
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
JavaServer Pages, 3rd Edition

By Hans Bergsten

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00563-6

Pages: 764

JavaServer Pages, Third Edition is completely revised and updated to cover the substantial changes in the 2.0 version of
the JSP specification. It also includes detailed coverage of the major revisions to the JSP Standard Tag Library (JSTL)
specification. Combining plenty of practical advice with detailed coverage of JSP syntax and features and clear, useful
examples, JavaServer Pages, Third Edition demonstrates how to embed server-side Java into Web pages, while also
covering important topics such as JavaBeans, Enterprise JavaBeans (EJB), and JDBC database access.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
JavaServer Pages, 3rd Edition

By Hans Bergsten

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00563-6

Pages: 764

 Copyright

 Preface

 What's in This Book

 Readers of the Second Edition

 Audience

 Organization

 About the Examples

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments for First Edition

 Acknowledgments for Second Edition

 Acknowledgments for Third Edition

 Part I: JSP Application Basics

 Chapter 1. Introducing JavaServer Pages

 Section 1.1. What Is JavaServer Pages?

 Section 1.2. Why Use JSP?

 Section 1.3. What You Need to Get Started

 Chapter 2. HTTP and Servlet Basics

 Section 2.1. The HTTP Request/Response Model

 Section 2.2. Servlets

 Chapter 3. JSP Overview

 Section 3.1. The Problem with Servlets

 Section 3.2. The Anatomy of a JSP Page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.3. JSP Processing

 Section 3.4. JSP Application Design with MVC

 Chapter 4. Setting Up the JSP Environment

 Section 4.1. Installing the Java Software Development Kit

 Section 4.2. Installing the Tomcat Server

 Section 4.3. Testing Tomcat

 Section 4.4. Installing the Book Examples

 Section 4.5. Example Web Application Overview

 Part II: JSP Application Development

 Chapter 5. Generating Dynamic Content

 Section 5.1. Creating a JSP Page

 Section 5.2. Installing a JSP Page

 Section 5.3. Running a JSP Page

 Section 5.4. Using JSP Directive Elements

 Section 5.5. Using Template Text

 Section 5.6. Using JSP Action Elements

 Chapter 6. Using JavaBeans Components in JSP Pages

 Section 6.1. What Is a Bean?

 Section 6.2. Declaring a Bean in a JSP Page

 Section 6.3. Reading Bean Properties

 Section 6.4. Setting Bean Properties

 Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

 Section 7.1. What Is a Custom Tag Library?

 Section 7.2. Installing a Custom Tag Library

 Section 7.3. Declaring a Custom Tag Library

 Section 7.4. Using Actions from a Tag Library

 Chapter 8. Processing Input and Output

 Section 8.1. Reading Request Parameter Values

 Section 8.2. Validating User Input

 Section 8.3. Formatting HTML Output

 Chapter 9. Error Handling and Debugging

 Section 9.1. Dealing with Syntax Errors

 Section 9.2. Debugging a JSP Application

 Section 9.3. Dealing with Runtime Errors

 Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

 Section 10.1. Passing Control and Data Between Pages

 Section 10.2. Sharing Session and Application Data

 Section 10.3. Online Shopping

 Section 10.4. Memory Usage Considerations

 Chapter 11. Developing Custom Tag Libraries as Tag Files

 Section 11.1. Creating and Using a Tag File

 Section 11.2. Accessing Attribute Values

 Section 11.3. Processing the Action Body

 Section 11.4. Processing Fragment Attributes

 Section 11.5. Exposing Data to the Calling Page Through Variables

 Section 11.6. Aborting the Page Processing

 Section 11.7. Packaging Tag Files for Easy Reuse

 Chapter 12. Accessing a Database

 Section 12.1. Accessing a Database from a JSP Page

 Section 12.2. Validating Complex Input Without a Bean

 Section 12.3. Using Transactions

 Section 12.4. Application-Specific Database Actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 13. Authentication and Personalization

 Section 13.1. Container-Provided Authentication

 Section 13.2. Application-Controlled Authentication

 Section 13.3. Other Security Concerns

 Chapter 14. Internationalization

 Section 14.1. How Java Supports Internationalization and Localization

 Section 14.2. Generating Localized Output

 Section 14.3. A Brief History of Bits

 Section 14.4. Handling Localized Input

 Chapter 15. Working with XML Data

 Section 15.1. Generating an XML Response

 Section 15.2. Transforming XML into HTML

 Section 15.3. Transforming XML into a Device-Dependent Format

 Section 15.4. Processing XML Data

 Chapter 16. Using Scripting Elements

 Section 16.1. Using page Directive Scripting Attributes

 Section 16.2. Implicit JSP Scripting Objects

 Section 16.3. Using Scriptlets

 Section 16.4. Using Expressions

 Section 16.5. Using Declarations

 Section 16.6. Mixing Action Elements and Scripting Elements

 Section 16.7. Dealing with Scripting Syntax Errors

 Chapter 17. Bits and Pieces

 Section 17.1. Buffering

 Section 17.2. Including Page Segments

 Section 17.3. Global Configuration Options

 Section 17.4. Mixing Client-Side and Server-Side Code

 Section 17.5. Precompiling JSP Pages

 Section 17.6. Preventing Caching of JSP Pages

 Section 17.7. Writing JSP Pages as XML Documents

 Section 17.8. How URIs Are Interpreted

 Part III: JSP in J2EE and JSP Component Development

 Chapter 18. Web Application Models

 Section 18.1. The Java 2 Enterprise Edition Model

 Section 18.2. The MVC Design Model

 Section 18.3. Scalability

 Chapter 19. Combining JSP and Servlets

 Section 19.1. Servlets, Filters, and Listeners

 Section 19.2. Picking the Right Component Type for Each Task

 Section 19.3. Initializing Shared Resources Using a Listener

 Section 19.4. Access Control Using a Filter

 Section 19.5. Centralized Request Processing Using a Servlet

 Section 19.6. Using a Common JSP Error Page

 Chapter 20. Developing JavaBeans Components for JSP

 Section 20.1. Beans as JSP Components

 Section 20.2. JSP Bean Examples

 Section 20.3. Unexpected <jsp:setProperty> Behavior

 Chapter 21. Developing Custom Tag Libraries Using Java

 Section 21.1. Developing Simple Tag Handlers

 Section 21.2. Developing Classic Tag Handlers

 Section 21.3. Developing Tag Library Functions

 Section 21.4. Creating the Tag Library Descriptor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 21.5. Packaging and Installing a Tag Library

 Chapter 22. Advanced Custom Tag Library Features

 Section 22.1. Developing Cooperating Actions

 Section 22.2. Validating Syntax

 Section 22.3. Using a Listener in a Tag Library

 Section 22.4. Dynamic Attribute Values and Types

 Chapter 23. Integrating Custom Code with JSTL

 Section 23.1. Setting and Using Configuration Variables

 Section 23.2. Integrating Custom Conditional Actions

 Section 23.3. Integrating Custom Iteration Actions

 Section 23.4. Integrating Custom I18N Actions

 Section 23.5. Integrating Custom Database Actions

 Section 23.6. Using JSTL Tag Library Validators

 Chapter 24. Database Access Strategies

 Section 24.1. JDBC Basics

 Section 24.2. Using Connections and Connection Pools

 Section 24.3. Making a Connection Pool Available to Application Components

 Section 24.4. Using a Generic Database Bean

 Section 24.5. Developing Application-Specific Database Components

 Part IV: Appendixes

 Appendix A. JSP Elements Reference

 Section A.1. Directive Elements

 Section A.2. Scripting Elements

 Section A.3. Action Elements

 Section A.4. Custom actions

 Section A.5. Comments

 Section A.6. Escape Characters

 Appendix B. JSTL Actions and API Reference

 Section B.1. JSTL Library URIs and Default Prefixes

 Section B.2. Core Library Actions

 Section B.3. Internationalization and Formatting Actions

 Section B.4. Database Access Actions

 Section B.5. XML Processing Actions

 Section B.6. EL Functions

 Section B.7. Support and Utility Types

 Section B.8. Configuration Settings

 Appendix C. JSP Expression Language Reference

 Section C.1. Syntax

 Section C.2. Variables

 Section C.3. Data Types

 Section C.4. Expressions and Operators

 Appendix D. JSP API Reference

 Section D.1. Implicit Variables

 Section D.2. Other Servlet Types Accessible Through Implicit Variables

 Section D.3. Tag Handler Types

 Section D.4. Translation Time Types

 Section D.5. Other JSP Types

 Section D.6. Expression Language Types

 Appendix E. Book Example Custom Actions and API Reference

 Section E.1. Generic Custom Actions

 Section E.2. Generic Utility Classes

 Appendix F. Web Application Structure and Deployment Descriptor Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section F.1. Web Application File Structure

 Section F.2. Web Application Deployment Descriptor

 Section F.3. Creating a WAR File

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright
Copyright © 2004, 2002, 2001 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. The Java Series, JavaServer Pages, Third Edition, the image of a grey wolf, and related trade dress are
trademarks of O'Reilly & Associates, Inc.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in
the United States and other countries. O'Reilly & Associates, Inc., is independent of Sun Microsystems. Openwave, the
Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All rights reserved.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
JavaServer Pages™ (JSP) is a technology for web application development that has received a great deal of attention
since it was first announced in 1999. Since then, it has gone through three revisions. This book covers the 2.0 version
of the specification.

Why is JSP so exciting? One reason is that JSP is Java-based, and Java™ is well suited for enterprise computing. In fact,
JSP is a key part of the Java 2™ Enterprise Edition (J2EE) platform and can take advantage of the many Java
Enterprise™ libraries, such as JDBC™, JNDI™, and Enterprise JavaBeans™.

Another reason is that JSP supports a powerful model for developing web applications that separates presentation from
processing. Understanding why this is so important requires a bit of a history lesson. In the early days of the Web, the
only tool for developing dynamic web content was the Common Gateway Interface (CGI). CGI outlined how a web
server made user input available to a program, as well as how the program provided the web server with dynamically
generated content to send back. CGI scripts were typically written in Perl. (In fact, Perl/CGI scripts still drive numerous
dynamic web sites.) However, CGI is not an efficient solution. For every request, the web server has to create a new
operating-system process, load a Perl interpreter and the Perl script, execute the script, and then dispose of it when it's
done.

To provide a more efficient solution, various alternatives to CGI have been added to programmers' toolboxes over the
last few years: FastCGI, for example, runs each CGI program in an external permanent process (or a pool of
processes). In addition, mod_perl for Apache, NSAPI for Netscape, and ISAPI for Microsoft's IIS all run server-side
programs in the same process as the web server itself. While these solutions offer better performance and scalability,
each one is supported only by a subset of the popular web servers.

The Java Servlet API, introduced in early 1997, provides a solution to the portability issue. However, all these
technologies suffer from a common problem: HTML code embedded inside programs. If you've ever looked at the code
for a servlet, you've probably seen endless calls to out.println() that contain scores of HTML tags. For the individual
developer working on a simple web site, this approach may work fine, but it makes it difficult for people with different
skills to work together to develop a web application.

This embedded HTML code is becoming a significant problem. As web sites become increasingly complex and more
critical to an organization's success, the appearance and usability of the web interface becomes paramount. New client
technologies, such as client-side scripts and DHTML, are used to develop more responsive and interactive user
interfaces, stylesheets can make it easier to globally change fonts and colors, and images make the interface more
appealing. At the same time, server-side code is getting more complex, and the demands for reliability, performance,
and fault tolerance are increasing. The increasing complexity of web applications requires a development model that
allows people with different skills to cooperate efficiently.

JSP provides just such a development model, allowing web page authors with skills in areas such as client-side
technologies and usability to work in tandem with programmers who are experienced in server-side technologies, such
as multithreading, resource pooling, databases, and caching. While there are other technologies, such as ASP, PHP, and
ColdFusion, that support similar development models, none offer all the advantages of JSP.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

What's in This Book
This edition of the book covers Version 2.0 of the JSP specification, which was released late 2003. It also covers the
related JSP Standard Tag Library (JSTL) specification, Version 1.1, also released late 2003.

You will learn how to use all the JSP standard elements and features, including elements for accessing JavaBeans
components; separating the processing over multiple pages to increase reusability and simplify maintenance; and
sharing information between pages, requests, and users. You will also learn how to use JSTL for tasks such as
conditional processing, integration of database data, internationalization, and XML processing, as well as how to develop
your own custom components for tasks not covered by the standard components.

The examples in this book guide you through solutions to common JSP design problems, from basic issues, such as
retrieving and validating user input, to more advanced areas, such as developing a database-driven site, authenticating
users, providing personalized content, caching data for better performance, and implementing internationalization. The
last part of the book describes how you can combine JSP with other Java technologies; in particular, I describe the
combination of JSP and servlets using the popular Apache Struts framework, and provide an overview of how JSP fits
into the larger scope of J2EE.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Readers of the Second Edition
If you've read the second edition of JavaServer Pages, you'll notice that, in this edition, even more of the custom
components used in the previous edition have been replaced in favor of the equivalent standard components from JSTL
—a specification I've been lucky enough to contribute to and help shape the standard based on many of the ideas
explored in the first and second editions. You'll also notice that all the chapters have been modified (some more than
others) to cover the new features in the latest versions of the JSP and JSTL specifications. A brand new chapter has
been added to describe how to develop custom tag libraries using the new tag file format, and the chapter about
custom library development using Java has been substantially expanded to cover the new, simplified tag handler API as
well as the new mechanism for including Expression Language functions in a tag library.

All chapters have also been updated to cover the features and clarifications added in the Servlet 2.4 specification on
which JSP 2.0 is based. Here's a brief summary of the primary changes in all the specifications covered in this book:

Incorporation of the Expression Language (EL), first introduced by the JSTL specification in the JSP specification
(making it available to all standard and custom components as well as in template text)

The EL extended with a function call mechanism and a set of common functions added to JST

Addition of the ability to develop custom tag libraries as tag files (text files with JSP elements) as well as a new,
simplified tag handler Java API, and various new tag library features such as support for a dynamic attribute list
and executable fragment attributes

More flexible rules for JSP pages written as XML documents, and support for the JSP directives and scripting
elements of XML syntax in regular JSP pages

New JSP standard elements, primarily to allow more flexible attribute value assignments and to support the new
tag file format and XML format enhancements.

Access to more information in a JSP error page and adjustment of the attribute names to match the Servlet
specification

Stricter container requirements to improve syntax error reporting and debugging support for JSP pages

XML Schema-based deployment descriptors for all specifications with new configuration options, including
automatic include of page segments, page encoding specification, scripting element disabling, and more for JSP

Addition of a new request listener component type and filters that can be applied to internal requests

Deprecation of the single thread model for both servlets and JSP

New JSTL tag library URIs and a few attribute name changes for the XML library

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Audience
This book is for anyone who is interested in using JSP technology to develop web applications. In particular, it's written
to help those of you who develop JSP-based applications, specifically:

Page authors

Page authors primarily develop the web interface to an application. This group uses HTML, stylesheets, and
client-side code to develop a rich user interface. Page authors also want to learn to use JSP elements in web
pages to interact with the other server components, such as servlets, databases, and Enterprise JavaBeans
(EJB).

Java programmers

Java programmers are comfortable with the Java programming language and Java servlets. This group wants to
learn how to develop JSP components that page authors can use in the web pages, such as JSP custom actions
and JavaBeans, and how to combine JSP with other Java server-side technologies, such as servlets and EJB.

The book is structured into three parts, which I describe shortly, to make it easier to find the material you are most
interested in.

What You Need to Know

It's always hard to assume how much you, as the reader, already know. For this book, it was even harder since the
material is intended for two types of audiences: page authors and programmers.

I've assumed that anyone reading this book has experience with HTML; consequently, I won't explain the standard
HTML elements used in the examples. But even if you're an HTML wiz, this may be your first exposure to dynamic web
content and web applications. A thorough introduction to the HTTP protocol that drives all web applications as well as to
the concepts and features that are specific to servlet and JSP-based web applications are, therefore, included. If you
want to learn more about HTML, I recommend HTML and XHTML: The Definitive Guide by Chuck Musciano and Bill
Kennedy (O'Reilly).

If you're a page author, I have assumed that you don't know anything about programming, although it doesn't hurt if
you have played around with client-side scripting languages, such as VBScript or JavaScript (ECMAScript). Using
standard and custom components, you should rarely, if ever, have to deal with Java code. Except for one chapter,
which deals specifically with how to embed Java code in a JSP page, none of the examples in Part I and Part II requires
Java programming knowledge.

I have assumed that the programmers reading this book are familiar with Java programming, object-oriented concepts,
and Java servlets. If you plan to develop JSP components for page authors and aren't familiar with Java programming, I
recommend that you read a Java introduction book, such as Learning Java by Patrick Niemeyer and Jonathan Knudsen
(O'Reilly). I include a brief introduction to the Servlet API, but I recommend that you also read Java Servlet
Programming by Jason Hunter and William Crawford (O'Reilly) or another book that covers the servlet technology in
detail.

The chapters dealing with database access require some knowledge of SQL and databases in general. I will explain all
that you need to know to run the examples, but if you want to develop database-driven applications, you need to know
more about databases than what's included in this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Organization
This book is structured into three parts. The first part of the book describes the fundamentals of HTTP (the protocol
used by all web applications), how servlets and JSP are related, and how to set up a JSP development environment.

The focus of the second part is on developing JSP-based web applications using standard JSP elements, JSTL, and
custom components. Through the use of practical examples, you will learn how to handle common tasks, such as
validating user input, accessing databases, authenticating users and protecting web pages, localizing your web site, and
more. This portion of the book is geared more towards page authors but is also of interest to programmers.

In the third part, you will learn how to develop your own custom actions and JavaBeans, and how to combine JSP with
other Java server-side technologies, such as servlets and EJB. This portion of the book is intended for the programming
community.

All in all, the book consists of 24 chapters and 6 appendixes as follows.

Part I, JSP Application Basics

Chapter 1

Explains how JSP fits into the big picture of web applications and how it compares to alternative technologies.

Chapter 2

Describes the fundamental HTTP and servlet concepts you need to know to use JSP to its full potential.

Chapter 3

An overview of the JSP features, as well as the similarities and differences between JSP pages and servlets. Also
introduces the Model-View-Controller design model and how it applies to JSP.

Chapter 4

Describes where to get the JSP reference implementation (Apache Tomcat) and how to set it up on your
system. Also explains how to install the book examples.

Part II, JSP Application Development

Chapter 5

Examines the JSP basics, such as how to create, deploy, and run a JSP page, as well as how to use the JSP
elements to generate dynamic content.

Chapter 6

Describes what a JavaBeans component is and how it can be used effectively in a JSP page.

Chapter 7

Describes what a custom tag library is and how to deploy and use one, and introduces the JSP Standard Tag
Library (JSTL).

Chapter 8

Explains how an HTML form can be used to send data to a web application and how to process the data using
JavaBeans and JSTL, as well as what to be aware of when generating dynamic output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaBeans and JSTL, as well as what to be aware of when generating dynamic output.

Chapter 9

Describes the kinds of errors you may encounter during development of a JSP-based application, and strategies
and JSP features that help you deal with them.

Chapter 10

Explains the JSP features that let you separate different types of processing in different pages to simplify
maintenance and further development. Also describes how sessions can build up information over a sequence of
requests from the same user, and how information that applies to all users can be shared using the application
scope.

Chapter 11

Describes how you can develop actions for a custom tag library as tag files, i.e., regular text files with JSP
elements.

Chapter 12

Provides a quick overview of relational databases, JDBC, and SQL basics, and introduces the JSTL actions for
reading, updating, and deleting database data.

Chapter 13

Describes how authentication and access control can be implemented using container-provided and application-
controlled mechanisms, and how to use the information about who the current user is to personalize the web
pages.

Chapter 14

Explains internationalization and localization, the Java features available to implement an internationalized
application, and describes the set of JSTL actions that support development of multilingual web sites.

Chapter 15

Explains how JSP can generate XML content as well as process XML input using the JSTL XML actions.

Chapter 16

Describes the JSP elements that let you embed Java code directly in your JSP pages and the type of errors you
must be prepared to deal with when you use this feature.

Chapter 17

Covers various areas not discussed in previous chapters, such as using the JSP page XML syntax, combining JSP
with client-side code, reusing JSP file segments by including them in JSP pages, precompiling JSP pages, and
more.

Part III, JSP in J2EE and JSP Component Development

Chapter 18

Provides an overview of J2EE and web application architectures using JSP in combination with other Java
technologies.

Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Describes in detail how JSP can be combined with servlets, as well as the listener and filter component types,
using the popular Apache Struts framework.

Chapter 20

Provides details about JavaBeans components as they relate to JSP, including threading and synchronization
concerns for session and application scope beans, as well as how using JavaBeans components can make it
easier to migrate to an EJB architecture.

Chapter 21

Describes the JSP Tag Extension mechanism and how to use it to develop custom tag libraries, using many of
the custom actions used in the previous chapters as examples.

Chapter 22

Explains the more advanced features that can be leveraged by custom actions, such as developing cooperating
actions, syntax and usage validation, attribute value type conversions, and more.

Chapter 23

Describes all the integration hooks provided by the JSTL specification and how to develop custom actions,
servlets, listeners, and filters that take advantage of them.

Chapter 24

Provides a brief introduction to JDBC and explains the various strategies available for efficient use of databases
in a web application, such as setting up a connection pool and making it available to the application components
through the servlet context or JNDI, encapsulating database access code in separate classes or in custom
actions, and more.

Part IV, Appendixes

Appendix A

Contains descriptions of all standard JSP 2.0 elements.

Appendix B

Contains descriptions of all standard JSTL 1.1 elements, programming interfaces, and support classes.

Appendix C

Contains a description of the JSP EL syntax and rules.

Appendix D

Contains descriptions of all implicit objects available in a JSP page as defined by the servlet and JSP APIs, as
well as the tag extension mechanism classes and interfaces.

Appendix E

Contains a description of the custom actions, beans, and utility classes used in the examples.

Appendix F, Web Application Structure and Deployment Descriptor Reference

Contains a description of the standard web application structure and all elements in the web application
deployment descriptor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deployment descriptor.

If you're a page author, I recommend that you focus on the chapters in Part I and Part II. You may want to browse
through Part III to get a feel for how things work behind the scene, but don't expect to understand everything if you
aren't a Java programmer.

If you're a Java programmer, Part III is where the action is for you. If you're already familiar with HTTP and servlets,
you may want to move quickly through Part I. However, this part includes information about the web application
concept introduced in the Servlet 2.2 API you may not be familiar with, even if you've worked with servlets for some
time. I recommend you read Part II to learn how JSP works, but you may actually want to start with Part III to see how
the various components in the examples are implemented before you read Part II to see how they are used.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

About the Examples
This book contains a large number of examples that demonstrate useful techniques for input validation, database
access, information caching, application-controlled authentication and access control, internationalization, XML
processing, and more. The examples include both complete applications, such as an online shopping site, an employee
directory, and a personalized project billboard, as well as numerous smaller examples and page fragments. The
included example tag library contains 10 or so custom actions you can use directly in your application or as a starting
point for your own development. The code for all the examples and most of the custom actions is contained within the
text; you can also download all code from the O'Reilly web site at http://www.oreilly.com/catalog/jserverpages3/. In
addition, you can see all the examples in action, download the code, ask me questions, find JSP- related products, and
more at http://www.TheJSPBook.com/.

All examples have been tested with the official JSP 2.0 reference implementation (Apache Tomcat 5) on Windows ME
and Linux (Red Hat Linux 7.2) using Sun's Java 2 SDK, Standard Edition (1.4.2). If you would like more information on
downloading and installing the Apache Tomcat server for use with the examples, see Chapter 4.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
Italic is used for:

Pathnames, filenames, program names, compilers, options, and commands

New terms where they are defined

Internet addresses, such as domain names and URLs

Boldface is used for:

Particular keys on a computer keyboard

Names of user interface buttons and menus

Constant width is used for:

Anything that appears literally in a JSP page or a Java program, including keywords, data types, constants,
method names, variables, class names, and interface names

Command lines and options that should be typed verbatim on the screen

All JSP and Java code listings

HTML documents, tags, and attributes

Constant width italic is used for:

General placeholders that indicate that an item is replaced by some actual value in your own program

Constant width bold is used for:

Text that is typed in code examples by the user

This icon designates a note, which is an important aside to the nearby text.

This icon designates a warning relating to the nearby text.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/jserverpages3/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com/

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments for First Edition
I love to write and have always wanted to write a book. After getting a number of articles about Java servlets and a
couple of chapters for a server-side Java book published, my confidence was so high that I sent mail to O'Reilly &
Associates and asked if they wanted me to write a book about JSP. Much to my surprise (I guess my confidence was not
so high after all), they said "Yes!" I knew that it would be more work than I could imagine, and it turned out to be even
more than that. But here I am, almost a year later, with 17 chapters and 5 appendixes in a nice stack on my desk,
written and rewritten countless times. All that remains is to give thanks to everyone who helped me fulfill this dream.

First, I'd like to thank my editors, Paula Ferguson and Bob Eckstein. Paula was the one who accepted my book proposal
in the first place and then helped me through my first stumbling steps of writing the first half of the book. Bob came
aboard for the second half and I'm really grateful to him for thoroughly reading everything and giving me helpful
advice.

Thanks also to Rob Romano for doing the illustrations, to Christien Shangraw for helping out with the coordination, and
to all the production people behind the scenes at O'Reilly who made sure the book got published.

Big thanks also go to the JSP and servlet specification leads, Eduardo Pelegri-Llopart and Danny Coward, for providing
feedback, answering all my questions, and clarifying the vague and ambiguous areas of the specifications. You helped
me more than I could ask for. I hope my contributions to the specifications repay my debt to some extent.

Thanks also to all of you who helped me improve the book in other ways: Jason Hunter for letting me borrow his
connection pool code and Japanese examples; Craig McClanahan, Larry Riedel, Steve Jung (Steve dedicates his effort to
the memory of his father, Arthur H. Jung, who passed away March 17, 2000), Sean Rohead, Jerry Croce, Steve Piccolo,
and Vikram David for reviewing the book and giving me many suggestions for how to make it better; all the Apache
Tomcat developers for making a great JSP reference implementation; and the members of the jsp-interest mailing list
for all the ideas about what to cover in this book.

Finally, thanks to everyone who encouraged me and kept my spirits high: Mom, Dad, and my sister, for their support
and for teaching me to do what I believe in; all my old friends in Sweden, especially Janne Ek and Peter Hellström (and
his Dad who helped me with the translation of the German example), Janne Andersson, Roger Bjärevall and Michael
Rohdin; Anne Helgren, my writing teacher who convinced me I could do this; and all the guys in and around Vesica
Pisces (http://www.vesicapisces.com/): Kelly, Brian, Adam, Bill, and James; I really enjoyed getting away from the
writing now and then to hang with you and listen to you play.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments for Second Edition
Roughly a year and a half have passed since I finished the first edition of this book, and, man, have things changed!
JSP 1.2 has been released, adding new features, big and small, as well as minor adjustments and clarifications. The big
news in the JSP space, though, is the JSP Standard Tag Library (JSTL). This library includes actions for most common
JSP tasks, making it possible to replace almost all the custom actions I used for the first edition with the corresponding
standard version. To cover all the new stuff, I ended up rewriting almost every chapter, and even added a few new
ones. At the same time, I clarified a number of things that readers of the first edition have asked me about. It was a lot
of fun, and I hope you enjoy the result.

I would like to thank all readers of the first edition for your feedback, especially Ingo Kegel for the refined German text
he sent me for the I18N example, and Mike Braden, Lucy Newman, and Masako Onishi for contributing instructions for
running the examples with a number of different database engines, posted on the book's web site.

I really appreciate all the help I got from my review team, especially from Steve Bang who picked the book to pieces
and gave me many helpful suggestions; and Janne Andersson, Marcus Biervliet, and Pierre Delisle—thanks for spending
your precious time reading and sending me feedback.

Many thanks also go to my fellow JSTL and JSP specification group members, especially James Strachan and Shawn
Bayern for helping me understand the finer points of XML processing and XPath, and to Pierre Delisle and Eduardo
Pelegri-Llopart for running such a smooth process and putting up with my stubbornness in certain areas (you know
what I mean) and comments about many picky details.

I would also like to thank Richard Monson-Haefel (author of Enterprise JavaBeans, O'Reilly) for explaining the meaning
of the J2EE resource declaration details, and George Reese (author of Database Programming with JDBC and Java,
O'Reilly) for verifying my understanding of how JDBC 2.0 connection pooling is supposed to work and for reviewing
Chapter 24.

Thanks also to Bob Eckstein, my editor, for moral support, thoughtful comments, and stacks of hardcopy with scribbled
notes, and to all the production people behind the scenes at O'Reilly who made sure the book got published.

Finally, thanks to my parents, my sister and her family, and to all my friends in the real world and in cyberspace, for
encouragement and inspiration.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments for Third Edition
Another year has passed, and another version of the JSP specification has made its way through the Java Community
Process. The new features added to the new specification so dramatically change how JSP pages are created that we
felt that a new major version number was in order, so the latest version is JSP 2.0. Along with JSP 2.0, JSTL Version
1.1 has also been released to align the standard libraries with JSP 2.0. I've added a new chapter, extended others, and
revised the rest of the book to cover all the new stuff and to take advantage of the significant improvements in JSP 2.0.
I hope you'll enjoy both the book and the new features.

As with the preceding editions of the book, I have many people to thank. First of all, thanks to the people who helped
me review the book: Steve Bang, Janne Andersson, Roger Bjärevall, and Mark Roth. I know how busy you all are, so
I'm very grateful that you made the time to give me such valuable feedback.

Many thanks also to my new editor, Brett McLaughlin (I wonder why they keep assigning me a new editor for each
edition); to the hardworking JSP and JSTL specification leads—Mark Roth, Eduardo Pelegri-Llopart, and Pierre Delisle—
and my fellow specification group members; to all readers for your accolades and feedback; and to the O'Reilly staff
that turns my writing into a real book.

Finally thanks for all the support from family and friends, for being able to live a life that makes this possible, and for
Friday nights with the "sushi gang." Cheers!

Hans Bergsten

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part I: JSP Application Basics
This part of the book describes the fundamentals of HTTP (the protocol used by all web applications),
how servlets and JSP are related, and how to set up a JSP development environment and install the
book examples:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Introducing JavaServer Pages
The Java 2 Enterprise Edition (J2EE) has taken the once-chaotic task of building an Internet presence and transformed
it to the point where developers can use Java to efficiently create multitier, server-side applications. Today, the Java
Enterprise APIs have expanded to encompass a number of areas: RMI and CORBA for remote object handling, JDBC for
database interaction, JNDI for accessing naming and directory services, Enterprise JavaBeans for creating reusable
business components, Java Messaging Service (JMS) for message-oriented middleware, JAXP for XML processing, JAXR,
JAX-RPC and SAAJ for web services, Java Transaction API (JTA) for performing atomic transactions, and much more. In
addition, J2EE also supports servlets, an extremely popular Java substitute for CGI scripts. The combination of these
technologies allows programmers to create distributed business solutions for a variety of tasks.

In late 1999, Sun Microsystems added a new element to the collection of Enterprise Java tools: JavaServer Pages (JSP).
JavaServer Pages are built on top of Java servlets and designed to increase the efficiency in which programmers, and
even nonprogrammers, can create web content. This book is primarily about JavaServer Pages, covering the latest
version of this technology, JSP 2.0, as well as the related JSP Standard Tag Library (JSTL) Version 1.1. It also covers
other J2EE technologies, such as servlets and JDBC, with focus on how to combine them with JSP in the most efficient
way.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 What Is JavaServer Pages?
Put succinctly, JavaServer Pages is a technology for developing web pages that include dynamic content. Unlike a plain
HTML page, which contains static content that always remains the same, a JSP page can change its content based on
any number of variable items, including the identity of the user, the user's browser type, information provided by the
user, and selections made by the user. As you'll see later in the book, this functionality is key to web applications such
as online shopping and employee directories, as well as for personalized and internationalized content.

A JSP page contains standard markup language elements, such as HTML tags, just like a regular web page. However, a
JSP page also contains special JSP elements that allow the server to insert dynamic content in the page. JSP elements
can be used for a variety of purposes, such as retrieving information from a database or registering user preferences.
When a user asks for a JSP page, the server executes the JSP elements, merges the results with the static parts of the
page, and sends the dynamically composed page back to the browser, as illustrated in Figure 1-1.

Figure 1-1. Generating dynamic content with JSP elements

JSP defines a number of standard elements that are useful for any web application, such as accessing JavaBeans
components, passing control between pages and sharing information between requests, pages, and users. Developers
can also extend the JSP syntax by implementing application-specific elements that perform tasks such as accessing
databases and Enterprise JavaBeans, sending email, and generating HTML to present application-specific data. One
such set of commonly needed custom elements is defined by a specification related to the JSP specification: the JSP
Standard Tag Library (JSTL) specification. The combination of standard elements and custom elements allows for the
creation of powerful web applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 Why Use JSP?
In the early days of the Web, the Common Gateway Interface (CGI) was the only tool for developing dynamic web
content. However, CGI is not an efficient solution. For every request that comes in, the web server has to create a new
operating-system process, load an interpreter and a script, execute the script, and then tear it all down again. This is
very taxing for the server and doesn't scale well when the amount of traffic increases.

Numerous CGI alternatives and enhancements, such as FastCGI, mod_perl from Apache, NSAPI from Netscape, ISAPI
from Microsoft, and Java servlets from Sun Microsystems, have been created over the years. While these solutions offer
better performance and scalability, all these technologies suffer from a common problem: they generate web pages by
embedding HTML directly in programming language code. This pushes the creation of dynamic web pages exclusively
into the realm of programmers. JavaServer Pages, however, changes all that.

1.2.1 Embedding Dynamic Elements in HTML Pages

JSP tackles the problem from the other direction. Instead of embedding HTML in programming code, JSP lets you
embed special active elements into HTML pages. These elements look similar to HTML elements, but behind the scenes
they are actually componentized Java programs that the server executes when a user requests the page. Here's a
simple JSP page that illustrates this:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <body bgcolor="white">

 <jsp:useBean id="clock" class="java.util.Date" />
 <c:choose>
 <c:when test="${clock.hours < 12}">
 <h1>Good morning!</h1>
 </c:when>
 <c:when test="${clock.hours < 18}">
 <h1>Good day!</h1>
 </c:when>
 <c:otherwise>
 <h1>Good evening!</h1>
 </c:otherwise>
 </c:choose>
 Welcome to our site, open 24 hours a day.
 </body>
</html>

This page inserts a different message to the user based on the time of day: "Good morning!" if the local time is before
12 P.M., "Good day!" if between 12 P.M. and 6 P.M., and "Good evening!" otherwise. When a user asks for this page,
the JSP-enabled web server executes the logic represented by the highlighted JSP elements and creates an HTML page
that is sent back to the user's browser. For example, if the current time is 8:53 P.M., the resulting page sent from the
server to the browser looks like this:

<html>
 <body bgcolor="white">
 <h1>Good evening!</h1>
 Welcome to our site, open 24 hours a day.
 </body>
</html>

A screen shot of this result is shown in Figure 1-2.

Figure 1-2. The output of a simple JSP page

In addition to the HTML-like JSP elements, a JSP page can also contain Java code embedded in so-called scripting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the HTML-like JSP elements, a JSP page can also contain Java code embedded in so-called scripting
elements. This feature has been part of the JSP specification from the very first version, and it used to be convenient
for simple conditional logic. With the introduction of the JSP Expression Language (EL) and the JSP Standard Tag Library
(JSTL), however, Java code in a page is rarely needed. In addition, embedding too much code in a web page is no
better than using HTML elements in a server-side program, and often leads to a web application that is hard to maintain
and debug. The examples in this book rarely use scripting elements, but they are described in detail in Chapter 16.

1.2.2 Compilation

Another benefit that is important to mention is that a JSP page is always compiled before it's processed by the server.
Remember that older technologies such as CGI/Perl require the server to load an interpreter and the target script each
time the page is requested. JSP gets around this problem by compiling each JSP page into executable code the first
time it's requested (or on demand), and invoking the resulting code directly on all subsequent requests. When coupled
with a persistent Java virtual machine on a JSP-enabled web server, this allows the server to handle JSP pages much
faster.

1.2.3 Using the Right Person for Each Task

As I alluded to earlier, JSP allows you to separate the markup language code, such as HTML, from the programming
language code used to process user input, access databases, and perform other application tasks. One way this
separation takes place is through the use of the JSP standard and custom elements; these elements are implemented
with programming code and used the same way as page markup elements in regular web pages.

Another way to separate is to combine JSP with other J2EE technologies. For example, Java servlets can handle input
processing, Enterprise JavaBeans (EJB) can take care of the application logic, and JSP pages can provide the user
interface.

This separation means that with JSP, a typical business can divide its efforts among two groups that excel in their own
areas of expertise: a Java web development team with programmers who implement the application logic as servlets,
EJBs and custom JSP elements, and page authors who craft the specifics of the interface and use the powerful custom
elements without having to do any programming. We'll talk more about this benefit as we move through the book,
although I should reiterate that the first half of the book is devoted more to those without programming experience,
while the second half is for programmers who wish to combine JSP with other technologies and create their own JSP
elements.

1.2.4 Integration with Enterprise Java APIs

Finally, because JavaServer Pages are built on top of the Java Servlets API, JSP has access to all the powerful
Enterprise Java APIs, including:

JDBC

Remote Method Invocation (RMI) and OMG CORBA support

JNDI (Java Naming and Directory Interface)

Enterprise JavaBeans (EJB)

JMS (Java Message Service)

JTA (Java Transaction API)

JAXP (Java API for XML Processing)

JAXR (Java API for XML Registries), JAX-RPC (Java API for XML-based RPC), and SAAJ (SOAP with Attachments
API for Java)

JavaMail

This means that you can easily integrate JavaServer Pages with your existing Java Enterprise solutions.

1.2.5 Other Solutions

At this point, let's digress and look at some other solutions for dynamic web content. Some of these solutions are
similar to JSP, while others are descendants of older technologies. Many don't have the unique combination of features
and portability offered by JavaServer Pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and portability offered by JavaServer Pages.

1.2.5.1 Active Server Pages (ASP)

Microsoft's Active Server Pages (ASP) is a popular technology for developing dynamic web sites. Just like JSP, ASP lets a
page author include logic, such as VBScript and JScript code, in regular web pages to generate the dynamic parts. For
complex code, COM (ActiveX) components written in a programming language such as C++ can be invoked by the
scripting code. The standard distribution includes components for database access and more, and other components are
available from third parties. When an ASP page is requested, the code in the page is executed by the server. The result
is inserted into the page, and the combination of the static and dynamic content is sent to the browser.

ASP.NET, the latest version of ASP, adds a number of new features. As an alternative to scripting, dynamic content can
be generated by HTML/XML-like elements similar to JSP action elements. For improved performance, ASP.NET pages
are compiled as opposed to interpreted, and Common Language Runtime (CLR) languages, such as C#, JScript.NET,
and Visual Basic.NET, are used instead of the scripting languages supported in previous ASP versions.

Due to ASP's reliance on native COM code as its component model, it's primarily a solution for the Windows platform.
Limited support for other platforms, such as the Apache web server on Unix, is available through third-party products
such as Sun Chili!Soft ASP (Sun Microsystems, Inc.) and InstantASP (Halcyon Software). ASP.NET is a part of the
complete .NET platform, with the potential for better support on non-Windows platforms. You can read more about ASP
and ASP.NET on Microsoft's web site, http://www.microsoft.com/.

1.2.5.2 PHP

PHP[1] is an open source web scripting language. Like JSP and ASP, PHP allows a page author to include scripting code
in regular web pages to generate dynamic content. PHP has a C-like syntax with some features borrowed from Perl,
C++, and Java. Complex code can be encapsulated in both functions and classes. A large number of predefined
functions are available as part of PHP, such as accessing databases, LDAP directories, and mail servers, creating PDF
documents and images, and encrypting and decrypting data. PHP 4, the current version, compiles a page when it's
requested, executes it, and merges the result of executing the scripts with the static text in the page, before it's
returned to the browser.

[1] The precursor to PHP was a tool called Personal Home Page. Today PHP is not an acronym for anything; it's
simply the name for this product.

PHP is supported on a wide range of platforms, including all major web servers on operating systems like Windows,
Mac, and most Unix flavors, and with interfaces to a large number of database engines. More information about PHP is
available at http://www.php.net/.

1.2.5.3 ColdFusion

Macromedia's ColdFusion product is another popular alternative for generating dynamic web content. The dynamic parts
of a page are generated by inserting HTML/XML-like elements, known as the ColdFusion Markup Language (CFML), into
web pages. CFML includes a large set of elements for tasks such as accessing databases, files, mail servers, and other
web servers, as well as conditional processing elements such as loops. The latest version of ColdFusion also includes
elements for communication with Java servlets and Enterprise JavaBeans. Custom elements can be developed in C++
or Java to encapsulate application-specific functions, and CFML extensions are available from third parties. ColdFusion
didn't initially support scripting languages, but since ColdFusion 4.5, JavaScript-like code can be embedded in the web
pages in addition to the CFML tags.

The ColdFusion MX, Enterprise Edition, is supported on Windows, Solaris, HP/UX and Linux, for all major web servers
and databases. A special J2EE version of ColdFusion MX extends the ColdFusion features to a number of J2EE
application servers. For more information, visit Macromedia's web site at http://www.macromedia.com/.

1.2.5.4 Java servlet template engines

A Java servlet template engine is another technology for separating presentation from processing. When servlets
became popular, it didn't take long before developers realized how hard it was to maintain the presentation part when
the HTML code was embedded directly in the servlet's Java code. As a result, a number of so-called template engines
have been developed as open source products to help get HTML out of the servlets.

Template engines are intended to be used with pure code components (servlets) and to use web pages with scripting
code only for the presentation part. Requests are sent to a servlet that processes the request, creates objects that
represent the result, and calls on a web page template to generate the HTML to be sent to the browser. The template
contains scripting code similar to the alternatives described earlier. The scripting languages used by these engines are
less powerful, however, since scripting is intended only for reading data objects and generating HTML code to display
their values. All the other products and technologies support general-purpose languages, which can (for better or for
worse) be used to include business logic in the pages.

Two popular template engines are Velocity (http://jakarta.apache.org/velocity/) and FreeMarker
(http://freemarker.org/).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(http://freemarker.org/).

1.2.6 The JSP Advantage

JSP combines the most important features found in the alternatives:

JSP supports both scripting- and element-based dynamic content, and allows developers to create custom tag
libraries to satisfy application-specific needs.

JSP pages are compiled for efficient server processing.

JSP pages can be used in combination with servlets that handle the business logic, the model favored by Java
servlet template engines.

In addition, JSP has a couple of unique advantages that make it stand out from the crowd:

JSP is a specification, not a product. This means vendors can compete with different implementations, leading
to better performance and quality. It also leads to a less obvious advantage, namely that when so many
companies have invested time and money in the technology, chances are it will be around for a long time, with
reasonable assurances that new versions will be backward compatible; with a proprietary technology, this is not
always a given.

JSP is an integral part of J2EE, a complete platform for enterprise class applications. This means that JSP can
play a part in the simplest applications to the most complex and demanding.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 What You Need to Get Started
Before we begin, let's quickly run through what you need to run the examples and develop your own applications. You
really only need three things:

A PC or workstation, with a connection to the Internet so you can download the software you need

A Java 2 compatible-Java Software Development Kit (Java 2 SDK)

A JSP 2.0-enabled web server, such as Apache Tomcat from the Jakarta Project

The Apache Tomcat server is the reference implementation for JSP. All the examples in the book were tested on
Tomcat. In Chapter 4, I'll show you how to download, install, and configure the Tomcat server as well as the examples
described in this book.

In addition, there are a variety of other tools and servers that support JSP, from both open source projects and
commercial companies. Close to 30 different server products support JSP to date, and roughly 10 IDEs and authoring
tools with varying degrees of JSP support are listed on Sun's JSP web site (http://java.sun.com/products/jsp/). You
may want to evaluate some of these products when you're ready to start developing your application, but all you really
need to work with the examples in this book is a regular text editor, such as Notepad, vi, or Emacs, and of course the
Tomcat server.

So let's get going and take a closer look at what JSP has to offer. You'll need a solid ground to stand on though, so in
the next chapter we will start with the foundations on which JSP is built: HTTP and Java servlets.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. HTTP and Servlet Basics
Let's start off this chapter by defining the term web application. We've all seen regular client-side applications, but what
exactly is a web application? Loosely, it can be defined as an application running on a server a user accesses through a
thin, general-purpose client. Today, the most common client is a web browser on a PC or workstation, but other kinds
of clients are rapidly joining the party, such as wireless PDAs, cell phones, and other specialized devices.

The lofty goal here is to access all the information and services you need from any type of device that happens to be in
front of you. This means that the same simple client program must be able to talk to many different server applications,
and the applications must be able to work with many different types of clients. To satisfy this need, the protocol of how
a client and a server talk to each other must be defined in detail. That's exactly what the HyperText Transport Protocol
(HTTP) is for.

The communication model defined by HTTP forms the foundation for all web application design. A basic understanding
of HTTP is key to developing applications that fit within the constraints of the protocol, no matter which server-side
technology you use. In this chapter, we look at the most important details of HTTP you need to be aware of as a web
application developer.

One other item: this book is about using JSP as the server-side technology, so that's what we'll focus on. As you saw in
Chapter 1, JSP is based on the Java servlet technology. Both technologies share a lot of terminology and concepts, so
knowing a bit about servlets will help you even when you develop pure JSP applications. To really understand and use
the full power of JSP, you need to know a fair bit about servlets. Hence, we look at servlet fundamentals in the last
section of this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 The HTTP Request/Response Model
HTTP and all extended protocols based on HTTP are based on a very simple communications model. Here's how it
works: a client, typically a web browser, sends a request for a resource to a server, and the server sends back a
response corresponding to the resource (or a response with an error message if it can't process the request for some
reason). A resource can be a number of things, such as a simple HTML file returned verbatim to the browser or a
program that generates the response dynamically. This request/response model is illustrated in Figure 2-1.

Figure 2-1. HTTP request/response with two resources

This simple model implies three important facts you need to be aware of:

HTTP is a stateless protocol. This means that the server doesn't keep any information about the client after it
sends its response, and therefore it can't recognize that multiple requests from the same client may be related.

Web applications can't easily provide the kind of immediate feedback typically found in standalone GUI
applications such as word processors or traditional client/server applications. Every interaction between the
client and the server requires a request/response exchange. Performing a request/response exchange when a
user selects an item in a list box or fills out a form element is usually too taxing on the bandwidth available to
most Internet users.

There's nothing in the protocol that tells the server how a request is made; consequently, the server can't
distinguish between various methods of triggering the request on the client. For example, HTTP doesn't allow a
web server to differentiate between an explicit request caused by clicking a link or submitting a form and an
implicit request caused by resizing the browser window or using the browser's Back button. In addition, HTTP
doesn't contain any means for the server to invoke client specific functions, such as going back in the browser
history list or sending the response to a certain frame. Also, the server can't detect when the user closes the
browser.

Over the years, people have developed various tricks to overcome the first problem; HTTP's stateless nature. We'll look
at them in Chapter 10. The other two problems—no immediate feedback and no details about how the request is made
—are harder to deal with, but some amount of interactivity can be achieved by generating a response that includes
client-side code (code executed by the browser), such as JavaScript or a Java applet. This approach is discussed briefly
in Chapter 17.

2.1.1 Requests in Detail

Let's take a closer look at requests. A user sends a request to the server by clicking a link on a web page, submitting a
form, or typing in a web page address in the browser's address field. To send a request, the browser needs to know
which server to talk to and which resource to ask for. This information is specified by an HTTP Uniform Resource
Locator (URL):

http://www.gefionsoftware.com/index.html

The first part of the URL shown specifies that the request is made using the HTTP protocol. This is followed by the name
of the server, in this case www.gefionsoftware.com. The web server waits for requests to come in on a specific TCP/IP
port. Port number 80 is the standard port for HTTP requests. If the web server uses another port, the URL must specify
the port number in addition to the server name. For example:

http://www.gefionsoftware.com:8080/index.html

This request is sent to a server that uses port 8080 instead of 80. The last part of the URL, /index.html, identifies the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This request is sent to a server that uses port 8080 instead of 80. The last part of the URL, /index.html, identifies the
resource that the client is requesting.

A URL is actually a specialization of a Uniform Resource Identifier (URI, defined in the RFC-2396[1] specification). A URL
identifies a resource partly by its location, for instance the server that contains the resource. Another type of URI is a
Uniform Resource Name (URN), which is a globally unique identifier that is valid no matter where the resource is
located. HTTP deals only with the URL variety. The terms URI and URL are often used interchangeable, and
unfortunately, they have slightly different definitions in different specifications. I'm trying to use the terms as defined
by the HTTP/1.1 specification (RFC-2616), which is pretty close to how they are also used in the servlet and JSP
specifications. Hence, I use the term URL only when the URI must start with http (or https, for HTTP over an encrypted
connection) followed by a server name and possibly a port number, as in the previous examples. I use URI as a generic
term for any string that identifies a resource, where the location can be deduced from the context and isn't necessarily
part of the URI. For example, when the request has been delivered to the server, the location is a given, and only the
resource identifier is important.

[1] Available at http://www.ietf.org/rfc/rfc2396.txt.

The browser uses the URL information to create the request message it sends to the specified server using the specified
protocol. An HTTP request message consists of three things: a request line, request headers, and possibly a request
body.

The request line starts with the request method name, followed by a resource identifier and the protocol version used
by the browser:

GET /index.html HTTP/1.1

The most commonly used request method is named GET. As the name implies, a GET request is used to retrieve a
resource from the server. It's the default request method, so if you type a URL in the browser's address field, or click
on a link, the request is sent as a GET request to the server.

The request headers provide additional information the server may use to process the request. The message body is
included only in some types of requests, like the POST request discussed later.

Here's an example of a valid HTTP request message:

GET /index.html HTTP/1.1
Host: www.gefionsoftware.com
User-Agent: Mozilla/5.0 (Windows; U; Win 9x 4.90; en-US; rv: 1.0.2)
Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*
Accept-Language : en
Accept-Charset : iso-8859-1,*,utf-8

The request line specifies the GET method and asks for the resource named /index.html to be returned using the
HTTP/1.1 protocol version. The various headers provide additional information.

The Host header tells the server the hostname used in the URL. A server may have multiple names, so this information
is used to distinguish between multiple virtual web servers sharing the same web server process.

The User-Agent header contains information about the type of browser making the request. The server can use this to
send different types of responses to different types of browsers. For instance, if the server knows whether Internet
Explorer or Netscape Navigator is used, it can send a response that takes advantage of each browser's unique features.
It can also tell if a client other than an HTML browser is used, such as a Wireless Markup Language (WML) browser on a
cell phone or a PDA device, and generate an appropriate response.

The Accept headers provide information about the languages and file formats the browser accepts. These headers can
be used to adjust the response to the capabilities of the browser and the user's preferences, such as use a supported
image format and the preferred language. These are just a few of the headers that can be included in a request
message. The HTTP specification, available at http://www.w3c.org/, describes all of them.

The resource identifier (URI) doesn't necessarily correspond to a static file on the server. It can identify an executable
program, a record in a database, or pretty much anything the web server knows about. That's why the generic term
resource is used. In fact, there's no way to tell if the /index.html URI corresponds to a file or something else; it's just a
name that means something to the server. The web server is configured to map these unique names to the real
resources.

2.1.2 Responses in Detail

When the web server receives the request, it looks at the URI and decides, based on configuration information, how to
handle it. It may handle it internally by simply reading an HTML file from the filesystem, or it can forward the request to
some component that is responsible for the resource corresponding to the URI. This can be a program that uses
database information, for instance, to dynamically generate an appropriate response. To the browser it makes no
difference how the request is handled; all it cares about is getting a response.

The response message looks similar to the request message. It consists of three things: a status line, response
headers, and an optional response body. Here's an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

headers, and an optional response body. Here's an example:

HTTP/1.1 200 OK
Last-Modified: Mon, 20 Dec 2002 23:26:42 GMT
Date: Tue, 11 Jan 2003 20:52:40 GMT
Status: 200
Content-Type: text/html
Servlet-Engine: Tomcat Web Server/5.0
Content-Length: 59

<html>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

The status line starts with the name of the protocol, followed by a status code and a short description of the status
code. Here the status code is 200, meaning the request was executed successfully. The response message has headers
just like the request message. In this example, the Last-Modified header gives the date and time for when the resource
was last modified. The browser can use this information as a timestamp in a local cache; the next time the user asks for
this resource, he can ask the server to send it only if it's been updated since the last time it was requested. The Content-
Type header tells the browser what type of response data the body contains and the Content-Length header how large it
is. The other headers are self-explanatory. A blank line separates the headers from the message body. Here the body is
a simple HTML page:

<html>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

Of course, the body can contain a more complex HTML page or any other type of content. For example, the request
may return an HTML page with elements. When the browser reads the first response and finds the
elements, it sends a new request for the resource identified by each element, often in parallel. The server returns one
response for each image request, with a Content-Type header telling what type of image it is (for instance image/gif) and
the body containing the bytes that make up the image. The browser then combines all responses to render the
complete page. This interaction is illustrated in Figure 2-2.

Figure 2-2. Interaction between a web client and a server

2.1.3 Request Parameters

Besides the URI and headers, a request message can contain additional information in the form of parameters. If the
URI identifies a server-side program for displaying weather information, for example, request parameters can provide
information about the city the user wants to see a forecast for. In an e-commerce application, the URI may identify a
program that processes orders, with the user's customer number and the list of items to be purchased transferred as
parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameters.

Parameters can be sent in one of two ways: tacked on to the URI in the form of a query string or sent as part of the
request message body. This is an example of a URL with a query string:

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA

The query string starts with a question mark (?) and consists of name/value pairs separated by ampersands (&). These
names and values must be URL-encoded, meaning that special characters, such as whitespace, question marks,
ampersands, and all other nonalphanumeric characters are encoded so that they don't get confused with characters
used to separate name/value pairs and other parts of the URI. In this example, the space between Hermosa and Beach is
encoded as a plus sign. Other special characters are encoded as their corresponding hexadecimal ASCII value; for
instance, a question mark is encoded as %3F. When parameters are sent as part of the request body, they follow the
same syntax; URL encoded name/value pairs separated by ampersands.

2.1.4 Request Methods

As described earlier, GET is the most commonly used request method, intended to retrieve a resource without causing
anything else to happen on the server. The POST method is almost as common as GET; it requests some kind of
processing on the server, for instance, updating a database or processing a purchase order.

The way parameters are transferred is one of the most obvious differences between the GET and POST request methods.
A GET request always uses a query string to send parameter values, while a POST request always sends them as part of
the body (additionally, it can send some parameters as a query string, just to make life interesting). If you insert a link
in an HTML page using an <a> element, clicking on the link results in a GET request being sent to the server. Since the
GET request uses a query string to pass parameters, you can include hardcoded parameter values in the link URI:

 Hermosa Beach weather forecast

When you use a form to send user input to the server, you can specify whether to use the GET or POST method with the
method attribute, as shown here:

<form action="/forecast" method="POST">
 City: <input name="city" type="text">
 State: <input name="state" type="text">
 <p>
 <input type="SUBMIT">
</form>

If the user enters "Hermosa Beach" and "CA" in the form fields and clicks on the Submit button, the browser sends a
request message like this to the server:

POST /forecast HTTP/1.1
Host: www.gefionsoftware.com
User-Agent: Mozilla/5.0 (Windows; U; Win 9x 4.90; en-US; rv: 1.0.2)
Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*
Accept-language: en-US
Accept-charset: iso-8859-1,*,utf-8

city=Hermosa+Beach&state=CA

Due to the differences in how parameters are sent by GET and POST requests, as well as the differences in their
intended purpose, browsers handle the requests in different ways. A GET request, parameters and all, can easily be
saved as a bookmark, hardcoded as a link, and the response cached by the browser. Also, the browser knows that no
damage is done if it needs to send a GET request again automatically, for instance if the user clicks the Reload button.

A POST request, on the other hand, can't be bookmarked as easily; the browser would have to save both the URI and
the request message body. Since a POST request is intended to perform some possibly irreversible action on the server,
the browser must also ask the user if it's okay to send the request again. You have probably seen this type of
confirmation dialog, shown in Figure 2-3, numerous times.

Figure 2-3. Repost confirmation dialog

Besides the GET and POST methods, HTTP specifies the following methods:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OPTIONS

The OPTIONS method is used to find out what options (e.g., methods) a server or a resource offers.

HEAD

The HEAD method is used to get a response with all headers generated by a GET request but without the body.
It can make sure a link is valid or to see when a resource was last modified.

PUT

The PUT method is used to store the message body content on the server as a resource identified by the URI.

DELETE

The DELETE method is used to delete the resource identified by the URI.

TRACE

The TRACE method is used for testing the communication between the client and the server. The server sends
back the request message, exactly as it received it, as the body of the response.

These methods aren't normally used in a web application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Servlets
The JSP specification is based on the Java servlet specification. In fact, JSP pages are often combined with servlets in
the same application. In this section, we take a brief look at what a servlet is, and then discuss the concepts shared by
servlets and JSP pages. In Chapter 3, we'll take a closer look at how JSP pages are actually turned into servlets
automatically.

If you're already familiar with servlets, this is old news. You can safely skip the rest of this chapter.

2.2.1 Advantages over Other Server-Side Technologies

In simple terms, a servlet is a piece of code that adds new functionality to a server (typically a web server), just like
CGI and proprietary server extensions such as NSAPI and ISAPI. But compared to other technologies, servlets have a
number of advantages:

Platform and vendor independence

All the major web servers and application servers support servlets, so a servlet-based solution doesn't tie you
to one specific vendor. Also, servlets are written in the Java programming language, so they can be used on
any operating system with a Java runtime environment.

Integration

Servlets are developed in Java and can therefore take advantage of all other Java technologies, such as JDBC
for database access, JNDI for directory access, RMI for remote resource access, etc. Starting with Version 2.2,
the servlet specification is part of the Java 2 Enterprise Edition (J2EE), making servlets an important ingredient
of any large-scale enterprise application, with formalized relationships to other server-side technologies such as
Enterprise JavaBeans.

Efficiency

Servlets execute in a process that is running until the servlet-based application is shut down. Each servlet
request is executed as a separate thread in this permanent process. This is far more efficient that the CGI
model, where a new process is created for each request. First of all (and most obvious), a servlet doesn't have
the overhead of creating the process and loading the CGI script and possibly its interpreter. But another
timesaver is that servlets can also access resources that remain loaded in the process memory between
requests, such as database connections and persistent state.

Scalability

By virtue of being written in Java and the broad support for servlets, a servlet-based application is extremely
scalable. You can develop and test the application on a Windows PC using the standalone servlet reference
implementation, and deploy it on anything from a more powerful server running Linux and Apache to a cluster
of high-end servers with an application server that supports loadbalancing and failover.

Robustness and security

Java is a strongly typed programming language. This means that you catch a lot of mistakes in the compilation
phase that you would only catch during runtime if you used a script language such as Perl. Java's error handling
is also much more robust than C/C++, where an error such as division by zero typically brings down the whole
server.

In addition, servlets use specialized interfaces to server resources that aren't vulnerable to the traditional
security attacks. For instance, a CGI Perl script typically uses shell command strings composed of data received
from the client to ask the server to do things such as send email. People with nothing better to do love to find
ways to send data that will cause the server to crash, remove all files on the hard disk, or plant a virus or a
backdoor when the server executes the command. While a CGI script programmer must be very careful to
screen all input to avoid these threats, such problems are almost nonexistent with a servlet because it doesn't
communicate with the server in the same insecure way.[2]

[2] However, servlet-based web sites are vulnerable to so-called cross site scripting attacks (see
http://www.cert.org/advisories/CA-2000-02.html) the same way all dynamic web sites are, no matter
which technology is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which technology is used.

As you will see in Chapter 3, JSP inherits all these advantages because it's based on the servlet specification.

2.2.2 Servlet Containers

A servlet container is the connection between a web server and the servlets. It provides the runtime environment for all
the servlets on the server as defined by the servlet specification, and is responsible for loading and invoking those
servlets when the time is right. The container typically loads a servlet class when it receives the first request for the
servlet, gives it a chance to initialize itself, and then asks it to process the request. Subsequent requests use the same,
initialized servlet until the server is shut down. The container then gives the servlet a chance to release resources and
save its state (for instance, information accumulated during its lifetime).

There are many different types of servlet containers. Some containers are called add-ons, or plug-ins, and are used to
add servlet support to web servers without native servlet support (such as Apache and IIS). They can run in the same
operating-system process as the web server or in a separate process. Other containers are standalone servers. A
standalone server includes web server functionality to provide full support for HTTP in addition to the servlet runtime
environment. Containers can also be embedded in other servers, such as a climate-control system, to offer a web-
based interface to the system. A container bundled as part of an application server can distribute the execution of
servlets over multiple hosts. The server can balance the load evenly over all containers, and some servers can even
provide failover capabilities in case a host crashes.

No matter what type it is, the servlet container is responsible for mapping an incoming request to a servlet registered
to handle the resource identified by the URI and passing the request message to that servlet. After the request is
processed, it's the container's responsibility to convert the response created by the servlet into an HTTP response
message and send it back to the client. This is illustrated in Figure 2-4.

Figure 2-4. Request dispatching

2.2.3 Servlet Contexts and Web Applications

A Java web application is typically made up by a combination of several different types of resources: JSP pages,
servlets, applets, static HTML pages, custom tag libraries and other Java class files. Containers compliant with the
Servlet 2.2 specification (or later), support a standard, portable way to package all these resources, along with a web
application deployment descriptor containing information about how all the resources fit together. The deployment
descriptor and all the other web application files are arranged in a well-defined hierarchy within an archive file, called a
web application archive (WAR). All compliant containers provide tools for installing a WAR file or a special directory
where a WAR file is automatically picked up (such as the webapps directory in Tomcat). Most containers also support
web applications deployed directly in a filesystem using the same file structure as is defined for the WAR file, which can
be convenient during development.

Within the container, each web application is represented by a servlet context. The servlet context is associated with a
unique URI path prefix called the context path, as shown in Figure 2-4. For instance, your human resources application
can be associated with the context path /hr and your sales tracking system with the context path /sales. This allows one
servlet container to distinguish between the different applications it serves and dispatch requests like /sales/report?
month=Jan to the sales tracking application and /hr/emplist to the human resources application.

The remaining URI path is then used within the selected context to decide how to process the request by comparing it
to path-mapping rules defined by the application's deployment descriptor. Rules can be defined to send all requests
starting with /report to one servlet and requests starting with /forecast to another. Another type of mapping rule can
say that one servlet handles all requests with paths ending with a specific file extension, such as .jsp. This is how JSP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

say that one servlet handles all requests with paths ending with a specific file extension, such as .jsp. This is how JSP
page requests are handled. Figure 2-4 shows how the different parts of the URI paths are used to direct the request
processing to the right resource through the container and context.

Each context is self-contained and doesn't know anything about other applications running in the same container.
References between the servlets and JSP pages in the application are commonly relative to the context path and,
therefore, are referred to as context-relative paths. By using context-relative paths within the application, a web
application can be deployed using any context path.

Finally, a context can hold objects shared by all components of the application,[3] such as database connections and
other shared resources needed by multiple servlets and JSP pages.

[3] Special considerations must be taken for applications distributed over multiple servers. Chapter 18 describes
this in more detail.

The web application structure, the deployment file format, and the ability to share objects among components in an
application are three important parts of the servlet specification that also apply to JSP. We will look at all these areas in
much greater detail later in this book, starting with the basics in Chapter 5 and adding more advanced features as
needed in the following chapters.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. JSP Overview
JSP is the latest Java technology for web application development and is based on the servlet technology introduced in
the previous chapter. While servlets are great in many ways, they are generally reserved for programmers. In this
chapter, we look at the problems that JSP technology solves, the anatomy of a JSP page, the relationship between
servlets and JSP, and how the server processes a JSP page.

In any web application, a program on the server processes requests and generates responses. In a simple one-page
application, such as an online bulletin board, you don't need to be overly concerned about the design of this piece of
code; all logic can be lumped together in a single program. However, when the application grows into something bigger
(spanning multiple pages, using external resources such as databases, with more options and support for more types of
clients), it's a different story. The way your site is designed is critical to how well it can be adapted to new requirements
and continue to evolve. The good news is that JSP technology can be used as an important part in all kinds of web
applications, from the simplest to the most complex. Therefore, this chapter also introduces the primary concepts in the
design model recommended for web applications and the different roles played by JSP and other Java technologies in
this model.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 The Problem with Servlets
In many Java servlet-based applications, processing the request and generating the response are both handled by a
single servlet class. Example 3-1 shows how a servlet class often looks.

Example 3-1. A typical servlet class

public class OrderServlet extends HttpServlet {
 public void doGet((HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 if (isOrderInfoValid(request)) {
 saveOrderInfo(request);
 out.println("<html>");
 out.println(" <head>");
 out.println(" <title>Order Confirmation</title>");
 out.println(" </head>");
 out.println(" <body>");
 out.println(" <h1>Order Confirmation</h1>");
 renderOrderInfo(request);
 out.println(" </body>");
 out.println("</html>");
 }
 ...

If you're not a programmer, don't worry about all the details in this code. The point is that the servlet contains request
processing and business logic (implemented by methods such as isOrderInfoValid() and saveOrderInfo()), and also
generates the response HTML code, embedded directly in the servlet code using println() calls. A more structured
servlet application isolates different pieces of the processing in various reusable utility classes and may also use a
separate class library for generating the actual HTML elements in the response. Even so, the pure servlet-based
approach still has a few problems:

Thorough Java programming knowledge is needed to develop and maintain all aspects of the application, since
the processing code and the HTML elements are lumped together.

Changing the look and feel of the application, or adding support for a new type of client (such as a WML client),
requires the servlet code to be updated and recompiled.

It's hard to take advantage of web page development tools when designing the application interface. If such
tools are used to develop the web page layout, the generated HTML must then be manually embedded into the
servlet code, a process which is time consuming, error prone, and extremely boring.

Adding JSP to the puzzle lets you solve these problems by separating the request processing and business logic code
from the presentation, as illustrated in Figure 3-1. Instead of embedding HTML in the code, place all static HTML in a
JSP page, just as in a regular web page, and add a few JSP elements to generate the dynamic parts of the page. The
request processing can remain the domain of the servlet, and the business logic can be handled by JavaBeans and EJB
components.

Figure 3-1. Separation of request processing, business logic, and presentation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As I mentioned before, separating the request processing and business logic from presentation makes it possible to
divide the development tasks among people with different skills. Java programmers implement the request processing
and business logic pieces, web page authors implement the user interface, and both groups can use best-of-breed
development tools for the task at hand. The result is a much more productive development process. It also makes it
possible to change different aspects of the application independently, such as changing the business rules without
touching the user interface.

This model has clear benefits even for a web page author without programming skills, working alone. A page author can
develop web applications with many dynamic features, using the JSP standard actions and the JSTL libraries, as well as
Java components provided by open source projects and commercial companies.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 The Anatomy of a JSP Page
A JSP page is simply a regular web page with JSP elements for generating the parts that differ for each request, as
shown in Figure 3-2.

Figure 3-2. Template text and JSP elements

Everything in the page that isn't a JSP element is called template text. Template text can be any text: HTML, WML,
XML, or even plain text. Since HTML is by far the most common web page language in use today, most of the
descriptions and examples in this book use HTML, but keep in mind that JSP has no dependency on HTML; it can be
used with any markup language. Template text is always passed straight through to the browser.

When a JSP page request is processed, the template text and dynamic content generated by the JSP elements are
merged, and the result is sent as the response to the browser.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 JSP Processing
Just as a web server needs a servlet container to provide an interface to servlets, the server needs a JSP container to
process JSP pages. The JSP container is responsible for intercepting requests for JSP pages. To process all JSP elements
in the page, the container first turns the JSP page into a servlet (known as the JSP page implementation class). The
conversion is pretty straightforward; all template text is converted to println() statements similar to the ones in the
handcoded servlet shown in Example 3-1, and all JSP elements are converted to Java code that implements the
corresponding dynamic behavior. The container then compiles the servlet class.

Converting the JSP page to a servlet and compiling the servlet form the translation phase. The JSP container initiates
the translation phase for a page automatically when it receives the first request for the page. Since the translation
phase takes a bit of time, the first user to request a JSP page notices a slight delay. The translation phase can also be
initiated explicitly; this is referred to as precompilation of a JSP page. Precompiling a JSP page is a way to avoid hitting
the first user with this delay. It is discussed in more detail in Chapter 17.

The JSP container is also responsible for invoking the JSP page implementation class (the generated servlet) to process
each request and generate the response. This is called the request processing phase. The two phases are illustrated in
Figure 3-3.

Figure 3-3. JSP page translation and processing phases

As long as the JSP page remains unchanged, any subsequent request goes straight to the request processing phase
(i.e., the container simply executes the class file). When the JSP page is modified, it goes through the translation phase
again before entering the request processing phase.

The JSP container is often implemented as a servlet configured to handle all requests for JSP pages. In fact, these two
containers—a servlet container and a JSP container—are often combined in one package under the name web container.

So in a way, a JSP page is really just another way to write a servlet without having to be a Java programming wiz.
Except for the translation phase, a JSP page is handled exactly like a regular servlet; it's loaded once and called
repeatedly, until the server is shut down. By virtue of being an automatically generated servlet, a JSP page inherits all
the advantages of a servlet described in Chapter 2: platform and vendor independence, integration, efficiency,
scalability, robustness, and security.

3.3.1 JSP Elements

There are three types of JSP elements you can use: directive, action, and scripting. A new construct added in JSP 2.0 is
an Expression Language (EL) expression; let's call this a forth element type, even though it's a bit different than the
other three.

3.3.1.1 Directive elements

The directive elements, shown in Table 3-1, specify information about the page itself that remains the same between
requests—for example, if session tracking is required or not, buffering requirements, and the name of a page that
should be used to report errors, if any.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 3-1. Directive elements
Element Description

<%@ page ... %> Defines page-dependent attributes, such as session tracking, error page, and buffering
requirements

<%@ include ... %> Includes a file during the translation phase

<%@ taglib ... %> Declares a tag library, containing custom actions, that is used in the page

3.3.1.2 Standard action elements

Action elements typically perform some action based on information that is required at the exact time the JSP page is
requested by a browser. An action can, for instance, access parameters sent with the request to do a database lookup.
It can also dynamically generate HTML, such as a table filled with information retrieved from an external system.

The JSP specification defines a few standard action elements, most of them listed in Table 3-2.[1]

[1] There are a few more action elements, used in combination with these standard actions or custom actions or in
very special cases. They are introduced as they are used in the examples later in this book.

Table 3-2. Standard action elements
Action

element Description

<jsp:useBean> Makes a JavaBeans component available in a page

<jsp:getProperty> Gets a property value from a JavaBeans component and adds it to the response

<jsp:setProperty> Sets a JavaBeans component property value

<jsp:include> Includes the response from a servlet or JSP page during the request processing phase

<jsp:forward> Forwards the processing of a request to a servlet or JSP page

<jsp:param> Adds a parameter value to a request handed off to another servlet or JSP page using <jsp:include>
or <jsp:forward>

<jsp:plugin> Generates HTML that contains the appropriate browser-dependent elements (OBJECT or EMBED)
needed to execute an applet with the Java Plugin software

3.3.1.3 Custom action elements and the JSP Standard Tag Library

In addition to the standard actions, the JSP specification defines how to develop custom actions to extend the JSP
language, either as Java classes or as text files with JSP elements. The JSP Standard Tag Library (JSTL) is such an
extension, with the special status of being defined by a formal specification from Sun and typically bundled with the JSP
container. JSTL contains action elements for the type of processing needed in most JSP applications, such as conditional
processing, database access, internationalization, and more. This book covers all the JSTL actions in detail.

If JSTL isn't enough, your team (or a third party) can use these extension mechanisms to develop additional custom
actions, maybe to access application-specific resources or simplify application-specific processing. The examples in this
book use a few custom actions in addition to the JSTL actions, and one chapter in Part II and three chapters in Part III
are dedicated to custom action development.

3.3.1.4 Scripting elements

Scripting elements, shown in Table 3-3, allow you to add small pieces of code (typically Java code) in a JSP page, such
as an if statement to generate different HTML depending on a certain condition. Like actions, they are also executed
when the page is requested. You should use scripting elements with extreme care: if you embed too much code in your
JSP pages, you will end up with the same kind of maintenance problems as with servlets embedding HTML.

Table 3-3. Scripting elements
Element Description

<% ... %> Scriptlet, used to embed scripting code

<%= ... %> Expression, used to embed scripting code expressions when the result shall be added to the response;
also used as request-time action attribute values

<%! ... %> Declaration, used to declare instance variables and methods in the JSP page implementation class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3.1.5 Expression Language expressions

A new feature in JSP 2.0 is the Expression Language (EL), originally developed as part of the JSTL specification. The EL
is a simple language for accessing request data and data made available through application classes. EL expressions
can be used directly in template text or to assign values to action element attributes. Its syntax is similar to JavaScript,
but much more forgiving; it's constrained in terms of functionality, since it's not intended to be a full-fledged
programming language. Rather, it is a glue for tying together action elements and other application components. There
are way too many elements of the EL to list here, but they are all introduced in Chapter 5 and described in detail when
used in examples.

3.3.1.6 JavaBeans components

JSP elements, such as action and scripting elements, are often used to work with JavaBeans components. Put
succinctly, a JavaBeans component is a Java class that complies with certain coding conventions. JavaBeans
components are typically used as containers for information that describes application entities, such as a customer or
an order.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.4 JSP Application Design with MVC
JSP technology can play a part in everything from the simplest web application, such as an online phone list or an
employee vacation planner, to complex enterprise applications, such as a human resource application or a sophisticated
online shopping site. How large a part JSP plays differs in each case, of course. In this section, I introduce a design
model called Model-View-Controller (MVC), suitable for both simple and complex applications.

MVC was first described by Xerox in a number of papers published in the late 1980s. The key point of using MVC is to
separate logic into three distinct units: the Model, the View, and the Controller. In a server application, we commonly
classify the parts of the application as business logic, presentation, and request processing. Business logic is the term
used for the manipulation of an application's data, such as customer, product, and order information. Presentation
refers to how the application data is displayed to the user, for example, position, font, and size. And finally, request
processing is what ties the business logic and presentation parts together. In MVC terms, the Model corresponds to
business logic and data, the View to the presentation, and the Controller to the request processing.

Why use this design with JSP? The answer lies primarily in the first two elements. Remember that an application data
structure and logic (the Model) is typically the most stable part of an application, while the presentation of that data
(the View) changes fairly often. Just look at all the face-lifts many web sites go through to keep up with the latest
fashion in web design. Yet, the data they present remains the same. Another common example of why presentation
should be separated from the business logic is that you may want to present the data in different languages or present
different subsets of the data to internal and external users. Access to the data through new types of devices, such as
cell phones and personal digital assistants (PDAs), is the latest trend. Each client type requires its own presentation
format. It should come as no surprise, then, that separating business logic from the presentation makes it easier to
evolve an application as the requirements change; new presentation interfaces can be developed without touching the
business logic.

This MVC model is used for most of the examples in this book. In Part II, JSP pages are used as both the Controller and
the View, and JavaBeans components are used as the Model. The examples in Chapter 5 through Chapter 9 use a single
JSP page that handles everything, while Chapter 10 through Chapter 14 show how you can use separate pages for the
Controller and the View to make the application easier to maintain. Many types of real-world applications can be
developed this way, but what's more important is that this approach allows you to examine all the JSP features without
getting distracted by other technologies. In Part III, we look at other possible role assignments when JSP is combined
with servlets and Enterprise JavaBeans.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. Setting Up the JSP Environment
This book contains plenty of examples to illustrate all the JSP features. All examples were developed and tested with
the JSP reference implementation, known as the Apache Tomcat server, which is developed by the Apache Jakarta
project. In this chapter you will learn how to install the Tomcat server and add a web application containing all the
examples used in this book. You can, of course, use any web server that supports JSP 2.0, but Tomcat is a good server
for development and test purposes. You can learn more about the Jakarta project and Tomcat, as well as how you can
participate in the development, at the Jakarta web site: http://jakarta.apache.org/.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 Installing the Java Software Development Kit
Tomcat 5 is a pure Java web server with support for the Servlet 2.4 and JSP 2.0 specifications. In order to use it, you
must first install a Java runtime environment. If you don't already have one, you can download a Java runtime for
Windows, Linux, and Solaris at http://java.sun.com/j2se/.

I recommend that you download and install the Java 2 SDK (a.k.a. JDK), as opposed to the slimmed-down Runtime
Environment (JRE) distribution. The reason is that JSP requires a Java compiler, included in the SDK but not in the JRE.

Another alternative is to use the JRE plus the Jikes compiler from IBM
(http://www10.software.ibm.com/developerworks/opensource/jikes/). Tomcat can be configured to use Jikes instead of
the javac compiler available in the Java 2 SDK from Sun; read the Tomcat documentation if you would like to try this.
To make things simple, though, I suggest installing the Java 2 SDK from Sun. The examples were developed and tested
with Java 2 SDK, Standard Edition, v1.4.2. I suggest that you use the latest version of the SDK available for your
platform.

If you need an SDK for a platform other than Windows, Linux, or Solaris, there's a partial list of ports made by other
companies at: http://java.sun.com/cgi-bin/java-ports.cgi.

Also check your operating-system vendor's web site. Most operating-system vendors have their own SDK
implementation available for free.

Installation of the SDK varies per platform but is typically easy to do. Just follow the instructions on the web site where
you download the SDK.

Before you install and run Tomcat, make sure that the JAVA_HOME environment variable is set to the installation
directory of your Java environment and that the Java bin directory is included in the PATH environment variable. On a
Windows system, you can see if an environment variable is set by typing the following command in a Command Prompt
window:

C:\> echo %JAVA_HOME%
C:\jdk1.4.2

If JAVA_HOME isn't set, you can set it and include the bin directory in the PATH on a Windows system like this
(assuming Java is installed in C:\jdk1.4.2):

C:\> set JAVA_HOME=C:\jdk1.4.2
C:\> set PATH=%JAVA_HOME%\bin;%PATH%

On a Windows 95/98/ME system, add these commands to the C:\AUTOEXEC.BAT file to set them permanently. Just use
a text editor, such as Notepad, and add lines with the set commands. The next time you boot the PC, the environment
variables will be set automatically. For Windows NT, you can set them permanently from the Environment tab in the
System Properties tool in the Control Panel, and for Windows 2000 and Windows XP, you can do the same with the
Control Panel System tool by first selecting the Advanced tab and then Environment Variables.

If you use Linux, Mac OS X, or some other Unix-based platform, the exact commands depend on the shell you use. With
bash, which is commonly the default for Linux, use the following commands (assuming Java is installed in
/usr/local/jdk1.4.2):

[hans@gefion /] export JAVA_HOME=/usr/local/jdk1.4.2
[hans@gefion /] export PATH=$JAVA_HOME/bin:$PATH
[hans@gefion /] echo $PATH
/usr/local/jdk1.4.2/bin:/usr/local/bin:/bin:/usr/bin
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 Installing the Tomcat Server
Tomcat supports many features and configuration options. In this section, I only describe the basics that you must
know to get Tomcat up and running. If you plan to use Tomcat extensively for development or as a production server,
refer to Tomcat: The Definitive Guide by Jason Brittain and Ian Darwin (O'Reilly).

You can download the Tomcat server in binary format or as source code that you compile yourself. If you're primarily
interested in learning about JSP, I recommend that you use the binary download for running the examples in this book
and to develop your own applications. If you're a Java programmer and are interested in seeing how Tomcat is
implemented, feel free to download the source as well and take a look at the internals.

The binary distribution is available at http://jakarta.apache.org/site/binindex.cgi.

On this page you find three types of builds: release builds, milestone builds, and nightly builds. Release builds are
stable releases that have been tested extensively and verified to comply with the servlet and JSP specifications.
Milestone builds are created as intermediary steps towards a release build. They often contain new features that aren't
yet fully tested but are generally known to work. A nightly build, however, may be very unstable. It's actually a
snapshot of the latest source code and may have been tested only by the person who made the latest change. You
should use a nightly build only if you're involved in the development of Tomcat.

I recommend that you download the latest release build. All examples in this book were developed and tested using the
5.0.12 version, but any release later than 5.0.12 should work fine as well. When you click on the link for the latest
release build and select the bin directory, you see a list of archive files in different formats, similar to Figure 4-1.

Figure 4-1. Release build packages

How to continue from here varies a bit depending on your platform.

4.2.1 Windows Platforms

For Windows, select jakarta-tomcat-5.0.12.zip[1] and save it to your hard drive, for instance in a directory named

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Windows, select jakarta-tomcat-5.0.12.zip[1] and save it to your hard drive, for instance in a directory named
C:\Jakarta. You can unpack the package either with a ZIP utility program, such as WinZip, or by using the jar command
that's included in the Java distribution. Use the Command Prompt window where you set the JAVA_HOME and PATH
environment variables earlier, change to the directory in which you downloaded the ZIP file, and unpack it:

[1] There's also a file with an .exe extension in the list of downloads. This is a GUI installer for Windows. While it
simplifies the installation, it makes it almost impossible to debug installation problems, and it doesn't work at all for
older versions of Windows, e.g., Windows ME. I suggest that you use the command-line installation process
described in this chapter, at least until you're familiar enough with Tomcat to handle the GUI installer issues.

C:\> cd Jakarta
C:\Jakarta> jar xvf jakarta-tomcat-5.0.12.zip

This creates a directory structure with a top directory named jakarta-tomcat-5.0.12 with a number of subdirectories.
Like most software packages, the top directory contains a file named README.txt; do exactly that. Software
distributions change and if, for instance, the instructions in this chapter no longer apply when you download the
software, the README.txt file should contain information about how to get started. Additional details are found in the
file named RUNNING.txt.

You should also set the CATALINA_HOME environment variable to point to the Tomcat installation directory:

C:\Jakarta> set CATALINA_HOME=C:\Jakarta\jakarta-tomcat-5.0.12

If you wonder about the variable name, Catalina is the name of the servlet container, and Jasper is the name of the JSP
container; together they are known as the Tomcat server.

The Tomcat installation directory contains a number of subdirectories, described later. The bin directory contains
Windows batch files for starting and stopping the server. The batch files are named startup.bat, shutdown.bat, and
catalina.bat. The catalina.bat file is the main script for controlling the server; it's called by the two other scripts:
startup.bat and shutdown.bat. To start the server in a separate window, change to the bin directory and run the
startup.bat file:

C:\Jakarta> cd jakarta-tomcat-5.0.12\bin
C:\Jakarta\jakarta-tomcat-5.0.12\bin> startup

A new Command Prompt window pops up, and you see startup messages similar to this:

Aug 13, 2003 12:53:59 PM org.apache.coyote.http11.Http11Protocol init
INFO: Initializing Coyote HTTP/1.1 on port 8080
Aug 13, 2003 12:53:59 PM org.apache.catalina.startup.Catalina load
INFO: Initialization processed in 2260 ms
...
INFO: Server startup in 7408 ms

Just leave this window open; this is where the server process is running.

If you're running this on a Windows 95/98/ME platform, you may see an error message "Out of environment space,"
when you try to start the server. That's because the default amount of space allocated for environment variables isn't
enough. To be able to run Tomcat, run this command in the Command Prompt window before you run the startup.bat
file again:

C:\Jakarta\jakarta-tomcat\bin> COMMAND.COM /E:4096 /P

This command sets the environment space to 4096 bytes (4 KB). That should be enough for running this batch file. If
you still get the same message, use a higher value.

For some installations, this command may not work. If it doesn't, try this instead:

1. Close the Command Prompt window, and open a new one.

2. Click on the MS-DOS icon at the top left of the window.

3. Select the Properties option.

4. Click on the Memory tab.

5. Change the Initial Environment value from Auto to 4096.

6. Click on OK and try to start the server again.

At this point, the server may not start due to other problems. If so, the extra Command Prompt window may pop up
and then disappear before you have a chance to read the error messages. If this happens, you can let the server run in
the Command Prompt window with this command instead:

C:\Jakarta\jakarta-tomcat-5.0.12\bin> catalina run

On Windows NT/2000 and Windows XP, you should first make sure that the Command Prompt window has a large
enough screen buffer so that you can scroll back in case the error messages don't fit on one screen. Open the
Properties window for the Command Prompt window (right mouse button in the upper left corner), select Layout and
set the screen buffer size height to a large value (for instance 999). Unfortunately, the Command Prompt screen buffer
can't be enlarged for Windows 95/98/ME, so scrolling back isn't an option. If you run into problems on these platforms,
double-check that you have installed the Java SDK correctly and that you have set the JAVA_HOME and PATH

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

double-check that you have installed the Java SDK correctly and that you have set the JAVA_HOME and PATH
environment variables as described earlier.

4.2.2 Unix Platforms (Including Linux and Mac OS X)

For Unix platforms, you can download the jakarta-tomcat-5.0.12.tar.gz file, for instance to /usr/local, and use these
commands to unpack it (assuming you have GNU tar installed):

[hans@gefion /] cd /usr/local
[hans@gefion local] tar xzvf jakarta-tomcat-5.0.12.tar.gz

If you don't have GNU tar installed on your system, use the following command:

[hans@gefion local] gunzip -c jakarta-tomcat-5.0.12.tar.gz | tar xvf -

As on Windows, this creates a directory structure with a top directory named jakarta-tomcat-5.0.12 with a number of
subdirectories.

You should also set the CATALINA_HOME environment variable to point to the Tomcat installation directory:

[hans@gefion local] export CATALINA_HOME=/usr/local/jakarta-tomcat-5.0.12

If you wonder about the variable name, Catalina is the name of the servlet container and Jasper is the name of the JSP
container; together they are known as the Tomcat server.

The Tomcat installation directory contains a number of subdirectories, described later. The bin directory contains Unix
scripts for starting and stopping the server. The scripts area named startup.sh, shutdown.sh, and catalina.sh.

Start the server in the background with this command:

[hans@gefion jakarta-tomcat-5.0.12] ./startup.sh

If you want to have Tomcat start each time you boot the system, you can add the following commands to your
/etc/rc.d/rc.local (or equivalent) startup script:

export JAVA_HOME=/usr/local/jdk1.4.2
export CATALINA_HOME=/usr/local/jakarta-tomcat-5.0.12
$CATALINA_HOME/bin/startup.sh
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Testing Tomcat
The Tomcat installation directory contains a number of subdirectories. All of them are described in the README.txt file,
but the most important ones are:

bin

Scripts for starting and stopping the Tomcat server.

conf

Tomcat configuration files.

webapps

Default l ocation for web applications served by Tomcat.

Two more subdirectories under the Tomcat home directory are created the first time you start the server:

logs

Server log files. If something doesn't work as expected, look in the files in this directory for clues as to what's
wrong.

work

A directory for temporary files created by the JSP container and other files. This directory is where the servlets
generated from JSP pages are stored.

To test the server, run the startup script as described in the platform-specific sections, and (assuming you're running
Tomcat on the same machine as the browser and that you're using the default 8080 port for Tomcat) open a browser
and enter this URL in the Location/Address field: http://localhost:8080/.

The Tomcat main page is shown in the browser, as in Figure 4-2, and you can now run all servlet and JSP examples
bundled with Tomcat to ensure everything works.

Figure 4-2. The Tomcat main page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you're trying this on a machine that sits behind a proxy, for instance on a corporate network, and instead of Tomcat's
main page you see an error message about not being able to connect to localhost, you need to adjust your proxy
settings. For Netscape 6 and Mozilla, you find the proxy settings under Edit Preferences Advanced
Proxies, and for Internet Explorer 5, you find them under Tools Internet Options Connections LAN
Settings. Make sure that the proxy isn't used for local addresses, such as localhost and 127.0.0.1.

When you're done testing Tomcat, you stop the server like this:

C:\Jakarta\jakarta-tomcat-5.0.12\bin> shutdown
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.4 Installing the Book Examples
All JSP pages, HTML pages, Java source code, and class files for the examples can be downloaded from the O'Reilly site
http://www.oreilly.com/catalog/jserverpages3/.

They can also be downloaded from the book web site that I maintain: http://www.TheJSPBook.com/.

On this site you find a Download page where you can download the file, called jspbook3.zip. Save the file on your hard
drive, for instance in C:\JSPBook on a Windows platform, and unpack it:

C:\JSPBook> jar xvf jspbook3.zip

You can use the same command on a Unix platform.

Two new directories are created: ora and src. The first directory contains all examples described in this book, and the
second contains the Java source files for the JavaBeans, custom actions, servlets, and utility classes used in the
examples.

The examples directory structure complies with the standard Java web application format described in Chapter 2. You
can therefore configure any JSP 2.0-compliant web container to run the examples.

If you like to use a container other than Tomcat, be sure to read the documentation for that container for instructions
on how to install a web application.

To install the example application for Tomcat, simply copy the web application directory structure (the ora directory) to
Tomcat's default directory for applications, called webapps. On a Windows platform, you can copy/paste the directory
structure with the Windows Explorer tool, or use this command in a Command Prompt window:

C:\JSPBook> xcopy /s /i ora %CATALINA_HOME%\webapps\ora

On a Unix platform it looks like this:

[hans@gefion jspbook] cp -R ora $CATALINA_HOME/webapps

Recall from Chapter 2 that each web application in a server is associated with a unique URI prefix (the context path).
When you install an application in Tomcat's webapps directory, the subdirectory name is assigned automatically as the
URI prefix for the application (that is, /ora in this case).

At this point, you must shut down and restart the Tomcat server. After that, you can point your browser to the ora
application with the following URL: http://localhost:8080/ora/.

You should see a start page, as in Figure 4-3, that contains links for all examples in this book.

Figure 4-3. JSP book examples start page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.5 Example Web Application Overview
The examples for this book are packaged as a standard Java web application, as described in Chapter 2. All servers
compliant with the JSP 2.0 specification support this file structure, so you can use the example application as a
guideline when you create your own web applications. How a web application is installed isn't defined by the
specification, however, so it varies between servers. With Tomcat, you simply copy the file structure to the special
webapps directory and restart the server. To modify the configuration information for an application, you need to edit
the application's WEB-INF/web.xml file using a text editor. Other servers may offer special deployment tools that copy
the files where they belong and let you configure the application using a special tool or through web-based forms.

If you look in the ora web application directory, you see that it contains an index.html file and a number of directories
corresponding to chapters in this book. These directories contain all the example JSP and HTML pages.

There's also a WEB-INF directory with a web.xml file, a lib directory, and a classes directory. We will look at this in
much more detail later, starting in Chapter 5, but here's a quick review:

The web.xml file contains configuration information for the example application in the format defined by the
servlet and JSP specifications. It's too early to look at the contents of this file now; we will return to parts of it
when needed.

