDrawTiledRects function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSDrawWhiteBezel function
NSDrawWindowBackground function
NSEndHashTableEnumeration function
NSEndMapTableEnumeration function
NSEnumerateHashTable function
NSEnumerateMapTable function
NSEnumerator class 2nd
NSEPSImageRep class
 Application Kit
 subclass
NSEqualPoints function
NSEqualRanges function
NSEqualRects function
NSEqualSizes function
NSEraseRect function
NSEvent class
 Application Kit
 enumeration 2nd 3rd 4th 5th
NSEventMaskFromType function
NSEventType data type
NSException class
NSExistsCommand class
NSExtraRefCount function
NSFileHandle class 2nd 3rd
 client side
 exception
 methods
 server socket communication
NSFileManager class 2nd
NSFileTypeForHFSTypeCode function
NSFileWrapper class (Application Kit)
NSFocusRingPlacement data type
NSFont class
 Application Kit
 enumeration
 global variables 2nd
NSFontAction data type
NSFontManager class (Application Kit)
NSFontPanel class (Application Kit)
NSFontTraitMask data type
NSForm class (Application Kit)
NSFormatter class
NSFormCell class (Application Kit)
NSFrameRect function
NSFrameRectWithWidth function
NSFrameRectWithWidthUsingOperation function
NSFreeHashTable function
NSFreeMapTable function
NSFullUserName function
NSGetAlertPanel function
NSGetCommand class
NSGetCriticalAlertPanel function
NSGetFileType function
NSGetInformationalAlertPanel function
NSGetSizeAndAlignment function
NSGetUncaughtExceptionHandler function
NSGetWindowServerMemory function
NSGlobalDomain class
NSGlyph data type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 enumeration
NSGlyphInfo class (Application Kit)
NSGlyphInfoAtIndex function
NSGlyphInscription data type
NSGlyphLayoutMode data type
NSGlyphRelation data type
NSGradientType data type
NSGraphics (Alpha Values) enumeration
NSGraphicsContext class
 Application Kit
 global variables
NSHashEnumerator data type
NSHashGet function
NSHashInsert function
NSHashInsertIfAbsent function
NSHashInsertKnownAbsent function
NSHashRemove function
NSHashTable Callbacks global variable
NSHashTable data type
NSHashTableCallBacks data type
NSHeight function
NSHelpManager class (Application Kit)
NSHFSTypeCodeFromFileType function
NSHFSTypeOfFile function
NSHighlightRect function
NSHomeDirectory function
NSHomeDirectoryForUser function
NSHost class 2nd
NSHostByteOrder function
NSIgnoreMisspelledWords protocol (Application Kit)
NSImage class 2nd
 Application Kit
NSImageAlignment data type
NSImageCacheMode data type
NSImageCell class (Application Kit)
NSImageFrameStyle data type
NSImageInterpolation data type
NSImageLoadStatus data type
NSImageRep class 2nd
 Application Kit
 enumeration
 subclasses
NSImageRepLoadStatus data type
NSImageScaling data type
NSImageView class
 Application Kit
 subclass
NSIncrementExtraRefCount function
NSIndexSpecifier class
NSInputManager class (Application Kit)
NSInputServer class (Application Kit)
NSInputServerMouseTracker protocol (Application Kit)
NSInputServiceProvider protocol (Application Kit)
NSInsertionPosition data type
NSInsetRect function
NSIntegralRect function
NSInterfaceStyle data type 2nd
NSInterfaceStyleDefault global variables
NSIntersectionRange function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSIntersectionRect function
NSIntersectsRect function
NSInvocation class
NSIsEmptyRect function
NSJavaBundleCleanup function
NSJavaBundleSetup function
NSJavaClassesForBundle function
NSJavaClassesFromPath function
NSJavaNeedsToLoadClasses function
NSJavaNeedsVirtualMachine function
NSJavaObjectNamedInPath function
NSJavaProvidesClasses function
NSJavaSetup
 function
 global variable
NSJavaSetupVirtualMachine function
NSKeyedArchiver class 2nd
NSKeyedUnarchiver class 2nd
NSKeyValueCoding
 protocol
NSLayoutDirection data type
NSLayoutManager class 2nd 3rd 4th
 Application Kit
NSLayoutStatus data type
NSLineBreakMode data type
NSLineCapStyle data type
NSLineJoinStyle data type
NSLineMovementDirection data type
NSLineSweepDirection data type
NSLiteralSearch
NSLocalizedString function
NSLocalizedStringFromTable function
NSLocalizedStringFromTableInBundle function
NSLocalizedStringWithDefaultValue function
NSLocalNotificationCenterType global variable
NSLocationInRange function
NSLock class 2nd 3rd
NSLocking protocol
NSLog function
NSLogicalTest class