The lib and classes directories are standard directories, also defined by the servlet specification. A very common
question asked by people new to servlets and JSP (prior to the standard web application format) was, "Where
do I store my class files so that the server can find them?" The answer, unfortunately, differed depending on
which implementation was used. With the standard web application format, it's easy to answer this question: if
the classes are packaged in a JAR file, store the JAR file in the lib directory; otherwise use the classes directory
(with subdirectories mirroring the classes' package structure). The server will always look for Java class files in
these two directories.

The lib directory for the example application contains a number of JAR files. The orataglib_3_0.jar file contains
all the Java class files for the custom actions used in this book, oraclasses_3_0.jar contains the class files for
beans and servlets used in the examples, struts.jar contains the Struts framework classes described in Chapter
19, and jdom.jar contains JDOM classes used for a validator example in Chapter 22. The other JAR files contain
the JSTL Reference Implementation plus all the packages that the JSTL implementation depends on.

The classes directory contains the class for the JSPSourceServlet that displays the raw source code for the
example JSP pages, so you can see what they look like before they are processed by the server. It also contains
all .properties files with localized text for the example in Chapter 14 and a few test servlets described in
Chapter 19.

If you want to try some of your own JSP pages, beans, and custom actions while reading this book, simply add the files
to the example application structure: JSP pages in any directory except under WEB-INF, and Java class files in either
the classes or the lib directory depending on if the classes are packaged in a JAR file or not. If you want to use the
book's custom actions in another application, copy the orataglib_3_0.jar file to the WEB-INF/lib directory for the other
application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part II: JSP Application Development
The focus of this part of the book is on developing JSP-based web applications using both standard JSP
elements and custom components. Through the use of practical examples, you will learn how to handle
common tasks such as validating user input, accessing databases, authenticating users and protecting
web pages, localizing your web site, and more:

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Generating Dynamic Content
JSP is all about generating dynamic content: content that differs based on user input, time of day, the state of an
external system, or any other runtime conditions. JSP provides you with lots of tools for generating this content. In this
book, you will learn about them all—standard actions, custom actions, the JSP Standard Tag Library, JavaBeans, the
Expression Language and scripting elements. Before going into all of that, however, let's start with a simple example to
get a better feel for how the basic JSP elements work.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 Creating a JSP Page
Recall from Chapter 3 that a JSP page is just a regular HTML page with a few special elements. A JSP page should have
the file extension .jsp, which tells the server that the page needs to be processed by the JSP container. Without this
clue, the server is unable to distinguish a JSP page from any other type of file and sends it unprocessed to the browser.

When working with JSP pages, you just need a regular text editor such as Notepad on Windows or Emacs on Unix.
There are a number of tools that may make it easier for you, such as syntax-aware editors that color-code JSP and
HTML elements. Some Interactive Development Environments (IDE) even include a small web container that allows you
to easily execute and debug the pages during development. There are also several webpage authoring tools—the type
of tools often used when developing regular HTML pages—that support JSP to some degree. You can browse through a
fairly extensive list of tools like this at my web site: http://www.TheJSPBook.com/. I recommend that you do not use
them initially, though; it's easier to learn how JSP works if you see the raw page elements before you use tools that
hide them.

The first example JSP page, named easy.jsp, is shown in Example 5-1.

Example 5-1. JSP page showing a dynamically calculated sum (easy.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 <%-- Calculate the sum of 1 + 2 + 3 dynamically --%>
 1 + 2 + 3 = <c:out value="${1 + 2 + 3}" />

 </body>
</html>

The easy.jsp page displays static HTML plus the sum of 1, 2, and 3, calculated at runtime and dynamically added to the
response. We'll look at all the different pieces soon, but first you may want to run the example to see how it works.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Installing a JSP Page
A complete web application may consist of several different resources: JSP pages, servlets, applets, static HTML pages,
custom tag libraries, and other Java class files. Until very recently, an application with all these components had to be
installed and configured in different ways for different servers, making it hard for web application developers to provide
easy-to-use installation instructions and tools.

Starting with the Servlet 2.2 specification, there's a standard, portable way to package all web application resources,
along with a deployment descriptor. The deployment descriptor is a file named web.xml, containing information about
security requirements, how all the resources fit together, and other facts about the application. The deployment
descriptor and all the other web application files are placed in a Web Application Archive (WAR) file, arranged in a well-
defined hierarchy. A WAR file has a .war file extension and can be created with the Java jar command or a ZIP utility
program, such as WinZip (the same file format is used for both JAR and ZIP files).

Having a standardized web application format lets container vendors develop installation and configuration tools that
make it easy to install an application. During installation, the container is free to unpack the contents of the WAR file
and store it for runtime use in any way it sees fit, but the application developer needs to deal with only one delivery
format.

Even though a container is required to know how to deal only with applications packaged as a WAR file, most (if not all)
containers also let you store your application files directly in a filesystem using the same file structure as is defined for
the WAR file. During development, it's more convenient to work with the files in a regular filesystem structure instead
of creating an updated WAR file every time you make a change. In Tomcat, for instance, any subdirectory under the
webapps directory is assumed to be a web application, using the standard web application file structure.

The structure required for both the WAR file and the filesystem is outlined here, using some of the files in the example
application for this book:

/index.html
/cover.gif
/ch5/easy.jsp
/WEB-INF/web.xml
/WEB-INF/classes/JSPSourceServlet.class
/WEB-INF/lib/orataglib_3_0.jar
...

The top level in this structure is the document root for all public web application files, such as HTML pages, JSP pages,
and image files—in other words, all the files requested directly by the browser. For instance, the easy.jsp file used in
this chapter is stored in a subdirectory off the top level called ch5. If the application is installed with the context path
ora (more about this later), you use a URL such as http://localhost:8080/ora/ch5/easy.jsp to access the JSP page.

You're probably wondering about the WEB-INF directory. This directory contains the application deployment descriptor
(web.xml), as well as subdirectories for other types of resources, such as Java class files and configuration files. A
browser doesn't have access to the files under this directory, so it's a safe place for files you don't want public.

The deployment descriptor file, web.xml, is an XML file with configuration information for the application. You will get
much more familiar with the contents of this file as you proceed through the book. (Appendix F also contains a complete
reference of this file.) In addition, two WEB-INF subdirectories have special meaning: lib and classes. All application
class files (such as servlet and custom tag library classes) must be stored in these two directories. The lib directory is
for Java archive (JAR) files (compressed archives of Java class files). Class files that aren't packaged in JAR files must
be stored in the classes directory, which can be convenient during development. The files must be stored in
subdirectories of the classes directory that mirror their package structure, in accordance with the standard Java
conventions. For instance, a class in a package named com.ora.jsp must be stored in the WEB-INF/classes/com/ora/jsp
directory.

As with pretty much everything related to JSP, directory and filenames in the web application structure are case-
sensitive. If something doesn't work right, the first thing to check is that the WEB-INF directory is created with all caps
and the case used for a JSP page in the URL matches exactly the case used in the filename. On a Windows platform,
you may want to use a Command Prompt window and the DIR command to check this, since the Windows Explorer tool
adjusts the names and sometimes shows a directory name like WEB-INF as Web-inf.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.3 Running a JSP Page
Assuming you have installed all book examples as described in Chapter 4, first start the Tomcat server and load the
book examples main page by typing the URL http://localhost:8080/ora/index.html in the browser address field. Note
how the /ora part of the URL matches the Tomcat webapps subdirectory name for the example application. This part of
the URL is called the application's context path; every web application has a unique context path, assigned one way or
another when you install the application. Tomcat uses the subdirectory name as the context path by default, but other
containers may prompt you for a path in an installation tool or use other conventions. When you make a request for a
web application resource (an HTML or JSP page, or a servlet), the first part of the URL (after the hostname and port
number) must be the context path, so the container knows which application should handle the request.

There's one exception to this rule; one application per container may be installed as the default, or root, application. For
Tomcat, this application is stored in the webapps/ROOT directory, by default. Requests for resources in the default
application don't start with a context path (or more accurately, have an empty string as their context path). For
instance, the http://localhost:8080/index.html URL is used to request a page in the default application.

You can run Example 5-1 by clicking the "JSP is Easy" link from the book examples main page, shown in Figure 5-1. You
should see a result like the one shown in Figure 5-2.

Figure 5-1. JSP book examples main page

Figure 5-2. The "JSP is Easy" example output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The page shown in Example 5-1 contains both regular HTML elements and JSP elements. If you use the View Source
function in your browser, you notice that none of the JSP elements are visible in the page source. That's because the
server processes the JSP elements when the page is requested, and only the resulting output is sent to the browser.
The HTML elements, on the other hand, are sent to the browser as is, defining the layout of the page. To see the
unprocessed JSP page in a separate window, you can click on the source link for the easy.jsp file in the book example's
main page. The source link uses a special servlet to send the unprocessed JSP page directly to the browser instead of
letting the server process it. This makes it easier for you to compare the source page and the processed result.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.4 Using JSP Directive Elements
Let's look at each piece of Example 5-1 in detail. The first two lines are JSP directive elements. Directive elements
specify attributes of the page itself, such as the type of content produced by the page, page-buffering requirements,
declaration of other resources used by the page, and how possible runtime errors should be handled. Hence, a directive
doesn't directly affect the content of the response sent to the browser, but it tells the container how it should handle
the page. There are three different directives that you can use in a JSP page: page, include, and taglib. In this chapter,
we're using the page and the taglib directives. The include directive is described in Chapter 17.

JSP pages typically starts with a page directive that specifies the content type for the page:

<%@ page contentType="text/html" %>

A JSP directive element starts with a directive-start identifier (<%@), followed by the directive name (page in this case),
directive attributes, and ends with %>. A directive contains one or more attribute name/value pairs (e.g.,
contentType="text/html"). Note that JSP element and attribute names are case-sensitive, and in most cases, the same is
true for attribute values. All attribute values must also be enclosed in single or double quotes.

The page directive has many possible attributes. In Example 5-1, only the contentType attribute is used. It specifies the
MIME-type for the content the page produces. The most common values are text/html for HTML content and text/plain for
preformatted, plain text. But you can also specify other types, such as text/xml for browsers that support XML or
text/vnd.wap.wml for devices such as cell phones and PDAs that have built-in WML browsers. The container sends the
content type information to the browser as a response header called Content-Type, so the browser knows how to
interpret and render the response body. If you omit the contentType attribute, the container sets the header to text/html.

Some of the other page directive attributes you may use from time to time are errorPage, isErrorPage, session,
pageEncoding, buffer, and autoFlush. I'll show you how to use these attributes later. If you want to use scripting elements
in your JSP pages, you may also need to use the language and import attributes, covered in Chapter 16. The remaining
attributes are hardly ever used, but if you're curious, you can read about them in Appendix A.

The second directive in Example 5-1 is a taglib directive. It declares a custom tag library that is used in the page. In
Example 5-1, the taglib directive declares a JSTL tag library. The uri attribute contains a unique string that identifies the
library and the prefix attribute defines the name prefix used for the library on this page. Let's leave it at that for the
moment; I promise to tell you more about custom tag libraries and JSTL later in this chapter.

5.4.1 JSP Comments

Example 5-1 also shows what a JSP comment looks like:

<%-- Calculate the sum of 1 + 2 + 3 dynamically --%>

Everything between <%-- and --%> is ignored when the JSP page is processed. You can use this type of comment to
describe what's going on in the page or to temporarily comment out pieces of the page to test different alternatives.
Since a JSP comment is a JSP element, it's never sent to the browser.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.5 Using Template Text
Besides JSP elements, notice that the easy.jsp page contains mostly regular HTML, highlighted in Example 5-2.

Example 5-2. JSP page template text

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">
 <h1>JSP is as easy as ...</h1>
 <%-- Calculate the sum of 1 + 2 + 3 dynamically --%>
 1 + 2 + 3 = <c:out value="${1 + 2 + 3}" />
 </body>
</html>

In JSP parlance, this is called template text. Everything that's not a JSP element (i.e., not a directive, action or scripting
element) is template text. Template text is sent to the browser as is. This means you can use JSP to generate any type
of text-based output, such as XML, WML, or even plain text. The JSP container doesn't care what the template text
represents.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.6 Using JSP Action Elements
Besides the fixed template text, the easy.jsp page also produces dynamic content. It has very simple dynamic content—
the sum of 1, 2 and 3 calculated at runtime—but step back a moment and think about the type of dynamic content you
see on the Web every day. Common examples might be a list of web sites matching a search criterion on a search
engine site, the content of a shopping cart on an e-commerce site, a personalized news page, or messages in a bulletin
board. The actual data for the dynamic content can come from many types of sources, for instance from a database, an
XML document, or data accumulated in memory based on previous requests. The dynamic data needs to be combined
with regular HTML elements into a page with the right layout, navigation bars, the company logo, and so forth, before
it's sent to the browser. When using JSP, the regular HTML is the template text described earlier, and the dynamic data
is inserted at the appropriate place in the template text using a JSP action element.

A JSP action is executed when a JSP page is requested (this is called the request processing phase, as you may recall
from Chapter 3). In other words, JSP action elements represent dynamic actions that take place at runtime, as opposed
to JSP directives that are used only during the translation phase (when the JSP page is turned into Java servlet code).
An action can add text to the response, as in the example used in this chapter, but it can also do other things such as
write to a file on the server, send an email, or retrieve data from a database that is later added to the response by
other actions. Example 5-3 shows the easy.jsp page again, this time with the JSP action element highlighted.

Example 5-3. JSP action elements

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 <%-- Calculate the sum of 1 + 2 + 3 dynamically --%>
 1 + 2 + 3 = <c:out value="${1 + 2 + 3}" />

 </body>
</html>

An action is represented by an HTML-like element in a JSP page. If the action element has a body, it's represented by
an opening tag, possibly with attribute/value pairs, a body, and a closing tag:

<prefix:action_name attr1="value1" attr2="value2">
 action_body
</prefix:action_name>

This is identical to the HTML element syntax and as with HTML elements, the body of an action element can contain text
or other action elements.

If the element doesn't have a body, as in Example 5-3, you can use this shorthand syntax instead:

<prefix:action_name attr1="value1" attr2="value2" />

Note that the single tag for an element without a body (an empty element) ends with /> as opposed to just >. If you
think this looks like XML syntax, you're absolutely right. The shorthand is equivalent to an opening tag, empty body,
and closing tag:

<prefix:action_name attr1="value1" attr2="value2"></prefix:action_name>

Action elements, or tags as they are often called, are grouped into libraries (known as tag libraries). The element name,
used in the opening and closing tags, is composed of two parts: a prefix and the action's name, separated by a colon,
with no space characters between any parts. Again, if you're familiar with XML syntax, you may recognize that the
prefix is used as an XML namespace. You define the namespace prefix you want to use for the library with the taglib
directive described earlier:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
 ...
 <c:out value="${1 + 2 + 3}" />

The prefix serves two purposes: it makes it possible for actions in different libraries to have the same name, and it
makes it possible for the container to figure out to which library a specific action belongs. When the container finds an
action element, it locates the taglib directive that declares the library that corresponds to the action name prefix. The
taglib directive's uri attribute is a unique identifier for the tag library, which the container uses to find the information it
needs to process the action.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

needs to process the action.

Actions can be grouped into three categories: standard, custom, and JSP Standard Tag Library.

Standard actions are the actions defined by the JSP specification itself. Table 5-1 lists all standard actions that you can
use in a regular JSP page. The JSP standard actions use the prefix jsp. Since the prefix is fixed, and the behavior for all
standard actions is defined by the specification, you don't declare the standard actions with a taglib directive.

Table 5-1. Standard action elements
Action

element Description

<jsp:useBean> Makes a JavaBeans component available in a page

<jsp:getProperty> Gets a property value from a JavaBeans component and adds it to the response

<jsp:setProperty> Set a JavaBeans property value

<jsp:include> Includes the response from a servlet or JSP page during the request processing phase

<jsp:forward> Forwards the processing of a request to a servlet or JSP page

<jsp:param> Adds a parameter value to a request handed off to another servlet or JSP page using <jsp:include>
or <jsp:forward>

<jsp:plugin> Generates HTML that contains the appropriate browser-dependent elements (OBJECT or EMBED)
needed to execute an applet with the Java Plugin software

<jsp:attribute> Sets the value of an action attribute based on the body of this element

<jsp:body> Sets the action element body based on the body of this element. Required when the action element
body contains <jsp:attribute> action elements

<jsp:element> Dynamically generates an XML element, optionally with attributes and a body defined by nested
<jsp:attribute> and <jsp:body> actions

<jsp:text> Used to encapsulate template text that should be used verbatim; typically only needed in JSP pages
written as XML documents

The JSP specification also defines how to develop new actions that can be used in any JSP page. Such actions are called
custom actions. We'll take a closer look at custom actions in Chapter 7.

5.6.1 JSP Standard Tag Library

The third group is called JSP Standard Tag Library (JSTL) actions. Until very recently, programmers had to develop
custom actions even for very generic tasks, such as selecting different parts of a page based on a runtime condition or
looping through a collection of data; none of the JSP standard actions support these common tasks. The result was, of
course, that every Java programmer with some self-respect implemented a set of custom actions for all the generic
tasks her JSP team needed. To reduce this programming effort, and avoid the confusion caused by a zillion different
implementations of if and loop actions with slightly different features, a group of experienced tag library developers
(including yours truly) came together through the Java Community Process to define what's called the JSP Standard Tag
Library. Version 1.0 was released in June 2002 and Version 1.1, aligning JSTL with JSP 2.0, was released a year later.
While the name of the standard contains the word "library" (singular), it's in fact a set of libraries that group related
actions:

Core

Conditional processing and looping, importing data from external sources, etc.

XML processing

Processing of XML data, such as transforming and accessing individual elements

Internationalization (I18N) and formatting

Format and parse localized information, insert localized information in a page

Relational database access (SQL)

Read and write relational database data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Functions

A set of generic Expression Language functions

The <c:out> action in Example 5-3 is part of the JSTL core library. It adds the result of the expression (written in the
Expression Language described in the next section) specified as the value attribute to the response. In this case, the
evaluation of the expression is the sum of 1, 2, and 3, as shown in Figure 5-2.

5.6.2 The JSP Expression Language

JSTL 1.0 introduced a simple Expression Language (EL) for setting action attribute values based on runtime data from
various sources. The specification of this language was later incorporated into the JSP 2.0 specification, so it no longer
is just for the JSTL libraries; now it can be used in a portable manner for any tag library, as well as in other contexts
than action attributes.

The EL is inspired by JavaScript (or ECMAScript, as it's formally called) and, to some extent, XPath (a language used to
access pieces of an XML document), but it is much more forgiving when a variable doesn't contain a value (null) and
performs more data-type conversions automatically. These features are important for a web application, because the
input is mostly in the form of request parameters, which are always text values but often need to be used as numbers
or Boolean values (true or false) by the application. A web application must also handle the absence of a parameter
gracefully, and the EL makes provisions for this as well. What you don't find in the EL are statements such as if/else, for,
and switch; in JSP, the type of logic implemented by such statements in a general-purpose language are instead
implemented as action elements.

To give you a feel for how the EL is used, let's look at the expression used for the JSTL <c:out> action in Example 5-1:

<c:out value="${1 + 2 + 3}" />

An EL expression always starts with the ${ delimiter (a dollar sign plus a left curly brace) and ends with } (a right curly
brace). The expression can include literals (like the numeric literals used here), a set of implicit variables that provide
access to request data, variables representing application data, and most operators that you're used to from other
languages, such as the addition + sign used in this example.

EL expressions can be used to assign values to action attributes marked as accepting a dynamic value (or request-time
attribute value, as it's formally called). Prior to the introduction of the EL, dynamic attribute values could only be
assigned by Java expressions. This has been a common source of confusing syntax errors over the years, so the EL was
designed with simple syntax and a forgiving nature to help page authors with this common task. Since the EL is now
part of the JSP specification, EL expressions can also be used directly in the page. This snippet can replace the <c:out>
action in Example 5-1, for instance:

 1 + 2 + 3 = ${1 + 2 + 3}

However, I'll discuss why you may still want to use the <c:out> action in Chapter 8.

As in JavaScript, the EL supports literals numbers (e.g., 1 and 0.98), Booleans (true and false), strings (enclosed by
double or single quotes), and the keyword null to represent the absence of a value.

You probably recognize the supported operators, shown in Table 5-2, since they are the same as those supported by
most languages.

Table 5-2. Expression Language operators
Operator Operation performed

. Access a bean property or Map entry

[] Access an array or List element

() Group a subexpression to change the evaluation order

? : Conditional test: condition ? ifTrue : ifFalse

+ Addition

- Subtraction or negation of a value

* Multiplication

/ or div Division

% or mod Modulo (remainder)

== or eq Test for equality

!= or ne Test for inequality

< or lt Test for less than

> or gt Test for greater than

<= or le Test for less than or equal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>= or ge Test for greater than or equal

&& or and Test for logical AND

|| or or Test for logical OR

! or not Unary Boolean complement

empty Test for empty variable values (null, an empty String or an array, Map, or Collection without entries)

func(arg) A function call, where func is the function name and arg is a function argument

An EL expression can also contain variables. Variables are named references to data (objects), created by the
application or made available implicitly by the EL.

Application-specific variables can be created in many ways—for instance, using the <jsp:useBean> action that we'll use in
Chapter 6. They can also be created by custom actions or be passed to the JSP page by a servlet. Every object that is
available in one of the JSP scopes, discussed in Chapter 10, can be used as an EL variable.

A set of EL implicit variables, listed in Table 5-3, provides access to all information about a request as well as other
generic information.

Table 5-3. Implicit EL variables
Variable

name Description

pageScope A collection (a java.util.Map) of all page scope variables

requestScope A collection (a java.util.Map) of all request scope variables

sessionScope A collection (a java.util.Map) of all session scope variables

applicationScope A collection (a java.util.Map) of all application scope variables

param A collection (a java.util.Map) of all request parameter values as a single String value per parameter

paramValues A collection (a java.util.Map) of all request parameter values as a String array per parameter

header A collection (a java.util.Map) of all request header values as a single String value per header

headerValues A collection (a java.util.Map) of all request header values as a String array per header

cookie A collection (a java.util.Map) of all request cookie values as a single javax.servlet.http.Cookie value per
cookie

initParam A collection (a java.util.Map) of all application initialization parameter values as a single String value
per value

pageContext An instance of the javax.servlet.jsp.PageContext class, providing access to various request data

Don't worry about how the implicit variables are used right now; the following chapters provide examples that will make
all the details clear to you. To give you a taste of how you can use these variables, here's a <c:out> action with an EL
expression that uses the implicit param variable to read the value of a request parameter named userName:

<c:out value="${param.userName}" />

The property accessor operator (a dot) tells the EL to look for the named property (the parameter name in this case) in
the specified bean or collection; param is a collection of all request parameters, as shown in Table 5-3. If the property
name contains special characters, it has to be quoted, and the array accessor operator must be used instead:

<c:out value="${param['user-name']}" />

A variable is always of a specific Java data type, and the same is true for action attributes and bean properties. The EL
operators also depend on type information. The EL takes care of type conversions in the expected way, however, so
you rarely have to worry about it. For instance, if you add a number and a string, the EL tries to convert the string to a
number and perform the addition.

The EL is used extensively in this book, illustrating all the different features through numerous examples. A more formal
description of the language is also included in Appendix C.

By now should you have a rough idea of what JSP is all about. We have covered how to create and install a JSP page
based on the standard web application file structure, and to request a JSP page from a browser. We have also looked at
the primary parts of a JSP page—directives, template text, and action elements—and seen how they are processed
when the page is requested. Finally, you've got a first glimpse of the JSTL and the JSP EL. In the following chapters, I'll
go into detail, and introduce the other JSP and JSTL features you'll need to develop real web applications.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Using JavaBeans Components in JSP
Pages
The JavaBeans specification defines a set of programming conventions for Java classes that are used as pluggable
components. In layman's terms, tools that have no inside information about a class can use it if it's developed according
to these conventions. For instance, a generic GUI builder tool can support any widgets developed as JavaBeans
components. A JavaBeans component, or just a bean for short, is often used in JSP as the container for the dynamic
content to be displayed by a web page. It typically represents something specific, such as a person, a product, or a
shopping order. When JSP is combined with servlets, the bean can be created and initialized with data by the servlet
and passed to a JSP page that simply adds the bean's data to the response. But even in a pure JSP application, a bean
is a useful tool, for instance for capturing and validating user input.

A programmer must develop the bean, but someone who doesn't have any programming experience can then use it in
a JSP page. JSP defines a number of standard actions for working with beans, and the JSP Expression Language accepts
beans as variables in expressions. In this chapter, we take a closer look at what a bean is and how it can produce
dynamic content in a page. We'll return to beans in Chapter 8 to see how they can be used for input validation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 What Is a Bean?
As I said earlier, a bean is simply a Java class that follows certain coding conventions, so it can be used by tools as a
component in a larger application. It can be instantiated and made available to the JSP page in a couple of ways. In an
application that uses a servlet as a frontend for all business logic, the bean is typically created by the business logic
code and sent to the JSP page to include its contents in the response. I describe this approach in detail in Chapter 19
and Chapter 20. The bean can also be created directly by a JSP page. This is the approach used in this chapter.

JavaBeans Introduction for Java Programmers
If you need to develop your own beans, here's a brief description of what it takes to be a bean. (You can
learn more about bean development for JSP pages in Chapter 20.) Beans are regular Java classes
designed according to the set of guidelines defined by the JavaBeans specification. Here's the CartoonBean
used in this chapter:

package com.ora.jsp.beans.motd;

import java.util.*;
public class CartoonBean implements java.io.Serializable {
 private static int index = -1;
 private List fileNames;

 public CartoonBean() {
 initFileList();
 }

 public String getFileName() {
 index++;
 if (index > fileNames.size() - 1) {
 index = 0;
 }
 return (String) fileNames.get(index);
 }

 private void initFileList() {
 fileNames = new ArrayList();
 fileNames.add("dilbert2001113293109.gif");
 ...
 }
}

You should always use a package name for a bean class to make it easier to use the bean in a JSP page in
a portable way. I explain the details in Chapter 20.

A bean class must have a no-argument constructor. This allows a tool to create any bean in a generic
fashion knowing just the class name.

The bean properties are accessed through getter and setter methods. Getter and setter method names are
composed of the word get or set, respectively, plus the property name, with the first character of each
word capitalized. Here, getFileName() is the getter method for the property named fileName. A getter
method has no arguments and returns a value of the property's type, while a setter method takes a single
argument of the property's type and has a void return type. A readable property has a getter method; a
writable property has a setter method. Depending on the combination of getter and setter methods, a
property is read-only, write-only, or read/write.

Finally, the bean class should implement the java.io.Serializable or the java.io.Externalizable interface to allow a
tool to save and restore the bean's state.

Data held by a bean is referred to as the bean's properties. The property name is case-sensitive and always starts with
a lowercase letter. A property is either read-only, write-only, or read/write, and has a value corresponding to a specific
Java data type (for instance String, java.util.Date, or int). Properties can be read and set through the bean's accessor
methods, which are regular Java methods named according to the JavaBeans conventions. What you need to know to
use a bean in a JSP page is its class name, the property names, the property data types, the property access types, and
a description of the data represented by each property. You don't have to worry too much about the data type, since
the JSP elements used to get and set properties typically handles the conversion between regular string values and the
real Java type transparently. Table 6-1 shows all the required information for the first bean used in this chapter.

Table 6-1. Properties for com.ora.jsp.beans.motd.CartoonBean

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-1. Properties for com.ora.jsp.beans.motd.CartoonBean
Property name Java type Access Description

fileName String Read The current cartoon image filename

The nice thing about using a bean is that it can encapsulate all information about the item it represents in one simple
package. Say you have a bean containing information about a person, such as the person's name, birth date, and email
address. You can pass this bean to another component, providing all the information about the user in one shot. Now, if
you want to add more information about the user, you just add properties to the bean. Another benefit of using a bean
is that the bean can encapsulate all the rules about its properties. Thus, a bean representing a person can make sure
the birthDate property is set to a valid date.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 Declaring a Bean in a JSP Page
Example 6-1 shows a JSP page that uses the bean described in Table 6-1 to display a cartoon strip.

Example 6-1. A page using a bean (cartoon.jsp)

<html>
 <head>
 <title>A dose of Dilbert</title>
 </head>
 <body bgcolor="white">
 <h1>A dose of Dilbert</h1>

 <jsp:useBean id="cartoon"
 class="com.ora.jsp.beans.motd.CartoonBean" />
 <img src="images/<jsp:getProperty name="cartoon"
 property="fileName" />">

 </body>
</html>

Before you use a bean in a page, you must tell the JSP container the type of bean it is and associate it with a name; in
other words, you must declare the bean. The first JSP action in Example 6-1, <jsp:useBean>, is used for this purpose:

<jsp:useBean id="cartoon" class="com.ora.jsp.beans.motd.CartoonBean" />

The <jsp:useBean> action is one of the JSP standard actions (identified by the jsp prefix). The action creates an instance
of the bean class specified by the class attribute and associates it with the name specified by the id attribute. The name
must be unique in the page and be a valid Java variable name; it must start with a letter and can't contain special
characters such as dots, plus signs, etc.

Other attributes you can specify for the <jsp:useBean> action are scope, type, and beanName. Chapter 10 explores how
the scope attribute is used. The others are rarely used, but Appendix Acontains descriptions of how you can use them if
you wish.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.3 Reading Bean Properties
A bean's data is represented by its properties. The CartoonBean used in Example 6-1 has only one property, named
fileName, but other beans may have many different properties. The fileName property's value is the name of an image file
that contains a cartoon. There are two ways to insert a bean property value in a JSP page. Let's look at them one at a
time.

6.3.1 Using the <jsp:getProperty> Action

Once you have created a bean and given it a name using the <jsp:useBean> action, you can get the bean's property
values with another JSP standard action, named <jsp:getProperty>. This action obtains the current value of a bean
property and inserts it directly into the response body.

To include the current fileName property value in the page, simply use this tag:

<jsp:getProperty name="cartoon" property="fileName" />

The name attribute, set to cartoon, refers to the specific bean instance declared by the <jsp:useBean> action. The
<jsp:getProperty> action locates this bean and asks it for the value of the property specified by the property attribute. In
Example 6-1, the property value is used as the src attribute value for an HTML element. The result is the page
shown in Figure 6-1. The way this bean is implemented, the fileName property value changes every time you access the
property; when you reload the page, a different cartoon strip is shown.

Figure 6-1. A JSP page with a dynamically inserted image file (Dilbert © UFS.
Reprinted by Permission)

One thing in Example 6-1 may look a bit strange: an element (<jsp:getProperty>) is used as the value of another
element's attribute (the tag's src attribute). While this isn't valid HTML syntax, it is valid JSP syntax. Remember
that everything that's not recognized as a JSP element is treated as template text. The container doesn't even try to
interpret what the template text means, so it doesn't recognize it as invalid HTML. As far as the JSP container is
concerned, the code in Example 6-1 is as valid as:

any old template text <jsp:getProperty name="cartoon"
 property="fileName" /> more text

When the JSP page is processed, the action element is replaced with the value of the bean's property. The resulting
HTML that's sent to the browser is therefore valid:

Note that this doesn't mean you can use an action element as the value of another JSP action element attribute. Using
it to set an HTML element attribute works only because the HTML element isn't recognized as an element by the
container. To set a JSP action attribute to the value produced by another action, you must use the <jsp:attribute>
standard action instead:

<jsp:setProperty name="msg" property="category">
 <jsp:attribute name="value" trim="true">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <jsp:attribute name="value" trim="true">
 <jsp:getProperty name="myBean" property="myProperty" />
 </jsp:attribute>
</jsp:setProperty>

Here the value attribute of the <jsp:setProperty> action (which I'll discuss in a moment) is set using a <jsp:getProperty>
action nested in a <jsp:attribute> action element. The <jsp:attribute> action can only be used in the body of a JSP element
(not for template data elements). It evaluates its body and sets the attribute named by the mandatory name attribute of
its parent action element to the output produced by the nested JSP elements. The trim attribute is optional, with true as
the default. If it's set to true, leading and trailing whitespace in the body evaluation is removed. Otherwise the result is
used as is. If you need to define a body for the action element, in addition to attribute values set with <jsp:attribute>,
you must define the body with a <jsp:body> element. See Appendix A for details about this element.

6.3.2 Using the JSP Expression Language

The JSP Expression Language (EL) also supports access to bean properties. Example 6-2 shows how an EL expression
can be used to the same effect as the <jsp:getProperty> action used in Example 6-1.

Example 6-2. Reading a bean property with the JSTL EL (cartoon2.jsp)

<html>
 <head>
 <title>A dose of Dilbert</title>
 </head>
 <body bgcolor="white">
 <h1>A dose of Dilbert</h1>

 <jsp:useBean id="cartoon"
 class="com.ora.jsp.beans.motd.CartoonBean" />

 </body>
</html>

The bean created by the <jsp:useBean> action can be used as a variable in an EL expression. The EL interprets a name
of a bean variable followed by a dot and a property name as a request to get the value of the property from the bean.
Here the expression is used directly in the template text as part of the HTML element's src attribute value,
retrieving the fileName property value from the carton bean when the JSP page is requested. Example 6-2 shows this
notation in its simplest form, but you can also access properties of properties by adding more elements to the
expression:

${someBean.aProperty.aPropertyOfTheProperty}

In this case, the value of aProperty is a bean that has a property named aPropertyOfTheProperty. You can add as many
property names as needed, without limit. Also note that you can use this bean property syntax for any JSP action
attribute that permits EL expression values.

Whether to use <jsp:getProperty> or an EL expression to read a bean property value is largely a matter of preference.
The <jsp:getProperty> action has always been part of the JSP specifications, so you will likely see it used a lot in existing
applications. The ability to use an EL expression like this is new in JSP 2.0, and is less verbose and less confusing (no
element has to be used as an attribute value). A third alternative that I'll discuss in Chapter 8 is the JSTL <c:out>
action. For new applications, you may want to use an EL expression or the <c:out> action, but if you modify an existing
application that must be JSP 1.1-compliant, you must stick to the established conventions and continue to use
<jsp:getProperty>.

6.3.3 Including Images with JSP

Example 6-1 illustrates an important detail regarding JSP and images. A common question is "How do I use JSP to
include a dynamic image in a page?" The short answer is: you don't.

First of all, a response can only contain one type of content[1] so you can't mix HTML and an image in the same
response. You may recall from Chapter 2 that a browser handles an HTML response with elements by sending a
new request for each image and then merging the HTML and all images. So to include an image in a JSP-generated
response, you do the same as you do in a regular HTML page; add an element with the URI for the image. The
only difference is that the URI may be decided at runtime, as in Examples Example 6-1 and Example 6-2.

[1] This is true for the general case. An HTTP response can actually contain multiple parts of different types when
special headers and delimiters are used, but generating such a response with JSP isn't recommended.

Secondly, JSP is intended for text responses, not binary responses with image bytes. If you need to generate an image
dynamically, you should use a servlet instead. In the JSP page, add the element with a URI for the servlet and
pass data it may need as request parameters in a query string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pass data it may need as request parameters in a query string:

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.4 Setting Bean Properties
If a bean property is writable (write-only or read/write access), there are two actions you can use to set the value:
<jsp:setProperty> or <c:set>.

6.4.1 Using the <jsp:setProperty> Action

One way to set a bean property value is using the standard action: <jsp:setProperty>. Table 6-2 shows a bean that is
similar to the CartoonBean used in the previous example, but it also has a writable property named category.

Table 6-2. Properties for com.ora.jsp.beans.motd.MixedMessageBean
Property name Java type Access Description

category String Write The message category, either thoughts or quotes

message String Read The current message in the selected category

Instead of image files, the MixedMessageBean has a property that contains a funny message (funny to me at least—I
hope you agree). The bean maintains messages of different types, and the write-only category property is used to select
the type you want. Example 6-3 shows how you can use this feature.

Example 6-3. A page setting a bean property (message.jsp)

<html>
 <head>
 <title>Messages of the Day</title>
 </head>
 <body bgcolor="white">
 <h1>Messages of the Day</h1>

 <jsp:useBean id="msg"
 class="com.ora.jsp.beans.motd.MixedMessageBean" />

 <h2>Deep Thoughts - by Jack Handey</h2>

 <jsp:setProperty name="msg" property="category"
 value="thoughts" />

 <i>
 <jsp:getProperty name="msg" property="message" />
 </i>

 <h2>Quotes From the Famous and the Unknown</h2>

 <jsp:setProperty name="msg" property="category"
 value="quotes" />

 <i>
 <jsp:getProperty name="msg" property="message" />
 </i>

 </body>
</html>

As in the previous example, the <jsp:useBean> action creates an instance of the MixedMessageBean class. The
<jsp:setProperty> action is then used to set the bean's category property value. Like the <jsp:getProperty> action, this
action has a name attribute that must match the id attribute of a <jsp:useBean> action and a property attribute that
specifies the property to set. The value attribute contains the value to use for the property.

In Example 6-3, the value property is first set to thoughts. This tells the bean to make its read-only message property pick
a message from the "Deep Thoughts by Jack Handey" (from the Saturday Night Live TV show) collection. A
<jsp:getProperty> is used to insert the message in the response. Another <jsp:setProperty> action then sets the category
property to quotes, switching to the collection of quotes from various people, and the final <jsp:getProperty> inserts a
message from this collection in the page. The result is shown in Figure 6-2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. Dynamic messages from different categories generated by the same
bean

Besides the property and value attributes, the <jsp:setProperty> action supports an attribute named param, which is used
to set properties to the values submitted as request parameters. We'll look at how you can use this feature in Chapter
8.

6.4.2 Using the JSTL <c:set> Action

An alternative to the <jsp:setProperty> standard action is the JSTL <c:set> action:

 ...
 <c:set target="${msg}" property="category" value="thoughts" />
 ...
 <c:set target="${msg}" property="category" value="quotes" />
 ...

The target attribute contains an EL expression that evaluates to the bean, the property attribute specifies the property
name (as a static string or as an EL expression), and the value attribute contains the value (as a static string or as an EL
expression).

As with the choice between <jsp:getProperty> and an EL expression for reading a property value, using <jsp:setProperty>
or <c:set> is largely a matter of preference. The <c:set> action is more flexible as you'll see later, so as long as you
don't need to be JSP 1.1 compatible, it should be your first choice.

6.4.3 Automatic Type Conversions

The beans used in this chapter have properties of the Java type String, meaning they have plain-text values. But as I
mentioned in the beginning of this chapter, a bean property can be of any Java type. As a JSP page author, you
typically don't have to worry too much about this, though, since the container can convert text values to other Java
types. It handles the most common types all by itself, but for more complex types, it needs a little help from the Java
programmer who develops the bean class.

When you use the <jsp:setProperty> or the JSTL <c:set> action, the container takes care automatically of the conversion
from text values to the Java types shown in Table 6-3.

Table 6-3. Conversion of text value to property type
Property type Conversion method

boolean or Boolean Boolean.valueOf(String)

byte or Byte Byte.valueOf(String)

char or Character String.charAt(0)

double or Double Double.valueOf(String)

int or Integer Integer.valueOf(String)

float or Float Float.valueOf(String)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

long or Long Long.valueOf(String)

short or Short Short.valueOf(String)

Object new String(String)

For other types, such as a java.util.Date, the JSP specification defines how a Java programmer can develop a so-called
"property editor" to handle the conversion. A property editor associated with a bean can convert a string such as 2002-
05-10 to a Date object that represents this date. How to do so is described in Chapter 22.

The value returned by <jsp:getProperty>, an EL expression directly in template text, or <c:out> is always converted to a
String—no matter what Java type it represents.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Using Custom Tag Libraries and the JSP
Standard Tag Library
So far we've covered the JSP basics—the primary parts of a page and installation and execution of a page—and how to
use beans to dynamically add content to a page. Before we start working on real applications, let's turn to another
fundamental JSP feature: custom tag libraries.

Custom tag libraries are, in my opinion, what make JSP so powerful. They make it possible for page authors to embed
pretty much any logic in a page using familiar, HTML-like elements. In this chapter, we take a close look at what a
custom tag library is, how to install and use it, and what the JSP Standard Tag Library (JSTL) brings to the table.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 What Is a Custom Tag Library?
The JSP standard actions, such as the <jsp:useBean> and <jsp:getProperty> actions used in Chapter 6, are HTML-like
elements for commonly needed functions in a JSP page: creating beans, accessing bean properties, and invoking other
JSP pages. But there's a lot more you want to do that isn't covered by the standard actions.

To extend the set of action elements a page author can use in the same familiar way, new actions can be developed,
either by a programmer as Java classes or by a page author as tag files (a special kind of JSP file). In either case, these
actions are called custom actions. A custom action can do pretty much anything: it has access to all information about
the request, it can add content to the response body as well as set response headers, and it can use any Java API to
access external resources such as databases, LDAP servers, or mail servers. The way the JSP container interacts with a
custom action also makes it possible for a custom action to conditionally process its body and to abort the processing of
the rest of the page. Custom actions can be created for application-specific functions to make it easier for page authors
to develop the JSP pages. Some typical examples are shown later in this book.

A custom action is inserted into a page using an HTML-like (actually XML) element. The attribute values, and sometimes
the body, you provide tell the action what to do and the data to use. In fact, you have already used a custom action;
the <c:out> action used in Chapter 5 and Chapter 6. It's part of the JSTL core library, and the JSTL libraries are
implemented based on the same mechanisms as an application-specific custom tag library.

Behind the scenes, a custom action is implemented either as a Java class or as a tag file. The name of the class or the
tag file and other information the container needs to invoke it are specified in a file called a Tag Library Descriptor
(TLD). A custom tag library is simply a collection of the TLD and all files for a related set of custom actions. In most
cases, the TLD and all files are packaged in a JAR file to make it easy to install.

Brief Custom Action Introduction for Java Programmers
I explain in detail how to develop custom actions as tag files in Chapter 11, and as Java classes in Chapter
21, Chapter 22, and Chapter 23. But if you're a programmer, I know you're curious, so here's a taste of
what goes on behind the scene.

For a custom action implemented in Java, a class called a tag handler implements the custom action
behavior. The tag handler class implements the javax.servlet.jsp.tagext.SimpleTag interface directly or by
extending a support class defined by the JSP specification. This is the tag handler for the custom action
used in this chapter:

package com.ora.jsp.tags.motd;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import com.ora.jsp.beans.motd.*;
public class MixedMessageTag extends SimpleTagSupport {
 private MixedMessageBean mmb =
 new MixedMessageBean();

 // Attributes
 private String category;

 public void setCategory(String category) {
 this.category = category;
 }

 public void doTag() throws IOException {
 mmb.setCategory(category);
 JspWriter out = getJspContext().getOut();
 out.println(mmb.getMessage());
 }
}

For each attribute supported by the custom action, the tag handler must implement a bean-style setter
method, such as the setCategory() method in this example. The container calls methods defined by the
SimpleTag interface, such as the doTag() method, to let the tag handler do its thing.

So why is it called a custom tag library if it's a collection of custom actions? Using formal XML terminology, one or more
tags (e.g., an opening tag and a closing tag) represent one element (the combination of the tags and possibly a body),
but the word "tag" is commonly used to refer to both tags and elements because it's easier to say and shorter to type.
Hence, the representation of a custom action (the functionality) in a JSP page is really called a custom action element.
But that's just way too many words for most of us to say over and over again. Replacing "element" with "tag" doesn't
help much, so we cut it down to the bare bones and use custom tag for both the functional entity and its representation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

help much, so we cut it down to the bare bones and use custom tag for both the functional entity and its representation
in a page. When the JSP specification was written, no one objected to this sloppy language, so now we're stuck with
custom tag libraries containing custom actions. I try to stick to the terms custom action and custom action element in
this book, but if I slip, be aware that custom action, custom action element, and custom tag mean the same thing.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Installing a Custom Tag Library
Installing a custom tag library is very easy: just place the JAR file for the library in the WEB-INF/lib directory for the
web application. If you look in the WEB-INF/lib directory for the book examples application, you see a JAR file named
orataglib_3_0.jar; that's the custom tag library for all custom actions implemented as Java classes used in this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Declaring a Custom Tag Library
As you know by now, a JSP page contains a mixture of JSP elements and template text, in which the template text can
be HTML or XML elements. The JSP container needs to figure out which is which. It's easy for it to recognize the
standard JSP elements (because they all use the jsp namespace prefix), but it needs some help to find the elements
that represent custom actions. That's where the tag library declaration comes into play.

Example 7-1 shows a page that uses a custom action from a custom tag library.

Example 7-1. Custom tag library declaration (message.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>
<html>
 <head>
 <title>Messages of the Day</title>
 </head>
 <body bgcolor="white">
 <h1>Messages of the Day</h1>
 <h2>Deep Thoughts - by Jack Handey</h2>
 <i>
 <ora:motd category="thoughts" />
 </i>

 <h2>Quotes From the Famous and the Unknown</h2>
 <i>
 <ora:motd category="quotes" />
 </i>
 </body>
</html>

This page displays messages from the same collections as the examples in Chapter 6. The second directive in Example
7-1 is a taglib directive, which is used to declare a custom tag library. Now, let's see what this really means. In order for
the JSP container to use actions from a tag library, it must be able to do two things: recognize that an element
represents a custom action from a specific library, and find the Java class or tag file that implements the custom action
logic.

The first requirement—figuring out which library an action belongs to—is satisfied by the taglib directive's prefix
attribute; all elements in the page that use the specified prefix belong to this custom tag library. A custom tag library
defines a default prefix, used in the library's documentation and possibly by page-authoring tools that insert custom
action elements in a page. You can, however, use any prefix you like except jsp, jspx, java, javax, servlet, sun, or sunw
(those are reserved by the JSP specification). The prefix I use for all custom actions in this book is ora, short for
"O'Reilly & Associates, Inc."

The uri attribute satisfies the second requirement: finding the class or tag file for each custom action. The attribute
contains a string the container uses to locate the TLD for the library, where it finds the Java class or tag file names for
all actions in the library. The value can identify the TLD file in a number of ways, but if you use a container that
implements the 1.2 (or later) version of the JSP specification, there's really just one way that you need to care about:
use the default URI for the library. The default URI is included in the TLD and should also be part of the documentation
for the library. It's orataglib for the custom tag library described in this book.

When the web application is started, the container scans through the WEB-INF directory structure for files with .tld
extensions (the mandatory extension for a TLD file) and all JAR files containing files with .tld extensions in their META-
INF directory. In other words, the container locates all TLD files. For each TLD, the container gets the library's default
URI from the TLD and creates a map from the URI to the TLD that contains it. In your JSP page, you just have to use a
taglib directive with a uri attribute value that matches the default URI.

For this to work in an environment where custom tag libraries can come from multiple vendors as well as from in-house
staff, the default URI value must be a globally unique string. A common convention is to use an HTTP URL, such as
http://ora.com/jsptags. This is one way to be reasonably sure that the value is unique, and it's the choice made for all
JSTL tag library URIs. Note that the URL doesn't have to refer to an existing web page; it's just an identifier, and the
container doesn't try to access it over the Internet. Others prefer a shorter string, such as orataglib or com.ora.jsptags.
This works equally well as long as the strings are unique in the application.

With the URI and the prefix for the library defined, the container has all it needs to find the custom action
implementation. As shown in Figure 7-1, when the container finds an element with a prefix matching a prefix defined by
a taglib directive, it uses the uri attribute value to locate the TLD. In the TLD, it finds a mapping between the action
element name and the class or tag file implementation.

Figure 7-1. Relation between the taglib directive, the TLD, and the implementation
(tag handler) for the custom actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(tag handler) for the custom actions

7.3.1 Identifying a Custom Tag Library in a JSP 1.1 Container

Prior to JSP 1.2, the container didn't locate custom tag libraries automatically. If you're stuck with a container that
doesn't yet support JSP 1.2, you must tell it exactly where to find the TLD.

The first approach you can use is to specify a symbolic name as the uri attribute value, just as in JSP 1.2. But in
addition, you must define the mapping from the symbolic name to the location of the library in the deployment
descriptor for the application (WEB-INF/web.xml):

<web-app>
 ...
 <taglib>
 <taglib-uri>
 orataglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/lib/orataglib_3_0.jar
 </taglib-location>
 </taglib>
 ...
</web-app>

The <taglib-uri> element contains the symbolic name, and the <taglib-location> element contains the path to the tag
library JAR file, or to the TLD file itself in case the library isn't packaged in a JAR file.

If the uri attribute value doesn't match a symbolic name defined in the web.xml file, the container assumes it is a file
path:

<%@ taglib uri="/WEB-INF/lib/orataglib_3_0.jar" prefix="ora" %>

If the path starts with a slash, it's interpreted as a context-relative path (the path to the file from the root of the
application installation directory), otherwise as a path relative to the JSP page (known as a page-relative path). The file
can be either the TLD file itself or a JAR file that includes the TLD file as META-INF/taglib.tld.

These two approaches work in JSP 1.2 or 2.0 container as well, but there's rarely a reason to use them because the
auto-discovery feature makes life so much easier.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.4 Using Actions from a Tag Library
The custom action described in Table 7-1 does exactly the same thing as the second bean used in Chapter 6: it adds a
message from a specified category to a page.

Table 7-1. Attributes for <ora:motd>
Attribute

name
Java
type

Dynamic value
accepted Description

category String Yes Mandatory. The message category, either thoughts or
quotes.

This custom action has one mandatory attribute named category, used to select the type of message you want. Let's get
back to the "Java type" and "Dynamic value accepted" columns at the end of this chapter.

Example 7-2 shows the message.jsp page again, now with the custom action elements highlighted.

Example 7-2. Custom action elements (message.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<html>
 <head>
 <title>Messages of the Day</title>
 </head>
 <body bgcolor="white">
 <h1>Messages of the Day</h1>
 <h2>Deep Thoughts - by Jack Handey</h2>
 <i>
 <ora:motd category="thoughts" />
 </i>

 <h2>Quotes From the Famous and the Unknown</h2>
 <i>
 <ora:motd category="quotes" />
 </i>
 </body>
</html>

First note how the <ora:motd> element name prefix matches the prefix assigned to the custom tag library by the taglib
directive. The syntax for a custom action element is the same as for standard actions: an opening tag, possibly with
attributes, a body, and a closing tag; or just one tag ending with /> if no body is used (as in Example 7-2). Standard
actions, JSTL actions and custom actions are all JSP action elements and are used in exactly the same way.

The first occurrence of the custom action sets the category attribute to thoughts and the second one to quotes. The
<ora:motd> action ("motd" is short for Message Of The Day) adds a message from the specified category to the page,
resulting in the response shown in Figure 7-2.

Figure 7-2. Output from the message.jsp page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Editing JSP Pages with an XML Editor
By now it should be clear that all JSP action elements follow the XML notation, so an XML-syntax aware
editor seems like a tool that could make your life easier, with features such as automatic indentation,
color-coding of elements, and even attribute selection lists for standard HTML and XHTML elements. The
only thing that spoils this is that the JSP directive elements don't follow XML syntax, but there's an easy
workaround that works for most XML editors.

A JSP container recognizes JSP elements even within XML/HTML comments, while an XML editor typically
ignores the comment contents. So the workaround is simply to place the JSP directives within comment
delimiters:

<!--
<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>
-->
<html>
 <head>
 <title>Messages of the Day</title>
 ...

7.4.1 Setting Action Attribute Values

Let's talk about the "Java type" and "Dynamic value accepted" column values in Table 7-1. The category attribute value
for the <ora:motd> action has the value String in the "Java type" column. String is the Java type for a text value. Action
attributes can be of any Java type, the same as the bean properties discussed in Chapter 6. Say, for instance, that the
<ora:motd> action had another attribute for setting the number of messages to return. It would make sense for this
attribute to be of type int (a whole number). The container treats attribute values the same as bean properties and
automatically converts text values to numeric and Boolean values, using the same conversion methods, so this attribute
could still be set as a text value. The same as for a bean, a Java programmer can also link a property editor to a
custom action to convert text values to more complex data structures.

A custom action attribute may also accept an EL expression as well as a static text value. An EL expression is evaluated
for each page request, so it allows you to provide an attribute value that differs between invocations. The value in the
"Dynamic Value Accepted" column tells if the attribute can be set by an EL expression. As you can see in Table 7-1, the
category attribute for the <ora:motd> action does accept an EL expression. Support for EL expressions isn't a given, but
typically all attributes except those named var and scope accept an EL expression value (a convention established by the
JSTL specification). For the custom actions in the example tag library used in this book, custom action tables (like Table
7-1) tells you if an attribute accepts an EL expression or not. For custom tag libraries developed in-house or by a third
party, this information should be available as part of the tag library documentation.

7.4.2 The JSP Standard Tag Library

As I mentioned earlier, the JSTL libraries are implemented based on the same mechanisms as an application-specific
custom tag library. The only thing that makes JSTL special is that the functionality and syntax for the JSTL actions are
defined by a formal specification, created by the Java Community Process just as the JSP specification itself. This allows
vendors to offer implementations of the JSTL actions that are optimized for their JSP container.

JSTL actually consists of five different tag libraries, which minimizes name collisions among actions in different
categories. Table 7-2 shows the default URIs and recommended prefixes for all JSTL libraries.

Table 7-2. URI for the JSTL 1.1 libraries
Library URI Prefix

Core http://java.sun.com/jsp/jstl/core c

XML processing http://java.sun.com/jsp/jstl/xml x

I18N formatting http://java.sun.com/jsp/jstl/fmt fmt

Database access http://java.sun.com/jsp/jstl/sql sql

Functions http://java.sun.com/jsp/jstl/functions fn

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you've used JSTL 1.0, note that new URIs are used for JSTL 1.1. The change was,
unfortunately, needed to preserve backward compatibility for JSTL 1.0 applications
deployed in a JSP 2.0 container because the EL expressions are evaluated by the container
instead of the tag handlers starting with JSP 2.0.

The first four libraries contain custom actions of the type described in this chapter. We'll take a closer look at all of them
in the examples in this book.

The last library in Table 7-2 was added in JSTL 1.1. It contains a set of functions that can be invoked in an EL
expression, e.g., ${fn:trim(someVariable)}. Table 7-3 lists all functions in the JSTL function library. They are described in
more detail in Appendix C, and you'll see some of them used in the examples in other chapters.

Table 7-3. JSTL functions
Function call syntax Description

fn:contains(string, substring) Returns true if the string contains the substring

fn:containsIgnoreCase(string, substring) Returns true if the string contains the substring, ignoring case

fn:endsWith(string, suffix) Returns true if the string ends with the suffix

fn:escapeXml(string) Returns the string with all characters that have special meaning in XML
converted to their equivalent XML character entity code

fn:indexOf(string, substring) Returns the index for the first occurrence of the substring in the string

fn:join(array, separator) Returns a string composed from the array elements, separated by the separator

fn:length(item) Returns the number of elements in the item if it's a collection or array, or the
number of characters in the item if it's a string

fn:replace(string, before, after) Returns a string where all occurrences of the before string have been replaced
with the after string

fn:split(string, separator) Returns an array where the elements are the parts of the string that are
separated by the separator

fn:startsWith(string, prefix) Returns true if the string starts with the prefix

fn:substring(string, begin, end) Returns a part of the string, starting from the begin index up to and including
the end index

fn:substringAfter(string, substring) Returns the part of the string that follows the substring

fn:substringBefore(string, substring) Returns the part of the string that precedes the substring

fn:toLowerCase(string) Returns a string with all characters from the input converted to lowercase

fn:toUpperCase(string) Returns a string with all characters from the input string converted to uppercase

fn:trim(string) Returns a string with all leading and trailing whitespace characters in the input
string removed

The JSTL specification is still pretty fresh. Over time, I expect all web containers to provide native support for JSTL, but
until this happens, you may have to install the JSTL Reference Implementation (RI) developed by the Apache Taglibs
open source project as a library named Standard. It's included with the book example application and consists of the
JAR files listed in Table 7-4 the webapps/ora/WEB-INF/lib directory.

Table 7-4. JSTL Reference Implementation JAR files
File Description

dom.jar W3C DOM classes, used by the JSTL XML library implementation. Part of JAXP 1.2. It can be
removed if you use JDK 1.4.2 or later.

jaxp-api.jar Java API for XML Processing (JAXP) 1.2 specification classes, used by the JSTL XML library
implementation. It can be removed if you use JDK 1.4.2 or later.

jdbc2_0-stdext.jar
JDBC 2.0 Optional Package specification interfaces, used by the JSTL SQL library implementation.
Also bundled with Java 2 SDK 1.4 as well as with Tomcat 4, independent of SDK version; it can be
removed when using one of these environments.

jstl.jar JSTL specification classes and interfaces.

sax.jar XML.org SAX classes, used by the JSTL XML library implementation. Part of JAXP 1.2. It can be
removed if you use JDK 1.4.2 or later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard.jar The reference implementation for all JSTL classes and interfaces, developed by the Apache Taglibs
project. This is the main JAR file for the JSTL RI.

xalan.jar Apache Xalan XSLT processor, used by the XML JSTL library implementation. It can be removed if
you use Sun's JDK 1.4.2 or later, but it may be needed if you use another vendor's JDK 1.4.2.

xercesImpl.jar Apache Xerces XML parser, used by the XML JSTL library implementation. It can be removed if you
use JDK 1.4.2 or later.

You can install the JSTL 1.1 RI by copying these JAR files to the WEB-INF/lib directory for your web application, but to
make sure you get the most up-to-date version, I recommend you get the latest version of the Standard library from
the Jakarta Taglibs project instead: http://jakarta.apache.org/taglibs/.

To use a JSTL library in your JSP pages, just declare the library you need and use the actions just as any other custom
action:

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 1 + 2 + 3 = <c:out value="${1 + 2 + 3}" />

 </body>
</html>

This book demonstrates the use of all JSTL actions, so you'll see plenty of other examples later.

7.4.3 Using Beans or Custom Actions

The examples used in this chapter show that a custom action can provide the same functionality as a bean. In Chapter
6, we created a MixedMessageBean, set its category attribute, and retrieved the value of its message property to the page:

<jsp:useBean id="msg"
 class="com.ora.jsp.beans.motd.MixedMessageBean" />
...
<jsp:setProperty name="msg" property="category"
 value="thoughts" />
...
<jsp:getProperty name="msg" property="message" />

In this chapter, we use a custom action to accomplish exactly the same thing:

<ora:motd category="thoughts" />

This raises the question of when it's better to use one or the other of these two component types. As is often the case
in software development, there's no rule applicable to all cases; in other words, we are left with "it depends." My rule of
thumb is that a bean is a great carrier of information, and a custom action is great for processing information. Custom
actions can use beans as input and output. For instance, an action can save the properties of a bean in a database, or
get information from a database and make it available to the page as a bean. In Chapter 8, I will show how a bean can
also capture and validate user input in a very powerful way.

Some beans do more than carry information; they encapsulate functionality intended for use in many different
environments, such as in applets, servlets, and JSP pages. In a case like this, a custom action can internally use the
bean, providing a JSP-specific adapter for the bean to make it easier to use by a page author. This is, in fact, exactly
what the <ora:motd> action does; internally it uses the bean from Chapter 6 to produce the message.

You now have a lot of knowledge under your belt: how to write and install a JSP page, how to use directive elements,
action elements of all kinds (standard, custom, and JSTL actions), what a bean is and how it can be used in JSP, and
you have a rough idea of what the JSP EL is all about. We can now move on and see how to use JSP and JSTL to solve
some real problems, starting with how to deal with user input in the next chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Processing Input and Output
User input is a necessity in modern web pages. Most dynamic web sites generate pages based on user input submitted
through an HTML form. Unfortunately, users seldom enter information in exactly the format you need, so before you
can use such input, you need to validate it to make sure it's usable.

And it's not only the input format that's important. Web browsers are also picky about the format of the HTML you send
them. For instance, when you generate an HTML form with values taken from a database, a name such as O'Reilly can
cause problems. The single quote character after the O can fool the browser into believing it's at the end of the string,
so you end up with just an O in your form.

In this chapter, we look at how you can use either JSTL actions or beans to access and validate user input. We also look
at how special characters in the output must be treated so they don't confuse the browser.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Reading Request Parameter Values
The HTML specification defines a set of elements for presenting a form with fields in which the user can enter text or
select among predefined choices. I'm sure you have encountered these countless times—to tell a vendor about yourself
when downloading demo software, to specify what you're looking for on a search engine site, or to select the toppings
when you order a pizza online. But you may not be familiar with what's going on behind the scene when you fill out the
form and click Submit. Example 8-1 shows an HTML page that contains the most commonly used HTML form elements.

Example 8-1. HTML form elements

<html>
 <head>
 <title>User Info Entry Form</title>
 </head>
 <body bgcolor="white">
 <form action="process.jsp" method="post">
 <table>
 <tr>
 <td>Name:</td>
 <td>
 <input type="text" name="userName">
 </td>
 </tr>
 <tr>
 <td>Birth Date:</td>
 <td>
 <input type="text" name="birthDate">
 </td>
 <td>(Use format yyyy-mm-dd)</td>
 </tr>
 <tr>
 <td>Email Address:</td>
 <td>
 <input type="text" name="emailAddr">
 </td>
 <td>(Use format name@company.com)</td>
 </tr>
 <tr>
 <td>Gender:</td>
 <td>
 <input type="radio" name="gender" value="m" checked>Male

 <input type="radio" name="gender" value="f">Female
 </td>
 </tr>
 <tr>
 <td>Lucky number:</td>
 <td>
 <input type="text" name="luckyNumber">
 </td>
 <td>(A number between 1 and 100)</td>
 </tr>
 <tr>
 <td>Favorite Foods:</td>
 <td>
 <input type="checkbox" name="food" value="z">Pizza

 <input type="checkbox" name="food" value="p">Pasta

 <input type="checkbox" name="food" value="c">Chinese
 </td>
 </tr>
 <tr>
 <td colspan=2>
 <input type="submit" value="Send Data">
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

This form could be the frontend to a newsletter subscription site, for instance. In order to send the users information
that might interest them, it asks for the birth date, gender, lucky number, and food preferences, along with the full
name and email address, for each person that signs up for the service.

The HTML <form> element encloses all the other form elements. Its action attribute contains the URI for the web server
resource (for instance, a JSP page, as in this example) that the form should be submitted to. The method attribute tells
the browser which HTTP method to use when submitting the form. Recall from Chapter 2 that the GET method is
intended for requests that just retrieve information, while the POST method is intended for requests that cause
irreversible actions, such as saving the form values in a database.

The form in Example 8-1 contains a number of HTML <input> elements. Each element has a type attribute. The type
attribute tells the browser which type of input control to render: text, password, checkbox, radio, hidden, file, submit, reset,
image, or button. In this example, I use only text (a regular text input field), radio (a radio button, typically used for
mutually exclusive choices), checkbox (for multiple optional choices), and submit (a button for submitting the form).
Some of the other types are used in other examples in this book, but if you need more detailed descriptions you may
want read a book specifically about HTML, such as HTML Pocket Reference by Jennifer Niederst (O'Reilly) or HTML &
XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly).

When the user clicks the Submit button, the browser sends a request to the web-server resource specified by the
<form> element's action attribute, using the method specified by the method attribute. All values the user has entered in
the text fields and chosen from radio buttons, checkboxes, or select lists, are sent as HTTP request parameters with the
request. How the request parameters are sent depends on the request method. For a GET request, the parameters are
sent as a query string appended to the URL; for a POST request, they are sent in the request body. No matter how they
are sent, each parameter is represented by a name/value pair. The name is the name assigned to the form element
using the name attribute, and the value is either the value entered by the user (for text fields) or the value specified by
the element's value attribute. Hence, when the form in Example 8-1 is submitted, the request contains parameters
named userName, birthDate, emailAddr, and luckyNumber containing the text entered by the user (or an empty string if no
text was entered) and one parameter named gender with the value m or f depending on which radio button the user
selected.

The checkbox controls at the end of Example 8-1 have a slightly more complex behavior. Note that all checkbox <input>
elements have the same name: food. This is how you tell that they belong to the same category. If the user checks off
more than one checkbox, the browser sends a request with multiple request parameters named food—one for each
value. If the user doesn't check off any checkbox (someone on a diet, maybe, or with a more eclectic taste than I), the
browser doesn't send a food parameter at all. The HTML <select> element (not shown in this example) works the same
way when specified to allow multiple choices.

Now when you've seen how the browser deals with form fields, let's move on to how to access the form data in a JSP
page using either JSTL actions or a bean.

8.1.1 Accessing Parameter Values with JSTL Actions

Example 8-2 shows a page with the same form as in Example 8-1, but with the form's action attribute pointing back to
the JSP page that contains it and JSTL actions adding the submitted values to the response.

Example 8-2. Accessing parameters with JSTL (input_jstl.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>User Info Entry Form</title>
 </head>
 <body bgcolor="white">
 <form action="input_jstl.jsp" method="post">
 <table>
 <tr>
 <td>Name:</td>
 <td>
 <input type="text" name="userName">
 </td>
 </tr>
 <tr>
 <td>Birth Date:</td>
 <td>
 <input type="text" name="birthDate">
 </td>
 <td>(Use format yyyy-mm-dd)</td>
 </tr>
 <tr>
 <td>Email Address:</td>
 <td>
 <input type="text" name="emailAddr">
 </td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </td>
 <td>(Use format name@company.com)</td>
 </tr>
 <tr>
 <td>Gender:</td>
 <td>
 <input type="radio" name="gender" value="m" checked>Male

 <input type="radio" name="gender" value="f">Female
 </td>
 </tr>
 <tr>
 <td>Lucky number:</td>
 <td>
 <input type="text" name="luckyNumber">
 </td>
 <td>(A number between 1 and 100)</td>
 </tr>
 <tr>
 <td>Favorite Foods:</td>
 <td>
 <input type="checkbox" name="food" value="z">Pizza

 <input type="checkbox" name="food" value="p">Pasta

 <input type="checkbox" name="food" value="c">Chinese
 </td>
 </tr>
 <tr>
 <td colspan=2>
 <input type="submit" value="Send Data">
 </td>
 </tr>
 </table>
 </form>

 You entered:

 Name: <c:out value="${param.userName}" />

 Birth Date: <c:out value="${param.birthDate}" />

 Email Address: <c:out value="${param.emailAddr}" />

 Gender: <c:out value="${param.gender}" />

 Lucky Number: <c:out value="${param.luckyNumber}" />

 Favorite Food:
 <c:forEach items="${paramValues.food}" var="current">
 <c:out value="${current}" />
 </c:forEach>
 </body>
</html>

If you load the page in a browser, fill out the form and submit it, you end up with a result that looks something like
Figure 8-1.

Figure 8-1. Input form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Let's look at how the submitted values end up in the response. All form field values except the Favorite Foods checkbox
values are added using a JSTL <c:out> action (Table 8-1) with an EL expression that retrieves the request parameter
value, for instance:

Name: <c:out value="${param.userName}" />

Recall from Chapter 5 that param is an implicit EL variable that represents a collection (a java.util.Map) of all request
parameters sent to the page. To get the value of a specific variable, you simply specify the name of the parameter,
separated from the collection name with a dot.

Table 8-1. Attributes for JSTL <c:out>
Attribute

name
Java
type

Dynamic value
accepted Description

value Any
type Yes Mandatory. The value to add to the response.

escapeXml boolean Yes Optional. true if special characters in the value should be converted to
character entity codes. Default is true.

default Any
type Yes Optional. The value to use if the value attribute is null. Can also be defined

by the body.

As described earlier, when a user checks off multiple checkboxes that share the same name, the request contains
multiple parameters with the same name. If none is checked, the request doesn't contain the corresponding parameter
at all. To display the choices the user made, we need to get all parameter values and a way to deal with them one at a
time. The implicit paramValues variable and the JSTL <c:forEach> (Table 8-2) action satisfy these requirements.

Table 8-2. Attributes for JSTL <c:forEach>

Attribute
name Java type

Dynamic
value

accepted
Description

items
java.util.Collection, java.util.Iterator,
java.util.Enumeration, java.util.Map,
Object[] or array of primitive types

Yes
Optional. The collection of values to iterate over. If the
value is null, no iteration is performed. If not specified,
the begin and end attributes must be specified.

var String No Optional. The name of the variable to hold the value of
the current element.

varStatus String No Optional. The name of the variable to hold a
LoopTagStatus object.

begin int Yes Optional. The first index, 0-based.

end int Yes Optional. The last index, 0-based.

step int Yes Optional. Index increment per iteration.

The <c:forEach> action is a powerful action that repeatedly processes its body a number of times, as defined by its
attributes. In Example 8-2, only the items attribute is needed. The items attribute accepts all standard Java collection
types or an array. In other words, if a variable represents a collection of values in some form, chances are <c:forEach>
can handle it. The var attribute specifies the name of a variable to hold the current element of the collection. The
variable is available only within the body of the action element.

The implicit paramValues variable is a collection of request parameters sent to the page, with each parameter
represented by an array of values (rather than the single value per parameter held by the param variable). Combining
the <c:forEach> action and the paramValues variable makes it easy to loop through all submitted Favorite Food choices
and add each one to the response:

Favorite Food:
 <c:forEach items="${paramValues.food}" var="current">
 <c:out value="${current}" />
 </c:forEach>

The <c:forEach> action iterates over the array values, and the nested <c:out> action adds each value to the response. If
no choice was made (the ${paramValues.food} expression doesn't return anything), the <c:forEach> action simply does
nothing.

Besides the items and var attributes used in Example 8-2, <c:forEach> also lets you define where in the collection to start
and stop the iteration (begin and end), and if all or just some elements should be processed (step). These attributes can
also be used without a collection to process the body a fixed number of times:

<c:forEach begin="1" end="4">
 ...
</c:forEach>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</c:forEach>

The varStatus attribute can be used to name a variable that holds a bean with iteration status details. You can use it
when something needs to be done only on the first or last pass through the body, or for even and odd indexes, etc. The
iteration status bean (javax.servlet.jsp.jstl.core.LoopTagStatus) is described in Appendix B.

8.1.2 Accessing Other Request Data

The param and paramValues variables give you access to request parameters. But there's a lot of information passed with
a request besides parameters. Header values can be accessed through the header and headerValues variables, and
cookies through the cookie variable. Other request information is available through the EL as properties of the object
that represents the request itself, accessed through the implicit pageContext variable's request property. The request
property is an instance of a class named javax.servlet.http.HttpServletRequest, and Table 8-3 shows its properties for
information that isn't available through the other implicit objects (except a few that aren't appropriate for use in a JSP
page).

Table 8-3. Properties for javax.servlet.http.HttpServletRequest
Property

name Java type Access Description

authType String Read The name of the authentication scheme protecting the request

characterEncoding String Read The request body character encoding, or null if unknown

contentLength int Read The request body length, or -1 if unknown

contentType String Read The request body MIME type

contextPath String Read The context path for the request

cookies javax.servlet.http.Cookie[] Read The cookies received with the request

locale java.util.Locale Read The client's preferred locale

locales java.util.Enumeration Read A list of all client locales in order of preference

method String Read The request method (e.g., GET, POST)

protocol String Read The protocol name and version, e.g., HTTP/1.1

remoteAddr String Read The client's IP address

remoteHost String Read The client's hostname or IP address if not known

remoteUser String Read The username used to make the request if the page is protected,
otherwise null

requestURI String Read The request URI, e.g., /app/page.jsp

requestURL StringBuffer Read The request URL, e.g., http://server/app/page.jsp

scheme String Read The scheme, e.g., http or https

servletPath String Read The context-relative path for the request, e.g., /page.jsp

serverName String Read The name of the server the request was sent to

serverPort int Read The port the request was sent to

secure boolean Read true if the request was made over a secure channel (e.g., SSL)

userPrincipal java.security.Principal Read The Principal representing the user making the request if the page
is protected, otherwise null

Example 8-3 shows a page that displays some of the available information.

Example 8-3. Request information (reqinfo.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Request Info</title>
 </head>
 <body bgcolor="white">

 The following information was received:

 Request Method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Request Method:
 <c:out value="${pageContext.request.method}" />
 Request Protocol:
 <c:out value="${pageContext.request.protocol}" />
 Context Path:
 <c:out value="${pageContext.request.contextPath}" />
 Servlet Path:
 <c:out value="${pageContext.request.servletPath}" />
 Request URI:
 <c:out value="${pageContext.request.requestURI}" />
 Request URL:
 <c:out value="${pageContext.request.requestURL}" />
 Server Name:
 <c:out value="${pageContext.request.serverName}" />
 Server Port:
 <c:out value="${pageContext.request.serverPort}" />
 Remote Address:
 <c:out value="${pageContext.request.remoteAddr}" />
 Remote Host:
 <c:out value="${pageContext.request.remoteHost}" />
 Secure:
 <c:out value="${pageContext.request.secure}" />
 Cookies:

 <c:forEach items="${pageContext.request.cookies}" var="c">
 <c:out value="${c.name}" />:
 <c:out value="${c.value}" />

 </c:forEach>
 Headers:

 <c:forEach items="${headerValues}" var="h">
 <c:out value="${h.key}" />:
 <c:forEach items="${h.value}" var="value">

 <c:out value="${value}" />
 </c:forEach>

 </c:forEach>

 </body>
</html>

The EL expressions used as the <c:out> actions' value attribute values get various request object properties.

Cookie values can be accessed in two ways: through the implicit cookie variable or through the request object's cookies
property. The first way is the easiest to use when you know the name of the cookie you're looking for; I will show you
an example of this in Chapter 13. The second way is used in Example 8-3, since we don't know the cookie names and
want to list all of them. A <c:forEach> action loops over all cookies received with the request and makes the current
cookie available through a variable named c within its body. A class named javax.servlet.http.Cookie, with the properties
name and value, represents a cookie. The nested <c:out> actions add the value of these two properties for each cookie to
the response.

Header values can be accessed through the implicit header and headerValues variables. In Example 8-3, <c:forEach>
actions loop over all headers and then over all values for each header, adding the names and the values to the
response.

Figure 8-2 shows a typical response generated by the JSP page in Example 8-3.

Figure 8-2. Request information displayed with JSTL actions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1.3 Capturing Parameter Values Using a Bean

As you may remember from Chapter 6, a bean is often used as a container for data, created by some server process
and used in a JSP page to display the data. But a bean can also be used to capture user input. The captured data can
then be processed by the bean itself or used as input to some other server component (e.g., a component that stores
the data in a database or picks an appropriate banner ad to display).

To capture the user input from the example form, I have implemented a bean named
com.ora.jsp.beans.userinfo.UserInfoBean, with the properties described in Table 8-4.

Table 8-4. Properties for com.ora.jsp.beans.userinfo.UserInfoBean
Property name Java type Access Description

userName String Read-write The user's full name

birthDate String Read-write The user's birth date in the format yyyy-mm-dd (e.g., 2002-01-23)

emailAddr String Read-write The user's email address in the format name@company.com

gender String Read-write The user's gender (m or f)

luckyNumber String Read-write The user's lucky number (between 1 and 100)

food String[] Read/write The user's favorite food (any combination of z, p, and c)

As shown in the "Access" column in Table 8-4, all properties are read/write, meaning that, in addition to using the
bean's properties to generate output, the property values can be set based on user input.

Example 8-4 shows the last part of a JSP page that uses the bean to capture the user input and then displays the
values using JSTL actions. The part of the page that contains the form isn't included in Example 8-4 because it's
identical to the form part in Example 8-2.

Example 8-4. Capturing parameters with a bean (input_bean.jsp)

 ...
 <jsp:useBean id="userInfo"
 class="com.ora.jsp.beans.userinfo.UserInfoBean">
 <jsp:setProperty name="userInfo" property="*" />
 </jsp:useBean>

 You entered:

 Name: <c:out value="${userInfo.userName}" />

 Birth Date: <c:out value="${userInfo.birthDate}" />

 Email Address: <c:out value="${userInfo.emailAddr}" />

 Gender: <c:out value="${userInfo.gender}" />

 Lucky Number: <c:out value="${userInfo.luckyNumber}" />

 Favorite Food:
 <c:forEach items="${userInfo.food}" var="current">
 <c:out value="${current}" />
 </c:forEach>
 </body>
</html>

At the top of Example 8-4, a <jsp:useBean> action element creates the bean and associates it with a name; the id
attribute specifies a name for the bean and the class attribute specifies its fully qualified class name. This is similar to
how the action was used to create the beans in Chapter 6, except that here the body contains a nested <jsp:setProperty>
action element. You must therefore use both an opening tag and a closing tag (<jsp:useBean ...> and </jsp:useBean>)
instead of the empty element shorthand notation (<jsp:useBean ... />) used in Chapter 6. The body of a <jsp:useBean>
action element is processed only when a new bean is created. In this example, that's always the case, but as you'll
learn in Chapter 10, there are times when the bean already exists, and the action is needed only to associate the bean
with a name.

Now let's take a closer look at the <jsp:setProperty> action. In Chapter 6, this action sets a bean property to a static
value, such as the message category in the message-producing bean. That's nice, but the real power of this action lies
in its ability to set bean properties from request parameter values. This is how it's used in Example 8-4, enabled by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in its ability to set bean properties from request parameter values. This is how it's used in Example 8-4, enabled by the
property attribute's asterisk (*) value. If you compare the name attribute values for all fields in the form with the
UserInfoBean property names in Table 8-4, you notice that each field name maps to a property name. With property="*",
the <jsp:setProperty> action sets all bean properties to the value of the corresponding parameters automatically. For this
to work, the field name must match the property name exactly, including case. Since bean property names always start
with a lowercase letter, so must all the field names. Getting the properties set automatically is great; if you define more
properties for your bean, all you have to do to set them is add new matching fields in the form that invokes the JSP
page.

Besides the property and value attributes you have seen so far, the <jsp:setProperty> action supports one more attribute:
param. If you can't use the same name for the parameters and the property names for some reason, use the param
attribute to set a bean property to the value of any request parameter:

<jsp:setProperty
 name="userInfo"
 property="userName"
 param="someOtherParam"
/>

Here the userName property is set to the value of a request parameter named someOtherParam.

As in Example 8-2, <c:out> actions are used to add the submitted values to the response. The only difference is that in
Example 8-4, the EL expressions pick up the values captured by the bean instead of getting the parameter values:

Name: <c:out value="${userInfo.userName}" />

userInfo is the bean variable created by the <jsp:useBean> action. The property name (userName) is separated from the
bean variable name by a dot (the EL property access operator) to tell the EL to get the property value.

The Favorite Food choices are available through a property named food as an array of strings. It's processed with the
<c:forEach> action, just as in the JSTL example:

Favorite Food:
 <c:forEach items="${userInfo.food}" var="current">
 <c:out value="${current}" />
 </c:forEach>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Validating User Input
You should never trust your users, at least not when it comes to entering information in the format you need. Often,
you need to make sure the input is valid before you continue to process a request. A date, for instance, can be written
in many different formats. If you've traveled to the United States, and you're not a U.S. citizen, you probably have had
to fill out both an I-94 and a customs declaration form to be admitted by an immigration officer. You may have noticed
that on one of the forms you need to write your birth date as yy/mm/dd and on the other as mm/dd/yy. I always get it
wrong.

The entry form used in the examples in this chapter has a number of fields that must be validated: a name must be
entered, the birth date must be a valid date, the email address must at least look like a real email address (it's basically
impossible to verify that it is in fact real), the gender must be one of m (male) or f (female), the lucky number must be
a number between 1 and 100, and if any food favorites are selected, each must be one of z (pizza), p (pasta), or c
(Chinese).

Simple input can be validated using the standard JSTL actions, but for more complex validation rules, a bean is a good
choice. We will look at both approaches next. If you use JSP combined with servlets, the input validation is typically
done by the servlet and the JSP pages are invoked only if the input turns out to be okay. This approach is described in
Chapter 19.

8.2.1 Validating User Input Using JSTL Actions

Besides adding validation, let's make the input form example a bit more realistic. Instead of just echoing the entered
values at the end of the page, we use them to set the initial values of the form fields. This makes it easier for the user
to correct the mistakes. For each invalid value, an error message is also inserted above the incorrect field.

I use a number of JSTL actions that we have not discussed so far and a few tricks to implement these changes. To
make all the new stuff easier to digest, we look at the new page in pieces. Example 8-5 shows the top part of the form
with the validation and initialization of the Name field.

Example 8-5. Validating the name parameter with JSTL (validate_jstl.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>User Info Entry Form</title>
 </head>
 <body bgcolor="white">

 <form action="validate_jstl.jsp" method="post">
 <input type="hidden" name="submitted" value="true">
 <table>
 <c:if test="${param.submitted && empty param.userName}">
 <tr><td></td>
 <td colspan="2">
 Please enter your Name
 </td></tr>
 </c:if>
 <tr>
 <td>Name:</td>
 <td>
 <input type="text" name="userName"
 value="<c:out value="${param.userName}" />">
 </td>
 </tr>

The first thing to notice in this example is the HTML field of type "hidden", named submitted with the value true. The
browser doesn't display a hidden field, but its value is sent as a regular request parameter when the form is submitted.
I use it in this example to avoid displaying error messages when the page is loaded for the first time, before the user
has had a chance to enter any data. The submitted parameter isn't part of the first request for the page, but when the
user submits the form, the submitted parameter is sent along with all parameters representing the other HTML fields.
Hence, it can be used to test if the parameters should be validated or not.

The validation of the Name field illustrates how it works. The JSTL <c:if> action, described in Table 8-5, is used with an
EL expression that evaluates to true only if the submitted parameter has the value true and the userName parameter is
empty. Since the submitted parameter isn't part of the initial request to load the page, it doesn't have the value true,
causing the EL expression to evaluate to false. The <c:if> action's body is therefore ignored in this case. After submitting
the form, however, the submitted parameter has the value true, so if the userName parameter contains an empty string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the form, however, the submitted parameter has the value true, so if the userName parameter contains an empty string
(the user didn't enter a value in the Name field), the body is processed, adding the error message.

Table 8-5. Attributes for JSTL <c:if>
Attribute

name
Java
type

Dynamic value
accepted Description

test boolean Yes Mandatory. An expression that evaluates to true or false.

var String No Optional. The name of the variable to hold the Boolean result.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

To make it easy for the user to correct mistakes, the form fields are initialized with the submitted values. The <c:out>
action with an EL expression that gets the corresponding parameter value takes care of this.

A note about the empty operator seems warranted, because this is an operator you don't find in most languages. It's
included in the EL to avoid having to deal with the difference between a null value (the absence of a value) and the
empty string value ("") because in a web application, you typically want to treat both cases the same way. Without the
empty operator, you would have to write all tests like the ones in Example 8-5 like this instead:

<c:if test="${param.submitted &&
 (param.userName == null || param.userName == '')}">

The empty operator is shorthand for the combination of the last two tests. In addition to empty strings and null, it also
evaluates to true for an empty array, java.util.Collection, or java.util.Map. In other words, you can use it to test for empty
collections of all types.

Another fairly unique feature in the EL is that you have a choice with regards to the symbols for the common operators.
For instance, instead of using && as the logical AND operator, || for logical OR, and ! for logical NOT, you can use and,
or, and not. The relational operators can be written as ==, !=, <, <=, >, and >=, or as eq, ne, lt, le, gt, and ge,
respectively. Besides catering to different personal preferences, the motivation for this is to provide a consistent set of
operator symbols for use in pure XML documents (as described in Chapter 17) in which some of the most commonly
used symbols can cause problems (e.g., < and &&).

Example 8-6 shows the validation and initialization of the Birth Date and Email Address fields.

Example 8-6. Validating the birth date and email parameters with JSTL
(validate_jstl.jsp)

 <c:if test="${param.submitted && empty param.birthDate}">
 <tr><td></td>
 <td colspan="2">
 Please enter your Birth Date
 </td></tr>
 </c:if>
 <tr>
 <td>Birth Date:</td>
 <td>
 <input type="text" name="birthDate"
 value="<c:out value="${param.birthDate}" />">
 </td>
 <td>(Use format yyyy-mm-dd)</td>
 </tr>
 <c:if test="${param.submitted && empty param.emailAddr}">
 <tr><td></td>
 <td colspan="2">
 Please enter your Email Address
 </td></tr>
 </c:if>
 <tr>
 <td>Email Address:</td>
 <td>
 <input type="text" name="emailAddr"
 value="<c:out value="${param.emailAddr}" />">
 </td>
 <td>(Use format name@company.com)</td>
 </tr>

As you can see, the processing for these fields is identical to the pattern used for the Name field. A <c:if> action tests if
the form is submitted and the parameter corresponding to the field is empty, and if so, adds an error message. The
submitted value of the field is added with a <c:out> action.

For the Gender field (radio button), the value must be either m (male) or f (female). This requires a slightly different
test condition, as shown in Example 8-7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

test condition, as shown in Example 8-7.

Example 8-7. Validating the gender parameter with JSTL (validate_jstl.jsp)

 <c:if test="${param.submitted &&
 param.gender != 'm' && param.gender != 'f'}">
 <tr><td></td>
 <td colspan="2">
 Please select a valid Gender
 </td></tr>
 </c:if>
 <tr>
 <td>Gender:</td>
 <td>
 <c:choose>
 <c:when test="${param.gender == 'f'}">
 <input type="radio" name="gender" value="m">
 Male

 <input type="radio" name="gender" value="f" checked>
 Female
 </c:when>
 <c:otherwise>
 <input type="radio" name="gender" value="m" checked>
 Male

 <input type="radio" name="gender" value="f">
 Female
 </c:otherwise>
 </c:choose>
 </td>
 </tr>

In addition to testing if the form is submitted, we must test if the value is m or f. It's done by simply adding more
subexpressions, combined using the && operator. You can combine as many subexpressions as you need in this way.

The Gender field isn't represented by a text field but by a radio button, so another approach is also needed for
initializing it with the submitted value. To make a radio button be displayed as selected, the checked attribute must be
added to the HTML element. The JSTL <c:choose> action helps us with this task.

The <c:choose> action has no attributes; it just groups and controls any number of nested <c:when> actions and
optionally one <c:otherwise> action. These are the only actions that are accepted as direct child elements of a <c:choose>
element. A <c:choose> block is used to pick one of a set of related, mutually exclusive alternatives. The <c:choose>
action makes sure that only the first <c:when> action (Table 8-6) with a test attribute value that evaluates to true is
processed. If no <c:when> action meets its test condition, the <c:otherwise> body is processed instead. If you're a
programmer, you may recognize this as being similar to a switch statement.

Table 8-6. Attributes for JSTL <c:when>
Attribute name Java type Dynamic value accepted Description

test boolean Yes Mandatory. An expression that evaluates to true or false.

In Example 8-7, the <c:choose> action contains one <c:when> action that tests if the gender parameter has the value f,
and if so, adds both radio button fields with the one representing the f choice as selected. The <c:otherwise> action adds
the radio button fields with the one representing m as selected.

The effect is that the m choice becomes the default, used if the submitted value is invalid. It may seem redundant to
handle invalid values for a parameter representing a radio button, but it isn't. Even though using a group of radio
buttons helps the regular user pick a valid value, you must guard against requests submitted through other means than
the form. It's easy for someone to submit an HTTP request to your page with any value. For instance, see what
happens if you request the page with a query string like this:

http://localhost:8080/ora/ch8/validate_jstl.jsp?submitted=true&gender=x

Since the page checks for valid values even for the radio buttons, the x value for the gender parameter results in an
error message.

Next up is the processing of the Lucky Number field, in which the value must be a number between 1 and 100. Example
8-8 shows how you can test for this.

Example 8-8. Validating the lucky number parameter with JSTL (validate_jstl.jsp)

 <c:if test="${param.submitted &&
 (param.luckyNumber < 1 || param.luckyNumber > 100)}">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (param.luckyNumber < 1 || param.luckyNumber > 100)}">
 <tr><td></td>
 <td colspan="2">
 Please enter a Lucky Number between 1 and 100
 </td></tr>
 </c:if>
 <tr>
 <td>Lucky number:</td>
 <td>
 <input type="text" name="luckyNumber"
 value="<c:out value="${param.luckyNumber}" />">
 </td>
 <td>(A number between 1 and 100)</td>
 </tr>

Compared to the test for the Gender field, there's one difference: the subexpressions for less than 1 or greater than
100 are placed within parentheses. Parentheses can be used in an EL expression to override the default rules for in
which order subexpressions are evaluated, known as the operator precedence rules. The EL operator precedence rules
say that the && operator is evaluated before the || operator. Without the parentheses around the range check, the
expression is evaluated as "if submitted, and the number is less than 1," and only if that is false, evaluate "if the
number is greater than 100." With the parentheses, it's evaluated as "if submitted" and if that's true, evaluate "if the
number is less than 1 or greater than 100." In this particular case, the result would be the same, but when you mix &&
and || operators, it's always a good idea to group the subexpressions with parentheses to avoid surprises.

Example 8-9 shows the most complex validation case: the list of food choices. Here the food parameter may have none
or many values, and each value must be one of z (pizza), p (pasta), or c (Chinese).

Example 8-9. Validating the food parameter with JSTL (validate_jstl.jsp)

 <c:forEach items="${paramValues.food}" var="current">
 <c:choose>
 <c:when test="${current == 'z'}">
 <c:set var="pizzaSelected" value="true" />
 </c:when>
 <c:when test="${current == 'p'}">
 <c:set var="pastaSelected" value="true" />
 </c:when>
 <c:when test="${current == 'c'}">
 <c:set var="chineseSelected" value="true" />
 </c:when>
 <c:otherwise>
 <c:set var="invalidSelection" value="true" />
 </c:otherwise>
 </c:choose>
 </c:forEach>
 <c:if test="${invalidSelection}">
 <tr><td></td>
 <td colspan="2">
 Please select only valid Favorite Foods
 </td></tr>
 </c:if>
 <tr>
 <td>Favorite Foods:</td>
 <td>
 <input type="checkbox" name="food" value="z"
 ${pizzaSelected ? 'checked' : ''}>Pizza

 <input type="checkbox" name="food" value="p"
 ${pastaSelected ? 'checked' : ''}>Pasta

 <input type="checkbox" name="food" value="c"
 ${chineseSelected ? 'checked' : ''}>Chinese
 </td>
 </tr>
 <tr>
 <td colspan="3">
 <input type="submit" value="Send Data">
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

The approach I use for this test is to loop through all submitted values (using the paramValues variable) with <c:forEach>,
testing each value with the <c:choose> action and nested <c:when> and <c:otherwise> actions, setting a "selected"
variable to true for each valid value and an invalidSelection variable to true for an invalid value. To set the variables, I use
the JSTL <c:set> action, described in Table 8-7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 8-7. Attributes for JSTL <c:set>

Attribute
name Java type

Dynamic
value

accepted
Description

value Any type Yes Mandatory, unless the body is used to provide the value. The value
to set.

var String No Optional. The name of the variable to hold the value. If not
specified, the target and property attributes must be used.

scope String No Optional. The scope for the variable specified by var, one of page,
request, session, or application. page is the default.

target A JavaBeans object
or a java.util.Map Yes Optional. A Map or a JavaBeans object with a property specified by

property.

property String Yes Optional. The property name for the object specified by target that
should be set.

Once these test variables are set based on the input, it's easy to decide whether to add an error message; just test if
invalidSelection is true.

The test variables also allow us to use the conditional EL operator to decide when to add the checked attribute for
checkboxes:

<input type="checkbox" name="food" value="z"
${pizzaSelected ? 'checked' : ''}>Pizza

<input type="checkbox" name="food" value="p"
${pastaSelected ? 'checked' : ''}>Pasta

<input type="checkbox" name="food" value="c"
${chineseSelected ? 'checked' : ''}>Chinese

The conditional operator works with a Boolean subexpression (an expression that evaluates to true or false), followed by
a question mark and two alternative clauses separated by a colon. The first clause is used if the Boolean expression
evaluates to true; the second clause is used if it's false. If the test variable for the checkbox is set to true, the text
"checked" is added; otherwise an empty string is added.

8.2.2 Validating User Input Using a Bean

If you think using JSTL to validate input looks complicated, you're right. It works fine for simple validation, like making
sure a value has a value at all (as for the Name field) or that a parameter has one of a few specific values (as for the
Gender choice). But with more complex validation, such as verifying that a parameter holds an email address or a
credit-card number, or that a value matches a list of valid values held in a database, we can do a lot better with a bean.
In fact, the format of the Birth Date and Email Address fields, and if the Lucky Number is something else than a
number, isn't checked at all in the JSTL validation example. Other examples in this book will show how you can use
custom actions to do more thorough validation of these types of values, but here we look at how it's done using a bean.
Figure 8-3 shows a typical response when some fields have invalid values.

Figure 8-3. Response generated for invalid input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since a bean is implemented with Java code and has access to all Java APIs, it can do any kind of validation you can
dream of. The UserInfoBean used in the previous bean example also has a number of validation properties, described in
Table 8-8. If you're curious about the bean implementation, it's described in Chapter 20.

Table 8-8. Validation properties for com.ora.jsp.beans.userinfo.UserInfoBean
Property name Java type Access Description

userNameValid boolean Read Is a user name set?

birthDateValid boolean Read Is the birth date in the format yyyy-mm-dd?

emailAddrValid boolean Read Is the email address in the format name@company.com?

genderValid boolean Read Is the gender m or f?

luckyNumberValid boolean Read Is lucky number between 1 and 100?

foodValid boolean Read Does the food list only contain z, p, and c elements?

valid boolean Read Do all properties have valid values?

pizzaSelected boolean Read Is one of the elements in the food list a z?

pastaSelected boolean Read Is one of the elements in the food list a p?

chineseSelected boolean Read Is one of the elements in the food list a c?

All these properties are read-only, because the bean calculates their values based on the properties holding user data.
The first six properties correspond one-to-one to the individual user data properties, while the valid property provides an
easy way to see if all properties have valid values. The last three aren't really validation properties; they tell if a specific
food type is part of the list of favorite foods.

These properties make the validation task much easier than in the JSTL example. As before, we look at one piece at the
time, starting with the Name field processing in Example 8-10.

Example 8-10. Validating the name with a bean (validate_bean.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>User Info Entry Form</title>
 </head>
 <body bgcolor="white">
 <jsp:useBean id="userInfo"
 class="com.ora.jsp.beans.userinfo.UserInfoBean">
 <jsp:setProperty name="userInfo" property="*" />
 </jsp:useBean>
 <form action="validate_bean.jsp" method="post">
 <input type="hidden" name="submitted" value="true">
 <table>
 <c:if
 test="${param.submitted && userInfo.userNameValid == false}">
 <tr><td></td>
 <td colspan="2">
 Please enter your Name
 </td></tr>
 </c:if>
 <tr>
 <td>Name:</td>
 <td>
 <input type="text" name="userName"
 value="<c:out value="${userInfo.userName}" />">
 </td>
 </tr>

Like in Example 8-4, the <jsp:useBean> and <jsp:setProperty> actions capture the user input. The only difference is that
these action elements are now at the top of the page. The bean is created and initialized before it tests for valid input
and fills out the form with the previously entered values. Using the hidden field to avoid displaying error messages the
first time the page is loaded is a trick we used in the JSTL version of the page as well.

The validation and setting the field value is a little bit different than in the JSTL example, but not much. Instead of
testing if the userName parameter is equal to an empty string, the userNameValid bean property is compared to the
Boolean value false. Even though it doesn't look like we have simplified life much, we have. All logic for deciding what is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean value false. Even though it doesn't look like we have simplified life much, we have. All logic for deciding what is
a valid value is now encapsulated in the bean instead of being coded in the page. If at a future date you decide to
develop stricter rules for what a name must look like (maybe scan for profanities), you have to change only the bean;
all pages where the bean is used remain the same. The Name field is then set to the value the user submitted, if any,
with a <c:out> action using the bean's userName property value.

Example 8-11 shows how the birth date value is processed.

Example 8-11. Validating the birth date with a bean (validate_bean.jsp)

 <c:if test="${param.submitted && !userInfo.birthDateValid}">
 <tr><td></td>
 <td colspan="2">
 Please enter a valid Birth Date
 </td></tr>
 </c:if>
 <tr>
 <td>Birth Date:</td>
 <td>
 <input type="text" name="birthDate"
 value="<c:out value="${userInfo.birthDate}" />">
 </td>
 <td>(Use format yyyy-mm-dd)</td>
 </tr>

Testing the value of the bean's birthDateValid property, following the same pattern as for the name, handles the
validation. But if you look carefully, you notice that instead of testing for equality with the value false, this test uses the
!userInfo.birthDateValid syntax instead. This is just shorthand for the same kind of test. The ! operator means "if the value
is true, treat it as false, and vice versa." Formally, this operator is called the logical complement operator. I normally use
the shorthand syntax because it's easier to type.

What's more interesting in Example 8-6 than the syntax difference is that as with the name parameter test, all
validation logic is encapsulated in the bean. Testing if a date is valid can be quite a challenge. For instance, February 29
is a valid date only for a leap year. By delegating the validation to the bean and using only the result in the JSP page,
the page author doesn't need to know any of these details. The Birth Date field value is set by, you guessed it, a
<c:out> action using the bean's birthDate property.

The Email Address and the Lucky Number fields are handled the same way as Name and Birth Date.

The Gender field is dealt with pretty much the same as in the JSTL version, as shown in Example 8-12.

Example 8-12. Validating the gender choice with a bean (validate_bean.jsp)

 <c:if test="${param.submitted && !userInfo.genderValid}">
 <tr><td></td>
 <td colspan="2">
 Please select a valid Gender
 </td></tr>
 </c:if>
 <tr>
 <td>Gender:</td>
 <td>
 <c:choose>
 <c:when test="${userInfo.gender == 'f'}">
 <input type="radio" name="gender" value="m">
 Male

 <input type="radio" name="gender" value="f" checked>
 Female
 </c:when>
 <c:otherwise>
 <input type="radio" name="gender" value="m" checked>
 Male

 <input type="radio" name="gender" value="f">
 Female
 </c:otherwise>
 </c:choose>
 </td>
 </tr>

The only differences are that the bean's genderValid property is used for the validation test, and the gender property is
used to decide which choice to mark as checked, instead of the parameter value used for both these tasks in the JSTL
version.

Example 8-13 shows that the biggest bang for the buck we get from using a bean instead of just JSTL is the simplified
processing of the favorite food choices.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

processing of the favorite food choices.

Example 8-13. Validating the food choices with a bean (validate_bean.jsp)

 <c:if test="${param.submitted && !userInfo.foodValid}">
 <tr><td></td>
 <td colspan="2">
 Please select only valid Favorite Foods
 </td></tr>
 </c:if>
 <tr>
 <td>Favorite Foods:</td>
 <td>
 <input type="checkbox" name="food" value="z"
 ${userInfo.pizzaSelected ? 'checked' : ''}>Pizza

 <input type="checkbox" name="food" value="p"
 ${userInfo.pastaSelected ? 'checked' : ''}>Pasta

 <input type="checkbox" name="food" value="c"
 ${userInfo.chineseSelected ? 'checked' : ''}>Chinese
 </td>
 </tr>

All the looping and testing of the individual values that is necessary in the JSTL version of the page are now
encapsulated in the bean, so all that's needed here is to use the bean's properties to decide whether to add an error
message and which checkboxes to check.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.3 Formatting HTML Output
If you enter a value containing double quotes in the Name field in the validate_jstl.jsp or the validate_bean.jsp page,
such as Prince, "the artist", submit the form and look at the HTML code generated by the JSP page using your browser's
View Source function, you see something like this:

<tr>
 <td>Name:</td>
 <td>
 <input type="text" name="userName"
 value="Prince, "the artist"">
 </td>
</tr>

Note that the quotes have been replaced with ". What's going on here? This is the <c:out> action's doing, and it's
a very good thing. In the JSP file, double quotes enclose the value of the <input> element's value attribute. If the value
itself includes a double quote, the browser gets confused and interprets the first double quote in the value as the end of
the value. To prevent this type of problem, the <c:out> action converts all problematic characters to their so-called
HTML character-entity equivalents. It converts single quotes, double quotes, less-than signs, greater-than signs, and
ampersands to the HTML character entities ', ", <, >, and &, respectively. The browser handles the
converted values without problem.

Besides taking care of the problem with quotes in a dynamic value, this type of character conversion also offers some
protection against what's called a cross site scripting attack. What this means is that a malicious user submits input that
causes problems when it's displayed by the browser. If the special characters aren't converted, entering
<script>window.close()</script> in the Name field for Example 8-2, for instance, causes the window to disappear. When
text like this is added to the response as is, a browser with JavaScript enabled executes the script, with the effect that
the browser window is closed. In this example, the malicious user harms only herself, but a more serious scenario is a
site where a user can submit text that's then displayed to all other site visitors. A user submitting a partial HTML
element can be equally annoying, for instance turns all text after the entry into an HTML link if the special
characters aren't converted. The fact that <c:out> converts all special characters solves these particular examples, but
unfortunately, I can't guarantee that it solves all clever tricks that someone can come up with. I recommend that you
read the CERT information about this vulnerability (http://www.cert.org/advisories/CA-2000-02.html) and protect your
sites as best you can.

In a few rare cases, converting special characters can in itself cause problems. The <c:out> action therefore provides an
attribute named escapeXml that lets you control the escape behavior. Using <c:out> with escapeXml set to false was the
only way to add unescaped EL expression values in JSP 1.2, but with JSP 2.0, a better alternative is to simply put the
EL expression directly in the template text. You've already seen examples of this, for instance in Example 8-9 and
Example 8-13.

Sometimes, using <c:out> results in clumsy and confusing looking HTML code, for instance when used to set the value
of an HTML text field element as in examples in this chapter. With JSP 2.0 and JSTL 1.1, you can use the JSTL
fn:escapeXml() function to convert special characters instead:

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>
 ...
 <tr>
 <td>Name:</td>
 <td>
 <input type="text" name="userName"
 value="${fn:escapeXml(userInfo.userName)}">
 </td>
 </tr>
 ...

EL function support is a new feature in JSP 2.0, and as you may recall, JSTL 1.1 provides a special tag library that
contains only functions, declared at the top of this page. The function call syntax is fairly simple. For an EL expression
that appears directly in template text, as in this example, you must specify the prefix for the tag library that defines the
function (fn, in this case) followed by a colon and the name of the function and all arguments within parentheses. For
functions defined in a tag library that also contains custom actions, you can omit the function prefix when you use a
function in an attribute value for a custom action with the same prefix:

<%@ taglib prefix="my" uri="mytaglib" %>
<my:myAction attr="${myFunction(someArg, anotherArg)" />

Whether to use <c:out> or the fn:escapeXml() function to convert special characters is largely a matter of preference. I
tend to use the function for new applications, but I don't bother to replace the <c:out> action with the function in old
JSP 1.2 applications. A feature provided by the <c:out> action that you lose when using the fn:escapeXml() function
directly in template text is that you can specify a default value to use if the EL expression evaluates to null. This can
come in handy in some situations and be a reason for choosing <c:out> over the function.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Error Handling and Debugging
When you develop any application that's more than a trivial example, errors are inevitable. A JSP-based application is
no exception. There are many types of errors you will deal with. Simple syntax errors in the JSP pages are almost a
given during the development phase. And even after you have fixed all the syntax errors, you may still have to figure
out why the application doesn't work as you intended because of design mistakes. The application must also be
designed to deal with problems that can occur when it's deployed for production use. Users can enter invalid values and
try to use the application in ways you never imagined. External systems, such as databases, can fail or become
unavailable due to network problems.

Since a web application is the face of the company, making sure it behaves well, even when the users misbehave and
the world around it falls apart, is extremely important for a positive customer perception. Proper design and testing is
the only way to accomplish this goal.

In this chapter, we look at the types of problems you can expect during development, as well as those common in a
production system. You'll see how to track down JSP syntax and design errors, and to deal with runtime problems in a
graceful manner.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 Dealing with Syntax Errors
The first type of error you will encounter is the one you, or your coworkers, create by simple typos—in other words,
syntax errors. The JSP container needs every JSP element to be written exactly as it's defined in the specification in
order to process the JSP page. When it finds something that's not right, it tells you. How easy it is to understand what it
tells you depends on the type of error, the JSP container implementation, and sometimes, on how fluent you are in
computer gibberish.

9.1.1 Element Syntax Errors

All container implementations report syntax errors, but details such as the wording of the messages, how much
information the message contains, and where the message is written, differ between them. In this chapter, I show
examples only of the messages produced by Tomcat.

Let's first look at how Tomcat reports some typical syntax errors in JSP directives and action elements. Example 9-1
shows a version of the easy.jsp page from Chapter 5 with a syntax error.

Example 9-1. Improperly terminated directive (error1.jsp)

<%@ page contentType="text/html" >
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 1 + 2 + 3 = <c:out value="${1 + 2 + 3}" />

 </body>
</html>

The syntax error here is that the page directive on the first line isn't closed properly with %>; the percent sign is
missing. Figure 9-1 shows what Tomcat has to say about it.

Figure 9-1. Error message about an unterminated JSP directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tomcat reports the error by sending an error message to the browser. This is the default behavior for Tomcat, but it's
not mandated by the JSP specification. The specification requires only that a response with the HTTP status code for a
severe error (500) is returned, but how a JSP container reports the details is vendor-specific. For instance, the error
message can be written to a file instead of the browser. If you use a container other than Tomcat, check the container
documentation to see how it reports these types of errors.

The actual error message in Figure 9-1 is what is called an exception stack trace. When something goes really wrong in
a Java method, it typically throws an exception. An exception is a special Java object, and throwing an exception is the
method's way of saying it doesn't know how to handle a problem. Sometimes another part of the program can take
care of the problem in a graceful manner, but in many cases, the best that can be done is to tell the user about it and
move on. That's what the Tomcat container does when it finds a problem with a JSP page during the translation phase;
it sends the exception stack trace to the browser. The stack trace contains a message about what went wrong and
where the problem occurred. The message is intended to be informative enough for a user to understand, but the
actual trace information is of value only to a programmer. As you can see in Figure 9-1, the message is:

/ch9/error1.jsp(1,1) Unterminated <%@ page tag

The first part of the message is the name of the JSP page. The numbers within parentheses indicate on which line and
character position in the file the error was found, and then the message states what the problem is. So this message
tells us that a page directive (an element starting with <%@) on the first line isn't terminated as expected. In this case
it's both the correct diagnosis and the right location.

Example 9-2 shows another version of easy.jsp with a different syntax error.

Example 9-2. Improperly terminated action (error2.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 1 + 2 + 3 = <c:out value="${1 + 2 + 3}" >

 </body>
</html>

The syntax error here is almost the same as the "unterminated tag" in Example 9-1, but now it's the <c:out> action
element that's not terminated properly (it's missing the closing slash required for an empty element). The message
reported by Tomcat in this case is:

/ch9/error2.jsp(14,0) Unterminated <c:out tag

Again, the message gives the line and character position and a brief description of the error. In this case, the position
information points to the first character after the syntax error; not perfect but good enough.

Another common error is a typo in an attribute name. The value attribute for the <c:out> action is misspelled in Example
9-3.

Example 9-3. Mistyped attribute name (error3.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 1 + 2 + 3 = <c:out valu="${1 + 2 + 3}" />

 </body>
</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</html>

Tomcat reports the problem like this:

/ch9/error3.jsp(11,16) According to the TLD attribute value is mandatory
for tag out

In this case, the typo is in the name of a mandatory attribute, so Tomcat reports it as missing. If the typo is in the
name of an optional attribute, Tomcat reports it as an invalid attribute name.

Example 9-4 shows a type of error that results in a message that is hard to figure out unless you know what's going on.

Example 9-4. Missing end quote in attribute value (error4.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 1 + 2 + 3 = <c:out value="${1 + 2 + 3} default="Doh!" />

 </body>
</html>

If you look carefully at the <c:out> element, you see that the closing quote for the value attribute is missing. If another
attribute is specified for the same element, like the default attribute used here, Tomcat reports the problem like this:

/ch9/error4.jsp(11,55) equal symbol expected

What's happening is that Tomcat includes everything up to the second quote as the value of the value attribute. It then
assumes that the next word (Doh! in this example) is an attribute and complains that the equals sign (and the value) is
missing.

Let's close this section with one of the most frustrating scenarios of all, namely forgetting to include a taglib directive for
the tag library used in the page. This doesn't result in an error message at all, but all custom action elements are
treated as template text and just added to the response without being executed. Before pulling all your hair trying to
understand why none of your actions are being executed, make sure you have included the taglib directive. An easy way
to see if this is the problem is to use the browser's View Source function: if the source for the response sent to the
browser includes action elements, they where not processed by the web container, most likely due to a missing or
incorrect taglib directive.

The examples here are the most common ones for JSP element syntax errors. Tomcat can give you pretty good
information about what's wrong in most of these cases, but this is still an area where improvements are possible. For
instance, emerging JSP authoring tools may help by providing GUI-based interfaces that generate the action elements
automatically, eliminating this type of syntax problem altogether.

9.1.2 Expression Language Syntax Errors

Prior to JSP 2.0, how well EL syntax errors were reported varied between JSTL implementations and web containers,
because the EL wasn't part of the JSP specification. Starting with JSP 2.0, the EL is part of the JSP specification, and all
containers are required to analyze the syntax of EL expressions (in attribute values or directly in the template text)
during the translation phase and report all syntax errors it finds.

As with the element syntax error messages, the details differ between containers, but let's look at a few EL syntax error
examples in this section so you can see what to expect when you use the EL with Tomcat. Other implementations may
do better (or worse), but these examples illustrate what to look for.

Example 9-5 shows a page with a subtle syntax error: the curly braces are missing in the EL expression.

Example 9-5. Missing both curly braces (error5.jsp)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 9-5. Missing both curly braces (error5.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 1 + 2 + 3 = <c:out value="$1 + 2 + 3" />

 </body>
</html>

This is an easy mistake to make, but it's not recognized as a syntax error at all. To the container, this means that the
value is a plain-text value, not an expression. When used with the <c:out> action, it's easy to figure out what's wrong
because the text value is added to the response as is instead of the being evaluated: $1 + 2 + 3. But if you make this
mistake with an attribute value that should provide the action with input to process in some way, the problem may not
be so easy to spot. For instance, if you forget the curly braces for the <c:forEach> items attribute, it takes it as a text
value and loops once over its body with the text as a single element.

Let's see what happens if you forget only the end curly brace, as shown in Example 9-6.

Example 9-6. Missing end curly brace (error6.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>JSP is Easy</title>
 </head>
 <body bgcolor="white">

 <h1>JSP is as easy as ...</h1>

 1 + 2 + 3 = <c:out value="${1 + 2 + 3" />

 </body>
</html>

Tomcat reports this error as shown in Figure 9-2.

Figure 9-2. EL syntax error message

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The error message contains three pieces of information:

The position:

/ch9/error6.jsp(10,16)

A generic message that includes the complete EL expression:

"${1 + 2 + 3" contains invalid expression(s)

A more detailed message about the problem:

Encountered "", expected one of ..."

This isn't so bad. The first two pieces of information make it fairly easy to find the expression that's in error. And the
third part makes more and more sense when you've seen messages like this a few times.

Figure 9-2 is a good example of how all true syntax errors are reported by Tomcat (only the detailed messages differ),
but some types of errors can't be found until the request-time phase, even though they may be regarded as syntax
errors. Example 9-7 illustrates one such case.

Example 9-7. Misspelled property name (error7.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>Looking for information</title>
 </head>
 <body bgcolor="white">

 <h1>Looking for information</h1>

 The Current URI: <c:out value="${pageContext.request.requestUri}" />

 </body>
</html>

The problem here is that the property name is misspelled: it should be requestURI ("URI" in all caps) instead of
requestUri. In this particular example, the container could actually figure this out at translation time, because pageContext
is an implicit variable, so all its properties are known. But the type of an application variable is known only at request
time, so it's not possible to notice a misspelled property name for the general case. Tomcat has opted for consistency in
how to handle this type of error. The way this error is reported is by throwing an exception with this message:

Unable to find a value for "requestUri" in object of class "org.apache.coyote.
tomcat5.CoyoteRequestFacade" using operator "."

It contains some details about the error, such as the invalid property name and the object class name, so it's not
impossible to match it with its source in the page. But because it's not caught until request time, it's unfortunately
impossible to include the line number in a JSP 2.0 container.

Example 9-8 shows an almost identical error, but it results in a completely different result.

Example 9-8. Misspelled parameter name (error8.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html>
 <head>
 <title>Looking for information</title>
 </head>
 <body bgcolor="white">

 <h1>Looking for information</h1>

 The missing parameter: <c:out value="${param.misspelled}" />

 </body>
</html>

Here it's the name of a request parameter that is misspelled, and it's not reported as an error. Instead the expression
evaluates to null, which the <c:out> action converts to an empty string. This is by design, and it makes it easier to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

evaluates to null, which the <c:out> action converts to an empty string. This is by design, and it makes it easier to
handle the typical case in which a missing parameter should be handled the same as a parameter with an empty string
as the value. If a missing parameter resulted in an exception, you would have to do a lot more testing in all JSP pages,
with <c:if> actions and expressions like this all over the place:

<c:if test="${!empty param.someParam}">
 <!-- Here it's safe to use the parameter -->
</c:if>

The downside is that it makes it harder to find parameter-name spelling errors. The EL handles all types of name/value
pair collections, such as the implicit variables representing scopes (pageScope, requestScope, sessionScope, and
applicationScope), as well as any application variable of type java.util.Map, the same way.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Debugging a JSP Application
After you have fixed all syntax errors, pat yourself on the back and enjoy the moment. If the application is more than a
trivial example, however, this moment will probably be short-lived: you will likely find that one or more things still don't
work as you expected. Logic errors, such as not taking care of all possible input combinations, can easily slip into an
application during development. Finding and correcting this type of problem is called debugging.

For applications developed in compiled languages such as Java, C, or C++, a tool called a debugger is often used in this
phase. It lets you step through the program line by line or run the program until it reaches a break point that you have
defined, and lets you inspect the values of all variables in the program. With careful analysis of the program flow in
runtime, you can discover why it works the way it does and not the way you want it to. There are debuggers for JSP as
well, such as IBM's Visual Age for Java. Such products let you debug a JSP page exactly the same way as a program
written in a more traditional programming language.

But a real debugger is often overkill for JSP pages. If your pages are so complex that you feel the need for a debugger,
you may want to move code from the pages into JavaBeans or custom actions instead. These components can then be
debugged with a standard Java debugger, which can be found in most Java Interactive Development Environments
(IDEs). To debug JSP pages, another time tested debugging approach is usually sufficient: simply adding code to print
variable values to the screen.

Let's look at how you can use this approach to find an error in an incorrect version of the input validation page from
Chapter 8, shown in Example 9-9.

Example 9-9. Logical error (error9.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<html>
 <head>
 <title>User Info Entry Form</title>
 </head>
 <body bgcolor="white">

 <form action="error9.jsp" method="post">
 <input type="hidden" name="submitted" value="true">
 <table>
 <c:if test="${param.submitted || empty param.userName}">
 <tr><td></td>
 <td colspan="2">
 Please enter your Name
 </td></tr>
 </c:if>
 ...

No matter what value you enter in the Name field, it still displays the error message. There's clearly something wrong
here.

To find out what's going on, you can add a few <c:out> actions that include the parameter values and the value of the
<c:if> test expression in the response:

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<html>
 <head>
 <title>User Info Entry Form</title>
 </head>
 <body bgcolor="white">

 \${param.submitted}: <c:out value="${param.submitted}" />

 \${param.userName}: <c:out value="${param.userName}" />

 \${param.submitted || empty param.userName}:
 <c:out value="${param.submitted || empty param.userName}" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <c:out value="${param.submitted || empty param.userName}" />

 <form action="validate_jstl.jsp" method="post">
 <input type="hidden" name="submitted" value="true">
 <table>
 <c:if test="${param.submitted || empty param.userName}">
 <tr><td></td>
 <td colspan="2">
 Please enter your Name
 </td></tr>
 </c:if>
 ...

The result is shown in Figure 9-3.

Figure 9-3. Response with debug output

Now it's a bit easier to see why it doesn't work. The parameter values have the expected values, but the EL expression
used by <c:if> returns true even when the userName parameter has a value. It's because the || operator is used instead
of the && operator, so when the submitted parameter has the value true, the second part of the expression isn't
evaluated at all.

A detail illustrated in this example is worth mentioning. See how a backslash (\) precedes each EL expression that is
intended to serve as a static text label (followed by the evaluation result) in the debug output? The reason for this is
that JSP 2.0 normally evaluates EL expressions found directly in template text. The backslash before the expression
acts as an escape character, telling the container to output the expression verbatim instead of evaluating it. You rarely
need to output expressions (or text that looks like an expression) in a real application, but if you have to, now you
know how to do it.

Adding a couple of <c:out> actions to see variable values as part of the response in the browser is the easiest way to
debug a JSP page. But sometimes multiple pages are involved in the processing of a single request, as you will see in
Chapter 10. In this case, it may be better instead to write the debug output to a file or the command window where you
started the server. You can use a custom action called <ora:fileWrite> (described in Chapter 21) to write to a file instead
of the response. To write to the standard log file for the application, place the <c:out> action within the custom action
like this:

<ora:fileWrite fileName="log">
 \${param.submitted}: <c:out value="${param.submitted}" />
 \${param.userName}: <c:out value="${param.userName}" />
 \${param.submitted || empty param.userName}:
 <c:out value="${param.submitted || empty param.userName}" />
</ora:fileWrite>

The name and location of the application log file is container-dependent. Tomcat can be configured to use a separate
file for each application, but by default, it writes messages for all applications to files named according to the
logs/<hostname>_log.<date>.txt pattern, e.g. logs/localhost_log_2002-03-30.txt. Instead of log, which is a keyword
the <ora:fileWrite> action recognizes as an order to use the application log file, you can specify the absolute file path for
any file the container has write access to as the fileName attribute value.

Most containers, including Tomcat,[1] also let you write messages to the window where it was started. That's where the
<ora:fileWrite> action writes when you omit the fileName attribute:

[1] Tomcat must be started with the run option for the catalina script; otherwise such output is captured in the
catalina.out log file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

catalina.out log file.

<ora:fileWrite>
 \${param.submitted}: <c:out value="${param.submitted}" />
 \${param.userName}: <c:out value="${param.userName}" />
 \${param.submitted || empty param.userName}:
 <c:out value="${param.submitted || empty param.userName}" />
</ora:fileWrite>

Writing to the command window is convenient during development, when you run your own web server started in a
command window. Writing to the application log file is useful when you debug an application that is running in a web
server you don't have control over or if you need to record the debug messages in a file for further analysis later. But
no matter where you tell <ora:fileWrite> to write the info, you typically don't want to use this action in your production
code because it always writes.

To make it easy to generate the most common types of debug output only on demand, instead use the <ora:debug>
custom action I developed for this book. It's described in Table 9-1.

Table 9-1. Attributes for <ora:debug>
Attribute

name
Java
type

Dynamic value
accepted Description

type String No Mandatory. One of requestInfo, headers, cookies, params, pageScope,
requestScope, sessionScope, or applicationScope.

The <ora:debug> action has only one attribute, named type, telling the action the type of debug information to write. To
control where the information is written, you send a debug parameter with the request for the page. This request
parameter must have one or more of the following values (separated by plus signs):

resp

Includes the debug information in the response as an HTML table

stdout

Writes the debug information to System.out

log

Writes the debug information to the application log file

Let's look at an example. The JSP page shown in Example 9-10 first creates some test data and then uses the debug
action to look at various pieces of information.

Example 9-10. Page with the <ora:debug> action (debug.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<html>
 <head>
 <title>Debug Output</title>
 </head>
 <body bgcolor="white">

 <%-- Add test variables to the request scope --%>
 <c:set var="aString" scope="request" value="Hello World!" />
 <jsp:useBean id="aDate" scope="request" class="java.util.Date" />
 <c:set var="aNumber" scope="request" value="${aDate.minutes}" />

 <h1>Debug Output</h1>

 <ora:debug type="headers" />
 <ora:debug type="cookies" />
 <ora:debug type="params" />
 <ora:debug type="requestScope" />
 </body>
</html>

The <c:set> and <jsp:useBean> actions creates three variables in the request scope in JSP. Objects placed in the request

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <c:set> and <jsp:useBean> actions creates three variables in the request scope in JSP. Objects placed in the request
scope can be accessed by all JSP pages used to process the same request. Don't worry about how this works now;
you'll learn more about all the JSP scopes in Chapter 10. Here, it's used only to show you how the <ora:debug> action
can display scope information. Next, four <ora:debug> actions display all headers, cookies, request parameters, and
request scope variables.

The <ora:debug> action writes information only if the request contains a debug request parameter with a valid value.
Therefore, you can keep the action element in your pages all the time and activate it only when you need the debug
info. For instance, you can request the page with a URL that includes the debug parameter in the query string like this:

http://localhost:8080/ora/ch9/debug.jsp?debug=resp+stdout&a=b

You then get a response as shown in Figure 9-4.

Figure 9-4. Debug output

Because the debug parameter specifies both resp and stdout, you also get all the debug information in the window in
which you started Tomcat.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Dealing with Runtime Errors
Eventually, your application will work the way you want. But things can still go wrong due to problems with external
systems your application depends on, such as a database. And even though you have tested and debugged your
application, there may be runtime conditions you didn't anticipate.

Well-behaved components, such as beans and JSP actions, deal with expected error conditions in a graceful manner.
For instance, the UserInfo bean used in Chapter 8 has a valid attribute that is false unless all properties are set to valid
values. Your JSP page can then test the property value and present the user with an appropriate message. The JSTL
actions also act gracefully in most situations, for instance the <c:forEach> action simply does nothing if the items
attribute value is null.

Some problems are impossible for the component to handle gracefully, however, and the user needs to be told about
the problem instead. The standard way Java does this is to throw an exception. Beans, JSP actions, and the EL
processor, can throw exceptions when something goes really bad. By default, the JSP container catches the exception
and displays its message and stack trace in the browser, similar to what's shown in Figure 9-1. But that's hardly the
type of error message you want the application users to see. Besides, the exception messages may reveal information
that can be sensitive from a security point of view, such as file paths and SQL statements. You can present a much
more user-friendly, and secure, response by telling the JSP container to use a customized error page instead.

Example 9-11 shows a JSP page with a page directive that defines an error page.

Example 9-11. Page with an error page definition (calc.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ page errorPage="errorpage.jsp?debug=log" %>
<html>
 <head>
 <title>Calculator</title>
 </head>
 <body bgcolor="white">

 <jsp:useBean id="calc" class="com.ora.jsp.beans.calc.CalcBean">
 <jsp:setProperty name="calc" property="*" />
 </jsp:useBean>

 <%-- Calculate the new numbers and state info --%>
 <c:set var="currentNumber" value="${calc.currentNumber}" />

 <form action="calc.jsp" method="post">
 <table border=1>
 <tr>
 <td colspan="4" align="right">
 <c:choose>
 <c:when test="${currentNumber == ''}">

 </c:when>
 <c:otherwise>
 <c:out value="${currentNumber}" />
 </c:otherwise>
 </c:choose>
 <input type="hidden" name="currentNumber"
 value="${currentNumber}">
 <input type="hidden" name="previousNumber"
 value="${calc.previousNumber}">
 <input type="hidden" name="currentOperation"
 value="${calc.currentOperation}">
 <input type="hidden" name="reset"
 value="${calc.reset}">
 </td>
 </tr>
 <tr>
 <td><input type="submit" name="digit" value=" 7 "></td>
 <td><input type="submit" name="digit" value=" 8 "></td>
 <td><input type="submit" name="digit" value=" 9 "></td>
 <td><input type="submit" name="oper" value=" / "></td>
 </tr>
 <tr>
 <td><input type="submit" name="digit" value=" 4 "></td>
 <td><input type="submit" name="digit" value=" 5 "></td>
 <td><input type="submit" name="digit" value=" 6 "></td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <td><input type="submit" name="digit" value=" 6 "></td>
 <td><input type="submit" name="oper" value=" * "></td>
 </tr>
 <tr>
 <td><input type="submit" name="digit" value=" 1 "></td>
 <td><input type="submit" name="digit" value=" 2 "></td>
 <td><input type="submit" name="digit" value=" 3 "></td>
 <td><input type="submit" name="oper" value=" - "></td>
 </tr>
 <tr>
 <td><input type="submit" name="digit" value=" 0 "></td>
 <td> </td>
 <td><input type="submit" name="dot" value=" . "></td>
 <td><input type="submit" name="oper" value=" + "></td>
 </tr>
 <tr>
 <td> </td>
 <td> </td>
 <td><input type="submit" name="clear" value=" C "></td>
 <td><input type="submit" name="oper" value=" = "></td>
 </table>
 </form>

 </body>
</html>

The errorPage attribute in the page directive specifies the path for the page to be displayed if an exception is thrown by
any JSP element. When the path is specified as in Example 9-11, the error page must be located in the same directory
as the page that references it. However, if it starts with a slash (/), it's interpreted as a context-relative path, relative to
the application's context path. This means you can define a common error page for all the JSP pages in an application,
even if you place them in multiple subdirectories using a path such as /shared/errorpage.jsp.

Also note that the error page URI in Example 9-11 includes a query string with the debug parameter:

<%@ page errorPage="errorpage.jsp?debug=log" %>

The debug parameter lets you use the <ora:debug> action to log information about what went wrong in the error page.

The rest of the page in Example 9-11 implements a simple calculator, shown in Figure 9-5. It's intended only to
illustrate how the error page handling works, so I will not describe it in detail. When you're done reading this book, it
may be a good exercise to figure it out yourself by looking at the source code.

Figure 9-5. Calculator page

If a user tries to divide a number by zero, the CalcBean used in this page throws an exception. This triggers the error
page shown in Example 9-12 to be invoked.

Example 9-12. Error page (errorpage.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>
<%@ page isErrorPage="true" %>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<%@ page isErrorPage="true" %>
<html>
 <head>
 <title>Sorry</title>
 </head>
 <body bgcolor="white">
 We're sorry but the request could not be processed.
 Detailed information about the error has been logged so we will
 analyze it and correct whatever is causing it as soon as possible.
 <p>
 Please try again, and
 let us know if the
 problem persists.

 <ora:fileWrite fileName="log">
 Error in: ${pageContext.errorData.requestURI}
 Error message: ${pageContext.errorData.throwable.message}
 </ora:fileWrite>
 <ora:debug type="params" />
 </body>
</html>

At the top of the page is a page directive with the attribute isErrorPage set to true. This tells the container that the
errorData property of the implicit pageContext variable should be initialized with information about what caused the page
to be invoked. The type of the errorData property is javax.servlet.jsp.ErrorData. This class is a bean with the properties
shown in Table 9-2.

Table 9-2. Properties for javax.servlet.jsp.ErrorData
Property name Java type Access Description

requestURI String Read The context-relative URI for the erroneous request

servletName String Read The name of the servlet handling the erroneous request

statusCode int Read The status code for the erroneous request

throwable Throwable Read The exception thrown by the erroneous request, if any

In Example 9-11, EL expressions access two of these properties: requestURI, containing the URI for the page where the
error occurred, and throwable, containing a reference to the exception thrown by the page. The type of the throwable
property is java.lang.Throwable, which in turn exposes a property named message that contains a message about what
went wrong.

The EL expressions are nested within the body of the <ora:fileWrite> custom action, so their values end up in the
application log file instead of in the response. All request parameters are then written to the log file as well, using the
<ora:debug> custom action. In this way, information about which page caused the problem, the exception that was
thrown, and all parameter values that were received with the request causing the problem, is logged in the application
log file when something unexpected happens. You can therefore look at the log file from time to time to see what kind
of problems occur frequently, and hopefully fine-tune the application to avoid them or at least provide more specific
error messages.

The user isn't interested in any of these details, but wants to be assured that the problem is being registered and
corrected. The same customized error page that logs all the details also presents an apology and a promise to take care
of the problem, as shown in Figure 9-6.

Figure 9-6. Customized error page

An alternative to specifying an error page with the errorPage attribute in a JSP page is to declare an error page in the
application deployment descriptor (web.xml). Error pages can be declared for specific exception types as well as for
response status codes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

response status codes:

<error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/errorpage.jsp</location>
</error-page>
<error-page>
 <error-code>500</error-code>
 <location>/errorpage.jsp</location>
</error-page>

The <error-page> element contains an <exception-type> or an <error-code> element, plus a <location> element with the
context-relative path for the servlet, JSP page, or static page to handle the error. The <exception-type> element contains
the fully qualified name of the type of exception you want to handle. Similarly, the <error-code> element contains the
HTTP response status code to handle. You can include multiple <error-page> elements to use different pages for different
exceptions and status codes. For the <exception-type> element, the container picks the one that most closely matches
the type of the exception thrown, while it uses an exact match for the <error-code> element.

An error page declaration in the deployment descriptor applies to all resources in the application. If an errorPage
attribute is also specified in a JSP page, it's used instead of the one declared in the deployment descriptor.

9.3.1 Catching Exceptions

If a particular type of problem frequently shows up in the log files, you may want to fine-tune the error handling and
deal more gracefully with the problem. There's a JSTL action named <c:catch>, described in Table 9-3, that can help you
with this.

Table 9-3. Attributes for JSTL <c:catch>
Attribute

name
Java
type

Dynamic value
accepted Description

var String No Optional. The name of the variable to hold the java.lang.Throwable if
thrown by elements in the body.

Example 9-13 shows the top part of a modified version of the calc.jsp page that uses <c:catch> to catch divide-by-zero
exceptions.

Example 9-13. Catching an exception (calc2.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ page errorPage="errorpage.jsp?debug=log" %>

<html>
 <head>
 <title>Calculator</title>
 </head>
 <body bgcolor="white">

 <jsp:useBean id="calc" class="com.ora.jsp.beans.calc.CalcBean">
 <jsp:setProperty name="calc" property="*" />
 </jsp:useBean>

 <%-- Calculate the new numbers and state info --%>
 <c:catch var="error">
 <c:set var="currentNumber" value="${calc.currentNumber}" />
 </c:catch>
 <c:if test="${error != null}">
 <c:set var="currentNumber" value="Error" />
 <jsp:setProperty name="calc" property="reset" value="true" />
 </c:if>
 ...

The calc bean's currentNumber property accessor method is the one that performs the calculation. By placing the <c:set>
action with the EL expression that reads this property within the body of the <c:catch> action, any exception is caught
and saved in a variable named error. The <c:if> block tests if the error variable has a value, and if so, sets the
currentNumber variable to "Error" and resets the bean's state by setting its reset property to true. The result is a nicer
response than showing an error page; "Error" appears in the calculator's display, and the user can just click C and start
over.

Dealing with syntax errors and bugs are part of the application-development process. In this chapter, we have looked at
some of the ways you can ease the pain. To minimize the number of syntax errors, you can use the types of JSP
development tools listed at the http://www.TheJSPBook.com site. The <ora:debug> custom action presented in this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

development tools listed at the http://www.TheJSPBook.com site. The <ora:debug> custom action presented in this
chapter helps you to see what's going on at runtime when you debug the application. Finally, you can handle common
runtime errors by catching the exceptions with <c:catch> and handle them in the page, and define a customized error
page to log information about unexpected errors and say something nice to the user.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Sharing Data Between JSP Pages,
Requests, and Users
Any real application consists of more than a single page, and multiple pages often need access to the same information
and server-side resources. When multiple pages process the same request (e.g., one page that retrieves the data the
user asked for and another that displays it), there must be a way to pass data from one page to another. In an
application in which the user is asked to provide information in multiple steps, such as an online shopping application,
there must be a way to collect the information received with each request and get access to the complete set when the
user is ready. Other information and resources need to be shared among multiple pages, requests, and all users.
Examples are information about currently logged-in users, database connection pool objects, and cache objects to avoid
frequent database lookups.

In this chapter you will learn how scopes in JSP provide access to this type of shared data. You will also see how using
multiple pages to process a request leads to an application that's easier to maintain and expand, and learn about a JSP
action that lets you pass control between the different pages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Passing Control and Data Between Pages
As discussed in Chapter 3, one of the most fundamental features of JSP technology is that it allows for separation of
request processing, business logic and presentation, using what's known as the Model-View-Controller (MVC) model. As
you may recall, the roles of Model, View, and Controller can be assigned to different types of server-side components.
In this part of the book, JSP pages are used for both the Controller and View roles, and the Model role is played by
either a bean or a JSP page. This isn't necessarily the best approach, but it lets us focus on JSP features instead of
getting into Java programming. If you're a programmer and interested in other role assignments, you may want to take
a peek at Chapter 18 and Chapter 19. These chapters describe other alternatives and focus on using a servlet as the
Controller.

In this section we look at how to separate the different aspects in a pure JSP application, using a modified version of
the User Info example from Chapter 8 as a concrete example. In this application, the business logic piece is trivial.
However, it sets the stage for a more advanced application example in the next section and the remaining chapters in
this part of the book; all of them use the pattern introduced here.

The different aspects of the User Info example can be categorized like this:

Display the form for user input (presentation)

Validate the input (request processing and business logic)

Display the result of the validation (presentation)

A separate JSP page is used for each aspect in the modified version. The restructured application contains the three JSP
pages shown in Figure 10-1.

Figure 10-1. User Info application pages

Here's how it works. The userinfoinput.jsp page displays an input form. The user submits this form to
userinputvalidate.jsp to validate the input. This page processes the request using the UserInfoBean and passes control to
either the userinfoinput.jsp page (if the input is invalid) or the userinfovalid.jsp page (if the input is valid). If valid, the
userinfovalid.jsp page displays a "thank you" message. In this example, the UserInfoBean represents the Model, the
userinputvalidate.jsp page the Controller, and userinfoinput.jsp and userinfovalid.jsp represent the Views.

This gives you the flexibility and maintainability discussed in Chapter 3. If the validation rules change, a Java
programmer can change the UserInfoBean implementation without touching any other part of the application. If the
customer wants a different look, a page author can modify the View JSP pages without touching the request processing
or business logic code.

Using different JSP pages as Controller and View means that more than one page is used to process a request. To make
this happen, you need to be able to do two things:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this happen, you need to be able to do two things:

Pass control from one page to another

Pass data from one page to another

10.1.1 Passing Control from One Page to Another

Before digging into the modified example pages, let's go through the basic mechanisms for satisfying the two
requirements. As shown in Figure 10-1, the userinfovalidate.jsp page passes control to one of two other pages based on
the result of the input validation. JSP supports this through the <jsp:forward> action, described in Table 10-1:

<jsp:forward page="userinfoinput.jsp" />

Table 10-1. Attributes for <jsp:forward>
Attribute

name
Java
type

Dynamic value
accepted Description

page String Yes Mandatory. A page-relative or context-relative path for the target
resource.

The <jsp:forward> action stops processing of one page and starts processing the page specified by the page attribute
instead, called the target page. The control never returns to the original page.

The target page has access to all information about the request, including all request parameters. You can also add
additional request parameters when you pass control to another page by using one or more nested <jsp:param> action
elements (see Table 10-2):

<jsp:forward page="userinfoinput.jsp" >
 <jsp:param name="msg" value="Invalid email address" />
</jsp:forward>

Table 10-2. Attributes for <jsp:param>
Attribute name Java type Dynamic value accepted Description

name String No Mandatory. The parameter name.

value String Yes Mandatory. The parameter value.

Parameters specified with <jsp:param> elements are added to the parameters received with the original request. The
target page, therefore, has access to both the original parameters and the new ones, and can access both types in the
same way. If a parameter is added to the request using a name of a parameter that already exists, the new value is
added first in the list of values for the parameter.

The page attribute value is interpreted relative to the location of the current page if it doesn't start with a /. This called a
page-relative path. If the source and target page are located in the same directory, just use the name of the target
page as the page attribute value, as in the previous example. You can also refer to a file in a different directory using
notation such as ../foo/bar.jsp or /foo/bar.jsp. When the page reference starts with a /, it's interpreted relative to the
top directory for the application's web page files. This is called a context-relative path.

Let's look at some concrete examples to make this clear. If the application's top directory is
C:\Tomcat\webapps\myapp, page references in a JSP page located in C:\Tomcat\webapps\myapp\registration\userinfo
are interpreted like this:

page= "bar.jsp"

C:\Tomcat\webapps\myapp\registration\userinfo\bar.jsp

page= "../foo/bar.jsp"

C:\Tomcat\webapps\myapp\registration\foo\bar.jsp

page= "/foo/bar.jsp"

C:\Tomcat\webapps\myapp\foo\bar.jsp

10.1.2 Passing Data from One Page to Another

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSP provides different scopes for sharing data objects between pages, requests, and users. The scope defines how long
the object is available and whether it's available only to one user or to all application users. The following scopes are
defined: page, request, session, and application.

Objects placed in the default scope, the page scope, are available only within that page. That's the scope used in all
examples you have seen so far. The request scope is for objects that need to be available to all pages processing the
same request, for instance both the page that receives the request initially and the page the first page forwards to.
Objects in the session scope are available to all requests made from the same browser, and objects in the application
scope are shared by all users of the application (see Figure 10-2). According to the JSP specification, the name used for
an object must be unique within all scopes. This means that if you have an object named userInfo in the application
scope, for instance, and save another object with the same name in the request scope, the container may remove the
first object. Few containers (if any) enforce this rule, but you should ensure you use unique names anyway to avoid
portability problems.

Figure 10-2. Lifetime of objects in different scopes

The <jsp:useBean> action has a scope attribute used to specify the scope for the bean:

<jsp:useBean id="userInfo" scope="request"
 class="com.ora.jsp.beans.userinfo.UserInfoBean" />

The <jsp:useBean> action ensures that the bean already exists in this scope or that a new one is created and placed in
the specified scope. It first looks for a bean with the name specified by the id attribute in the specified scope. If it
already exists, for instance created by a previously invoked <jsp:useBean> action or by a servlet, it does nothing.[1] If it
can't find it, it creates a new instance of the class specified by the class attribute and makes it available with the
specified name within the specified scope.

[1] It actually does one thing when the bean already exists: associates the bean with a scripting variable. This is
only of interest if you use JSP scripting elements, so I save a discussion about this until Chapter 16.

If you'd like to perform an action only when the bean is created, place the elements in the body of the <jsp:useBean>
action:

<jsp:useBean id="userInfo" scope="request"
 class="com.ora.jsp.beans.userinfo.UserInfoBean" >
 <jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

In this example, the nested <jsp:setProperty> action sets all properties to the values of the corresponding parameters
when the bean is created. If the bean already exists, the <jsp:useBean> action body isn't evaluated. and the
<jsp:setProperty> action isn't executed.

The scope attribute can also be used with all JSTL actions that expose variables outside their element bodies to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scope attribute can also be used with all JSTL actions that expose variables outside their element bodies to
designate where the variable should be created, as you will see later in this chapter.

You can access a bean created by the <jsp:useBean> action as a variable in EL expressions. Typically you just specify the
variable name no matter which scope it's saved in, for instance:

${userInfo.userName}

In this case, the EL looks for the variable in all scopes in the order page, request, session, and application. If it's
important to locate a variable in a specific scope, you can use the implicit EL variables representing the different
scopes:

${pageScope.userInfo.userName}
${requestScope.userInfo.userName}
${sessionScope.userInfo.userName}
${applicationScope.userInfo.userName}

Each scope variable represents a collection (a java.util.Map) of all variables in that scope, so with expressions like these,
the EL looks for the variable only in the specified scope.

10.1.3 All Together Now

At this point, you have seen the two mechanisms needed to let multiple pages process the same request: passing
control and passing data. These mechanisms allow you to employ the MVC design, using one page for request
processing and business logic, and another for presentation. The <jsp:forward> action can pass control between the
pages, and information placed in the request scope is available to all pages processing the same request.

Let's apply this to the User Info example. In Chapter 8, different output was produced depending on whether or not the
user input was valid. If the input was invalid, error messages were added to inform the user of the problem. Even when
the input was valid, however, the form—without error messages, of course—was displayed.

No more of that. When we split the different aspects of the application into separate JSP pages as shown in Figure 10-1,
we also change the example so that the form is only shown when something needs to be corrected. When all input is
valid, a confirmation page is shown instead.

Example 10-1 shows the top part of the userinfoinput.jsp page.

Example 10-1. Page for displaying entry form (userinfoinput.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>User Info Entry Form</title>
 </head>
 <body bgcolor="white">
 <jsp:useBean id="userInfo"
 scope="request"
 class="com.ora.jsp.beans.userinfo.UserInfoBean"
 />

 <form action="userinfovalidate.jsp" method="post">
 ...

The rest of the page is identical to the one used in Chapter 8. If you compare Example 10-1 with the JSP page used for
bean-based validation in Chapter 8, the only differences are that the userInfo bean is placed in the request scope (the
scope attribute is set to request), the <jsp:setProperty> action for capturing input is gone, and the form's action attribute
specifies the validation page instead of pointing back to the same page.

The validation page, userinfovalidate.jsp, is given in Example 10-2.

Example 10-2. Input validation page (userinfovalidate.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<jsp:useBean id="userInfo"
 scope="request"
 class="com.ora.jsp.beans.userinfo.UserInfoBean">
 <jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

<c:choose>
 <c:when test="${userInfo.valid}">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <c:when test="${userInfo.valid}">
 <jsp:forward page="userinfovalid.jsp" />
 </c:when>
 <c:otherwise>
 <jsp:forward page="userinfoinput.jsp" />
 </c:otherwise>
</c:choose>

This is the request processing page, which uses the bean to perform the business logic. Note that there's no HTML at all
in this page, only a taglib directive declaring the core JSTL library and action elements. This is typical of a request
processing page. It doesn't produce a visible response message, it simply takes care of business and passes control to
the appropriate presentation page.

This example is relatively simple. First, a new userInfo bean is created in the request scope by the <jsp:useBean> action,
and its properties are set by the nested <jsp:setProperty> action based on the request parameters values submitted from
the form, just as in Chapter 8. A <c:choose> action element with nested <c:when> and <c:otherwise> actions test if the
input is valid, using the bean's valid property. The control is passed to the appropriate View page depending of the
result, using the <jsp:forward> standard action.

If the input is invalid, the control is passed back to the userinfoinput.jsp page. This time the page continues the
processing that originated in the userinfovalidate.jsp page; the <jsp:useBean> action finds the existing userInfo bean in
the request scope, and its properties are used to fill out the form fields and add error messages where needed.

If all input is valid, the control is instead passed to the userinfovalid.jsp page shown in Example 10-3 to present the
"thank you" message.

Example 10-3. Valid input message page (userinfovalid.jsp)

<html>
 <head>
 <title>User Info Validated</title>
 </head>
 <body bgcolor="white">

 Thanks for entering valid information!

 </body>
</html>

This page tells the user all input was correct. It consists only of template text, so this could have been a regular HTML
file. Making it a JSP page allows you to add dynamic content later without changing the referring page, however. The
result of submitting valid input is shown in Figure 10-3.

Figure 10-3. The valid input message page

Let's review how placing the bean in the request scope lets you access the same bean in all pages. The user first
requests the userinfoinput.jsp page (Example 10-1). A new instance of the userInfo bean is created in the request scope.
Because its properties have no values, all form fields are empty at this stage. The user fills out the form and submits it,
as a new request, to the userinfovalidate.jsp (Example 10-2) page. The previous bean is then out of scope, so this page
creates a new userInfo bean in the request scope and sets all bean properties based on the form field values. If the input
is invalid, the <jsp:forward> action passes the control back to the userinfoinput.jsp page. Note that we're still processing
the same request that initially created the bean and set all the property values. Since the bean is saved in the request
scope, the <jsp:useBean> action finds it and uses it to generate appropriate error messages and fill out the form with
any values already entered.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Sharing Session and Application Data
The request scope makes data available to multiple pages processing the same request. But in many cases, data must
be shared over multiple requests.

Imagine a travel agency application. It's important to remember the dates and destination entered to book the flight so
that the customer doesn't have to reenter the information when it's time to make hotel and rental car reservations. This
type of information, available only to requests from the same user, can be shared through the session scope.

Some information is needed by multiple pages independent of who the current user is. JSP supports access to this type
of shared information through the application scope. Information saved in the application scope by one page can later
be accessed by another page, even if the two pages were requested by different users. Examples of information
typically shared through the application scope are information about currently logged-in users and cache objects that
avoid unnecessary database queries for data that is the same for all users.

Figure 10-4 shows how the server provides access to the two scopes for different clients.

Figure 10-4. Session and application scopes

The upcoming examples in this chapter will help you to use the session and application scopes.

10.2.1 Session Tracking Explained

Keeping track of which requests come from the same user isn't as easy as it may look. As described in Chapter 2, HTTP
is a stateless, request-response protocol. This means that the browser sends a request for a web resource, and the web
server processes the request and returns a response. The server then forgets this transaction ever happened. So when
the same browser sends a new request; the web server has no idea that this request is related to the previous one.
This is fine as long as you're dealing with static files, but it's a problem in an interactive web application.

There are two ways to solve this problem, and they have both been used extensively for web applications with a variety
of server-side technologies. The server can either return all information related to the current user (the client state)
with each response and let the browser send it back as part of the next request, or it can save the state somewhere on
the server and send back only an identifier that the browser returns with the next request. The identifier is then used to
locate the state information saved on the server.

In both cases, the information can be sent to the browser in one of three ways (Figure 10-5 outlines these methods):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In both cases, the information can be sent to the browser in one of three ways (Figure 10-5 outlines these methods):

As a cookie

Embedded as hidden fields in an HTML form

Encoded in the URLs in the response body, typically as links to other application pages (this is known as URL
rewriting)

Figure 10-5. Client state information transportation methods

A cookie is a name/value pair that the server passes to the browser in a response header. The browser stores the
cookie for the time specified by the cookie's expiration time attribute. When the browser sends a request to a server, it
checks its "cookie jar" and includes all cookies it has received from the same server (that have not yet expired) in the
request headers. Cookies used for state management don't have an explicit expiration time but instead expire as soon
as the user closes the browser. Using cookies is the easiest way to deal with the state issue, but some browsers don't
support cookies. In addition, a user may disable cookies in a browser that does support them because of privacy
concerns. Hence, we can't rely on cookies alone.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

concerns. Hence, we can't rely on cookies alone.

If hidden fields in an HTML form are used to send the state information to the browser, the browser returns the
information to the server as regular HTTP parameters when the form is submitted. When the state information is
encoded in URLs, it's returned to the server as part of the request URL path, for instance when the user clicks on an
encoded link.

Sending all state information back and forth between the browser and server isn't efficient, so most modern server-side
technologies keep the information on the server and pass only an identifier between the browser and the server. This is
called session tracking; all requests from a browser that contains the same identifier (session ID) belong to the same
session, and the server keeps track of all information associated with the session.

JSP hides all details of cookie-based session tracking and supports the URL rewriting variety with a bit of help from the
page author. In addition, the specification allows a container to use the session mechanism built into the Secure Socket
Layer (SSL), the encryption technology used by HTTPS. SSL-based session tracking is currently not supported by any of
the major servlet containers, but all of them support the cookie and URL rewriting techniques. No matter which
mechanism is used, session data is always available to JSP pages through the session scope.[2] Information saved in
the session scope is available to all pages requested by the same browser during the lifetime of a session.

[2] Unless the page directive session attribute is set to false—see Appendix A for details.

A session starts when the browser makes the first request for a JSP page in a particular application. The application can
explicitly end the session (for instance when the user logs out or completes a transaction), or the JSP container can end
it after a period of user inactivity (the default value is typically 30 minutes after the last request). Note that there's no
way for the server to tell if the user closes the browser, because there's no permanent connection between the browser
and the server, and no message is sent to the server when the browser disappears. Still, closing the browser usually
means losing the session ID; the cookie expires, or the encoded URLs are no longer available. So when the user opens
a browser again, the server can't associate the new request with the previous session, and therefore creates a new
session. However, all session data associated with the previous session remains on the server until the session times
out.

10.2.2 Counting Page Hits

A simple page counter can be used to illustrate how the scope affects the lifetime and reach of shared information. The
difference between the session and application scopes becomes apparent when you place a counter in each scope.
Consider the page shown in Example 10-4.

Example 10-4. A page with counter beans (counter1.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Counter page</title>
 </head>
 <body bgcolor="white">

 <%-- Increment counters --%>
 <c:set var="sessionCounter" scope="session"
 value="${sessionCounter + 1}" />
 <c:set var="applCounter" scope="application"
 value="${applCounter + 1}" />
 <h1>Counter page</h1>

 This page has been visited ${sessionCounter} times
 within the current session, and ${applCounter} times
 by all users since the application was started.
 </body>
</html>

In Example 10-4, JSTL <c:set> actions increment counters in the session and application scopes. Note how each counter
variable is placed in a specific scope using the scope attribute. The variable placed in the session scope is found every
time the same browser requests this page, and therefore counts hits per browser. The application scope variable, on
the other hand, is shared by all users, so it counts the total number of hits for this page. If you run this example, you
should see a page similar to Figure 10-6.

Figure 10-6. A page with session and application page hit counters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 10-6. A page with session and application page hit counters

Sessions and Multiple Windows
Even though session tracking lets an application recognize related requests, there's still one problem. This
problem is related to the server's lack of knowledge of the client, and doesn't become obvious until you
start testing an application that depends on session information. Consider what happens if you open two
browser windows and start accessing the same web application. Will each window be associated with its
own session, or will they share the same session? Unfortunately there's not a clear answer. And it doesn't
matter if the server-side logic is implemented as servlets, JSP, ASP, CGI, or any other server-side
technology.

The most commonly used browsers, Netscape Navigator and Microsoft Internet Explorer (IE), both let you
open multiple windows that are actually controlled by the same operating system process. Older versions
of IE (before Version 5) can be configured so that a separate process controls each window instead, and
on operating systems other than Windows, you can do this with any browser. When each window runs in
its own process, it's easy to answer the question: each window is associated with its own session. It's only
when one process controls multiple windows that it gets a bit tricky; in this case, the answer depends on
whether URL rewriting or cookies are used for session tracking.

When URL rewriting is used, the first request to the application from one window doesn't include a session
ID, because no response with the session ID has been received yet. The server sends back the new
session ID encoded in all URLs in the page. If a request is then submitted from the other window, the
same thing happens; the server sends back a response with a new session ID. Hence, in this scenario each
window is associated with a separate session.

If cookies are used to pass the session ID, the reverse is true. The first request submitted from one
window doesn't contain a session ID, so the server generates a new ID and sends it back as a cookie.
Cookies are shared by all windows controlled by the same process. When a request is then made from the
other window, it contains the session ID cookie received as a result of the first request. The server
recognizes the session ID and therefore assumes that the request belongs to the same session as the first
request; both windows share the same session.

There's not much you can do about this. If you want each window to have its own session, most servers
can be configured to always use the URL rewriting method for session tracking. But this is still not
foolproof. The user can open a new window using the mouse pop-up menu for a link (with the session ID
encoded in the URI) and ask to see the linked page in a new window. Now there are two windows with the
same session ID anyway. The only way to handle this is, unfortunately, to educate your users.

The first time you access the page, none of the counter variables exist, so the <c:set> actions create them and set them
to 1 (the EL interprets a missing variable as 0 when it's used in an arithmetic operation). As long as you use the same
browser, the session and application counters stay in sync. If you exit your browser and restart it, however, a new
session is created when you access the first page. The session counter starts from 1 again but the application counter
takes off from where it was at the end of the first session.

Note that the counter variables are stored in memory only, so if you restart the server, both counters are reset.

10.2.3 URL Rewriting

As I mentioned earlier, the session ID needed to keep track of requests within the same session can be transferred
between the server and the browser in a number of different ways. One way is to encode it in the URLs created by the
JSP pages. This is called URL rewriting. It's an approach that works even if the browser doesn't support cookies
(perhaps because the user has disabled them). A URL with a session ID looks like this:

counter2.jsp;jsessionid=be8d691ddb4128be093fdbde4d5be54e00

When the user clicks on a link with an encoded URL, the server extracts the session ID from the request URI and
associates the request with the correct session. The JSP page can then access the session data in the same way as
when cookies keep track of the session ID, so you don't have to worry about how it's handled. What you do need to do,
however, is tell the JSP container to encode the URL when needed. To see how it's done, let's add HTML links in the
counter page—one link without rewriting and one with. Example 10-5 shows a counter page with this addition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

counter page—one link without rewriting and one with. Example 10-5 shows a counter page with this addition.

Example 10-5. A page with links, with and without URL rewriting (counter2.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Counter page</title>
 </head>
 <body bgcolor="white">

 <%-- Increment the counter --%>
 <c:set var="sessionCounter" scope="session"
 value="${sessionCounter + 1}" />

 <h1>Counter page</h1>

 This page has been visited ${sessionCounter} times
 within the current session.
 <p>
 Click here to load the page through a
 regular link.
 <p>
 Click here to load the page through an
 <a href="<c:url value="counter2.jsp" />">encoded link.
 </body>
</html>

The only differences compared to Example 10-4 are that only the session counter is used and that links back to the
same page have been added.

The <a> element's href attribute value for the second link is converted using the JSTL <c:url> action, described in Table
10-3. If the container has received a session ID cookie with the request for the page, the action adds the URL
untouched to the response. But for the first request in a session and for requests from a browser that doesn't support
cookies or with cookie support disabled, this action adds a rewritten URL, with the session ID added to the URL as
shown earlier.

Table 10-3. Attributes for JSTL <c:url>
Attribute

name
Java
type

Dynamic value
accepted Description

value String Yes Mandatory. An absolute URL, or a context- or page-relative path to
encode.

context String Yes Optional. The context path for the application, if the resource isn't part
of the current application.

var String No Optional. The name of the variable to hold the encoded URL.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

The <c:url> action also encodes query string parameters defined by nested <c:param> actions (see Table 10-4)
according to the syntax rules for HTTP parameters:

<c:url value="product.jsp">
 <c:param name="id" value="${product.id}" />
 <c:param name="customer" value="Hans Bergsten" />
</c:url>

Recall that all special characters, such as space, quote, etc., in a parameter value must be encoded. For instance, all
spaces in a parameter value must be replaced with plus signs. When you use the <c:param> action, it takes care of all
encoding for the parameters, but in the rare event that the URL specified as the <c:url> value attribute contains special
characters, you must replace them yourself. The encoded URL created by the action for this example looks something
like this:

product.jsp;jsessionid=be8d691ddb4128be0?id=3&customer=Hans+Bergsten

Here, the session ID and the request parameters are added, and encoded if needed (the space between "Hans" and
"Bergsten" is replaced with a plus sign).

If you're sure that the parameter values never contain special characters that need encoding (or are easy to encode
manually in a static value), you can include them as a query string in the <c:url> value instead of using nested
<c:param> actions:

<c:url value="product.jsp?id=${product.id}&customer=Hans+Bergsten" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<c:url value="product.jsp?id=${product.id}&customer=Hans+Bergsten" />

Table 10-4. Attributes for JSTL <c:param>
Attribute

name
Java
type

Dynamic value
accepted Description

name String Yes Mandatory. The parameter name.

value String Yes Mandatory, unless the value is provided as the body instead. The
parameter value.

If you want to provide session tracking for browsers that don't support cookies, you must use the <c:url> action to
rewrite all URL references in your application: in <a> tags, <form> tags, and <frameset> tags. This means all pages in
your application (or at least all pages with references to other pages) must be JSP pages, so that all references can be
dynamically encoded. If you miss one single URL, the server will lose track of the session.

I recommend that you spend the time to add <c:url> actions for all references up front, even if you know that all your
current users have browsers that support cookies. One day you may want to extend the user base and may lose control
over the browsers they use. It's also common that users disable cookies in fear of Big Brother watching. Yet another
reason to prepare for URL rewriting from the beginning is to support new types of clients that are becoming more and
more common, such as PDAs and cell phones. Cookie support in these small devices isn't a given.

Besides URL encoding, the <c:url> action also converts a context-relative path into a server-relative path, suitable for
use in an HTML element. What this means is that all you have to do to refer to a file that's located in a top-level
directory for the application from an HTML element is to use <c:url> to convert it to a path the browser interprets
correctly. Here's how you can add an image located in the /images directory for the application from any JSP page, no
matter how deep in the directory structure it's located:

<img src="<c:url value="/images/logo.gif" />">

For an application installed with the context path /example, the result of processing this snippet is:

Note how the context path has been prepended to the context-relative path specified as the attribute value. A browser
needs this type of server-relative path because it doesn't know anything about contexts or how to handle context-
relative paths; these are concepts only the container knows about.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 Online Shopping
Now let's look at a more useful example; an online shopping site. Besides showing you examples on how the session
and application scopes can be used effectively in a larger application, this example also introduces other useful tools,
such as JSTL actions for number formatting and redirection, and EL syntax for getting collection values based on keys
determined at runtime.

The application consists of three pages. The main page lists all available products. Each product is linked to a product
description page, where the product can be added to the shopping cart. A product is added to the shopping cart by a
request processing page. The main page with the product list is then displayed again, but with the current contents of
the shopping cart as well, as shown in Figure 10-7.

Figure 10-7. The product list and the contents of the shopping cart

Two beans are used to keep track of the products: the com.ora.jsp.beans.shopping.CatalogBean contains all available
products, and the com.ora.jsp.beans.shopping.CartBean represents one user's shopping cart. Each product in the catalog is
represented by a ProductBean. Table 10-5, Table 10-6, and Table 10-7 show all the properties for the beans.

Table 10-5. Properties for com.ora.jsp.beans.shopping.CatalogBean
Property

name Java type Access Description

productList com.ora.jsp.beans.shopping.ProductBean[] Read A list of all products in the catalog

productsById java.util.Map Read A Map, keyed on product ID, with all ProductBean
instances

Table 10-6. Properties for com.ora.jsp.beans.shopping.CartBean
Property name Java type Access Description

productList com.ora.jsp.beans.shopping.ProductBean[] Read A list of all products in the cart

product com.ora.jsp.beans.shopping.ProductBean Write Adds the product to the cart

total float Read The total price for all products in the cart

Table 10-7. Properties for com.ora.jsp.beans.shopping.ProductBean
Property name Java type Access Description

id String Read The unique product ID

name String Read The product name

price Float Read The product price

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

price Float Read The product price

descr String Read A description of the product

The ProductBean objects are created by the CatalogBean when it's created. Figure 10-8 shows how the beans are related.

Figure 10-8. Application and session scope beans

The CatalogBean and the ProductBean objects are placed in the application scope, because all users share the same
product catalog. To keep track of each user's purchases, separate shopping carts must be used. One CartBean instance
per user is therefore placed in the user's unique session scope. When a user picks a product from the catalog, a
reference to the corresponding ProductBean is added to the user's CartBean.

The main page for this application is shown in Example 10-6.

Example 10-6. A page with a list of products (catalog.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>Product Catalog</title>
 </head>
 <body bgcolor="white">
 <h1>Product Catalog</h1>

 Please select a book from our catalog to read more about it and
 decide if you like to purchase a copy:

 <jsp:useBean id="catalog" scope="application"
 class="com.ora.jsp.beans.shopping.CatalogBean"
 />
 <%--
 Generate a list of all products with links to the product page.
 --%>

 <c:forEach items="${catalog.productList}" var="product">
 <c:url var="productURL" value="product.jsp">
 <c:param name="id" value="${product.id}" />
 </c:url>

 ${fn:escapeXml(product.name)}
 </c:forEach>

 <jsp:useBean
 id="cart" scope="session"
 class="com.ora.jsp.beans.shopping.CartBean"
 />
 <%-- Show the contents of the shopping cart, if any --%>
 <c:if test="${!empty cart.productList}">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <c:if test="${!empty cart.productList}">
 Your shopping cart contains the following items:
 <p>
 <table border=0>
 <c:forEach items="${cart.productList}" var="product">
 <tr>
 <td>${fn:escapeXml(product.name)}</td>
 <td>
 <fmt:formatNumber value="${product.price}"
 type="currency" />
 </td>
 </tr>
 </c:forEach>
 <tr><td colspan=2><hr></td></tr>
 <tr>
 <td>Total:</td>
 <td>
 <fmt:formatNumber value="${cart.total}"
 type="currency" />
 </td>
 </tr>
 </table>
 </c:if>
 </body>
</html>

The <jsp:useBean> action near the top of Example 10-6 creates an instance of the CatalogBean the first time a user
requests the page and saves it under the name catalog. Since the bean is placed in the application scope, all users will
then share this single instance.

The <c:forEach> action loops through the list and generates an HTML list item element for each product. The EL
expression used as the items attribute value retrieves the catalog bean's property that contains a list of all products in
the catalog, named productList (an array of ProductBean objects). The var attribute is set to product, so we can use product
as a variable name in the action element body.

The body of the <c:forEach> action is evaluated once per product. The action body contains a mixture of template text,
actions and EL expressions to generate an HTML list item element for each product with a link to another page, using
the product name as the link text. Let's look at how the link is generated:

<c:url var="productURL" value="product.jsp">
 <c:param name="id" value="${product.id}" />
</c:url>

 ${fn:escapeXml(product.name)}

First, the <c:url> action creates the URL for the link by adding the id parameter specified by the nested <c:param> action
to the page name and rewriting the resulting URL if cookies aren't supported. Next, an EL expression adds the URL as
the HTML link's href attribute value, and another EL expression adds the product name as the link text. Note that the
fn:escapeXml() function is used to encode possible special characters in the link text, but that the link URL is left
unencoded. Leaving the URL variable untouched is important, because otherwise, ampersands used to separate
parameters in the URL get corrupted. In this example the URL contains only one parameter, so it works fine even if the
value is encoded, but you should leave it unencoded anyway to avoid problems if you need to add another parameter
later.

After the code in Example 10-6 for generating the product list, you see almost identical code for generating a list of the
current contents of the shopping cart. First, the <jsp:useBean> action places the cart bean in the session scope, as
opposed to the catalog bean, which is placed in the application scope. This means that each user gets a unique shopping
cart that remains on the server for the duration of the session, while they all share the same catalog. The part of the
page that deals with the shopping cart contents is enclosed in a <c:if> action, so it's processed only if the cart bean's
productList property contains a nonempty array, in other words, only when there's at least one product in the cart.

10.3.1 Number Formatting

Unless the shopping cart is empty, a second <c:forEach> action generates a list of the contents as an HTML table with
the name and price of each product. A thing to note here is the use of the <fmt:formatNumber> action:

<fmt:formatNumber value="${product.price}"
 type="currency" />

This is an action from the JSTL I18N formatting library, declared by the second taglib directive at the top of the page. It
formats the number specified by the value attribute as defined by other attributes, such as the type attribute used here.
The currency type tells it to format the number according to default rules for currency values. Other attributes not used
here let you define specific rules for the number of decimals to show, where to put number-grouping characters, prefix
and suffix, etc. The number is formatted according to the rules for a specific geographical, political, or cultural region,
known as a locale. A locale defines things such as which characters to use as a decimal separator, thousand grouping,
and currency symbol. Locales and all JSTL formatting actions are discussed in detail in Chapter 14, but to give you an
idea of how formatting varies between regions, here's an example of the number 10000.00 formatted as currency for
USA, Sweden, and Italy:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USA, Sweden, and Italy:

USA

$10,000.00

Sweden

10 000,00 kr

Italy

L. 10 000

In Example 10-6, the <fmt:formatNumber> action formats the price information for each product and the total for
everything in the cart.

10.3.2 Using a Request Parameter as an Index

A link to a description page for each product is generated using the <c:forEach> action in the main page, shown in
Example 10-6. The link includes the request parameter id, specifying the product to display information about. When
the user clicks on one of the links, the page shown in Example 10-7 is invoked.

Example 10-7. The product description page (product.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>Product Description</title>
 </head>
 <body bgcolor="white">

 <jsp:useBean id="catalog" scope="application"
 class="com.ora.jsp.beans.shopping.CatalogBean"
 />
 <%-- Get the specified ProductBean from the catalog --%>
 <c:set var="product" value="${catalog.productsById[param.id]}" />
 <h1><${fn:escapeXml(product.name)}</h1>

 ${fn:escapeXml(product.descr)}
 <p>
 <c:url var="addtocartURL" value="addtocart.jsp">
 <c:param name="id" value="${product.id}" />
 </c:url>

 Add this book to the shopping cart

 </body>
</html>

A <jsp:useBean> action at the top of Example 10-7 makes the catalog bean available to the page. Since the same action
is used in the catalog.jsp page to save the catalog bean in the application scope, it may seem redundant to have it in
this page as well. In the normal case, it is. But users may bookmark a page for a specific product and go directly to this
page. If the container has been restarted and no one has loaded the catalog.jsp page yet, the <jsp:useBean> action
makes sure a fresh bean is created in the application scope so the other actions in this page can use it. If the bean
already exists, the <jsp:useBean> action uses the existing bean instead, so no harm is done. This is an approach you
should consider for all pages that can be bookmarked; make sure all beans used in the page are initialized even in the
unusual cases.

Next, a <c:set> JSTL action saves a reference to the ProductBean corresponding to the product ID specified by the id
parameter value, to make it easier to access information about the product later in the page. As you may recall from
Chapter 8, request parameter values can be accessed as a property of the implicit param variable in an EL expression.
What's new in this example is that the parameter value is used to pick a specific element from a collection, using the EL
[element_id] syntax. In this example, the productsById property of the catalog bean is of type java.util.Map, containing all
products in the catalog. A Map is a collection type that provides access to individual elements through an identifier
known as a key. With the EL, you can specify the key in two ways:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

known as a key. With the EL, you can specify the key in two ways:

${myMap.myKey}
${myMap[myKey]}

The first syntax, using a dot to separate the Map variable from the key value, works when you know exactly which key
value to use. In other words, the key is a static string. The second syntax must be used when the key value is
determined at runtime using another variable, such as the param.id construct used in Example 10-7. You can use the
second syntax even when the key is a static string, if you specify it as a string literal, and you must use this syntax for
static strings if the key name contains dots:

${myMap['myKey']}
${myMap['com.thejspbook.myKey']}

Note that if you have an object in a scope with a name containing dots, you need to use this syntax with the implicit
variable that represents a collection of all variables in the scope:

${pageScope['com.thejspbook.myKey']}

If you're familiar with JavaScript, you probably recognize the two ways to access data from a collection with key/value
pairs. If so, you probably guessed that the [] operator can be used also to access elements of collections of indexed
values (such as a java.util.List or a Java array):

${myList[0]}
${myList[myVarWithANumericValue]}

For an indexed collection, the value within the brackets must be a numeric literal or a subexpresson that represents a
numeric value.

The remainder of Example 10-7 uses elements we have already discussed: EL expressions to add the product name and
description (represented by properties of the bean referenced by the product variable) to the page, and <c:url> to create
the URL rewritten link to the request processing page that adds the product to the shopping cart. The result is shown in
Figure 10-9.

Figure 10-9. The product description page

The request processing page is shown in Example 10-8.

Example 10-8. Adding a product to the shopping cart (addtocart.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<jsp:useBean id="catalog" scope="application"
 class="com.ora.jsp.beans.shopping.CatalogBean"
/>

<%-- Get the specified ProductBean from the catalog --%>
<c:set var="product" value="${catalog.productsById[param.id]}" />

<jsp:useBean
 id="cart"
 scope="session"
 class="com.ora.jsp.beans.shopping.CartBean"
/>

<%-- Add the product to the cart --%>
<c:set target="${cart}" property="product" value="${product}" />

<c:redirect url="catalog.jsp" />

This is a request processing page, so it doesn't contain any HTML. The <jsp:useBean> actions make sure the catalog and
cart beans are available, for the same reason as in Example 10-7. The first <c:set> action saves a reference to the
requested product in a variable named product, just as in the product.jsp page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

requested product in a variable named product, just as in the product.jsp page.

A JSTL <c:set> action with a couple of attributes I skipped over earlier adds the product to the cart by setting the cart
bean's product property to the selected product.

The reason the <c:set> action is used instead of the standard <jsp:setProperty> action described in Chapter 8 is that it's a
bit more flexible. The <c:set> action lets you set the property specified by the property attribute in the bean identified by
the target attribute to the EL expression specified by the value attribute. You can also use these two attributes to add
elements to a Map object:

<c:set target="${myMap}" property="theKey" value="${aValue}" />

As you may have noticed by now, as far as the EL is concerned, a Map and a bean are just two ways to represent the
same concept: a collection of values identified by a name. It's up to the Java programmer who makes objects available
for use in a JSP page to pick the most appropriate implementation on a case-by-case basis.

Note that the target attribute takes an EL expression that evaluates to the bean and the
property attribute specifies the name of the property. To some, it may have been more
natural to combine these two attributes into one, assigning the value to the evaluation of
an EL expression that identifies the property itself. The JSP 2.0 EL, however, doesn't
support write operations in the evaluation result, so this isn't possible. It's likely that a
future version of the JSP EL will be enhanced to support assignments.

10.3.3 Redirect Versus Forward

Back to the shopping cart example. When addtocart.jsp page has added the product to the cart, it needs to invoke the
catalog.jsp page to show the user the updated cart contents.

There are two ways you can let one page invoke another page: redirecting or forwarding. Forwarding was used in
Example 10-2 to display an appropriate page depending on the result of the user input validation. In Example 10-8,
redirection is used to display the catalog page after adding a new product to the cart. The <c:redirect> JSTL action,
described in Table 10-8, sends a redirect response to the browser with the new location defined by the url attribute. If
URL rewriting is used for session tracking, the URL is encoded with the session ID. If the body of this action contains
<c:param> actions, described in Table 10-4, each parameter is added to the URL as query string parameters, encoded
according to rules in the HTTP specification.

Table 10-8. Attributes for JSTL <c:redirect>
Attribute

name
Java
type

Dynamic value
accepted Description

url String Yes Mandatory. An absolute URL, or a context- or page-relative path.

context String Yes Optional. The context path for the application, if the resource isn't part
of the current application.

There's an important difference between a forward and a redirect. When you forward, the target page is invoked
through an internal method call by the JSP container; the new page continues to process the same request and the
browser isn't aware that more than one page is involved. A redirect, on the other hand, means that the first page tells
the browser to make a new request to the target page. The URL shown in the browser is therefore changed to the URL
of the new page when you redirect, but stays unchanged when you use forward. A redirect is slower than a forward,
since the browser has to make a new request. Also, because it results in a new request, request scope variables are no
longer available after a redirect.

So how do you decide if you should use forward or redirect? To a large extent it's a matter of preference. I look at it
like this: forwarding is always faster, so that's the first choice. But because the URL in the browser refers to the start
page even after the forward, I ask myself what happens if the user decides to reload the start page (or just resize the
window: this often reloads the page automatically). In this example, the start page is the page that adds an item to the
shopping cart. I don't want it to be invoked again on a reload, so I redirect to the page that displays the catalog and
shopping cart content instead. No harm is done if the user reloads this page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 Memory Usage Considerations
You should be aware that all objects you save in the application and session scopes take up memory in the server
process. It's easy to calculate how much memory is used for the application scope because you have full control over
the number of objects you place there. But the total number of objects in the session scope depends on the number of
concurrent sessions, so in addition to the size of each object, you also need to know how many concurrent users you
have and how long a session lasts. Let's look at an example.

The CartBean used in this chapter is small. It stores only references to ProductBean instances, not copies of the beans. An
object reference in Java is 8 bytes, so with three products in the cart we need 24 bytes. The java.util.Vector object used
to hold the references adds some overhead, say 32 bytes. All in all, we need 56 bytes per shopping cart bean with
three products.

If this is a site with a modest amount of customers, you may have 10 users shopping per hour. The default timeout for
a session is 30 minutes, so let's say that at any given moment, you have 10 active users and another 10 sessions that
aren't active but have not timed out yet. This gives a total of 20 sessions times 56 bytes per session, a total of 1,120
bytes. In other words, roughly 1 KB—nothing to worry about.

Now let's say your site becomes extremely popular, with 2,000 customers per hour. Using the same method to
calculate the number of concurrent sessions as before, you will have 4,000 sessions at 56 bytes; that's a total of
roughly 220 KB—still nothing to worry about. However, if you store larger objects in each session, say the result of a
database search with an average size of 10 KB, it corresponds to roughly 40 MB for 4,000 sessions. A lot more but still
not extreme, at least not for a site intended to handle this amount of traffic. However, it should become apparent that
with that many users, you have to be a bit careful with how you use the session scope.

Here are some things you can do to keep the memory requirements under control:

Place only objects that really need to be unique for each session in the session scope. In the shopping cart
example, each cart contains only references to the product beans (not copies of the beans), and the catalog
bean and the product beans are shared by all users.

Set the timeout period for sessions to a lower value than the default. If you know it's rare that your users leave
the site for 30 minutes and then return, use a shorter period. You can change the timeout for all sessions in an
application through the application's deployment descriptor (see Appendix F), or by calling
session.setMaxInactiveInterval() (see Appendix D) in a custom action, bean, or servlet to change it for an individual
session.

Provide a way to end the session explicitly. A good example is a logout function, or invalidation of the session
when something is completed (for instance when an order form is submitted). In a JSP page, you can use the
<ora:invalidateSession> custom action described in Chapter 13 to invalidate the session. In a servlet or other
custom code, you can use the HttpSession invalidate() method (see Appendix D). Invalidating a session makes all
objects available for garbage collection (the term used for when the Java runtime removes unused objects to
conserve memory).

We have covered a lot of ground in this chapter, so let's recap the key points:

The scope concept gives you full control over the lifetime and reach of shared information at a convenient
abstraction level. However, resist the temptation to keep too much information around in the session scope.

Action elements for passing control between pages, such as the standard <jsp:forward> action and the JSTL
<c:redirect> action, allow you to allocate different roles to different pages, and the JSTL <c:url> action can be
used to provide support for cookie-less session tracking.

The scope abstraction and the actions together make it possible to develop JSP-based applications that are easy to
maintain and extend.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 11. Developing Custom Tag Libraries as Tag
Files
Starting with the 2.0 version of the JSP specification, custom tag library actions can be implemented in two ways: as
Java classes or as regular text files containing JSP elements. In prior versions, custom actions could only be
implemented as Java classes, putting them out of the reach of nonprogrammers. Another problem with the Java
implementation of custom actions is that you're forced to printout HTML code with println() calls to produce complex
content—the very problem JSP was supposed to solve.

In this chapter I show you how to develop custom actions as plain text files and package them as tag libraries that can
be used in JSP pages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.1 Creating and Using a Tag File
A tag file is a text file that contains JSP elements implementing the functionality of a custom action. You must use a
.tag[1] filename extension to identify this type of file to the web container. All JSP elements that you can use in a JSP
file can also be used in a tag file, with exception to the page directive (a tag file is not a page). There are also a few JSP
directives that are only allowed in a tag file, as you will see shortly. Apart from that, creating a tag file is no different
than creating a JSP page. Once created and installed, a tag file is used the same as the custom actions implemented in
Java that you've seen in previous chapters.

[1] If you write the tag file in XML format, as described in Chapter 17, you must instead use the .tagx extension.

Example 11-1 shows a very simple tag file.

Example 11-1. Simple tag file (copyright.tag)

<%@ tag body-content="empty" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<jsp:useBean id="now" scope="application" class="java.util.Date" />
Copyright © ${now.year + 1900} My Company

This tag file inserts a copyright statement with the current year in the calling page. The first line is a tag directive. You
may use attributes of this directive to specify a description, icon, or an example that a page-authoring tool can show
the designer. Other attributes let you specify whether EL expressions should be processed, as well as various
information related to scripting code, i.e., the same type of information as you specify with the page directive in JSP
pages. All of these attributes are described in Appendix A.

In most cases, tag file authors only care about the attribute used in Example 11-1: body-content. This attribute defines
how the custom action element's body should be handled, and that it must have one of these values: empty, scriptless
(the default), or tagdependent. If it's empty (as in Example 11-1), trying to use a body for the custom action element
results in a syntax error. The scriptless value means that the body can contain any JSP elements except the type of
scripting elements described in Chapter 16. In other words, template text, EL expressions, standard actions, and
custom actions are all allowed. As you will see later, the tag file can ask the container to process the actions in a
scriptless body when and how often as it wants through the use of standard action named <jsp:doBody>. If the body-
content attribute is set to tagdependent, the action element body is treated as pure template text (i.e., action elements
and EL expressions in the body are not processed, just handled as plain text).

The rest of the tag file in Example 11-1 looks just like an ordinary JSP page. It declares that it uses the JSTL core
library, a <jsp:useBean> standard action to create an instance of the java.util.Date class representing the current time (if it
isn't already available in the application scope), and finally outputs static template text mixed with a dynamic value (the
current year) generated by an EL expression: ${now.year + 1900}.[2]

[2] The year property of a java.util.Date (represented by the getYear() method) contains the current year minus
1900, so here I add 1900 to get the real year.

Tag files can be placed directly in the web application structure under the WEB-INF/tags directory or a subdirectory.
Each directory containing tag files represents a separate tag library:

WEB-INF/tags/
 mytags/
 copyright.tag
 forEvenAndOdd.tag
 htmlFormat.tag
 motd.tag
 myothertags/
 foo.tag
 bar.tag

Here we have two tag libraries: mytags and myothertags. The mytags library contains the copyright.tag file from Example
11-1 plus three other tag files. By default, the name of the custom action implemented by the tag file is the filename
minus the .tag extension, so the copyright.tag file represents a custom action named copyright in the mytags library.

A JSP page must declare that it uses a tag library represented by tag files in the web application structure with a slightly
different taglib directive than what we've used in earlier chapters:

<%@ page contentType="text/html" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags/mytags" %>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<%@ taglib prefix="my" tagdir="/WEB-INF/tags/mytags" %>

<html>
 <body bgcolor="white">
 ...
 <my:copyright/>
 </body>
</html>

Note that the tagdir attribute is used instead of the uri attribute. The value of the tagdir attribute is the context-relative
path to the directory that contains the tag files for the library. It may seem redundant to have to specify the /WEB-
INF/tags part of the path, since all tag library directories must start with this path. Regardless, the JSP specification
group decided to require this to be consistent with other attributes taking path values.

When the JSP container processes this JSP page, it locates the copyright.tag file in the WEB-INF/tags/mytags directory
and turns it into a format that the container can invoke. The conversion details are left open by the JSP specification,
allowing container vendors to compete with smart implementations. Tomcat turns the tag file into a Java class and
compiles it, but other implementations are possible (e.g., converting it to a proprietary data structure).

Tag files can also be packaged in a JAR file. It requires a bit more work and is primarily of interest for tag files intended
to be reused in many applications, so let's defer the details to the end of this chapter. One thing to note at this time,
though, is that when the tag files are packaged in a JAR file, the taglib directive is used with the uri attribute exactly as
in the previous chapters. This means that tag files packaged in a JAR file are indistinguishable from custom actions
implemented as Java classes. You can therefore implement the actions as tag files initially (because it's easier) and
convert them to Java classes later (maybe to gain better performance) without having to make any changes in the JSP
pages that use them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.2 Accessing Attribute Values
The tag file in Example 11-1 is too simple to illustrate all that you can do with tag files. For instance, most real-world
tag files are controlled through attribute values set by the page author. You may recall from Chapter 7 that the
<ora:motd> custom action has a category attribute for selecting the message category that messages should be picked
from. Example 11-2 shows how a tag file implementation of the <ora:motd> action declares, accesses, and uses this
attribute value.

Example 11-2. Using attributes in a tag file (motd.tag)

<%@ tag body-content="empty" %>
<%@ attribute name="category" required="true" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<jsp:useBean id="mmb" class="com.ora.jsp.beans.motd.MixedMessageBean" />
<c:set target="${mmb}" property="category" value="${category}" />
${mmb.message}

Each attribute must be declared with an attribute directive in a tag file. In Example 11-2, the category attribute is
declared using an attribute directive with the name attribute set to category. The required attribute is set to true, meaning
that the page author must specify a value for the category attribute; the container complains if the attribute is missing.
The default value for required is false, so you can leave it out for attributes that are optional.

Another attribute of the attribute directive, not used in Example 11-2, is rtexprvalue. A value of true means that the author
can specify the value either as a static string or as a request-time attribute value, such as an EL expression; false
means the value must be a static string. The default value is true, so you only need to use this attribute if you
absolutely require a static value.[3]

[3] The convention established by JSTL is that only var and scope attributes should have rtexprvalue set to false.
These attributes may need to be available in the translation phase (hence, have static string values) in a future
version of the JSP specification to allow for additional syntax checking and optimizations.

The value the page author assigns to an attribute shows up as a page scope variable in the tag file, with the same
name as the attribute. This makes it easy to use it in an EL expression. In Example 11-2, a <c:set> action sets the
category property in a MixedMessageBean (which contains the list of messages). The EL expression used as the value gets
the category page scope variable that represents the category attribute.

It's important to note, however, that the page scope seen by the tag file is not the same as the page scope seen by the
page that invokes the tag file—I sometimes call the page scope seen by the tag file the tag scope to make this
distinction. By giving the tag file its own local page scope, there's no chance for confusion between the calling page and
the tag file if they use the same names for page scope variables.

11.2.1 Using Undeclared Attributes

Occasionally, declaring all attributes for a tag file can be a hassle. Say you want to develop a tag file that generates an
HTML table, and you want the page author to be able to specify all standard attributes that an HTML table element
supports. That's a lot of attributes and the tag file would need to test for the existence of each one. A better approach
for this scenario is to use the tag directive's dynamic-attributes attribute. This attribute declares that the tag file accepts
any custom action element attribute. The attribute value is the name of a local page scope variable that holds a
collection (a Map) with all undeclared attribute names and values. Example 11-3 shows an example of a tag file that
uses this approach to generate a table with all request header values.