NSLogPageSize function
NSLogv function
NSMachBootstrapServer class
NSMachPort class
NSMailDelivery class
NSMakePoint function
NSMakeRange function
NSMakeRect function
NSMakeSize function
NSMapEnumerator data type
NSMapGet function
NSMapInsert function
NSMapInsertIfAbsent function
NSMapInsertKnownAbsent function
NSMapMember function
NSMapRemove function
NSMapTable
 data type
 Key Call Backs global variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Value Callbacks global variable
NSMapTableKeyCallBacks data type
NSMapTableValueCallBacks data type
NSMatrix class
 Application Kit
 subclass
NSMatrixMode data type
NSMaxRange function
NSMaxX function
NSMaxY function
NSMenu class
 Application Kit
NSMenuItem class
 Application Kit
 protocol
NSMenuItemCell class (Application Kit)
NSMenuValidation protocol (Application Kit)
NSMenuView class (Application Kit)
NSMessagePort class
NSMessagePortNameServer class
NSMethodSignature class
NSMiddleSpecifier class
NSMidX function
NSMidY function
NSMinX function
NSMinY function
NSModalSession data type
NSMouseInRect function
NSMoveCommand class
NSMovie class (Application Kit)
NSMovieView class (Application Kit)
NSMultibyteGlyphPacking data type
NSMutableArray class 2nd
NSMutableAttributedString class
NSMutableCharacterSet class
NSMutableCopying protocol
NSMutableData class
NSMutableDictionary class
NSMutableParagraphStyle class (Application Kit)
NSMutableSet class
NSMutableString class 2nd
 appending, inserting, deleting, replacing
NSNameSpecifier class
NSNetService class 2nd
 delegate methods
 error codes
NSNetServiceBrowser class 2nd
NSNetServices Errors global variable
NSNetServicesError data type
NSNextHashEnumeratorItem function
NSNextMapEnumeratorPair function
NSNibAwaking protocol (Application Kit)
NSNibConnector class (Application Kit)
NSNibControlConnector class (Application Kit)
NSNibOutletConnector class (Application Kit)
NSNotAnIntMapKey constant
NSNotAPointerMapKey constant
NSNotFound
 enumeration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSNotification class 2nd 3rd
NSNotificationCenter class 2nd 3rd
NSNotificationCoalescing data type
NSNotificationQueue class
NSNotificationSuspensionBehavior data type
NSNull class
NSNumber class 2nd
NSNumberFormatter class
NSNumberOfColorComponents function
NSObjCTypeSerializationCallBack protocol
NSObjCValue data type
NSObject class
 protocol
NSOffsetRect function
NSOpenGLContext class (Application Kit)
NSOpenGLContextAuxiliary data type
NSOpenGLContextParameter data type
NSOpenGLGetOption function
NSOpenGLGetVersion function
NSOpenGLGlobalOption data type
NSOpenGLPixelFormat class (Application Kit)
NSOpenGLPixelFormatAttribute data type
NSOpenGLPixelFormatAuxiliary data type
NSOpenGLSetOption function
NSOpenGLView class (Application Kit)
NSOpenPanel class (Application Kit)
NSOpenStepRootDirectory function
NSOpenStepUnicodeReservedBase enumeration
NSOutlineView class
 Application Kit
 enumeration
NSOutlineViewDataSource protocol (Application Kit)
NSPageLayout class (Application Kit)
NSPageSize function
NSPanel class
 Application Kit
 enumeration 2nd 3rd
NSParagraphStyle class (Application Kit)
NSParameterAssert function
NSPasteboard class
 Application Kit
 global variables 2nd 3rd
NSPDFImageRep
 subclass
NSPDFImageRep class
 Application Kit
NSPerformService function
NSPictImageRep
 subclass
NSPictImageRep class
 Application Kit
NSPipe class 2nd
NSPlanarFromDepth function
NSPoint data type 2nd
NSPointArray data type
NSPointFromString function
NSPointInRect function
NSPointPointer data type
NSPopUpArrowPosition data type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSPopUpButton class (Application Kit)
NSPopUpButtonCell class (Application Kit)
NSPort class
NSPortCoder class 2nd
NSPortMessage class
NSPortNameServer class
NSPositionalSpecifier class
NSPostingStyle data type
NSPrinter class (Application Kit)
NSPrinterTableStatus data type
NSPrintInfo class
 Application Kit
 global variables
NSPrintingOrientation data type
NSPrintingPageOrder data type
NSPrintingPaginationMode data type
NSPrintOperation class (Application Kit)
NSPrintPanel class
 Application Kit
 global variables
NSProcessInfo class 2nd
 enumeration
NSProgressIndicator class (Application Kit)
NSProgressIndicatorStyle data type
NSProgressIndicatorThickness data type
NSPropertyListFormat data type