Example 11-3. Using undeclared attributes in a tag file (headers.tag)

<%@ tag body-content="empty" dynamic-attributes="dynattrs" %>
<%@ attribute name="caption" required="true" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<table
 <c:forEach items="${dynattrs}" var="a">
 ${a.key}="${a.value}"
 </c:forEach>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </c:forEach>
>
 <caption>${caption}</caption>
 <tr>
 <th>Name</th>
 <th>Value</th>
 </tr>
 <c:forEach items="${header}" var="h">
 <tr>
 <td>${h.key}</td>
 <td>${h.value}</td>
 </tr>
 </c:forEach>
</table>

The dynamic-attributes attribute declares a variable named dynattrs to hold the undeclared attributes, and a JSTL
<c:forEach> action loops through the collection and adds the name and value for each to the HTML <table> element's
attribute list. As shown in Example 11-3, you can declare regular attributes in the same tag file. This example declares
a mandatory attribute named caption, used to add a caption text for the table.

This is how you can use the tag file, shown in Example 11-3, in a JSP page:

<%@ page contentType="text/html" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags/mytags" %>

<html>
 <head>
 <title>Headers</title>
 </head>
 <body bgcolor="white">
 <my:headers caption="Request Headers"
 border="1" cellspacing="0" cellpadding="5" />
 </body>
</html>

The action element for the tag file defines values for the mandatory caption attribute plus three undeclared attributes:
border, cellspacing, and cellpadding.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.3 Processing the Action Body
So far, the tag files we've looked at ignore (or actually forbid) the body of the custom action element used to invoke
them, but the body is often an important part of the equation. One example is a conditional custom action, such as a
variation of the <c:if> JSTL action. It needs to process the body if the condition is true. Another example is a custom
action that transforms the body in some way or simply uses it as input.

Let's develop a custom action that transforms its body content. It first converts all characters that have special meaning
in HTML and XML to the corresponding character entity codes (e.g., < to <), and then converts special proprietary
codes into HTML elements. A custom action like this can be used to process user input in an online forum to protect it
against cross-site scripting attacks while still allowing for limited formatting of the messages. Here's how you can use
this custom action in a JSP page:

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags/mytags" %>

<%-- Create test data --%>
<c:set var="message">
 This is just a lot of text that the browser will format to
 fit the browser window. Attempts to <blink> add HTML elements
 are dealt with by conversion to character entities.
 [code]
 This part I want the browser to leave alone, so that
 all my indentations are left intact:

 public class Foo {
 public String getBar() {
 return bar;
 }
 }
 [/code]
 And then some regular text again.
</c:set>
<html>
 <head>
 <title>Online Forum</title>
 </head>
 <body bgcolor="white">
 <h1>Online Forum</h1>
 Here's a formatted message:
 <p>
 <my:htmlFormat>
 ${message}
 </my:htmlFormat>
 </p>
 </body>
</html>

This page first saves test data containing text, an HTML element, and the proprietary formatting codes in a variable
named message. In a real application, the text would likely come from a database or some other external source. It then
processes the text with the <my:htmlFormat> custom action.

The result is shown in Figure 11-1. Note how the <blink> HTML element is displayed instead of causing most of the text
to blink, and how the formatting is preserved for all text between the proprietary [code] and [/code] tags.

Figure 11-1. Result of text processing with a custom action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 11-4 shows the tag file that implements the <my:htmlFormat> custom action.

Example 11-4. Processing the body (htmlFormat.tag)

<%@ tag body-content="scriptless" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%-- Capture the body evaluation result in a variable --%>
<jsp:doBody var="bodyRes" />

<%-- Convert special characters to character entities --%>
<c:set var="escapedBody" value="${fn:escapeXml(bodyRes)}" />

<%-- Replace "[code]/[/code]" with "<pre>/</pre>" --%>
<c:set var="convBody"
 value="${fn:replace(escapedBody, '[code]', '<pre>')}" />
<c:set var="convBody"
 value="${fn:replace(convBody, '[/code]', '</pre>')}" />

<%-- Output the result --%>
${convBody}

Note that the tag directive in Example 11-4 sets the body-content attribute to scriptless. As I mentioned earlier, this means
that the page author is allowed to put template text, standard actions and custom actions, in the body but not scripting
elements (i.e., Java code).

It's after the directive elements that this example gets interesting; here's a standard action that we have not discussed
before: <jsp:doBody>. This action can only be used in tag files. It evaluates the body of the custom action element,
meaning that all action elements (if any) in the body are called and the output they produce is mixed with the template
text (if any). The result is saved in a variable, using the var attribute to name the variable. This attribute is optional, as
shown in Table 11-1, and you can use the varReader attribute as an alternative. If you don't specify any of these
attributes, the result is added to the page invoking the custom action.

Table 11-1. Attributes for <jsp:doBody>
Attribute

name
Java
type

Dynamic value
accepted Description

var String No Optional. The name of the variable to hold the body evaluation result
as a String.

varReader String No Optional. The name of the variable to hold the body evaluation result
as a java.io.Reader.

scope String No Optional. The variable scope; one of page, request, session, or
application. Default is page.

The difference between the var and varReader attributes is the type of Java object used for capturing the result. The var
attribute captures it as a String and is sufficient for most cases. When the varReader attribute is used, the result is
captured as a java.io.Reader object instead. For large results, this can be slightly more efficient when combined with an
action or function for the transformation that reads its input from a Reader. Along with one of var or varReader, you can
also specify the scope for the variable with the scope attribute.

The rest of the tag file in Example 11-4 transforms the captured body. First it uses the JSTL fn:escapeXml() function to
convert all special characters to character entity codes, and then it replaces all occurrences of [code] and [/code] with the
HTML <pre> and </pre> tags using the JSTL fn:replace() function, to preserve formatting in these sections. Finally, the
converted body evaluation result is added to the calling page with a simple EL expression.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.4 Processing Fragment Attributes
Processing the custom action body is easy and powerful as you can see, but wait, there's more! The custom action body
is actually just a special case of what's called a JSP fragment in the JSP specification. A JSP fragment is an executable
representation of a set of dynamic elements (actions and EL expressions), optionally mixed with template text. When
the tag file invokes the fragment, all the dynamic elements in the fragment are executed. Since the elements have
access to the current values of all scoped variables, the result typically differs from invocation to invocation, and the tag
file can invoke it any number of times (e.g., once or none for a conditional action or multiple times for an iteration
action).

In Example 11-4, the <jsp:doBody> action invokes the special fragment representing a custom action element body, but
named fragments can also be provided as custom action attributes and be invoked by the tag file. Such fragments are
invoked with the <jsp:invoke> action, described in Table 11-2.

Table 11-2. Attributes for <jsp:invoke>
Attribute

name
Java
type

Dynamic value
accepted Description

fragment String No Mandatory. The name of the fragment to invoke.

var String No Optional. The name of the variable to hold the body evaluation result
as a String.

varReader String No Optional. The name of the variable to hold the body evaluation result
as a java.io.Reader.

scope String No Optional. The variable scope; one of page, request, session, or
application. Default is page.

Let's develop a variant of the JSTL <c:forEach> action to illustrate how you can use named fragments. Say you want to
loop through all the elements in a collection to generate an HTML table, and you want to render even rows one way and
odd rows another. Here's a page that solves this problem by using a custom action with separate fragment attributes
for even and odd rows:

<%@ page contentType="text/html" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags/mytags" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Even and Odd Rows</title>
 </head>
 <body bgcolor="white">
 <h1>Even and Odd Rows</h1>
 <table>
 <my:forEvenAndOdd items="a,b,c,d,e">
 <jsp:attribute name="even">
 <c:set var="counter" value="${counter + 1}" />
 <tr bgcolor="red"><td>${counter}: Even Row</td></tr>
 </jsp:attribute>
 <jsp:attribute name="odd">
 <c:set var="counter" value="${counter + 1}" />
 <tr bgcolor="blue"><td>${counter}: Odd Row</td></tr>
 </jsp:attribute>
 </my:forEvenAndOdd>
 </table>
 </body>
</html>

A fragment attribute value is defined using the <jsp:attribute> action introduced earlier. The body of this action element
makes up the content of the fragment. In the page shown here, each fragment attribute values contain a JSTL <c:set>
action for incrementing a counter and HTML table row and cell elements for showing the counter's value plus the static
text "Even Row" and "Odd Row", respectively. The fragments also set different row background colors to make the
differences clear. The result of processing this page is shown in Figure 11-2.

Figure 11-2. Representing even and odd rows as fragments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 11-2. Representing even and odd rows as fragments

Note how the current value of the counter page scope variable is used for each new row, and how the rows alternate
between the even and odd fragments. Example 11-5 shows the tag file for the <my:forEvenAndOdd> custom action.

Example 11-5. Using fragment attributes (forEvenAndOdd.tag)

<%@ tag body-content="empty" %>
<%@ attribute name="items" rtexprvalue="true" required="true" %>
<%@ attribute name="even" fragment="true" required="true" %>
<%@ attribute name="odd" fragment="true" required="true" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:forEach items="${items}" varStatus="status">
 <c:choose>
 <c:when test="${status.count % 2 == 0}">
 <jsp:invoke fragment="even" />
 </c:when>
 <c:otherwise>
 <jsp:invoke fragment="odd" />
 </c:otherwise>
 </c:choose>
</c:forEach>

The tag directive specifies that the body must be empty; in this example, it must only contain the <jsp:attribute>
elements (no template text of other elements), and they are considered alternatives to regular element attributes, not
body content.

To tell the container to use an executable fragment as the attribute value, the attribute must be declared as such. Note
that the attribute directive's fragment attribute is set to true for both the even and odd attributes. Otherwise the container
evaluates the <jsp:attribute> body once and sets the attribute to the resulting value, as described in Chapter 6.

After the directives in Example 11-5, JSTL actions are used to loop through the list of items, and decide whether it's an
even or odd row. The <jsp:invoke> action then invokes the appropriate fragment. The result is what you see in Figure
11-2.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.5 Exposing Data to the Calling Page Through Variables
Attributes provide input to a custom action, but sometimes you also need to give the page that contains the custom
action access to data produced by the custom action. For instance, the <my:forEvenAndOdd> action is not all that useful
unless the page can access the current iteration value in the fragments for even and odd rows. To handle this
requirement, data can be passed from a custom action to the caller by exposing it through declared variables.

Example 11-6 shows a version of the tag file from Example 11-5 that's been extended to expose the current iteration
value as a variable named current. All differences between the examples are highlighted.

Example 11-6. Exporting data through variables (forEvenAndOdd2.tag)

<%@ tag body-content="empty" %>
<%@ attribute name="items" rtexprvalue="true" required="true" %>
<%@ attribute name="even" fragment="true" required="true" %>
<%@ attribute name="odd" fragment="true" required="true" %>
<%@ variable name-given="current" variable-class="java.lang.Object"
 scope="NESTED" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:forEach items="${items}" varStatus="status" var="current">
 <c:choose>
 <c:when test="${status.count % 2 == 0}">
 <jsp:invoke fragment="even" />
 </c:when>
 <c:otherwise>
 <jsp:invoke fragment="odd" />
 </c:otherwise>
 </c:choose>
</c:forEach>

The variable directive declares the variable. The name-given attribute specifies its name and the variable-class attribute its
type. (Here I use the most generic class possible, java.lang.Object, because the collection to iterate over can contain
elements of any type.)

The scope attribute accepts one of three values: AT_BEGIN, AT_END, or NESTED. It controls where the caller sees the
variable. Despite its name, it has nothing to do with the scopes we've talked about earlier (page, request, session, and
application), so visibility would have been a better name for this attribute. If it's set to AT_BEGIN, the variable is visible
to the caller immediately after the start tag for the custom action element. If the attribute is set to AT_END, the variable
is visible after the end tag. NESTED means it's only visible between the start and end tags.

To make the data visible to the caller, the tag file sets a page scope variable with the name declared by the variable
directive. I told you earlier that the tag file has its own page scope, separate from the caller, so the container must do a
bit of magic for this to work. For a variable declared as AT_BEGIN or NESTED, it copies the value of the variable in the tag
file's page scope to the caller's page scope before invoking a fragment. If the variable is declared as AT_BEGIN or
AT_END, it copies the value before exiting the tag file. In the case of a NESTED variable, it also saves and restores the
value of the caller's page scoped variable with the same name, if any, before entering and exiting the tag file. Don't
worry if this sounds confusing at first; it actually ends up working as you would expect it to.

The tag file in Example 11-6 exposes a variable named current, containing the value of the current iteration value. The
local variable is set indirectly with help of the var attribute of the <c:forEach> action. As you may recall, the <c:forEach>
action makes the current iteration value available in the page scope variable named by this attribute. By setting the
name of the <c:forEach> variable to the name of the declared tag file variable, the variable value set by the <c:forEach>
action is also exposed to the caller.

With the new version of the tag file, I can use it to display the current iteration value in each row:

<%@ page contentType="text/html" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags/mytags" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Even and Odd Rows</title>
 </head>
 <body bgcolor="white">
 <h1>Even and Odd Rows</h1>
 <table>
 <my:forEvenAndOdd2 items="a,b,c,d,e">
 <jsp:attribute name="even">
 <c:set var="counter" value="${counter + 1}" />
 <tr bgcolor="red"><td>${counter}: Even Row: ${current}</td></tr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <tr bgcolor="red"><td>${counter}: Even Row: ${current}</td></tr>
 </jsp:attribute>
 <jsp:attribute name="odd">
 <c:set var="counter" value="${counter + 1}" />
 <tr bgcolor="blue"><td>${counter}: Odd Row: ${current}</td></tr>
 </jsp:attribute>
 </my:forEvenAndOdd2>
 </table>
 </body>
</html>

Note how the exposed variable is used in EL expressions in both fragments.

There's still a problem here: the exposed variable name is hardcoded into the tag file. This may be okay in some cases,
but it's better if the variable name can be specified using an attribute, just as you can pick a name with the var attribute
for all JSTL actions that expose data. Fortunately, there's a solution, shown in Example 11-7.

Example 11-7. Letting the page author specify the variable name
(forEvenAndOdd3.tag)

<%@ tag body-content="empty" %>
<%@ attribute name="items" rtexprvalue="true" required="true" %>
<%@ attribute name="var" rtexprvalue="false" required="true" %>
<%@ attribute name="even" fragment="true" required="true" %>
<%@ attribute name="odd" fragment="true" required="true" %>
<%@ variable name-from-attribute="var" alias="current"
 variable-class="java.lang.Object" scope="NESTED" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:forEach items="${items}" varStatus="status" var="current">
 <c:choose>
 <c:when test="${status.count % 2 == 0}">
 <jsp:invoke fragment="even" />
 </c:when>
 <c:otherwise>
 <jsp:invoke fragment="odd" />
 </c:otherwise>
 </c:choose>
</c:forEach>

Instead of the name-given attribute used in the previous example, I use the name-from-attribute and alias attributes of the
variable directive in Example 11-7. The name-from-attribute attribute value is the name of the custom action attribute used
to name the variable. The named attribute (var in this example) must be declared as required and must not accept a
request time value. The alias attribute value declares the name of the tag file's local page scope variable, which the JSP
container copies to the caller's page scope as described earlier. The aliasing trick is needed because the page author
can assign any name for the variable when she uses the custom action, but a fixed name must be used when
developing the tag file.

The rest of Example 11-7 is identical to Example 11-6, but I can now specify the variable name in the calling page like
this:

<%@ page contentType="text/html" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags/mytags" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Even and Odd Rows</title>
 </head>
 <body bgcolor="white">
 <h1>Even and Odd Rows</h1>
 <table>
 <my:forEvenAndOdd3 items="a,b,c,d,e" var="anyName">
 <jsp:attribute name="even">
 <c:set var="counter" value="${counter + 1}" />
 <tr bgcolor="red"><td>${counter}: Even Row: ${anyName}</td></tr>
 </jsp:attribute>
 <jsp:attribute name="odd">
 <c:set var="counter" value="${counter + 1}" />
 <tr bgcolor="blue"><td>${counter}: Odd Row: ${anyName}</td></tr>
 </jsp:attribute>
 </my:forEvenAndOdd3>
 </table>
 </body>
</html>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.6 Aborting the Page Processing
In Chapter 9, I described how using the <jsp:forward> action or the JSTL <c:redirect> action shifts processing from the
current page to the page specified by the page attribute, effectively aborting processing of the current page. Custom
actions implemented as Java classes can cause the same thing to happen.

There's no directive or similar mechanism that a tag file can use to explicitly abort processing, but using <jsp:forward>,
<c:redirect>, or a custom action that aborts page processing in a tag file has the same effect; both the tag file
processing and the processing of the page that invokes the tag file stop after it aborts the processing. You can use this
feature to, for instance, develop a smart forwarding action that decides which page to forward to based on runtime
conditions, such as the time of the day, the current user, or the type of browser accessing the page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

11.7 Packaging Tag Files for Easy Reuse
All examples in this chapter use a taglib directive with a tagdir attribute to specify the directory that contains the tag
files. While this is handy for custom actions implemented as tag files in an application you control, it's not as easy as
one would want for deployment and use of the tag library in third-party applications. As you may recall from Chapter 7,
it's very easy to deploy a tag library packaged as a JAR file; just put the JAR file in the WEB-INF/lib directory and use
the default URI as the uri attribute value in the taglib directive.

You can do the same with a tag library developed as tag files, but in this case you must also create a Tag Library
Descriptor (TLD) and include it in the JAR file. I described the purpose of the TLD briefly in Chapter 7, but let's take a
closer look at it here. Example 11-8 shows the TLD for a tag library with some of the tag files we've developed in this
chapter.

Example 11-8. TLD for tag files

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <tlib-version>1.0</tlib-version>
 <short-name>my</short-name>
 <uri>mytaglib</uri>

 <tag-file>
 <name>copyright</name>
 <path>/META-INF/tags/mytags/copyright.tag</path>
 </tag-file>

 <tag-file>
 <name>forEvenAndOdd</name>
 <path>/META-INF/tags/mytags/forEvenAndOdd.tag</path>
 </tag-file>

 <tag-file>
 <name>htmlFormat</name>
 <path>/META-INF/tags/mytags/htmlFormat.tag</path>
 </tag-file>

</taglib>

As you can see, this file is an XML document. Don't worry about the <taglib> element attributes; just copy the element
exactly as its shown here into your TLD. I describe it in more detail in Chapter 21, along with the TLD elements not
covered here.

The first elements provide information about the tag library itself. The <tlib-version> element contains the version of this
tag library and the <short-name> element contains the default namespace prefix for this library. An authoring tool may
use the default namespace prefix when it generates the taglib directive and action elements, but a page author can pick
different prefixes if needed, as described in Chapter 7.

The <uri> element is important. This element declares the default URI (identifier) for the library. The value you use for
this element is the value that must be used as the uri attribute value for the taglib directive in the JSP pages to take
advantage of the auto-deploy feature, as I described in Chapter 7.

Next comes a <tag-file> element for each tag file. The nested <name> element gives the name for the custom action.
It's typically the same as the filename (minus the .tag extension) but you can specify a different name if you want. The
<path> element holds the path within the JAR file to the tag file. It must start with /META-INF/tags/. The TLD file itself
must also be located in the /META-INF directory in the JAR file, so you need to create a directory structure like this for
the tag files and the TLD:

META-INF/
 mytags.tld
 tags/
 mytags/
 copyright.tag
 forEvenAndOdd.tag
 htmlFormat.tag

Then create the JAR file with the jar command (included with the Java SDK) like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Then create the JAR file with the jar command (included with the Java SDK) like this:

C:\> jar cvf mytags.jar META-INF

This creates a JAR file named mytags.jar containing the contents of the META-INF directory structure. You can now
place this JAR file in the WEB-INF/lib directory of any web application that needs the library. When you restart the web
container, it will locate the JAR file and its TLD, so that you can identify the tag library in a JSP page with a taglib
directive like this:

<%@ taglib prefix="my" uri="mytags" %>

In other words, use the uri attribute with the default URI for the library (declared in the TLD), just as for the JSTL
libraries we've used in previous chapters, instead of the tagdir attribute.

You can also use a TLD to identify tag files placed directly in the filesystem, i.e., not packaged in a JAR file. Doing this
allows you to use the uri attribute instead of the tagdir attribute for the taglib directive, potentially saving you from
changing the taglib directives in a number of JSP pages if you eventually decide to package the tag files in a JAR file for
easier reuse in other applications. With this approach, you put the tag files under WEB-INF/tags (or a subdirectory) just
as in the first examples in this chapter, but you also place a TLD in the WEB-INF directory (or a subdirectory, like tlds):

WEB-INF/
 tlds/
 mytags.tld
 tags/
 mytags/
 copyright.tag
 forEvenAndOdd.tag
 htmlFormat.tag

In this case, the <path> elements in the TLD must specify the context-relative path to the tag files in the filesystem:

 <tag-file>
 <name>copyright</name>
 <path>/WEB-INF/tags/mytags/copyright.tag</path>
 </tag-file>

Other than that, the TLD is the same as in Example 11-7.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 12. Accessing a Database
Almost all the web applications that you see on the Internet access a database. Databases store customer information,
order information, product information, even discussion forum messages—in short, all information that needs to survive
a server restart and is too complex to handle in plain-text files.

There are many types of databases used in the industry today. However, relational databases are by far the most
common. A relational database uses tables to represent the information it handles. A table consists of rows of columns,
with each column holding a single value of a predefined data type. Examples of these data types are text data, numeric
data, dates, and binary data such as images and sound. A specialized language called Structured Query Language
(SQL) is used to access the data. SQL is an ANSI standard and is supported by all major database vendors.

Relational database engines come in all shapes and sizes, from simple one-person databases with limited features, to
sophisticated databases capable of handling large numbers of concurrent users with support for transactions distributed
over multiple servers and extremely optimized search algorithms. Even though they all use SQL as the data access
language, the API used to execute SQL statements is different for each database engine. To help programmers write
code that's portable between database engines, the standard Java libraries include an API called the Java Database
Connectivity (JDBC) API. JDBC defines a set of classes that can execute SQL statements the same way in any relational
database.

The complexity of databases varies extensively. A database for an online discussion forum, for instance, requires only
one or two tables, while a database for a human resources system may contain hundreds of related tables. In this
chapter, we look at a set of JSTL database actions you can use to build any type of database-driven web application.
But if the database is complex, you may want to use another approach: hiding the database behind application-specific
beans and custom actions, or moving all database processing to a servlet and using JSP only to show the result. Both
these approaches are discussed briefly at the end this chapter and in more detail in Chapter 18, Chapter 19, and
Chapter 24.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.1 Accessing a Database from a JSP Page
JSTL includes a number of actions for database access to make it easy to develop simple database-driven JSP
applications. The actions provide the following features:

Using a connection pool for better performance and scalability

Supporting queries, updates, and inserts

Handling the most common data type conversions

Supporting a combination of database operations in one transaction

Each action is introduced as it's used in the example in this chapter. In addition, you can find a complete description of
all the actions in Appendix B.

12.1.1 Application Architecture Example

In this chapter, we build an employee register application. This application contains functions for adding and changing
employee information, as well as for looking up employees matching a search criterion. The employee information is
stored in a relational database and accessed through the JSTL database access actions.

The employee registration part of the application contains the pages shown in Figure 12-1.

Figure 12-1. Employee registration pages

This example looks similar to the example from Chapter 10. The enter.jsp page presents a form in which the user
enters information about an employee. When the form is submitted, it invokes the validate.jsp page, where all input is
validated. If the input is invalid, the request is forwarded back to the enter.jsp page to display error messages and the
form with all the values the user previously entered. The user can then correct the invalid values and submit the form
again. When all input is valid, the validate.jsp page forwards the request to the store.jsp page where the information is
stored in the database. Finally, the store.jsp page redirects to the confirmation.jsp page, which displays the information
actually stored in the database as a confirmation to the user.

Figure 12-2 shows the pages used to implement the employee search function.

Figure 12-2. Employee search pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-2. Employee search pages

The search.html page is a regular HTML page with a form for entering the search criteria. The user can enter a partial
first name, last name, and department name. Submitting the form invokes the find.jsp page. Here the database is
searched for employees matching the criteria specified by the user, and the result is kept in the request scope. The
find.jsp page forwards to the list.jsp page, where the result is displayed. For each employee listed, the list.jsp page
adds a Delete button. Clicking on the Delete button invokes the delete.jsp page, removing the employee information
from the database. The delete.jsp then redirects to the find.jsp page, to get an updated collection of employees
matching the search criteria, and the find.jsp forwards to list.jsp as before, to show the result after deleting the
employee.

12.1.2 Table Example

If you develop a database-driven web application from scratch, you must first develop a database schema. The
database schema shows how the persistent information in the application is modeled as a set of related tables. For a
large application, this is a great deal of work, and it's extremely important to find the right balance between flexibility
and performance of frequent queries. How database schemas are developed is beyond the scope of this book, but there
are plenty of other books available on this subject. Examples are C.J. Date's classic and very academic An Introduction
to Database Systems (Addison Wesley), and a book that's easier to read, Database Design for Mere Mortals: A Hands-
On Guide to Relational Database Design by Michael J. Hernandez (Addison Wesley). In the event that you're developing
a web interface to an existing database, the schema development is already taken care of, but you still need to study
the schema to make sure you understand how all the tables fit together.

The schema for the example in this chapter is simple. To store the employee information, we need only the table
described in Table 12-1.

Table 12-1. Employee database table
Column name SQL data type Primary key?

UserName CHAR (Text) Yes

Password CHAR (Text) No

FirstName CHAR (Text) No

LastName CHAR (Text) No

Dept CHAR (Text) No

EmpDate DATE (Date/Time) No

EmailAddr CHAR (Text) No

ModDate TIMESTAMP (Date/Time) No

In a relational database, one column (or a combination of columns) can be marked as a primary key. The primary key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In a relational database, one column (or a combination of columns) can be marked as a primary key. The primary key
uniquely identifies one specific row in the table; no two rows can have the same primary key. Here we use a column
named UserName as the unique primary key for the table. Each employee must therefore be assigned a unique
username, just like the username used to log into an operating system. As you will see in Chapter 13, the username,
combined with the password you also find in the Employee table, can be used for application-controlled authentication.
Assigning unique usernames can, however, be a problem in a web application available to anyone on the Internet.
Therefore, some applications use a numeric code as the unique identifier instead, such as social security number or a
generated sequence number. This table is only an example of how to work with databases in JSP, so we'll keep it
simple.

The SQL data type name within parentheses in Table 12-1 is the name used in the Microsoft Access product, to help you
create the tables in this commonly used database. This is by no means an endorsement of the Access database for a
database-driven web site. In fact, I recommend that you don't use Access for a real application. It's a product that's
intended as a single-user database, and it doesn't work well with the number of accesses typical for a web application.
For a real site, you should use a more robust multiuser database such as Oracle, Sybase, DB2, or Microsoft SQL Server.
The only reason I use Access in this book when I refer to a specific product is that it's a database you may already have
installed. It's also easy to use during development of an application. If you don't have a database installed, and you're
not ready to spend big bucks for one of the products just listed, there are plenty of other free or inexpensive databases
you can use. One example is MySQL from MySQL AB, a popular database available at http://www.mysql.com/. Another
is PostgreSQL, an open source database available at http://postgresql.org/.

To run the example described in this chapter you must first create the table outlined in Table 12-1 in your database.
How to do this varies between database engines, so you need to consult the documentation for the database engine
you use.

12.1.3 The DataSource Interface and JDBC Drivers

Before we get started with the examples, let's look at how to identify the database you want to access. The JSTL
actions can find this information in many different ways, to make the simple scenario simple and the more complex
ones possible. In all cases, though, they get access to the database through an instance of a JDBC interface named
javax.sql.DataSource.

The DataSource interface is part of the Java 2 Standard Edition (J2SE) 1.4, and for prior versions of the J2SE, it's
available in the JDBC 2.0 Optional Package. To access a database, a connection to the database must first be
established. Opening a database connection is very time-consuming. A nice thing with a DataSource is that it can
represent something called a connection pool. Connection pools are described in more detail in Chapter 24, but it's
exactly what it sounds like: a pool of database connections that can be shared by multiple clients. With a connection
pool, a connection to the database is opened once and stays open until the application is shut down. When a database
action needs a connection, it gets it from the pool through the DataSource object and uses it to execute one or more SQL
statements. When the action closes the connection, the connection is returned to the pool where it can be picked up by
the next action that needs it.

In addition to the DataSource, the JDBC API contains other classes and interfaces that allow a Java application to process
SQL statements in a database-independent way. For each specific database engine, an implementation of the interfaces
defined by the JDBC API translates the generic calls to a format understood by the engine. This implementation is called
a JDBC driver. Using different drivers that all provide the same interface allows you to develop your application on one
platform (for instance, a PC with an Access database), and then deploy the application on another platform (for
instance, a Solaris or Linux server with an Oracle database).

At least in theory it does. SQL is unfortunately one of these standards that leave a few things open, eagerly filled by
different vendors' proprietary solutions. Examples include how to handle embedded quotes in a string value, how to
deal with the input and output of date and time values, semantics for certain data types, and creation of unique
numbers. The JSTL actions take care of some of these, such as string quoting and date/time string format, so if you use
these actions and stick to ANSI SQL, you should be able to migrate from one database to another without too much
tweaking. However, you should always read your database documentation carefully and try to stay away from
proprietary features. Be prepared to spend at least some time in transition when you need to move the application to
another database. You can find JDBC drivers for most database engines on the market, both commercial and open
source. If you can't get one from your vendor, Sun maintains a list of third-party drivers at
http://industry.java.sun.com/products/jdbc/drivers.

Okay, so how to create a DataSource instance and make it available to the JSTL actions? If you need to access only one
database, you can tell the JSTL actions all they need to know to create a DataSource themselves, using a context
parameter in the application's deployment descriptor (the WEB-INF/web.xml file):

<web-app>
 ...
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.sql.dataSource
 </param-name>
 <param-value>
 jdbc:odbc:example,sun.jdbc.odbc.JdbcOdbcDriver,scott,tiger
 </param-value>
 </context-param>
 ...
</web-app>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</web-app>

The example shows the type of context parameter value you must use for the JDBC- ODBC Bridge driver included in the
Java 2 SDK: sun.jdbc.odbc.JdbcOdbcDriver. This driver can access databases that provide an ODBC interface but that have
no direct JDBC driver interface, as is the case for Microsoft Access. Sun recommends you not use the JDBC-ODBC driver
for a production application, but for development it usually works fine. When you deploy your application, you should
use a production-quality driver from your database vendor or a third party.

The context parameter value contains four pieces of information separated by commas: a JDBC URL, a JDBC driver
class name, a database account name, and the account password. If any of these parts contains a comma, you must
escape it with a backslash.

The first part—the JDBC URL—identifies a specific database. Different JDBC drivers use different URL syntax. All JDBC
URLs starts with jdbc: followed by a JDBC driver identifier, such as odbc: for the JDBC-ODBC bridge driver and mysql: for
the most commonly used MySQL driver. The rest of the URL identifies the database instance in a driver-dependent way.
For the JDBC-ODBC bridge driver, it's an ODBC Data Source Name (DSN). If you use an Access database, you need to
create a system DSN for the database using the ODBC control in the Windows Control Panel, as shown in Figure 12-3.
Note that you must create a system DSN as opposed to a user DSN. The reason for this is that the web server that
executes your JSP pages usually runs as a different user account than the account you use for development. If you
specify a user DSN with your development account, the web container will not be able to find it.

Figure 12-3. System DSN definition window

The second part—the JDBC driver class name—must be specified as a fully qualified class name—in other words, the
class name including the package name. You must install the driver by placing its class files in a place where the web
container can find it, typically in the application's WEB-INF/lib directory if it's packaged in a JAR file. If the driver is
delivered as a ZIP file (as Oracle's JDBC drivers are, for instance), you can still place it in the WEB-INF/lib directory if
you change the file extension from .zip to .jar.

The database account name and password define the specific database account to use.

All parts of the context parameter except the JDBC URL are optional. The driver class name can only be left out if the
class is loaded by some other part of the application, for instance by a servlet or a listener. For a pure JSP application,
you must always specify it. The account name and password can be left out if you use a database that isn't protected
by a username and password, for instance an Access database used during development.

If you need to access more than one database, you must work a little bit harder since the context parameter can only
define one. During development, or for a simple prototype, you can use the JSTL <sql:setDataSource> action, described in
Table 12-2.

Table 12-2. Attributes for JSTL <sql:setDataSource>

Attribute
name Java type

Dynamic
value

accepted
Description

dataSource String or
javax.sql.DataSource Yes Optional. A data source. If specified as a String, it must be a JNDI path

or use the same format as the data source context parameter.

driver String Yes Optional. The name of the JDBC driver class used to access the
database.

url String Yes Optional. The JDBC URL for the database.

user String Yes Optional. The database account name.

password String Yes Optional. The database account password.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var String No Optional. The name of the variable to hold the data source.

scope String No Optional. The scope for the data source, one of page, request, session,
or application. page is the default.

The database information can be specified as the dataSource attribute value in the same form as for the context
parameter, or alternatively with the url, driver, user and password attributes. Use the var attribute to specify a name for
the data source object and optionally its scope with the scope attribute. Here's an example, using the same database as
in the context parameter example:

<sql:setDataSource var="example" scope="application"
 driver="sun.jdbc.odbc.JdbcOdbcDriver"
 url="jdbc:odbc:example"
 user="scott"
 password="tiger"
/>

You must also tell the database access actions that need the data source which one to use when you're not using the
default one:

<sql:query
 var="empDbInfo"
 dataSource="${example}"
 sql="SELECT * FROM Employee"
/>

The var attribute is actually optional for the <sql:setDataSource> action. If you omit it, the data source is used as the
default in the specified scope, in effect hiding the default data source defined by the context parameter or a default set
by another <sql:setDataSource> (or a servlet) in a "larger" scope. When a specific data source is not supplied through the
dataSource attribute, all JSTL database actions look for a default data source in the order page, request, session and
application scope, and finally the context parameter. This setup, with a default that can be defined by both a context
parameter and scoped variables is called a configuration setting in the JSTL specification.

The DataSource created based on the context parameter information shown earlier or by the <sql:setDataSource> action
doesn't represent a connection pool. These two techniques are primarily intended for prototyping, and they are handy
when you just want to quickly get a simple example up and running. For the examples in this book, I have used the
context parameter to make it easy for you to run them with another driver and JDBC URL; just update the value in the
deployment descriptor to match your database and restart the web container.

For a production site, you should use a DataSource that represents a connection pool instead. If you use a web container
that supports the Java Naming and Directory Interface (JNDI) API, you can register a DataSource with the container's
naming service and specify the JNDI path for the data source as the context parameter value, instead of specifying all
the data needed to create a DataSource:

<web-app>
 ...
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.sql.dataSource
 </param-name>
 <param-value>
 jdbc/Example
 </param-value>
 </context-param>
 ...
</web-app>

The dataSource attribute supported by all JSTL database actions also accepts a JNDI path. Another alternative is to let a
servlet or listener create the DataSource. I describe both the JNDI and servlet or listener alternatives in detail in Chapter
24.

12.1.4 Reading and Storing Information in a Database

The first page the user loads to register an employee in the example application is enter.jsp. This page, which contains
a form for entering all information about an employee, is shown in Figure 12-4.

Figure 12-4. Employee information entry form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-4. Employee information entry form

The input is validated by the validate.jsp page when the form is submitted. The enter.jsp and validate.jsp pages are
similar to the pages for input validation discussed in detail in Chapter 10 and don't access the database. Instead of
going through these pages now, let's jump directly to the store.jsp page where the database access takes place. We'll
return to the enter.jsp and validate.jsp pages at the end of this chapter, to look at some interesting things not related
to database access.

Example 12-1 shows the complete store.jsp page. This page first searches the database for information about an
employee with the specified username. If one is found, the database is updated with all the other employee information
the user entered. Otherwise, a new employee entry is stored in the database. All database information about the
employee is then collected, and the request is forwarded to the confirmation.jsp page. Let's look at the complete page
first and then discuss the different pieces in detail.

Example 12-1. Database access page (store.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<%--
 See if the employee is already defined. If not, insert the
 info, else update it.
--%>
<sql:query var="empDbInfo">
 SELECT * FROM Employee
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:query>
<%--
 Deal with the date values: parse the employment date and create a
 Date object from it, and create a new variable to hold the current
 date.
--%>
<fmt:parseDate value="${param.empDate}" var="parsedEmpDate"
 pattern="yyyy-MM-dd" />
<jsp:useBean id="now" class="java.util.Date" />
<c:choose>
 <c:when test="${empDbInfo.rowCount == 0}">
 <sql:update>
 INSERT INTO Employee
 (UserName, Password, FirstName, LastName, Dept,
 EmpDate, EmailAddr, ModDate)
 VALUES(?, ?, ?, ?, ?, ?, ?, ?)
 <sql:param value="${param.userName}" />
 <sql:param value="${param.password}" />
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
 <sql:param value="${param.dept}" />
 <sql:dateParam value="${parsedEmpDate}" type="date"/>
 <sql:param value="${param.emailAddr}" />
 <sql:dateParam value="${now}" />
 </sql:update>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </sql:update>
 </c:when>
 <c:otherwise>
 <sql:update>
 UPDATE Employee
 SET Password = ?,
 FirstName = ?,
 LastName = ?,
 Dept = ?,
 EmpDate = ?,
 EmailAddr = ?,
 ModDate = ?
 WHERE UserName = ?
 <sql:param value="${param.password}" />
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
 <sql:param value="${param.dept}" />
 <sql:dateParam value="${parsedEmpDate}" type="date"/>
 <sql:param value="${param.emailAddr}" />
 <sql:dateParam value="${now}" />
 <sql:param value="${param.userName}" />
 </sql:update>
 </c:otherwise>
</c:choose>
<%-- Get the new or updated data from the database --%>
<sql:query var="newEmpDbInfo" scope="session">
 SELECT * FROM Employee
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:query>
<%-- Redirect to the confirmation page --%>
<c:redirect url="confirmation.jsp" />

All JSTL database actions are packaged in their own tag library. At the top of the page in Example 12-1 you'll find the
taglib directive for this library that associates it with the sql prefix, similar to the tag libraries used in the previous
examples. Most of the JSTL database actions are used in this page. Let's look at them one at a time.

12.1.4.1 Reading database information

The first JSTL action that accesses the database in Example 12-1 is the <sql:query> action, described in Table 12-3.

Table 12-3. Attributes for JSTL < sql:query>
Attribute

name Java type Dynamic value
accepted Description

dataSource javax.sql.DataSource
or String Yes Optional. The DataSource to use.

sql String Yes Mandatory, unless specified as the body. The SQL statement.

maxRows int Yes Optional. The maximum number of rows to include in the result.
Default is all rows.

startRow int Yes Optional. The first row to include in the result, expressed as a 0-
based index. Default is 0.

var String No Mandatory. The name of the variable to hold the result.

scope String No Optional. The scope for the variable, one of page, request, session,
or application. page is the default.

The <sql:query> action reads information from a database using the SQL SELECT statement, specified in the element's
body or as the sql attribute value. A SELECT statement retrieves data from the database by specifying various clauses
that identify the table to search in, the columns to return, the search criteria, and other options. If you're not familiar
with the SELECT statement, you can read up on it in the documentation for your database. The SELECT statement in
Example 12-1 gets all columns in the Employee table for every row in which the UserName column has the value specified
in the userName field in the entry form. Since the username is unique in our application, either 0 or 1 row is returned.

The <sql:query> action in this example gets a connection from the default DataSource specified by the context parameter.
It then executes the SQL SELECT statement and saves the result in the scope specified by the scope attribute, with the
name specified by the var attribute. If no scope is specified, as in this example, the result is saved in the page scope.

Besides the SQL statement, the action element body also contains an <sql:param> action, described in Table 12-4.

Table 12-4. Attributes for JSTL <sql:param>
Attribute

name
Java
type

Dynamic value
accepted Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name type accepted Description

value Object Yes Mandatory, unless specified as the body. The value to use for a placeholder
in the enclosing database action.

The <sql:param> action replaces a placeholder, marked with a question mark (?), in the SQL statement with a value. In
Example 12-1, the EL expression used for the value attribute gets the userName request parameter value, corresponding
to the form field with the same name in the enter.jsp page:

<sql:query var="empDbInfo">
 SELECT * FROM Employee
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:query>

You could use an EL expression in the body instead to insert the userName parameter value directly into the SQL
statement, like this:

<ora:sqlQuery id="empDbInfo">
 SELECT * FROM Employee
 WHERE UserName = '${params.userName}'
</ora:sqlQuery>

But then you run into the problem of string quoting in SQL. Most database engines require a string literal to be enclosed
in single quotes in an SQL statement. That's easy to handle by just putting single quotes around the EL expression, like
I've done here. What's not so easy is how to handle quotes within the string value. Different database engines employ
different rules for how to encode embedded quotes. Most require a single quote in a string literal to be duplicated, while
others use a backslash as an escape character or let you enclose the string literal with double quotes if the value
includes single quotes. When you use the <sql:param> action, you don't have to worry about this type of formatting at
all; the value is set directly in the SQL statement, bypassing all quoting rules.

Another reason for using <sql:param> is that using an EL expression to add a dynamic value to an SQL statement is also
a security risk. If a user enters a value such as "foo' OR 1 = 1 —" in the username field, the SQL statement looks like
this after the EL expression is processed:

SELECT * FROM Employee
 WHERE UserName = 'foo' OR 1 = 1 --'

The "OR 1 = 1" part means that this condition is always true, making the SQL statements returning all rows instead of
only one row matching a specific username. Most databases interpret the "—" part as the start of a comment, so
whatever comes after these characters is ignored. Tricks like this can be used to gain access to protected sites or return
information that is supposed to be secret. Using <sql:param> prevents this type of attack. Instead of merging the
dynamic value and the static text to create an SQL statement that the database then interprets, the <sql:param> action
explicitly tells the database to use the provided value in place of the ? when it has interpreted the statement. Hence,
there's no way to fool it.

Only one dynamic value is needed in the query in Example 12-1, but an SQL statement can contain as many
placeholders as you like, matched by the same number of <sql:param> actions in the <sql:query> element body. The first
<sql:param> action replaces the first question mark in the SQL statement with its value, the second replaces the second
question mark, and so on. You can include the <sql:param> action elements directly after the corresponding question
marks, to make it easier to see which action goes with which question mark:

<sql:query var="empDbInfo">
 SELECT * FROM Employee
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
 AND FirstName = ?
 <sql:param value="${param.firstName}" />
</sql:query>

The result generated by the <sql:query> action is an instance of the javax.servlet.jsp.jstl.sql.Result class. It's a bean with a
number of properties for accessing all rows and their column values, as well as properties for the column names and
number of rows in the result. We look at most of the Result properties later in this chapter, but the only one used in
Example 12-1 is the rowCount property. It's used to see if the query returned any rows. The SELECT statement searches
the database for information about the employee entered in the form. If the employee is already registered, the query
returns one row—otherwise no rows. This information is used to decide whether to insert or update the employee
information:

<c:choose>
 <c:when test="${empDbInfo.rowCount == 0}">
 <%-- Insert the employee data --%>
 ...
 </c:when>
 <c:otherwise>
 <%-- Update the employee data --%>
 ...
 </c:otherwise>
</c:choose>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1.4.2 Inserting database information

An SQL INSERT statement is used to insert new rows in a database table. To execute an INSERT statement, use the
<sql:update> action, described in Table 12-5.

Table 12-5. Attributes for JSTL <sql:update>
Attribute

name Java type Dynamic value
accepted Description

dataSource javax.sql.DataSource
or String Yes Optional. The DataSource to use.

sql String Yes Mandatory, unless specified as the body. The SQL statement.

var String No Optional. The name of the variable to hold the result.

scope String No Optional. The scope for the variable, one of page, request, session,
or application. page is the default.

The <sql:update> action executes any SQL statement that doesn't return rows: INSERT, UPDATE, and DELETE, and even
so-called Data Definition Language (DDL) statements such as CREATE TABLE. These statements do exactly what it
sounds like they do: insert, update and delete information, and create a new table, respectively. (Refer to your
database documentation for details about the syntax.) For INSERT, UPDATE, and DELETE, the <sql:update> action can
optionally save an Integer object, telling how many rows were affected by the statement. The Integer is saved in the
scope specified by the scope attribute using the name specified by the var attribute. This feature isn't used in Example
12-1, but in some applications it can be used as feedback to the user or to decide what to do next.

The SQL statement can be specified through the sql attribute or the action's body, and <sql:param> actions can be used
to give values to the placeholders in the statement. Multiple <sql:param> actions are used in Example 12-1:

<sql:update>
 INSERT INTO Employee
 (UserName, Password, FirstName, LastName, Dept,
 EmpDate, EmailAddr, ModDate)
 VALUES(?, ?, ?, ?, ?, ?, ?, ?)
 <sql:param value="${param.userName}" />
 <sql:param value="${param.password}" />
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
 <sql:param value="${param.dept}" />
 <sql:dateParam value="${parsedEmpDate}" type="date"/>
 <sql:param value="${param.emailAddr}" />
 <sql:dateParam value="${now}" />
</sql:update>

Most of the placeholders are replaced with request parameter values, just as for the query. The exceptions are the
placeholders for the EmpDate and ModDate columns, which require special attention.

Databases are picky about the format for date and time data types. In Example 12-1 we get the date from the form as
a string in the format yyyy-MM-dd (e.g., 2002-03-06), but the EmpDate column is declared as a DATE column, as shown
in Table 12-1. Some databases accept a string in the format used for this application as a value for a DATE column, but
others don't. To be on the safe side, it's best to convert the string into its native date format, a java.util.Date object,
before sending it to the database. It can be done using a JSTL action from the formatting library, assigned the fmt prefix
by the taglib directive at the beginning of the page:

<fmt:parseDate value="${params.empDate}" var="parsedEmpDate"
 pattern="yyyy-MM-dd" />

The <fmt:parseDate> action takes the date or time string specified by the value attribute and interprets it according to the
pattern defined by the pattern attribute. The pattern describes the order and format of the year, month, and day parts in
the string representation of the date. We'll return to the <fmt:parseDate> action in Chapter 14 to look at all the details,
but for now it suffices to say that the pattern description is very flexible. For instance, if you want the user to enter
dates in a format such "Tuesday February 19, 2003," you specify the pattern EEEE MMMM dd, yyyy instead of the yyyy-MM-
dd pattern used in this example to tell the action how to interpret the date string. If the string value can be interpreted
as a date according to the pattern, the action saves a java.util.Date object representing the date as a variable with the
name specified by the var attribute. This variable can then replace the placeholder in the SQL statement.

Besides dates, you should also convert numeric values you receive as strings when they are declared as INT, REAL, etc.,
in the database, using the JSTL <fmt:parseNumber> action. In this example, there are no columns of this type. The JSTL
formatting actions are very powerful, but let's save the details for Chapter 14.

The Employee table also has a column named ModDate, to hold the date and time the information was last modified. It is
declared as a TIMESTAMP column. To set its value, we need a java.util.Date object that represents the current date and
time. It's easy to create one with the <jsp:useBean> action:

<jsp:useBean id="now" class="java.util.Date" />

The <jsp:useBean> action can create an instance of any class that has a no-arguments constructor, like the java.util.Date

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <jsp:useBean> action can create an instance of any class that has a no-arguments constructor, like the java.util.Date
class. The instance is saved in the variable named by the id attribute.

Finally, we need to use the <sql:dateParam> action, described in Table 12-6, instead of the <sql:param> action to set the
date and timestamp values.

Table 12-6. Attributes for JSTL <sql:dateParam>
Attribute

name Java type Dynamic value
accepted Description

value java.util.Date Yes Mandatory. The value to use for a placeholder in the enclosing
database action.

type String Yes Optional. One of date, time, or timestamp. timestamp is the default.

You have to use <sql:dateParam> because of an unfortunate quirk in the JDBC API. JDBC defines its own classes for date
and time values: java.sql.Date, java.sql.Time, and java.sql.Timestamp. These are the only types accepted for date and time
value placeholders. The <sql:dateParam> takes a java.util.Date object and turns it into one of the JDBC types based on the
type attribute value or to a java.sql.Timestamp if no type is specified.

12.1.4.3 Updating database information

Once you know how to insert information in a database, updating it is a piece of cake. You just use the <sql:update>
action with an SQL UPDATE statement instead of an INSERT statement:

<sql:update>
 UPDATE Employee
 SET Password = ?,
 FirstName = ?,
 LastName = ?,
 Dept = ?,
 EmpDate = ?,
 EmailAddr = ?,
 ModDate = ?
 WHERE UserName = ?
 <sql:param value="${param.password}" />
 <sql:param value="${param.firstName}" />
 <sql:param value="${param.lastName}" />
 <sql:param value="${param.dept}" />
 <sql:dateParam value="${parsedEmpDate}" type="date" />
 <sql:param value="${param.emailAddr}" />
 <sql:dateParam value="${now}" />
 <sql:param value="${param.userName}" />
</sql:update>

No surprises here. The only difference from how you insert information is the SQL statement. The UPDATE statement
sets all the specified values for rows matching the WHERE clause, in this case the single row for the specified employee.

12.1.5 Generating HTML from a Query Result

Just before the page in Example 12-1 redirects to the confirmation page, there's one more <sql:query> action that
retrieves the employee information that was just stored in the database:

<sql:query var="newEmpDbInfo" scope="session">
 SELECT * FROM Employee
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:query>

The intention here is to present the information actually stored in the database to the user on the final page in this
application (shown in Figure 12-5) as a confirmation that the operation was successful.

Figure 12-5. Employee registration confirmation page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 12-5. Employee registration confirmation page

Since we redirect to the confirmation page, ending the processing of the current request, the result is placed in the
session scope. The redirect response tells the browser to automatically make a new request for the confirmation page.
Because the new request is part of the same session, it finds the result saved by the previous page. Example 12-2
shows the code for the confirmation.jsp page.

Example 12-2. Page displaying query result (confirmation.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>Employee Info Stored</title>
 </head>
 <body bgcolor="white">
 This is the information stored in the employee database:

 <table>
 <c:forEach items="${newEmpDbInfo.rows}" var="row">
 <c:forEach items="${row}" var="column">
 <tr>
 <td align=right>
 ${fn:escapeXml(column.key)}:
 </td>
 <td>
 ${fn:escapeXml(column.value)}
 </td>
 </tr>
 </c:forEach>
 </c:forEach>
 </table>

 </body>
</html>

At the top of the page is the same JSP directive for using the JSTL database tag library as in Example 12-1.

An HTML table with cells for all columns in the row retrieved from the Employee table is created by two nested
<c:forEach> actions; the outer one loops over all rows in the result (only one in this case), and the inner one loops over
all columns in each row. To understand how it works, we must take a closer look at the javax.servlet.jsp.jstl.sql.Result
returned by the <sql:query> action and saved in a variable named newEmpDbInfo in Example 12-1. The Result class is a
bean with a number of properties that provide read-only access to the query result, described in Table 12-7.

Table 12-7. Properties for javax.servlet.jsp.jstl.sql.Result
Property

name Java type Access Description

rows java.util.SortedMap[] Read
The rows returned by the query, as an array of case-insensitive
SortedMap instances. Each Map has one entry per column, using the
column name as the key and the column value as the value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rowsByIndex Object[][] Read The rows returned by the query, as arrays (rows) of arrays (column
values).

rowCount int Read The number of rows in the result.

columnNames String[] Read The column names in the same order as the column values in
rowsByIndex.

limitedByMaxRows boolean Read true if the result was truncated due to reaching the limit imposed by
the maxRows attribute.

The rows property used as the items attribute value for the outer <c:forEach> action contains an array of
java.util.SortedMap objects. The array contains one SortedMap per row. The key is the column name, and the value is the
column value. The use of a SortedMap instead of a regular Map makes it possible to access the values with column names
specified with any combination of upper- and lowercase letters. This is an important feature for portability, since some
JDBC drivers convert all column names to uppercase in the result, while others keep them as they are defined in the
SELECT statement.

The inner <c:forEach> action loops over the current SortedMap entries representing columns. To make it possible to use
both the entry's name and value within the action body, the <c:forEach> action makes the current entry available as an
instance of java.util.Map.Entry. This is a simple class with two bean properties, appropriately named key and value. These
properties are used in the inner loop to add table cells with the column name and value. The result is as shown in
Figure 12-5.

In most cases, you know the name of the columns you want to use. To generate an HTML table with the values of a set
of known columns, you can simply use one <c:forEach> action like this:

<table>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Department</th>
 </tr>
 <c:forEach items="${newEmpDbInfo.rows}" var="row">
 <tr>
 <td>
 ${fn:escapeXml(row.FirstName)}
 </td>
 <td>
 ${fn:escapeXml(row.LastName)}
 </td>
 <td>
 ${fn:escapeXml(row.Dept)}
 </td>
 </tr>
 </c:forEach>
</table>

The <c:forEach> action makes the SortedMap representing the current row available to the actions in the body in a
variable named row. EL expressions with column names as keys get the value of the specific columns. The fn:escapeXml(
) function converts special characters in the column values, if any, as described earlier.

Yet another possibility is to access the column values by their numeric index. To do this, you need to use the
rowsByIndex property instead of the rows property to get an array of rows to loop over, and then use the [] operator to
specify the (0-based) index for the columns in the EL expressions:

<table>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Department</th>
 </tr>
 <c:forEach items="${newEmpDbInfo.rowsByIndex}" var="row">
 <tr>
 <td>
 ${fn:escapeXml(row[2])}
 </td>
 <td>
 ${fn:escapeXml(row[3])}
 </td>
 <td>
 ${fn:escapeXml(row[4])}
 </td>
 </tr>
 </c:forEach>
</table>

The Result also gives you access to the column names through the columnNames property. Using this property, you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Result also gives you access to the column names through the columnNames property. Using this property, you can
generate an HTML table with header cells and data cells for all rows in a table without knowing beforehand what
columns the result contains:

<table>
 <tr>
 <c:forEach items="${empList.columnNames}" var="colName">
 <th>${fn:escapeXml(colName)}</th>
 </c:forEach>
 </tr>
 <c:forEach items="${empList.rowsByIndex}" var="row">
 <tr>
 <c:forEach items="${row}" var="column">
 <td>${fn:escapeXml(column)}</td>
 </c:forEach>
 </tr>
 </c:forEach>
</table>

The column names are in the same order as the corresponding values accessed through the rowsByIndex property.

12.1.6 Searching for Rows Based on Partial Information

Let's move to the other part of the application, in which a user can search for an employee based on a partial first
name, last name, and department name. The first page, search.html, contains a form for entering the search criteria,
shown in Figure 12-6.

Figure 12-6. Search criteria form

The three fields in the search.html page are named firstName, lastName, and dept, and when the user clicks the Search
button, the find.jsp page is invoked with the information the user entered in the corresponding request parameters.
Example 12-3 shows the complete find.jsp page.

Example 12-3. Search based on partial information (find.jsp)

<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>

<%--
 Execute query, with wildcard characters added to the
 parameter values used in the search criteria
--%>
<sql:query var="empList" scope="request">
 SELECT * FROM Employee
 WHERE FirstName LIKE ?
 AND LastName LIKE ?
 AND Dept LIKE ?
 ORDER BY LastName
 <sql:param value="%${param.firstName}%" />
 <sql:param value="%${param.lastName}%" />
 <sql:param value="%${param.dept}%" />
</sql:query>

<jsp:forward page="list.jsp" />

As you probably expected, the <sql:query> action searches for the matching employees. But here, the SELECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you probably expected, the <sql:query> action searches for the matching employees. But here, the SELECT statement
uses the LIKE operator to find rows matching a pattern instead of an exact match. LIKE is a standard SQL operator. It
must be followed by a string consisting of fixed text plus wildcard characters. There are two standard wildcard
characters you can use: an underscore (_), which matches exactly one character, and a percent sign (%), which
matches zero or more characters.

In this example, we want to search for all rows that contain the values specified in the form somewhere in the
corresponding column values. The form-field values must therefore be enclosed with percent signs. In Example 12-3,
this is accomplished by combining the fixed text (the wildcard characters) with EL expressions for reading the
parameter values in the value attribute for the <sql:param> actions that replace the placeholders in the SQL statement.
Each <sql:param> action adds a percent sign at the beginning and at the end of the value submitted by the user. If you
instead want to find values that start with any sequence of characters but end with the string entered by the user, add
a percent sign only at the beginning of the value. If you add the percent sign only at the end of the value, you get the
reverse result: values that start with the specified string but end with any characters.

The three LIKE conditions are combined with AND operators in Example 12-3. This means that the SELECT statement
finds only rows where all three columns contain the corresponding values entered by the user.

12.1.7 Deleting Database Information

The find.jsp page forwards the request to the list.jsp page to display the result of the search. It generates an HTML
table with one row per employee, as shown in Example 12-4.

Example 12-4. Displaying the search result (list.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>Search Result</title>
 </head>
 <body bgcolor="white">

 <c:choose>
 <c:when test="${empList.rowCount == 0}">
 Sorry, no employees were found.
 </c:when>
 <c:otherwise>
 The following employees were found:
 <p>
 <table border="1">
 <th>Last Name</th>
 <th>First Name</th>
 <th>Department</th>
 <th>Email Address</th>
 <th>Modified</th>
 <c:forEach items="${empList.rows}" var="row">
 <tr>
 <td>${fn:escapeXml(row.LastName)}</td>
 <td>${fn:escapeXml(row.FirstName)}</td>
 <td>${fn:escapeXml(row.Dept)}</td>
 <td>${fn:escapeXml(row.EmailAddr)}</td>
 <td>${fn:escapeXml(row.ModDate)}</td>
 <td>
 <form action="delete.jsp" method="post">
 <input type="hidden" name="userName"
 value="${fn:escapeXml(row.UserName)}">
 <input type="hidden" name="firstName"
 value="${fn:escapeXml(param.firstName)}">
 <input type="hidden" name="lastName"
 value="${fn:escapeXml(param.lastName)}">
 <input type="hidden" name="dept"
 value="${fn:escapeXml(param.dept)}">
 <input type="submit" value="Delete">
 </form>
 </td>
 </tr>
 </c:forEach>
 </table>
 </c:otherwise>
 </c:choose>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </c:choose>
 </body>
</html>

The result is shown in Figure 12-7.

Figure 12-7. Displaying the search result

A <c:forEach> action loops over all rows returned by the query in Example 12-3 to generate an HTML table with some of
the column values as described earlier. The last table cell contains a simple HTML form with a Delete button that
invokes the delete.jsp page and a number of hidden fields. The hidden fields hold the value of UserName for the current
row, plus all the parameters used to perform the search. Example 12-5 shows how all these parameters are used in the
delete.jsp page.

Example 12-5. Deleting a row (delete.jsp)

<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<sql:update>
 DELETE FROM Employee
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:update>

<c:redirect url="find.jsp">
 <c:param name="firstName" value="${param.firstName}" />
 <c:param name="lastName" value="${param.lastName}" />
 <c:param name="dept" value="${param.dept}" />
</c:redirect>

The userName request parameter value uniquely identifies the row to remove. The SQL DELETE statement supports the
same type of WHERE clause condition you have seen used in SELECT and UPDATE statements previously. Here, the
condition is used to make sure only the row for the right employee is deleted. Like the INSERT and UPDATE statements, a
DELETE statement is executed with the help of the <sql:update> action.

The other parameters passed from the list.jsp page are used in the redirect call to the find.jsp page. This way, the
find.jsp page uses the same search criteria as when it was called directly from the search.html file, so the new result is
consistent with the first. The only difference is that the employee who was just deleted doesn't show up in the list.

12.1.8 Displaying Database Data over Multiple Pages

When you display a database query result based on user-provided search criteria, such as the Employee Search form in
Example 12-3, you run the risk of ending up with more rows than you like to show on one page. If the amount of data
is large, you may even want to set an upper limit for how many rows can ever be returned by a query. The JSTL actions
let you control these things with a few attributes and a configuration setting I haven't described yet.

12.1.8.1 Setting an upper limit for the result size

To guard against run-away queries, you can set a context parameter in the deployment descriptor to limit the number
of rows returned by any JSTL <sql:query> action in an application:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of rows returned by any JSTL <sql:query> action in an application:

<web-app>
 ...
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.sql.maxRows
 </param-name>
 <param-value>
 100
 </param-value>
 </context-param>
 ...
</web-app>

The javax.servlet.jsp.jstl.sql.maxRows parameter value sets the maximum number of rows any <sql:query> action in the
application ever adds to the result. You can override this value for an individual action with the maxRows attribute. If you
want the action to return all matching rows, set it to -1. There's also a Result bean property you can use to inform the
user that the query returned more rows than permitted by maxRows, named limitedByMaxRows:

<sql:query var="result" maxRows="500""
 sql="SELECT * FROM Employee" />
<c:if test="${result.limitedByMaxRows}">
 Sorry, but we cannot show you all matches. Only the first 500
 are shown below.
</c:if>

The limitedByMaxRows property is set to true whenever the result is truncated, no matter if the maximum number of rows
is specified by the context parameter or the attribute.

12.1.8.2 Getting a limited number of rows at a time

If the potential number of rows is large, you can combine the <sql:query> maxRows attribute with the startRow attribute
to get only as many as you like to display on one page at a time. Example 12-6 shows a page with Previous and Next
Page links for moving through all rows of a table.

Example 12-6. Using startRow and maxRows to limit result (maxrows.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>All Employees</title>
 </head>
 <body bgcolor="white">

 <%-- Set number of rows to process --%>
 <c:set var="noOfRows" value="2" />
 <sql:query var="empList"
 sql="SELECT * FROM Employee ORDER BY LastName"
 startRow="${param.start}" maxRows="${noOfRows}"
 />

 <c:choose>
 <c:when test="${empList.rowCount == 0}">
 No one seems to work here any more ...
 </c:when>
 <c:otherwise>
 The following people work here:
 <p>
 <table border="1">
 <th>Last Name</th>
 <th>First Name</th>
 <th>Department</th>
 <th>Email Address</th>
 <c:forEach items="${empList.rows}" var="row">
 <tr>
 <td>${fn:escapeXml(row.LastName)}</td>
 <td>${fn:escapeXml(row.FirstName)}</td>
 <td>${fn:escapeXml(row.Dept)}</td>
 <td>${fn:escapeXml(row.EmailAddr)}</td>
 </tr>
 </c:forEach>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </c:forEach>
 </table>
 </c:otherwise>
 </c:choose>
 <p>
 <c:choose>
 <c:when test="${param.start > 0}">

 Previous Page
 </c:when>
 <c:otherwise>
 Previous Page
 </c:otherwise>
 </c:choose>
 <c:choose>
 <c:when test="${empList.limitedByMaxRows}">

 Next Page
 </c:when>
 <c:otherwise>
 Next Page
 </c:otherwise>
 </c:choose>
 </body>
</html>

At the beginning of the page, a <c:set> action creates a variable that holds the number of rows to be processed per
request. This is just to make it easier to change the number of rows if needed.

The <sql:query> action uses the startRow attribute to define which row to be the first in the result (the first row has index
0) and the maxRows attribute to limit the number of rows. The startRow attribute value is specified by a request
parameter named start. The first time the page is requested, this parameter isn't present so the EL expression evaluates
to 0. The maxRows attribute value is simply the variable created to hold the number of rows to process. A <c:forEach>
action generates an HTML table with all rows from the result, as in the previous examples.

Two <c:choose> blocks at the end of the page create the Previous and Next Page links. The Previous Page block tests if
the start parameter has a value greater than 0, and if so, adds a link back to the same page with a start parameter with
the value of the current start parameter minus the number of rows processed per page. If start isn't greater than 0,
we're already at the first page, so a link placeholder is added instead. The block for the Next Page link follows the same
pattern but tests the value of the limitedByMaxRows result property instead. If it's true, there must be more data
available, so you should create a link with the start parameter set to the current value plus the number of rows to
process.

There are a couple of other things in this example you should be aware of. First, I break my own rule of separating
business logic (the database query) from presentation (the HTML table), just to make the processing easier to
understand. I hope you see how you can split this over two pages: the one doing the database query forwarding to the
one generating the table. The other issue regards the startRow attribute. Because there's no database-independent way
to ask for only the matching rows starting at a certain index, the <sql:query> action simply gets all rows preceding the
start index and throws them away. This isn't efficient for a large set of rows. Instead of using startRow and maxRows, you
can use database-specific SQL features or a database column with a sequential value to handle this more efficiently:

<sql:query var="empList" dataSource="${example}">
 SELECT * FROM Employee
 WHERE SomeId >= ? AND SomeId < ?
 ORDER BY LastName
 <sql:param value="${param.start}" />
 <sql:param value="${param.start + noOfRows}" />
</sql:query>

For a reasonable number of rows, the approach described in Example 12-6 works fine, though.

12.1.8.3 Run a query once and display the result over multiple pages

If the maximal number of rows that can be returned is small enough to keep in memory as a session or application
scope variable, you can use another approach based in the <c:forEach> begin and end attributes, as shown in Example
12-7.

Example 12-7. Using begin and end to limit the result (foreach.jsp)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 12-7. Using begin and end to limit the result (foreach.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>All Employees</title>
 </head>
 <body bgcolor="white">

 <%-- Set number of rows to process --%>
 <c:set var="noOfRows" value="2" />
 <c:if test="${empList == null}">
 <sql:query var="empList" scope="session"
 sql="SELECT * FROM Employee ORDER BY LastName"
 />
 </c:if>
 <c:choose>
 <c:when test="${empList.rowsCount == 0}">
 No one seems to work here anymore ...
 </c:when>
 <c:otherwise>
 The following people work here:
 <p>
 <table border="1">
 <th>Last Name</th>
 <th>First Name</th>
 <th>Department</th>
 <th>Email Address</th>
 <c:forEach items="${empList.rows}" var="row"
 begin="${param.start}" end="${param.start + noOfRows - 1}">
 <tr>
 <td>${fn:escapeXml(row.LastName)}</td>
 <td>${fn:escapeXml(row.FirstName)}</td>
 <td>${fn:escapeXml(row.Dept)}</td>
 <td>${fn:escapeXml(row.EmailAddr)}</td>
 </tr>
 </c:forEach>
 </table>
 </c:otherwise>
 </c:choose>
 <p>
 <c:choose>
 <c:when test="${param.start > 0}">

 Previous Page
 </c:when>
 <c:otherwise>
 Previous Page
 </c:otherwise>
 </c:choose>
 <c:choose>
 <c:when test="${param.start + noOfRows < empList.rowsCount}">

 Next Page
 </c:when>
 <c:otherwise>
 Next Page
 </c:otherwise>
 </c:choose>
 </body>
</html>

As in Example 12-6, a noOfRows variable is created at the beginning of the page to hold the number of rows to display
per page. A <c:if> action makes sure the database query is executed only if a result doesn't exist in the session scope,
where the <sql:query> action places it when it's executed. If the data rarely changes, and the user can't change the
query result by providing input used in a WHERE clause, you can cache the result in the application scope instead to
minimize the memory needs. If the user can affect the query result, (i.e., user input used in the search criteria), you
need to modify the example to compare the input used to generate the result and execute <sql:query> when it's
different.

As before, a <c:forEach> action generates an HTML table for the result, but here it only processes some of the rows. The
begin attribute is set to the start parameter value, defaulting to 0 if the parameter isn't present. The end attribute is set
to the start parameter value plus the number of rows to display, minus one; the end value is the index of the last row to
process, so subtracting one means it iterates exactly noOfRows times.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

process, so subtracting one means it iterates exactly noOfRows times.

The <c:choose> blocks for the Previous and Next Page links are almost identical to the ones in Example 12-6. The only
difference is that the test for the Next Page link now compares the start parameter value plus the number of rows to
display to the total number of rows in the result. As long as it's less than the number of rows, there's more to show,
and so the link is added.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.2 Validating Complex Input Without a Bean
Before we look at the two remaining database sections, let's go back and take a look at the two application pages we
skipped earlier, namely the enter.jsp and validate.jsp pages used for input to the employee registration.

In Chapter 8, I introduced you to validation of user input using the JSTL <c:if> action as well as using an application-
specific bean. The bean contains all validation code and can therefore validate the format of complex data, such as date
strings, email addresses, and credit-card numbers. This is the approach I recommend, but if you're developing a JSP-
based application without access to a Java programmer to develop the beans you need, I'll show you a trick you can
use to validate dates and a custom action for email-address validation.

The validate.jsp page uses the JSTL <c:if> action and the custom action to validate all user input. If an input parameter
isn't valid, an error message is saved in a variable, and the request is forwarded back to the enter.jsp page. The
enter.jsp page adds all the error messages to the response, so to the user, the result is identical to the bean-based
validation approach you saw in Chapter 8.

Let's look at validate.jsp first, shown in Example 12-8.

Example 12-8. Validation with application beans (validate.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<c:set var="isValid" value="true" />
<c:if test="${empty param.userName}">
 <c:set var="userNameError" scope="request"
 value="User Name missing" />
 <c:set var="isValid" value="false" />
</c:if>
<c:if test="${empty param.password}">
 <c:set var="passwordError" scope="request"
 value="Password missing" />
 <c:set var="isValid" value="false" />
</c:if>
<c:if test="${empty param.firstName}">
 <c:set var="firstNameError" scope="request"
 value="First Name missing" />
 <c:set var="isValid" value="false" />
</c:if>
<c:if test="${empty param.lastName}">
 <c:set var="lastNameError" scope="request"
 value="Last Name missing" />
 <c:set var="isValid" value="false" />
</c:if>
<c:if test="${empty param.dept}">
 <c:set var="deptError" scope="request"
 value="Department missing" />
 <c:set var="isValid" value="false" />
</c:if>

<%-- Validate date by catching a possible exception --%>
<c:catch var="invalidDate">
 <fmt:parseDate value="${param.empDate}" pattern="yyyy-MM-dd"
 var="ignore" />
</c:catch>
<c:choose>
 <c:when test="${empty param.empDate}">
 <c:set var="empDateError" scope="request"
 value="Employment Date missing" />
 <c:set var="isValid" value="false" />
 </c:when>
 <c:when test="${invalidDate != null}">
 <c:set var="empDateError" scope="request"
 value="Invalid Employment Date" />
 <c:set var="isValid" value="false" />
 </c:when>
</c:choose>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</c:choose>
<%-- Validate email address format using custom action --%>
<ora:ifValidEmailAddr value="${param.emailAddr}"
 var="isValidEmailAddr" />
<c:choose>
 <c:when test="${empty param.emailAddr}">
 <c:set var="emailAddrError" scope="request"
 value="Email Address missing" />
 <c:set var="isValid" value="false" />
 </c:when>
 <c:when test="${!isValidEmailAddr}">
 <c:set var="emailAddrError" scope="request"
 value="Invalid Email Address" />
 <c:set var="isValid" value="false" />
 </c:when>
</c:choose>
<c:choose>
 <c:when test="${isValid}">
 <jsp:forward page="store.jsp" />
 </c:when>
 <c:otherwise>
 <jsp:forward page="enter.jsp" />
 </c:otherwise>
</c:choose>

At the top of Example 12-8, a <c:set> action creates a variable named isValid with the value true. The rest of the page
validates each parameter value and sets this variable to false if any value is found to be invalid. This makes it easy to
decide which page to forward to at the end of the page. In addition, if any value is invalid, another parameter-specific
variable is created in the request scope to hold the error message. As you will see later, these error messages are
added to the input page to tell the user what's wrong.

For most parameters, a simple <c:if> action that tests that some value is submitted is all that's needed. But for the
empDate and emailAddr parameters, any old value isn't enough.

Verifying that a parameter value represents a real date is tricky, since there are so many different ways to write a date.
In addition, you need to keep track of leap years and, as you will see in Chapter 14, possibly deal with dates written in
different languages as well. Luckily, there's a JSTL action that knows all these rules: the <fmt:parseDate> used in
Example 12-1. If it's passed a date string that doesn't check out, it throws an exception. Combined with the <c:catch>
action introduced in Chapter 9, this is all we need to validate a date. The <fmt:parseDate> action is placed within a
<c:catch> action element, catching and saving a possible exception in a variable named invalidDate. A <c:choose> action
then uses one <c: when> action to test if a date string is supplied at all and, if it is, tests if the <fmt:parseDate> action
threw an exception with a second <c:when> action. I could have used just a <c:if> action to test if an exception was
thrown, but the approach used here lets me provide different error messages for no value and an invalid value.

The email address is validated with a custom action named <ora:ifValidEmailAddr>, described in Table 12-8.

Table 12-8. Attributes for <ora:ifValidEmailAddr>
Attribute

name
Java
type

Dynamic value
accepted Description

value String Yes Mandatory. The value to validate.

var String No Optional. The name of the variable to hold the result.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

The action can be used with a body that's evaluated only if the value has a valid email-address format (contains only
one at sign and at least one dot, e.g., "hans@gefionsoftware.com"), just like the <c:if> action. Here the result is saved
in a variable instead and used in a <c:choose> block to test for both no value and invalid value, the same as is done for
the date value.

If the request is forwarded back to the enter.jsp page due to invalid input, the values the user entered are used as the
default values for the form fields and the error messages are displayed next to each field. Example 12-9 shows a part of
the page for the User Name field.

Example 12-9. Displaying error messages (enter.jsp)

...
<tr>
 <td>User Name:</td>
 <td><input type="text" name="userName"
 value="${fn:escapeXml(param.userName)}">
 </td>
 <td>${fn:escapeXml(userNameError)}</td>
</tr>
...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...

The first EL expression sets the value of the input field to the corresponding parameter value. The second EL expression
uses the userNameError variable created by the validate.jsp page if the userName parameter value is invalid and adds the
message to the page. The results are shown in Figure 12-8.

Figure 12-8. The input page with error messages

This is very similar to the examples in Chapter 8. The difference is that a separate page does the validation, creating all
error messages as request scope variables that are then used in the input page if they exist, instead of conditionally
adding error messages defined in the input page. Which approach is best is a matter of preference.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.3 Using Transactions
There's one important database feature we have not discussed yet. In the examples in this chapter, only one SQL
statement is needed to complete all database modifications for each request. This statement either succeeds or fails.
However, sometimes you need to execute two or more SQL statements in sequence to update the database. A typical
example is transferring money between two accounts; one statement removes some amount from the first account,
and another statement adds the same amount to the second account. If the first statement is successful, but the
second one fails, you have performed a disappearance act your customers aren't likely to applaud.

The solution to this problem is to group all related SQL statements into what is called a transaction. A transaction is an
atomic operation, so if one statement fails, they all fail; otherwise, they all succeed. This is referred to as committing (if
it succeeds) or rolling back (if it fails) the transaction. If there's a problem in the middle of a money transfer, for
instance, the database makes sure the money is returned to the first account by rolling back the transaction. If no
problems are encountered, the transaction is committed, permanently storing the changes in the database.

There's a JSTL database action to handle transactions, described in Table 12-9.

Table 12-9. Attributes for JSTL <sql:transaction>
Attribute

name Java type Dynamic value
accepted Description

dataSource javax.sql.DataSource
or String Yes Optional. The DataSource to use.

isolation String Yes Optional. One of read_committed, read_uncommitted,
repeatable_read, or serializable.

We will use it for real in Chapter 13, but let's take a quick look at how it could be used in this fictitious example:

<sql:transaction>

 <sql:update>
 UPDATE Account SET Balance = Balance - 1000
 WHERE AccountNumber = 1234
 </sql:update>
 <sql:update>
 UPDATE Account SET Balance = Balance + 1000
 WHERE AccountNumber = 5678
 </sql:update>

</sql:transaction>

SQL actions that make up a transaction are placed in the body of a <sql:transaction> action element. This action tells the
nested elements which database to use, so if you need to specify the database with the dataSource attribute, you must
specify it for the <sql:transaction> action.

The isolation attribute can specify special transaction features. When the DataSource is made available to the application
through JNDI or by another application component, it's typically already configured with an appropriate isolation level.
This attribute is therefore rarely used. The details of the different isolation levels are beyond the scope of this book. If
you believe you need to specify this value, you can read up on the differences in the JDBC API documents or in the
documentation for your database. You should also be aware that some databases and JDBC drivers don't support all
transaction isolation levels.

The <sql:transaction> action gets a connection from the data source and makes it available to all database actions within
its body. If one action fails, the transaction is rolled back; otherwise the transaction is committed at the end of the
<sql:transaction> body.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

12.4 Application-Specific Database Actions
You can use the JSTL database actions described in this chapter to develop many types of interesting web applications,
such as product catalog interfaces, employee directories, or online billboards, without being a Java programmer. These
types of applications account for a high percentage of the web applications developed today. But at some level of
complexity, putting SQL statements directly in the web pages can become a maintenance problem. The SQL statements
represent business logic, and for more complex applications, business logic is better developed as separate Java
classes.

For a complex application, it may be better to use application-specific custom actions instead of the JSTL database
actions described in this chapter. For example, all the generic database actions in Example 12-1, to SELECT and then
INSERT or UPDATE the database, can be replaced with one application-specific action like this:

<myLib:saveEmployeeInfo dataSource="${example}" />

Part III, especially Chapter 24, describes how you can develop this type of custom action. Besides making it easier for
the page author to deal with, the beauty of using an application-specific custom action is that it lets you evolve the
application behind the scene. Initially, this action can be implemented so it uses JDBC to access the database directly,
similar to how the JSTL actions work. But at some point it may make sense to migrate the application to an Enterprise
JavaBeans architecture, perhaps to support other types of clients than web browsers. The action can then be modified
to interact with an Enterprise JavaBeans component instead of accessing the database directly. From the JSP page
author's point of view, it doesn't matter; the custom action is still used exactly the same way.

Another approach is to use a servlet for all database processing and only use JSP pages to show the result. You will find
an example of this approach in Chapter 19.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 13. Authentication and Personalization
Authentication means establishing that a user really is who he claims to be. Today, it's typically done by asking the user
for a username and a matching password, but other options are becoming more and more common. For example, most
web servers support client certificates for authentication. Biometrics, which is the use of unique biological patterns such
as fingerprints for identification, will likely be another common option in the near future. What's important is that an
application should not be concerned with the way a user has been authenticated (since the method may change) but
only that he has passed the test.

Access control, or authorization, is another security mechanism that's strongly related to authentication. Different users
may be allowed different types of access to the content and services a web site offers. When you have established who
the user is through an authentication process, access-control mechanisms ensure that the user can only access what he
is allowed to access.

In the end, authentication provides information about who the user is, and that's what is needed to provide
personalized content and services. For some types of personalization, the procedures we might think of as
authentication may be overkill. If the background colors and type of news listed on the front page are the extent of the
personalization, a simple cookie can be used to keep track of the user instead. But if personalization means getting
access to information about taxes, medical records, or other confidential information, true authentication is definitely
needed.

In this chapter we look at different approaches to authentication and access control with JSP, and we use the
information about who the user is to provide modest personalization of the application pages. Security, however, is
about more than authentication and access control. The last section of this chapter presents a brief summary of other
areas that need to be covered for applications dealing with sensitive data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.1 Container-Provided Authentication
A JSP page is always executing in a runtime environment provided by a container. Consequently, all authentication and
access control can be handled by the container, relieving the application developer from the important task of
implementing appropriate security controls. Security is hard to get right, so your first choice should always be to use
the time-tested mechanisms provided by the container.

13.1.1 Authenticating Users

The servlet specification (starting with Version 2.2), on which JSP is based, describes three authentication mechanisms
supported by most web clients and web servers:

HTTP basic authentication

HTTP digest authentication

HTTPS client authentication

In addition, it defines one mechanism that should be implemented by a compliant servlet container:

Form-based authentication

HTTP basic authentication has been part of the HTTP protocol since the beginning. It's a very simple and not very
secure authentication scheme. When a browser requests access to a protected resource, the server sends back a
response asking for the user's credentials (username and password). The browser prompts the user for this information
and sends the same request again, but this time with the user credentials in one of the request headers so the server
can authenticate the user. The username and password are not encrypted, only slightly obfuscated by the well-known
base64 encoding. This means it can easily be reversed by anyone who grabs it as it's passed over the network. This
problem can be resolved using an encrypted connection between the client and the server, such as the Secure Sockets
Layer (SSL) protocol. We talk more about this in the last section of this chapter.

HTTP/1.1 introduced HTTP digest authentication. As with basic authentication, the server sends a response back to the
browser when it receives a request for a protected resource. But with the response, it also sends a string called a
nonce. The nonce is a unique string generated by the server, typically composed of a timestamp, information about the
requested resource, and a server identifier. The browser creates an MD5 checksum, also known as a message digest, of
the username, the password, the given nonce value, the HTTP method, and the requested URL, and sends it back to the
server in a new request. The use of an MD5 message digest means that the password cannot easily be extracted from
information recorded from the network. Additionally, using information such as timestamps and resource information in
the nonce minimizes the risk of "replay" attacks. The digest authentication is a great improvement over basic
authentication. The only problem is that it's not supported in some of today's web clients and web servers.

HTTPS client authentication is the most secure authentication method supported today. This mechanism requires the
user to possess a Public Key Certificate (PKC). The certificate is passed to the server when the connection between the
browser and server is established, using a very secure challenge-response handshake process. The certificate is then
used by the server to uniquely identify the user. As opposed to the mechanisms previously described, the server keeps
the information about the user's identity as long as the connection remains open. When the browser requests a
protected resource, the server uses this information to grant or refuse access.

These three mechanisms are defined by Internet standards. They are used for all sorts of web applications, servlet-
based or not, and are usually implemented by the web server itself as opposed to the web container. The servlet
specification defines only how an application can gain access to information about a user authenticated with one of
them, as you will see soon.

The final mechanism, form-based authentication, is unique to the servlet specification and is implemented by the web
container itself. Form-based authentication is as insecure as basic authentication for the same reason: the user's
credentials are sent as clear text over the network. To protect access to sensitive resources, it should be combined with
encryption such as SSL.

Unlike basic and digest authentication, form-based authentication lets you control the appearance of the login screen.
The login screen is a regular HTML file with a form containing two mandatory input fields—j_username and j_password—
and the action attribute set to the string j_security_check:

<form method="POST" action="j_security_check">
 <input type="text" name="j_username">
 <input type="password" name="j_password">
</form>

From the user's point of view, it works just like basic and digest authentication. When the user requests a protected
resource, the login form is shown, prompting the user to enter a username and password. The j_security_check action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

resource, the login form is shown, prompting the user to enter a username and password. The j_security_check action
attribute value is a special URI that is recognized by the container. When the user submits the form, the container
authenticates the user using the j_username and j_password parameter values. If the authentication is successful, it
redirects the browser to the requested resource; otherwise an error page is returned. We'll get to how you specify the
login page and the error page shortly.

13.1.2 Controlling Access to Web Resources

All the authentication mechanisms described so far rely on two pieces of information: user definitions and information
about the type of access control needed for the web application resources.

How users, and groups of users, are defined depends on the server you're using. Some web servers, such as Microsoft's
Internet Information Server (IIS), can use the operating system's user and group definitions. Others, such as the
iPlanet Web Server (formerly Netscape Enterprise Server), let you use their own user directory or an external LDAP
server. The security mechanism defined by the servlet specification describes how to specify the access-control
constraints for a web application, but access is granted to a role instead of directly to a user or a group. Real user and
group names for a particular server are mapped to the role names used in the application. How the mapping is done
depends on the server, so you need to consult your web server and servlet container documentation if you use a server
other than Tomcat.

By default, the Tomcat server uses a simple XML file to define users and assign them roles at the same time. The file is
named tomcat-users.xml and is located in the conf directory. To run the examples in this chapter, you need to define at
least two users and assign one of them the role admin and the other the role user, like this:

<tomcat-users>
 <user name="paula" password="boss" roles="admin" />
 <user name="hans" password="secret" roles="user" />
</tomcat-users>

Here the user paula is assigned the admin role, and hans is assigned the user role. Note that this is not a very secure way
to maintain user information (the passwords are in clear text, for instance). This approach is intended to make it easy
to get started with container-based security. Tomcat can also be configured to use a database or a JNDI-accessible
directory. For a production site, you should use one of these options instead. See the Tomcat documentation for details.

The type of access control that should be enforced for a web application resource, such as a JSP page or all files in a
directory, is defined in the web application deployment descriptor (the WEB-INF/web.xml file). As you may recall, the
deployment descriptor format is defined by the servlet specification, so all compliant servlet containers support this type
of security configuration.

Let's look at how you can define the security constraints for the example we developed in Chapter 12. To restrict access
to all pages dealing with employee registration, it's best to place them in a separate directory. The directory with all
examples for Chapter 13 has a subdirectory named admin in which all these pages are stored. The part of the
deployment descriptor that protects this directory looks like this:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>admin</web-resource-name>
 <url-pattern>/ch13/admin/*</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>ORA Examples</realm-name>
</login-config>

<security-role>
 <role-name>admin</role-name>
</security-role>

The <security-constraint> element contains a <web-resource-collection> element that defines the resources to be protected
and an <auth-constraint> element that defines who has access to the protected resources. Within the <web-resource-
collection> element, the URL pattern for the protected resource is specified with the <url-pattern> element. Here it is set
to a pattern for the directory with all the registration pages: /ch13/admin/*. The <role-name> element within the <auth-
constraint> element says that only users in the role admin can access the protected resources.

You define the type of authentication to use and a name associated with the protected parts of the application, known
as the realm, with the <login-config> element. The <auth-method> element accepts the values BASIC, DIGEST, FORM, and
CLIENT-CERT, corresponding to the authentication methods described earlier. Any text can be used as the value of the
<realm-name> element. The text is shown as part of the message in the dialog the browser displays when it prompts the
user for the credentials.

If you use form-based authentication, you must specify the names of your login form and error page in the <login-
config> element as well:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

config> element as well:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login/login.html</form-login-page>
 <form-error-page>/login/error.html</form-error-page>
 </form-login-config>
</login-config>

<security-role> elements are used to declare all role names that must be mapped to users and groups in the container's
security domain. This information can be used by an application-deployment tool to help the deployer with this task.

With these security requirement declarations in the deployment descriptor, the web server and servlet container take
care of all authentication and access control for you. You may still need to know, however, who the current user is, for
instance to personalize the content. If you configure your server to let different types of users access the same pages,
you may need to know what type of user is actually accessing a page right now. This information can be accessed using
the EL and custom actions, as you will see in a moment.

Let's add another security constraint for the search pages from Chapter 12:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>search</web-resource-name>
 <url-pattern>/ch13/search/*</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>user</role-name>
 </auth-constraint>
</security-constraint>

...

<security-role>
 <role-name>admin</role-name>
</security-role>
<security-role>
 <role-name>user</role-name>
</security-role>

With this constraint, the server allows only authenticated users with the roles admin and user to access the pages in the
/ch13/search directory. Since we add a new role (user) for this constraint, we must add the corresponding <security-role>
element.

You can then use information about who the user is to provide different information. Example 13-1 shows a fragment of
a modified version of the list.jsp page from Chapter 12.

Example 13-1. Generating the response based on who the current user is (list.jsp)

...
 <c:forEach items="${empList.rows}" var="row">
 <tr>
 <td><c:out value="${row.LastName}" /></td>
 <td><c:out value="${row.FirstName}" /></td>
 <td><c:out value="${row.Dept}" /></td>
 <td><c:out value="${row.EmailAddr}" /></td>
 <td><c:out value="${row.ModDate}" /></td>

 <ora:ifUserInRole value="admin" var="isAdmin" />
 <c:choose>
 <c:when test="${isAdmin or
 pageContext.request.remoteUser == row.UserName}">
 <td>${fn:escapeXml(row.UserName)}</td>
 <td>${fn:escapeXml(row.Password)}</td>
 </c:when>
 <c:otherwise>
 <td>****</td>
 <td>****</td>
 </c:otherwise>
 </c:choose>
 <c:if test="${isAdmin}">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <c:if test="${isAdmin}">
 <td>
 <form action="delete.jsp" method="post">
 <input type="hidden" name="userName"
 value="${fn:escapeXml(row.UserName)}">
 <input type="hidden" name="firstName"
 value="${fn:escapeXml(param.firstName)}">
 <input type="hidden" name="lastName"
 value="${fn:escapeXml(param.lastName)}">
 <input type="hidden" name="dept"
 value="${fn:escapeXml(param.dept)}">
 <input type="submit" value="Delete">
 </form>
 </td>
 </c:if>
 </tr>
 </c:forEach>
...

The amount of information displayed about each employee differs depending on who invokes the page. If the
authenticated user is an administrator, the username and password information for all users is displayed, as well as a
Delete button for removing information about an employee. Otherwise, the username and password fields are filled
with asterisks, except for the row with information about the authenticated user herself.

To test if the authenticated user belongs to the admin role, a custom action is needed: the <ora:ifUserInRole> action
(Table 13-1) evaluates its body if the specified role matches a role for the current user. If a variable name is specified
by the var attribute, it instead saves true or false in the variable. In Example 13-1, the result of the test is saved in a
variable named isAdmin.

Table 13-1. Attributes for <ora:ifUserInRole>
Attribute

name
Java
type

Dynamic value
accepted Description

value String Yes Mandatory. The role name to test with.

var String No Optional. The name of the variable to hold the result.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

The username for the authenticated user can be retrieved with an EL expression, through a property of the request
object that is accessible through the implicit pageContext object: pageContext.request.remoteUser. For each row, a
<c:choose> block conditionally displays the username and password if the authenticated user is an administrator or the
user represented by the current row, or just asterisks if it's someone else.

The isAdmin variable created by the <ora:ifUserInRole> action is used again in the condition for the <c:if> action, which
conditionally adds the form with the Delete button.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.2 Application-Controlled Authentication
Using one of the container-provided mechanisms described in the previous section should be your first choice for
authentication. But, by definition, being container-provided means the application cannot dynamically add new users
and roles to control who is granted access, at least not through a standard API defined by the servlet and JSP
specifications.

For some types of applications, it's critical to have a very dynamic authentication model; one that doesn't require an
administrator to define access rules before a new user can join the party. I'm sure you have seen countless sites where
you can sign up for access to restricted content simply by filling out a form. One example is a project management site,
where registered users can access document archives, discussion groups, calendars, and other tools for distributed
cooperation. Another example is a personalized news site that you can customize to show news only about things you
care about.

Unless you can define new users programmatically in the database used by an external authentication mechanism, you
need to roll your own authentication and access-control system for these types of applications. In this section, we'll look
at the principles for how to do this. Note that this approach sends the user's password as clear text, so it has the same
security issues as the container-provided basic and form-based authentication methods.

Application-controlled authentication and access control requires the following pieces:

User registration

A login page

The authentication mechanism, invoked by the login page

Information saved in the session scope as proof of successful authentication

Validation of the session information in all JSP pages requiring restricted access

We'll reuse the example from Chapter 12 for user registration; this allows us to focus on the parts of an application that
require access control. The application is a simple billboard service, where employees can post messages related to
different projects they are involved with. An employee can customize the application to show messages only about the
projects he is interested in. Figure 13-1 shows all the pages and how they are related.