NSPropertyListMutabilityOptions data type
NSPropertyListSerialization class
NSPropertySpecifier class
NSProtocolChecker class
NSProxy class
NSQTMovieLoopMode data type
NSQuickDrawView class (Application Kit)
NSQuitCommand class
NSRandomSpecifier class
NSRange data type 2nd 3rd
NSRangeFromString function
NSRangePointer data type
NSRangeSpecifier class
NSReadPixel function
NSRealMemoryAvailable function
NSRect data type 2nd
NSRectArray data type
NSRectClip function
NSRectClipList function
NSRectEdge data type
NSRectFill function
NSRectFillList function
NSRectFillListUsingOperation function
NSRectFillListWithColors function
NSRectFillListWithColorsUsingOperation function
NSRectFillListWithGrays function
NSRectFillUsingOperation function
NSRectFromString function
NSRectPointer data type
NSRecursiveLock class 2nd
NSRecycleZone function
NSRegisterServicesProvider function
NSRegistrationDomain class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSRelativePosition data type
NSRelativeSpecifier class
NSReleaseAlertPanel function
NSRequestUserAttentionType data type
NSResetHashTable function
NSResetMapTable function
NSResponder
NSResponder class 2nd
 Application Kit
NSReturnAddress function
NSRoundDownToMultipleOfPageSize function
NSRoundingMode data type
NSRoundUpToMultipleOfPageSize function
NSRulerMarker class (Application Kit)
NSRulerOrientation data type
NSRulerView class (Application Kit)
NSRunAlertPanel function
NSRunCriticalAlertPanel function
NSRunInformationalAlertPanel function
NSRunLoop class 2nd
 enumeration 2nd
 global variables
NSSaveOperationType data type
NSSaveOptions data type
NSSavePanel class
 Application Kit
 enumeration
NSScanner class 2nd
NSScreen class (Application Kit)
NSScreenAuxiliaryOpaque data type
NSScriptClassDescription class
NSScriptCoercionHandler class
NSScriptCommand class
 enumeration
NSScriptCommandDescription class
NSScriptExecutionContext class
NSScriptingComparisonMethods protocol
NSScriptKeyValueCoding
 exception
 protocol
NSScriptObjectSpecifier class
 enumeration
NSScriptObjectSpecifiers protocol
NSScriptSuiteRegistry class
NSScriptWhoseTest class
NSScrollArrowPosition data type
NSScroller class (Application Kit)
NSScrollerArrow data type
NSScrollerPart data type
NSScrollView class
 Application Kit
NSSearchPathDirectory data type
NSSearchPathDomainMask data type
NSSearchPathForDirectoriesInDomains function
NSSecureTextField class (Application Kit)
NSSecureTextFieldCell class (Application Kit)
NSSelectionAffinity data type
NSSelectionDirection data type
NSSelectionGranularity data type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSSelectorFromString function
NSSerializer class
NSServicesRequests protocol (Application Kit)
NSSet class 2nd 3rd
NSSetCommand class
NSSetFocusRingStyle function
NSSetShowsServicesMenuItem function
NSSetUncaughtExceptionHandler function
NSSetZoneName function
NSShouldRetainWithZone function
NSShowsServicesMenuItem function
NSSimpleHorizontalTypesetter class (Application Kit)
NSSize data type 2nd
NSSizeArray data type
NSSizeFromString function
NSSizePointer data type
NSSlider class (Application Kit)
NSSliderCell class (Application Kit)
NSSocketPort class 2nd
NSSocketPortNameServer class
NSSound class (Application Kit)
NSSpecifierTest class
NSSpellChecker class (Application Kit)
NSSpellServer class
NSSplitView class (Application Kit)
NSStatusBar class (Application Kit)
NSStatusItem class (Application Kit)
NSStepper class (Application Kit)
NSStepperCell class (Application Kit)
NSString class 2nd 3rd
 append a format
 append a string
 check for prefix or suffix
 comparing strings
 create a string using printf style formatting
 create a string with a character array
 create one string from another string
 determine the length of a string
 extract strings
 get a C string from
 handling exception
 initializing
 literal syntax
 release
 retain
 return 6 characters starting at index 7
 return capitalization
 return characters from beginning to character 5
 return lowercase
 return uppercase
 search substrings
 Unicode and
 using text file to initialize a string
NSStringEncoding data type
NSStringFromClass function
NSStringFromHashTable function
NSStringFromMapTable function
NSStringFromPoint function
NSStringFromRange function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSStringFromRect function