Figure 13-1. Application with authentication and access control

Let's go over it step by step. The login.jsp page is our login page. It contains a form that invokes the authenticate.jsp
page, where the username and password are compared to the information in the employee information database
created in Chapter 12. If a matching user is found, the autheticate.jsp page creates an EmployeeBean object and saves it
in the session scope. This bean serves as proof of authentication. It then redirects the client to a true application page.
The page the user is redirected to depends on whether the user loaded the login.jsp page or tried to directly access an
application page, without first logging in. All application pages, specifically main.jsp, entermsg.jsp, storemsg.jsp, and
updateprofile.jsp, look for the EmployeeBean object and forward to the login.jsp page if it's not found which forces the
user to log in. When the login.jsp page is loaded this way, it keeps track of the page the user tried to access so it can
be displayed automatically after successful authentication. Finally, there's the logout.jsp page. This page can be invoked
from a link in the main.jsp page. It simply terminates the session and redirects to the login.jsp page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from a link in the main.jsp page. It simply terminates the session and redirects to the login.jsp page.

13.2.1 A Table for Personalized Information

Since the sample application in this chapter lets the user personalize the content of the billboard, we need a database
table to store information about each employee's choices. The new table is shown in Table 13-2.

Table 13-2. EmployeeProjects database table
Column name SQL data type Primary key?

UserName CHAR (text) Yes

ProjectName CHAR (text) Yes

The table holds one row per unique user-project combination. You need to create this table in your database before you
can run the example.

13.2.2 Logging In

The login page contains an HTML form with fields for entering the user credentials: a username and a password. This is
why the information was included in the Employee table in Chapter 12. Example 13-2 shows the complete login.jsp page.

Example 13-2. Login page (login.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>Project Billboard</title>
 </head>
 <body bgcolor="white">
 <h1>Welcome to the Project Billboard</h1>
 Your personalized project news web site.
 <p>

 ${fn:escapeXml(param.errorMsg)}

 <form action="authenticate.jsp" method="post">

 <input type="hidden" name="origURL"
 value="${fn:escapeXml(param.origURL)}">

 Please enter your User Name and Password, and click Enter.
 <p>
 Name:
 <input name="userName"
 value="${fn:escapeXml(cookie.userName.value)}"
 size="10">
 Password:
 <input type="password" name="password"
 value="${fn:escapeXml(cookie.password.value)}"
 size="10">
 <input type="submit" value="Enter">
 <p>
 Remember my name and password:
 <input type="checkbox" name="remember"
 ${!empty cookie.userName ? 'checked' : ''}>

 (This feature requires cookies to be enabled in your browser)
 </form>
 </body>
</html>

The form contains the fields for the username and password, and the action attribute is set to the authenticate.jsp page
as expected. However, it also contains EL expressions that may need an explanation.

The following fragment displays a message that gives a hint as to why the login page is shown after an error:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following fragment displays a message that gives a hint as to why the login page is shown after an error:

 ${fn:escapeXml(param.errorMsg)}

The errorMsg request parameter may contain an error message, set by the other pages when they forward to the login
page, as you will soon see. If so, the EL expression displays the message. When the user loads the login.jsp page
directly, the parameter is not available in the request, so nothing is added to the response. Figure 13-2 shows an
example of the login page with an error message.

Figure 13-2. Login page with error message

Within the form, you find similar EL expressions:

<input type="hidden" name="origURL"
 value="${fn:escapeXml(param.origURL)}">

Here, a hidden form field is set to the value of the originally requested URL. The value is passed as a parameter to the
login page when another page forwards to it. This is how to keep track of which page the user wasn't allowed access to
because he wasn't authenticated yet. Later you'll see how this information is used to load the originally requested page
after authentication.

13.2.2.1 Using cookies to remember the username and password

The more web applications with restricted access a web surfer uses, the more usernames and passwords to remember.
After a while, it may be tempting to resort to the greatest security sin of all: writing down all usernames and passwords
in a file such as mypasswords.txt. This invites anyone with access to the user's computer to roam around in all the
secret data.

It can be a big problem keeping track of all accounts. Some sites therefore offer to keep track of the username and
password using cookies. Cookies, as you probably remember, are small pieces of text a server sends to the browser. A
cookie with an expiration date is saved on the hard disk and is returned to the server every time the user visits the
same site until the cookie expires. So is this feature a good thing? Not really, as it amounts to the same security risk as
writing down the username and password in a file. Even greater, since anyone with access to the user's computer
doesn't even have to find the mypasswords.txt file; the browser takes care of sending the credentials automatically. But
for sites that use authentication mainly to provide personalization and don't contain sensitive data, using cookies can be
an appreciated tool.

This example shows how it can be done. If you decide to use it, make sure you make it optional so the user can opt
out. As you may recall from Chapter 8, all cookies can be read using the cookies property of the request object available
through the implicit pageContext variable. When you know the name of the cookie you're looking for, it's easier to use
the implicit cookie variable. This variable contains a collection of javax.servlet.http.Cookie objects, which can be used as
beans with the properties name and value. The value property is used in Example 13-2 to set the value of the input fields
for the username and the password to the values received as cookies:

Name:
<input name="userName"
 value="${fn:escapeXml(cookie.userName.value)}"
 size="10">
Password:
<input type="password" name="password"
 value="${fn:escapeXml(cookie.password.value)}"
 size="10">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 size="10">

The last part of the form creates a checkbox that lets the user decide if cookies should be used or not. An EL expression
with the conditional operator tests if one of the cookies is available and adds the checked attribute for the checkbox if it
is:

Remember my name and password:
<input type="checkbox" name="remember"
 ${!empty cookie.userName ? 'checked' : ''}>

This snippet means that a user who has previously opted for cookie-based tracking gets the checkbox checked but a
first time user doesn't. It's a good strategy, because it forces the user to "opt in."

13.2.3 Authentication Using a Database

To authenticate a user, you need access to information about the registered users. For the sample application in this
chapter, all user information is kept in a database. There are other options, including flat files and LDAP directories.
When a user fills out the login page form and clicks Enter, the authentication page shown in Example 13-3 is
processed. This is a large page, so each part is discussed in detail after the complete page.

Example 13-3. Authentication page (authenticate.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<%-- Remove the validUser session bean, if any --%>
<c:remove var="validUser" />

<c:if test="${empty param.userName || empty param.password}">
 <c:redirect url="login.jsp" >
 <c:param name="errorMsg"
 value="You must enter a User Name and Password." />
 </c:redirect>
</c:if>

<%--
 See if the user name and password combination is valid. If not,
 redirect back to the login page with a message.
--%>
<sql:query var="empInfo">
 SELECT * FROM Employee
 WHERE UserName = ? AND Password = ?
 <sql:param value="${param.userName}" />
 <sql:param value="${param.password}" />
</sql:query>

<c:if test="${empInfo.rowCount == 0}">
 <c:redirect url="login.jsp" >
 <c:param name="errorMsg"
 value="The User Name or Password you entered is not valid." />
 </c:redirect>
</c:if>

<%--
 Create an EmployeeBean and save it in
 the session scope and redirect to the appropriate page.
--%>
<c:set var="dbValues" value="${empInfo.rows[0]}" />
<jsp:useBean id="validUser" scope="session"
 class="com.ora.jsp.beans.emp.EmployeeBean" >
 <c:set target="${validUser}" property="userName"
 value="${dbValues.UserName}" />
 <c:set target="${validUser}" property="firstName"
 value="${dbValues.FirstName}" />
 <c:set target="${validUser}" property="lastName"
 value="${dbValues.LastName}" />
 <c:set target="${validUser}" property="dept"
 value="${dbValues.Dept}" />
 <c:set target="${validUser}" property="empDate"
 value="${dbValues.EmpDate}" />
 <c:set target="${validUser}" property="emailAddr"
 value="${dbValues.EmailAddr}" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 value="${dbValues.EmailAddr}" />
</jsp:useBean>

<%-- Add the projects --%>
<sql:query var="empProjects">
 SELECT * FROM EmployeeProjects
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:query>

<c:forEach items="${empProjects.rows}" var="project">
 <c:set target="${validUser}" property="project"
 value="${project.ProjectName}" />
</c:forEach>

<c:choose>
 <c:when test="${!empty param.remember}">
 <ora:addCookie name="userName"
 value="${param.userName}"
 maxAge="2592000" />
 <ora:addCookie name="password"
 value="${param.password}"
 maxAge="2592000" />
 </c:when>
 <c:otherwise>
 <ora:addCookie name="userName"
 value="${param.userName}"
 maxAge="0" />
 <ora:addCookie name="password"
 value="${param.password}"
 maxAge="0" />
 </c:otherwise>
</c:choose>

<%--
 Redirect to the main page or to the original URL, if
 invoked as a result of a access attempt to a protected
 page.
--%>
<c:choose>
 <c:when test="${!empty param.origURL}">
 <c:redirect url="${param.origURL}" />
 </c:when>
 <c:otherwise>
 <c:redirect url="main.jsp" />
 </c:otherwise>
</c:choose>

The first thing that happens in Example 13-3 is that the JSTL <c:remove> action (Table 13-3) removes a session scope
variable named validUser, if it exists.

This variable holds an EmployeeBean object, and its presence in the session scope indicates that the corresponding user
has logged in successfully. If an EmployeeBean object is already present in the session scope, it may represent a user
that forgot to log out, so it's important to remove it when a new login attempt is made.

Table 13-3. Attributes for JSTL <c:remove>

Attribute
name

Java
type

Dynamic
value

accepted
Description

var String No Mandatory. The name of the variable to remove.

scope String No
Optional. The scope where the variable shall be removed, one of page, request,
session, or application. Default is to remove the variable from the first scope where it's
found.

Next, a <c:if> action makes sure that both the username and the password parameters are received. If one or both
parameters are missing, the <c:redirect> action redirects back to the login page again. Here you see how the errorMsg
parameter used in the login.page gets its value.

If the request contains both parameters, the <sql:query> action introduced in Chapter 12 checks for a user with the
specified name and password in the database:

<sql:query var="empInfo">
 SELECT * FROM Employee
 WHERE UserName = ? AND Password = ?
 <sql:param value="${param.userName}" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <sql:param value="${param.userName}" />
 <sql:param value="${param.password}" />
</sql:query>

<c:if test="${empInfo.rowCount == 0}">
 <c:redirect url="login.jsp" >
 <c:param name="errorMsg"
 value="The User Name or Password you entered is not valid." />
 </c:redirect>
</c:if>

If the query doesn't match a registered user (i.e., empInfo.rowCount is 0), the <c:redirect> action redirects back to the
login page with an appropriate error message. Otherwise, the processing continues.

13.2.3.1 Creating the validation object

If a match is found, the single row from the query result is extracted, and the column values are used to populate the
single value properties of an EmployeeBean object. The EmployeeBean has the properties shown in Table 13-4.

Table 13-4. Properties for com.ora.jsp.beans.emp.EmployeeBean
Property name Java type Access Description

username String Read/write The employee's unique username

firstName String Read/write The employee's first name

lastName String Read/write The employee's last name

dept String Read/write The employee's department name

empDate java.util.Date Read/write The employee's employment date

emailAddr String Read/write The employee's email address

projects String[] Read/write A list of all projects the employee is involved in

project String Write The value is added to the list of projects

The bean is named validUser and placed in the session scope using the standard <jsp:useBean> action. The first (and
only) row in the database result is saved in a variable named dbValues, which makes it easier to access the individual
column values. All bean properties are then set to the values returned from the database using the JSTL <c:set> action:

<c:set var="dbValues" value="${empInfo.rows[0]}" />
<jsp:useBean id="validUser" scope="session"
 class="com.ora.jsp.beans.emp.EmployeeBean" >
 <c:set target="${validUser}" property="userName"
 value="${dbValues.UserName}" />
 <c:set target="${validUser}" property="firstName"
 value="${dbValues.FirstName}" />
 <c:set target="${validUser}" property="lastName"
 value="${dbValues.LastName}" />
 <c:set target="${validUser}" property="dept"
 value="${dbValues.Dept}" />
 <c:set target="${validUser}" property="empDate"
 value="${dbValues.EmpDate}" />
 <c:set target="${validUser}" property="emailAddr"
 value="${dbValues.EmailAddr}" />
</jsp:useBean>

As I mentioned earlier, this application lets the user select the projects she is interested in, so that only messages
related to these projects are shown on the main page. The user's choices are stored in the EmployeeProjects database
table described in Table 13-2. In the authenticate.jsp page, the projects for the current user are retrieved from the
EmployeeProjects table and used to create the corresponding list in the bean:

<sql:query var="empProjects">
 SELECT * FROM EmployeeProjects
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:query>

<c:forEach items="${empProjects.rows}" var="project">
 <c:set target="${validUser}" property="project"
 value="${project.ProjectName}" />
</c:forEach>

To populate the bean, a <c:set> action invokes the bean's project property setter method once for each row in the query
result. The property setter method adds each value to the list of projects held by the bean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result. The property setter method adds each value to the list of projects held by the bean.

13.2.3.2 Setting and deleting cookies

If the user asks for the user credentials to be remembered, we need to send the corresponding cookies to the browser.
The checkbox value from the login page is sent to the authentication page as a parameter named remember:

<c:choose>
 <c:when test="${!empty param.remember}">
 <ora:addCookie name="userName"
 value="${param.userName}"
 maxAge="2592000" />
 <ora:addCookie name="password"
 value="${param.password}"
 maxAge="2592000" />
 </c:when>
 <c:otherwise>
 <ora:addCookie name="userName"
 value="${param.userName}"
 maxAge="0" />
 <ora:addCookie name="password"
 value="${param.password}"
 maxAge="0" />
 </c:otherwise>
</c:choose>

The <ora:addCookie> custom action (Table 13-5) sends cookies to the browser. If the remember parameter is received,
the cookies are sent with a maximum age value representing 30 days, expressed in seconds (2592000). As long as the
user returns to this site within this time frame, the cookies will be sent with the request, and the login page will use the
values to automatically fill out the form fields. If the user decides not to use this feature and unchecks the box, the
cookies are still sent but with a maximum age of 0. This means that the cookies expire immediately and will never be
sent to this server again. If you want to send a cookie to a browser that should be valid only until the user closes the
browser, set the maximum age to a negative number (for instance, -1).

Table 13-5. Attributes for <ora:addCookie>

Attribute
name

Java
type

Dynamic
value

accepted
Description

name String Yes Mandatory. The name of the cookie.

value String Yes Mandatory. The cookie value.

maxAge int Yes Optional. The number of seconds the cookie shall persist in the browser. Default is
-1, causing the cookie to persist until the browser is closed.

13.2.3.3 Redirect to the application page

The only thing left is to redirect the browser to the appropriate page. If the authentication process is started as a result
of the user requesting a protected page without being logged in, the original URL is received from the login page as the
value of the origURL parameter:

<c:choose>
 <c:when test="${!empty param.origURL}">
 <c:redirect url="${param.origURL}" />
 </c:when>
 <c:otherwise>
 <c:redirect url="main.jsp" />
 </c:otherwise>
</c:choose>

If this parameter has a value, the browser is redirected to the originally requested page, otherwise to the main entry
page for the application.

13.2.4 Checking for a Valid Session

Authentication is only half of the solution. We must also add access control to each page in the application. Example 13-
4 shows the main.jsp page as an example of a protected page. This page shows all messages for the projects of the
user's choice. It also has a form with which the user can change the list of projects of interest and links to a page for
posting new messages, and to log out.

Example 13-4. A protected JSP page (main.jsp)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 13-4. A protected JSP page (main.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<%-- Verify that the user is logged in --%>
<c:if test="${validUser == null}">
 <jsp:forward page="login.jsp">
 <jsp:param name="origURL" value="${pageContext.request.requestURL}" />
 <jsp:param name="errorMsg" value="Please log in first." />
 </jsp:forward>
</c:if>
<html>
 <head>
 <title>Project Billboard</title>
 </head>
 <body bgcolor="white">

 <h1>Welcome ${fn:escapeXml(validUser.firstName)}</h1>
 Your profile currently shows you like information about the
 following checked-off projects. If you like to update your
 profile, make the appropriate changes below and click
 Update Profile.
 <form action="updateprofile.jsp" method="post">

 <c:forEach items="${validUser.projects}" var="current">
 <c:choose>
 <c:when test="${current == 'JSP'}">
 <c:set var="jspSelected" value="true" />
 </c:when>
 <c:when test="${current == 'Servlet'}">
 <c:set var="servletSelected" value="true" />
 </c:when>
 <c:when test="${current == 'EJB'}">
 <c:set var="ejbSelected" value="true" />
 </c:when>
 </c:choose>
 </c:forEach>
 <input type="checkbox" name="projects" value="JSP"
 ${jspSelected ? 'checked' : ''}>JSP

 <input type="checkbox" name="projects" value="Servlet"
 ${servletSelected ? 'checked' : ''}>Servlet

 <input type="checkbox" name="projects" value="EJB"
 ${ejbSelected} ? 'checked' : ''}>EJB

 <input type="submit" value="Update Profile">
 </form>
 <hr>

 When you're done reading the news, please
 log out.

 <hr>
 Post a new message
 <p>

 <%-- Get all new items --%>
 <jsp:useBean id="news" scope="application"
 class="com.ora.jsp.beans.news.NewsBean" />
 <c:set var="newsItems" value="${news.newsItems}" />

 <%--
 Loop through all user projects and for each, loop through
 all news items and display the ones that match the current
 project.
 --%>
 <table>
 <c:forEach items="${validUser.projects}" var="projectName">
 <tr>
 <td colspan="2">
 Project: ${fn:escapeXml(projectName)}
 </td>
 </tr>
 <c:forEach items="${newsItems}" var="newsItem">
 <c:if test="${newsItem.category == projectName}">
 <tr>
 <td>
 ${fn:escapeXml(newsItem.postedBy)}
 </td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </td>
 <td>
 ${fn:escapeXml(newsItem.postedDate)}
 </td>
 </tr>
 <tr>
 <td colspan="2">
 ${fn:escapeXml(newsItem.msg)}
 </td>
 </tr>
 <tr>
 <td colspan="2"><hr></td>
 </tr>
 </c:if>
 </c:forEach>
 </c:forEach>
 </table>
 </body>
</html>

Here's the most interesting piece of Example 13-4, from an access-control point of view:

<c:if test="${validUser == null}">
 <jsp:forward page="login.jsp">
 <jsp:param name="origURL" value="${pageContext.request.requestURL}" />
 <jsp:param name="errorMsg" value="Please log in first." />
 </jsp:forward>
</c:if>

The proof that a successfully authenticated user requests the page is that there's an EmployeeBean available under the
name validUser in the session scope; the authenticate.jsp page places it there only if the username and password are
valid. The <c:if> action is used to verify this. If the bean is not found, the request is forwarded to the login page, with
the origURL and errorMsg parameters added.

13.2.4.1 Providing personalized content

The rest of the page shown in Example 13-4 produces a personalized page for the authenticated user. Figure 13-3
shows an example of how it may look for one user.

Figure 13-3. Personalized application page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First, the validUser bean properties welcome the user to the site by name. Next comes a form with checkboxes for all
projects. The same technique that was used in Chapter 8 is also used here to set the checked attribute for the projects
listed in the user's profile. The user can modify the list of projects and click Update Profile to invoke the
updateprofile.jsp page. This page modifies the profile information in the database. We'll take a look at how it's done
later.

A NewsBean containing NewsItemBean objects then displays news items for all projects matching the user's profile. The
implementations of these beans are intended only as examples. Initially, the NewsBean contains one hardcoded message
for each news category, and the news items are kept in memory only. A real implementation would likely store all news
items permanently in a database.

Example 13-4 also contains a link to a page where a news item can be posted to the list. If you look at the source for
the entermsg.jsp file, you'll see that it's just a JSP page with the same access-control test at the top as in Example 13-4
and a regular HTML form that invokes the storemsg.jsp file with a POST request. The POST method is appropriate here,
since the form fields update information on the server (the in-memory NewsBean database).

The storemsg.jsp page is shown in Example 13-5.

Example 13-5. POST page with restricted access (storemsg.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%-- Verify that the user is logged in --%>
<c:if test="${validUser == null}">
 <jsp:forward page="login.jsp">
 <jsp:param name="origURL" value="${pageContext.request.requestURL}" />
 <jsp:param name="errorMsg" value="Please log in first." />
 </jsp:forward>
</c:if>
<%-- Verify that it's a POST method --%>
<c:if test="${pageContext.request.method != 'POST'}">
 <c:redirect url="main.jsp" />
</c:if>
<%-- Create a new news item bean with the submitted info --%>
<jsp:useBean id="newsItem" class="com.ora.jsp.beans.news.NewsItemBean" >
 <jsp:setProperty name="newsItem" property="*" />
 <c:set target="${newsItem}" property="postedBy"
 value="${validUser.firstName} ${validUser.lastName}" />
</jsp:useBean>

<%-- Add the new news item bean to the list --%>
<c:set target="${news}" property="newsItem"
 value="${newsItem}" />

<c:redirect url="main.jsp" />

This page creates a new NewsItemBean and sets all properties based on the field parameters passed from the
entermsg.jsp page, plus the postedBy property using the firstName and lastName properties of the validUser bean. It then
adds the new news item to the NewsBean with the <c:set> action and redirects to the main page, where the new item is
displayed along with the old ones.

Let's focus on the access-control aspects. At the top of the page, you find the same access-control logic as in all other
protected pages. If a user fills out the form in entermsg.jsp and walks away from the computer without submitting the
form, the session may time out. When the user then returns and clicks Submit, the validUser bean is not found in the
session. The body of the <c:if> action is therefore processed, forwarding the request to the login page with the origURL
parameter set to the URL of the storemsg.jsp. After successful authentication, the authentication page redirects to the
original URL, the storemsg.jsp. However, a redirect is always a GET request.[1] All the parameters sent with the original
POST request for storemsg.jsp are lost; a POST request carries the parameter values in the message body, instead of in
the URL (as a query string) as a GET request does. This mean the original URL saved by the login.jsp page doesn't
include the parameters. If you don't take care of this special case, an empty NewsItemBean is added to the list.

[1] The HTTP specification (RFC 2616) states that a browser is not allowed to change the method for the request
when it receives a redirect response (status code 302). But, as acknowledged by HTTP specification, all major
browsers available today change a POST request to a GET anyway.

There are at least two ways to deal with this. In Example 13-5, the access-control logic is followed by a <c:if> action
checking that the request for this page is a POST request. If not, it redirects to the main page without processing the
request. This is the easiest way to deal with the problem, but it also means that the user will have to retype the
message again. The chance that a session times out before a form is submitted is small, so in most cases this is not a
big deal; it's therefore the solution I recommend.

If you absolutely must find a way to not lose the POST parameters when a session times out, here is a brief outline of a
solution:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

solution:

Use a <c:forEach> action in the login page to loop through all POST parameter values and save them as hidden
fields in the form, along with a hidden field that tells if the original request was a GET or a POST request.

In the authentication page, forward to the originally requested URL if the method was a POST and redirect only
if it was a GET. The authentication page is always invoked as a POST request. A forward is just a way to let
another page continue to process the same request, so the originally requested page will be invoked with a
POST request as it expects, along with all the originally submitted parameters saved as hidden fields in the login
page.

Depending on your application, you may also need to save session data as hidden fields in the page that submits the
POST request, so that the requested page doesn't have to rely on session information. But this leads to another
problem. What if someone other than the user who filled out the form comes along and submits it? Information will
then be updated on the server with information submitted by a user that's no longer logged in. One way out of this is to
also save information about the current user as a hidden field in the form that sends the POST request and let the
authentication page compare this information with information about the new user. If they don't match, the client can
be redirected to the main application page instead of forwarded to the originally requested URL.

As you can see, there are a number of things to think about. Whether it makes sense to take care of all the issues
depends on the application. My general advice is to keep it simple and stick to the first solution unless your application
warrants a more complex approach.

13.2.5 Updating the User Profile

The updateprofile.jsp page, used if the user makes new project selections in the main page and clicks Update Profile,
is also invoked through the POST method. It follows the same access-control approach as the storemsg.jsp page and is
shown in Example 13-6. But what's more interesting with this page is that it shows how to replace multivalue bean and
database data, and is an instance of when you need to care about database transactions.

Example 13-6. Updating multiple database rows (updateprofile.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>

<%-- Verify that the user is logged in --%>
<c:if test="${validUser == null}">
 <jsp:forward page="login.jsp">
 <jsp:param name="origURL" value="${pageContext.request.requestURL}" />
 <jsp:param name="errorMsg" value="Please log in first." />
 </jsp:forward>
</c:if>

<%-- Verify that it's a POST method --%>
<c:if test="${pageContext.request.method != 'POST'}">
 <c:redirect url="main.jsp" />
</c:if>

<%-- Update the project list in the bean --%>
<c:set target="${validUser}" property="projects"
 value="${paramValues.projects}" />

<sql:transaction>
 <%-- Delete the old project (if any) and insert the new ones --%>
 <sql:update>
 DELETE FROM EmployeeProjects
 WHERE UserName = ?
 <sql:param value="${validUser.userName}" />
 </sql:update>
 <c:forEach items="${validUser.projects}" var="project">
 <sql:update>
 INSERT INTO EmployeeProjects
 (UserName, ProjectName) VALUES(?, ?)
 <sql:param value="${validUser.userName}" />
 <sql:param value="${project}" />
 </sql:update>
 </c:forEach>
</sql:transaction>
<%-- Redirect to main page --%>
<c:redirect url="main.jsp" />

The list of new projects selected by the user is sent to the updateprofile.jsp page as the projects request parameter, with
one value per checked checkbox. The projects bean property is updated using the <c:set> action with the value of an EL
expression that returns all values of the parameter as an array (note that the paramValues implicit variable is used, as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression that returns all values of the parameter as an array (note that the paramValues implicit variable is used, as
opposed to the param variable). The data type for the projects property is String[], meaning it can be set to an array of
strings.

If the user deselects all checkboxes in the main.jsp page (Example 13-4), all projects must be removed from the bean
as well. Using the <c:set> action takes care of this requirement. When no checkbox is selected, the projects request
parameter is not sent, and the EL expression returns null, clearing the project list property value.

The EmployeeProjects table (Table 13-1) contains one row per project for a user, with the username in the UserName
column and the project name in the ProjectName column. The easiest way to update the database information is to first
delete all existing rows, if any, and then insert rows for the new projects selected by the user. Because this requires
execution of multiple SQL statements, and all must either succeed or fail, the <sql:update> actions are placed within the
body of a <sql:transaction> action element. If the first <sql:update> action is successful but one of the others fails, the
database information deleted by the first is restored so the database correctly reflects the state before the change.

To delete the rows in the database, the <sql:update> action is used with an SQL DELETE statement. The WHERE clause
condition restricts the statement so that only the rows for the current user are deleted. The <c:forEach> action then
loops through all projects registered in the validUser bean. The body of the <c:forEach> action contains an <sql:update>
action that executes an INSERT statement for each project:

<c:forEach items="${validUser.projects}" var="project">
 <sql:update>
 INSERT INTO EmployeeProjects
 (UserName, ProjectName) VALUES(?, ?)
 <sql:param value="${validUser.userName}" />
 <sql:param value="${project}" />
 </sql:update>
</c:forEach>

Within the action element's body, the <sql:param> action sets the value for the ProjectName column to the current
iteration value; a new value is used for each pass through the projects property array. The UserName column has the
same value in each row, so the <sql:param> action always sets it to the validUser bean's userName property value.

13.2.6 Logging Out

Because the proof of authentication is kept in the session scope, the user is automatically logged out when the session
times out. Even so, an application that requires authentication should always provide a way for the user to explicitly log
out. This way a user can be sure that if he leaves the desk, no one else can come by and use the application.

The main page in the example application contains a link to the logout page, shown in Example 13-7.

Example 13-7. Logout page (logout.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<%--
 Terminate the session and redirect to the login page.
--%>
<ora:invalidateSession/>

<c:redirect url="login.jsp" />

This page explicitly terminates the session using the <ora:invalidateSession> custom action (no attributes supported) and
then redirects back to the login page. Invalidating the session means that all session scope variables are removed, and
the session is marked as invalid. The next time someone logs in, a new session is created.

The <ora:invalidateSession> custom action implementation is very simple and arguable overkill. If you don't mind using
JSP scripting elements (described in Chapter 16) in your pages, this scriptlet is an alternative to using the custom
action:

<% session.invalidate(); %>

If you want to test the sample application described in this chapter, you must first create at least one user with the
example application developed in Chapter 12. To see how the automatic redirect to the originally requested page works,
you can open two browser windows and log in from both. They both share the same session (assuming cookies are
enabled), so if you log out using one window and then try to load the "post a new message" page with the other, you
are redirected to the login page. After you enter your username and password, you're redirected to the page for posting
a message.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

13.3 Other Security Concerns
In this chapter we have discussed only authentication and access control, but there's a lot more to web application
security. You also need to ensure that no one listening on the network can read the data. In addition, you need to
consider ways to verify that no one has hijacked the data and modified it before it reaches its final destination. Common
terms for these concerns are confidentiality and data privacy for the first, and integrity checking for the second.

On an intranet, users can usually be trusted not to use network listeners to get to data they shouldn't see. But on the
Internet, you can make no assumptions. If you provide access to sensitive data, you have to make sure it's protected
appropriately. Network security is a huge subject area and clearly not within the scope of this book. Therefore I will
touch only on the most common way to take care of both confidentiality and integrity checking, namely the Secure
Socket Layer (SSL) protocol.

SSL is a protocol based on public key cryptography; it relies on a public key and a private key pair. Messages sent by
someone, or something (like a server), are encoded using the private key and can be decoded by the receiver only by
using the corresponding public key. Besides confidentiality and integrity checking, public key cryptography also provides
very secure authentication; if a message can be decoded with a certain public key, you know it was encoded with the
corresponding private key. The keys are issued, in the form of certificates together with user identity information, by a
trusted organization such as VeriSign (http://www.verisign.com/).

Both the browser and the server can have certificates. However, the most common scenario today is that only the
server has a certificate and can thereby positively identify itself to the browser. The SSL protocol takes care of this
server authentication during the handshaking phase of setting up the connection. If the server certificate doesn't match
the server's hostname, the user is warned, or the connection is refused. If the browser also has a certificate, it can
authenticate the browser to the server in a more secure fashion than basic and digest authentication.

Even if only a server certificate is used, the communication between the browser and the server is still encrypted. This
means that the issue of sending passwords as clear text for the basic and form-based authentication, as well as the
application-controlled authentication we developed in this chapter, is nullified.

Most web servers today support server certificates and SSL. When you use HTTP over SSL (HTTPS), the URLs start with
https instead of http. Not all applications need the kind of tight security offered by HTTPS, but you should be aware of all
security threats and carefully evaluate if the risks of not using SSL are acceptable for your application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 14. Internationalization
Taking the term World Wide Web literally means that your web site needs to respect the local languages and customs of
all visitors, no matter where they come from. More and more, large web sites provide content in several different
languages. Just look at sites like Yahoo!, which provide directory services in the local language of more than 20
countries in Europe, Asia Pacific, and North and South America. Other good examples are CNN, with local news for 3
continents in 7 different languages, and Vitaminic (http://www.vitaminic.com/), a site with MP3 music and artist
information customized for different countries. If the site contains only static content, it's fairly easy to support multiple
languages: just make a static version of the site for each language. But this approach is not practical for a site with
dynamic content. If you develop a separate site for each language, you will have to duplicate the code that generates
the dynamic content as well, leading to maintenance problems when errors are discovered or when it's time to add new
features. Luckily, Java and JSP provide a number of tools to make it easier to develop one version of a site that can
handle multiple languages.

The process of developing an application that caters to the needs of users from different parts of the world includes two
phases: internationalization and localization.

Internationalization means preparing the application by identifying everything that will be different for different
geographical regions and providing means to use different versions of all these items instead of hardcoded values.
Examples of this are labels and messages, online help texts, graphics, format of dates, times and numbers, currencies,
measurements, and sometimes even the page layouts and colors. Instead of spelling out the word internationalization,
the abbreviation I18N is often used. It stands for "an I followed by 18 characters and an N."

When an application has been internationalized, it can also be localized for different regions. This means providing the
application messages, help texts, graphics, and so forth, as well as rules for formatting dates/times and numbers, for
one or more regions. Localization is sometimes abbreviated L10N, following the same logic as the I18N abbreviation.
Support for new regions can be added without changing the application itself, simply by installing new localized
resources.

In this chapter, we first look at the basic Java classes used for internationalization. If you're not a programmer, you can
skim through this section without worrying about the details. (However, you should understand the terminology, and
knowing a bit about the inner workings of these classes also makes it easier to understand the rest of the chapter.) We
then develop a web application in which visitors can answer a poll question and see statistics about how other visitors
have answered, using a set of JSTL actions that hide the Java classes and make internationalization a lot easier. The
poll site is localized for three languages. The initial language selection is based on the user's browser configuration, but
users can also explicitly select one of the supported languages.

The last part of this chapter discusses the issues related to interpreting localized input and the special considerations
needed for dealing with languages containing other characters than those used in Western European languages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.1 How Java Supports Internationalization and Localization
Java was designed with internationalization in mind and includes a number of classes to make the effort as painless as
possible. The primary class used for internationalization represents a specific geographical region. Instances of this
class are used by other classes to format dates and numbers, and include localized strings and other objects in an
application. There are also classes for dealing with different character encodings, as you will see later in the chapter.

14.1.1 The Locale Class

All Java classes that provide localization support use a class named java.util.Locale. An instance of this class represents a
particular geographical, political, or cultural region, as specified by a combination of a language code and a country
code. Java classes that perform tasks that differ depending on a user's language and local customs—so called locale-
sensitive operations—use a Locale instance to decide how to operate. Examples of locale-sensitive operations are
interpreting date strings and formatting numeric values.

You create a Locale instance using a constructor that takes the country code and language code as arguments:

java.util.Locale usLocale = new Locale("en", "US");

Here, a Locale for U.S. English is created. George Bernard Shaw (a famous Irish playwright) once observed that
"England and America are two countries divided by a common language," so it's no surprise that both a language code
and a country code are needed to describe some locales completely. The language code, a lowercase two-letter
combination, is defined by the ISO 639 standard available at http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.
The country code, an uppercase two-letter combination, is defined by the ISO 3166 standard, available at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html. Tables Table 14-1 and Table 14-2 show some of these
codes.

Table 14-1. ISO-639 language codes
Language code Language

af Afrikaans

da Danish

de German

el Greek

en English

es Spanish

fr French

ja Japanese

pl Polish

ru Russian

sv Swedish

zh Chinese

Table 14-2. ISO-3166 country codes
Country Country code

Denmark DK

Germany DE

Greece GR

Mexico MX

New Zealand NZ

South Africa ZA

United Kingdom GB

United States US

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As luck would have it, these two standards are also used to define language and country codes in HTTP. As you may
remember from Chapter 2, a browser can send an Accept-Language header with a request for a web resource such as a
JSP page. The value of this header contains one or more codes for languages the user prefers, based on how the
browser is configured. If you use a Netscape 6 or Mozilla browser, you can specify your preferred languages in the Edit

 Preferences dialog, under the Navigator Languages tab. In Internet Explorer 5, you find the same thing in
Tools Internet Options when you click the Languages button under the General tab. If you specify more than one
language, they are included in the header as a comma-separated list:

Accept-Language: en-US, en, sv

The languages are listed in order of preference, with each language represented by just the language code or the
language code and country code separated by a dash (-). This example header specifies the first choice as U.S. English,
followed by any type of English, and finally Swedish. The HTTP specification allows an alternative to listing the codes in
order of preference, namely adding a so-called q-value to each code. The q-value is a value between 0.0 and 1.0,
indicating the relative preference between the codes. Very few browsers use this alternative today, however.

The Accept-Language header helps you localize your application. You could write code that reads this header and creates
the corresponding Locale instances. The good news is you don't have to do this yourself; the web container takes care of
it for you and makes the locale information available through properties of the implicit pageContext object:

${pageContext.request.locale}
${pageContext.request.locales}

The locale property contains the Locale with the highest preference ranking; the locales (plural) property contains a
collection of all locales in order of preference. All you have to do is match the preferred locales to the ones your web
application supports. The easiest way to do this is to loop through the preferred locales and stop when you find one
your application supports. As you will see later, the JSTL I18N actions relieve you of this as well, but now you know how
it can be done.

14.1.2 Formatting Numbers and Dates

Let's look at how a locale can be used. One thing we who live on this planet have a hard time agreeing on is how to
write dates and numbers. The order of the month, the day, and the year; if the numeric value or the name should be
used for the month; what character to use to separate the fractional part of a number; all of these details differ
between countries, even between countries that speak the same language. And even though these details may seem
picky, using an unfamiliar format can cause a great deal of confusion. For instance, if you ask for something to be done
by 5/2, an American thinks you mean May 2 while a Swede believes that it's due by February 5.

Java provides two classes to deal with formatting of numbers and dates for a specific locale, appropriately named
java.text.NumberFormat and java.text.DateFormat, respectively.

The JSTL <fmt:formatNumber> action, used in Chapter 10 to format the price information for items in a shopping cart, is
based on the NumberFormat class. By default, the NumberFormat class formats numbers based on the locale of the
underlying operating system. If used on a server configured to use a U.S. English locale, it formats them according to
American customs; on a server configured with an Italian locale, it formats them according to Italian customs, and so
forth. But you can also explicitly specify a locale, to format numbers according to the rules for other locales than the
one used by the operating system. You will soon see how to tell the JSTL formatting actions to use a specific locale or
figure out which one to use based on the Accept-Language header.

The DateFormat class works basically the same way, but how dates are written differs a lot more between locales than
numbers do, because the day and month names are sometimes spelled out in the local language. The JSTL
<fmt:formatDate> action, used to format date and time values, is based on the DateFormat class.

14.1.3 Using Localized Text

Automatic translation of numbers and dates into the local language is a great help, but until automatic translation
software is a lot smarter than it is today, you have to translate all the text used in the application yourself. A set of Java
classes can help you pick the right version for a specific locale.

The main class for dealing with localized resources (such as text, images, and sounds) is named java.util.ResourceBundle.
This class is actually the abstract superclass for the two subclasses that do the real work, ListResourceBundle and
PropertyResourceBundle, but it provides methods that let you get an appropriate subclass instance, hiding the details
about which subclass actually provides the resources. Details about the difference between these two subclasses are
beyond the scope of this book. Suffice it to say that the JSTL actions can use resources provided through either of
them.

For most web applications, an instance of the PropertyResourceBundle is used. A PropertyResourceBundle instance is
associated with a named set of localized text resources; a key identifies each resource. The keys and their
corresponding text values are stored in a regular text file, known as a resource bundle file:

site_name=The Big Corporation Inc.
company_logo=/images/logo_en.gif
welcome_msg=Hello!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

welcome_msg=Hello!

Here three keys, site_name, company_logo, and welcome_msg, have been assigned values. The key is a string, without
space or other special characters, and the value is any text. If the value spans more than one line, the line break must
be escaped with a backslash character (\):

multi_line_msg=This text value\
continues on the next line.

The file must use the .properties extension, for instance sitetext.properties, and be located in the classpath used by the
Java Virtual Machine (JVM). In the case of web applications, you can store the file in the application's WEB-INF/classes
directory, because this directory is always included in the classpath.

To localize an application, you create separate resource bundle files for each locale, all with the same main name
(called the base name) but with unique suffixes to identify the locale. For instance, a file named
sitetext_es_MX.properties, where es is the language code for Spanish, and MX is the country code for Mexico, can
contain the text for the Mexican Spanish locale. The JSTL actions that deal with localized text find the resource bundle
that most closely matches the selected locale or a default bundle if there is no match. We'll look at an example in detail
in the next section.

Besides the ResourceBundle class, there's a class named java.text.MessageFormat you can use for messages composed of
fixed text plus variable values, such as "An earthquake measuring 6.7 on the Richter scale hit Northridge, CA, on
January 17, 1994.", where each underline represents a variable value. The JSTL actions support this type of formatted
messages as well, as you will see in the next section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.2 Generating Localized Output
Now that you have an understanding of the type of internationalization support Java provides, let's look at a concrete
example. However, instead of using the internationalization classes directly in the pages, we'll use the JSTL I18N
actions based on these classes.

The example application, briefly described in the introduction to this chapter, lets visitors voice their opinion by
selecting one of the answers to a question, as well as seeing how others have answered. The text, numbers, and dates
are available in three different languages. Figure 14-1 shows all the pages used in this application and how they are
related.

Figure 14-1. Localized poll application pages

The first page the user sees is the poll.jsp page, shown in Figure 14-2. The language that displays the contents the first
time this page is requested is based on the Accept-Language request header value. The top part of the page contains
radio buttons for the three supported languages and a Submit button. If the user wants the application to be presented
in another language, he selects the corresponding radio button and clicks Submit, causing the page to be requested
again, this time with a language parameter included in the request. The value of the language parameter is then used
to select the corresponding locale and display the page in the selected locale's language. Information about the selected
locale is saved as session data, so it's available to all the other application pages as well.

Figure 14-2. The language selection and question page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The poll.jsp page also includes the question, linked to a page with background information for the question, and a group
of radio buttons representing the different answers, as well as a Submit button. Clicking on the Submit button invokes
the calculate.jsp page, in which the choice is first validated. If it's valid, it's added to the global poll result. The request
is then forwarded to the result.jsp page, which displays the poll statistics with all numbers formatted according to the
selected locale. If it's not valid, the request is forwarded back to the poll.jsp page.

Both the poll.jsp page and the result.jsp page are designed to show text, numbers, and dates according to the selected
locale using the JSTL I18N actions. This approach is perfect when the amount of text is small; only one set of pages has
to be maintained. But if a page needs to contain a great deal of text, typing it into a properties file and escaping all line
breaks may not be the best approach. Some pages also need to use different layouts, colors, images, and general
appearance based on the locale. In this case, it's easier to use a separate page per locale. The pages providing more
detailed information about the question in this example illustrate this approach. The link on the poll.jsp page leads to
different JSP pages depending on the selected language, named according to the same naming convention as
ResourceBundle properties files: details_en.jsp, details_de.jsp, and details_sv.jsp for the English, German, and Swedish
pages, respectively. Let's look at the one-page and the multipage approaches separately.

14.2.1 Using One Page for Multiple Locales

Example 14-1 shows the poll.jsp page. That's where the magic of locale selection happens, and the selection is then
used to produce text in the corresponding language throughout the page.

Example 14-1. Language selection and vote page (poll.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%--
 Set the locale to the selected one, if any. Otherwise, let the
 <fmt:setBundle> action pick the best one based on the Accept-Language
 header.
--%>
<c:if test="${param.language == 'en'}">
 <fmt:setLocale value="en" scope="session" />
</c:if>
<c:if test="${param.language == 'sv'}">
 <fmt:setLocale value="sv" scope="session" />
</c:if>
<c:if test="${param.language == 'de'}">
 <fmt:setLocale value="de" scope="session" />
</c:if>
<fmt:setBundle basename="pages" var="pagesBundle" />
<fmt:setBundle basename="labels" scope="session" />
<html>
 <head>
 <title>
 <fmt:message key="title" />
 </title>
 </head>
 <body bgcolor="white">
 <h1>
 <fmt:message key="title" />
 </h1>

 <fmt:message key="select_language" />:
 <form action="poll.jsp">
 <p>
 <c:set var="currLang" value="${pagesBundle.locale.language}" />
 <input type="radio" name="language" value="en"
 ${currLang == 'en' ? 'checked' : ''}>
 <fmt:message key="english" />

 <input type="radio" name="language" value="sv"
 ${currLang == 'sv' ? 'checked' : ''}>
 <fmt:message key="swedish" />

 <input type="radio" name="language" value="de"
 ${currLang == 'de' ? 'checked' : ''}>
 <fmt:message key="german" />

 <p>
 <input type="submit"
 value="<fmt:message key="new_language" />">
 </form>

 <a href="<fmt:message key="details_page" bundle="${pagesBundle}" />">
 <fmt:message key="question" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <fmt:message key="question" />

 <form action="calculate.jsp" method="post">
 <input type="radio" name="answerId" value="1" checked>
 <fmt:message key="answer1" />

 <input type="radio" name="answerId" value="2">
 <fmt:message key="answer2" />

 <input type="radio" name="answerId" value="3">
 <fmt:message key="answer3" />
 <p>
 <input type="submit"
 value="<fmt:message key="submit" />">
 </form>
 </body>
</html>

At the top of the page, the taglib directives identify the JSTL libraries. Besides the JSTL core library used in previous
chapters, this page also declares the JSTL I18N and formatting library with the prefix fmt.

After the tag library declarations follows a section that determines if the page is invoked with the language parameter, to
request a specific language to be used. If it is, and the requested language is one supported by this application, the
body of the matching <c:if> action element is processed to set the corresponding locale explicitly. This is where we
encounter the first I18N action: <fmt:setLocale>, described in Table 14-3.

Table 14-3. Attributes for JSTL <fmt:setLocale>

Attribute
name

Java
type

Dynamic
value

accepted
Description

value String Yes
Mandatory. A lowercase ISO-639 language code, optionally followed by an uppercase
ISO-3166 country code, separated from the language code with a hyphen (-) or an
underscore (_).

variant String Yes Optional. Vendor- or browser-specific variant.

scope String No Optional. The scope for the locale setting, one of page, request, session, or application.
page is the default.

This action creates an instance of the Locale class corresponding to the value and variant attribute values and saves it in
the specified scope. The value attribute must include a language code. It may also include a country code, separated
from the language code with a hyphen (-) or an underscore (_). The variant attribute is rarely used, but the I18N Java
classes used behind the scene support it, so the JSTL action supports it as well. It can specify a locale that applies to a
specific platform in addition to a language and a country. One example is if you use a locale to select help texts, you
may want to provide one set of descriptions for Internet Explorer and another for Netscape browsers. In Example 14-1,
only the language code is specified, and the locale setting is saved in the session scope to apply it to all pages
requested by the same user.

The variable that the <fmt:setLocale> sets is a configuration variable—in other words a variable with an implementation-
dependent name used to set the default for a specific scope, as described in Chapter 12. It's backed by a context
parameter that can set a global default:

<web-app>
 ...
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.fmt.locale
 </param-name>
 <param-value>
 en-US
 </param-value>
 </context-param>
 ...
</web-app>

The first time the page is invoked, no language is specified. Hence, the language parameter is not received with the
request so none of the <c:if> conditions is matched. In this case, the supported locale that is the closest match to the
language preferences defined by the user through the browser settings should be used. The <fmt:setBundle> action,
described in Table 14-4, takes care of this task.

Table 14-4. Attributes for JSTL <fmt:setBundle>
Attribute

name
Java
type

Dynamic value
accepted Description

basename String Yes Mandatory. The resource bundle base name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var String No Optional. The name of the variable to hold the LocalizationContext instance.

scope String No Optional. The scope for the localization context setting; one of page, request,
session, or application. page is the default.

In Example 14-1, I use this action to load two separate resource bundles: one that contains the names of language-
specific pages and one that contains all localized text.

The basename attribute is mandatory and identifies a specific resource bundle. Properties files for all locales supported
by the sample application, named according to the pattern basename_locale.properties, represent each bundle:
labels_en.properties; labels_de.properties and labels_sv.properties; and pages_en.properties, pages_de.properties, and
pages_sv.properties. All properties files are located in the WEB-INF/classes directory for the application, making them
part of the classpath the I18N classes use to locate resource bundles. If a default locale has been established using the
<fmt:setLocale> action or the locale configuration setting, the <fmt:setBundle> action simply loads the resource bundle
corresponding to the base name for the selected locale. In Example 14-1, this is the case when a language parameter
with a value matching one of the supported locales is sent with the request.

But what happens if no language parameter is sent or when its value doesn't match a supported locale? In this case, the
<fmt:setBundle> action has to decide which of the supported locales most closely matches the user's preferences. Recall
that the user's language preferences are sent with the request in the Accept-Language header. The <fmt:setBundle> action
compares this list to the set of available locale-specific bundles for the base name and picks the best one. For each
locale in the list, it first tries to find a locale that matches all parts specified for the preferred locale: language, country,
and variant. If it doesn't find a perfect match, it drops the variant and tries again. If it still can't find a match, it drops
the country. As soon as it finds a bundle for one of the locales using this algorithm, it uses it and ignores the other
locales. This means that with English, German, and Swedish as the available locales and an Accept-Language header
containing the value "sv, en-US", the Swedish locale is selected (it's listed first, so it has higher priority). With an Accept-
Language header such as "fr, en-US", the English locale is selected, since the highest priority locale (fr) is not available,
and the closest match for the en-US locale is the en locale. If the application has bundles for both the en file and the en-
US locale, the en-US locale is used because it's an exact match for the user's preferences.

An interesting case is what happens if none of the locales in the Accept-Language header matches an available locale. The
best the <fmt:setBundle> action could do on its own would be to randomly pick one of the available locales, but that's no
good. Instead you need to tell it which locale to use in this case. It's called the fallback locale in the JSTL specification,
and it's defined as a configuration setting. You can set its context parameter like this in the deployment descriptor:

<web-app>
 ...
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.fmt.fallbackLocale
 </param-name>
 <param-value>
 en
 </param-value>
 </context-param>
 ...
</web-app>

Here I set the en locale as the fallback, so if none of the preferred locales match, the <fmt:setBundle> action tries to
locate a bundle with the en locale. If it still can't find a matching bundle, it falls back to the ultimate backup: the so-
called root bundle. The root bundle is represented by a bundle without any locale information, for instance a file named
labels.properties in the example application.

The <fmt:setBundle> action also supports the var and the scope attributes. They let you specify the name of a variable for
the bundle and the scope where it should be stored. The type of the variable is javax.servlet.jsp.jstl.fmt.LocaleContext. It's a
simple class that holds an instance of the java.util.ResourceBundle that was selected as well as a java.util.Locale instance for
the locale that matched it. This variable can be used as an attribute value for other I18N actions to tell them which
bundle to use. That's what I do for the bundle with page names in Example 14-1. If you omit the var attribute, the
action saves the localization context in a configuration variable for the scope instead. It is then used as the default for
all JSTL I18N actions that use a bundle. I use this approach for the bundle that contains all text, and I specify the
session scope so it's available to all pages requested by the same user.

As for all configuration setting, you can also define the base name for a resource bundle to use by default as a context
parameter:

<web-app>
 ...
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.fmt.localizationContext
 </param-name>
 <param-value>
 labels
 </param-value>
 </context-param>
 ...
</web-app>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</web-app>

The context parameter value is used by the I18N actions that need a localization context if it's not established in
another way, for instance by a <fmt:setBundle> action.

To extract the localized text from a resource bundle and add it to the response, you use the <fmt:message> action,
described in Table 14-5.

Table 14-5. Attributes for JSTL <fmt:message>

Attribute
name Java type

Dynamic
value

accepted
Description

key String Yes Mandatory, unless specified as the body. The message
key.

bundle javax.servlet.jsp.jstl.LocalizationContext Yes

Mandatory, unless a default is established by the
localization context configuration setting or by a
<fmt:bundle> action. A context with a resource bundle that
contains the message.

var String No Optional. The name of the variable to hold the message.

scope String No Optional. The scope for the message variable; one of
page, request, session, or application. page is the default.

The <fmt:message> action looks up the message identified by the key attribute value in the bundle specified by the bundle
attribute and adds it to the response. If it can't find a message for the key, it adds the key enclosed in question marks
instead. The var attribute can be used to save the localized message in the named variable instead. The variable is
saved in the page scope, unless another scope is specified by the scope attribute.

The bundle attribute can be omitted if a localization context configuration setting is used to establish a default bundle, as
is the case in Example 14-1. It can also be omitted if the <fmt:message> action is nested within the body of a
<fmt:bundle> action element, described in Table 14-6.

Table 14-6. Attributes for JSTL <fmt:bundle>
Attribute name Java type Dynamic value accepted Description

basename String Yes Mandatory. The resource bundle base name.

prefix String Yes Optional. A prefix to use for all key names in the bundle.

When you use the <fmt:bundle> action to establish the localization context for the nested actions, you can specify a key
prefix as well. The prefix attribute is a convenience feature that comes in handy if your resource bundle keys have very
long names. For instance, if all keys start with com.mycompany.labels, you can specify this as the prefix and use only the
last part of the key name for the <fmt:message> actions that pull messages from the bundle.

If you look carefully at Example 14-1, you'll notice that the only static content in the page consists of HTML elements;
all text is added by the <fmt:message> action, using localized messages from the resource bundle matching the selected
locale. Here's how the labels resource bundle file for the English locale, labels_en.properties file looks:

title=Industry Trends
select_language=Select your preferred language
new_language=New Language
english=English
swedish=Swedish
german=German
question=What's the longest development time you dare to plan with?
answer1=One year
answer2=Six months
answer3=Less than six months
result1=One year {0, number, integer}% ({1, number, integer})
result2=Six months {0, number, integer}% ({1, number, integer})
result3=Less than six months {0, number, integer}% ({1, number, integer})
submit=Vote
number_of_votes=Total number of votes
result=Poll result

The value of the title key, used by the first two <fmt:message> actions, is set to "Industry Trends"; that's what appears
as the title and header of the page when the English locale is selected. If the Swedish locale is selected, the text
"Industri Trender" (the value specified for the title key in the lables_sv.properties file) is used instead.

To let the user pick another language than the one selected based on the Accept-Language header, the page contains a
form with a set of radio buttons and a Submit button. Every time the page is displayed, the radio button group must
reflect the currently selected language. The only sure way to find out which language is selected is to ask the
LocalizationContext created by the <fmt:setBundle> action. The LocalizationContext class can be used as a bean with
properties named locale and resourceBundle. The locale property contains a Locale instance that represents the locale used
to pick the resource bundle. The Locale class can also be used as a bean, with a property named language. Armed with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to pick the resource bundle. The Locale class can also be used as a bean, with a property named language. Armed with
this knowledge, it's easy to write an EL expression that gets the current language:

...
 <c:set var="currLang" value="${pagesBundle.locale.language}" />
 <input type="radio" name="language" value="en"
 ${currLang == 'en' ? 'checked' : ''}>
...

The <c:set> action gets the current language using an EL expression that first gets the Locale from the LocalizationContext
stored in the pagesBundle variable and then the language from the Locale. The result is saved in a variable named
currLang, which is then used in the EL expressions for each radio button to set the checked attribute for the one that
matches the current language.

All radio button elements have the name language, which means that they form a group in which only one can be
selected. When the user clicks on the Submit button, the same page is requested with the value of the selected radio
button included as a request parameter named language. As described earlier, this parameter is then used to switch to
the selected language.

Next comes another form with radio buttons representing the three alternative answers to the poll question. All radio
buttons are named answerId. The texts for the question, the answers, and the Submit button are displayed in the
current language using the <fmt:message> action. When the user selects an answer and clicks on the Submit button,
the calculate.jsp page, shown in Example 14-2, is invoked.

Example 14-2. Validation and calculation of votes (calculate.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<jsp:useBean id="pollResult" scope="application"
 class="com.ora.jsp.beans.poll.PollBean" />

<jsp:useBean id="answer" class="com.ora.jsp.beans.poll.AnswerBean" >
 <jsp:setProperty name="answer" property="*" />
</jsp:useBean>

<c:choose>
 <c:when test="${answer.valid}" >
 <c:set target="${pollResult}" property="answer"
 value="${answer}" />
 <jsp:forward page="result.jsp" />
 </c:when>
 <c:otherwise>
 <jsp:forward page="poll.jsp" />
 </c:otherwise>
</c:choose>

As with all pure logic pages, this page contains only action elements; no response text is generated. A PollBean in the
application scope keeps track of the answers from all visitors, and an AnswerBean in the page scope captures and
validates a single answer. The AnswerBean has a property named answerId, set to the value of the corresponding request
parameter using the <jsp:setProperty> action. It also has a valid property, used in the <c:when> action to test if the
answer is valid or not. In this example, it returns true if the answer ID is valid (1, 2, or 3). However, in a real
application, you may want to include other validation rules. For instance, if the poll information is stored in a database,
you can use cookies or a username to make sure each user answers only once. If the answer is valid, a <c:set> action
sets the answer property of the PollBean to the valid answer, and the request is forwarded to the result.jsp page to
display the poll statistics. Figure 14-3 shows a sample of the results page with the Swedish locale.

Figure 14-3. The result page using the Swedish locale

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The result.jsp page, shown in Example 14-3, uses a couple of JSTL I18N actions we haven't talked about so far to
display the localized date and numbers.

Example 14-3. Showing the result (result.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
 <head>
 <title>
 <fmt:message key="title" />
 </title>
 </head>
 <body bgcolor="white">
 <jsp:useBean id="pollResult" scope="application"
 class="com.ora.jsp.beans.poll.PollBean" />
 <jsp:useBean id="now" class="java.util.Date" />
 <h1>
 <fmt:message key="result" />:
 <fmt:formatDate value="${now}" />
 </h1>

 <fmt:message key="question" />
 <p>
 <fmt:message key="number_of_votes" />:
 <fmt:formatNumber value="${pollResult.total}" />
 <table width="70%">
 <tr>
 <td width="30%">
 <fmt:message key="result1">
 <fmt:param value="${pollResult.answer1Percent}" />
 <fmt:param value="${pollResult.answer1}" />
 </fmt:message>
 </td>
 <td>
 <table
 width="<fmt:formatNumber
 value="${pollResult.answer1Percent}"/>%"
 bgcolor="lightgreen">
 <tr>
 <td> </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td width="30%">
 <fmt:message key="result2">
 <fmt:param value="${pollResult.answer2Percent}" />
 <fmt:param value="${pollResult.answer2}" />
 </fmt:message>
 </td>
 <td>
 <table
 width="<fmt:formatNumber
 value="${pollResult.answer2Percent}"/>%"
 bgcolor="lightblue">
 <tr>
 <td> </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td width="30%">
 <fmt:message key="result3">
 <fmt:param value="${pollResult.answer3Percent}" />
 <fmt:param value="${pollResult.answer3}" />
 </fmt:message>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </fmt:message>
 </td>
 <td>
 <table
 width="<fmt:formatNumber
 value="${pollResult.answer3Percent}"/>%"
 bgcolor="orange">
 <tr>
 <td> </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </body>
</html>

This page uses the <fmt:message> action to add the localized text, just like the poll.jsp page.

A <jsp:useBean> action creates a variable that represents the current date and time, and this value is then added to the
response with the <fmt:formatDate> action, described in Table 14-7. When you play around with this application, you see
how the date format changes depending on the language you select.

Table 14-7. Attributes for JSTL <fmt:formatDate>

Attribute
name Java type

Dynamic
value

accepted
Description

value java.util.Date Yes Mandatory. The date to format according to the selected locale.

pattern String Yes Optional. A custom pattern to use for both the date and time parts.

type String Yes Optional. Which part to format. One of time, date, or both. Default is
date.

dateStyle String Yes Optional. The predefined pattern to use for the date part. One of
default, short, medium, long, or full. The default is default.

timeStyle String Yes Optional. The predefined pattern to use for the time part. One of
default, short, medium, long, or full. The default is default.

timeZone String or
java.util.TimeZone Yes Optional. Time zone for the date/time.

var String No Optional. The name of a variable to hold the formatted value.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

The <fmt:formatDate> action supports many attributes, but all except value are optional. The var and scope attributes are
used as in all other JSTL actions: to specify the name of a variable to hold the result and optionally in which scope to
store it.

All the other attributes deal with how the value should be formatted. The type attribute specifies if the result should
contain just the date, just the time, or both. The dateStyle and timeStyle attributes allow you to specify predefined
patterns for the date and the time part. The patterns vary between locales. For the English locale, the following chart
shows the result of applying the predefined patterns for the date and time parts:

default Feb 22, 2002 1:01:15 PM

short 2/22/02 1:01 PM

medium Feb 22, 2002 1:01:15 PM

long February 22, 2002 1:01:15 PM PST

full Friday, February 22, 2002 1:01:15 PM PST

To use a custom pattern instead of one of the predefined patterns, you can use the pattern attribute. The pattern uses a
number of symbols to define which parts should be included, and in which form (i.e., as a number or a name). A
complete description is included in Appendix B, but the following chart shows a few examples using the English locale:

yyyy-MM-dd HH:mm:ss 2002-02-22 13:01:15

yyyy-MM-dd hh:mm a 2002-02-22 01:01 PM

MMMM dd, hh:mm a z February 22, 01:01 PM PST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, you can use the timeZone attribute to adjust the value to a specific time zone. Internally, Java handles date and
time values as coordinated universal time (UTC), a time zone-neutral format, if you will. But when you create a text
representation of a date, it must be displayed based on a specific time zone. If you do not specify a time zone, the
value is formatted based on the current time-zone settings (more about this shortly). The value of the timeZone
attribute can be a standard abbreviation (e.g., "PST," "GMT"), a full name (e.g., "Europe/Stockholm"), or a GMT offset
(e.g., "GMT+1"), specified as a static text value or a String variable.

Instead of specifying a time zone for each action that needs it, you can use the <fmt:setTimeZone> action, described in
Table 14-8, to change the default in the same way as for the locale and localization context. It can also be set by a
context parameter named javax.servlet.jsp.jstl.fmt.timeZone.

Table 14-8. Attributes for JSTL <fmt:setTimeZone>
Attribute

name Java type Dynamic value
accepted Description

value String or
java.util.TimeZone Yes Mandatory. The time zone. A String value must be an abbreviation,

full name, or GMT offset.

var String No Optional. The name of a variable to hold the TimeZone object.

scope String No Optional. The scope for the variable, one of page, request, session,
or application. page is the default.

Yet another alternative is the <fmt:timeZone> action described in Table 14-9. It establishes the time zone for all actions
in its body.

Table 14-9. Attributes for JSTL <fmt:timeZone>
Attribute

name Java type Dynamic value
accepted Description

value String or
java.util.TimeZone Yes Mandatory. The time zone. A String value must be an

abbreviation, full name, or GMT offset.

Back to Example 14-3. Another new action used in this page is the <fmt:formatNumber> action, used to format numbers
according to the rules for the selected locale. It's described in Table 14-10.

Table 14-10. Attributes for JSTL <fmt:formatNumber>
Attribute

name
Java
type

Dynamic value
accepted Description

value String or
Number Yes Mandatory, unless specified as the body. The number to format

according to the selected locale.

pattern String Yes Optional. A custom pattern to use for both the date and time parts.

type String Yes Optional. The number type. One of number, currency, or percentage.
Default is number.

currencyCode String Yes Optional. ISO-4217 currency code.

currencySymbol String Yes Optional. Currency symbol.

groupingUsed boolean Yes Optional. Should the formatted value use a grouping character?
Default is true.

maxIntegerDigits int Yes Optional. Maximum number of digits in the integer portion.

minIntegerDigits int Yes Optional. Minimum number of digits in the integer portion.

maxFractionDigits int Yes Optional. Maximum number of digits in the fractional portion.

minFractionDigits int Yes Optional. Minimum number of digits in the fractional portion.

var String No Optional. The name of a variable to hold the formatted value.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

The <fmt:formatNumber> action is the companion to the <fmt:formatDate> action, so it offers similar features. The use of
the value, var, and scope attributes should be familiar by now. The value can be specified as static text, a String variable,
or a Number variable.

The other attributes let you specify various formatting rules. The type attribute specifies if the number should be
formatted as a regular number, as currency or as a percent value. The currencyCode or currencySymbol attribute can
specify the currency symbol when type is set to currency, as an ISO-4217 code (e.g., "USD") or as the actual symbol

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specify the currency symbol when type is set to currency, as an ISO-4217 code (e.g., "USD") or as the actual symbol
(e.g., "$"), respectively. This can be useful when you need to show prices expressed in a fixed currency, but you want
the amount to be formatted according to the selected locale.

You can use the remaining attributes to adjust the default formatting rules defined by the type: groupingUsed,
maxIntegerDigits, minIntegerDigits, maxFractionDigits, and minFractionDigits. The attribute names should be self-explanatory.

The pattern attribute specifies a custom pattern, the same as with the <fmt:formatDate> action. Appendix B contains a
complete reference of the symbols you can use, but here are some examples for the English locale to give you an idea
of what a pattern looks like when it's applied to 10000:

#,###.00 10,000.00 Two decimals, mandatory

#,###.## 10,000 Two decimals, optional

#% 1000000% Multiplied by 100, with a percent sign

When the pattern attribute is specified, it overrides the type attribute and all the format adjustment attributes.

The first occurrence of the <fmt:formatNumber> action in Example 14-3 is used to display the total number of votes, just
before the table that shows the distribution of the votes.

The table with details about the distribution comes next. Here I have used a trick with nested tables to generate a
simple bar chart. I also use the <fmt:message> action described earlier in a new way:

...
 <table width="70%">
 <tr>
 <td width="30%">
 <fmt:message key="result1">
 <fmt:param value="${pollResult.answer1Percent}" />
 <fmt:param value="${pollResult.answer1}" />
 </fmt:message>
 </td>
 <td>
 <table
 width="<fmt:formatNumber
 value="${pollResult.answer1Percent}"/>%"
 bgcolor="lightgreen">
 <tr>
 <td> </td>
 </tr>
 </table>
 </td>
 </tr>
 ...

The main table contains a row with two cells for each poll answer. The first cell is just a regular cell, with the answer
text, the percentage of votes with this answer, and the absolute number of votes with this answer. The value is inserted
by a <fmt:message> action with nested <fmt:param> actions. This is a technique you can use when the localized message
contains dynamic values—in this case, the percentage and absolute number of votes. A message of this type looks like
this:

result1=One year {0, number, integer}% ({1, number, integer})

The message contains placeholders for dynamic values within curly braces. A number associates each placeholder with
a <fmt:param> action, starting with 0 for the first one. Optionally, the value type can be specified with one or more
comma-separated keywords, as in this example. Appendix B describes all options.

The next cell is also interesting. It contains a nested table, and the width of the table is set to the same percentage
value as the percentage of votes with this answer. By specifying a required space (using the HTML code) as the
value of the single cell and a unique background color, the result is a simple dynamic bar chart. As the percentage
values of the answers change, the width of each nested table changes as well, as shown in Figure 14-3. Pretty neat!

14.2.2 Using a Separate Page per Locale

The JSTL I18N actions make it easy to use the same page for all locales. But as described earlier, sometimes it's better
to use a separate page per locale. The poll example uses this approach for the detailed description of the question.

As shown in Example 14-1, the poll.jsp page uses a resource bundle with the base name pages to hold the name of the
details page for each locale. Here's how the pages_sv.properties looks:

details_page=details_sv.jsp

This makes it possible to use the <fmt:message> action to dynamically generate a link to a separate page for each
locale:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

locale:

<a href="<fmt:message key="details_page" bundle="${pagesBundle}" />">
 <fmt:message key="question" />

Here, I specify the bundle for the <fmt:message> action explicitly since the pages bundle is not the default bundle.

All that remains is to create a page per supported locale. Example 14-4 shows the Swedish page.

Example 14-4. Swedish details page (details_sv.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
 <head>
 <title>
 <fmt:message key="title" />
 </title>
 </head>
 <body bgcolor="yellow">
 <h1>

 <fmt:message key="question" />

 </h1>

 Idag introduceras nya teknologier och affärsideer mycket
 snabbt. Produkter som såg ut som givna vinstbringare
 igår är idag så vanliga att det inte går att tjäna
 pengar på dem, med flera versioner tillgängliga gratis
 som Open Source. En affärsplan baserad på inkomst från
 annonser på en populär web site, eller att lägga till
 ".com" till företagsnamnet, väcker inte samma intresse
 hos investerare idag som det gjorde för bara några månader
 sedan.
 <p>
 I en industri som rör sig så här snabbt, hur lång tid
 törs du allokera till utveckling av en ny produkt eller
 tjänst, utan att riskera att den är ointressant när den
 väl är färdig?

 </body>
</html>

As you can see, most of this page consists of Swedish text. The colors of the Swedish flag (yellow and blue) are also
used as the background, header, and text colors. The detail pages for the other locales follow the same pattern. When
the amount of text is large and other details of the page differ, like the colors in this example, it's often convenient to
use a separate page for each locale instead of the one-page approach described earlier.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.3 A Brief History of Bits
Let's shift gears a little and discuss additional issues to consider when dealing with non-Western European languages.
Once upon a time, not so long ago, bits were very expensive. Hard disks for storing bits, memory for loading bits,
communication equipment for sending bits over the wire; all the resources needed to handle bits were costly. To save
on these expensive resources, characters were initially represented by only seven bits. This was enough to represent all
letters in the English alphabet, 0 through 9, punctuation characters, and some control characters. That was all that was
really needed in the early days of computing, because most computers were kept busy doing number crunching.

But as computers were given new tasks, often dealing with human-readable text, 7 bits didn't cut it. Adding one bit
made it possible to represent all letters used in the Western European languages, but there are other languages besides
the Western European languages, even though companies based in English-speaking countries often seem to ignore
them. Eight bits is not enough to represent all characters used around the world. This problem was partly solved by
defining a number of standards for how eight bits should be used to represent different character subsets. Each of the
10 ISO-8859 standards defines what is called a charset: a mapping between 8 bits (a byte) and a character. For
instance, ISO-8859-1, also known as Latin-1, defines the subset used for Western European languages, such as
English, French, Italian, Spanish, German, and Swedish. This is the default charset for HTTP. Other standards in the
same series are ISO-8859-2, covering Central and Eastern European languages such as Hungarian, Polish, and
Romanian, and ISO-8859-5, with Cyrillic letters used in Russian, Bulgarian, and Macedonian. You can find information
about all 10 charsets in the ISO-8859 series at http://czyborra.com/charsets/iso8859.html.

Such languages as Chinese and Japanese contain thousands of characters but with 8 bits, you can only represent 256.
A number of multibyte charsets have therefore been defined to handle these languages, such as Big5 for Chinese,
Shift_JIS for Japanese, and EUC-KR for Korean.

As you can imagine, all these different standards make it hard to exchange information encoded in different ways. To
simplify life, the Unicode standard was defined by the Unicode Consortium, which was founded in 1991 by companies
such as Apple, IBM, Microsoft, Novell, Sun, and Xerox. Unicode uses 2 bytes (16 bits) to define unique codes for 49,194
characters in Version 3.0, covering most of the world's languages. Java uses Unicode for its internal representation of
characters, and Unicode is also supported by many other technologies, such as XML and LDAP. Support for Unicode is
included in all modern browsers, such as Netscape and Internet Explorer since Version 4. If you like to learn more
about Unicode, visit http://www.unicode.org/.

What does all this mean to you as a web application developer? Well, since ISO- 8859-1 is the default charset for HTTP,
you don't have to worry about this at all when you work with Western European languages. But if you would like to
provide content in another language, such as Japanese or Russian, you need to tell the browser which charset you're
using so it can interpret and render the characters correctly. In addition, the browser must be configured with a font
that can display the characters. You find information about fonts for Netscape at http://home.netscape.com/eng/intl/
and for Internet Explorer at http://www.microsoft.com/ie/intlhome.htm.

JSP is Java, so the web container uses Unicode internally, but the JSP page is typically stored using another encoding,
and the response may need to be sent to the browser with different encoding still. There are two page directive
attributes that can specify these charsets. The pageEncoding attribute specifies the charset for the bytes in the JSP page
itself, so the container can translate them to Unicode when it reads the file. The contentType attribute can contain a
charset in addition to the MIME type, as shown in Figure 14-4. This charset tells the container to convert the Unicode
characters used internally to the specified charset encoding when the response is sent to the browser. It is also used to
set the charset attribute in the Content-Type header to tell the browser how to interpret the response. If a pageEncoding is
not specified, the charset specified by the contentType attribute is used to interpret the JSP page bytes as well, and vice
versa if pageEncoding is specified but not a contentType charset. If a charset is not specified at all, ISO-8859-1 is used for
both the page and the response.[1]

[1] For a JSP Document (a JSP page in XML format, described in Chapter 17), UTF-8 or UTF-16 is the default, as
determined by the XML parser.

Enough theory. Figure 14-4 shows a simple JSP page that sends the text "Hello World" in Japanese to the browser. The
Japanese characters are copied with permission from Jason Hunter's Java Servlet Programming (O'Reilly).

Figure 14-4. Japanese JSP page (japanese.jsp)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To create a file with Japanese or other non-Western European characters, you obviously need a text editor that can
handle multibyte characters. The JSP page in Figure 14-4 was created with WordPad on a Windows NT system, using a
Japanese font called MS Gothic and saved as a file encoded with the Shift_JIS charset. Shift_JIS is therefore the charset
specified by the pageEncoding attribute, so the container knows how to read the file. Another charset called UTF-8 is
specified for the response by the contentType attribute, using the charset attribute. UTF-8 is an efficient charset that
encodes Unicode characters as one, two, or three bytes, as needed, supported by all modern browsers (e.g., Netscape
and Internet Explorer, Versions 4 or later). It can be used for any language, assuming the browser has access to a font
with the language character symbols.

Note that the page directive that defines the charset for the file must appear as early as possible in the JSP page,
before any characters that can only be interpreted when the charset is known. I recommend you insert it as the first
line in the file to avoid problems.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

14.4 Handling Localized Input
So far we have discussed how to generate pages in different languages, but most applications also need to deal with
localized input. As long as you're supporting only Western European languages, the only thing you typically need to
worry about is how to interpret dates and numbers. The JSTL I18N actions can help you with this as well.

Example 14-5 shows a JSP page with the same form for selecting a language as in Example 14-1, plus a form with one
field for a date and another for a number.

Example 14-5. Date and number input form (input.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<%--
 Set the locale to the selected one, if any. Otherwise, let the
 <fmt:bundle> action pick the best one based on the Accept-Language
 header.
--%>
<c:if test="${param.language == 'en'}">
 <fmt:setLocale value="en" scope="session" />
</c:if>
<c:if test="${param.language == 'sv'}">
 <fmt:setLocale value="sv" scope="session" />
</c:if>
<c:if test="${param.language == 'de'}">
 <fmt:setLocale value="de" scope="session" />
</c:if>
<fmt:setBundle basename="input" var="inputBundle" />
<fmt:setBundle basename="input" scope="session" />
<html>
 <head>
 <title>
 <fmt:message key="title" />
 </title>
 </head>
 <body bgcolor="white">
 <h1>
 <fmt:message key="title" />
 </h1>

 <fmt:message key="select_language" />
 <form action="input.jsp">
 <c:set var="currLang" value="${inputBundle.locale.language}" />
 <input type="radio" name="language" value="en"
 ${currLang == 'en' ? 'checked' : ''}>
 <fmt:message key="english" />

 <input type="radio" name="language" value="sv"
 ${currLang == 'sv' ? 'checked' : ''}>
 <fmt:message key="swedish" />

 <input type="radio" name="language" value="de"
 ${currLang == 'de' ? 'checked' : ''}>
 <fmt:message key="german" />

 <p>
 <input type="submit"
 value="<fmt:message key="new_language" />">
 </form>

 <form action="process.jsp" method="post">
 <fmt:message key="date" />

 <jsp:useBean id="now" class="java.util.Date" />
 <input type="text" name="date">
 (<fmt:formatDate value="${now}" dateStyle="full" />)
 <p>
 <fmt:message key="number" />

 <input type="text" name="number">
 (<fmt:formatNumber value="1000.9" pattern="####.00"/>)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (<fmt:formatNumber value="1000.9" pattern="####.00"/>)
 <p>
 <input type="submit"
 value="<fmt:message key="submit" />">
 </form>
 </body>
</html>

The language selection part, the use of a bundle, and the <fmt:message> action to display localized test are exactly as in
Example 14-1; if a specific language is requested, the corresponding locale is set for the session, otherwise the
<fmt:setBundle> action figures out which one to use based on the Accept-Language header.

The second form in the page—with the date and number entry fields—uses the <fmt:formatDate> and <fmt:formatNumber>
actions described earlier to add samples for the date and number, respectively. This helps the user to use the required
format for the values. I set the dateStyle attribute to full, just to make the difference between the languages more
visible. The default style is a better choice for a real application.

On to the most interesting part. Example 14-6 shows the JSP page that processes the submitted values.

Example 14-6. Processing localized input (process.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<html>
 <head>
 <title>Parsed Date and Number</title>
 </head>
 <body bgcolor="white">
 <h1>Parsed Date and Number</h1>

 Date string converted to the internal Java Date type:
 <fmt:parseDate value="${param.date}" dateStyle="full" />
 <p>
 Number string converted to the internal Java Number type:
 <fmt:parseNumber value="${param.number}" pattern="####.00" />
 </body>
</html>

This page reads and interprets (parses) the localized text values for the date and number sent as parameters and
converts them to the appropriate Java objects that represent dates and numbers, using the <fmt:parseDate> and
<fmt:parseNumber> actions described in Tables Table 14-11 and Table 14-12.

Table 14-11. Attributes for JSTL <fmt:parseDate>

Attribute
name Java type

Dynamic
value

accepted
Description

value String Yes Mandatory, unless specified as the body. The text value to parse as a
date according to the selected locale.

pattern String Yes Optional. A custom pattern to use for both the date and time parts.

type String Yes Optional. What the value contains. One of time, date, or both. Default is
date.

dateStyle String Yes Optional. The predefined pattern to use for the date part. One of
default, short, medium, long, or full. The default is default.

timeStyle String Yes Optional. The predefined pattern to use for the time part. One of
default, short, medium, long, or full. The default is default.

timeZone String or
java.util.TimeZone Yes Optional. Time zone for the date/time.

parseLocale String or
java.util.Locale Yes Optional. The locale used to parse the value.

var String No Optional. The name of a variable to hold the result, a java.util.Date
object.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

Table 14-12. Attributes for JSTL <fmt:parseNumber>
Attribute

name Java type Dynamic value
accepted Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value String Yes Mandatory, unless specified as the body. The value to parse as a
number according to the selected locale.

pattern String Yes Optional. A custom pattern to use for both the date and time parts.

type String Yes Optional. The number type. One of number, currency, or percentage.
Default is number.

parseLocale java.util.Locale Yes Optional. The locale used to parse the value.

integerOnly boolean Yes Optional. true if only the integer portion should be parsed.

var String No Optional. The name of a variable to hold the result, a Number.

scope String No Optional. The scope for the variable, one of page, request, session, or
application. page is the default.

<fmt:parseDate> and <fmt:parseNumber> complement the <fmt:formatDate> and <fmt:formatNumber> actions, and support
most of the same attributes to describe the format of the value to be parsed. Note that the parsing actions in Example
14-6 specify the same text format as the formatting actions that generate the samples in the form: dateStyle is set to full
and pattern to ####.00. This allows the parsing actions to handle text values in the prescribed format for the locale
selected and saved in the session by the I18N actions in the input.jsp page.

In this example, the parsed values are simply added to the response in their default format to prove that the parsing
works no matter which language you select. In a real application, the parsed values can be used as input to another
action that requires a java.util.Date or Number object instead of a text value representing a date or a number, for instance
the database actions:

<fmt:parseDate value="${param.date}" dateStyle="full"
 var="parsedDate" />
<fmt:parseNumber value="${param.number}" pattern="####.00"
 var="parsedNumber" />

<sql:update>
 INSERT INTO MyTable (DateCol, NumberCol) VALUES(?, ?)
 <sql:dateParam value="${parsedDate}" />
 <sql:param value="${parsedNumber}" />
</sql:update>

Both parsing actions throw exceptions if the specified value cannot be interpreted as a number or a date. You can
embed the actions in the body of a <c:catch> action element, as shown in Chapter 12, to deal with invalid values.

14.4.1 Dealing with Non-Western European Input

An HTML form can be used for input in languages other than Western European, but the charset discussed earlier
comes into play here as well. First of all, when you create a page with a form for entering non-Western European
characters, you must tell the browser which charset should be used for the user input. One way to give the browser this
information is to hardcode a charset name as part of the contentType attribute of the page directive, as in Figure 14-4:

<%@ page pageEncoding="Shift_JIS"
 contentType="text/html;charset=UTF-8" %>

The user can then enter values with the characters of the corresponding language (e.g., Japanese symbols).

But there's something else to be aware of here. When the user submits the form, the browser first converts the form-
field values to the corresponding byte values for the specified charset. It then encodes the resulting bytes according to
the HTTP standard URL encoding scheme, the same way special characters such as space and semicolon are converted
when an ISO-8859-1 encoding is used. The bytes for all characters other than ISO-8859-1 a-z, A-Z, and 0-9, are
encoded as the byte value in hexadecimal format, preceded by a percent sign. For instance, the symbols for "Hello
World" in Japanese are sent like the following if the charset for the form is set to UTF-8:

%E4%BB%8A%E6%97%A5%E3%81%AF%E4%B8%96%E7%95%8C

This code represents the URL-encoded UTF-8 byte codes for the five Japanese symbols (three bytes for each symbol).
In order to process this information, the container must know which charset the browser used to encode it. The
problem is that even though the HTTP specification says that the charset name must be sent in the Content-Type request
header, most browsers don't. It's therefore up to you to keep track of this and tell the container which charset to use to
decode the parameter values. If a fixed charset is used (e.g., always UTF-8, as in this example), you can use the
<fmt:requestEncoding> (see Table 14-13) like this in the page that processes the input:

<fmt:requestEncoding value="UTF-8" />

This action tells the container which charset to use, so parameter values accessed after the action element are decoded
correctly. Note that you must insert this action before any actions that access request parameters; the container may
decode all parameters in one shot, so it must be told which charset to use before the first parameter is used.

Table 14-13. Attributes for JSTL <fmt:requestEncoding>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 14-13. Attributes for JSTL <fmt:requestEncoding>

Attribute
name

Java
type

Dynamic
value

accepted
Description

value String Yes Optional. The charset to use when decoding parameters. Default is the charset
saved by another JSTL I18N action as a session variable.

As long as you need to deal with only one non-Western European language, this is not so hard. But what if you need to
handle input in multiple non-Western European languages, picked at runtime in the same fashion as in the previous
examples for Western European languages, with each language using a different charset? Luckily, the JSTL I18N actions
make this a lot easier than it sounds. Example 14-7 shows a JSP page with a form for entering a date and a text value
in Japanese, Russian, or Greek.

Example 14-7. Non-Western European input page (input_nw.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<c:set var="lang" value="${param.language}" />
<c:choose>
 <c:when test="${lang == 'el'}">
 <fmt:setLocale value="el" scope="session" />
 </c:when>
 <c:when test="${lang == 'ru'}">
 <fmt:setLocale value="ru" scope="session" />
 </c:when>
 <c:otherwise>
 <fmt:setLocale value="ja" scope="session" />
 <c:set var="lang" value="ja" />
 </c:otherwise>
</c:choose>
<fmt:setBundle basename="dummy" scope="session" />
<html>
 <head>
 <title>
 Non-Western European Input Test
 </title>
 </head>
 <body bgcolor="white">
 <h1>
 Non-Western European Input Test
 </h1>

 <form action="input_nw.jsp">
 <input type="radio" name="language" value="ja"
 ${lang == 'ja' ? 'checked' : ''}>
 Japanese

 <input type="radio" name="language" value="el"
 ${lang == 'el' ? 'checked' : ''}>
 Greek

 <input type="radio" name="language" value="ru"
 ${lang == 'ru' ? 'checked' : ''}>
 Russian

 <p>
 <input type="submit"
 value="New Language">
 </form>

 <form action="process_nw.jsp" method="post">
 Enter a date:

 <jsp:useBean id="now" class="java.util.Date" />
 <input type="text" name="date">
 (<fmt:formatDate value="${now}" dateStyle="full" />)
 <p>
 Enter some text:

 <input type="text" name="text">
 <p>
 <input type="submit" value="Send" >
 </form>
 </body>
</html>

This page looks similar to the one used for Western European input in Example 14-5. Besides the set of supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This page looks similar to the one used for Western European input in Example 14-5. Besides the set of supported
languages, and that English is used for all descriptive text (because I don't know the other languages) the main
difference is that Japanese is selected if no language is requested or the requested one is not supported, instead of
letting a <fmt:setBundle> action pick a language based on the Accept-Language header. The reason for this is that you can
define only one fallback locale for an application, and I already defined it as the English locale for the previous examples
in this chapter. If that was not the case, I could have used exactly the same approach here and defined the Japanese
locale as the fallback locale. Even so, I still use a <fmt:setBundle> action in this page, with a dummy base name. This is
just a hack to overwrite the default localization context. Without it, the JSTL formatting and parsing actions pick up the
locale from the default localization context set for the session by the other examples. The final difference is that the
data entry form now contains a field for a text value instead of a field for a numeric value, just to show you how to deal
with pure text in non-Western European languages. Everything else is the same, and this similarity between the two
examples illustrates the beauty of the JSTL I18N actions; they hide a lot of the details you otherwise have to take care
of yourself.

One detail you have to deal with when you support input in non-Western European languages is the setting of the
charset for the form page. Note that no charset is specified as part of the contentType attribute. The charset is instead
set automatically by the first JSTL I18N action that sets the locale for the page. In Example 14-7, it's done by the
<fmt:setLocale> action, but all JSTL I18N actions that select a locale based on the Accept-Language header, such as
<fmt:setBundle>, do the same. In addition to setting the charset for the response generated by the page, these actions
also save the selected charset as a session scope variable named javax.servlet.jsp.jstl.i18n.request.charset. You'll soon see
why this is important.

Example 14-8 shows the process_nw.jsp page, the page that processes the input.

Example 14-8. Processing non-Western European input (process_nw.jsp)

<%@ page contentType="text/html;charset=UTF-8" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<fmt:requestEncoding />
<html>
 <head>
 <title>Processing Non-Western European Input</title>
 </head>
 <body bgcolor="white">
 <h1>Processing Non-Western European Input</h1>

 Text string converted to a Java Unicode string:
 ${fn:escapeXml(param.text)}
 <p>
 Date string converted to the internal Java Date type:
 <fmt:parseDate value="${param.date}" dateStyle="full" />
 </body>
</html>

The good news is that the most interesting difference between this page and the one for processing Western language
input in Example 14-6 is the <fmt:requestEncoding> action at the beginning of the page. This action sets the charset used
to read the request parameters, as described earlier. Note that I don't specify a specific charset using the value
attribute. In this case, the action first looks for a Content-Type header (in case browsers one day actually comply with
the HTTP specification) and then for the charset saved by a JSTL I18N action in the variable
javax.servlet.jsp.jstl.i18n.request.charset. After setting the request encoding, all parameter values accessed through the EL
expressions are converted to Unicode. The page directive contentType for the process_nw.jsp page specifies the UTF-8
charset for the response, so that all languages can be displayed correctly.

To recap, the full round-trip goes like this. The charset for the page with the form is set dynamically based on the
selected language by the I18N actions. When the form is submitted, the request parameters are passed to the target
page, encoded with the charset used for the page with the form. They get decoded to Unicode by the EL expressions
based on the encoding set by the <fmt:requestEncoding> action, and then encoded as UTF-8 in the response due to the
contentType attribute value.

That's all there's to it. There are a couple of things you should be aware of, though. First of all, the I18N JSTL actions
can set the charset for the response only as long as no part of the response has been sent to the browser (this is true
for all response headers). By default, JSP pages are buffered using a large enough buffer for this to be rarely a
problem, but if it doesn't work for your own pages, try extending the buffer size as described in Chapter 16. Another
issue is that this functionality is based on the assumption that all containers deal with the charset setting in the same
way. Unfortunately, the JSP 1.2 and Servlet 2.3 specs were vague about these details, for instance, whether a charset
defined by the contentType attribute has precedent over a charset defined dynamically by an action. A specification
errata (clarification) was issued to correct this, but some JSP 1.2 containers may still not behave as expected. The JSP
2.0 and Servlet 2.4 specifications include clarifications of these details as well, so with a web container compliant with
these specification versions, you shouldn't have a problem.

When all goes as planned, the result of processing Greek input looks like Figure 14-5.

Figure 14-5. Processed Greek input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-5. Processed Greek input

As with the Western European input example, the decoded request parameter values are just added to the response. In
a real-world application you can do anything you like with the values, such as storing them in a database.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 15. Working with XML Data
There's no escape from Extensible Markup Language (XML) these days. It's everywhere: in configuration files,
messages between servers, web pages, even databases. Wherever there's structured data, XML is often found close by.

As I mentioned earlier, JSP pages can generate any type of text, including XML. In the simplest case, the JSP page
includes static XML elements as template text and a few actions to add the dynamic data, similar to the HTML examples
in previous chapters. A more sophisticated page gets raw XML data from somewhere and transforms it to different XML
formats depending on the type of browser making the request.

More and more, web applications also consume XML data generated by an external source, perhaps a database or
another server. Such an application may extract price information from different vendors' product catalogs, published
as XML documents, and create a side-by-side comparison.

In this chapter we first look at the things you need to be aware of when generating XML responses with JSP, including
device-dependent transformations, and then how to process XML data in different ways.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.1 Generating an XML Response
XML is a set of syntax rules for how to represent structured data using markup elements represented by an opening tag
(optionally with attributes), a body, and a closing tag:

<employee id="123">
 <first-name>Hans</first-name>
 <last-name>Bergsten</last-name>
 <telephone>310-555-1212</telephone>
</employee>

This XML example contains four elements: <employee>, <first-name>, <last-name>, and <telephone>.

By selecting sensible element names, an XML file may be understandable to a human, but to make sense to a program,
it must use only a restricted set of elements in which each element has a well-defined meaning. This is known as an
XML application (the XML syntax applied to a certain application domain). A couple of examples are the Wireless Markup
Language (WML) used for browsers in cellular phones and other small devices, and XHTML, which is HTML 4.0
reformulated as an XML application. Another example is the web application deployment descriptor, used to configure
various aspects of a standard Java web application, as you have seen in the previous chapters.

As I mentioned in Chapter 3 and Chapter 5, everything in a JSP page that is not a JSP element is template text. In all
examples so far, I have used HTML as the template text, but it can be any markup, for instance XHTML or WML XML
elements. Example 15-1 shows a JSP page that sends a simple phone book to a wireless device, using the XML
elements defined by the WML specification as the template text.

Example 15-1. WML phone book JSP page (phone_wml.jsp)

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">
<%@ page contentType="text/vnd.wap.wml" %>
<wml>
 <card id="list" newcontext="true">
 <p>Phone List</p>
 <p>
 <anchor>Bergsten, Hans
 <go href="#Bergsten_Hans"/>
 </anchor>

 <anchor>Eckstein, Bob
 <go href="#Eckstein_Bob"/>
 </anchor>

 <anchor>Ferguson, Paula
 <go href="#Ferguson_Paula"/>
 </anchor>
 </p>
 </card>

 <card id="Bergsten_Hans">
 <p>Bergsten, Hans</p>
 <p>
 Phone: 310-555-1212
 <do type="prev" label="Back">
 <prev/>
 </do>
 </p>
 </card>
 <card id="Eckstein_Bob">
 <p>Eckstein, Bob</p>
 <p>
 Phone: 800-555-5678
 <do type="prev" label="Back">
 <prev/>
 </do>
 </p>
 </card>
 <card id="Ferguson_Paula">
 <p>Ferguson, Paula</p>
 <p>
 Phone: 213-555-1234
 <do type="prev" label="Back">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <do type="prev" label="Back">
 <prev/>
 </do>
 </p>
 </card>
</wml>

A discussion of the WML elements is outside the scope of this book, but let's look at some important details of the JSP
page. The first line in Example 15-1 is an XML declaration, telling which version of XML the document conforms to.
Some WML browsers are very picky about this being the first thing in an XML document, and even whitespaces—regular
spaces, linefeed characters, and tab characters—before the declaration can throw them off. In all examples you have
seen so far, the JSP page directive has been on the first line. Here, I have moved it down so that the linefeed character
that ends the directive line doesn't cause any problems.

The second and third lines in Example 15-1 contain an XML document type declaration. This identifies the so-called
Document Type Definition (DTD) for the document, basically the definition of all XML elements a conforming document
of this type can contain. Here, it's the DTD for the WML 1.1 elements.

The JSP page directive on the fourth line is important. The content type for a JSP page is text/html by default. For a WML
document, you must instead specify the content type text/vnd.wap.wml. Otherwise the WML browser doesn't accept the
document.

The rest of the page in Example 15-1 is just static WML code. To run this example, you need a WML browser. I've used
the WML browser included in the Openwave Systems Inc. SDK 4.1, available at
http://developer.openwave.com/resources/sdk.html, to test the examples in this chapter. Figure 15-1 shows what the
phone-list menu card and one details card look like in this WML browser.

Figure 15-1. Phone list in WML browser (UP.SDK image courtesy of Openwave
Systems Inc.)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.2 Transforming XML into HTML
You may also have heard about the Extensible Stylesheet Language (XSL). XSL defines one set of XML elements to
transform an XML document into some other type of document, and another set of elements to produce a formatted
version of an XML document suitable for display. Browsers and other programs that need to render an XML document
with different styles for different elements, such as a bold large font for a header and a regular font for paragraph text,
use the formatting part of XSL. The transformation part of XSL is referred to as XSLT. XSLT can turn a source XML
document, such as a document representing an order, into different forms using different stylesheets. This is useful in
business-to-business (B2B) applications, where different partners often require the same information in slightly
different formats. You can read more about XSL and XSLT at http://www.w3.org/TR/xsl/.

In a web application, XSLT can transform structured XML data into HTML. Example 15-2 shows an example of a JSP
page in which the same phone book information used in Example 15-1 is transformed into an HTML table.

Example 15-2. Transforming XML to HTML (phone_html.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>
<html>
 <head>
 <title>Phone List</title>
 </head>
 <body bgcolor="white">

 <c:import url="htmltable.xsl" var="stylesheet" />
 <x:transform xslt="${stylesheet}">
 <?xml version="1.0" encoding="ISO-8859-1"?>
 <employees>
 <employee id="123">
 <first-name>Hans</first-name>
 <last-name>Bergsten</last-name>
 <telephone>310-555-1212</telephone>
 </employee>
 <employee id="456">
 <first-name>Bob</first-name>
 <last-name>Eckstein</last-name>
 <telephone>800-555-5678</telephone>
 </employee>
 <employee id="789">
 <first-name>Paula</first-name>
 <last-name>Ferguson</last-name>
 <telephone>213-555-1234</telephone>
 </employee>
 </employees>
 </x:transform>

 </body>
</html>

At the top of the page, the taglib directive for the JSTL XML library is included, along with the directive for the JSTL core
library used in previous chapters.

To transform the XML data, you first need to get hold of the XSLT stylesheet. The JSTL <c:import> action, described in
Table 15-1, loads the stylesheet from the file specified by the url attribute and saves it in the variable named by the var
attribute.

Table 15-1. Attributes for JSTL <c:import>

Attribute
name

Java
type

Dynamic
value

accepted
Description

url String Yes Mandatory. A page- or context-relative path, or an absolute URL.

context String Yes Optional. The context path for another application.

charEncoding String Yes
Optional. The character encoding for the imported content. Default is the encoding
specified by the protocol used for the import or ISO-8859-1 if no encoding is
found.

var String No Optional. The name of the variable to hold the result as a String.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scope String No Optional. The scope for the variable, one of page, request, session, or application. page
is the default.

varReader String No Optional. The name of the variable to expose the result as a Reader to the body.

The <c:import> action is very versatile. You can use it to import data from resources in the same application, another
application on the same server (identified by the context attribute), and even from an external server by specifying an
absolute URL for any protocol supported by the web container, such as HTTP, HTTPS, or FTP. Parameters can be defined
either in the URL as a query string or using nested <c:param> actions. The imported data can be saved as a String in any
scope, or exposed as a java.io.Reader to actions within the element's body. Using a Reader is slightly more efficient,
because the <c:import> action doesn't have to read the input in this case; it just wraps a Reader around the input stream
that a nested action then reads directly. I'll show you an example of this later. When you import a resource (such as a
JSP page) that belongs to the same application, the target resource has access to all request parameters and variables
in the request scope, the same way as when you use the <jsp:forward> action (Chapter 10).

The transformation is performed by a JSTL action named <x:transform>, described in Table 15-2.

Table 15-2. Attributes for JSTL <x:transform>

Attribute
name Java type

Dynamic
value

accepted
Description

doc
String, java.io.Reader, javax.xml.transform.Source,
org.w3c.dom.Document, or the types exposed by
<x:parse> and <x:set>

Yes Mandatory, unless specified as the body.
The XML document to transform.

xslt String, java.io.Reader, javax.xml.transform.Source Yes Mandatory. The XSLT stylesheet.

docSystemId String Yes Optional. The system identifier for the
XML document.

xsltSystemId String Yes Optional. The system identifier for the
XSLT stylesheet.

result javax.xml.transform.Result Yes Optional. A Result object used to capture
or process the transformation result.

var String No Optional. The name of the variable to
hold the result as a org.w3c.dom.Document.

scope String No
Optional. The scope for the variable; one
of page, request, session, or application. page
is the default.

The XML document to transform can be specified as the body, as in Example 15-2, or as a variable through the doc
attribute. The example XML document contains elements representing information about employees. The xsl attribute is
set to the XSL stylesheet imported by the <c:import> action. It contains XSLT elements for transforming the XML
document into an HTML table. In Example 15-2, both the var and the result attributes are omitted, so the <x:transform>
action adds its result to the response. This is the most common use, but the var and result attributes can be used if the
transformation result needs to be captured and processed further.

Descriptions of all the XSLT elements would fill a book all by itself, but Example 15-3 shows the stylesheet used here to
give you an idea of how XSLT looks.

Example 15-3. XSL stylesheet that generates an HTML table (htmltable.xsl)

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="employees">
 <table border="1" width="100%">
 <tr>
 <th>ID</th>
 <th>Employee Name</th>
 <th>Phone Number</th>
 </tr>
 <xsl:for-each select="employee">
 <tr>
 <td>
 <xsl:value-of select="@id"/>
 </td>
 <td>
 <xsl:value-of select="last-name"/>,
 <xsl:value-of select="first-name"/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <xsl:value-of select="first-name"/>
 </td>
 <td>
 <xsl:value-of select="telephone"/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </xsl:template>

</xsl:stylesheet>

The XSLT elements are similar to JSP action elements in that they perform some action rather than identify information
types. The XSLT elements select and process pieces of the source XML document. Here, the <xsl:template> element
selects the top <employees> element in the source XML document, the <xsl:for-each> element loops over all nested
<employee> elements, and the <xsl:value-of> elements extract the attribute values and nested elements for each
<employee> element. The non-XSLT elements are used as template data, the same way as in JSP. You get the idea.

An XSLT stylesheet can use parameters to represent dynamic data, provided to the XSLT processor when a document is
transformed:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:param name="empName" />

 <xsl:template match="employees/employee[name = $empName]">
 ...

The parameter in this example limits the <employee> elements to be processed to those that have a <name> element
with the value specified by the parameter.

To pass the parameter value to the XSLT stylesheet, you must use a nested <x:param> action in the <x:transform> body:

<x:transform xslt="${stylesheet}">
 <x:param name="empName" value="${param:empName}" />
 <?xml version="1.0" encoding="ISO-8859-1"?>
 <employees>
 <employee id="123">
 <first-name>Hans</first-name>
 <last-name>Bergsten</last-name>
 <telephone>310-555-1212</telephone>
 </employee>
 ...
</x:transform>

Here I pass on a request parameter value to the stylesheet, but you can, of course, use any EL expression as the value.

XML documents, including XSLT stylesheets, can contain references to external entities, for instance in the XSL
<xsl:include> and <xsl:import> elements. If these references are written as relative paths in the document, a base URI
must be used to establish what they are relative to. You can pass base URIs for the XSLT stylesheet and the XML
source to the <x:transform> action through the xsltSystemId and the docSystemId attributes. The value can be any valid
URI, such as an absolute file or HTTP URL or a context- or page-relative path.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.3 Transforming XML into a Device-Dependent Format
A web application can use XSLT to respond with different content depending on the type of device making the request.
Example 15-4 shows a page that serves both HTML and WML browsers by applying different stylesheets to the same
XML document, transforming it to the appropriate markup for the browser that requests it.

Example 15-4. XSL stylesheet that generates HTML or WML (phone.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"
%><%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml"
%><%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions"
%><%@ taglib prefix="ora" uri="orataglib"
%><c:choose><c:when
test="${fn:contains(header.Accept, 'text/vnd.wap.wml'}"
><ora:setHeader name="Content-Type" value="text/vnd.wap.wml"
/><c:import url="wml.xsl" var="stylesheet"
/></c:when><c:otherwise><ora:setHeader name="Content-Type" value="text/html"
/><c:import url="html.xsl" var="stylesheet"
/></c:otherwise></c:choose><x:transform xslt="${stylesheet}">
 <?xml version="1.0" encoding="ISO-8859-1"?>
 <employees>
 <employee id="123">
 <first-name>Hans</first-name>
 <last-name>Bergsten</last-name>
 <telephone>310-555-1212</telephone>
 </employee>
 <employee id="456">
 <first-name>Bob</first-name>
 <last-name>Eckstein</last-name>
 <telephone>800-555-5678</telephone>
 </employee>
 <employee id="789">
 <first-name>Paula</first-name>
 <last-name>Ferguson</last-name>
 <telephone>213-555-1234</telephone>
 </employee>
 </employees>
</x:transform>

There are a number of things to note here. First, see how messy the page looks. That's because the start tag for all JSP
directives and actions in this page are written on the same line as the end tag for the preceding element, to make sure
that no extra linefeeds are added to the response. As described earlier, leading whitespace (such as linefeed
characters) in a WML page can cause a WML browser to reject the page.

Because the page can serve both HTML and WML content, the page directive's contentType attribute cannot be used to
set the content type. Instead, the content type needs to be set dynamically. This page uses a JSTL function and a
custom action to handle this. The JSTL fn:contains() function checks if the HTTP Accept header contains the content type
for WML. This piece of information is used to decide which type of content to return. If the browser accepts WML, the
<ora:setHeader> custom action sets the Content-Type header dynamically to text/vnd.wap.wml, otherwise to text/html. The
<c:import> actions import the appropriate stylesheet, wml.xsl or html.xsl, based on the device type making the request,
and the <x:transform> action finally transforms the XML document accordingly.

For a simple example like this, letting an XSLT stylesheet transform the XML source into a complete web page works
fine. However, on most real web sites, the HTML version of the site differs significantly from the WML version. You want
to provide a rich interface for HTML browsers with a nice layout, navigation bars, images, colors, and fonts, and
typically as much content as you can fit on each page. A WML browser, on the other hand, has a very small screen with
limited layout, font, and graphics capabilities. Developing an efficient interface for this type of device is very different. A
more practical approach for combining XML, XSLT, and JSP to serve different types of browsers is to keep the actual
content (articles, product information, phone lists, etc.) in a device-independent XML format, but use separate JSP
pages for each device type. The JSP pages can then use the <x:transform> action to transform the key content and
merge it with the device-dependent template text to form a complete page suitable for each specific device type, like in
Example 15-1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

15.4 Processing XML Data
XSLT is great for transforming an XML source into another format, but sometimes you need to process the XML data in
other ways. For instance, you may want to use part of the XML data in a database query to get additional information
and compose a response that merges the two data sources, or reformat date and numeric information in the XML
source according to the user's preferred locale. To process XML data in this way, the JSTL XML library includes a
number of actions for picking out pieces of an XML document, as well as iteration and conditional actions similar to the
ones in the core library, but adapted to work specifically with XML data.

In this section, we look at an example that uses most of the JSTL XML actions. The XML data comes from the O'Reilly
Meerkat news feed. Meerkat scans a large set of Rich Site Summary (RSS)—an XML application suitable for news,
product announcements, and similar content—sources frequently and makes the aggregated data available in a number
of formats, including a superset of the RSS format that includes category, source, and date information for each story.
You can learn more about Meerkat and how to use it at
http://www.oreillynet.com/pub/a/rss/2000/05/09/meerkat_api.html. Example 15-5 shows a sample of the XML data
that Meerkat can deliver.

Example 15-5. Meerkat XML news feed format

<?xml version="1.0"?>
<!DOCTYPE meerkat_xml_flavour
 SYSTEM "http://meerkat.oreillynet.com/dtd/meerkat_xml_flavour.dtd">

<meerkat>

 <title>Meerkat: An Open Wire Service</title>
 <link>http://meerkat.oreillynet.com</link>
 <description>
 Meerkat is a Web-based syndicated content reader providing
 a simple interface to RSS stories. While maintaining the original
 association of a story with a channel, Meerkat's focus is on
 chronological order -- the latest stories float to the top,
 regardless of their source.
 </description>
 <language>en-us</language>

 

 <story id="881051">
 <title>
 Clay Shirky: What Web Services Got Right ... and Wrong
 </title>
 <link>
 http://www.oreillynet.com/pub/a/network/2002/04/22/clay.html
 </link>
 <description>
 Web Services represent not just a new way to build Internet
 applications, says Clay Shirky in this interview, but the second
 stage of peer-to-peer, in which distinctions between clients and
 servers are all but eliminated.
 </description>
 <category>General</category>
 <channel>O'Reilly Network</channel>
 <timestamp>2002-04-23 17:02:50</timestamp>
 </story>
 ...
</meerkat>

The example application processes this XML data in a number of ways. First, it extracts some information about the
Meerkat service itself and adds it to the page, so the user can see where the data comes from. It then gets all
<category> elements and builds a list of unique category names. This list is used to build an HTML select list, from which

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<category> elements and builds a list of unique category names. This list is used to build an HTML select list, from which
the user can pick one category to filter the data. The XML data is then filtered accordingly, and an HTML table with
matching stories is generated. Just for fun and to illustrate the use of the conditional XML actions, all stories in the
General category are displayed against a light green background. The result is shown in Figure 15-2.

Figure 15-2. The XML-base news service application

Example 15-6 shows the JSP page that does all the processing.

Example 15-6. Processing XML data (news.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

<%--
 Get new XML data if the cached version is older than
 1 hour.
--%>
<c:set var="cachePeriod" value="${60 * 60 * 1000}" />
<jsp:useBean id="now" class="java.util.Date" />
<c:if test="${(now.time - cacheTime) > cachePeriod}">
 <c:import url="http://meerkat.oreillynet.com/?&p=4999&_fl=xml&t=ALL"
 varReader="xmlSource">
 <x:parse var="doc" doc="${xmlSource}" scope="application" />
 </c:import>
 <c:set var="cacheTime" value="${now.time}" scope="application" />
</c:if>

<html>
 <head>
 <title>O'Reilly News</title>
 </head>
 <body bgcolor="white">
 <h1>O'Reilly News</h1>
 <img src="<x:out select="$doc/meerkat/image/url" />">
 This service is based on the news feed from
 <a href="<x:out select="$doc/meerkat/link" />">
 <x:out select="$doc/meerkat/title" />.
 <p>
 <x:out select="$doc/meerkat/description" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <x:out select="$doc/meerkat/description" />

 <%--
 Create a list of unique categories present in the XML feed
 --%>
 <jsp:useBean id="uniqueCats" class="java.util.TreeMap" />
 <x:forEach select="$doc/meerkat/story/category" var="category">
 <%-- Need to convert the XPath node to a Java String --%>
 <x:set var="catName" select="string($category)" />
 <c:set target="${uniqueCats}" property="${catName}" value="" />
 </x:forEach>

 <form action="news.jsp">
 Category:
 <select name="selCat">
 <option value="ALL">All
 <c:forEach items="${uniqueCats}" var="current">
 <option value="<c:out value="${current.key}" />"
 <c:if test="${param.selCat == current.key}">
 selected
 </c:if>>
 <c:out value="${current.key}" />
 </option>
 </c:forEach>
 </select>
 <input type="submit" value="Filter">
 </form>

 <%-- Filter the parsed document based on the selection --%>
 <c:choose>
 <c:when test="${empty param.selCat || param.selCat == 'ALL'}">
 <x:set var="stories" select="$doc//story" />
 </c:when>
 <c:otherwise>
 <x:set var="stories"
 select="$doc//story[category = $param:selCat]" />
 </c:otherwise>
 </c:choose>

 <%-- Generate a table with data for the selection --%>
 <table>
 <x:forEach select="$stories">
 <tr>
 <x:choose>
 <x:when select="category[. = 'General']">
 <td bgcolor="lightgreen">
 </x:when>
 <x:otherwise>
 <td>
 </x:otherwise>
 </x:choose>
 <a href="<x:out select="link" />">
 <x:out select="title" />

 <i><x:out select="timestamp" /></i>:
 Category:<x:out select="category" />,
 Reported by:<x:out select="channel" />

<x:out select="description" />
 </td>
 </tr>
 </x:forEach>
 </table>
 </body>
</html>

At the top of the page, the XML source is retrieved from the Meerkat server using the same <c:import> action used in
the previous examples. There are two noteworthy differences, though: the url attribute specifies an absolute URL and
the imported data is exposed as a Reader instead of as a String. I mentioned both these features earlier. In this example,
using a Reader is appropriate because the data may be large, and it's only of interest to the nested <x:parse> action.

15.4.1 Caching Data

Before we look at the <x:parse> action in detail, I'd like to say a few words about the caching technique used in this
example. The Meerkat data is updated only on an hourly basis, so it's pointless to ask for it more frequently. It's also
expensive in terms of time and computing resources to import and parse the XML data. By caching the parsed data for
an hour, the web application gets more responsive and avoids putting load on the Meerkat server unnecessarily.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an hour, the web application gets more responsive and avoids putting load on the Meerkat server unnecessarily.

The caching technique used here simply creates a timestamp for the data in the form of a java.util.Date object and saves
it together with the data itself in the application scope, using standard and JSTL core actions. When a new request is
received, it's tested to see if the cache is older than the predefined cache period (one hour in this example). If it is, a
fresh copy is imported, parsed, and saved in the application scope again, along with the timestamp. Otherwise the
cached data is used. You can use this technique for any type of processing that's expensive, for instance retrieving data
from a database or performing complex calculations.

15.4.2 Parsing XML Data

Before you can access the XML data with the JSTL XML actions, the imported document must be parsed and converted
to a data structure the actions can read. That's what the <x:parse> action does (see Table 15-3).

Table 15-3. Attributes for JSTL <x:parse>
Attribute

name Java type Dynamic value
accepted Description

doc String or
java.io.Reader Yes Mandatory, unless specified as the body. The XML document to

parse.

systemId String Yes Optional. The system identifier for the XML document.

filter org.xml.sax.XMLFilter Yes Optional. An XMLFilter to be applied to the XML document.

var String No Optional. The name of the variable to hold the result as an
implementation-dependent type.

scope String No Optional. The scope for the variable, one of page, request, session,
or application. page is the default.

varDom String No Optional. The name of the variable to hold the result as a
org.w3c.dom.Document.

scopeDom String No Optional. The scope for the DOM variable, one of page, request,
session, or application. page is the default.

The XML document to parse can be specified as the body or as a String or Reader variable. In Example 15-3, I use the
Reader exposed by the <c:import> action to get the best performance. A base URI for interpretation of relative URIs in
the document can be specified by the systemId attribute, the same way as for the <x:transform> action.

The parse result can be saved either as an implementation-dependent data structure (named by the var attribute) or as
a standard org.w3c.dom.Document object (named by the varDom attribute), in any scope. You should use the latter only if
you need to process the parse result with a custom action or other custom code because the implementation-dependent
type is typically optimized in terms of memory use and ease of access, and it's supported by all the other JSTL XML
actions that use a parse result. The implementation-dependent data structure is saved as an application scope variable
in Example 15-3, where it's picked up by the other XML actions in the page.

If the XML document is large and you're only interested in a very small part of it, you can provide an implementation of
the org.xml.sax.XMLFilter interface to the action, typically created and configured by a servlet, a filter, or a listener (the
filter and listener component types are described in Chapter 19). As the name implies, an XMLFilter can remove the
parts you don't need, making the parsing process more efficient. For more about XML filters, I suggest you look at the
documentation of the interface or read a book about Java and XML, such as Brett McLaughlin's Java and XML (O'Reilly).

15.4.3 Accessing XML Data Using XPath Expressions

With the parsing out of the way, we can turn to how to access parts of the XML data. The JSTL XML library contains a
number of actions for this purpose, similar to the ones you're familiar with from the JSTL core library: <x:out>, <x:set>,
<x:if>, <x:choose>, <x:when>, <x:otherwise>, and <x:forEach>. The main difference between the XML and the core flavor
is that the XML actions use a special language for working with XML data, named XPath, instead of the standard JSP EL.
XPath 1.0 is a W3C recommendation that has been around since 1999, and it's used in XSLT stylesheets and other XML
applications.[1] The language details are beyond the scope for this book, but here's a brief summary.

[1] Available at http://www.w3.org/TR/xpath.

An XPath expression identifies one or more nodes (root, elements, attributes, namespace attributes, comments, text,
and processing instructions) in an XML document. The simplest expression type is a plain location path, similar to a Unix
filesystem path, to a set of nodes in the document. For instance, the path /meerkat/image/url identifies the <url>
element in the Meerkat XML document:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element in the Meerkat XML document:

...
<meerkat>

 <title>Meerkat: An Open Wire Service</title>
 <link>http://meerkat.oreillynet.com</link>
 <description>
 Meerkat is a Web-based syndicated content reader providing
 a simple interface to RSS stories. While maintaining the original
 association of a story with a channel, Meerkat's focus is on
 chronological order -- the latest stories float to the top,
 regardless of their source.
 </description>
 <language>en-us</language>

 <image>
 <title>Meerkat Powered!</title>
 <url>http://meerkat.oreillynet.com/icons/meerkat-powered.jpg</url>
 ...

A location path that starts with double forward slashes identifies all nodes of a certain type, regardless of their position
in the document hierarchy. For instance, //description identifies all <description> elements, so it finds two elements in the
sample XML document:

...
<meerkat>
 ...
 <description>
 Meerkat is a Web-based syndicated content reader providing
 a simple interface to RSS stories. While maintaining the original
 association of a story with a channel, Meerkat's focus is on
 chronological order -- the latest stories float to the top,
 regardless of their source.
 </description>
 ...
 <image>
 ...
 <description>
 Visit Meerkat in full splendor at meerkat.oreillynet.com
 </description>
 ...

A path is always interpreted relative to a specific context, such as the complete document or a subset of its nodes.
When you use XPath expressions as JSTL XML action attributes, the context can be represented by a variable and can
also be adjusted by actions such as the <x:forEach> action. Besides the type of paths described here, an XPath
expression can also include function calls, literals, operators, and special syntax for identifying attributes. Some of these
features are used in Example 15-3, but I recommend that you learn more about them if you're going to use the JSTL
XML actions. Check out the XPath chapter from Elliotte Rusty Harold and W. Scott Means's XML in a Nutshell (O'Reilly),
available online at http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html, and Robert Eckstein's XML Pocket
Reference (O'Reilly). The XPath tutorial by Miloslav Nic and Jiri Jirat, available at
http://www.zvon.org/xxl/XPathTutorial/General/examples.html, is another good resource.

Let's look at how XPath expressions are used with the JSTL <x:out> action (see Table 15-4) to add the general Meerkat
information that appears at the beginning of the page:

<img src="<x:out select="$doc/meerkat/image/url" />">
This service is based on the news feed from
<a href="<x:out select="$doc/meerkat/link" />">
 <x:out select="$doc/meerkat/title" />.
<p>
<x:out select="$doc/meerkat/description" />

Table 15-4. Attributes for JSTL <x:out>
Attribute

name
Java
type

Dynamic value
accepted Description

select String No Mandatory. An XPath expression to be evaluated.

escapeXml boolean Yes Optional. true if special characters in the value should be converted to
character entity codes. Default is true.

All JSTL actions that accept XPath expressions do so only for their select attribute, to avoid confusion with other
attributes that accept JSP EL expressions. For the first <x:out> action, the select attribute contains an XPath expression
that starts with the doc variable (containing the parse result) followed by a location path for the <url> element. The
<x:out> action converts the XPath evaluation result to a Java String and adds it to the response.

The way the doc variable is used here establishes the context for the XPath expression. Variables can appear anywhere

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The way the doc variable is used here establishes the context for the XPath expression. Variables can appear anywhere
in an XPath expression and always start with a dollar sign, followed by the name of the variable. XPath expressions
used with the JSTL actions have access to almost the same type of dynamic data as an EL expression. Any application
variable in any JSP scope can be accessed by its name, just as in an EL expression. The doc variable is an example of
this. Important differences are that in an XPath expression, all variable names start with a dollar sign, and the EL
property and element access operators (. and []) aren't recognized, so you can't use syntax like bean.propertyName in an
XPath expression. A workaround is to save the property or element value in a new variable, and use it in the XPath
expression:

<c:set var="myProperty" value="${myBean.myProperty}" />
<x:out select="$doc/root/myElement[@myAttribute = $myProperty]" />

Here the property value finds elements with an attribute that matches a bean property value. Also note that the XPath
expression itself is not identified by any special syntax, as opposed to an EL expression that must always be enclosed
by ${ and }.

In addition to application data, most of the information represented by EL implicit variables is available to an XPath
expression with a slightly different syntax, most noticeable that a colon is used as a separator instead of a dot (see
Table 15-5).

Table 15-5. XPath implicit variables
XPath expression Description

$param:myParam The myParam request parameter

$header:Accept The Accept request header

$cookie:password The password cookie

$initParam:myConfig The myConfig context parameter

$pageScope:myVariable The myVariable variable from the page scope

$requestScope:myVariable The myVariable variable from the request scope

$sessionScope:myVariable The myVariable variable from the session scope

$applicationScope:myVariable The myVariable variable from the application scope

The JSTL <x:forEach> action (Table 15-6) lets you loop through the nodes that matches an XPath expression.

Table 15-6. Attributes for JSTL <x:forEach>
Attribute

name
Java
Type

Dynamic value
accepted Description

select String No Mandatory. An XPath expression to be evaluated.

var String No Optional. The name of the variable to hold the value of the
current element.

varStatus String No Optional. The name of the variable to hold a LoopTagStatus object.

begin int Yes Optional. The first index, 0-based.

end int Yes Optional. The last index, 0-based.

step int Yes Optional. Index increment per iteration.

This action is used in Example 15-3 to extract the text from all <category> elements and build a sorted list of unique
category names, that is then used to generate an HTML selection list:

<jsp:useBean id="uniqueCats" class="java.util.TreeMap" />
<x:forEach select="$doc/meerkat/story/category" var="category">
 <%-- Need to convert the XPath node to a Java String --%>
 <x:set var="catName" select="string($category)" />
 <c:set target="${uniqueCats}" property="${catName}" value="" />
</x:forEach>

A <jsp:useBean> action creates a java.util.TreeMap to hold the list. By using a map, the list of category names is
automatically trimmed to unique names, since the keys in a map must be unique.[2] The TreeMap is a map type that
sorts its keys, taking care of the sorting requirement. The XPath expression used for the <x:forEach> action matches all
<category> elements. The action then evaluates its body once per element node, where the <c:set> action adds a map
entry with the text value as the key and an empty string as the value.

[2] A java.util.TreeSet would actually be more appropriate, but there is no JSTL action that can add elements to a
set.

An important detail here is that the value of the loop variable (category) contains an instance of an XPath node object,
not the string needed for the Map. One way to convert an XPath node to a string is to use the XPath string() function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not the string needed for the Map. One way to convert an XPath node to a string is to use the XPath string() function.
That's what I do here. The <x:set> action (Table 15-7) converts the current node to a Java String and saves it as a
variable that is then used by <c:set> to set the Map entry. Tricks like this are unfortunately needed to bridge the XPath
and Java domains in some cases.

Table 15-7. Attributes for JSTL <x:set>
Attribute

name
Java
type

Dynamic value
accepted Description

select String No Mandatory. An XPath expression to be evaluated.

var String No Mandatory. The name of the variable to hold the value of the current
element.

scope String No Optional. The scope for the variable; one of page, request, session, or
application. page is the default.

You can look at Example 15-3 to see how a <c:forEach> action is then used to loop over all map entries and use the key
values to build the HTML select list.

Next we need to decide which stories to display. This is also accomplished with the help from the <x:set> action:

<c:choose>
 <c:when test="${empty param.selCat || param.selCat == 'ALL'}">
 <x:set var="stories" select="$doc//story" />
 </c:when>
 <c:otherwise>
 <x:set var="stories"
 select="$doc//story[category = $param:selCat]" />
 </c:otherwise>
</c:choose>

The JSTL core <c:choose> action with nested <c:when> and <c:otherwise> actions tests the value of the selCat request
parameter. The first time the page is requested, this parameter is not present. In this case, as well as when it has the
value ALL, an <x:set> action with an XPath expression that matches all <story> elements (and their subnodes) extracts
the data to be displayed and saves it in a variable named stories.

If the user selects a specific category and clicks the Filter button, however, the selCat parameter is received with the
request. In this case, another <x:set> action extracts only the <story> elements that match the selected category. It
does this by using an XPath expression that contains a predicate with a Boolean expression:

$doc//story[category = $param:selCat]

XPath processes this expression by first collecting all nodes matching //story in the context represented by the doc
variable, and then removing all nodes where the Boolean expression evaluates to false. In the Boolean expression, the
text for the <category> element of each selected node is compared to the value represented by the $param:selCat
variable: the selCat request parameter value.

The final part of the sample application loops over the selected nodes and generates an HTML table, with a light green
background for the cells that contains stories in the General category:

<table>
 <x:forEach select="$stories">
 <tr>
 <x:choose>
 <x:when select="category[. = 'General']">
 <td bgcolor="lightgreen">
 </x:when>
 <x:otherwise>
 <td>
 </x:otherwise>
 </x:choose>
 <a href="<x:out select="link" />">
 <x:out select="title" />

 <i><x:out select="timestamp" /></i>:
 Category:<x:out select="category" />,
 Reported by:<x:out select="channel" />

<x:out select="description" />
 </td>
 </tr>
 </x:forEach>
</table>

The <x:forEach> action is again used to loop through the set of nodes, but as opposed to when it was used to create the
category name list, the current element is not exposed to the body as a variable. This illustrates another <x:forEach>
feature, namely that the action adjusts the current XPath context seen by nested JSTL XML actions. When the body is
evaluated, the current context for XPath expressions is the current node. An expression such as category[. = 'General']
used by the nested <x:when> action, is therefore evaluated in the context of the current story node, checking the value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

used by the nested <x:when> action, is therefore evaluated in the context of the current story node, checking the value
of its <category> element. The expression evaluates to true if the text in the <category> element equals the string
"General". The <x:out> actions use similar XPath expressions to extract data from the current <story> element.

The last part of Example 15-3 also illustrates the use of most of the conditional JSTL XML actions: <x:choose>,
<x:when>, and <x:otherwise>. They have the same function as the corresponding JSTL core elements; <x:choose> groups
a number of <x:when> actions and optionally one <x:otherwise> action, where the body of the first <x:when> action with
a select attribute that evaluates to true, or the <x:otherwise> body if none of them do, is processed. Only the <x:when>
action has attributes, described in Table 15-8.

Table 15-8. Attributes for JSTL <x:when>
Attribute

name
Java
type

Dynamic value
accepted Description

select String No Mandatory. An XPath expression to be evaluated as a
Boolean.

The result of the XPath expression in the select attribute is converted to a Boolean using the XPath boolean() function;
any valid number except 0, a nonempty string, and an expression that matches at least one node is converted to true.
All other values are converted to false. Note that this means that the string "false" evaluates to true.

The only JSTL XML action I don't use in this example is <x:if>, described in Table 15-9.

Table 15-9. Attributes for JSTL <x:if>
Attribute

name
Java
type

Dynamic value
accepted Description

select String No Mandatory. An XPath expression to be evaluated as a Boolean value.

var String No Optional. The name of the variable to hold the Boolean result.

scope String No Optional. The scope for the variable; one of page, request, session, or
application. page is the default.

It works exactly like the corresponding action in the JSTL core library, except that the select attribute is evaluated as
XPath boolean() the same way as for <x:when>.

The examples in this chapter show how the JSTL XML actions let you process XML documents pretty much any way you
can think of. You can transform a document using a stylesheet, parse and access parts of the document in many ways,
save a part as a variable, or add it to the response. As illustrated by the examples in this chapter, you can mix the JSTL
XML actions with the other JSTL actions (or custom actions) and use application variables and request data in XPath
expressions to select parts based on runtime conditions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 16. Using Scripting Elements
Before reading this book, you may have heard that JSP is all about including Java code in web pages. If so, you may
wonder why you haven't seen any Java code in the examples so far. That's because there's really no reason to embed
raw Java code in JSP pages anymore. With JSP 1.0, it was the only way to do anything interesting. JSP 1.1 removed
most reasons by introducing custom actions, but many developers figured developing custom actions for simple
conditionals and loops was not worth the trouble and continued to embed Java code snippets for these things. Even
with JSP 1.2, you still had to use Java code to assign dynamic values to JSP action element attributes, but JSTL 1.0
(and the EL it introduced) removed these excuses for most cases. With JSP 2.0, where the EL is part of the JSP
specification so it can be used for all attributes and the greatly simplified mechanisms for developing custom actions,
there are really no good reasons for embedding Java in your JSP pages.

JSP continues to support the scripting elements for putting code in JSP pages—even though their use is now
discouraged—because all Java specifications go to great lengths to be backward compatible. There are three types of
scripting elements: scriptlets for a block of code to be executed, expressions for a single statement to be evaluated with
its result added to the response, and declarations for declaring variables and methods. In this chapter we look at how to
use all of them, and the type of problems you should be prepared to encounter if you do.

Because using scripting elements means writing Java code, you should know how to program in Java before you read
this chapter. If you don't know Java programming, my advice is that you steer clear from the scripting elements
altogether and use the EL, JSTL and other custom actions exclusively.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.1 Using page Directive Scripting Attributes
The page directive has two attributes that may be used when you use scripting elements: language and import:

<%@ page language="java" import="java.util.*" %>

The language attribute specifies the scripting language used in the page. All containers are required to support Java.[1]

java is also the default value for the language attribute, but, for clarity, you may still want to specify it. Some JSP
implementations support other languages besides Java and, hence, allow other values for the language attribute. For
instance, both JRun (http://www.macromedia.com/) and Resin (http://www.caucho.com/) support JavaScript in
addition to Java.

[1] In fact, Java is the only scripting language formally supported in the JSP specification, but the specification
leaves room for other languages to be supported.

The JSP specification requires that the classes in the java.lang, javax.servlet, javax.servlet.jsp, and the javax.servlet.http
packages are available by default to scripting elements when Java is used as the scripting language. If you use classes
from packages other than these, they can be imported with the import attribute, to make it possible to use the short
class names in the scripting elements.

If you need to import more than one package, you can use multiple page directives with import attributes in the same
page or use one with a comma-separated list of import declarations. In other words, this directive:

<%@ page import="java.util.*, com.ora.jsp.util.*" %>

has the same effect as these two directives:

<%@ page import="java.util.* " %>
<%@ page import="com.ora.jsp.util.*" %>

Starting with JSP 2.0, classes without a package declaration (i.e., that are part of the unnamed package) are no longer
supported. This is because the servlet the container creates from the JSP page (the page implementation class) may
use a vendor-dependent package name. Java does not allow the use of classes from the unnamed package to be used
in a class that belongs to a named package, and Sun's Java compiler (starting with the J2SE 1.4 version) enforces this
rule.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.2 Implicit JSP Scripting Objects
Scripting elements can use predefined variables that the container assigns as references to implicit objects (Table 16-1)
to access request and application data. These objects are instances of classes defined by the servlet and JSP
specifications. Appendix D contains complete descriptions of all methods for each class, and they are briefly introduced
here and used in a number of examples in this chapter.

Table 16-1. Implicit JSP objects
Variable name Java type

application javax.servlet.ServletContext

config javax.servlet.ServletConfig

exception java.lang.Throwable

out javax.servlet.jsp.JspWriter

page java.lang.Object

pageContext javax.servlet.jsp.PageContext

request javax.servlet.http.HttpServletRequest

response javax.servlet.http.HttpServletResponse

session javax.servlet.http.HttpSession

These objects provide access to the same information (and more) as the implicit variables you can use in EL
expressions, but it's not a one-to-one match:

pageContext

The pageContext variable contains a reference to an instance of the class named javax.servlet.jsp.PageContext. It
provides methods for accessing references to all the other objects and attributes for holding data that is shared
between components in the same page. It's the same object that you can access with the ${pageContext} EL
expression. Attribute values for this object represent the page scope; they are the same objects as are
available to the EL world as a Map represented by the ${pageScope} expression.

request

The request variable contains a reference to an instance of a class that implements an interface named
javax.servlet.http.HttpServletRequest. It provides methods for accessing all the information that's available about
the current request, such as request parameters, attributes, headers, and cookies. It's the same object that you
can access with the ${pageContext.request} EL expression. Attribute values for this object represent the request
scope; they are the same objects as are available to the EL world as a Map represented by the ${requestScope}
expression.

response

The response variable contains a reference to an object representing the current response message. It's an
instance of a class that implements the javax.servlet.http.HttpServletResponse interface, with methods for setting
headers and the status code, and adding cookies. It also provides methods related to session tracking. These
methods are the response methods you're most likely to use. The same object can be accessed with the
${pageContext.response} EL expression.

session

The session variable allows you to access the client's session data, managed by the server. It's assigned a
reference to an instance of a class that implements the javax.servlet.http.HttpSession interface, which provides
access to session data as well as information about the session, such as when it was created and when a
request for the session was last received. It's the same object that you can access with the
${pageContext.session} EL expression. Attribute values for this object represent the session scope; they are the
same objects as are available to the EL world as a Map represented by the ${sessionScope} expression.

application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application

The application variable contains a reference to the instance of a class that implements the
javax.servlet.ServletContext interface that represents the application. This object holds references to other objects
that more than one user may require access to, such as a database connection pool shared by all application
users. It also contains log() methods you can use to write messages to the container's log file. It's the same
object that you can access with the ${pageContext.servletContext} EL expression. Attribute values for this object
represent the application scope; they are the same objects as are available to the EL world as a Map
represented by the ${applicationScope} expression.

out

The out object is an instance of javax.servlet.jsp.JspWriter. You can use the print() and println() methods provided
by this object to add text to the response message body. In most cases, however, you will just use template
text and JSP action elements instead of explicitly printing to the out object.

exception

The exception object is available only in error pages and contains information about a runtime error. It's the
same object that you can access with the ${pageContext.exception} EL expression.

The remaining two implicit objects (config and page) are so rarely used in scripting elements that I don't discuss them
here. If you're interested, you can read about them in Appendix D.

All variable names listed in Table 16-1 are reserved for the implicit object references. If you declare your own variables
in a JSP page, you must not use these reserved variable names.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.3 Using Scriptlets
The scriptlet element can be used to add a whole block of code to a page, including variable declarations. The code
block must be enclosed by a scriptlet start-identifier, <%, and an end-identifier, %>. Example 16-1 shows a scriptlet
that creates test data for action elements.

Example 16-1. Scriptlet creating test data (scriptlet.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<%
 // Create an ArrayList with test data
 ArrayList list = new ArrayList();
 Map author1 = new HashMap();
 author1.put("name", "John Irving");
 author1.put("id", new Integer(1));
 list.add(author1);
 Map author2 = new HashMap();
 author2.put("name", "William Gibson");
 author2.put("id", new Integer(2));
 list.add(author2);
 Map author3 = new HashMap();
 author3.put("name", "Douglas Adams");
 author3.put("id", new Integer(3));
 list.add(author3);
 pageContext.setAttribute("authors", list);
%>
<html>
 <head>
 <title>Search result: Authors</title>
 </head>
 <body bgcolor="white">
 Here are all authors matching your search critera:
 <table>
 <th>Name</th>
 <th>Id</th>
 <c:forEach items="${authors}" var="current">
 <tr>
 <td>${fn:escapeXml(current.name)}<td>
 <td>${fn:escapeXml(current.id)}<td>
 </tr>
 </c:forEach>
 </table>
 </body>
</html>

The scriptlet element contains Java code that creates a java.util.ArrayList with java.util.HashMap elements and saves the list
as a page scope attribute named authors by calling the setAttribute() method on the implicit pageScope object. The
ArrayList is then used as the items attribute value in a <c:forEach> action. You can use a scriptlet like this to test the main
page functionality before the real data source is available. In the final version, the scriptlet can be removed, and the
data passed to the page from another page or a servlet.

Let's look at another example, in which the implicit request object is inquired about the current client type to display
different messages depending on whether the Internet Explorer or Netscape Navigator browser is used. Example 16-2
shows the complete page.

Example 16-2. Browser dependent page (fragment.jsp)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 16-2. Browser dependent page (fragment.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
 <head>
 <title>Browser Check</title>
 </head>
 <body bgcolor="white">

 <%
 String userAgent = request.getHeader("User-Agent");
 if (userAgent.indexOf("MSIE") != -1) {
 %>
 You're using Internet Explorer.
 <% } else if (userAgent.indexOf("Mozilla") != -1) { %>
 You're probably using Netscape.
 <% } else { %>
 You're using a browser I don't know about.
 <% } %>
 </body>
</html>

The first scriptlet uses the getHeader() method of the request object to get the value of the User-Agent header. This
header contains a string with clues about the browser making the request. The header value is then used in a number
of if statements to make an educated guess about the browser type and tell the user the result.

What's most interesting here is that a number of scriptlets are used, each one containing only a fragment of a Java
statement:

<% if (userAgent.indexOf("MSIE") != -1) { %>

An if statement, testing if the header contains "MSIE", with a block start brace.

<% } else if (userAgent.indexOf("Mozilla") != -1) { %>

The if block end brace and an else-if statement, testing if the header contains "Mozilla", with its block start
brace.

<% } else { %>

The else-if block end brace, and a final else block start brace, handling the case when none of the strings are
found.

<% } %>

The final else block end brace.

While none of the scriptlets by itself is a valid Java statement, the JSP container combines the fragments in the four
scriptlets with code for writing the template text to the response body to form a valid statement. The end result is that
when the first if statement is true, "You're using Internet Explorer" is displayed; when the second if statement is true,
"You're probably using Netscape" is displayed. If none of the if statements are true, the final else block is used,
displaying "You're using a browser I don't know about."

The tricky part when using scriptlets like this is making sure that all the start and end braces are in place. If you miss
just one of the braces, the code that the JSP container generates isn't syntactically correct. And, unfortunately, the
error message that you get isn't easy to interpret.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.4 Using Expressions
A JSP expression element is used to insert the result of a scripting code expression into the response. It's the Java
scripting equivalent to an EL expression directly in template text. An expression starts with <%= and ends with %>.
Note that the only syntax difference compared to a scriptlet is the equal sign (=) in the start identifier. Examples are:

<%= userInfo.getUserName() %>
<%= 1 + 1 %>
<%= new java.util.Date() %>

The result of the expression is written to the response body, converted to a String if needed. One thing is important to
note: as opposed to statements in a scriptlet, the code in an expression must not end with a semicolon. This is because
the JSP container combines the expression code with code for writing the result to the response body. If the expression
ends with a semicolon, the combined code will not be syntactically correct.

As with EL expressions, a Java expression can also be used to assign a dynamic value to an action element attribute,
but with a few restrictions as described later in this chapter.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.5 Using Declarations
I have described two of the three JSP scripting elements in this chapter so far: scriptlets and expressions. There's one
more called a declaration element, which is used to declare Java variables and methods in a JSP page. My advice is
this: don't use it. Let me explain why.

In general, Java variables can be declared either within a method or outside the body of all methods in a class, like this:

public class SomeClass {
 // Instance variable
 private String anInstanceVariable;

 // Method
 public void doSomething() {
 String aLocalVariable;
 }
}

A variable declared outside the body of all methods is called an instance variable. Its value can be accessed from any
method in the class, and it keeps its value even when the method that sets it returns. A variable declared within the
body of a method is called a local variable; it can be accessed only within the method where it's declared. When the
method returns, the local variable disappears.

Recall from Chapter 3 that a JSP page is turned into a servlet class when it's first requested, and the JSP container
creates one instance of this class. If more than one user requests the same page at the same time, the single instance
is used for all requests. Each user is assigned what is called a thread in the server, and each thread executes the same
method in the JSP implementation class instance. When more than one thread executes the same code, you have to
make sure the code is thread safe. This means that the code must behave the same when many threads are executing
as when just one thread executes the code.

Multithreading and thread-safe code strategies are best left to experienced programmers. However, using a JSP
declaration element to declare variables exposes your page to multithreading problems. That's because a variable that's
declared using a JSP declaration element ends up as an instance variable in the generated servlet, not as a local
variable in a method. All threads share the instance variable, so if one thread changes its value, the new value is seen
by all threads. To put this in JSP terms, if the instance variable is changed because one user accesses the page, all
users accessing the same page will use the new value.

When you declare a variable within a scriptlet element instead of in a JSP declaration block, the variable ends up as a
local variable in the generated servlet's request processing method. Each thread has its own copy of a local variable, so
a local variable doesn't cause any problems even when more than one thread executes the same code. If the value of a
local variable is changed, it will not affect the other threads.

That being said, let's look at a simple example. We use two int variables; one declared as an instance variable using a
JSP declaration, and the other declared as a local variable with a scriptlet. We increment them both by one and display
the new values. Example 16-3 shows the test page.

Example 16-3. Using a declaration element (counter.jsp)

<%@ page language="java" contentType="text/html" %>
<%!
 int globalCounter = 0;
%>
<html>
 <head>
 <title>A page with a counter</title>
 </head>
 <body bgcolor="white">
 This page has been visited: <%= ++globalCounter %> times.
 <p>
 <%
 int localCounter = 0;
 %>
 This counter never increases its value: <%= ++localCounter %>
 </body>
</html>

The JSP declaration element is right at the beginning of the page in Example 16-3, starting with <%! and ending with
%>. Note the exclamation point (!) in the start identifier; that's what makes it a declaration as opposed to a scriptlet.
The declaration element declares an instance variable named globalCounter, shared by all requests for the page. In the
page body, a JSP expression increments the variable's value and adds it to the page. Next comes a scriptlet, enclosed
by <% and %>, that declares a local variable named localCounter. It is then incremented and added to the page by the
last expression element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

last expression element.

When you run this example, the globalCounter value increases every time you load the page, but localCounter stays the
same. Again, this is because globalCounter is an instance variable, while localCounter is a local variable.

In this example, nothing terribly bad happens if more than one user hit the page at the same time. The worst that could
happen is that you skip a number or show the same globalCounter value twice. This can happen if two requests come in
at the same time, and both requests increment the value before it's inserted in the response. You can imagine the
consequences, however, if you use an instance variable to save something more important, such as a customer's
credit-card number or other sensitive information. So even though it may be tempting to create an instance variable
(using a JSP declaration) to keep a value such as a counter between requests, I recommend that you stay away from
this technique. Using objects in the session and application scopes, as described in Chapter 10, is a far better approach.

A JSP declaration element can also be used to declare a method that can then be used in scriptlets in the same page.
The only harm this can cause is that your JSP pages end up containing too much code, making it hard to maintain the
application. I recommend that you use beans, custom actions, or EL functions instead, but to be complete, Example 16-
4 shows an example of how it can be done.

Example 16-4. Method declaration and use (color.jsp)

<%@ page language="java" contentType="text/html" %>
<%!
 String randomColor() {
 java.util.Random random = new java.util.Random();
 int red = (int) (random.nextFloat() * 255);
 int green = (int) (random.nextFloat() * 255);
 int blue = (int) (random.nextFloat() * 255);
 return "#" +
 Integer.toString(red, 16) +
 Integer.toString(green, 16) +
 Integer.toString(blue, 16);
 }
%>
<html>
 <head>
 <title>Random Color</title>
 </head>
 <body bgcolor="white">

 <h1>Random Color</h1>

 <table bgcolor="<%= randomColor() %>" >
 <tr><td width="100" height="100"> </td></tr>
 </table>

 </body>
</html>

The method named randomColor(), declared between <%! and %>, returns a randomly generated String in a format that
can be used as an HTML color value. This method is then called from an expression element to set the background color
for a table. Every time you reload this page, you see a single table cell with a randomly selected color.

16.5.1 jspInit() and jspDestroy()

If you know a bit about servlets, you know that a servlet has two methods the container calls when the servlet is loaded
and shut down, respectively. These methods are called init() and destroy(), and they allow the servlet to initialize
instance variables when it's loaded and clean up when it's shut down. As you already know, a JSP page is turned into a
servlet, so it has the same capability. However, with JSP, the methods are called jspInit() and jspDestroy() instead.

Again, I recommend that you don't declare any instance variables for your JSP pages. If you follow this advice, there's
also no reason to declare the jspInit() and jspDestroy() methods. But I know you're curious, so here's an example of how
they can be used.

Expanding on Example 16-3, the jspInit() method can set an instance variable to a java.util.Date() object, which
represents the date and time when the page was initialized. This variable can then be used in the page to show when
the counter was started:

<%@ page language="java" contentType="text/html" %>
<%@ page import="java.util.Date" %>
<%!
 int globalCounter = 0;
 java.util.Date startDate;

 public void jspInit() {
 startDate = new java.util.Date();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public void jspDestroy() {
 ServletContext context = getServletConfig().getServletContext();
 context.log("test.jsp was visited " + globalCounter +
 " times between " + startDate + " and " + (new Date()));
 }
%>
<html>
 <head>
 <title>A page with a counter</title>
 </head>
 <body bgcolor="white">
 This page has been visited: <%= ++globalCounter %> times
 since <%= startDate %>.
 </body>
</html>

The jspDestroy() method retrieves a reference to the ServletContext for the page and writes a message to the container's
log file. As you may recall, the implicit application variable contains a reference to the ServletContext, so you may wonder
why it's not used here. The reason is that the implicit variables are local variables in the method that the JSP container
generates to process the page requests; hence, they aren't available to the methods you declare yourself.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.6 Mixing Action Elements and Scripting Elements
Even when you use custom actions and the JSTL, you may want occasionally to use small amounts of scripting code.,
e.g., as a quick fix or for prototyping, when creating a custom action, or an EL function seems like overkill. You can also
use Java code to set an action attribute value.

16.6.1 Using an Expression Element to Set an Attribute

In all examples so far, dynamic action attribute values are set using EL expressions, but an alternative is using a Java
expression. In either case, the custom action attribute must accept what's formally called a request-time attribute
value.

Here is an example of how a Java expression can be used to set the value attribute of the standard <jsp:param> action:

<jsp:forward page="prodInfo.jsp">
 <jsp:param name="id" value='<%= request.getParameter("prodId") %>' />
</jsp:forward>

The value attribute is set to the value of a request parameter. The container evaluates the request-time attribute value
when the page is requested, and the corresponding attribute is set to the result of the expression. The Java type for the
result of the expression must match the type of the attribute you set this way. In the <jsp:param> value attribute case,
the expression must be of type String, but other action attributes may be of any type, including custom classes. This is
in contrast to when an EL expression used; the container always tries to convert the EL expression evaluation result
type to the attribute type, but with Java expressions it's up to you to make sure they match.

Another difference between using Java and EL expressions when assigning an attribute value is that with a Java
expression, you can't combine expressions and static text as you can with EL expressions. For instance, this is illegal:

 <jsp:param name="ranking"
 value='Ranking: <%= request.getParameter("ranking") %>' />

Instead, you have to combine the static text and the dynamic value within the expression:

 <jsp:param name="ranking"
 value='<%= "Ranking: " + request.getParameter("ranking") %>' />

One subtle detail in this example is that the attribute value is enclosed with single quotes instead of the usual double
quotes. That's because the expression itself must use double quotes around the getParameter() argument. An alternative
to enclosing the expression in single quotes is to escape the double quotes with backslashes in the expression:

<jsp:forward page="prodInfo.jsp">
 <jsp:param name="id" value="<%= request.getParameter(\"prodId\") %>"/>
</jsp:forward>

Request-time attribute values are supported for most of the standard action attributes and can be supported by custom
action attributes as well, but it's not a given. In the tables describing action elements that you see throughout this book
as well as in Appendix A, B, and E, all attributes that accept a request-time attribute value has a "Yes" in the "Dynamic
value accepted" column.

One reason for not supporting a request-time attribute value is that some attribute values must be known when the
page is converted into a servlet. For instance, the class attribute value in the <jsp:useBean> action must be known in the
translation phase so that the JSP container can generate valid Java code for the servlet. Request-time attribute values
also require a bit more processing than static string values, so it's up to the action developer to decide if request-time
attribute values are supported or not. Whether or not an attribute accepts a request-time attribute value is declared in
the Tag Library Descriptor (TLD). I discuss implementation of custom actions and the TLD in Chapter 21, so let's defer
the details until then.

16.6.2 Accessing Scoped Variables in Scripting Code

The term variable is generally used for any dynamic data an application manipulates, but when we talk about JSP and
scripting elements, it's important to be more specific.

JSP custom actions, including the JSTL actions, can expose data through what is called scoped variables, typically
named by a var and an optional scope attribute. A scoped variable is an object that lives in one of the JSP scopes: page,
request, session, or application. As mentioned earlier, the scopes are actually collections of named object references
that correspond to the attributes that the implicit pageContext, request, session, and application objects provide access to.

Another type of variable is a scripting variable. A scripting variable is a variable declared in a JSP scriptlet or
declaration, using the language defined for the page (typically Java). To read or manipulate data with scripting code,
you need a scripting variable that holds a reference to the object that contains the data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you need a scripting variable that holds a reference to the object that contains the data.

The distinction between the variable types becomes apparent when you mix actions that expose data only as scoped
variables with scripting elements. To use the data exposed by the action in a scripting element, you must first tell the
container to create a scripting variable for it and assign it the value of the scoped variable. The easiest way to do this is
to use the standard <jsp:useBean> action:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%@ page import="java.util.Date" %>

<fmt:parseDate value="${param.birthDate}"
 pattern="yyyy-MM-dd"
 var="birthDate"
/>
<jsp:useBean id="birthDate" class="java.util.Date" />
<%
 String ageCategory = null;
 int thisYear = new Date().getYear();
 int age = thisYear - birthDate.getYear();
 if (age < 10) {
 ageCategory = "kid";
 }
 else if (age < 20) {
 ageCategory = "teenager";
 }
 else if (age < 65) {
 ageCategory = "adult";
 }
 else {
 ageCategory = "retired";
 }
%>

In this example, <fmt:parseDate> parses a date submitted as a request parameter and saves the result as a java.util.Date
in a page scope variable named birthDate. The <jsp:useBean> action finds the scoped variable and creates a scripting
variable of the type java.util.Date with the same name as the scoped variable and assigns it the value of the scoped
variable. The scriptlet can then use the scripting variable created by the <jsp:useBean> action.

Alternatively, you can declare and assign the scripting variable with scripting code:

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
<%@ page import="java.util.Date" %>

<fmt:parseDate value="${param.birthDate}"
 pattern="yyyy-MM-dd"
 var="birthDate"
/>
<%
 Date birthDate = (Date) pageContext.getAttribute("birthDate");
 String ageCategory = null;
 int thisYear = new Date().getYear();
 int age = thisYear - birthDate.getYear();

Compared to using the <jsp:useBean> action, you must first know which implicit object represents the scope the scoped
variable is placed in and call its getAttribute() method. All implicit objects that represent a JSP scope provide the
getAttribute() method. As shown here, you must also cast the return value to the correct type, because the getAttribute()
returns an Object.

You can save or replace an object in any scope with the setAttribute() method:

public void setAttribute(String name, Object value)

To remove an object, use the removeAttribute() method:

public void removeAttribute(String name)

One thing to watch for when you use scripting variables and scoped variables to access the same object is illustrated by
this page:

<%@ page language="java" contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<html>
 <head>
 <title>Not *NSYNC</title>
 </head>
 <body bgcolor="white">

 <jsp:useBean id="artistName"
 scope="request" class="java.lang.String" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 scope="request" class="java.lang.String" />
 <% artistName = "U2"; %>
 And the winner is ... ${fn:escapeXml(artistName)}
 </body>
</html>

The <jsp:useBean> action makes a request scope object (perhaps placed there by a servlet) available through a scripting
variable named artistName, a scriptlet assigns a new value to the scripting variable, and finally the value of artistName is
added to the response with an EL expression. The question is, does the response contain the original value assigned to
the request scope object or the value assigned by the scriptlet code? The answer is: the original value. This is because
the EL doesn't have access to scripting variables, only to objects in one of the JSP scopes and the implicit EL variables.
To make an object available to the EL from a scriptlet, you need to explicitly save it in the appropriate scope. If you add
this line of code in the scriptlet block to replace the scoped variable, the new value is added to the response instead of
the original value:

<%
 artistName = "U2";
 request.setAttribute("artistName", artistName);
%>

This is true also for actions that access scoped variables directly, not only for the EL. If you replace the object a
scripting variable references, you must also replace the object the scoped variable references by calling setAttribute() if
you want actions and the EL to reference the new object.

For custom actions you can tell the container to automatically declare a scripting variable and assign it a reference to
the scoped variable the action exposes; I'll show you how in Chapter 22. In this case, scripting code can access the
exposed data directly through the scripting value. JSTL actions, on the other hand, do not use this feature so you must
always use <jsp:useBean> or the getAttribute() method in a scriptlet to bridge the gap between the two types of
variables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

16.7 Dealing with Scripting Syntax Errors
When you use scripting elements you must be prepared to deal with a new class of syntax errors. The scripting code is
inserted into the servlet code, generated based on the JSP page in the translation-phase, more or less as is. A syntax
error in a scripting element may therefore result in an error the JSP container can't report in a sensible way.

Directives and action elements don't have this problem. The container reads the JSP page and generates servlet code
by replacing all JSP directives and action elements with code that produces the appropriate result. To do this, it needs
to analyze these types of elements in detail. If there's a syntax error in a directive or action element, it can easily tell
which element is incorrect (as you saw in Chapter 9). A syntax error in a scripting element, on the other hand, isn't
discovered when the JSP page is read, but instead when the generated servlet is compiled with a Java compiler. The
compiler reports an error in terms of its location in the generated servlet code (as opposed to the location in the JSP
page), with messages that don't always make sense to a JSP page author.

Before we look at some real error examples, let's briefly look at how the scripting code is embedded in the generated
servlet to really understand the problem. Example 16-5 shows a simple JSP page that uses all three scripting element
types.

Example 16-5. JSP page with all scripting element types (allinone.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ page import="java.util.Date" %>
<%!
 private String getGreeting() {
 Date now = new Date();
 String greeting = null;
 if (now.getHours() < 12) {
 greeting = "Good morning";

}

 else if (now.getHours() < 18) {
 greeting = "Good day";

}

 else {
 greeting = "Good evening";

}

 return greeting;

}

%>
<html>
 <head>
 <title>All Scripting Elements</title>
 </head>
 <body bgcolor="white">
 <%= getGreeting() %>
 <% if (request.getParameter("name") == null) { %>
 stranger!
 <% } else { %>
 partner!
 <% } %>
 How are you?
 </body>
</html>

In this page, an import attribute imports the java.util.Date class. This class is used in a declaration element that defines a
method named getGreeting(). The method returns a String with an appropriate greeting depending on the time of day. An

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method named getGreeting(). The method returns a String with an appropriate greeting depending on the time of day. An
expression element invokes the method and adds the result to the response. Finally, scriptlet elements add either
"stranger!" or "partner!" depending on if a request parameter is received or not. This may not make much sense, but it
demonstrates the use of all scripting types.

Example 16-6 shows the servlet code the container may create based on this page.

Example 16-6. Servlet generated from JSP page

package org.apache.jsp;

import java.util.Date;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import org.apache.jasper.runtime.*;

public class allinone$jsp extends HttpJspBase {

 private String getGreeting() {
 Date now = new Date();
 String greeting = null;
 if (now.getHours() < 12) {
 greeting = "Good morning";

}

 else if (now.getHours() < 18) {
 greeting = "Good day";
 }
 else {
 greeting = "Good evening";
 }
 return greeting;
 }
 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws java.io.IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;
 try {
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext =
 _jspxFactory.getPageContext(this, request, response,
 "", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 out.write("\r\n");
 out.write("\r\n");
 out.write("\r\n<html>\r\n <head>\r\n);
 out.write(" <title>All Scripting Elements</title>\r\n);
 out.write("</head>\r\n <body bgcolor=\"white\">\r\n");
 out.print(getGreeting());
 out.write("\r\n ");
 if (request.getParameter("name") == null) {
 out.write("\r\n stranger!\r\n ");
 } else {
 out.write("\r\n partner!\r\n ");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 out.write("\r\n How are you?\r\n);
 out.write(" </body>\r\n</html>\r\n");
 } catch (Throwable t) {
 if (out != null && out.getBufferSize() != 0)
 out.clearBuffer();
 if (pageContext != null) pageContext.handlePageException(t);
 } finally {
 if (_jspxFactory != null)
 _jspxFactory.releasePageContext(pageContext);
 }
 }
}

The generated servlet in Example 16-6 looks a lot more complex than a hand-coded version would. That's because all
implicit objects and a number of internal support objects must always be initialized (a hand-coded version doesn't need
this generic initialization). The method for processing the request is named _jspService(), invoked by the service()
method in the base class. These details aren't important, so let's instead see what happens to the import attribute and
all scripting elements.

The import attribute results in a Java import statement, as expected. The declaration element is inserted as is, at the top
level of the class, outside the _jspService() method. This means that all variables declared in a JSP declaration element
end up as instance variables, as opposed to local variables, and that methods in a declaration element don't have
access to the JSP implicit variables. If a method needs an implicit variable value, it must be passed as an argument to
the method.

The expression element is also inserted as is but wrapped in an out.write() call. This is why you mustn't use a semicolon
at the end of a JSP expression; it would cause a syntax error when the expression is used as an out.write() argument.

Finally, the scripting elements: because they are mixed with other code in the generated servlet, they have the highest
potential to cause problems. We will look at some specific examples later, but note how out.write() calls are inserted for
all template text in between the scriptlet code. In a more complex page, such as one that has an action element
enclosed by scriptlet code fragments, the code gets a lot more complex, and the chance for strange side effects
increases.

16.7.1 Scripting Syntax Error Examples

Let's look at some examples of problems you need to deal with if you use scripting elements.

Example 16-7 shows a modified version of the page used earlier to illustrate how scripting elements end up in the
generated servlet. It has two errors: a semicolon is incorrectly used in the expression, and the closing bracket for the
else block in the last scriptlet is missing.

Example 16-7. Invalid semicolon use and missing end bracket (error1.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ page import="java.util.Date" %>
<%!
 private String getGreeting() {
 Date now = new Date();
 String greeting = null;
 if (now.getHours() < 12) {
 greeting = "Good morning";
 }
 else if (now.getHours() < 18) {
 greeting = "Good day";
 }
 else {
 greeting = "Good evening";
 }
 return greeting;
 }
%>
<html>
 <head>
 <title>Invalid semicolon use and missing end bracket</title>
 </head>
 <body bgcolor="white">
 <%= getGreeting(); %>
 <% if (request.getParameter("name") == null) { %>
 stranger!
 <% } else { %>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <% } else { %>
 partner!

 How are you?
 </body>
</html>

This is the error description Tomcat sends to the browser (with some line breaks added to make it fit the page):

org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: 24 in the jsp file: /ch16/error1.jsp

Generated servlet error:
D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error1_jsp.java:67: ')' expected.
 out.write(String.valueOf(getGreeting();));
 ^

An error occurred at line: 24 in the jsp file: /ch16/error1.jsp

Generated servlet error:
D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error1_jsp.java:67: Illegal start
Of expression
 out.write(String.valueOf(getGreeting();));
 ^

An error occurred at line: -1 in the jsp file: null

Generated servlet error:
D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error1_jsp.java:75:
'catch' without 'try'.
 } catch (Throwable t) {
 ^

D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error1_jsp.java:47:
'try' without 'catch' or 'finally'.
}
^

D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error1_jsp.java:86:
'}' expected.
}
 ^
5 errors

The first two error messages are for the invalid semicolon in the expression. Because it includes the expression code,
it's fairly easy to understand. At the beginning of the error report, there's a reference to the JSP page file and the line in
the page where the first error occurred, but all the other line numbers refer to the servlet code, not the JSP page.

The messages for the missing brace probably don't make much sense to you. The error messages refer to invalid use of
catch and try, which doesn't seem to match any code in the JSP page scriptlets. That's because the code with the
missing brace is inserted into the block of code generated to output template text, invoke actions, and so forth, as
discussed earlier, so the compiler gets confused about what the real problem is.

How can you find the real problem when you get this type of message? If you're a Java programmer, you can look at
the generated servlet source file and try to figure out what's really wrong. Most JSP containers can be configured so
that the generated source code is saved for you to look at. For Tomcat it's the default, and the name of the file is shown
in the error message.

But if you're not a programmer, the only thing you can do is to study all scriptlets in your JSP page carefully and try to
figure out what's wrong. That's not always easy, and it's a good reason to avoid scripting elements in your JSP pages.
When you have to use scripting, use only extremely simple code and be very careful with the syntax.

Let's look at some other common syntax errors so you at least know the types of messages to expect. Example 16-8
illustrates a typical mistake.

Example 16-8. Scriptlet instead of expression (error2.jsp)

<%@ page language="java" contentType="text/html" %>
<%@ page import="java.util.Date" %>
<html>
 <head>
 <title>Scriptlet instead of expression</title>
 </head>
 <body bgcolor="white">
 Howdy
 <% if (request.getParameter("name") == null) { %>
 stranger!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 stranger!
 <% } else { %>
 partner!
 <% } %>
 It's <% new Date().toString() %> and all is well.
 </body>
</html>

This is simply a case where the opening tag for a JSP expression (<%=) has mistakenly been written as the opening tag
for a JSP scriptlet (<%). It looks like an innocent error, but the error message isn't giving you much help to find it:

org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: 14 in the jsp file: /ch16/error2.jsp

Generated servlet error:
D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error2_jsp.java:56: ';' expected
 new Date().toString()
 ^

1 error

Again, the scripting code and the generated code clash, resulting in a message that's hard to understand. But at least
you can recognize the code from the JSP page and try to see what's really wrong.

Another common mistake has to do with how the Java compiler deals with classes in the unnamed package. Consider
the page in Example 16-9 that uses a class named GreetingBean that doesn't belong to a specific package.

Example 16-9. Using a class from the unnamed package (error3.jsp)

<%@ page language="java" contentType="text/html" %>
<html>
 <head>
 <title>Using a class from the unnamed package</title>
 </head>
 <body bgcolor="white">
 <jsp:useBean id="greeting" class="GreetingBean" />
 <%= greeting.getGreeting() %>
 </body>
</html>

This results in an error report like this, even if the class file for the bean is located where it should (either in WEB-
INF/classes or in a JAR file in WEB-INF/lib):

org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: 7 in the jsp file: /ch16/error3.jsp

Generated servlet error:
D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error3_jsp.java:48:
cannot resolve symbol
symbol: class GreetingBean
location: class org.apache.jsp.error3_jsp
 GreetingBean greeting = null;
 ^

An error occurred at line: 7 in the jsp file: /ch16/error3.jsp

Generated servlet error:
D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error3_jsp.java:50:
cannot resolve symbol
symbol: class GreetingBean
location: class org.apache.jsp.error3_jsp
 greeting = (GreetingBean) pageContext.getAttribute(...)
 ^

An error occurred at line: 7 in the jsp file: /ch16/error3.jsp

Generated servlet error:
D:\jakarta-tomcat-5.0\work\localhost\ora\ch16\error3_jsp.java:53:
cannot resolve symbol
symbol: class GreetingBean
location: class org.apache.jsp.error3_jsp
 greeting = (GreetingBean) java.beans.Beans.instantiate(...);
 ^
3 errors

This is a problem I touched on earlier. Note that the error messages say that the symbol GreetingBean can not be found

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is a problem I touched on earlier. Note that the error messages say that the symbol GreetingBean can not be found
in the class org.apache.jsp.error3_jsp. The package prefix happens to be the package name Tomcat uses for the generated
servlets, and other containers use different names. The important thing is that the Java compiler assumes that an
unqualified class name refers to a class in the same package as the class it compiles, unless it's been imported with an
import statement. Since classes from the unnamed package cannot be imported into a class that belongs to a package,
the only recourse is to place the GreetingBean class in a package and use the fully qualified class name in the class
attribute of the <jsp:useBean> action. If you need to refer to the class in scripting code, you may also want to add a page
directive with an import attribute to the JSP page:

<%@ page language="java" contentType="text/html" %>
<%@ page import="com.mycompany.GreetingBean" %>
<html>
 <head>
 <title>Using a class from the unnamed package</title>
 </head>
 <body bgcolor="white">
 <jsp:useBean id="greeting" class="com.mycompany.GreetingBean" />
 <%= greeting.getGreeting() %>
 </body>
</html>

The misleading and confusing error messages reported for scripting syntax errors are, in my opinion, a big problem and
one that's hard to solve completely, even with better JSP container implementations and tools. It can be minimized, but
it's always hard for a container to pinpoint the real problem when scripting code is mixed with other generated code. My
only advice at this point is (again) to avoid scripting code as much as possible.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 17. Bits and Pieces
In the previous chapters, I have demonstrated the standard JSP features as well as the JSTL actions and a few custom
actions through practical, complete examples. But some features are hard to fit nicely into these examples without
losing focus, so I describe them separately in this chapter instead. Topics covered here include buffering of the
response body, ways to include shared page segments, global configuration settings, using client-side code to provide a
more interactive interface, preventing JSP pages from being cached, writing JSP pages as well-formed XML documents,
and a discussion about the different types of URIs used in JSP pages.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.1 Buffering
There's one important thing about how a JSP page is processed that has not been covered in any example so far:
buffering of the response body. As you may recall from Chapter 2, an HTTP response message contains both headers
and a body. The headers tell the browser such things as what type of data the body contains (HTML text, an image),
the size of the body, if the body can be cached, and so forth. Headers are also used to set cookies and to tell the
browser to automatically get another page (a redirect). All response headers must be sent to the browser before the
body is sent.

As soon as a JSP page writes something to the body of the message, the JSP container may start sending the response
to the browser. It's then too late to set headers, since they have to be sent first. In a servlet, you have full control over
when something is written to the response body, so you can make sure that you set all headers you need before you
generate the body. In a JSP page, however, it's not that easy. Everything you put in a JSP page that is not a JSP
element is written to the response body automatically by the JSP container. Here's the top part of the autheticate.jsp
page from Chapter 13:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<%-- Remove the validUser session bean, if any --%>
<c:remove var="validUser" />
...

It doesn't contain any HTML, so you may think that this doesn't add anything to the response body. But it does. This
page snippet contains six lines: five lines with JSP elements and one blank line. The JSP elements themselves are
evaluated by the JSP container and never show up in the response, but the linefeed character at the end of each line is
not a JSP element, so it's added to the response body.

Later in the same page, custom actions are used to set cookies, or in other words, set response headers:

<c:choose>
 <c:when test="${!empty param.remember}">
 <ora:addCookie name="userName"
 value="${param.userName}"
 maxAge="2592000" />
 <ora:addCookie name="password"
 value="${param.password}"
 maxAge="2592000" />
 </c:when>
 <c:otherwise>
 <ora:addCookie name="userName"
 value="${param.userName}"
 maxAge="0" />
 <ora:addCookie name="password"
 value="$param.password}"
 maxAge="0" />
 </c:otherwise>
</c:choose>

This doesn't work if the linefeed characters added to the body have caused the response to be sent to the browser (the
response has been committed, as it's called in the servlet specification). Besides not being able to set headers after the
response has been committed, the servlet specification also prohibits a request being forwarded when data has already
been written to the response body. This is because when you forward to another JSP page or servlet, the forwarding
target should have full control over the request. If the originating page has already started to generate the response
body, the target is no longer in charge.

Buffering solves this problem. Instead of sending the response to the browser as soon as something is written to the
response body, the JSP container writes everything that's not a JSP element and all dynamic content generated by JSP
elements to a buffer. At some point, such as when the buffer is full or the end of the page is reached, the container
sends all headers that have been set, followed by the buffered body content. So in this example, all linefeed characters
end up in the buffer, and the cookie headers are set. When the whole page has been processed, the JSP container
sends all headers first and then the contents of the buffer. Works like a charm.

You can control the size of the buffer and what to do when the buffer is full with two page directive attributes:

<%@ page buffer="12kb" autoFlush="false" %>

The buffer attribute accepts a value that specifies the minimum size of the buffer; the container may choose to use a
bigger buffer than specified. The value must be the number of kilobytes followed by kb. A buffer that holds at least 8 KB
is used by default. The keyword none is also accepted. If you use this keyword, the JSP container will not perform any
buffering of the response body.

The autoFlush attribute can be set to true or false, with true being the default. It specifies what to do when the buffer is
full. If the value is true, the buffered content is sent (flushed) to the browser when the buffer is full, and the rest of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

full. If the value is true, the buffered content is sent (flushed) to the browser when the buffer is full, and the rest of the
page gets buffered until the buffer is full again. If you specify the value false, the JSP container throws an exception
when the buffer is full, ending the processing of the page.

In most cases, you want to use the default values. If you have an extremely large page in which you set headers at the
end of the page, you may need to increase the buffer size. Eight kilobytes, however, is enough for most pages.
Disabling buffering may make sense if you have a page that generates the result slowly, and you want to send what's
ready to the browser as soon as possible. But even if you disable the JSP buffering, the servlet container may still do
some buffering of the result, so there's no guarantee that it will be sent immediately. No matter what value you use for
the buffer attribute, however, you can force the buffer to be flushed with a scriptlet like this:

<% out.flush(); %>

Setting the autoFlush attribute to false is rare. A possible use for this is if you have no control over the size of the
dynamic content you generate, and you want to make sure the processing is aborted if you reach a certain limit.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.2 Including Page Segments
You can use either a JSP directive or a standard action to include content in a JSP page. This is a useful technique when
parts of all pages in an application are the same, such as headers, footers, and navigation bars.

The JSP include directive reads the content of the specified page in the translation phase (when the JSP page is
converted into a servlet) and merges it with the original page:

<%@ include file="header.htmlf" %>

The file attribute is a relative path. If it starts with a slash, it's a context-relative path, interpreted relative to the
context path assigned for the application. If it doesn't start with a slash, it's a page-relative path, interpreted relative to
the path for the page that includes the file.

The included file can contain either only static content (such as HTML) or it can be a file with JSP elements. Its content
is merged with the page that includes it, and the resulting page is converted into a servlet as described in Chapter 3.
This means that the main page and all included pages share all page scope data. Scripting variables declared in JSP
declarations, scriptlets, or actions, such as <jsp:useBean> or custom actions that introduce scripting variables, are also
shared. Consequently, if the main page declares a variable, and the same name is used for another variable in an
included page, it results in a translation phase error, because the combined page can't be compiled.

The JSP specification recommends you use a different file extension than .jsp for partial JSP pages that you include
using the include directive, because they typically aren't complete, valid JSP pages. An alternative extension you can use
is .jspf ("f" as in fragment, the term used for partial pages before JSP 2.0 started to use the same term for executable
attribute values; the term segment is now used for partial pages, but the recommended file extensions remain). I follow
this recommendation for HTML files as well and use .htmlf as the extension for static files that aren't complete HTML
pages.

What happens when the file specified by the include directive changes isn't specified by the JSP specification. With some
containers, you must change the modification date for the main page, for example using the touch command on a Unix
system, before the changes take effect. An alternative is to delete the class file (the compiled version of the page) for
the page. Other JSP containers may detect changes in included files automatically and go through the translation phase
just like when you modify the main JSP page.

Another thing to be aware of is that the size of the compiled Java code (bytecode) for a method is limited to 64 KB by
the Java Virtual Machine specification. This is normally not a problem, but if you use the include directive to include large
files, you may run into this restriction in some JSP implementations. A workaround is to use the <jsp:include> action
instead.

The <jsp:include> standard action is an alternative to the include directive; it includes another resource at runtime:

<jsp:include page="navigation.jsp" />

The action is executed in the request-processing phase instead of the translation phase. The page attribute value is
interpreted as a relative URI, the same way as the include directive's file attribute. The <jsp:include> action doesn't
include the actual contents of the specified page; it includes the response produced by executing the page. This means
you can specify any type of web resource (e.g., a servlet, a JSP page, or a static HTML page) that produces a text
response. The JSP container invokes the specified resource by an internal function call. Hence, the included resource is
helping to process the original request and therefore has access to all objects in the request scope as well as all original
request parameters. Note, though, that it doesn't have access to any page-scope attributes or scripting variables
declared in the main page.

<c:import> Versus <jsp:include>
As you may recall from Chapter 15, there's also a JSTL action named <c:import>. It can include the
response produced by another application resource, just like the <jsp: include> action, but it can also
include data from external resources, such as a different web application or an FTP server.

With the introduction of <c:import>, there are few reasons to use the less powerful <jsp:include>.
Theoretically, it may be slightly faster because its implementation is simpler, but it's probably not a
noticeable difference.

Since the page is not included until the main page is requested, you can use a request time attribute value for the page
attribute to decide which page to include depending on a runtime condition, and add request parameters that can be
read by the included page:

<jsp:include page="${pageSelectedAtRuntime}" >
 <jsp:param name="aNewParamer" value="aStaticValue" />
 <jsp:param name="anotherParameter" value="${aDynamicValue}" />
</jsp:include>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</jsp:include>

If you change the included JSP page, the new version is used immediately. This is because the included page is treated
the same way as a JSP page invoked directly by a browser; the container detects that the page has been modified and
goes through the translation phase before it invokes it.

Besides the page attribute, the <jsp:include> action also supports a flush attribute. It specifies whether the response
body should be flushed before the page is included. If you have used a JSP 1.1 container, you've probably learned to
always specify this attribute with the value true. This was a requirement in JSP 1.1 due to limitations in the Servlet 2.2
API, with the serious drawback that the main page couldn't set headers or forward to another page after the
<jsp:include> action element. I'm happy to tell you that this limitation was removed in JSP 1.2. The flush attribute is now
optional, and false is the default value.

Table 17-1 outlines the differences between the include directive and the <jsp:include> action.

Table 17-1. Differences between the include directive and the <jsp:include>
action

Syntax When What

<%@ include file="relativeURI" %> Translation
phase

Static text (HTML, JSP) merged with the JSP page
before it's converted to a servlet.

<jsp:include page="relativeURI" flush="true|false" />
Request
processing
phase

The response text generated by executing the page
or servlet.

Let's look at a concrete example of how you can use the two methods for including pages. Example 17-1 shows a page
that includes three other pages.

Example 17-1. Including pages (page1.jsp)

<%@ page contentType="text/html" %>
<%@ include file="header.htmlf" %>
<table width="90%">
 <tr>
 <td valign="top" align="center" bgcolor="lightblue">
 <jsp:include page="navigation.jsp" />
 </td>
 <td valign="middle" align="center" width="80%">
 This is page 1
 </td>
 </tr>
</table>
<%@ include file="footer.htmlf" %>

The example application contains two more main pages, page2.jsp and page3.jsp, that differ from page1.jsp only in the
text they contain (i.e., "This is page 2," "This is page 3"). The common header and footer for all pages in the example
application consist of static HTML, shown in Examples Example 17-2 and Example 17-3. The include directive is used to
include the header and footer files in each main page.

Example 17-2. Header (header.htmlf)

<html>
 <head>
 <title>Welcome to My Site</title>
 </head>
 <body bgcolor="white">
 <h1>My Site</h1>

Note that the header.htmlf file is not a complete HTML page. It contains only the start tags for the <html> and <body>
elements.

Example 17-3. Footer (footer.htmlf)

<hr>
 Copyright © 2003 My Company
 </body>
</html>

The end tags for the <body> and <html> tags are included in the footer.htmlf file. Merging the header.htmlf, one of the
main pages, and the footer.htmlf files results in a complete HTML page.

Each page in the example application also has a navigation bar, with labels for all pages in the application. The labels

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each page in the example application also has a navigation bar, with labels for all pages in the application. The labels
are links to the corresponding pages, except for the current page, which is just written as plain text as shown in Figure
17-1.

Figure 17-1. A page composed by including other pages

The JSP code for the navigation bar is separated out into its own file, shown in Example 17-4, and included in each
page with the <jsp:include> action as shown earlier in Example 17-1.

Example 17-4. Navigation bar with JSTL actions (navigation_jstl.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:set var="uri" value="${pageContext.request.servletPath}" />
<table bgcolor="lightblue">
 <tr>
 <td>
 <c:choose>
 <c:when test="${uri == '/ch17/page1.jsp'}">
 Page 1
 </c:when>
 <c:otherwise>
 Page 1
 </c:otherwise>
 </c:choose>
 </td>
 </tr>
 <tr>
 <td>
 <c:choose>
 <c:when test="${uri == '/ch17/page2.jsp'}">
 Page 2
 </c:when>
 <c:otherwise>
 Page 2
 </c:otherwise>
 </c:choose>
 </td>
 </tr>
 <tr>
 <td>
 <c:choose>
 <c:when test="${uri == '/ch17/page3.jsp'}">
 Page 3
 </c:when>
 <c:otherwise>
 Page 3
 </c:otherwise>
 </c:choose>
 </td>
 </tr>
</table>

The navigation bar page first saves the context-relative path for the current page in a variable named uri with a <c:set>
action and an EL expression that gets the path by reading the servletPath property from the request object accessed
through the implicit pageContext variable. This works because the request object reflects the information about the page
that includes the navigation bar page, not about the included page. An HTML table is then built with one cell for each
main page in the application. In each cell, a <c:choose> block tests whether the cell represents the current page. If it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

main page in the application. In each cell, a <c:choose> block tests whether the cell represents the current page. If it
does, the page name is written as bold text; otherwise, it's written as an HTML link.

Example 17-4 can be simplified with a custom action that does all the testing and generates the appropriate HTML
instead, as shown in Example 17-5.

Example 17-5. Navigation bar with custom action (navigation.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>
<table bgcolor="lightblue">
 <tr>
 <td>
 <ora:menuItem page="page1.jsp">
 Page 1
 </ora:menuItem>
 </td>
 </tr>
 <tr>
 <td>
 <ora:menuItem page="page2.jsp">
 Page 2
 </ora:menuItem>
 </td>
 </tr>
 <tr>
 <td>
 <ora:menuItem page="page3.jsp">
 Page 3
 </ora:menuItem>
 </td>
 </tr>
</table>

The <ora:menuItem> action inserts the HTML found in its body into the page. If the page specified by the page attribute
is the current page, the HTML is inserted as is. Otherwise, it's embedded in an HTML link element, as the <c:choose>
block in Example 17-4. But unlike the JSTL version of this page, the <ora:menuItem> action also performs URL rewriting
on the HTML link URL if needed (this includes the session ID in the URL).

You may wonder why I use the include directive for the header and footer and the <jsp:include> action for the navigation
bar. Either one will do for all files in this example, but I chose the action for the navigation bar because this page needs
to be updated as new pages are added to the application. Using the action guarantees that the new version of the file is
used immediately. I picked the directive for the header and footer pages because there's a slight performance penalty
with using the action (the container must make a function call at request time). In this example, I assumed that both
the header and footer contain stable information. In the rare event that they change, I'm willing to force the JSP
container to go through the translation phase by deleting the class files corresponding to each main page or changing
the modification date for each page as described earlier.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.3 Global Configuration Options
You can use the application deployment descriptor (web.xml) to define configuration options that apply to a group of
JSP pages. These options are defined as subelements of the <jsp-property-group> element, which in turn is a subelement
of the <jsp-config> element. More than one <jsp-property-group> element can be used, each with one or more nested <url-
pattern> elements that associate the properties with all JSP pages that match the specified URL patterns:

<web-app>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 ...
 </jsp-property-grop>
 <jsp-property-group>
 <url-pattern>/jsp12/*</url-pattern>
 ...
 </jsp-property-grop>
 </jsp-config>
 ...
</web-app>

With exception for automatic include properties (described later), the JSP container applies the properties only from the
<jsp-property-group> with the URL pattern that most closely matches the requested page. The specified properties apply
to an entire translation unit, i.e., both the main JSP page and all files it includes using the include directive (with the
exception for the file encoding property, which applies to individual files).

The URL pattern format and interpretation are the same as for servlet and filter mappings, described in Chapter 19.
That is, one of the following types of patterns can be used:

Exact match rule

A complete context-relative path, e.g., /admin/authenticate.jsp. This rule matches only the specific path.

Longest path prefix rule

A context-relative path with a wildcard character (*), e.g., /admin/*. This rule matches all request with the same
path before the wildcard character, and if there's more than one pattern that matches, the one with the longest
matching path applies.

Extension rule

A wildcard character (*) followed by a dot and a file extension, e.g., *.jsp. This rule matches all requests that
end with the specified extension.

The container compares each request URL to the defined mapping rules, looking for matches in the order exact match,
longest path-prefix and extension, and applies the properties mapped to the first pattern that matches.

17.3.1 Declaring a File as a JSP Page

If a request matches a URL pattern defined within any <jsp-property-group> element, it's implicitly defined to be a JSP
page, i.e., a file the JSP container must process. A potential use for this feature is to define additional extensions that
should be treated as JSP pages:

<web-app ...>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.html</url-pattern>
 </jsp-property-grop>
 </jsp-config>
 ...
</web-app>

A deployment descriptor like this tells the container to process all requests with an .html extension as JSP pages; this
might be used to add a piece of dynamic content to a previously static web site without having to rename all files.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

might be used to add a piece of dynamic content to a previously static web site without having to rename all files.

17.3.2 Controlling the Interpretation of EL Expressions

Starting with JSP 2.0, EL expressions can directly be used in template text and in attribute values for any action
element. A JSP application written for a prior version of the JSP specification, however, may use constructs that look
like EL expressions and expect them to be used as literal strings instead of being evaluated.

To deal with this potential problem, the JSP 2.0 specification defines two ways to disable EL expression evaluation. First,
EL expression evaluation is disabled by default for a web application with a deployment descriptor that is not Servlet 2.4
conformant (i.e., an application developed for a previous version of the Servlet and JSP specifications), and it's enabled
by default for a web application with a Servlet 2.4 deployment descriptor. This guarantees that an old JSP application
can be deployed in a JSP 2.0 container with full backwards compatibility, while a sensible default is provided for new
applications. Second, the EL expression evaluation can be explicitly disabled in a JSP 2.0 application—for a single page
with the elIgnored page attribute, or for a set of JSP pages with an <el-ignored> element in a JSP group:

<web-app ...>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>true</el-ignored>
 </jsp-property-grop>
 </jsp-config>
 ...
</web-app>

The ability to disable EL evaluation in a JSP 2.0 application allows you to migrate an old application to the new JSP 2.0
features a few pages at a time, ensuring that the pages that have not yet been migrated behave as they did with JSP
1.2. If you define the EL evaluation mode with an <el-ignored> element in the deployment descriptor, you can override
this setting with the elIgnored page attribute in individual pages. For instance, you can disable EL evaluation for all JSP
pages with the deployment descriptor snippet shown here, and selectively enable it with the elIgnored attribute in each
JSP page that's reviewed and migrated to JSP 2.0:

<%@ page elIgnored="false" %>

17.3.3 Controlling the Use of Scripting Elements

With all the new features available through the JSP EL, JSTL, and custom actions, scripting elements are rarely needed.
A company may decide to implement a policy of forbidding scripting elements altogether, avoiding all the potential
problems that scripting introduces. A policy like this can be enforced with the <scripting-invalid> element, for all or
selected parts of the application:

<web-app ...>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <scripting-invalid>true</scripting-invalid>
 </jsp-property-grop>
 </jsp-config>
 ...
</web-app>

With this configuration, the container refuses to process a JSP page that contains any scripting element (i.e., a scripting
declaration, expression, or scriptlet). Since this represents a policy decision, there's no way to override this value in an
individual JSP page.

17.3.4 Specifying the File Encoding

As you may recall from Chapter 14, the character encoding used for a JSP file can be defined within the file by the
pageEncoding page attribute. This is all fine and dandy, as long as the file is in an encoding that uses the ASCII mapping
for bytes 0 through 127; if not, the encoding cannot be read from the file. Some character encodings, such as UTF-16
and EBCDIC, don't share these byte-value mappings, so another approach is needed. The <page-encoding> element
offers this alternative for classic JSP pages:

<web-app ...>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>/ja/*</url-pattern>
 <page-encoding>Shift_JIS</page-encoding>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <page-encoding>Shift_JIS</page-encoding>
 </jsp-property-grop>
 </jsp-config>
 ...
</web-app>

This example tells the container to use the Shift_JIS encoding when reading a file in the /ja directory. As opposed to all
other property settings, this setting applies to individual files rather than to the entire translation unit. This means that
in addition to files requested directly, the specified file encoding is used for all files under /ja (in this example) added
with an include directive in any JSP page, no matter what path is used to request that JSP page.

For JSP pages in XML syntax (so-called JSP Documents, described later), the file encoding is always determined based
on the XML prolog in the file as described in the XML specification, so neither the pageEncoding attribute nor the <page-
encoding> element should be used. If they are still used, and they specify a different encoding than the one determined
according to the XML rules, the container doesn't accept the file and reports it as a translation error.

17.3.5 Specifying Automatically Included Files

If a lot of tag libraries are used for an application, or a set of pages need the same page attribute values to be set, it's
easier to maintain the application if all the common declarations are placed in one file that is then included in all JSP
pages. You can do so with the include directive, but then you run the risk of forgetting to include the file in a page. JSP
2.0 introduces a better solution: automatic includes.

You can use one or more <include-prelude> elements to include files at the beginning of all JSP pages that match the JSP
property group URL pattern, and one or more <include-coda> elements to include files at the end of the JSP files. As
opposed to all other configuration properties, you can even use multiple JSP property groups to define these two
elements; the include elements from all groups that match the request URL are applied:

<web-app ...>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <include-prelude>/WEB-INF/segments/taglibDecl.jspf</include-prelude>
 <include-prelude>/WEB-INF/segments/errorPageDecl.jspf</include-prelude>
 <include-coda>/WEB-INF/segments/copyright.jspf</include-coda>
 </jsp-property-grop>
 <jsp-property-group>
 <url-pattern>/main/*</url-pattern>
 <include-prelude>/WEB-INF/segments/noSessionDecl.jspf</include-prelude>
 </jsp-property-group>
 </jsp-config>
 ...
</web-app>

In this example, I use one group for the *.jsp pattern that include files with common tag library and error page
declarations at the beginning of each file, plus a copyright notice at the end of each file. I also define a group for the
/main/* pattern, including a file with a page attribute that disables sessions. A request like /mycontext/main/index.jsp
matches the patterns for both groups, so the files defined in both groups are included. For a request like
/mycontext/shopping/cart.jsp, only the first group's URL pattern matches, so only the files defined in this group are
included.