NSStringFromSelector function
NSStringFromSize function
NSSwapBigDoubleToHost function
NSSwapBigFloatToHost function
NSSwapBigIntToHost function
NSSwapBigLongLongToHost function
NSSwapBigLongToHost function
NSSwapBigShortToHost function
NSSwapDouble function
NSSwapFloat function
NSSwapHostDoubleToBig function
NSSwapHostDoubleToLittle function
NSSwapHostFloatToBig function
NSSwapHostFloatToLittle function
NSSwapHostIntToBig function
NSSwapHostIntToLittle function
NSSwapHostLongLongToBig function
NSSwapHostLongLongToLittle function
NSSwapHostLongToBig function
NSSwapHostLongToLittle function
NSSwapHostShortToBig function
NSSwapHostShortToLittle function
NSSwapInt function
NSSwapLittleDoubleToHost function
NSSwapLittleFloatToHost function
NSSwapLittleIntToHost function
NSSwapLittleLongLongToHost function
NSSwapLittleLongToHost function
NSSwapLittleShortToHost function
NSSwapLong function
NSSwapLongLong function
NSSwappedDouble data type
NSSwappedFloat data type
NSSwapShort function
NSTableColumn class (Application Kit)
NSTableDataSource protocol (Application Kit)
NSTableHeaderCell class (Application Kit)
NSTableHeaderView class (Application Kit)
NSTableView class (Application Kit)
NSTableViewDropOperation data type
NSTabState data type
NSTabView class (Application Kit)
NSTabViewItem class (Application Kit)
NSTabViewItemAuxiliaryOpaque data type
NSTabViewType data type
NSTask class 2nd
NSTemporaryDirectory function
NSTestComparisonOperation data type
NSText class
 Application Kit
 enumeration 2nd
NSTextAlignment data type
NSTextAttachment (Attachment Character) enumeration
NSTextAttachment class (Application Kit)
NSTextAttachmentCell class (Application Kit)
NSTextAttachmentCell protocol (Application Kit)
NSTextContainer class 2nd 3rd
 Application Kit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSTextField class (Application Kit)
NSTextFieldBezelStyle data type
NSTextFieldCell class (Application Kit)
NSTextInput protocol (Application Kit)
NSTextStorage class 2nd 3rd
 Application Kit
 enumeration
NSTextStorage subclass
NSTextStorageScripting protocol (Application Kit)
NSTextTab class (Application Kit)
NSTextTabType data type
NSTextView class 2nd
 Application Kit
NSThread class 2nd
 sleepUntilDate: method
NSTickMarkPosition data type
NSTIFFCompression data type
NSTimeInterval data type
NSTimer class
NSTimeZone class 2nd
NSTitlePosition data type
NSToolbar class
 Application Kit
NSToolbarDisplayMode data type
NSToolbarItem class
 Application Kit
 global variables
NSToolbarItemValidation protocol (Application Kit)
NSToolbarSizeMode data type
NSToolTipOwner protocol (Application Kit)
NSToolTipTag data type
NSTrackingRectTag data type
NSTypesetter class (Application Kit)
NSTypesetterBehavior data type
NSTypesetterGlyphInfo data type
NSUnarchiver class 2nd
NSUncaughtExceptionHandler data type
NSUndoCloseGroupingRunLoopOrdering enumeration
NSUndoManager class
NSUnionRange function
NSUnionRect function
NSUniqueIDSpecifier class
NSUnRegisterServicesProvider function
NSUpdateDynamicServices function
NSURL class 2nd 3rd
 global variable
 methods
NSURLHandle class 2nd 3rd
NSURLHandle FTP Property Keys global variable
NSURLHandle HTTP Property Keys global variable
NSURLHandleClient protocol
NSURLHandleStatus data type
NSUsableScrollerParts data type
NSUserDefaults class 2nd
 global variable
NSUserInterfaceValidations protocol (Application Kit)
NSUserName function
NSValidatedUserInterfaceItem protocol (Application Kit)
NSValue class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NSView class 2nd 3rd
 Application Kit
 enumeration
NSWhoseSpecifier class
NSWhoseSubelementIdentifier data type
NSWidth function
NSWindingRule data type
NSWindow class 2nd
 Application Kit
 enumeration
 global variables 2nd
NSWindowAuxiliaryOpaque data type
NSWindowButton data type
NSWindowController class
 Application Kit
NSWindowDepth data type
NSWindowList function
NSWindowListForContext function
NSWindowOrderingMode data type
NSWindowScripting protocol (Application Kit)
NSWorkspace class
 Application Kit
 global variables 2nd
NSWritingDirection data type
NSZone data type
NSZoneCalloc function
NSZoneFree function
NSZoneFromPointer function
NSZoneMalloc function
NSZoneName function
NSZoneRealloc function
number precision
numeric data types

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

object allocation functions
object specifiers, defined
object tree
object-oriented programming (OOP)
Objective-C 2nd
 naming conventions
 runtime functions
objects
 archiving 2nd
 arrays
 checking that conforms to protocol
 cloned
 closing
 collection 2nd
 comparing 2nd
 copying
 counting
 creating instances
 data, altering
 deallocating
 defined
 deleting
 distributed 2nd
 distributed, threads and
 first-class
 help manager
 locally representing
 lock
 modifying sets
 multiple-value
 mutable copies
 ordered collections
 paragraph style
 property list 2nd
 proxies
 proxy for
 remote, connecting to
 scanner
 used by multiple applications
observers (notification center)
Omni Frameworks
 OmniAppKit
 OmniBase
 OmniFoundation
 OmniHTML
 OmniNetworking
 OWF
Omni Group, The web site
Open panel
OpenGL API
OpenGL functions (Application Kit)
outlets
 actions and
 defined 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outline view
overriding a superclass method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Page Layout panel
page-view
paginating text
panel functions (Application Kit)
paragraph style
parent window, defined
pasteboard functions (Application Kit)
pasteboard server
path flatness
path utilities functions
PDF image rendering
persistent domains
point functions
pop-up button interface
port name servers 2nd
port registration services
PPD file
presentation layer
primary identifier
print job information
Print panel
Print Preview window
printf-style formatting web site
process discovery
Project Builder, defined
property keys (AddressBook framework)
property list objects 2nd 3rd
proposed rectangle
protocols
 Application Kit
 defining
 Foundation
proxies

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Quartz
 2D API
 composite images and
 Compositor
 defined
 path-based drawing API
querying the contents of the array
quick reference, how it was generated
QuickDraw drawing commands
QuickTime movie data

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

range functions
rect functions
reference counting mechanism
Rendezvous network services
 web site
resources for Cocoa developers
 Apple documentation
 Apple partnering programs
 mailing lists
 related books
 web sites
resources, application
 loading resources
responder chain 2nd
 pattern, defined
retrieve objects from an archive
root class 2nd
rotating
ruler view
run loops 2nd 3rd
 defined

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

scalar data items
scaling
scanners 2nd
scoping instance variables
screen readers
script suites
scriptable classes
scripting 2nd 3rd
 commands
 data types
 language reference form
 statements
scroll view 2nd
scrolling
Search Types enumeration
secure text
selectors, defined
serialization and deserialization operations
server setup
set
setAction: method
setTarget: method
sheet funtions
sheets
single inheritance language
singleton design pattern, defined
size functions
sleepUntilDate: method
slider controls
socket file descriptors
sockets
sound file player
special variables
spellchecking 2nd
Spelling panel 2nd
static typing, defined
status bars
Stepwise (Softtrak) web site
String Encodings enumeration
strings
 altering contents and attributes
 altering portions of
 attributes 2nd
 comparing
 manipulating
subprocesses
subviews
superclass methods, overriding
superview
symbolic marker display

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

target/action pattern 2nd
 defined
tasks
text
 drawing
 manual assembly of components
text attachments
text handling 2nd
 assembling
 classes
 layout
text input
text layout
 multicolumn text
 multiple simultaneous layouts
 paginating
 scenarios
 simple
text storage
text system class hierarchy
textual representations of cells 2nd
third-party frameworks
thread communication
thread locking
thread locks
threaded programming
threads, input resources
time zones 2nd
toolbars 2nd
 item identifiers
 methods
tracking rectangles
transform convenience constructor
transformations
translating

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

uncaught exceptions
undo and redo system
Unicode characters 2nd 3rd
 catalog web site
unique ID
Unix pipes
unordered collections
URL resources 2nd
user defaults 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

variables
 global
 Application Kit
 Foundation
 special
vector-based paths
view class
view hierarchy
view, defined
volatile domains

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

web sites for Cocoa developers
winding rule 2nd
 even-odd
 non-zero
window class
workspace services
wrapper, around a C data buffer
wrappers, file

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Zero Constants global variable
zero-configuration networking (zeroconf)
zones, memory

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by
Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