17.3.6 Declaring Files as JSP Documents

As I will show you later in this chapter, JSP pages can be written as well-formed XML documents, using a slightly
different syntax for things like tag library declarations and other directives than what you've seen so far. The default
extension for a JSP page in the XML format is .jspx, starting with the JSP 2.0 specification. To make it possible to use
other extensions, and to allow applications that use this extension for regular JSP files, the <is-xml> element can be
used to control whether a file should be processed as a JSP page in XML format:

<web-app ...>
 ...
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.jspx</url-pattern>
 <is-xml>false</is-xml>
 </jsp-property-grop>
 <jsp-property-group>
 <url-pattern>*.svg</url-pattern>
 <is-xml>true</is-xml>
 </jsp-property-grop>
 </jsp-config>
 ...
</web-app>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</web-app>

As with EL evaluations, the default for this property depends on which version of the servlet specification the
application's deployment descriptor adheres to, in order to guarantee backward compatibility. If the application has a
pre-2.4 deployment descriptor, the .jspx extension means nothing special; files with this extension are not considered
to be JSP pages at all. For an application with a 2.4 deployment descriptor, files with a .jspx extension are processed as
JSP XML pages by default.

The deployment descriptor snippet shown here defines two JSP groups. The first one disables the .jspx default
extension, so that files with this extension are instead handled as regular JSP pages. The second one declares that files
with an .svg extension must be handled as JSP pages in XML syntax.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.4 Mixing Client-Side and Server-Side Code
I touched on the difference between server-side code and client-side code in Chapter 3. JSP is a server-side technology,
so all JSP elements, such as actions and scriptlets, execute on the server before the resulting page is sent to the
browser. A page can also contain client-side code, such as JavaScript code or Java applets, to provide a more
interactive user interface. This code is executed by the browser itself.

A JSP page can generate JavaScript code dynamically the same way it generates HTML, WML, or any other type of text
contents. Therefore, you can add client-side scripting code to your JSP pages. The important thing to keep in mind here
is that even though you can include JavaScript code in your JSP page, the container doesn't see it as code at all. It
treats it as template text and just sends it to the browser together with the rest of the response. Also remember that
the only way a browser can invoke a JSP page is to send an HTTP request; there is no way that a JavaScript event
handler such as onClick or onChange can directly invoke a JSP element such as an action, a scriptlet, or a Java method
declared with a JSP declaration in a JSP page. A client-side script can ask the browser to make a request for a complete
page, but there is no way that the script can process the response and use it to do something such as populate a
selection list with the data.

Applets can make your pages more interesting and provide an easier-to-use interface than what's possible with pure
HTML. As you will see, JSP includes a standard action for generating the HTML needed for embedding applets in a page
in a browser-independent way.

17.4.1 Generating JavaScript Code

Example 17-6 shows a modified version of the User Info page used in the examples in Chapter 10.

Example 17-6. Input form with client-side validation code (clientscript.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>User Info Entry Form</title>
 <script language="JavaScript">
 <!-- Hide from browsers without JavaScript support
 function isValidForm(theForm) {
 if (isEmpty(theForm.userName.value)) {
 theForm.userName.focus();
 return false;
 }
 if (!isValidDate(theForm.birthDate.value)) {
 theForm.birthDate.focus();
 return false;
 }
 if (!isValidEmailAddr(theForm.emailAddr.value)) {
 theForm.emailAddr.focus();
 return false;
 }
 if (!isValidNumber(theForm.luckyNumber.value, 1, 100)) {
 theForm.luckyNumber.focus();
 return false;
 }
 return true;
 }
 function isEmpty(aStr) {
 if (aStr.length == 0) {
 alert("Mandatory field is empty");
 return true;
 }
 return false;
 }
 function isValidDate(dateStr) {
 var matchArray = dateStr.match(/^[0-9]+-[0-1][0-9]-[0-3][0-9]$/)
 if (matchArray == null) {
 alert("Invalid date: " + dateStr);
 return false;
 }
 return true;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return true;
 }
 function isValidEmailAddr(emailStr) {
 var matchArray = emailStr.match(/^(.+)@(.+)\.(.+)$/)
 if (matchArray == null) {
 alert("Invalid email address: " + emailStr);
 return false;
 }
 return true;
 }
 function isValidNumber(numbStr, start, stop) {
 var matchArray = numbStr.match(/^[0-9]+$/)
 if (matchArray == null) {
 alert("Invalid number: " + numbStr);
 return false;
 }
 if (numbStr < start || numbStr > stop) {
 alert("Number not within range (" + start + "-" +
 stop + "): " + numbStr);
 return false;
 }
 return true;
 }
 -->
 </script>
 </head>
 <body bgcolor="white">
 <jsp:useBean id="userInfo"
 scope="request"
 class="com.ora.jsp.beans.userinfo.UserInfoBean"
 />

 <form action="userinfovalidate.jsp" method="post"
 onSubmit="return isValidForm(this)">
 <input type="hidden" name="submitted" value="true">
 <table>
 <c:if
 test="${param.submitted and userInfo.userNameValid == false}">
 <tr><td></td>
 <td colspan="2">
 Please enter your Name
 </td></tr>
 </c:if>
 <tr>
 <td>Name:</td>
 <td>
 <input type="text" name="userName"
 value="${fn:escapeXml(userInfo.userName)}">
 </td>
 </tr>
 <c:if test="${param.submitted and not userInfo.birthDateValid}">
 <tr><td></td>
 <td colspan="2">
 Please enter a valid Birth Date
 </td></tr>
 </c:if>
 <tr>
 <td>Birth Date:</td>
 <td>
 <input type="text" name="birthDate"
 value="${fn:escapeXml(userInfo.birthDate)}">
 </td>
 <td>(Use format yyyy-mm-dd)</td>
 </tr>
 <c:if test="${param.submitted and not userInfo.emailAddrValid}">
 <tr><td></td>
 <td colspan="2">
 Please enter a valid Email Address
 </td></tr>
 </c:if>
 <tr>
 <td>Email Address:</td>
 <td>
 <input type="text" name="emailAddr"
 value="${fn:escapeXml(userInfo.emailAddr)}">
 </td>
 <td>(Use format name@company.com)</td>
 </tr>
 <c:if test="${param.submitted and not userInfo.genderValid}">
 <tr><td></td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <tr><td></td>
 <td colspan="2">
 Please select a valid Gender
 </td></tr>
 </c:if>
 <tr>
 <td>Gender:</td>
 <td>
 <c:choose>
 <c:when test="${userInfo.gender == 'f'}">
 <input type="radio" name="gender" value="m">
 Male

 <input type="radio" name="gender" value="f" checked>
 Female
 </c:when>
 <c:otherwise>
 <input type="radio" name="gender" value="m" checked>
 Male

 <input type="radio" name="gender" value="f">
 Female
 </c:otherwise>
 </c:choose>
 </td>
 </tr>
 <c:if test="${param.submitted and not userInfo.luckyNumberValid}">
 <tr><td></td>
 <td colspan="2">
 Please enter a Lucky Number between 1 and 100
 </td></tr>
 </c:if>
 <tr>
 <td>Lucky number:</td>
 <td>
 <input type="text" name="luckyNumber"
 value="${fn:escapeXml(userInfo.luckyNumber)}">
 </td>
 <td>(A number between 1 and 100)</td>
 </tr>
 <c:if test="${param.submitted and not userInfo.foodValid}">
 <tr><td></td>
 <td colspan="2">
 Please select only valid Favorite Foods
 </td></tr>
 </c:if>
 <tr>
 <td>Favorite Foods:</td>
 <td>
 <input type="checkbox" name="food" value="z"
 ${userInfo.pizzaSelected ? 'checked' : ''}>Pizza

 <input type="checkbox" name="food" value="p"
 ${userInfo.pastaSelected ? 'checked' : ''}>Pasta

 <input type="checkbox" name="food" value="c"
 ${fn:escapeXml(userInfo.chineseSelected}) ? 'checked' : ''}>Chinese
 </td>
 </tr>
 <tr>
 <td colspan=2>
 <input type="submit" value="Send Data">
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

The only differences are that a client-side validation function is defined in a <script> element and that the method is
invoked by the onSubmit JavaScript event handler added to the <form> element. When the user submits the form, the
browser first executes the isValidForm() JavaScript function to validate all input field values. Only if all values pass the
test is the form actually submitted to the userinfovalidate.jsp page specified as the form's action URL. This means that
the user is alerted to mistakes much faster, and the server is relieved from processing invalid requests.

However, the server also performs the validation when the form is finally submitted, in exactly the same way as
described in Chapter 8. This is important, because you don't know if the user's browser supports JavaScript or if
scripting has been disabled in the browser.

Please note that the JavaScript validation code shown in Example 17-6 is far from perfect. It's really intended only as
an example. You can find much better validation code on sites such as the JavaScript Source
(http://javascript.internet.com/). You may also want to put large amounts of JavaScript code such as this in a separate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(http://javascript.internet.com/). You may also want to put large amounts of JavaScript code such as this in a separate
file to make the JSP page easier to read and maintain. Most browsers that support scripting allow you to specify an
external source for the scripting code with the src attribute:

<html>
 <head>
 <title>User Info Entry Form</title>
 <script language="JavaScript" src="validate.js"></script>
 </head>
 <body bgcolor="white">
 ...

17.4.1.1 Using server-side data in JavaScript code

In Example 17-6, all JavaScript code is written as static template text. However, nothing prevents you from generating
parts of the JavaScript code dynamically, for instance a JavaScript array with values retrieved from a database by the
JSP page. Example 17-7 shows a page that uses JavaScript code for setting the value of a selection list based on the
selection made in another list. To run this example, you need a database with two tables named Sizes and Toppings, each
with two columns named Name (of type CHAR) and Id (of type INT).

Example 17-7. Dynamic selection setting (selections.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<html>
 <head>
 <title>Online Pizza</title>
 <script language="JavaScript" src="dynamicscript.jsp"></script>
 </head>
 <body bgcolor="white"
 onLoad="setList(document.pizza.sels, values[0]);">
 <form name="pizza">
 Please make your pizza order selections below:

 <select name="categories"
 onChange="setList(this.form.sels, values[this.selectedIndex]);">
 <option value="0">Size
 <option value="1">Toppings
 </select>

 <select name="sels" size="6">
 <option>
 <c:forEach begin="1" end="25"> </c:forEach>
 </option>
 </select>
 </form>
 </body>
</html>

The form in Example 17-7 contains two selections lists named categories and sels. When the user selects a category from
the first list, the JavaScript onChange handler calls a JavaScript function named setList() to set the options in the second
list. The setList() function takes two arguments: a reference to the selection list that should be updated and an array
with the choice values. The JavaScript values array contains nested arrays: one array for each selection category,
containing another set of arrays for the choices within each category. Each choice array contains two elements: the
name of the choice (e.g., "Pepperoni") and the value to use for the <option> element's value attribute (i.e., a unique ID
for each choice). To set the initial values, the onLoad event handler for the <body> element calls the setList() function
with the subarray that contains the choices for the first category.

The dynamicscript.jsp file specified as the source for the <script> element generates the JavaScript setList() function and
values array. Example 17-8 shows how this JSP page fills the values array with values retrieved from two database
tables.

Example 17-8. Dynamically generated JavaScript code (dynamicscript.jsp)

<%@ page contentType="application/x-javascript"%>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<%@ page contentType="application/x-javascript"%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>

<sql:setDataSource var="pizza"
 driver="org.gjt.mm.mysql.Driver"
 url="jdbc:mysql:///test"
/>

<sql:query var="sizes" dataSource="${pizza}">
 SELECT * FROM Sizes
</sql:query>

<sql:query var="toppings" dataSource="${pizza}">
 SELECT * FROM Toppings
</sql:query>

values = new Array(
 new Array(
 <c:forEach items="${sizes.rows}" var="size" varStatus="s">
 new Array("${fn:escapeXml(size.Name)}", "${size.Id}")
 <c:if test="${not s.last}">,</c:if>
 </c:forEach>
),
 new Array(
 <c:forEach items="${toppings.rows}" var="topping" varStatus="s">
 new Array("${fn:escapeXml(topping.Name)}", "${topping.Id}")
 <c:if test="${not s.last}">,</c:if>
 </c:forEach>
)
);
function setList(selectCtrl, itemArray) {
 // Remove current items
 for (i = selectCtrl.options.length; i >= 0; i--) {
 selectCtrl.options[i] = null;
 }
 for (i = 0; i < itemArray.length; i++) {
 selectCtrl.options[i] = new Option(itemArray[i][0]);
 selectCtrl.options[i].value = itemArray[i][1];
 }
}

When the browser requests a JavaScript file it expects the response to be of type application/x-javascript. The page
directive's contentType attribute in Example 17-8 takes care of that. The JSTL database actions described in Chapter 12
are used to get the data from the two tables. In this example, I use the <sql:setDataSource> action to create a DataSource
instead of using the default (configured in the deployment descriptor) I used in Chapter 12 and Chapter 13. I tell the
<sql:query> to use this DataSource by specifying the dataSource attribute. This way I can test this page with a different
database from the one used for the other examples. In a production environment, I'd remove the <sql:setDataSource>
action and make a real DataSource available in one of the ways described in Chapter 24.

The rest of the page consists of static JavaScript code (highlighted) and JSTL actions that generate JavaScript array
creation code. For each category ("Sizes" and "Toppings"), a <c:forEach> action loops through the corresponding
database query result and generates a JavaScript subarray with strings for the choice name and value. Here's a sample
of the resulting JavaScript code sent to the browser:

values = new Array(
 new Array(
 new Array("Small",
 "0")
 ,
 new Array("Large",
 "1")
 ,
 new Array("X-Large",
 "2")
),
 ...

To decide whether to add a comma after the JavaScript subarray, I use the status bean optionally exposed by the
<c:forEach> action. The name of the variable to hold the bean is specified by the varStatus attribute. Within the loop, I
test the value of its last property. It's set to true by <c:forEach> when it processes the last element in the collection, so I
add a comma as long as it's false.

When you mix code for the client and server like this, just remember which code executes where and when. To the
code in the JSP page executing on the server, the JavaScript code it generates is just plain text; it doesn't even try to
understand it. It's only when the page that contains the dynamically generated JavaScript code reaches the browser
that it becomes meaningful and can be executed. The browser, on the other hand, couldn't care less that the JavaScript
code was created by a JSP page; it has no idea how the code was created. It should be clear then, that JavaScript code
can't call Java code in the JSP page and vice versa.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can't call Java code in the JSP page and vice versa.

17.4.2 Using Java Applets

A Java applet is a Java class that is identified by a special element in an HTML page. The browser loads the class and
executes it. An applet can provide a nice user interface on a web page. The problem is that the browsers don't keep up
with the Java release cycles for the native Java support. Many users still have browsers that support only JDK 1.0, and
more current browsers have so many limitations and bugs in their implementations that you're still limited to JDK 1.0
features to make the applet work.

To address this issue, Sun provides a Java runtime environment that can be integrated in a browser using the browser's
native plug-in API. The product is appropriately named the Java Plugin, and as of this writing the JDK 1.4 version is
available for Netscape Navigator and Internet Explorer on Windows, Linux, and Solaris. For an up-to-date list of
supported platforms, visit Sun's Java Plugin page at http://java.sun.com/products/plugin/.

With the Java Plugin, you can use the latest Java features in your applets, such as the Swing GUI classes, collection
classes, enhanced security, and more. But there's one more hurdle you have to jump. The HTML element you need in a
page to get the Java Plugin (or any plug-in component) installed and loaded by the browser differs between Internet
Explorer and Netscape Navigator. For Netscape, you need to use the <embed> element, while Internet Explorer requires
the <object> element. Fortunately, JSP provides an easy solution to this problem, namely the <jsp:plugin> action.

The <jsp:plugin> action looks at the User-Agent request header to figure out which type of browser is requesting the page
and inserts the appropriate HTML element for using the Java Plugin to run the applet. Example 17-9 shows an example
borrowed from the Tomcat JSP examples.

Example 17-9. Embedding an applet in a JSP page (applet.jsp)

<%@ page contentType="text/html" %>
<html>
 <head>
 <title>Embedding an applet</title>
 </head>
 <body bgcolor="white">
 <h1>Embedding an applet</h1>
 <jsp:plugin type="applet" code="Clock2.class"
 codebase="applet"
 jreversion="1.2" width="160" height="150" >
 <jsp:params>
 <jsp:param name="bgcolor" value="ccddff" />
 </jsp:params>
 <jsp:fallback>
 Plugin tag OBJECT or EMBED not supported by browser.
 </jsp:fallback>
 </jsp:plugin>
 </body>
</html>

The <jsp:plugin> action has three mandatory attributes: type, code, and codebase. The type attribute must be set to either
applet or bean (to include a JavaBeans object), code is used to specify the class name, and codebase is the absolute or
relative URL for the directory or archive file that contains the class. Note that the applet class must be stored in a
directory that can be accessed by the web browser, that is, part of the public web page structure for the application
(such as in webapps/myapp/myapplet.class). While class files for beans and custom actions are typically stored in the
webapps/myapp/WEB-INF lib and classes subdirectories, you can't store applet classes in these directories, because
they are accessible only to the container. The different locations makes sense when you think about where the code is
executed: the applet is loaded and executed by the browser; beans and custom action classes are loaded and executed
by the container. In Example 17-9, the applet class file is stored in an applet subdirectory of the directory that holds the
JSP page.

The <jsp:plugin> action also has a number of optional attributes, such as the width, height, and jreversion attributes used
here. Appendix Acontains a description of all attributes.

The body of the action element can contain nested elements. The <jsp:params> element, which in turn contains one or
more <jsp:param> elements, provides parameter values to the applet. In Example 17-9, the applet's bgcolor parameter is
set to the hexadecimal RGB value for light blue. The <jsp:fallback> element can optionally specify text that should be
displayed instead of the applet in a browser that doesn't support the HTML <object> or <embed> element.

Figure 17-2 shows what the page in Example 17-9 looks like in a browser.

Figure 17-2. A page with an applet using the Java Plugin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 17-2. A page with an applet using the Java Plugin

An applet can communicate with the server in many different ways, but how it's done is off-topic for this book. If you
would like to learn how to develop applets that communicate with a server, I suggest that you read Jason Hunter and
William Crawford's Java Servlet Programming (O'Reilly). It includes a chapter about different applet-server
communication options.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.5 Precompiling JSP Pages
To avoid hitting your site visitors with the delay caused by the conversion of a JSP page into a servlet on the first
access, you can precompile all pages in the application. Another use of precompilation is if you don't want anyone to
change the pages in a JSP-based application after the application has been deployed. In this case, you can precompile
all pages, define URL mappings for all JSP pages in the application deployment descriptor, and install just the Java class
files for the compiled pages. We look at both these scenarios in this section.

One way of precompiling all pages in an application is to simply run through the application in a development
environment and make sure you hit all pages. You can then copy the class files together with all the rest of the
application to the production server when you deploy the application. Where the class files are stored varies between
containers. Tomcat stores all JSP page implementation classes in its work directory by default, in a subdirectory per
web application. As long as the modification dates of the class files are more recent than the corresponding JSP pages,
the production server uses the copied class files.

The JSP specification also defines a special request parameter that can give the JSP container a hint that the page
should be compiled without letting the page process the request. An advantage of using this method is that you can
automatically invoke each page, perhaps using a simple load-testing tool, without having to provide all the regular
request parameters the pages use. Because the pages aren't executed, application logic that requires pages to be
invoked in a certain order or enforces similar rules can't interfere with the compilation. The request parameter name is
jsp_precompile, and valid values are true and false, or no value at all. In other words, the following URLs are all valid:

/ora/ch17/applet.jsp?jsp_precompile
/ora/ch17/applet.jsp?jsp_precompile=true
/ora/ch17/applet.jsp?jsp_precompile=false

The third example is not very useful, because if the parameter value is false, the request is simply ignored. A JSP
container that receives a request like the ones in the first and second example should compile the JSP page (go through
the translation phase) but not let the page process the request. Most JSP containers support this feature, even though
the specification doesn't require it. A compliant JSP container is allowed to ignore the compilation request, as long as it
doesn't let a JSP page process a request that includes a jsp_precompile parameter with the value true or no value at all.

When you have compiled the JSP pages, you can package your application without the JSP pages themselves, using
only the generated servlet class files. You do this by adding URL mapping definitions in the application deployment
descriptor, so that a request for a certain JSP page is served directly by the corresponding servlet instead:

<web-app>
 ...
 <servlet>
 <servlet-name>easy</servlet-name>
 <servlet-class>org.apache.jsp.ch5.easy_jsp</servlet-class>
 </servlet>
 ...
 <servlet-mapping>
 <servlet-name>easy</servlet-name>
 <url-pattern>/ch5/easy.jsp</url-pattern>
 </servet-mapping>
 ...
</web-app>

The <servlet> element maps the servlet class name to a symbolic name. The class name for a JSP page implementation
class (the generated servlet) is container-dependent; this example uses the type of class name Tomcat creates. The
<servlet-mapping> element then tells the container to invoke the class when it receives a request matching the defined
pattern, which is the context-relative path for the JSP page.

There are two reasons why you might want to precompile the JSP pages and define URL mappings for them. One
reason is that using the servlet class directly is slightly faster, since the container doesn't have to go through the JSP
container code to figure out which servlet class to use. The other reason is that if you don't include the JSP pages in the
application packet, no one can change the application. This can be an advantage if you resell prepackaged JSP-based
applications.

Doing all this by hand is a lot of work. Fortunately, the Apache Ant Java-based build tool (available at
http://ant.apache.org/) combined with the JspC tool that's part of Tomcat can do all this for you. Ant uses an XML file
that defines the tasks needed to build an application from source files. JspC (JSP Compiler) is a Java class that uses
Tomcat's JSP container to generate servlet classes for all JSP pages in an application and creates the URL mapping
declarations automatically.

After you have installed Ant, create an Ant build file, named build.xml, with this content (you find a file like this in the
root directory for the examples application):

<project name="Precompile" default="all" basedir=".">

 <target name="jspc">
 <taskdef classname="org.apache.jasper.JspC" name="jasper2" >
 <classpath id="jspc.classpath">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <classpath id="jspc.classpath">
 <pathelement location="${java.home}/../lib/tools.jar"/>
 <fileset dir="${tomcat.home}/server/lib">
 <include name="*.jar"/>
 </fileset>
 <fileset dir="${tomcat.home}/common/lib">
 <include name="*.jar"/>
 </fileset>
 </classpath>
 </taskdef>

 <jasper2
 validateXml="false"
 uriroot="${webapp.path}"
 webXmlFragment="${webapp.path}/WEB-INF/generated_web.xml"
 outputDir="${webapp.path}/WEB-INF/src" />
 </target>

 <target name="compile">
 <mkdir dir="${webapp.path}/WEB-INF/classes"/>
 <mkdir dir="${webapp.path}/WEB-INF/lib"/>

 <javac destdir="${webapp.path}/WEB-INF/classes"
 optimize="off"
 debug="on" failonerror="false"
 srcdir="${webapp.path}/WEB-INF/src"
 excludes="**/*.smap">
 <classpath>
 <pathelement location="${webapp.path}/WEB-INF/classes"/>
 <fileset dir="${webapp.path}/WEB-INF/lib">
 <include name="*.jar"/>
 </fileset>
 <pathelement location="${tomcat.home}/common/classes"/>
 <fileset dir="${tomcat.home}/common/lib">
 <include name="*.jar"/>
 </fileset>
 <pathelement location="${tomcat.home}/shared/classes"/>
 <fileset dir="${tomcat.home}/shared/lib">
 <include name="*.jar"/>
 </fileset>
 </classpath>
 <include name="**" />
 <exclude name="tags/**" />
 </javac>
 </target>

 <target name="all" depends="jspc,compile">
 </target>
</project>

The build file first defines a target (build step) named jspc that uses the JspC tool to generate Java source files for all
JSP pages in a web application. The source files are created in the WEB-INF/src directory. JspC also generates <servlet>
and <servlet-mapping> elements for each JSP page and places them in WEB-INF/generated_web.xml. The second target,
named compile, creates the WEB-INF/classes and WEB-INF/lib directories if they don't exist, and then compiles all the
generated Java source files for the JSP pages with the class files ending up in the WEB-INF/classes directory.

To process this build file, use a command shell and change directory to where the build.xml file is located. For the
examples application, this is webapps/ora, if you have installed the examples as described in Chapter 4. Then run this
command:

C:\> ant -Dtomcat.home=%CATALINA_HOME% -Dwebapp.path=.

If the build.xml file is located in some other directory than the application root directory, specify the real path for the
-Dwebapp.path argument. Running this command creates compiled versions of all JSP pages and places the class files
under WEB-INF/classes and the mapping elements in the WEB-INF/generated_web.xml file. If you have a web.xml file
with other configuration setting, just copy the contents of the generated_web.xml file into the real web.xml file; if you
don't have any other setting, just rename the file to web.xml and add an XML declaration and the root element, as
shown in Appendix F. You can now remove the JSP pages, because the mappings tells the container to invoke the
precompiled class files directly.

There is one more thing you need to be aware of. JspC is not part of the JSP specification; it's a tool that is available
only for Tomcat. Other containers may contain similar tools, though. Using JspC or a similar tool works fine as long as
you compile and deploy the generated servlet classes using the same web container product. But a web container uses
its own internal classes in the generated servlets, which means that if you generate the servlets with one web container
(such as Tomcat) and deploy them in another (such as New Atlanta's ServletExec), you must also deliver the internal
classes. For Tomcat, these classes are packaged in the common/lib/jasper-runtime.jar file, and you're free to deliver
this JAR file with your application. If you use a precompilation tool that belongs to some other container, you need to
read the documentation and see where the internal classes it needs are stored. Also make sure the tool has a license
that allows you to redistribute those classes before you bundle them with your application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.6 Preventing Caching of JSP Pages
A browser can cache web pages so that it doesn't have to get them from the server every time the user asks for them.
Proxy servers can also cache pages that are frequently requested by all users going through the proxy. Caching helps
cut down the network traffic and server load, and provides the user with faster responses. But caching can also cause
problems in a web application in which you really want the user to see the latest version of a dynamically generated
page.

Both browsers and proxy servers can be told not to cache a page by setting response headers. You can use a scriptlet
like this in your JSP pages to set these headers:

<%
 response.addHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache, no-store, must-revalidate");
 response.addHeader("Cache-Control", "pre-check=0, post-check=0");
 response.setDateHeader("Expires", 0);
%>

An alternative is to use a custom action that's included with the book examples:

<%@ taglib uri="orataglib" prefix="ora" %>
<ora:noCache/>

The <ora:noCache> action sets the exact same headers as the scriptlet example, but it's cleaner.

The reason so many headers are needed is that different browsers and proxies respect different headers. The Pragma
header is intended for old HTTP/1.0 clients. According to the HTTP/1. 0 specification, this header is really a request
header but proxies and some browsers are known to respect it even when it's used as a response header. The Cache-
Control header is an HTTP/1.1 header, so older browsers may not recognize it. The no-cache and no-store values mean
that the client is not allowed to save a local copy of the page, and the must-revalidate that it must always ask the
server if a new version is available. The second set of Cache-Control values are "extensions" supported by Internet
Explorer, with basically the same meaning as the standard values used in the first set. The Expires header, finally, is
defined by the HTTP/1.0 specification, so all browsers should recognize it. The value is the date and time when the
response is no longer valid. The setDateHeader() method converts the value 0 to Thu, 1 Dec 1970 00:00:00 GMT; in other
words, a date way in the past to ensure that the client gets a new copy every time this page is requested.

There's a subtle difference between telling the browser that the response has already expired and telling it not to cache
the response. According to the HTTP/1.1 specification, if you say only that the response has expired, the browser is
supposed to show a cached copy when the user uses the Back button or selects the page from the history list. It should
ask the server for a new version only when the user makes an explicit request for the page by clicking a link, submitting
a form, or typing the URL in the address field. However, if you tell the browser not to cache the response, it's not
allowed to ever use a cached copy, not even for a Back button or history list selection. This is the safest model for
responses that include sensitive information intended only for an authorized user, but it may not be the right choice for
all responses.

By including or excluding the Pragma and Cache-Control headers, you can get the behavior that is appropriate for your
specific application. In theory, that is. Unfortunately, browsers don't always behave as they should. Most (if not all)
versions of Netscape and Mozilla, for instance, don't cache a response that has expired so excluding the cache headers
makes no difference. Some versions of Internet Explorer are infamous for ignoring the cache headers, forcing you to
use <http-equiv> elements in the page instead of (or in addition to) setting the headers to avoid a response to be
cached. For more on the Internet Explorer problems, see http://support.microsoft.com/default.aspx?scid=kb;EN-
US;q222064. Finally, some proxy and caching servers ignore all of this. An ugly but effective workaround in this case is
to generate unique URLs for all application pages by including a query string parameter with a new value for each
request, for instance using a counter like this:

<c:set var="${counter + 1}" scope="application" />

 This page is never cached

As you can see, in the real world it can be hard to get this right. I recommend that you set the appropriate headers for
the behavior you want first, assuming that the browsers and proxies used by the web application users are
specification-compliant. Then test with the set of browser versions you want to support, using all the caching options
each browser supports. Revert to <http-equiv> elements or the unique query string solution only if nothing else works.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.7 Writing JSP Pages as XML Documents
An important part of JSP 2.0 is the added flexibility for writing JSP pages as well-formed, namespace-aware XML
documents. Such JSP pages are referred to as JSP Documents, to distinguish them from the type of plain JSP pages
described in the rest of this book. Tag files, described in Chapter 11, can also be written as XML documents. While all
examples in this section show JSP Documents, you should be aware that everything said about JSP Documents also
applies to tag files in XML format.

The main differences between a plain JSP page and a JSP Document are:

Template data and JSP elements, taken together, must form a well-formed XML document, which optionally can
be validated. This means, among other things, that XML element equivalents must be used instead of the
regular JSP directive and scripting elements.

A JSP Document is initially processed as a namespace aware XML document, meaning that standard XML entity
resolution applies, page encoding determination is performed as defined by the XML specification, namespace
declarations are honored and apply to both JSP elements and template data elements, XML quoting rules apply
(special characters in attribute values and text nodes must be encoded), etc.

Whitespace is processed in the same manner as when XSLT is used to process an XML document. That is, text
nodes that contain only whitespace are dropped, except for text nodes in the body of a <jsp:text> element
(where whitespace is preserved).

An XML declaration may be generated for the response.

Prior to JSP 2.0, a JSP Document had to use <jsp:root> as its root element, making this syntax of interest primarily for
validation and authoring tools. The more flexible rules introduced in JSP 2.0 extend the use of the XML syntax to other
areas, such as pages used to generate any well-formed XML document and pages created with XML-aware editors.

Apart from the differences listed here, a JSP Document is processed as a regular JSP page after it's been successfully
processed (and validated, if necessary) as an XML document, so you can use all standard and custom actions, as well
as EL expressions in the document.

17.7.1 Identifying a JSP Document

The container needs help to recognize a JSP page as a page using the XML syntax. A JSP 2.0 container follows these
rules, in this order:

The requested page has an extension matching the URL pattern of a JSP group declaration in the web.xml file
with <is-xml> set to true, as described earlier.

The requested page has the .jspx extension, unless this extension has been disabled by a JSP group with <is-
xml> set to false. For a tag file in XML syntax, the .tagx extension must be used.

The requested page is identified as a JSP page (through the default .jsp extension or an extension defined by a
JSP group declaration) and its root element is <jsp:root>.

The third rule was the only one supported by JSP 1.2, as I mentioned earlier, and it's primarily kept for backward
compatibility. For new applications, you probably want to rely on one of the first two rules instead.

Let's use a simple JSP Document to discuss the syntax requirements in more detail. Example 17-10 shows a JSP
Document that illustrates most of the things you need to consider, as well as the main features available for this
format.

Example 17-10. A JSP Document (jspdocument.jspx)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 17-10. A JSP Document (jspdocument.jspx)

<html
 xmlns="http://www.w3c.org/1999/xhtml"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xml:lang="en" lang="en">

 <jsp:output doctype-root-element="html"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system="http://www.w3c.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"/>

 <jsp:directive.page contentType="text/html" />

 <head>
 <title>A JSP Document</title>
 </head>
 <body bgcolor="white">
 <h1>All Request Parameters</h1>

 <c:forEach xmlns:c="http://java.sun.com/jsp/jstl/core"
 items="${paramValues}" var="current">

 ${current.key}:
 <c:forEach items="${current.value}" var="parValue">

${parValue}
 </c:forEach>

 </c:forEach>

 <jsp:element name="${param.element}">
 <jsp:attribute name="style">${param.style}</jsp:attribute>
 <jsp:body>${param.body}</jsp:body>
 </jsp:element>

 </body>
</html>

The JSP Document in Example 17-10 generates a list of all parameters received with the request and an element based
on the parameter data.

The <html> element contains two xmlns attributes. These attributes are used to declare namespaces in an XML
document. The first one declares the XHTML namespace as the default namespace for the document. The second one
declares that elements with the prefix jsp belong to the JSP namespace, identified by the http://java.sun.com/JSP/Page
URI. You must use this declaration in a JSP Document where you use JSP standard actions. You can actually declare a
prefix other than jsp for the standard actions in a JSP Document. I suggest, however, that you stick to the default prefix
unless you absolutely have to use another (e.g., because you need to use the jsp prefix for another namespace in the
generated response); using a different prefix is likely to just cause confusion.

17.7.2 Custom Tag Library Declarations

Custom tag libraries are declared and associated with a prefix through namespace declarations in a JSP Document. In
Example 17-10, you see that the JSTL core tag library is declared with an xmlns prefixed attribute in the <c:forEach>
element. As in XML, you can declare all namespaces you need either in the root element or in nested elements (where
it applies only to that element and its children). The custom tag library prefix is the part of the attribute name following
xmlns:, and the attribute value is usually the URI for the library (as defined either in the web.xml file or in the TLD file
for the library). That's how the JSTL core library is declared in Example 17-10. If you want to use the TLD or JAR file
path instead of a URI value, you must use a value starting with urn:jsptld: followed by the path, for instance:

<html xmlns:ora="urn:jsptld:/WEB-INF/lib/orataglib_3_0.jar"
 ...>

If the custom tag library consists of a set of tag files directly in the web application structure (i.e., a library that you
would identify with the tagdir attribute of a taglib directive in a regular JSP page), the value must start with urn:jsptagdir:,
followed by the path to the directory:

<html xmlns:my="urn:jsptagdir:/WEB-INF/tags/mytags"
 ...>

17.7.3 Generating a DOCTYPE Declaration

Because the page in Example 17-10 generates an XHTML response, the response body should start with a DOCTYPE
declaration for XHTML. This is not a JSP specification requirement, but for XML documents defined by a DTD or an XML
Schema, it's always a good idea. The <jsp-output> action with the doctype-root-element, doctype-public, and doctype-system

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Schema, it's always a good idea. The <jsp-output> action with the doctype-root-element, doctype-public, and doctype-system
attributes adds a DOCTYPE declaration based on the attribute values at the top of the response body. With the attribute
values used in Example 17-10, the generated declaration looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3c.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The doctype-public attribute is optional. If you omit it, the action generates a declaration without a public identifier.

Note that if you include a DOCTYPE declaration that specifies a DTD in the JSP Document itself, it applies to the JSP
Document, not to the generated response. In this case, the container validates the JSP Document against the specified
DTD.

17.7.4 XML Syntax for JSP Directives and Scripting Elements

The syntax used for JSP directives and scripting elements in a regular JSP page won't fly in a JSP Document; this syntax
is not well-formed XML. You must use these XML elements with equivalent meaning instead:

<jsp:directive.page attribute_list />

Corresponds to <%@ page attribute_list %>, in which the attribute list contains all the attributes supported by the
page directive, as described in Appendix A.

<jsp:directive.include file= "file_path" />

Corresponds to <%@ include file="file_path" %>.

<jsp:declaration> ... </jsp:declaration>

Corresponds to <%! ...%>.

<jsp:expression> ... </jsp:expression>

Corresponds to <%= ... %>.

<jsp:scriptlet> ... </jsp:scriptlet>

Corresponds to <% ... %>.

The <jsp:directive.page> element with the contentType attribute in Example 17-10 shows you a concrete example of this
syntax.

17.7.5 Generating Elements Dynamically

Example 17-10 contains a JSP standard action that you have not seen in previous examples, combined with a couple of
actions that are more familiar:

 <jsp:element name="${param.element}">
 <jsp:attribute name="style">${param.style}</jsp:attribute>
 <jsp:body>${param.body}</jsp:body>
 </jsp:element>

The <jsp:element> action generates a new XML element in the response with the name specified by the name attribute.
The <jsp:attribute> and <jsp:body> elements perform the same function as in previous chapters—adding an attribute and
a body to the element, respectively. Together, these standard actions allow you to create any XML element, with any
number of attributes and a body based on the evaluation result of their bodies, while still keeping the JSP Document as
a well-formed XML document. For instance, if the page in Example 17-10 receives the parameters element with the
value p, style with the value font-weight:bold, and body with the value Hello+World, this element is generated:

<p style="font-weight:bold">Hello World</p>

17.7.6 Encoding Non-XML Data and Special Characters

Since a JSP Document is a formal XML document, all template data must be well- formed XML. Example 17-10 is well-
formed because it contains XHTML elements, such as the and elements, represented by opening and closing
tags, and an empty
 tag.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tags, and an empty
 tag.

If you use a JSP Document to generate a response in a format that is not XML-based, you can embed the template data
that is not well-formed in XML CDATA sections. For instance, if the response must be accessible to older browsers that
only understand HTML 3.2, you can't use the XHTML
 empty tag syntax, but using HTML 3.2 syntax with a single
opening
 tag violates the well-formedness requirement. Embedding the HTML 3.2 single opening
 tag in a
CDATA section solves the problem; it satisfies the container's well-formed XML requirement and feeds the browser the
HTML 3.2 tag it understands:

 <c:forEach items="${paramValues}" var="current">

 ${current.key}:
 <c:forEach items="${current.value}" var="parValue">
 <![CDATA[
]]>${parValue}
 </c:forEach>

 </c:forEach>

In an XML document, special characters such as greater-than and less-than in an element body (or attribute) must be
replaced with character entity codes, for example, the < character must be replaced with < and > must be replaced
with >. These characters are common in Java code, so if you need to use scripting elements in a JSP Document, you
can use a CDATA section to work around this issue as well:

<jsp:scriptlet>
 <![CDATA[
 if (someNumber > 0) {
 isValid = true;
 }
]]>
</jsp:scriptlet>

Another case where special characters must be dealt with is in request-time attribute values. For EL expressions, you
must use the XML-safe operators—and, lt, gt, le, and ge instead of &&, <, >, <=, and >=—or use character entity codes
in the expression: &&, <, >, <=, and >=. For a scripting request-time attribute value, you must also
use a slightly different syntax than in a regular JSP page:

<jsp:setProperty name="emp" property="hireDate"
 value="%= new java.util.Date() %" />

The difference, as shown here, is that the troublesome less-than and greater-than signs are removed.

17.7.7 Using the <jsp:root> Element

Most JSP Documents developed for JSP 2.0 don't use the <jsp:root> element, but it's still supported. Potential reasons
for using it in JSP 2.0 are if you need to generate a sequence of XML documents (i.e., the result has more than one root
element) or if you want to generate content that is not XML at all but you prefer to use XML syntax in the JSP page
(e.g., because you're using an XML-aware editor).

The <jsp:root> element has a mandatory version attribute, and it can be used to declare the JSP namespace and custom
tag libraries used in the page with xmlns attributes:

<jsp:root
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 version="2.0">

 ...

</jsp:root>

The version attribute value is the JSP specification version the document complies with, and it must be 1.2 or 2.0. Other
than that, a JSP Document with <jsp:root> as its root element looks just the same as the JSP Documents described
earlier. The element only serves to identify the page as a JSP Document, and it's not included in the response produced
by the page.

17.7.8 XML Declaration Generation

When the container processes a JSP Document, it adds an XML declaration like this to the response in most cases:

<? xml version="1.0" encoding="encodingValue" ?>

The encoding attribute value is the response character encoding defined by a page directive with a contentType attribute
containing a character encoding, as described in Chapter 14, or UTF-8 if it's not defined in the JSP Document.

The XML declaration is generated by default for a JSP Document, unless <jsp:root> is used as the root element. You can
use the <jsp:output> standard action to suppress the generation of the declaration, or to force it to be generated for a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use the <jsp:output> standard action to suppress the generation of the declaration, or to force it to be generated for a
<jsp:root> document:

<jsp:output omit-xml-declaration="true" />

The omit-xml-declaration attribute accepts one of four values: with the value true or yes, the declaration is not generated;
if set to false or no, it is. A reason to omit the declaration is when the generated response is included into another
document, for instance using the <jsp:include> action in another JSP Document.

For tag files written in XML syntax, no XML declaration is generated by default, since their output typically gets mixed
with the content of the page that invokes them. In the rare event you need one, you can use the <jsp:output> action in
the tag file with omit-xml-declaration set to false or no.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

17.8 How URIs Are Interpreted
One thing that can be confusing in a JSP-based application is the different type of URIs used in the HTML and JSP
elements. The confusion stems from a combination of conflicting terms used to describe URIs in the HTTP, servlet, and
JSP specifications, and the fact that some types of URIs are interpreted differently in the HTML and servlet worlds.

In HTML, URIs are used as attribute values in elements such as <a>, , and <form>. JSP elements that use URI
attribute values are the page, include, and taglib directives and the <jsp:forward> and <jsp:include> actions. JSTL and
custom actions can also define attributes that take URI values.

The HTTP/1.1 specification (RFC 2616, with more details in RFC 2396) defines a URI as a string, following certain rules,
that uniquely identifies a resource of some kind. A URL is just a special kind of URI that includes a location (such as the
server name in an HTTP URL). An absolute URI is a URL that starts with the name of a so-called scheme, such as http or
https, followed by a colon and then the rest of the resource identifier. An example of an absolute URI for a resource
accessed through the HTTP protocol is:

http://localhost:8080/ora/ch12/login.jsp

Here http is the scheme, localhost:8080 is the location (a server name and a port number), and /ora/ch12/login.jsp is the
path.

The URIs in HTML elements are interpreted by the browser. A browser needs the absolute URI to figure out how to send
the requests for the resources referenced by the HTML elements. It uses the scheme to select the correct protocol and
the location to know where to send the request. The path is sent as part of the request to the server, so the server can
figure out which resource is requested. But when you write a URI in an HTML document, such as the action attribute of a
form element or the src attribute of an image element, you don't have to specify an absolute URI if the resource is
located on the same server. Instead you can use just the URI path:

This type of URI is called an absolute path, meaning it contains the complete path for the resource within a server; the
only difference compared to an absolute URI is that the scheme and location is not specified. The browser interprets an
absolute path URI as a reference to a resource on the server that produced the response, so it adds the scheme and
location it used to make the request. It then has the absolute URI it needs to make a request for the referenced
resource.

Another type of URI is called a relative path, because it's interpreted relative to the path of the current page. A relative
path doesn't start with a slash:

<form action="authenticate.jsp">
<img src="../images/hello.gif"

Here the action attribute references a JSP file at the same level in the path structure as the page that contains the
reference. The src attribute value uses the ../ notation to refer to a resource one level up in the structure. The browser
interprets a relative path URI as relative to the path for the request that produced the page. If the two relative paths in
this example are used in a page generated by a request for http://localhost:8080/ora/ch13/login.jsp, the browser
interprets them as the following absolute URIs:

http://localhost:8080/ora/ch13/authenticate.jsp
http://localhost:8080/ora/images/hello.gif

Relative URI paths offer a lot of flexibility. If all references between the web resources in an application are relative,
you can move the application to a different part of the path structure without changing any URIs. For instance, if you
move the pages from /ora/ch13 to /billboard, the relative paths still reference the same resources.

So far, so good. Now let's see what happens in a Java web container when it receives a request. The first part of a URI
for a servlet or JSP page has a special meaning. It's called the context path; one example is the /ora path used for all
examples in this book. As described in Chapter 2, a servlet container can contain multiple web applications, handled by
a corresponding servlet context. Each web application is associated with a unique context path, assigned when the web
application is installed. When the web container receives a request, it uses the context path to select the servlet context
that's responsible for handling the request. The container hands over the request to the selected context, which then
uses the URI path minus the context path to locate the requested resource (a servlet or a JSP page) within the context.
For instance, an absolute URI such as http://localhost:8080/ora/ch13/login.jsp is interpreted by the container as a
request for a JSP page named /ch13/login.jsp within the context with the context path /ora.

Because a web application can be assigned any context path when the application is installed, the context path must
not be part of the URIs used in JSP elements (and servlet methods) to refer to other parts of the same application. You
can always use a relative path URI, just as you do in HTML elements, for instance to refer to another page in a
<jsp:include> action:

<jsp:include page="navigation.jsp" />

This type of URI is called a page-relative path in the JSP specification. It's interpreted by the container as relative to the
page where it's used. In other words, it's exactly the same type of path as the HTTP specification calls simply a relative
path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path.

Sometimes it's nice to be able to refer to an internal application resource with a URI that is not interpreted relative to
the containing page. An example is a reference to a customized error page that is used by all pages in the application
independent of where in the path structure they are located:

<%@ page errorPage="/errorMsg.jsp" %>

When a URI in a JSP element attribute starts with a slash, the container interprets it as relative to the application's
context path. The JSP specification calls this type of URI a context-relative path. This type of URI is useful for all sorts
of common application resources, such as error pages and images, that have fixed URIs within the application path
structure.

In summary, a URI used in an HTML element can be:

An absolute URI (a scheme and server name, plus the resource path)

An absolute-path URI (a path starting with a slash), interpreted as the absolute path to a resource on the
server that sent the response containing the URI

A relative-path URI (a path without a starting slash), interpreted as relative to the absolute path used to
request the response that contains it

A URI used in a JSP element (or a servlet method) can be:

A context-relative path (a path starting with a slash), interpreted as relative to the application's context path

A page-relative path (a path without a starting slash), interpreted as relative to the path for the page where it's
used.

As long as you remember that URIs used in HTML elements are interpreted by the browser, and URIs used in JSP
elements are interpreted by the web container, it's not so hard to figure out which type of URI to use in a given
situation.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part III: JSP in J2EE and JSP Component
Development

If you're a programmer, this is the part of the book where the real action is. Here you will learn how to
develop your own custom actions and JavaBeans, and how to combine JSP with other Java server-side
technologies, such as servlets and Enterprise JavaBeans (EJB):

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 18. Web Application Models
Part II of this book describes how you can create many different types of applications using only JSP pages with generic
components—JSTL actions, custom actions and beans—to access databases, present content in different languages,
protect pages, and so forth—all without knowing much about Java programming. This approach works fine for many
types of web applications, such as employee registers, product catalogs, and conference room reservation systems. But
for applications with complicated schemas, intricate business rules, and tricky control flows, the generic components
just don't cut it, and you suddenly find that you need a more powerful way to handle the request processing and the
business logic.

As I mentioned in Chapter 3, JSP can be combined with other Java technologies such as servlets and EJB in more
complex applications. In this chapter, we look at how JSP fits into this larger picture. After the brief description of the
most common application models in this chapter, Chapter 19 describes the combination of servlets and JSP in detail.

The material presented in this part of the book is geared towards Java programmers. If you're not a programmer, you
may still want to browse through this part to get a feel for the possibilities, but don't expect to understand everything.
To really appreciate the techniques described in this part of the book, you should have experience with Java
programming in general. Familiarity with Java servlets also helps, and a short introduction is included in Chapter 19 for
those who are new to this technology.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

18.1 The Java 2 Enterprise Edition Model
At the JavaOne conference in San Francisco in June 1999, Sun Microsystems announced a new architecture for Java,
with separate editions for different types of applications: the Java 2 Standard Edition (J2SE) for desktop and
workstation devices; the Java 2 Micro Edition (J2ME) for small devices such as cell phones, pagers, and PDAs; and the
Java 2 Enterprise Edition (J2EE) for server-based applications.

J2EE is a compilation of various Java APIs that have previously been offered as separate packages; an Application
Programming Model (APM) (also known as the J2EE Blueprints) that describes how they can all be combined; and a test
suite J2EE vendors can use to test their products for compatibility. J2EE has gone through a number of revisions since
1999, and the latest version (J2EE 1.4) includes the following enterprise-specific APIs among others:

JavaServer Pages (JSP)

Java Servlet

Enterprise JavaBeans (EJB)

Java Database Connection (JDBC)

Java Transaction API (JTA) and Java Transaction Service (JTS)

Java Naming and Directory Interface (JNDI)

Java Message Service (JMS)

Java IDL and Remote Method Invocation (RMI)

Java API for XML Parsing (JAXP), Java API for XML-based RPC (JAX-RPC), SOAP with Attachments API for Java
(SAAJ), and Java API for XML Registries (JAXR)

JavaMail and JavaBeans Activation Framework (JAF)

J2EE Connector Architecture (JCX)

Java Authentication and Authorization Service (JAAS)

Java Management Extensions (JMX)

In addition, all the J2SE APIs can be used when developing a J2EE application. These APIs can be used in numerous
combinations. The first three J2EE APIs—EJB, JSP, and servlets—represent different component technologies, managed
by what the J2EE documents call containers. A web container provides the runtime environment for servlets and JSP
components, translating requests and responses into standard Java objects. EJB components are similarly handled by
an EJB container. Don't be fooled by the name similarity between JavaBeans and Enterprise JavaBeans (EJB); they are
completely different animals. A JavaBeans component is a regular Java class, following a few simple naming
conventions, which can be used by any other Java class. An Enterprise JavaBean component, on the other hand, must
be developed in compliance with a whole set of strict rules and works only in the environment provided by an EJB
container.

Components in the two types of containers can use the other J2EE APIs to access databases (JDBC and JTA/JTS) and
other EIS tier applications (JCX), authenticate users and control access (JAAS), locate various resources (JNDI), and
communicate with other server resources (JavaMail/JAF, JMS, Java IDL, RMI, JAXP, JAX-RPC, SAAJ and JAXR). Figure
18-1 shows a high-level view of the main pieces and their relationship.

Figure 18-1. EE overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-1. EE overview

Enterprise applications are often divided into a set of tiers, and J2EE identifies three: the client tier, the middle tier, and
the Enterprise Information System (EIS) tier. The middle tier can be further divided into the web tier and the EJB tier.
This logical separation, with well-defined interfaces, makes it possible to build scalable applications. Initially one or
more tiers can be running on the same physical server. With increased demands, the tiers can be separated and
distributed over multiple servers without modifying the code, just by changing the configuration.

The client tier contains browsers as well as regular GUI applications. A browser uses HTTP to communicate with the web
container. A standalone application can also use HTTP or communicate directly with the EJB container using RMI or IIOP
(a CORBA protocol). Another type of client that's becoming more and more popular is the extremely thin client, such as
a cell phone or PDA. This type of client typically uses the Wireless Access Protocol (WAP), typically converted into HTTP
via a gateway, to communicate with the web container.

The middle tier provides client services through the web container and the EJB container. A client that communicates
with the server through HTTP uses components in the web container, such as servlets and JSP pages, as entry points to
the application. Many applications can be implemented solely as web container components. In other applications, the
web components just act as an interface to the application logic implemented by EJB components. A standalone
application, written in Java or any other programming language, can also communicate directly with the EJB
components. General guidelines for when to use the different approaches are discussed later in this chapter.
Components in this tier can access databases and communicate with other server applications using all the other J2EE
APIs.

The Enterprise Information System (EIS) tier holds the application's business data. Typically, it consists of one or more
relational database management servers, but other types of databases such as IMS databases; legacy applications such
as Enterprise Resource Planning (ERP); and mainframe transaction processing systems such as CICS, are also included
in this tier. The middle tier uses J2EE APIs such as JDBC, JTA/JTS, and the J2EE Connector Architecture (JCX) to
interact with the EIS tier.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

18.2 The MVC Design Model
In addition to the separation of responsibilities into different tiers, J2EE also encourages the use of the Model-View-
Controller (MVC) design model, briefly introduced in Chapter 3, when designing applications.

The MVC model was first described by Xerox in a number of papers published in the late 1980s in conjunction with the
Smalltalk language. This model has since been used for GUI applications developed in all popular programming
languages. Let's review: the basic idea is to separate the application data and business logic, the presentation of the
data, and the interaction with the data into distinct entities labeled the Model, the View, and the Controller,
respectively.

The Model represents pure business data and the rules for how to use this data; it knows nothing about how the data is
displayed or the user interface for modifying the data. The View, on the other hand, knows all about the user interface
details. It also knows about the public Model interface for reading its data, so that it can render it correctly, and it
knows about the Controller interface, so it can ask the Controller to modify the Model.

Using an employee registry application as an example, an Employee class may represent a Model. It holds information
about an employee: name, employment date, vacation days, salary, etc. It also holds rules for how this information can
be changed; for instance, the number of vacation days may be limited based on the employment time. The user
interface that shows the information is a View. It gets hold of an Employee object by asking the Controller for it and then
renders the information by asking the Employee object for its property values. The View also renders controls that allow
the user to modify the information. The Views sends the modification request to the Controller, which updates the
Employee object and then tells the View that the Model has been modified. The View, finally, updates the user interface
to display the updated values.

Using the MVC design model makes for a flexible application architecture, in which multiple presentations (Views) can
be provided and easily modified, and changes in the business rules or physical representation of the data (the Model)
can be made without touching any of the user interface code.

Even though the model was originally developed for standalone GUI applications, it translates fairly well into the
multitier application domain of J2EE. The user interacts with the Controller to ask for things to be done, and the
Controller relays these requests to the Model in a client-type independent way. Say, for instance, that you have two
types of clients: an HTTP client such as a browser and a GUI client application using IIOP to talk to the server. In this
scenario you can have one Controller for each protocol that receives the requests and extracts the request information
in a protocol-dependent manner. Both Controllers then call the Model the same way; the Model doesn't need to know
what kind of client it was called by. The result of the request is then presented to the two types of clients using different
Views. The HTTP client typically gets an HTTP response message, possibly created by a JSP page, while the GUI
application may include a View component that communicates directly with the Model to get its new state and render it
on the screen.

The J2EE platform includes many APIs and component types, as I have just shown. However, there's no reason to use
them all for a specific application. You can pick and choose the technology that makes most sense for your application's
scope and functionality, the longevity of the application, the skills in your development team, and so on.

The assignment of MVC roles to the different types of J2EE components depends on the scenario, the types of clients
supported, and whether or not EJB is used. The following sections describe possible role assignments for the three most
common scenarios in which JSP pages play an important role.

18.2.1 Using Only JSP

As you saw in Part II, there are all sorts of applications that can be developed using just JSP pages with JSTL, a few
JavaBeans components and custom actions. If you're primarily a page author working alone, with limited or no Java
knowledge, you can still develop fairly sophisticated applications using JSTL and the custom actions in this book. And if
that's not enough, many generic tag libraries are available from both commercial companies and open source projects,
making it possible to do even more with just the JSP part of the J2EE platform.

A pure JSP approach can be a good approach even for a team if most of the team members are skilled in page design
and layout, and only a few are Java programmers. The programmers can then develop application-specific beans and
custom actions to complement the generic components and minimize the amount of SQL and Java code in the JSP
pages.

A pure JSP approach is also a suitable model for testing new ideas and prototyping. Using generic components and a
few application-specific beans and actions is often the fastest way to reach a visible result. Once the ideas have been
proven, and the team has a better understanding of the problems, a decision can be made about the ultimate
application architecture for the real thing. The danger here is that the last step—evaluating the prototype and deciding
how it should be redesigned—never happens; I have seen prototypes being relabeled as production systems overnight
too many times and also experienced the inevitable maintenance nightmares that follow.

The MVC model makes sense even for a pure JSP play. I recommend that you use separate JSP pages for presentation
(the View) and request processing (the Controller), and place all business logic in beans (the Model), as shown in Figure
18-2. Let Controller pages initialize the beans, and let View pages generate the response by reading their properties.
That's the model used in most examples in Part II. If you follow this model, it's easy to move to a combination of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

That's the model used in most examples in Part II. If you follow this model, it's easy to move to a combination of
servlets and JSP the day you find that the pure JSP application is becoming hard to maintain.

Figure 18-2. MVC roles in a pure JSP scenario

18.2.2 Using Servlets and JSP

The combination of servlets and JSP is a powerful tool for developing well-structured applications that are easy to
maintain and extend as new requirements surface. Since a servlet is a regular Java class, you can use the full power of
the Java language to implement the request processing, using standard Java development and debugging tools. JSP
pages can then be used for what they are best at: rendering the response by including information collected or
generated by the servlets.

A common combination of servlets and JSP is to use one servlet as the Controller (or front component, as it's called in
the J2EE documents) for an application, with a number of JSP pages acting as Views. This approach lets you develop
the application in a more modular fashion, with the servlet acting as a gateway, dispatching requests to specialized
processing components and picking the appropriate JSP page for the response based on success or failure.

Prior to the 2.3 version of the servlet specification, servlets were often used to also make sure that application policies
were applied for all requests. For instance, with application-controlled authentication and access control, centralizing the
security controls in a servlet instead of counting on everyone remembering to put custom actions in all protected pages
was less error-prone. Using a servlet as the single entry point to the application also made it easier to do application-
specific logging (for instance collect statistics in a database), maintain a list of currently active users, and other things
that apply to all requests. The Servlet 2.3 specification, however, introduced two new component types that are more
appropriate for these tasks: filters and listeners. We take a closer look at how to use filters and listeners in Chapter 19.
Moving concerns about application policies to the new component types leaves the servlet with the tasks that are purely
in the Controller domain.

When servlets and JSP are combined, the MVC roles are assigned as shown in Figure 18-3. All requests are sent to the
servlet acting as the Controller with an indication about what needs to be done. The indication can be in the form of a
request parameter or as a part of the URI path. As in the pure JSP scenario, beans are used to represent the Model.
The servlet either performs the requested action itself or delegates it to individual processing classes per action.
Depending on the outcome of the processing, the Controller servlet picks an appropriate JSP page to generate a
response to the user (the View). For instance, if a request to delete a document in a document archive is executed
successfully, the servlet can pick a JSP page that shows the updated archive contents. If the request fails, it can pick a
JSP page that describes exactly why it failed. We look at this approach in more detail in Chapter 19.

Figure 18-3. MVC roles in a servlet/JSP scenario

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 18-3. MVC roles in a servlet/JSP scenario

18.2.3 Using Servlets, JSP, and EJB

An application based on EJB is today commonly viewed as the Holy Grail. However, it's also the most complex model of
the ones described in this chapter, and it therefore comes with overhead in the development, deployment, operation,
and administration areas. While EJB may be the way to go for some types of applications, it's overkill for many others.
Think long and hard about if you really need EJB, or if you're just influenced by all the hype around it, before you decide
to go this route.

What EJB brings to the table is primarily transaction management and a client type-independent component model.
Even though it's impossible to say with certainty that a specific type of application should definitely use EJB, if you
develop an application with numerous database write-access operations accessed through different types of clients
(such as browser, standalone application, PDA, or another server in a B2B application), EJB is probably the way to go.
An EJB-based application also enforces the separation between the Model, View, and Controller aspects, leading to an
application that's easy to extend and maintain.

There are two primary types of EJB components: entity beans and session beans. An entity bean represents a specific
piece of business data, such as an employee or a customer. Each entity bean has a unique identity, and all clients that
need access to the entity represented by the bean use the same bean instance. Session beans, on the other hand, are
intended to handle business logic and are used only by the client that created them. Typically, a session bean operates
on entity beans on behalf of its client.

With EJB in the picture, the MVC roles often span multiple components in the web container and EJB container. In a
web-based interface to an EJB application, requests are sent to a servlet just as in the servlet/JSP scenario. But instead
of the servlet processing the request, it asks an EJB session bean (or a web-tier component that acts as an interface to
an EJB session bean) to do its thing. The Controller role therefore spans the servlet and the EJB session bean, as
illustrated in Figure 18-4. The Model can also span multiple components. Typically, JavaBeans components in the web
tier mirror the data maintained by EJB entity beans to avoid expensive communication between the web tier and the
EJB tier. The session bean may update a number of the EJB entity beans as a result of processing the request. The
JavaBeans components in the web tier get notified so they can refresh their state and are then used in a JSP page to
generate a response. With this approach, the Model role is shared by the EJB entity beans and the web-tier JavaBeans
components.

Figure 18-4. MVC roles in a servlet/JSP/EJB scenario

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have barely scratched the surface of how to use EJB in an application here. If you believe this is the model that fits
your application, I recommend that you read the J2EE Blueprints (http://java.sun.com/blueprints/enterprise/) and a
book dedicated to this subject, such as Richard Monson-Haefel's Enterprise JavaBeans (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

18.3 Scalability
For a large, complex application, there are many reasons to move to a model that includes Enterprise JavaBeans
components. But, contrary to popular belief, scalability and great performance should not be the one deciding factor.
There are many ways to develop scalable applications using just JSP or the servlet/JSP combination, often with better
performance than an EJB-based application, because the communication overhead between the web tier and EJB tier is
avoided.

Scalability means that an application can deal with more and more users by changing the hardware configuration rather
than the application itself. Typically this means, among other things, that it's partitioned into pieces that can run on
separate servers. Most servlet- and JSP-based applications use a database to handle persistent data, so the database is
one independent piece. They also use a mixture of static and dynamically generated content. Static content, such as
images and regular HTML pages, is handled by a web server, while dynamic content is generated by the servlets and
JSP pages running within a web container. So without even trying, we have three different pieces that can be deployed
separately.

Initially, you can run all three pieces on the same server. However, both the web container and the database use a lot
of memory. The web container needs memory to load all servlet and JSP classes, session data, and shared application
information. The database server needs memory to work efficiently with prepared statements, cached indexes, statistics
used for query optimization, etc. The server requirements for these two pieces are also different; for instance, the web
server must be able to cope with a large number of network connections, and the database server needs fast disk
access. Therefore, the first step in scaling a web application is typically to use one server for the web server and servlet
container, and another for the database.

If this isn't enough, you can distribute the client requests over a set of servers processing HTTP requests. There are two
common models: distributing the requests only for dynamic content (servlet and JSP requests) or distributing requests
for all kinds of content.

If the web server is able to keep up with the requests for static content but not with the servlet and JSP requests, you
can spread the dynamic content processing over multiple web containers on separate servers, as shown in Figure 18-5.
Load balancing web container modules are available for all the major web servers, for instance Apache's Tomcat
(http://jakarta.apache.org/tomcat/), BEA's WebLogic (http://www.bea.com/), Caucho Technology's Resin
(http://www.caucho.com/), and New Atlanta's ServletExec (http://www.newatlanta.com/).

Figure 18-5. Web server distributing load over multiple web containers

The tricky part when distributing dynamic content requests over multiple servers is ensuring that session data is
handled appropriately. Most containers keep session data only in memory. In this case, the load balance module picks
the server with the lowest load to serve the first request from a client. If a session is created by this request, all
subsequent requests within the same session are sent to the same server. Alternatively, a container can also save
session data on disk or in a database. It can then freely distribute each request over all servers in the cluster and can
also offer failure recovery in case a server crashes. A container is allowed to move a session from one server to another
only for applications marked as distributable, as described in the next section. You can find which model a certain
product uses by looking at the vendor's web site and documentation. Pick one that satisfies your requirements as well
as your wallet.

For a high-traffic site, you may need to distribute requests for both static and dynamic content over multiple servers, as
illustrated in Figure 18-6. You can then place a load-balancing server in front of a set of servers, each running a web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

illustrated in Figure 18-6. You can then place a load-balancing server in front of a set of servers, each running a web
server and a web container. The same as with the previous configuration, session data must be considered when
selecting a server for the request. The easiest way to deal with it is to use a load-balancing product that sends all
requests from the same client to the same server. This is not ideal though, since all clients behind the same proxy or
firewall appear as the same host. Some load-balancing products try to solve this problem using cookies or SSL sessions
to identify individual clients behind proxies and firewalls. In this configuration, you get the best performance from a web
server that runs a web container in the same process, eliminating the process-to-process communication between the
web server and the web container. Most of the web containers mentioned here can be used in-process with all the
major web servers. Another alternative for this configuration is a pure Java server that acts like both a web server and
a web container. Examples are Apache's Tomcat, Ironflare AB's Orion Application Server
(http://www.orionserver.com/), and Gefion Software's LiteWebServer
(http://www.gefionsoftware.com/LiteWebServer/). Compared to adding a web container to a standard web server, this
all-in-one alternative is easier to configure and maintain. The traditional servers written in C or C++ may still be faster
for serving static content, but with faster and faster Java runtimes, pure Java servers come very close.

Figure 18-6. Load balancing server distributing requests over multiple servers
with a web server and container

You shouldn't rely on configuration strategies alone to handle the scalability needs of your application. The application
must also be designed for scalability, using all the traditional tricks of the trade. Finally, you must load-test your
application with the configuration you will deploy it on to make sure it can handle the expected load. There are many
pure Java performance testing tools to choose from, spanning from the simple but powerful Apache's JMeter
(http://jakarta.apache.org/jmeter/index.html) to sophisticated tools such as Minq Software's PureLoad
(http://www.minq.se/products/pureload/) that supports data-driven, session aware tests to be executed on a cluster of
test machines.

18.3.1 Preparing for Distributed Deployment

As I described in the previous section, some web containers can distribute the requests for a web application's
resources over multiple servers, each server running its own Java Virtual Machines (JVM). Of course, this has
implications for how you develop your application. So, by default, a web container must use only one JVM for an
application.

If you want to take advantage of web-container controlled load balancing, you must do two things: mark the application
as distributable and follow the rules for a distributed application defined by the servlet specification.

To mark an application as distributable means adding a <distributable/> element in the deployment descriptor for the
application:

<web-app>
 <description>A distributable application</description>

 <distributable/>

 <context-param>
 ...

</web-app>

By doing so, you're telling the web container that your application adheres to the rules for distributed applications.
According to the servlet specification, a distributed application must be able to work within the following constraints:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

According to the servlet specification, a distributed application must be able to work within the following constraints:

Each JVM has its own unique servlet instance for each servlet declaration. If a servlet implements the
javax.servlet.SingleThreadModel interface, each JVM may maintain multiple instances of the servlet class.

Each JVM has its own unique javax.servlet.ServletContext instance. Objects placed in the context are not distributed
between JVMs.

Each JVM has its own unique listener class instances. Event notification is not propagated to other JVMs.

Each object stored in the session must be serializable (must implement the java.io.Serializable interface).

This means you cannot rely on instance variables to keep data shared by all requests for a certain servlet; each JVM
has its own instance of the servlet class. For the same reason, be careful with how you use application scope objects
(ServletContext attributes); each JVM has its own context, with its own set of objects. In most cases, this is not a
problem. For instance, if you use the application scope to provide shared access to cached read-only data, it just means
you may have copies of the cached data in each JVM. If you really need access to the same instance of some data
between JVMs, you must share it through an external mechanism, such as a database, a file in a filesystem available to
all servers, or an EJB component.

The most interesting part about distributed applications is how sessions are handled. The web container allows only one
server at a time to handle a request that's part of a session, but since all objects put into the session must be
serializable, the container can save them on disk or in a database as well as in memory. If the server that handles a
session gets overloaded or crashes, the container can therefore move the responsibility for the session to another
server. The new server simply loads all serialized session data and picks up where the previous server left off. This
means that an object may be placed in the session in one JVM but actually used on another.

Listeners (described in Chapter 19) are also unique per JVM, and events are sent only to the local listeners. Since a
session may migrate to another JVM, this means that a session lifecycle listener in one JVM may be notified about the
start of the session, while a listener in another JVM gets the end-of-session notification.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 19. Combining JSP and Servlets
As I described in the previous chapter, combining JSP with servlets lets you clearly separate the application logic from
the presentation of the application; in other words, it lets you use the most appropriate component types for the roles
of Model, View, and Controller. To illustrate how a servlet can act as the Controller for an application—using beans as
the Model and JSP pages as Views—we redesign the Project Billboard application from Chapter 13 in this chapter. Along
the way, we look at how servlets and JSP pages can share data, how to deal with references between servlets and JSP
pages in a flexible manner, how to use filters and listeners, and how to handle runtime errors consistently in an
application that mixes these two technologies.

Java servlets offer a powerful API that provides access to all the information about the request, the session, and the
application. If you're not familiar with the Servlet API, I give you a crash course in the first section of this chapter. It's
just a brief introduction, but it should be enough to get you going and to understand the rest of this chapter. If you're
an old servlet pro, you may still want to scan through the last part of the introduction to learn about the new
component types available in recent versions of the specification (Servlet 2.3 or later): filters and listeners. If you plan
to make heavy use of servlets in your application, I recommend that you also read up on the details. You should pick up
a copy of Java Servlet Programming by Jason Hunter and William Crawford (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.1 Servlets, Filters, and Listeners
A servlet is a Java class that extends a server with functionality for processing a request and producing a response. It's
implemented using the classes and interfaces defined by the Servlet API. The API consists of two packages: the
javax.servlet package contains classes and interfaces that are protocol-independent, while the javax.servlet.http package
provides HTTP-specific extensions and utility classes.

What makes a servlet a servlet is that the class implements an interface named javax.servlet.Servlet, either directly or by
extending one of the support classes. This interface defines the methods used by the web container to manage and
interact with the servlet. A servlet for processing HTTP requests typically extends the javax.servlet.http.HttpServlet class.
This class implements the Servlet interface and provides additional methods suitable for HTTP processing.

19.1.1 Servlet Lifecycle

The web container manages all aspects of the servlet's lifecycle. It creates an instance of the servlet class when
needed, passes requests to the instance for processing, and eventually removes the instance. For an HttpServlet, the
container calls the following methods at the appropriate times in the servlet lifecycle:

public void init() throws ServletExecption

Called once, before the first request is delivered. This method can be used to initialize the servlet's state, for
instance by reading initialization parameters defined in the web application deployment descriptor and saving
the values in instance variables to be used during request processing.

public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException

Called repeatedly to let the servlet process a GET request. The request parameter provides detailed information
about the request, and the servlet uses the response parameter to generate the response.

public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException

Called repeatedly to let the servlet process a POST request.

public void destroy()

Called once, before the servlet is taken out of service. This method can be used to save to permanent storage
data accumulated during the servlet's lifetime and to remove references to objects held by the servlet.

Besides the doGet() and doPost() methods, there are methods corresponding to the other HTTP methods: doDelete(),
doHead(), doOptions(), doPut(), and doTrace(). Typically you don't implement these methods; the HttpServlet class already
takes care of HEAD, OPTIONS, and TRACE requests in a way that's suitable for most servlets, and the DELETE and PUT
HTTP methods are rarely used in a web application.

Example 19-1 shows an example of a Hello World servlet.

Example 19-1. Lifecycle for a Hello World servlet

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {
 private String greeting;

 public void init() {
 ServletConfig config = getServletConfig();
 greeting = config.getInitParameter("greeting");
 if (greeting == null) {
 greeting = "Hello World!";
 }
 }

 public void doGet(HttpServletRequest request,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 PrintWriter out = response.getWriter();
 out.println(greeting);
 }

 public void destroy() {
 greeting = null;
 }
}

The HelloWorld class extends the HttpServlet class, which makes it a valid servlet. In the init() method, it initializes an
instance variable named greeting based on configuration information defined in the WEB-INF/web.xml file (I'll show you
how to define initialization parameters in this file later). It gets the configured value from the ServletConfig object
associated with the servlet by the container. If no initialization parameter is defined, it sets the instance variable to a
default value: Hello World!

The servlet implements the doGet() method to process GET requests. This method first gets a PrintWriter for the response
body from the response object passed as an argument and then prints the greeting.

Finally, the implementation of the destroy() method removes the reference to the greeting string.

It's important to realize that the container creates only one instance of each servlet. This means that the servlet must
be thread safe—able to handle multiple requests at the same time, each executing as a separate thread through the
servlet code. Without getting lost in details, you satisfy this requirement with regards to instance variables if you modify
the referenced objects only in the init() and destroy() methods, and just read them in the request processing methods.
Example 19-1 initializes the greeting instance variable in the init() method, sets it to null in the destroy() method, and
reads it only in the doGet() methods, so it complies with these rules. You must, however, be careful with write access to
external objects shared by threads, such as session and application scope objects.

19.1.2 Compiling and Installing a Servlet

To compile a servlet, you must first ensure that you have the JAR file containing all Servlet API classes in the
CLASSPATH environment variable. The JAR file is distributed with all web containers. Tomcat includes it in a file called
servlet-api.jar, located in the common/lib directory. On a Windows platform, you include the JAR file in the CLASSPATH
like this (assuming Tomcat is installed in C:\Jakarta\jakarta-tomcat-5):

C:/> set CLASSPATH=C:\Jakarta\jakarta-tomcat-5\common\lib\servlet-api.jar;
%CLASSPATH%

You can then compile the HelloWorld servlet from Example 19-1 with the javac command, like this:

C:/> javac HelloWorld.java

To make the servlet visible to the container, you can place the resulting class file in the WEB-INF/classes directory for
the example application:

C:/> copy HelloWorld.class C:\Jakarta\jakarta-tomcat-5\webapps\ora\
WEB-INF\classes

The container automatically looks for classes in the WEB-INF/classes directory structure, so you can use this directory
for all application class files. The HelloWorld servlet is part of the default package, so it goes in the WEB-INF/classes
directory itself. If you use another package, say com.mycompany, you must put the class file in a directory under WEB-
INF/classes that mirrors the package structure. In other words, it should be placed in a directory named WEB-
INF/classes/com/mycompany. Alternatively, you can package the class files in a JAR file (see the Java SDK documents
for details) and place the JAR file in the WEB-INF/lib directory. The internal structure of the JAR file must also mirror the
package structure for all your classes.

Next you must tell the container that it should invoke your servlet when it receives a request for a specific URL. You do
this with <servlet> and <servlet-mapping> elements in the application deployment descriptor (WEB-INF/web.xml) file:

<web-app>
 ...
 <servlet>
 <servlet-name>helloWorld</servlet-name>
 <servlet-class>HelloWorld</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>helloWorld</servlet-name>
 <url-pattern>/hello/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

The <servlet> element gives the servlet class a unique name, and the <servlet-mapping> element links a URL pattern to
the named servlet. We'll look at this in more detail later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the named servlet. We'll look at this in more detail later.

With the class in the correct place and the servlet and a mapping declared, you're ready to test the servlet. Type this
URL in the browser address field and see what happens:[1]

[1] Previous editions of this book used the http://localhost:8080/ora/servlet/HelloWorld URL, relying on the
convention that the /servlet prefix signals that a servlet should be invoked, with the rest of the path identifying the
servlet (by the declared name or the class name). While this convention may still be supported by default in some
containers, it comes with a number of security concerns. It's therefore disabled by default in recent versions of
Tomcat, and you're encouraged to use explicit mappings instead.

http://localhost:8080/ora/hello

If you followed all instructions, you'll see the text "Hello World!" in your browser.

19.1.3 Reading a Request

One of the arguments passed to the doGet() and doPost() methods is an object that implements the HttpServletRequest
interface. This interface defines methods that provide access to a wealth of information about the request. Example 19-
2 illustrates the use of the most common methods.

Example 19-2. Using HttpServletRequest methods

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloYou extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String name = request.getParameter("name");
 if (name == null) {
 name = "you";
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html><body>");
 out.println("<h1>Hello " + name + "</h1>");

 out.println("I see that:");
 String userAgent = request.getHeader("User-Agent");
 out.println("your browser is: " + userAgent);
 String requestURI = request.getRequestURI();
 out.println("the URI for this page is: " +
 requestURI);
 String contextPath = request.getContextPath();
 out.println("the context path for this app is" +
 contextPath);
 String servletPath = request.getServletPath();
 out.println("this servlet is mapped to: " +
 servletPath);
 String pathInfo = request.getPathInfo();
 out.println("the remaining path is: " + pathInfo);
 Map parameters = request.getParameterMap();
 out.println("you sent the following params:");
 Iterator i = parameters.keySet().iterator();
 while (i.hasNext()) {
 String paramName = (String) i.next();
 out.println("" + paramName + ":");
 String[] paramValues =
 (String[]) parameters.get(paramName);
 for (int j = 0; j < paramValues.length; j++) {
 if (j != 0) {
 out.print(", ");
 }
 out.print(paramValues[j]);
 }
 }
 out.println("</body></html>");
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

After compiling and installing the HelloYou servlet, and mapping it to the /helloYou/* URL pattern as described earlier,
you can test it with this URL:

http://localhost:8080/ora/helloYou/extra?name=Bob&a=1&a=2

The result should be similar to that shown in Figure 19-1.

Figure 19-1. Response generated by the HelloYou servlet

In Example 19-2, the getParameter() method gets the value of a request parameter. This method returns a single value
for the parameter. But a request may contain multiple parameters with the same name. For multivalue parameters, you
can use a method called getParameterValues() instead. It returns a String array with all values. Further down in the
example, note that you can also use the getParameterMap() to get a Map containing all parameters in the request. Each
key is a String with the parameter name, and the values are String arrays with all values for the parameter. The
getParameterMap() method was added in the Servlet 2.3 API. For previous versions, you can use a combination of
getParameterNames() and getParameterValues() to accomplish the same thing. All these parameter access methods work
the same for both GET and POST requests.

Example 19-2 also shows how you can use the getHeader() method to read request header values, getRequestURI() to
get the complete URI, and various getXXXPath() methods to get different parts of the URI path. You can read more
about these methods and all other HttpServletRequest methods in Appendix D.

19.1.4 Generating a Response

Besides the request object, the container passes an object that implements the HttpServletResponse interface as an
argument to the doGet() and doPost() methods. This interface defines methods for getting a writer or stream for the
response body. It also defines methods for setting the response status code and headers. Example 19-3 contains the
code for a servlet that uses some of the methods.

Example 19-3. Using HttpServletResponse methods

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloMIME extends HttpServlet {
 private static final int TEXT_TYPE = 0;
 private static final int IMAGE_TYPE = 1;

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String greeting = "Hello World!";
 int majorType = TEXT_TYPE;
 String type = request.getParameter("type");
 if ("plain".equals(type)) {
 response.setContentType("text/plain");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 response.setContentType("text/plain");
 }
 else if ("html".equals(type)) {
 response.setContentType("text/html");
 greeting = "<html><body><h1>" + greeting +
 "</h1></body></html>";
 }
 else if ("image".equals(type)) {
 response.setContentType("image/gif");
 majorType = IMAGE_TYPE;
 }
 else {
 response.sendError(HttpServletResponse.SC_BAD_REQUEST,
 "Please specify a valid response type");
 return;
 }

 if (majorType == TEXT_TYPE) {
 PrintWriter out = response.getWriter();
 out.println(greeting);
 }
 else {
 OutputStream os = response.getOutputStream();
 ServletContext application = getServletContext();
 InputStream is =
 application.getResourceAsStream("/ora.gif");
 copyStream(is, os);
 }
 }

 private void copyStream(InputStream in, OutputStream out)
 throws IOException {
 int bytes;
 byte[] b = new byte[4096];

 while ((bytes = in.read(b, 0, b.length)) != -1) {
 out.write(b, 0, bytes);
 out.flush();
 }
 }
}

Example 19-3 shows how you can generate different types of responses for a request. Here a request parameter named
type is used to choose between a plain text, an HTML, or a GIF response. You must tell the browser what type of
content the response body contains using the Content-Type response header, which is set by the setContentType()
method. It takes the MIME type for the content as its single argument. The HttpServletResponse interface contains a
number of methods like this for setting specific response headers. For headers not covered by specific methods, you
can use the setHeader() method.

If no type or an invalid type is specified, the servlet in Example 19-3 returns an error response using the sendError()
method. This method takes two arguments: the HTTP response status code and a short message to be used as part of
the response body. If you prefer to use the default message for the status code, you can use another version of the
sendError() method that omits the message argument.

With the content type setting out of the way, it's time to generate the response body. For a body containing either plain
text or a markup language such as HTML or XML, you acquire a PrintWriter for the response by calling the getWriter()
method and just write the text to it. For a binary body, such as an image, you need to use an OutputStream instead,
which is exactly what the getOutputStream() method provides. When the type parameter has the value image, I use this
method to grab the stream and write the content of a GIF file to it.

The recommended way to access external files, such as the GIF file, is also illustrated in Example 19-3:

ServletContext application = getServletContext();
InputStream is = application.getResourceAsStream("/ora.gif");

The getServletContext() method returns a reference to the ServletContext instance for this servlet. A ServletContext
represents a web application and provides access to various shared application resources. Servlet context attributes, for
instance, hold references to the objects accessible as application scope data in JSP pages. The getResourceAsStream()
method takes the context-relative path to a file resource as its argument and returns an InputStream. The Servlet API
contains methods that let you open a file using the standard Java File class as well, but there's no guarantee that this
will work in all containers. A container may serve the application files directly from a compressed WAR file, from a
database, or any other way that it sees fit. Using a File object in such a container doesn't work, but using the
getResourceAsStream() method does, because the container is responsible for providing the stream no matter how it
stores the application data.

19.1.5 Using Filters and Listeners

The Servlet 2.3 specification introduced two component types beside servlets: filters and listeners.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Servlet 2.3 specification introduced two component types beside servlets: filters and listeners.

19.1.5.1 Filters

A filter is a component that can intercept a request targeted for a servlet, JSP page, or static page, as well as the
response before it's sent to the client. This makes it easy to centralize tasks that apply to all requests, such as access
control, logging, and charging for the content or the services offered by the application. A filter has full access to the
body and headers of the request and response, so it can also perform various transformations. One example is
compressing the response body if the Accept-Encoding request header indicates that the client can handle a compressed
response.

A filter can be applied to either a specific servlet or to all requests matching a URL pattern, such as URLs starting with
the same path elements or having the same extension. We look at the implementation and configuration of an access-
control filter later in this chapter. You may also want to read Jason Hunter's JavaWorld article about filters,
http://www.javaworld.com/javaworld/jw-06-2001/jw-0622-filters.html.

In this article, he describes filters for measuring processing time, click and clickstreams monitoring, response
compression, and file uploading.

19.1.5.2 Listeners

Listeners allow your application to react to certain events. Prior to Servlet 2.3, you could handle only session attribute
binding events (triggered when an object was added or removed from a session). You could do this by letting the object
saved as a session attribute (using the HttpSession.setAttribute() method) implement the HttpSessionBindingListener
interface. With the new interfaces introduced in the 2.3 and 2.4. versions of the servlet specification, you can create
listeners for servlet context, session and request lifecycle events as well as session activation and passivation events
(used by a container that temporarily saves session state to disk or migrates a session to another server). A session
attribute event listener also makes it possible to deal with attribute binding events for all sessions in one place, instead
of placing individual listener objects in each session.

The new types of listeners follow the standard Java event model. In other words, a listener is a class that implements
one or more of the listener interfaces. The interfaces define methods that correspond to events. The listener class is
registered with the container when the application starts, and the container then calls the event methods at the
appropriate times.

Example 19-4 is a session event listener that keeps track of the number of active sessions for an application.

Example 19-4. Session counter listener

package com.ora.jsp.servlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class SessionCounterListener implements HttpSessionListener {
 private static final String COUNTER_ATTR = "session_counter";

 public void sessionCreated(HttpSessionEvent hse) {
 int[] counter = getCounter(hse);
 counter[0]++;
 }

 public void sessionDestroyed(HttpSessionEvent hse) {
 int[] counter = getCounter(hse);
 counter[0]--;
 }

 private int[] getCounter(HttpSessionEvent hse) {
 HttpSession session = hse.getSession();
 ServletContext context = session.getServletContext();
 int[] counter = (int[]) context.getAttribute(COUNTER_ATTR);
 if (counter == null) {
 counter = new int[1];
 context.setAttribute(COUNTER_ATTR, counter);
 }
 return counter;
 }
}

For every new session, the sessionCreated() method increments a counter maintained as a servlet context attribute.
When a session ends, the counter is decremented by the sessionDestroyed() method. As part of the main example later
in this chapter, we'll use this listener and display the counter value in a JSP page. You can also combine this listener
with a filter that rejects new users if a maximum session threshold is reached (to ensure optimal performance), or
whatever makes sense in your application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

whatever makes sense in your application.

The interfaces for the other types are named ServletContextAttributeListener, ServletContextListener,
ServletRequestAttributeListener, ServletRequestListener, HttpSessionActivationListener, and HttpSessionAttributeListener. You can
find out about their methods in Appendix D. Any number of listeners, of any type, can be registered for an application in
the application deployment descriptor. Event listeners can also be registered as part of a tag library. You'll find more
about this option in Chapter 22.

19.1.6 Sharing Data Between the Component Types

When an application uses servlets, filters, and listeners as well as JSP pages, all components need access to shared
data. For instance, you may want a JSP page to show the counter maintained by the session listener in Example 19-4,
and let the servlet create beans and pass them to a JSP page for display.

This turns out to be very easy. The JSP request, session, and application scopes, described in Chapter 11, are just
abstractions for the set of attributes the other component types can associate with various servlet objects they have
access to: HttpServletRequest, HttpSession, and ServletContext, respectively. All these classes provide a set of methods that
can be used to set, get, and remove attributes:

public void setAttribute(String name, Object value)
public Object getAttribute(String name)
public void removeAttribute(String name)

The session listener maintains the active session counter as a ServletContext attribute, as shown in Example 19-4, so a
JSP page can access it as an application scope variable:

Number of active sessions: ${session_counter[0]}

Note how the JSTL EL expression uses the same variable name as the session listener uses for its ServletContext
attribute. The EL locates the variable by looking for an attribute with the same name in the request, session, and
context objects, in this order.

The same data is available to servlets and filters in the application since they all share the same ServletContext instance:

ServletContext context = config.getServletContext();
int[] counter = (int[]) context.getAttribute("session_counter");
if (counter[0] > 100) {
 // Do something
}

A servlet that creates a bean for a JSP page to display can save it as a request attribute and pass it on to the page like
this:

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 String userName = request.getParameter("userName");
 UserInfoBean userInfo = userReg.getUserInfo(userName);

 request.setAttribute("userInfo", userInfo);
 RequestDispatcher rd =
 request.getRequestDispatcher("welcome.jsp");
 rd.forward(request, response);
}

To the JSP page, the bean appears as a request scope variable. It can therefore obtain the bean using an EL expression
similar to the previous example, or use the <jsp:useBean> action and then access the properties of the bean using the
<jsp:getProperty> action:

<h1>Welcome
 <jsp:useBean id="userInfo" scope="request"
 class="com.ora.jsp.beans.userinfo.UserInfoBean" />
 <jsp:getProperty name="userInfo" property="userName" />
</h1>

The <jsp:useBean> action, with the id attribute value matching the request attribute name and the scope attribute set to
request, makes the bean available to the <jsp:getProperty> action.

If the bean needs to be available throughout the session, the servlet uses an HttpSession attribute instead:

HttpSession session = request.getSession();
session.setAttribute("userInfo", userInfo);

The JSP page then has access to the bean in the session scope through the EL or a <jsp:useBean> action with the scope
attribute set to session.

Passing beans in the other direction, from a JSP page to a servlet, is not so common, but it can be done. Here's how.
The JSP page creates the bean in the request scope using <jsp:useBean> and sets the properties using <jsp:setProperty>:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSP page creates the bean in the request scope using <jsp:useBean> and sets the properties using <jsp:setProperty>:

<jsp:useBean id="userInfo" scope="request"
 class="com.ora.jsp.beans.userinfo.UserInfoBean" >
 <jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

<jsp:forward page="/myServlet" />

It then forwards the request to the servlet (mapped to /myServlet) using <jsp:forward>. The servlet retrieves the bean
using getAttribute() method on the HttpServletRequest object passed to the doGet() or doPost() method:

UserInfoBean userInfo =
 (UserInfoBean) request.getAttribute("userInfo");

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.2 Picking the Right Component Type for Each Task
The Project Billboard application introduced in Chapter 13 is a fairly complex application. Half the pages are pure
controller and business logic processing, it accesses a database to authenticate users, and most pages require access
control. In real life, it would likely contain even more pages, for instance, pages for access to a shared document
archive, time schedules, and a set of pages for administration. As the application evolves, it may become hard to
maintain as a pure JSP application. It's easy to forget to include the access control code in new pages, for instance.

This is clearly an application that can benefit from using a combination of JSP pages and the component types defined
by the servlet specification for the MVC roles. Let's look at the main requirements and see how we can map them to
appropriate component types:

Database access should be abstracted, to avoid knowledge of a specific data schema or database engine in
more than one part of the application: beans in the role of Model can be used to accomplish this.

The database access beans must be made available to all other parts of the application when it starts: an
application lifecycle event listener is the perfect component type for this task.

Only authenticated users must be allowed to use the application: a filter can perform access control to satisfy
this requirement.

Request processing is best done with Java code: a servlet, acting as the Controller, fits the bill.

It must be easy to change the presentation: this is where JSP shines, acting as the View.

Adding servlets, listeners and filters to the mix minimizes the need for complex logic in the JSP pages. Placing all this
code in Java classes instead makes it possible to use a regular Java compiler and debugger to fix potential problems.
Figure 19-2 shows the components of the new design.

Figure 19-2. Project Billboard application combining servlet and JSP components

Compare this design with that described in Chapter 13. First, all request for the servlet and all JSP pages, except the
login page and the authentication request, go through the access-control filter. The filter first verifies that the user is
authenticated. If not, it forwards the request to the login.jsp page, where the URI for the requested page is saved as a
hidden field in the same way as in Chapter 13. If the user is authenticated, the filter just passes the request on to the
intended target. This allows you to remove the access control code from all JSP pages.

Next, note that the pure presentation JSP pages remain the same but the request processing pages are replaced by the
servlet. So, as before, the user first requests the login.jsp page. This page still contains a form with fields for username
and password, but with the new design, it invokes the servlet instead of a request-processing JSP page. The servlet is
invoked with a URI that includes information about the action to perform. The servlet performs the authentication, and
if successful, it creates an EmployeeBean object and saves it in the session scope as proof of authentication. It then
redirects the browser to a JSP page. As before, the page selected depends on whether the user loaded the login.jsp
page or tried to access an application page directly, without first logging in.

The main.jsp page contains a form for updating the project subscription list and a link for logging out. The difference
from Chapter 13 is that both the form and the link now invoke the servlet instead of request-processing JSP pages. As it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from Chapter 13 is that both the form and the link now invoke the servlet instead of request-processing JSP pages. As it
is for the authentication request, information encoded in URIs lets the servlet distinguish each type of request. The
servlet performs the requested action and redirects to the main page after updating the subscription list, or to the login
page after logging out. The entermsg.jsp page is changed in the same way; instead of submitting the message to a JSP
page, it submits it to the servlet using a unique URI.

The application lifecycle event listener (not shown) initializes all resources needed by the other application components,
such as the news and authentication service beans. Just for fun, I have also added the session lifecycle listener from
Example 19-4 to keep track of the session count.

With these changes, we end up with a nice, modular application that's easy to maintain and extend. Let's take a closer
look at each piece.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.3 Initializing Shared Resources Using a Listener
The Project Billboard application uses two business logic beans that must be available to process requests from all
users; in other words, available as application scope objects. You may remember the NewsBean from Chapter 13. This
bean is the repository for all news items relating to projects, used as the source for the personalized message list. The
other business logic bean is called EmployeeRegistryBean. It acts as an abstraction of the database with employee
information, containing methods for user authentication and retrieving and saving employee information. The
EmployeeRegistryBean class is described in more detail in Chapter 20.

Beans like this typically need to be initialized before they can be used. For instance, they may need a reference to a
database or some other external data source and may create an initial information cache in memory to provide fast
access even to the first request for data. You can include code for initialization of the shared resources in the servlet
and JSP pages that need them, but a more modular approach is to place all this code in one place and let the other
parts of the application work on the assumption that the resources are already initialized and available. An application
lifecycle listener is a perfect tool for this type of resource initialization. Example 19-5 shows a listener suitable for the
billboard application's needs. This type of listener implements the javax.servlet.ServletContextListener interface, with
methods called by the container when the application starts and when it shuts down.

Example 19-5. Listener for application resource initialization

package com.ora.jsp.servlets;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.sql.*;
import com.ora.jsp.beans.emp.*;
import com.ora.jsp.beans.news.*;
import com.ora.jsp.sql.*;

public class ResourceManagerListener implements ServletContextListener {

 public void contextInitialized(ServletContextEvent sce) {

 ServletContext application = sce.getServletContext();
 String driverClass = application.getInitParameter("driverClass");
 String jdbcURL = application.getInitParameter("jdbcURL");

 DataSourceWrapper ds = null;
 try {
 ds = new DataSourceWrapper();
 ds.setDriverClassName(driverClass);
 ds.setUrl(jdbcURL);
 }
 catch (Exception e) {
 application.log("Error creating connection pool: ", e);
 }
 EmployeeRegistryBean empReg = new EmployeeRegistryBean();
 empReg.setDataSource(ds);
 application.setAttribute("empReg", empReg);

 NewsBean news = new NewsBean();
 application.setAttribute("news", news);
 }

 public void contextDestroyed(ServletContextEvent sce) {
 ServletContext application = sce.getServletContext();
 application.removeAttribute("empReg");
 application.removeAttribute("news");
 }
}

The contextInitialized() method is called when the application starts, before any requests are delivered. The
ServletContextEvent object passed as an argument has a method for getting a reference to the ServletContext instance for
this application. The ServletContext provides a number of methods for accessing information about the web application as
well as for sharing data between all application components, such as servlets, listeners, filters, and JSP pages.

The first context method used in Example 19-5 is the getInitParameter() method. It returns the value of a context
initialization parameter defined in the deployment descriptor. We look at the definition later. The listener gets the
values of two initialization parameters containing information about the employee-information database: driverClass and
jdbcURL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

jdbcURL.

A javax.sql.DataSource instance is then created using these values. A DataSource, an interface that was introduced by the
JDBC 2.0 Optional Package and is now part of JDBC 3.0 (bundled with Java SDK 1.4), provides access to JDBC database
connections for retrieving and modifying database data. It can represent a connection pool, letting you reuse a set of
open connections instead of opening and closing a new connection for every request. Many JDBC driver vendors offer
connection pool DataSource implementations, but here we use a simple wrapper class that implements its own
connection pool based on standard JDBC 1.0 classes. The wrapper class is discussed in more detail in Chapter 24,
where I also describe how to use a vendor-provided DataSource implementation.[2]

[2] When you have a choice, I recommend using the database vendor's DataSource instead of a custom pool. I use
the custom pool with a DataSource wrapper here because the examples are easy to run with pretty much any
database and web container, without the need for vendor-dependent configuration.

Finally, the business logic beans are created. The EmployeeRegistryBean is used by the Project Billboard application
instead of accessing the database directly. It's always a good idea to encapsulate database access functions in a
separate class, so that you have to make changes in only one place in case the database schema is changed at some
point. The bean instance is initialized with the DataSource and saved as a context attribute named empReg. Next, the
NewsBean instance is created and saved as a context attribute named news. The implementation used in this example
keeps all messages in memory. If a database was used instead (a likely requirement for a real application), the
NewsBean would also need to be initialized with the DataSource.

The listener saves references to the two beans as ServletContext attributes. This makes it easy for both servlets and JSP
pages to get hold of them, as described earlier.

A listener that creates and initializes shared beans should also make sure that the beans are being removed and shut
down gracefully, if needed. This is done in the listener's contextDestroyed() method, as shown in Example 19-5.

Let's look at the configuration needed to use the listener. As I mentioned earlier, the listener needs a couple of context-
initialization parameters for the JDBC driver information. The listener itself must also be defined, so that the container
knows which class to notify about the events. You use the following elements in the application deployment descriptor
(the WEB-INF/web.xml file) for these definitions:

<web-app>
 <context-param>
 <param-name>driverClass</param-name>
 <param-value>
 sun.jdbc.odbc.JdbcOdbcDriver
 </param-value>
 </context-param>
 <context-param>
 <param-name>jdbcURL</param-name>
 <param-value>
 jdbc:odbc:example
 </param-value>
 </context-param>

 ...

 <listener>
 <listener-class>
 com.ora.jsp.servlets.ResourceManagerListener
 </listener-class>
 </listener>

 <listener>
 <listener-class>
 com.ora.jsp.servlets.SessionCounterListener
 </listener-class>
 </listener>

 ...
</web-app>

First the context initialization parameters are defined, using <context-param> elements with nested <param-name> and
<param-value> elements. Next comes the listener definition, using the <listener> element with a nested <listener-class>
element. Both the ResourceManagerListener, described in Example 19-5, and the SessionCounterListener, described in
Example 19-4, are defined here because both are used in the Project Billboard application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.4 Access Control Using a Filter
The Project Billboard application uses application-controlled authentication and access control to ensure that only
registered users can use the application. As discussed in Chapter 13, your first choice should be to use container-
controlled authentication and access control, but let's assume that, in this case, there are valid reasons for going at it
on our own.

Not all requests require a user to be logged in. For instance, if the login form and authentication request are protected,
you're faced with a Catch 22; it's impossible to log in because you have to be logged in to load the login form. It's also
reasonable to accept a log-out request from a user who isn't logged in; the session that contains the authentication
information may have timed out before the user tries to log out.

You can use the URI path to distinguish between requests that need access control and those that don't. In this
application, all requests that need access control include the /protected path element, as shown in Table 19-1.

Table 19-1. Project Billboard context-relative URI paths
Context-relative path Resource

/ch19/login.jsp The login JSP page

/ch19/protected/main.jsp The main JSP page

/ch19/protected/enterMsg.jsp The message entry form JSP page

/ch19/authenticate.do The authenticate action

/ch19/logout.do The logout action

/ch19/protected/storeMsg.do The action for storing a new message

/ch19/protected/updateProfile.do The action for updating the subscription list

A few things of interest. All URIs start with /ch19. This is just the convention I use in this book to identify which chapter
the examples belongs to; in a real application, you would most likely not use this type of prefix. Also note that the
application accepts URIs for JSP pages, as you're used to, but also URIs that end with .do. These are the URIs that
invoke the servlet. I'll get back to why the URIs look like this in the next section. For now, just accept that this type of
URI tells the servlet what to do.

A filter makes it easy to implement the access-control requirement. All URLs for protected resource are prefixed with
/ch19/protected, so we can configure the application to pass all requests matching this pattern through an access-
control filter. Example 19-6 shows how the application deployment descriptor (the WEB-INF/web.xml file) should look
like to accomplish this.

Example 19-6. Filter configuration

<web-app>
 ...
 <filter>
 <filter-name>accessControl</filter-name>
 <filter-class>
 com.ora.jsp.servlets.AccessControlFilter
 </filter-class>
 <init-param>
 <param-name>loginPage</param-name>
 <param-value>/ch19/login.jsp</param-value>
 </init-param>
 </filter>

 <filter-mapping>
 <filter-name>accessControl</filter-name>
 <url-pattern>/ch19/protected/*</url-pattern>
 </filter-mapping>
 ...
</web-app>

The <filter> element with its nested <filter-name> and <filter-class> defines a name and an implementation class for the
filter. The nested <init-param> element defines an initialization parameter for the filter, containing the context-relative
path to the login page for the application. I'll show how this value is accessed and used in the filter class in a moment.

The <filter-mapping> element with its nested <filter-name> and <url-pattern> elements tells the container that all requests
matching the pattern should be passed through the access-control filter. Example 19-7 shows the filter implementation
class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class.

Example 19-7. The access-control filter

package com.ora.jsp.servlets;

import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AccessControlFilter implements Filter {

 private FilterConfig config = null;
 private String loginPage;

 public void init(FilterConfig config) throws ServletException {
 this.config = config;
 loginPage = config.getInitParameter("loginPage");
 if (loginPage == null) {
 throw new ServletException("loginPage init param missing");
 }
 }

 public void destroy() {
 config = null;
 }

 public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain chain)
 throws IOException, ServletException {

 HttpServletRequest httpReq = (HttpServletRequest) request;
 HttpServletResponse httpResp = (HttpServletResponse) response;

 if (!isAuthenticated(httpReq)) {
 String forwardURI = getForwardURI(httpReq);

 // Forward to the login page and stop further processing
 ServletContext context = config.getServletContext();
 RequestDispatcher rd =
 context.getRequestDispatcher(forwardURI);
 if (rd == null) {
 httpResp.sendError(
 HttpServletResponse.SC_INTERNAL_SERVER_ERROR,
 "Login page doesn't exist");
 }
 rd.forward(request, response);
 return;
 }

 /*
 * Process the rest of the filter chain, if any, and ultimately
 * the requested servlet or JSP page.
 */
 chain.doFilter(request, response);
 }

 /**
 * Returns true if the session contains the authentication token.
 */
 private boolean isAuthenticated(HttpServletRequest request) {
 boolean isAuthenticated = false;
 HttpSession session = request.getSession();
 if (session.getAttribute("validUser") != null) {
 isAuthenticated = true;
 }
 return isAuthenticated;
 }

 /**
 * Returns the context-relative path to the login page, with the
 * parameters used by the login page.
 */
 private String getForwardURI(HttpServletRequest request) {
 StringBuffer uri = new StringBuffer(loginPage);
 uri.append("?errorMsg=Please+log+in+first&origURL=").

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 uri.append("?errorMsg=Please+log+in+first&origURL=").
 append(URLEncoder.encode(getContextRelativeURI(request)));
 return uri.toString();
 }

 /**
 * Returns a context-relative path for the request, including
 * the query string, if any.
 */
 private String getContextRelativeURI(HttpServletRequest request) {
 int ctxPathLength = request.getContextPath().length();
 String requestURI = request.getRequestURI();
 StringBuffer uri =
 new StringBuffer(requestURI.substring(ctxPathLength));
 String query = request.getQueryString();
 if (query != null) {
 uri.append("?").append(query);
 }
 return uri.toString();
 }
}

A filter class must implement the javax.servlet.Filter interface, with lifecycle methods that are similar to the ones in the
Servlet interface: init(), doFilter(), and destroy(). The access-control filter in Example 19-7 saves a reference to the
FilterConfig argument in the init() method so that it can later get access to the ServletContext object. It also gets the
loginPage filter-initialization parameter. The destroy() method can be used just as in a servlet to release resources, and
the access-control filter use it to remove the FilterConfig reference.

The container calls the doFilter() method when it receives a request matching the mapping for the filter. The request and
response arguments are the same as for the doGet() and doPost() methods for a servlet. The third argument is an
instance of the FilterChain interface. It contains references to an ordered list of all filters with pattern mappings matching
the request. Its doFilter() method invokes the next filter in the chain, or the target resource (servlet or JSP page) when
there are no more filters in the chain.

The doFilter() method for the access-control filter in Example 19-7 checks if the user is authenticated by looking for the
EmployeeBean in the session. If it can't find it, it gets a RequestDispatcher for the login page URI with a query string with
an error-message parameter and a parameter with the path for the currently requested page, and asks the
RequestDispatcher to forward to the login page (the RequestDispatcher is discussed in more detail later).

The getContextRelativeURI() method creates the context-relative URI path to send as the origURL parameter. It does it by
stripping off the context path from the absolute (server-relative) URI returned by the getRequestURI() method and then
adding the query string, if any.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.5 Centralized Request Processing Using a Servlet
With resource initialization and access control out of the way, delegated to appropriate component types, we can focus
on the implementation of the main application logic.

We have already decided to use a servlet as a Controller. With a servlet as the common entry point for all application
requests, you gain control over the page flow of the application. The servlet can decide which type of response to
generate depending on the outcome of the requested action, such as returning a common error page for all requests
that fail, or different responses depending on the type of client making the request. With the help from some utility
classes, it can also provide services such as input validation, I18N preparations, and in general, encourage a more
streamlined approach to request handling.

When you use a servlet as a Controller, you must deal with the following basic requirements:

All processing requests must be passed to the single Controller servlet.

The servlet must be able to distinguish requests for different types of processing.

Here are other features you may want to support, even though they may not be requirements for all applications:

A strategy for extending the application to support new types of processing requests in a flexible manner

A mechanism for changing the page flow of the application without modifying code

You can, of course, develop a servlet that fulfills these requirements yourself, but there are servlets available as open
source that do all of this and more. In this chapter, I describe how to use the servlet from the Apache Struts project
(http://jakarta.apache.org/struts/), Version 1.0.2.[3] It's probably the most popular framework for integration with JSP,
and its servlet satisfies all our requirements. Using Struts gives you the following benefits:

[3] As of this writing, a 1.1 version is about to be released. It adds a number of new features but is intended to be
backward compatible with 1.0.2, so what I describe here should still be valid.

A highly configurable servlet

Support for a modular design, making it easier to maintain and extend the application to handle new types of
requests

Support for mapping of symbolic page names to the real URIs, making it easier to change the site organization
and control flow if needed

A time-tested solution, actively supported by the Struts community, so you can focus on your application
instead of framework development

If you decide to develop your own Controller servlet anyway, the description of how Struts deals with the requirements
gives you some good ideas about how to do it.

Struts is a large framework. In addition to the Controller servlet and the associated classes, it also contains a number of
custom tag libraries[4] that you can use in your JSP pages. I use only a fraction of the Struts servlet functionality in this
example and none of the tag libraries. You may want to read the Struts documentation as well to see if your application
can use the other features.

[4] Some of the Struts tag libraries are made obsolete by JSTL. If you use JSP 1.2 or later, you should use the JSTL
libraries instead, but the Struts libraries will also be supported for some time. Over time, the Struts libraries that
aren't made obsolete will likely be adjusted to integrate seamlessly with JSTL and JSP 2.0, for instance, to follow
the JSTL design conventions and drop support for the "Struts EL" in favor of the JSP EL.

19.5.1 Struts Request Processing Overview

With power comes complexity, unfortunately. Before jumping into the details, here's a brief summary of the parts of
Struts I use for the Project Billboard application.

The Struts servlet delegates the real processing of requests to classes that extends the Struts Action class. The main
method in this class is the perform() method. For each type of request the application supports, you create a separate
action class and provide the code for processing this request type in the perform() method. Figure 19-3 shows the action
classes used by the Project Billboard application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

classes used by the Project Billboard application.

Figure 19-3. Controller split over dispatcher servlet and action classes

The Struts servlet uses parts of the request URI to figure out which type of request it is, locates the corresponding
action class (using configuration information), and invokes the perform() method. Note that this method doesn't render
a response; it takes care of business logic only, for instance, updating a database. The perform() method returns a
Struts ActionForward instance, containing information about the JSP page that should be invoked to render the response.
The page is identified by a logical name (errorPage, mainPage, etc.), mapped to the real page path in a configuration file.
The page flow can therefore be controlled, at least to some extent, by reconfiguration instead of code changes.

19.5.2 Mapping Application Requests to the Servlet

The first requirement for using a Controller servlet is that all requests must pass through it. This can be satisfied in
many ways. If you have played around a bit with servlets previously, you're probably used to invoking a servlet with a
URI that starts with /myApp/servlet. This is a convention introduced by Sun's Java Web Server (JWS), the first product
to support servlets before the API was standardized. Some servlet containers still support this convention,[5] even
though it's not formally defined in the servlet specification. But using this type of URI has a couple of problems. First, it
makes it perfectly clear to a user (at least a user who knows about servlets) what technology implements the
application. Not that you shouldn't be proud of using servlets, but a hint like this can help a hacker explore possible
security holes; it never hurts to be a bit paranoid when it comes to security. The other problem is of a more practical
nature.

[5] It's disabled by default in Tomcat, since Version 4.1.12.

As I described in Chapter 17, using relative URIs to refer to resources within an application makes life a lot easier. If a
servlet must be invoked using the conventional type of URI, you typically end up with absolute references to the servlet
in HTML link and form elements, for example:

<form action="/ora/servlet/controller/someAction">

This works, but because the context path (/ora) is part of the URI, it makes it hard to deploy the application with a
different context path; you have to change the context path in all pages. There are many ways around this issue, but
the best solution is to define a mapping rule for the servlet that makes it possible to invoke the servlet with a URI that
has the same structure as requests for the application's JSP and HTML pages. Three types of mapping rules can be
defined in the web application's deployment descriptor:

Exact match rule

Matches a URI to a pattern path that is exactly the same as the URI, for instance the request
/contextPath/exactMatch matches the pattern /exactMatch, but the request /contextPath/exactMatch/pathInfo
doesn't match this pattern.

Longest path prefix rule

Matches a URI to the pattern path that has the most path elements in common with the URI, for instance the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Matches a URI to the pattern path that has the most path elements in common with the URI, for instance the
request /contextPath/pathPrefix and /contextPath/pathPrefix/pathInfo both match the pattern /pathPrefix/*,
assuming no other pattern matches the full path for the second example.

Extension rule

Matches a URI to the extension pattern that has the same extension as the URI. For instance, the requests
/contextPath/name.extension and /contextPath/aPath/name.extension both match the pattern *.extension.

The web container compares each request URI to the defined mapping rules, looking for matches in the order "exact-
match," "longest path-prefix," and "extension" and invokes the servlet that's mapped to the first pattern that matches.

The exact match rule is rarely used, and the Struts servlet works only with the path- prefix and extension rules. The
extension rule, using the extension .do, is the one that's recommended for mapping requests that should be processed
by Struts. To define this mapping for the Struts servlet, we add these elements to the application's deployment
descriptor (the WEB-INF/web.xml file):

<web-app>
 ...
 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
 ...
</web-app>

First we define a name for the Struts servlet class using the <servlet> element and the nested <servlet-name> and
<servlet-class> elements. This definition associates the logical name action with the fully qualified class name
org.apache.struts.action.ActionServlet. An extension mapping for this servlet is defined by the <servlet-mapping> element and
the nested <servlet-name> and <url-pattern> elements. Note how the value of the <servlet-name> elements in the
<servlet> and <servlet-mapping> elements match. With this mapping in place, the container invokes the Struts servlet for
all requests that end with .do, making it possible to use a relative reference like this in HTML:

<form action="someAction.do">

If you prefer the path-prefix mapping, you need to change the <servlet-mapping> element like this for the Project
Billboard application:

<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>/ch19/do/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>/ch19/protected/do/*</url-pattern>
</servlet-mapping>

Note that you need two mappings: one for requests that don't need access control and another for those that do. These
mappings tell the container to invoke the Struts servlets for all requests that start with /ch19/do or /ch19/protected/do,
allowing a relative reference like this in a page invoked with /ora/ch19/login.jsp:

<form action="do/someAction">

It turns out, however, that even with a separate mapping for protected resources, it's easy to bypass the access control
for a Struts action when you use the path prefix mapping. I'll show you why in a moment. To avoid security issues, I
recommend you stick to the extension-mapping model.

19.5.3 Dispatching Requests to an Action Class

The second requirement for using a Controller servlet is that the servlet must be able to distinguish requests for
different types of actions. The Struts servlet uses a configuration file with mappings from a part of the request path to
the corresponding action class to handle this. The file is named struts-config.xml and is located in the WEB-INF
directory for the application by default. Example 19-8 shows the configuration file used for the Project Billboard
application.

Example 19-8. Struts configuration file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 19-8. Struts configuration file

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
 "-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
 "http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">

<struts-config>
 <global-forwards>
 <forward name="login" path="/ch19/login.jsp" redirect="true" />
 <forward name="main" path="/ch19/protected/main.jsp"
 redirect="true" />
 </global-forwards>

 <action-mappings>
 <action path="/ch19/authenticate"
 type="com.ora.jsp.servlets.AuthenticateAction" />
 <action path="/ch19/logout"
 type="com.ora.jsp.servlets.LogoutAction" />
 <action path="/ch19/protected/storeMsg"
 type="com.ora.jsp.servlets.StoreMsgAction" />
 <action path="/ch19/protected/updateProfile"
 type="com.ora.jsp.servlets.UpdateProfileAction" />
 </action-mappings>
</struts-config>

It's an XML file, as are most configuration files nowadays. The first part of the file defines what Struts calls global
forward mappings. I'll get back to them in the next section.

The second part contains an <action-mapping> element with nested <action> elements for each action class in the
application. For each action, the element attributes specify the context-relative request path for the action and the class
name for the corresponding action class.

If the Struts servlet is mapped to a path-prefix rule instead of an extension rule in the web.xml file, you must use
different paths in the Struts configuration file as well:

<action-mappings>
 <action path="/authenticate"
 type="com.ora.jsp.servlets.AuthenticateAction" />
 <action path="/logout"
 type="com.ora.jsp.servlets.LogoutAction" />
 <action path="/storeMsg"
 type="com.ora.jsp.servlets.StoreMsgAction" />
 <action path="/updateProfile"
 type="com.ora.jsp.servlets.UpdateProfileAction" />
</action-mappings>

Note that only the last part of the URI path identifies the action in this case. To see why it's so, let's look at the method
Struts uses to process the request path and figure out which action is requested. A slightly simplified version of the
method used by Struts 1.0.2 is shown in Example 19-9.

Example 19-9. Extracting the action identifier

protected String processPath(HttpServletRequest request) {

 String path = null;

 path = request.getPathInfo();
 if ((path != null) && (path.length() > 0))
 return (path);

 path = request.getServletPath();
 int slash = path.lastIndexOf("/");
 int period = path.lastIndexOf(".");
 if ((period >= 0) && (period > slash))
 path = path.substring(0, period);
 return (path);

}

The processPath() method first calls getPathInfo() on the request object to get the part of the path that remains after
removing the part the container uses to identify the servlet. For instance, with a path-prefix mapping such as
/ch19/protected/do/* for the Struts servlet in the deployment descriptor and a request URI such as
/ora/ch19/protected/do/storeMsg, the getPathInfo() method returns /storeMsg. If it returns null, it means that an
extension mapping is used for the Struts servlet or that the URI is invalid. If so, the getServletPath() method is called to
get the complete context-relative path for the request. With a mapping such as *.do and a request URI such as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

get the complete context-relative path for the request. With a mapping such as *.do and a request URI such as
/ora/ch19/protected/storeMsg.do, it returns /ch19/protected/doStoreMsg.do. The processPath() method strips off the
extension part and returns the rest of the path, i.e., /ch19/protected/doStoreMsg.

Hence, when you use path-prefix mapping, only the part of the request URI path that comes after the part that
identifies the Struts servlet is returned and subsequently finds a matching action, while with an extension mapping, the
whole context-relative path is returned and identifies the action. This is what causes the security problem I mentioned
earlier. With the access-control filter mapped to /ch19/protected/*, and the Struts servlet mapped to /ch19/do/* and
/ch19/protected/do/*, an adventurous user can access a protected action with a URI like /ch19/do/storeMsg instead of
/ch19/protected/do/storeMsg, completely bypassing the access-control filter. This means the only secure way to
provide access control for Struts actions when you use path-prefix mapping is to do the access control within the
actions instead of with a filter. It's easier to just stick to extension mapping, as I recommended earlier.

19.5.4 Implementing the Action Classes

The servlet mapping rule in the deployment descriptor ensures that all requests reach the Struts servlet, and the action
mappings in the struts-config.xml provides the information needed to distinguish different requests from each other. It's
finally time to do some good old coding and implement the action classes.

Struts creates only a single instance of each action class and uses it for all requests, so you have to ensure that the
class is thread-safe in the same way as for a servlet class. Thus, you should avoid using instance variables for anything
except read-only access, and synchronize the access to shared data that must be modified.

Example 19-10 shows the main part of the action class that handles authentication requests in the Project Billboard
application.

Example 19-10. Authenticate action class

package com.ora.jsp.servlets;

import java.io.*;
import java.net.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ora.jsp.beans.emp.*;
import org.apache.struts.action.*;

public class AuthenticateAction extends Action {

 public ActionForward perform(ActionMapping mapping,
 ActionForm form, HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 String userName = request.getParameter("userName");
 String password = request.getParameter("password");

 ActionForward nextPage = mapping.findForward("main");

 EmployeeBean emp = null;
 try {
 EmployeeRegistryBean empReg = (EmployeeRegistryBean)
 getServlet().getServletContext().getAttribute("empReg");
 emp = empReg.authenticate(userName, password);
 }
 catch (SQLException e) {
 throw new ServletException("Database error", e);
 }
 if (emp != null) {
 // Valid login
 HttpSession session = request.getSession();
 session.setAttribute("validUser", emp);
 setLoginCookies(request, response, userName, password);

 // Next page is the originally requested URL or main
 String next = request.getParameter("origURL");
 if (next != null && next.length() != 0) {
 nextPage = new ActionForward(next, true);
 }
 }
 else {
 // Invalid login. Redirect to the login page
 String loginPage = mapping.findForward("login").getPath();
 String loginURL = loginPage +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String loginURL = loginPage +
 "?errorMsg=Invalid+User+Name+or+Password";
 nextPage = new ActionForward(loginURL, false);
 }
 return nextPage;
 }
 ...
}

The class extends the Struts Action class and overrides one method named perform(). As the name implies, this is the
method that performs the processing of the request. It returns an instance of another Struts class, named ActionForward.
An ActionForward instance holds three pieces of information: a name, a path to a page (or a servlet), and information
about how the specified path should be invoked (through a redirect or a forward). When the perform() method returns,
the Struts servlet invokes the specified resource, typically a JSP page that renders the response for the request.

The perform() method has four arguments. The request and response arguments are the same as in a servlet, but the
form and mapping arguments contain references to instances of Struts classes. The form argument is a reference to an
ActionForm, a class that collects and validates form data. I don't use this feature, because it's tightly coupled to the
Struts tag libraries. You can read about it in the Struts documentation to see if it makes sense for your application.

The mapping argument holds a reference to an ActionMapping instance. The ActionMapping class encapsulates all mapping
information that can be defined in the Struts configuration file. I use only one of its features in this example, namely
mappings between logical page names and the actual paths for the pages. This lets me change the page flow for the
application without touching the action code. You set these mappings using the <forward> elements, as shown in
Example 19-8. A mapping defined by a <forward> element nested within the body of a <global-forwards> element is
available to all actions, while a <forward> element nested within an <action> element is available only to that action. All
mappings used in the Project Billboard application are global, but local mappings can be handy for an action that uses
different, action-specific JSP pages to render the response depending on the outcome of the request processing.

Let's look at how all these Struts classes are used in the AuthenticateAction class in Example 19-10. The perform() method
first retrieves the values of the userName and password request parameters with the getParameter() method. It then gets
a reference to the ActionForward instance representing the application main page, using the findForward() method on the
ActionMapping instance. Within a try block, a reference to the EmployeeRegistryBean is retrieved from the servlet context
attribute (where the initialization listener placed it when the application was started) and is then used to authenticate
the user based on the username and password.

If the authentication is successful, the EmployeeBean returned by the authenticate() method is saved as a session
attribute to serve as an authentication token. The call to setLoginCookies() adds the username and password cookies to
the response. If the request includes a parameter named origURL, it means that the authentication was triggered by an
attempt to load a protected page without being logged in. If so, a new ActionForward() instance is created for this page
and eventually returned to the Struts servlet to send the user directly to the protected page she tried to load.

If the authentication fails, the findForward() method gets a reference to the ActionForward instance that represents the
login page. But you can't use this instance as is, because you need to add a query string with an error message. The
getPath() method extracts the page path, and then a new ActionForward instance is created from the combination of the
path and the query string. This way, the global forward mapping serves its purpose of removing hardcoded paths in the
action code even for a dynamically created URI. Also note that the second argument to the ActionForward constructor is
set to false. This tells the Struts servlet it should use the forward method instead of the redirect method to invoke the
page, giving the page access to both the original parameters (userName and password) and the new errorMsg parameter.

Example 19-11 shows the code for the setLoginCookies() method.

Example 19-11. Adding cookies to the response

private void setLoginCookies(HttpServletRequest request,
 HttpServletResponse response, String userName, String password) {

 Cookie userNameCookie = new Cookie("userName", userName);
 Cookie passwordCookie = new Cookie("password", password);
 // Cookie age in seconds: 30 days * 24 hours * 60 min * 60 seconds
 int maxAge = 30 * 24 * 60 * 60;
 if (request.getParameter("remember") == null) {
 // maxAge = 0 to delete the cookie
 maxAge = 0;
 }
 userNameCookie.setMaxAge(maxAge);
 passwordCookie.setMaxAge(maxAge);
 userNameCookie.setPath(request.getContextPath());
 passwordCookie.setPath(request.getContextPath());
 response.addCookie(userNameCookie);
 response.addCookie(passwordCookie);
}

The javax.servlet.http.Cookie class is defined by the servlet specification. The setLoginCookies() method creates two
instances, one each for the username and the password. How long a cookie should be kept by the browser is specified
in seconds. In this example I calculate the number of seconds corresponding to 30 days and use it to set the age with
the setMaxAge() method, unless the user has requested no cookies (the remember parameter is not sent). In this case
the maximum age is set to 0, which tells the browser to remove the cookie.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the maximum age is set to 0, which tells the browser to remove the cookie.

The setPath() method sets the path attribute for both cookies to the context path for the application. This tells the
browser to send only cookies with requests targeted for this application, instead of with all requests for this web server.

All the other action classes used by the Project Billboard are similar to the AuthenticateAction described in this section.
They all override the perform() method, do what they are supposed to do, and use the findForward() method to get hold
of the correct ActionForward instance to return. The source code for all classes is included in the book examples
download. Instead of describing each class here, and boring you with a lot of tedious repetition, I suggest that you
instead look at them at your leisure.

When you compile your action classes, you must ensure you have both the servlet classes and the Struts classes
included in the classpath. You'll find the Struts classes in a JAR file named struts.jar in the Struts installation's lib
directory. A copy of this JAR file for Struts 1.0.2 is bundled with the book examples in the WEB-INF/lib directory, but I
suggest that you get the latest version directly from the Struts project web site (http://jakarta.apache.org/struts/)
instead.

19.5.5 Processing Requests

When the Struts servlet receives a request, it first uses the processPath() method (Example 19-9) to extract the path
part that is mapped to an action class. It then locates, or creates, the instance of the matching action class and calls its
perform() method. The ActionForward instance returned by the perform() method is processed by the Struts servlet's
processActionForward() method shown in Example 19-12.

Example 19-12. Forward processing

protected void processActionForward(ActionForward forward,
 ActionMapping mapping, ActionForm formInstance,
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {

 if (forward != null) {
 String path = forward.getPath();
 if (forward.getRedirect()) {
 if (path.startsWith("/"))
 path = request.getContextPath() + path;
 response.sendRedirect(response.encodeRedirectURL(path));
 } else {
 RequestDispatcher rd =
 getServletContext().getRequestDispatcher(path);
 if (rd == null) {
 response.sendError(response.SC_INTERNAL_SERVER_ERROR,
 internal.getMessage("requestDispatcher", path));
 return;
 }
 rd.forward(request, response);
 }
 }
}

This method illustrates a number of interesting things about how to pass control to another part of the application—a
servlet or a JSP page—that you need to be aware of if you decide to implement your own Controller servlet.

The ActionForward argument contains all the information Struts needs to pass control to the next component. Again, this
is typically a JSP page that renders the response. The getRedirect() method returns true if a redirect response should be
returned, ending this request and telling the browser to make a new request for the page that describes the result of
the action. In versions of the Servlet API prior to 2.3, the sendRedirect() method officially accepted only an absolute URI
(e.g., http://localhost:8080/ora/mypage.jsp). But in reality, a server-relative path (a URI without the scheme and
server-name parts, e.g., /ora/mypage.jsp) worked fine because all browsers handle such a path correctly in a redirect
response, despite the fact that the HTTP specification doesn't allow it. In Version 2.3 of the specification, the absolute
URI requirement was relaxed to also allow absolute and relative paths (e.g., /mypage.jsp or mypage.jsp), relying on
the container to convert the path to the absolute URI demanded by the HTTP specification. But there's a twist: an
absolute path (starting with a slash) is interpreted as a server-relative path by the container instead of as a context-
relative path, as is the case for all other methods in the API that use path arguments. This behavior was defined for
backward-compatibility reasons since so many existing applications take advantage of the loophole in previous versions
of the servlet specification. To shield developers from the path-interpretation issue, the processActionForward() method is
designed to expect a context-relative path for an ActionForward instance even when the redirect method is used. If the
path starts with a slash, the context path is added automatically, resulting in the server-relative absolute path the
sendRedirect() method can handle.

The path passed to sendRedirect() method is also processed by the encodeRedirectURL(). This method inserts the session
ID in the URL if the browser doesn't support cookies, as described in Chapter 10.

If getRedirect() returns false, it means that the forward method should be used to continue the request processing using
the resource represented by the specified path. A RequestDispatcher for the path is retrieved from the ServletContext. A
RequestDispatcher is a Servlet API class that programmatically invokes another servlet or a JSP page. It has two

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RequestDispatcher is a Servlet API class that programmatically invokes another servlet or a JSP page. It has two
methods. The include() method temporarily passes control to the target, letting it generate a part of the response body
but not set any response headers. It corresponds to the <jsp:include> action in a JSP page. The forward() method, used
here, permanently passes control to the target in the same way as the <jsp:forward> action element in a JSP page.
When a request is forwarded, the originating servlet delegates all processing to the target resource. The originating
servlet is not allowed to modify the response in any way, neither before calling forward() nor when the method returns.
In most cases, it should simply return after calling forward(), possibly after doing some clean up that doesn't involve
modifying the response.

There are two ways to obtain a RequestDispatcher for a resource identified by a path. In Example 19-12, it is retrieved
from the ServletContext. The path argument to its getRequestDispatcher() method must be a context-relative path, because
the context has no knowledge about the path for the current request. If you want to use a path that's relative to the
URI path for the current request, you can instead use the getRequestDispatcher() method on the request object. This
method, defined in the javax.servlet.ServletRequest interface, accepts both types of paths.

19.5.6 Calling the Controller Servlet from JSP Pages

All that remains to complete the conversion of the Project Billboard application from a pure JSP application to an
application that uses a mix of filters, listeners, servlets, and JSP pages is to modify the JSP pages to invoke the
Controller servlet. To make the application a little bit more interesting, let's add information about the number of active
sessions (loosely, the number of logged in users) to the main page.

By moving all request processing to other components, there are only three JSP pages left: login.jsp, main.jsp, and
entermsg.jsp. The single change needed in the login.jsp page is the form element's action attribute:

<form action="<c:url value="/ch19/authenticate.do" />" method="post">

This application uses resources on different levels in the URI structure, and the login page can be invoked directly by
the user as well as by a forwarded request for a resource in the protected directory if the user isn't logged in. The base
URI differs depending on how it was invoked—/ora/ch19/login.jsp if it's invoked directly or
/ora/ch19/protected/main.jsp if it's invoked through a forward caused by an unauthenticated request for the main
page. Thus, a relative path as the action value doesn't work; the browser converts a relative path in a page to an
absolute path based in the URI that generated the response, as described in Chapter 17. The solution is to use an
absolute path instead. To avoid hardcoding the context path in the page, I use the <c:url> action to convert the context-
relative path to a server-relative path.

The .do extension tells the container to invoke the Struts servlet. When the Struts servlet processes the request, the
processPath() method (see Example 19-9) returns /ch19/authenticate, which matches the path mapped to the
AuthenticateAction class (see Example 19-10) in the struts-config.xml file (see Example 19-8). Everything is in order and
works exactly as intended.

The main.jsp page is invoked by the Struts servlet if the authentication succeeds, as commanded by the
AuthenticateAction class through the ActionForward instance its perform() method returns. The context-relative path for the
page is /ch19/protected/main.jsp. The AccessControlFilter (Example 19-7) is mapped to this path, ensuring that only an
authenticated user can access the page. The first change in the main.jsp page is therefore to remove the access-control
code; it's not needed anymore. To display the number of active sessions, add an EL expression that displays the current
value maintained by the SessionCounterListener (Example 19-4) at the beginning of the page:

<h1>Welcome ${fn:escapeXml(validUser.firstName)}</h1>
<h2>Number of active sessions: ${session_counter[0]}</h2>

The form and link elements also need attention:

Your profile currently shows you like information about the
following checked-off projects. If you like to update your
profile, make the appropriate changes below and click
Update Profile.
<form action="updateProfile.do" method="post">
 ...
</form>
<hr>

When you're done reading the news, please log out.

<hr>
Post a new message
...

The main.jsp page is always invoked with the /ch19/protected/main.jsp context-relative path, so here a relative URI for
the form element's action attribute works fine. Compared to Chapter 13, the only difference is that it refers to the Struts
action instead of a JSP page. The link element for the logout action must use a relative reference that moves up one
level in the URI namespace: http://logout.do. Remember, the main page was invoked with the
/ch19/protected/main.jsp path, but the logout action is unprotected, because it's mapped to the /ch19/logout.do path in
the struts-config .xml file.

Finally, the entermsg.jsp page; besides removing the access control code, the only change needed is the form
element's action attribute:

<form action="storeMsg.do" method="post">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<form action="storeMsg.do" method="post">

It follows the same pattern as the form-element changes in the main.jsp page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

19.6 Using a Common JSP Error Page
Before we end the exploration of the combination of JSP and servlets, I'd like to give you one more useful tip, namely
how to use a JSP error page that displays a user-friendly error page for all runtime errors, no matter if they originate in
a JSP page, a servlet, or a filter.

In Chapter 9, I showed you how to use the page directive's errorPage attribute to specify a JSP page that is invoked in
case an exception is thrown while processing the page. I also mentioned that an alternative is to declare an error page
in the deployment descriptor (the WEB-INF/web.xml file). It's then used for exceptions thrown by a servlet, a filter, or a
JSP page that doesn't declare an error page:

<error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/errorpage.jsp</location>
</error-page>

To recap, the <exception-type> element contains the fully qualified name of the type of exception you want to handle
with the servlet, JSP page, or static page specified by the <location> element. The <location> value must be a context-
relative path (starting with a slash). You can use multiple <error-page> elements to use different pages for different
exceptions, and the container picks the one with the <exception-type> element that most closely matches the type of the
exception thrown.

You can also define a custom handler for response status codes other than 200 (i.e., status codes that signal some kind
of problem):

<error-page>
 <error-code>404</error-code>
 <location>/notfound.jsp</location>
</error-page>

If you use a JSP page as the handler, it has access to the all information about the request that failed and the reason
(the exception or status code) through the properties of the pageContext.errorData variable, as described in Chapter 9.
Prior to JSP 2.0, you had to work around a mismatch between the JSP and servlet specifications in order to access
exception information in an error handling JSP page: the name of the request attributes used to pass on this
information differed between the specifications. Fortunately, the JSP 2.0 specification is aligned with the servlet
specification in this regard, so now you can use a JSP page like the one described in Chapter 9 even as a global error
handler, without resorting to any tricks.

For a servlet error handler, the error information is available through the request attributes shown in Table 19-2.

Table 19-2. Error information request attributes
Attribute name Java type Description

javax.servlet.error.request_uri String The context-relative URI for the erroneous request

javax.servlet.error.servlet_name String The name of the servlet handling the erroneous request

javax.servlet.error.status_code int The status code for the erroneous request

javax.servlet.error.exception Throwable The exception thrown by the erroneous request, if any

You can use the error information to display informative messages to the user, or to log it along with information about
request parameters, headers, etc., for analysis of the kind of problems your users experience when using the
application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 20. Developing JavaBeans Components for
JSP
The JavaBeans specification[1] was developed with graphical components in mind. But JavaBeans represents a design
pattern for components that also makes sense for faceless components in a server-side application. The JSP and JSTL
specifications provide a number of ways to use JavaBeans components in web applications through standard actions
and the JSP EL, as described in the previous chapters.

[1] This specification is available at http://java.sun.com/products/javabeans/docs/spec.html.

You can use JavaBeans components in a pure JSP application to structure the application and minimize the amount of
logic needed in the JSP pages. In an application that uses both servlets and JSP pages, beans carry data between the
two domains. By using beans with an eye towards the recommendations in the J2EE application programming model,
you can also make it easier to migrate the business logic to Enterprise JavaBeans when warranted by new
requirements.

In this chapter, we look at the JavaBeans model and how it applies to the type of faceless beans used for server-side
applications; beans used in previous chapters will serve as examples.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

20.1 Beans as JSP Components
JavaBeans components, or beans for short, are simply regular Java classes designed according to a set of guidelines. By
following these guidelines, development tools can figure out how you intend the bean to be used and how it can be
linked to other beans. The JavaBeans specification characterizes beans as classes that support:

Introspection so that a builder tool can analyze how a bean works

Customization so that, when using an application builder, a user can customize the appearance and behavior of
a bean

Events as a simple communication metaphor than notify beans of interesting things

Properties, both for customization through a tool and for programmatic use

Persistence, so that a bean can be customized in an application builder and then have its state saved away and
reloaded later

Introspection means that information about a class, such as details about its methods and their parameters and return
types, can be discovered by another class. By following certain naming conventions for the methods, the external class
can figure out how the bean class is intended to be used. Specifically, the beans properties and the events it generates
or observes can be found using the Java Introspection API. For GUI beans, a builder tool uses introspection to discover
the bean's properties and present them to the user in a property window where they can be modified. In a JSP
scenario, the JSP standard actions and the EL evaluator use introspection to find the methods for reading or writing
property values and to declare variables of appropriate types.

A property is an attribute of a bean that can be read or written by the bean's client through regular methods named
according to the JavaBeans guidelines. Typically, the property value is represented by an instance variable in the bean,
but a read-only property can also represent a value that's calculated at runtime. The property methods are used to
customize the bean; for instance, you can set the label text for a bean used as a button in a GUI application or set the
name of the data source for a faceless server-side bean. Besides property access methods, a bean class can have
regular methods that perform actions such as saving the bean's properties in a database or sending a mail composed
from its properties.

A bean can generate or observe events. In a GUI bean, typical events are "button clicked" and "item selected." For a
server-side bean, a typical event is "data source updated," allowing a bean that represents the data to refresh its copy.

Support for persistence means that a bean should implement the java.io.Serializable interface. This interface flags a class
that can be saved in an external format, such as a file. When tools customize a bean, it's possible to save the
customized state during application development and then let the customized bean be instantiated at runtime. The
<jsp:useBean> action allows you to take advantage of this feature, but it's not commonly used today because no JSP
authoring tools provide a customization interface. There's another reason for supporting persistence in JSP beans,
however. A servlet container can support session persistence, by saving all session data when a servlet context is shut
down and reloading it again when the context is restarted. This works only if the beans you save in the session scope
implement Serializable. In addition, beans (or any other object) placed in the session scope of an application marked as
being distributable must be serializable, so that the container can migrate the session from one server to another.

20.1.1 JavaBeans Naming Conventions

As I mentioned earlier, a Java bean is a class that has a no-argument constructor and conforms to the JavaBeans
naming conventions. The bean properties are accessed through getter and setter methods, collectively known as a
bean's accessor methods. Getter and setter method names are composed of the word get or set, respectively, plus the
property name with the first character of each word capitalized. A regular getter method has no parameters but returns
a value of the property's type, while a setter method has a single parameter of the property's type and has a void return
type. Here's an example:

public class CustomerBean implements java.io.Serializable {

 String firstName;
 String lastName;
 int accountNumber;
 int[] categories;
 boolean preferred;

 public String getFirstName() {
 return firstName;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

A readable property has a getter method; a writable property has a setter method. Depending on the combination of
getter and setter methods, a property is read-only, write-only, or read/write. Note that it's the presence of the accessor
methods that defines the property; how the property value is represented inside the class makes no difference at all.

A read-only property doesn't necessarily have to match an instance variable one-to-one. Instead, it can combine
instance variable values, or any values, and return a computed value:

public String getFullName() {
 return (new StringBuffer(firstName).append(" ")
 .append(lastName).toString());
}

The type of a property can be a Java class, interface, or a primitive type such as int:

public int getAccountNumber() {
 return accountNumber;
}

Besides simple single-value properties, beans can also have multivalue properties represented by an array of any type.
This is called an indexed property in the specification. Two types of access methods can be used for an indexed
property: methods reading or writing the whole array or methods working with just one element, specified by an index:

public int[] getCategories() {
 return categories;
}

public void setCategories(int[] categories) {
 this.categories = categories;
}

public int getCategories(int i) {
 return categories[i];
}

public void setCategories(int i, int category) {
 this.categories[i] = category;
}

The naming convention for a Boolean property getter method is different from all other types. You can use the regular
getter name pattern, but the recommendation is to use the word is combined with the property name, to form a
question:

public boolean isPreferred() {
 return preferred;
}

This helps to make the source code more readable. The setter method for a Boolean property follows the regular
pattern:

public void setPreferred(boolean preferred) {
 this.preferred = preferred;
}

Event handling is based on event observers implementing a listener interface, and event generators providing methods
for observers to register their interest in the events. A listener interface defines the methods a listener needs to
implement to be notified when the corresponding event is triggered. A bean identifies itself as a listener by declaring
that it's implementing a listener interface, and an event source is identified by its listener registration methods.

Let's look at an example. A listener interface for observing events related to the customer data handled by the example
bean can look like this:

import java.util.EventListener;

public interface CustomerUpdatedListener extends EventListener {
 void customerUpdated(CustomerUpdatedEvent e);
}

The interface shown here defines only one event notification method, but an interface may also group a number of
methods for related events. The CustomerBean identifies itself as an observer of the event by implementing the
interface:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface:

public class CustomerBean implements CustomerUpdatedListener {
 ...
 public void customerUpdated(CustomerUpdatedEvent e) {
 if (e.getAccountNumber() == accountNumber) {
 // Refresh local copy
 }
 }

Another bean, perhaps one acting as the gatekeeper to the customer database, identifies itself as a source for the event
by defining methods for registration of listeners:

import java.util.Vector;

public class CustomerRegister {
 private Vector listeners = new Vector();

 public
 void addCustomerUpdatedListener(CustomerUpdatedListener cul) {
 listeners.addElement(cul);
 }

 public
 void removeCustomerUpdatedListener(CustomerUpdatedListener cul) {
 listeners.removeElement(cul);
 }

 public void updateCustomer(CustomerBean customer) {
 // Update persistent customer storage
 notifyUpdated(customer);
 }

It notifies all listeners when the customer data is modified, like this:

 protected void notifyUpdated(CustomerBean customer) {
 Vector l;
 CustomerUpdatedEvent e =
 new CustomerUpdatedEvent(this, customer.getAccountNumber());
 synchronized(listeners) {
 l = (Vector)listeners.clone();
 }
 for (int i = 0; i < l.size(); i++) {
 ((CustomerUpdatedListener)l.elementAt(i)).customerUpdated(e);
 }
 }
}

By following these simple naming conventions, the JSP standard actions <jsp:getProperty> and <jsp:setProperty>, as well
as the EL evaluator and custom action classes, can discover how to use your beans correctly. At this time, no JSP
features rely on the event-naming conventions, but future development tools may do so. So if your beans need to
handle events, it's a good idea to follow the conventions. Besides, it's a well-known design pattern (you probably
recognize it from the listener classes described in Chapter 19), so using it makes your code more readable to other
developers familiar with this design.

20.1.1.1 Handling session events

A bean used in a JSP application can actually register itself to receive session-related events. The Servlet API includes
an interface called javax.servlet.http.HttpSessionBindingListener; an object that implements this interface is notified when it's
placed in or removed from a session, through these two methods:

public void valueBound(HttpSessionBindingEvent event);
public void valueUnbound(HttpSessionBindingEvent event);

The valueBound() method is called when the object is added to a session, and the valueUnbound() method is called when
it's removed. The HttpSessionBindingEvent class contains these two methods:

public String getName();
public HttpSession getSession();

The getName() method returns the name used for the object in the session, and the getSession() method returns a
reference to the session object itself.

This is different from the session attribute listener interface in the Servlet 2.3 specification
—javax.servlet.http.HttpSessionAttributeListener, described briefly in Chapter 18. An object registered as an
HttpSessionAttributeListener is notified when any session attribute is set, removed, or replaced, in all sessions; an object
implementing the HttpSessionBindingListener interface is notified only when the object itself is added to or removed from
the session it's placed in. The former is useful for application scope tasks, such as keeping track of the amount of
memory used for session data; the latter can perform initialization and cleanup tasks for an individual object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

memory used for session data; the latter can perform initialization and cleanup tasks for an individual object.

20.1.1.2 Using a package name for a bean class

Even though the bean specification doesn't require it, I recommend that you always declare a specific package name for
all beans you intend to use in JSP pages, via the Java package statement:

package com.mycompany.beans;
public class MyBean {
 ...
}

If you don't, you can't use the bean in a JSP page in a portable manner. As you may recall from Chapter 16, the page
implementation class may use a vendor-dependent package name. Because Java doesn't permit a class without a
package qualifier to be used in a class that belongs to a package,[2] a JSP page containing beans that don't belong to a
package cannot be compiled if the generated implementation class uses a package.

[2] Sun's Java SDK 1.4 enforces this rule; previous versions didn't, even though the Java language specification
said it was not permitted.

20.1.2 Compiling and Installing a Bean

Compiling and installing a bean for a web application is done in the same way as for a servlet class, as described in
Chapter 19. You need to include all classes the bean uses, if any, in the classpath and compile the bean, for instance
using the javac command:

C:/> set CLASSPATH=C:\someDir\someClasses.jar;%CLASSPATH%
C:/> javac MyBean.java

To make the bean available to the web application, place the resulting class file in the WEB-INF/classes directory for the
example application:

C:/> copy MyBean.class C:\Jakarta\jakarta-tomcat-5\webapps\ora\WEB-INF\classes

If you followed my advice and declared a package name for the bean class, say com.mycompany.beans, you should put
the class file in a directory under WEB-INF/classes that mirrors the package structure, for instance WEB-
INF/classes/com/mycompany/beans. Alternatively, you can package the bean class file in a JAR file (see the Java SDK
documents for details) and place the JAR file in the WEB-INF/lib directory. The internal structure of the JAR file must
also mirror the package structure for all your classes.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

20.2 JSP Bean Examples
In a JSP-based application, two types of beans are primarily used: value beans and utility beans. A value bean
encapsulates all information about some entity, such as a user or a product. A utility bean performs some action, such
as saving information in a database or sending email. Utility beans can use value beans as input or produce value beans
as a result of an action.

If you develop beans for your application, you're also preparing for migration to a full-blown J2EE application. The utility
beans can be changed into proxies for one or more EJB session beans, acting as part of the Controller for the
application.

Value beans may act as what are called Value Objects in the J2EE Blueprints. In an EJB-based application, the
application's data is represented by EJB entity beans. Getting a property value from an EJB entity bean requires a
remote call, consuming both system resources and bandwidth. Instead of making a remote call for each property value
that is needed, the web component can make one remote call to an EJB session bean (possibly via a JSP utility bean)
that returns all properties of interest packaged as a value bean. The web component can then get all the properties
from the value bean with inexpensive local calls. The value bean can also act as cache in the web container to minimize
remote calls even more, and it can combine information from multiple EJB entity beans that is meaningful to the web
interface. If you plan to move to the EJB model eventually, I encourage you to read the J2EE Blueprint papers
(http://java.sun.com/blueprints/enterprise/index.html) before you design your application to make the migration as
smooth as possible.

20.2.1 Value Beans

Value beans are useful even without EJB. They are handy for capturing form input, because the <jsp:setProperty> JSP
action automatically sets all properties with names corresponding to request parameter names, as described in Chapter
8. In addition, the <jsp:getProperty> action and the JSP EL let you include the property values in the response without
using scripting elements.

Another benefit of value beans is that they can be used to minimize expensive database accesses for entities that rarely
change their value. By placing a value bean in the application scope, all users of your application can use the cached
value instead. Example 20-1 shows the source code for the ProductBean used in Chapter 10 to represent products in an
online shopping application. This is a pure value bean, with only property accessor methods, that can represent data
retrieved from a database.

Example 20-1. ProductBean

package com.ora.jsp.beans.shopping;

import java.io.*;

public class ProductBean implements Serializable {
 private String id;
 private String name;
 private String descr;
 private float price;

 public String getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public String getDescr() {
 return descr;
 }

 public float getPrice() {
 return price;
 }

 void setId(String id) {
 this.id = id;
 }

 void setName(String name) {
 this.name = name;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.name = name;
 }

 void setDescr(String descr) {
 this.descr = descr;
 }

 void setPrice(float price) {
 this.price = price;
 }
}

This bean is created and initialized by the single instance of the CatalogBean. All setter methods have package
accessibility, while the getter methods are public. Using package accessibility for the setter methods ensures that only
the CatalogBean can set the property values. For instance, a JSP page can read the product information but not change
the price.

Another example of a value bean is the UserInfoBean introduced in Chapter 8. Part of this bean is shown in Example 20-
2. Besides encapsulating the property values of the entity it represents, it also provides methods for validation of the
data.

Example 20-2. Part of the UserInfoBean

package com.ora.jsp.beans.userinfo;

import java.io.*;
import java.util.*;
import com.ora.jsp.util.*;

public class UserInfoBean implements Serializable {
 // Validation constants
 private static String DATE_FORMAT_PATTERN = "yyyy-MM-dd";
 private static String[] GENDER_LIST = {"m", "f"};
 private static String[] FOOD_LIST = {"z", "p", "c"};
 private static int MIN_LUCKY_NUMBER = 1;
 private static int MAX_LUCKY_NUMBER = 100;

 // Properties
 private String birthDate;
 private String emailAddr;
 private String[] food;
 private String luckyNumber;
 private String gender;
 private String userName;

 public String getBirthDate() {
 return (birthDate == null ? "" : birthDate);
 }

 public void setBirthDate(String birthDate) {
 this.birthDate = birthDate;
 }

 public boolean isBirthDateValid() {
 boolean isValid = false;
 if (birthDate != null &&
 StringFormat.isValidDate(birthDate, DATE_FORMAT_PATTERN)) {
 isValid = true;
 }
 return isValid;
 }
 ...

In addition to the setter and getter methods for the birthDate property, the UserInfoBean includes a separate method for
validation. It follows the naming conventions for a Boolean getter method, so it can be used in an EL expression to test
if the value is valid. The getter method returns an empty string in case the property is not set. Without this code, a
<jsp:getProperty> action adds the string null to the response. The JSTL <c:out> action and EL expressions, on the other
hand, automatically convert a null value to the empty string, so this type of code is not needed in an application that
always uses <c:out> or the EL for adding bean property values to the response.

This type of getter, setter, and validation method combo represents all UserInfoBean properties. In addition, the bean
includes other validation and test methods, all of them posing as Boolean read-only getter methods. They are shown in
Example 20-3.

Example 20-3. Validation and test methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 20-3. Validation and test methods

 public boolean isValid() {
 return isBirthDateValid() && isEmailAddrValid() &&
 isFoodValid() && isLuckyNumberValid() &&
 isGenderValid() && isUserNameValid();
 }

 public boolean isPizzaSelected() {
 return isFoodTypeSelected("z");
 }

 public boolean isPastaSelected() {
 return isFoodTypeSelected("p");
 }

 public boolean isChineseSelected() {
 return isFoodTypeSelected("c");
 }

 private boolean isFoodTypeSelected(String foodType) {
 if (food == null) {
 return false;
 }
 boolean selected = false;
 for (int i = 0; i < food.length; i++) {
 if (food[i].equals(foodType)) {
 selected = true;
 break;
 }
 }
 return selected;
 }

As you may remember from Chapter 8, these read-only properties dramatically simplify the process of validation and
filling out a form with the current values.

20.2.2 Utility Beans

A utility bean performs some action, such as processing information, as opposed to simply acting as a container for
information.

The UserInfoBean contains processing code in addition to the plain property setter and getter methods, namely the
validation and test code. The way the bean is used in this book, it's perfectly okay to keep the validation code in the
bean itself. However, let's say you would like to add a property that references another bean, a friends property for
instance, that holds an array of other UserInfoBean objects. It may then be better to let a utility bean that knows about
all users in the application perform the validation, including verifying that the friends exist.

A bean used for validation is one example of a utility bean you can use to make the application easy to maintain. The
CatalogBean used in Chapter 10 is another example. The version developed for this book simply creates a set of
ProductBean objects with hardcoded values and provides a method that returns all products in the catalog. In a real
application, it would likely get the information from a database instead and have methods for updating catalog
information, such as adding and removing products or changing the information about a product, as well as methods
that return only the products matching various search criteria. If all catalog update requests go through the CatalogBean,
it can create, delete, and update the ProductBean objects so that they always match the information stored in the
database. The number of database accesses can be greatly reduced this way.

Chapter 19 offers another example of how you can use a utility bean. As opposed to the examples in Chapter 12 and
Chapter 13, in which the generic JSTL actions are used to access a database, Chapter 19 uses a bean to encapsulate all
database access code. This strategy gives you an application that's easier to maintain because modifications due to a
possible database schema change need to be done only in one place. Example 20-4 shows part of the utility bean that
handles all database interactions in Chapter 19.

Example 20-4. EmployeeRegistryBean

package com.ora.jsp.beans.emp;

import java.io.*;
import java.sql.*;
import java.text.*;
import java.util.*;
import javax.sql.*;
import javax.servlet.jsp.jstl.sql.*;
import com.ora.jsp.beans.sql.*;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import com.ora.jsp.beans.sql.*;

public class EmployeeRegistryBean implements Serializable {
 private DataSource dataSource;

 /**
 * Sets the dataSource property value.
 */
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 /**
 * Returns an EmployeeBean if the specified user name and password
 * match an employee in the database, otherwise null.
 */
 public EmployeeBean authenticate(String userName, String password)
 throws SQLException {

 EmployeeBean empInfo = getEmployee(userName);
 if (empInfo != null && empInfo.getPassword().equals(password)) {
 return empInfo;
 }
 return null;
 }

 /**
 * Returns an EmployeeBean initialized with the information
 * found in the database for the specified employee, or null if
 * not found.
 */
 public EmployeeBean getEmployee(String userName) throws SQLException

 // Get the user info from the database
 Connection conn = dataSource.getConnection();
 Map empRow = null;
 Map[] projects = null;
 try {
 empRow = getSingleValueProps(userName, conn);
 projects = getProjects(userName, conn);
 }
 finally {
 try {
 conn.close();
 }
 catch (SQLException e) {} // Ignore
 }

 // Create a EmployeeBean if the user was found
 if (empRow == null) {
 // Not found
 return null;
 }

 EmployeeBean empInfo = new EmployeeBean();
 empInfo.setDept((String) empRow.get("Dept"));
 empInfo.setEmpDate((java.util.Date) empRow.get("EmpDate"));
 empInfo.setEmailAddr((String) empRow.get("EmailAddr"));
 empInfo.setFirstName((String) empRow.get("FirstName"));
 empInfo.setLastName((String) empRow.get("LastName"));
 empInfo.setPassword((String) empRow.get("Password"));
 empInfo.setUserName((String) empRow.get("UserName"));
 empInfo.setProjects(toProjectsArray(projects));
 return empInfo;
 }

 /**
 * Inserts the information about the specified employee, or
 * updates the information if it's already defined.
 */
 public void saveEmployee(EmployeeBean empInfo) throws SQLException {

 // Save the user info from the database
 Connection conn = dataSource.getConnection();
 conn.setAutoCommit(false);
 try {
 saveSingleValueProps(empInfo, conn);
 saveProjects(empInfo, conn);
 conn.commit();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 conn.commit();
 }
 catch (SQLException e) {
 conn.rollback();
 }
 finally {
 try {
 conn.setAutoCommit(true);
 conn.close();
 }
 catch (SQLException e) {} // Ignore
 }
 }

 /**
 * Returns a Map with all information about the specified
 * employee except the project list, or null if not found.
 */
 private Map getSingleValueProps(String userName, Connection conn)
 throws SQLException {

 if (userName == null) {
 return null;
 }

 SQLCommandBean sqlCommandBean = new SQLCommandBean();
 sqlCommandBean.setConnection(conn);
 StringBuffer sql = new StringBuffer();
 sql.append("SELECT * FROM Employee ")
 .append("WHERE UserName = ?");
 sqlCommandBean.setSqlValue(sql.toString());
 List values = new ArrayList();
 values.add(userName);
 sqlCommandBean.setValues(values);
 Result result = sqlCommandBean.executeQuery();
 if (result == null || result.getRowCount() == 0) {
 // User not found
 return null;
 }
 return result.getRows()[0];
 }
 ...

The EmployeeRegistryBean has one property, dataSource, that must be set when the bean is created. Chapter 19 describes
how an application lifecycle listener can create the bean and initialize it with a DataSource when the application starts,
and then save it in the application scope where the rest of the application can reach it. The other public methods in this
bean perform the same function as the generic database actions in Chapter 12 and Chapter 13. The getSingleValueProps(
) method, as well other private methods not shown in Example 20-4, uses an SQLCommandBean to execute the SQL
statement. This bean is included in the source code package for this book, so you can use it in your own beans as well.
We will look at the implementation in Chapter 24.

A database access utility bean such as the EmployeeRegistryBean can be used in an application that combines servlets and
JSP. Custom actions developed to simplify a JSP-only application can also use it. For instance, the authentication code in
the authenticate.jsp file used in the Chapter 13 example can be reduced with a couple of custom actions using the
EmployeeRegistryBean:

...
<%--
 See if the user name and password combination is valid. If not,
 redirect back to the login page with a message.
--%>
<myLib:ifUserNotValid user="${param.userName}" pw="${param.password}">
 <c:redirect url="login.jsp" >
 <c:param name="errorMsg"
 value="The User Name or Password you entered is not valid." />
 </c:redirect>
</my:ifUserNotValid>

<%--
 Create an EmployeeBean and save it in the session scope
--%>
<myLib:createEmployeeBean var="validUser" scope="session"
 user="${param.username}" />

The <myLib:ifUserNotValid> action implementation can use the authenticate() method and process its body only if it
returns null, and the <myLib:createEmployeeBean> action can call the getEmployee() method to get an initialized bean and
save it in the session scope.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2.3 Multithreading Considerations

As you have seen, putting business logic in beans leads to a more structured and maintainable application. However,
there's one thing you need to be aware of: beans shared between multiple pages must be thread safe.

Thread safety is an issue for beans only in the session and application scopes. Beans in the page and request scope are
executed by only one thread at a time. A bean in the session scope can be executed by more than one thread initiated
by requests from the same client. This may happen if the user brings up multiple browsers, repeatedly clicks a submit
button in a form, or if the application uses frames to request multiple JSP pages at the same time. All application users
share application scope beans, so it's very likely that more than one thread is using an application scope bean.

Java provides mechanisms for dealing with concurrent access to resources, such as synchronized blocks and thread
notification methods. But there are other ways to avoid multithreading issues in the type of beans used in JSP pages.

Value beans are typically placed in the request or session scope as containers for information used in multiple pages. In
most cases, they are created and initialized in one place only, such as by a Controller servlet or by a <jsp:useBean> and
<jsp:setProperty> combination in the request processing page invoked by a form, or by a custom action or utility bean. In
all other places, the bean is used only within EL expressions or by the <jsp:getProperty> action to read its property
values. Because only one thread writes to the bean and all others just read it, you don't have to worry about different
threads overwriting each other.

If you have a value bean that can be updated, such as the NewsBean used in Chapter 13, you have to be careful,
though. The NewsBean contains an instance variable that holds a list of NewsItemBean objects and has methods for
retrieving, adding, and removing news items. If one thread calls removeNewsItem() while another is executing
getNewsItems(), a runtime exception may occur unless you take the necessary precautions. Example 20-5 shows how to
use synchronization to guard against this problem.

Example 20-5. Synchronized access to instance variable

package com.ora.jsp.beans.news;

import java.io.*;
import java.util.*;
import com.ora.jsp.util.*;

public class NewsBean implements Serializable {
 private ArrayList newsItems = new ArrayList();
 private int[] idSequence = new int[1];

 ...
 public NewsItemBean[] getNewsItems() {
 NewsItemBean[] a = null;
 synchronized (newsItems) {
 a = (NewsItemBean[])
 newsItems.toArray(new NewsItemBean[newsItems.size()]);
 }
 return a;
 }

 public void setNewsItem(NewsItemBean newsItem) {
 synchronized (idSequence) {
 newsItem.setId(idSequence[0]++);
 }
 synchronized (newsItems) {
 newsItems.add(newsItem);
 }
 }

 public void removeNewsItem(int id) {
 synchronized (newsItems) {
 for (int i = 0; i < newsItems.size(); i++) {
 NewsItemBean item = (NewsItemBean) newsItems.get(i);
 if (id == item.getId()) {
 newsItems.remove(i);
 break;
 }
 }
 }
 }
 ...
}

The java.util.ArrayList used to hold the news items is not thread-safe, meaning it does not provide any synchronization on
its own. All public NewsBean methods that read or modify the list must therefore synchronize on the newsItems object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

its own. All public NewsBean methods that read or modify the list must therefore synchronize on the newsItems object.
The effect is that while one thread is manipulating the list of news items through one of these methods, all other
threads wait until the current thread leaves the synchronized block. I could have used a java.util.Vector instead of the
ArrayList in this bean; it's a class that synchronizes all access to its elements, so the bean would not have had to. In
many cases, you want to use unsynchronized access when you're sure only one thread has access to the list to gain
performance, and then the ArrayList is a better choice. In the NewsBean, for instance, the list is filled with existing news
items in the bean's constructor; only one thread can run the constructor, so it's safe to add the items without
synchronization.

The setNewsItem() method also synchronizes on idSequence, a variable that generates a unique ID for each item.
idSequence is an int array with one component. This is a neat trick for synchronized access to an integer value; Java
doesn't support synchronization on primitive types, only on objects, but an array of a primitive type is an object. You
can use an Integer object instead, but you can't change the value of an Integer. To increment the value, a new Integer
must be created. Using an array avoids these repeated object creations (and creating an object is a fairly expensive
operation in Java).

Another approach that avoids multithreading problems is used in the EmployeeRegistryBean described in the previous
section. It defines setter methods only for customization that takes place when the bean is created and defines all data
needed to perform a task as method parameters instead of properties. Each thread has its own copy of method
parameter values and local variables, so with this approach, there's no risk that one thread will step on another.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

20.3 Unexpected <jsp:setProperty> Behavior
The <jsp:setProperty> action can automatically set all properties in a bean with names matching the names of the
parameters received with the request. This is a great feature that's used in many of the examples in this book, but
unless you know how it works behind the scenes, you can be in for a surprise.

When the <jsp:setProperty> code is invoked, it gets a list of all request parameter names and uses bean introspection to
find the corresponding property setter methods. It then calls all setter methods to set the properties to the values of
the parameters. This means that if you have a property in your bean that doesn't match a parameter, the setter
method for this property is not called. In most cases, this is not surprising. If the parameter is present in some requests
but not in others, however, things may get a bit confusing. This is the case with parameters corresponding to checkbox,
radio button, and selection list elements in an HTML form. If this type of element is selected, the browser sends a
parameter with the element's name and the value of the selected item. If the element is not selected, it doesn't send a
parameter at all.

For example, let's say you have a bean with an indexed property, such as the projects property in the
com.ora.jsp.beans.emp.EmployeeBean used in Chapter 13. This bean is kept in the session scope. The user can change the
value of the property through a group of checkboxes in a form. To unregister all projects, the user deselects all
checkboxes and submits the form. You may think the following code would then clear the property (setting it to null):

<jsp:setProperty name="validUser" property="*" />

Yet it doesn't. Without any checkbox selections, the projects parameter is not sent, and the corresponding property
setter method is not called. This is so even if you explicitly specify the property and request parameter names:

<jsp:setProperty name="validUser" property="projects" param="projects" />

The workaround (described in Chapter 13) is to use the JSTL <c:set> action instead, with an EL expression to explicitly
set the property to either the array of parameter values representing selected checkboxes or null if none is selected:

<c:set target="validUser" property="projects" value="${paramValues.projects}" />

If you have been developing web applications for a while, you may not think the <jsp:setProperty> behavior is so
surprising. It behaves the same way, however, even when a parameter matching a property is received, but its value is
an empty string. It happens to text fields the user leaves empty.

If you have properties matching text fields, make sure the code that uses the values of the corresponding properties
can deal with null values or initialize them to empty strings. If you keep a bean like this in a scope other than the page
and request scopes (where a new instance is created for each request), also be aware that the user can't clear the
property by erasing the field in a form. One possible workaround is to define a reset property with a setter method that
clears all properties. You then call it explicitly like this in the JSP page before setting the other properties:

<jsp:setProperty name="validUser" property="reset" value="any value" />
<jsp:setProperty name="validUser" property="*" />

All properties are first reset by the first <jsp:setProperty> action and then all properties matching request parameters are
set by the second action.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 21. Developing Custom Tag Libraries Using
Java
Custom actions let you encapsulate logic and make it available to page authors in a familiar format. Throughout this
book, JSTL actions and a number of other custom actions are used for such tasks as accessing a database, including
localized content, encoding URLs, and much more. Using these actions, the amount of Java code in your JSP pages can
be kept to a minimum, making your application easier to debug and maintain. However, for complex applications, these
generic actions may not be enough. Perhaps you want to develop business-specific actions to access the database
instead of putting SQL statements in the JSP pages. You may want to present complex data as a set of nested HTML
tables with cells formatted differently depending on their values. Instead of using JSTL conditional and loop actions in
the JSP page to generate this table, an application-specific custom action can be used.

In Chapter 11, I showed you how to use tag files to implement custom actions. Tag files allow nonprogrammers to
develop custom actions and are also suitable for custom actions that generate a lot of markup, such as HTML tables.
But custom actions can also be implemented as Java classes, and that's the focus of this chapter. A Java
implementation is a good choice for very complex actions or when you need to squeeze out every ounce of
performance.

To develop a custom action as a Java class, you use a set of classes and interfaces referred to in the JSP specification
as the tag extension mechanism. The class that implements the behavior of a custom action is called a tag handler
class. It is basically a bean, with property setter methods corresponding to the custom action element's attributes, that
also implements one of four Java interfaces defined as part of the tag extension mechanism.

JSP 2.0 introduces a new type of tag handler, represented by a single interface. A tag handler of this type is referred to
as a simple tag handler. Tag handlers based on the three interfaces defined by JSP 1.1 and 1.2 are still supported and
are now referred to as classic tag handlers. A simple tag handler can do everything a classic tag handler can but is a lot
easier to implement. The only caveat is that the body of a custom action implemented as a simple tag handler cannot
contain Java code (scripting elements). We'll look at the most common and simple aspects of both types in this chapter,
starting with the simple tag handler, and then work through more advanced features in Chapter 22 and Chapter 23.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.1 Developing Simple Tag Handlers
The simple tag handler is new as of JSP 2.0. Don't be fooled by the name; a simple tag handler can implement complex
behavior for a custom action, such as conditional evaluation of its body, iteration over its body any number of times,
and processing of the body evaluation result. The name refers to the implementation task, which is indeed much
simpler than it was for the type of tag handlers supported in previous versions of the JSP specification.

The simplifications are made possible by prohibiting the use of scripting elements (Java code) in the custom action's
body. This would have been met with a great deal of resistance not too long ago, but with the introduction of the EL and
JSTL, you rarely (if ever) need to use scripting elements. If this restriction is not acceptable for your application, you
must implement the custom action using a classic tag handler instead.

A simple tag handler implements the javax.servlet.jsp.tagext.SimpleTag interface. This interface has five methods, but most
tag handlers just extend a base class named javax.servlet.jsp.tagext.SimpleTagSupport and inherit implementations of all but
one method: doTag(). In addition, the tag handler must implement standard JavaBeans setter methods for all of its
custom action attributes (if it has any, of course).

As you may recall, a tag library is a collection of custom actions. For instance, all custom actions used in this book are
packaged as one tag library. Besides the tag-handler class files, a tag library contains a Tag Library Descriptor (TLD)
file. This is an XML file that maps all custom action names to the corresponding tag handlers and describes all attributes
supported by each custom action. The class files and the TLD can be packaged in a JAR file to make installation easier.
We look at the TLD syntax and packaging details at the end of this chapter.

Before getting into all the intricate details, let's use a simple example to see what it takes to develop, deploy, and use a
custom action using a simple tag handler. First, you implement the tag handler class:

package com.mycompany;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class HelloTag extends SimpleTagSupport {
 private String name = "World";

 public void setName(String name) {
 this.name = name;
 }

 public void doTag() throws IOException{
 getJspContext().getOut().println("Hello " + name);
 }
}

The tag handler class extends the SimpleTagSupport class to get most of the SimpleTag interface methods implementations
for free. It implements a setter method only for an attribute called name and the doTag() method. The doTag() method
(defined by the SimpleTag interface) simply writes "Hello" plus the name attribute value to the response. Note that the
tag handler class must be part of a package, for the same reason a bean must be part of a package, described in detail
in Chapter 16: classes in the default, unnamed package cannot be used in a class that belongs to a package (such as
the class generated for the JSP page).

To compile the class, include the servlet and JSP API classes in your classpath. The API classes are distributed with all
compliant containers. For Tomcat, you find them in the servlet-api.jar and jsp-api.jar files located in the common/lib
directory under the Tomcat installation directory. When you have compiled the tag handler, place the class file in the
WEB-INF/classes directory structure for the application so the container can find it.

Next, you create the TLD file. The following is a minimal TLD file for a library with just one custom action element:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <tlib-version>1.0</tlib-version>
 <short-name>test</short-name>
 <uri>com.mycompany.mylib</uri>

 <tag>
 <name>hello</name>
 <tag-class>com.mycompany.HelloTag</tag-class>
 <body-content>empty</body-content>
 <attribute>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <attribute>
 <name>name</name>
 </attribute>
 </tag>
</taglib>

The TLD maps the custom action name hello to the tag handler class com.mycompany.HelloTag and defines the name
attribute. Place the TLD file in the application's WEB-INF/tlds directory, for instance with the filename mylib.tld.

Now you're ready to use the custom action in a JSP page, like this:

<%@ taglib prefix="test" uri="com.mycompany.mylib" %>
<html>
 <body bgcolor="white">
 <test:hello name="Hans" />
 </body>
</html>

When the page is requested, the JSP container uses the taglib directive to find the TLD, and the TLD to figure out which
class to execute for the custom action. It then calls all the appropriate methods, resulting in the text "Hello Hans" being
added to the response. That's all there is to it for the most simple case. In the remainder of this chapter, we go through
all of this in greater detail.

21.1.1 Accessing Context Information

As you have seen in the previous chapters, a custom action element in a JSP page consists of a start tag (possibly with
attributes), optionally a body, and an end tag:

<prefix:actionName attr1="value1" attr2="value2">
 The body
</prefix:actionName>

If the action element doesn't have a body, the following shorthand notation can be used instead:

<prefix:actionName attr1="value1" attr2="value2" />

A tag handler implements the custom action's behavior. When the container encounters a custom action, it creates an
instance of the corresponding tag handler class, based on the information declared in the TLD.

In order for the tag handler to do anything interesting, it needs access to context information, such as the request and
scope information, as well as the action element's attribute values (if any). The container calls methods defined in the
SimpleTag interface to provide this information. The container calls the setJspContext() method to provide the context
information in the form of a JspContext instance. For the attribute values, the JSP container treats the tag handler as a
bean and calls a setter method for each attribute. When the tag handler has been initialized, the container asks it to do
its thing by calling the doTag() method, as shown in Figure 21-1.

Figure 21-1. SimpleTag interface methods and property setter methods

Here are the SimpleTag interface methods of importance for all simple tag handlers:

public void setJspContext(JspContext jspContext);
public void doTag() throws JspException;

Most simple tag handlers extend the SimpleTagSupport class, and its implementation of the setJspContext() method simply
saves a reference to the instance in a private instance variable named jspContext, where it can then be accessed by a
subclass by calling the corresponding getter method implemented by the SimpleTagSupport class: getJspContext().

The JspContext provides access to all the JSP scope variables and the current output stream
for the page, and it implements a number of utility methods the tag handler may use. We
use most of these methods in the examples in this chapter. Appendix D includes a
complete list of all JspContext methods.

The container calls the doTag() method when the tag handler has been initialized. The SimpleTagSupport implementation
of this method does nothing, so you have to provide an implementation in the subclass.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of this method does nothing, so you have to provide an implementation in the subclass.

Let's implement the tag handler for the <ora:addCookie> action, introduced in Chapter 13, to get a better idea of how all
this works. The tag handler class is called com.ora.jsp.tags.AddCookieTag and extends the SimpleTagSupport class to inherit
most of the SimpleTag interface method implementations:

package com.ora.jsp.tags;

import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import com.ora.jsp.util.*;

public class AddCookieTag extends SimpleTagSupport {

The <ora:addCookie> action has two mandatory attributes, name and value, and one optional attribute, maxAge. Each
attribute is represented by an instance variable and a standard property setter method:

 private String name;
 private String value;
 private String maxAgeString;

 public void setName(String name) {
 this.name = name;
 }

 public void setValue(String value) {
 this.value = value;
 }

 public void setMaxAge(String maxAgeString) {
 this.maxAgeString = maxAgeString;
 }

The purpose of the custom action is to create a new javax.servlet.http.Cookie object with the name, value, and maximum
age values specified by the attributes, and to add the cookie to the response. The tag handler class overrides the doTag(
) method to carry out this work:

 public void doTag() throws JspException {
 int maxAge = -1;
 if (maxAgeString != null) {
 try {
 maxAge = Integer.valueOf(maxAgeString).intValue();
 }
 catch (NumberFormatException e) {
 throw new JspTagException("Invalid maxAge", e);
 }
 }
 PageContext pageContext = (PageContext) getJspContext();
 HttpServletResponse response =
 (HttpServletResponse) pageContext.getResponse();
 CookieUtils.sendCookie(name, value, maxAge, response);
 }
}

The maxAge attribute is optional, so before the corresponding String value is converted into an int, a test is performed to
see if it's set or not. The name and value attributes are declared as mandatory in the TLD. The JSP container refuses to
process the page if the mandatory attributes are not set, so you can always be sure that variables corresponding to
mandatory attributes have values.

The JspContext class is an abstraction introduced in JSP 2.0 to allow the simple tag handler machinery to be used in
nonservlet environment in the future. It provides access to scoped variables, but you don't find the specific scopes
(page, request, session, and application) defined here. Nor do you find access methods for the request, the response,
or other servlet specific objects. These things are instead defined in the PageContext class, which is a subclass of
JspContext. In a servlet-based JSP container (the only type of container currently available), the context object passed to
the tag handler through the setJspContext() method is always an instance of PageContext. To get the response object
needed as an argument to the sendCookie() method, I call getJspContext() and cast the returned context object to
PageContext so I can call its getResponse() method.

The code that actually creates the Cookie object and adds it to the response object is performed by the sendCookie()
method in the com.ora.jsp.util.CookieUtils class. This is a common practice. The utility class knows nothing about JSP, so it
can be used in other environments such as servlets and applets. The tag handler acts as a simple adapter for the
reusable environment agnostic class, getting all information it needs about the request, the response, and all the
variables in the JSP scopes through the PageContext.

The sendCookie() method is implemented like this in the CookieUtils class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The sendCookie() method is implemented like this in the CookieUtils class:

public static void sendCookie(String name, String value, int maxAge,
 HttpServletResponse res) {

 Cookie cookie = new Cookie(name, value);
 cookie.setMaxAge(maxAge);
 res.addCookie(cookie);
}

The sendCookie() method and the <ora:addCookie> custom action could be improved to handle other cookie attributes,
such as the domain and path. I leave that as an exercise that you may want to do if you use these classes in your
applications.

21.1.2 Aborting the Page Processing

For some custom actions, the processing of the page must stop after the custom action has been processed. An
example is a custom action that redirects or forwards to another page, such as the JSTL <c:redirect> action.

A simple tag handler can throw a javax.servlet.jsp.tagext.SkipPageException to signal to the container that the rest of the
page must not be evaluated. The container respects this no matter how deeply the custom action is nested within
bodies of other actions. To show how it's done, here's a simple tag handler with the sole purpose of aborting the page
processing:

package com.ora.jsp.tags.xmp;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class AbortPageTag extends SimpleTagSupport {
 public void doTag() throws JspException {
 throw new SkipPageException();
 }
}

You could use this feature to, for instance, develop a smart forwarding action that decides which page to forward to
based on runtime conditions, such as the time of the day, the current user, or the type of browser accessing the page.
After the forwarding call, throwing the SkipPageException terminates the processing of the rest of the page that contains
the forwarding action.

21.1.3 Processing the Action Body as an Executable Fragment

An action element's body can contain other actions, EL expressions, and template text. The body can be used for input
values spanning multiple lines; the JSTL database actions described in Chapter 12 use the body this way. The SQL
statement is often large, so it's cleaner to let the page author write it in the action body instead of as an attribute value.
A similar example is an action that processes the body content in one way or another before it's added to the response.
Chapter 15 shows how the JSTL <x:transform> action processes its XML body using the XSL stylesheet specified as an
attribute.

Some actions do not really use the body as input but process it in other ways. One example is a conditional custom
action, such as the JSTL <c:if> action, which only passes the body through if a runtime condition is met. A custom
action that processes the dynamic elements in the body a number of times, like the JSTL <c:forEach> action, is another
example.

You can use simple tag handlers to implement all these types of custom actions. The key to unlocking this magic lies in
what's called a JSP fragment and a SimpleTag method I haven't told you about so far:

public void setJspBody(JspFragment body)

The container calls this method with a reference to a JSP fragment representing the custom action body before calling
doTag(). If the custom action doesn't have a body, this method is not called at all.

A JSP fragment is an internal representation of dynamic JSP elements (actions and EL expressions), possibly mixed with
template text. The container converts the body of a custom action implemented as a simple tag handler to this internal
format and exposes it to the tag handler as an object of the type javax.servlet.jsp.tagext.JspFragment. This fragment is
associated with the JspContext for the page where it's defined, so the dynamic elements in the fragment access the same
scoped variables and request and response objects as the page. The tag handler invokes the fragment by calling the
invoke() method on the JspFragment instance. Invoking the fragment means that all the dynamic elements in the
fragment are executed, and the output they produce is combined with the template text, if any, to form a textual
evaluation result. Since the elements in the fragment have access to the current values of all scoped variables, the
result typically differs from invocation to invocation.

21.1.3.1 Conditional and iterating processing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.1.3.1 Conditional and iterating processing

A tag handler for a custom action that only processes the body based on some condition should call the invoke() method
on the fragment representing the body only if the given condition is true. Example 21-1 shows how a somewhat
simplified version of the JSTL <c:if> action could be implemented as a simple tag handler.

Example 21-1. Conditional tag handler (IfTag.java)

package com.ora.jsp.tags.xmp;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class IfTag extends SimpleTagSupport {
 private boolean test;

 public void setTest(boolean test) {
 this.test = test;
 }

 public void doTag() throws JspException, IOException {
 if (test && getJspBody() != null) {
 getJspBody().invoke(null);
 }
 }
}

As I described earlier, the container calls the setJspBody() method to give the tag handler a reference to the body
fragment. This method is implemented by the SimpleTagSupport class and saves the reference in a private instance
variable. The getJspBody() method—used in the doTag() method in this example—is also inherited from the
SimpleTagSupport class, and it simply returns the reference.

In the tag handler subclass, implement a setter method for the test attribute, and in the doTag() method, call the invoke(
) method on the body fragment if the condition specified as the test attribute value is true. Note that you must also
check that getJspBody() returns a fragment to prevent a NullPointerException in case the custom action is used without a
body. You can pass a java.io.Writer to the invoke() method to capture the output, as I will show you later. When you pass
it null, as I do here, the output is added to the response stream for the page that contains the custom action.

Implementing a tag handler for an iterating custom action, similar to <c:forEach>, is almost as easy: just call the body
fragment's invoke() method for each pass through the iteration until the end condition is reached. In most cases, an
iterating tag handler also makes the current item available as a page scope variable, so the elements in the body can
use it to produce different results for each iteration.

To illustrate how an iterating custom action works, let's implement a scaled-down version of the <c:forEach> action that
supports only Collection data structures and call this action <ora:simpleLoop>. It can, for instance, be used like this with a
Collection that contains beans with firstName and lastName properties:

<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>

 <ora:simpleLoop items="${myCollection}" var="current">

 ${current.lastName}, ${current.firstName}

 </ora:simpleLoop>

The custom action iterates through the collection and exposes the current element as a page scoped variable named by
the var attribute. The body contains two EL expressions and some template text. Since the EL expressions refer to
properties of the variable containing the current element, each pass through it produces a different result.

The tag handler class for the <ora:simpleLoop> action is shown in Example 21-2.

Example 21-2. Iteration tag handler (SimpleLoopTag.java)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 21-2. Iteration tag handler (SimpleLoopTag.java)

package com.ora.jsp.tags.xmp;

import java.io.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class SimpleLoopTag extends SimpleTagSupport {
 private Collection items;
 private String var;

 public void setItems(Collection items) {
 this.items = items;
 }

 public void setVar(String var) {
 this.var = var;
 }

 public void doTag() throws JspException, IOException {
 JspFragment body = getJspBody();
 if (body != null) {
 PageContext pageContext = (PageContext) getJspContext();
 Iterator i = items.iterator();
 while (i.hasNext()) {
 Object currValue = i.next();
 getJspContext().setAttribute(var, currValue);
 body.invoke(null);
 }
 }
 }
}

There's really nothing to this that you haven't seen before. The tag handler extends the SimpleTagSupport class, so it
inherits the setJspBody() and getJspBody() methods, described earlier. It implements setter methods for the two
mandatory attributes: items and var. The doTag() method first verifies that there's indeed a body to evaluate and, if so,
gets an Iterator for the collection. For each element in the collection, it saves the current element as a page scope
variable and calls invoke() on the body fragment.

21.1.3.2 Processing the action body

As you see, it's easy to implement a custom action as a simple tag handler, even one that conditionally evaluates the
body 0 or any number of times. To develop a tag handler that reads and processes the result of the body evaluation,
we just need one more thing: a way to capture the result of this evaluation.

Let's look at a tag handler class for the <ora:menuItem> custom action introduced in Chapter 17. As you may remember,
this action reads its body and wraps it with an HTML link element if the specified page isn't the current page. Here's
how the action can be used for a navigation bar, included in the main pages for an application:

<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>
<table bgcolor="lightblue">
 <tr>
 <td>
 <ora:menuItem page="page1.jsp">
 Page 1
 </ora:menuItem>
 </td>
 </tr>
 <tr>
 <td>
 <ora:menuItem page="page2.jsp">
 Page 2
 </ora:menuItem>
 </td>
 </tr>
 <tr>
 <td>
 <ora:menuItem page="page3.jsp">
 Page 3
 </ora:menuItem>
 </td>
 </tr>
</table>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</table>

In this example, the contents of the custom action element is plain HTML template text, but as before, it could also
contain other actions and EL expressions.

The tag handler class for the <ora:menuItem> action is shown in Example 21-3.

Example 21-3. Tag handler reading body evaluation (MenuItemTag.java)

package com.ora.jsp.tags;

import java.io.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import com.ora.jsp.util.StringFormat;

public class MenuItemTag extends SimpleTagSupport {
 private String page;

 public void setPage(String page) {
 this.page = page;
 }

 public void doTag() throws JspException, IOException {
 JspFragment body = getJspBody();
 if (body == null) {
 throw new JspTagException("'menuItem' used without a body");
 }

 PageContext pageContext = (PageContext) getJspContext();
 HttpServletRequest request =
 (HttpServletRequest) pageContext.getRequest();
 String requestURI = request.getServletPath();
 // Convert the specified page URI to a context-relative URI
 String pageURI = StringFormat.toContextRelativeURI(page, requestURI);

 if (requestURI.equals(pageURI)) {
 // Add the body as is
 body.invoke(null);
 }
 else {
 // Add the body as the text of an HTML link to page
 String uri = request.getContextPath() + pageURI;
 HttpServletResponse response =
 (HttpServletResponse) pageContext.getResponse();

 StringWriter evalResult = new StringWriter();
 StringBuffer buff = evalResult.getBuffer();
 buff.append("<a href=\"").append(response.encodeURL(uri)).
 append("\">");
 body.invoke(evalResult);
 buff.append("");
 getJspContext().getOut().print(buff);
 }
 }
}

The action has one attribute named page, implemented by the tag handler as a setter method that saves the value in a
private instance variable.

In the doTag() method, I first check if there's a body. Because this custom action doesn't make sense without a body, I
throw an exception if it doesn't have one. If it has a body, the page attribute value is converted to a context-relative URI
and compared to the URI for the current request. If they match, the text to be written by the action is set to the body
content as is; if not, the body content is wrapped in an HTML link element, using the page attribute value as the href
attribute value and the body content as the link text.

The most interesting part of this tag handler is how it reads the body content and writes its output to the current
response stream. To capture the result of the body evaluation, a java.io.Writer is passed to the invoke() method. Here I
use an instance of the StringWriter subclass. This allows me to get hold of the evaluation result through its internal
StringBuffer and add the HTML link element start and stop tags around it. The combination of the tags and the body
evaluation result is then written to the JspWriter returned by the context's getOut() method. We'll discuss the JspWriter in
more detail when we look at classic tag handlers, but it's really just a representation of the Writer for the response.

21.1.4 Processing Fragment Attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In all the examples so far, the custom action attribute types have been either regular Java classes or primitive types.
The container evaluates attributes like these once and passes the resulting value to the tag handler through the
attribute setter methods; however, it's perfectly legal to declare an attribute of type JspFragment. In this case, the
container does not evaluate the value. Instead it passes a fragment representation of the value to the setter method
that the tag handler can evaluate as many times as needed, in exactly the same manner as the body fragment.

Fragment attributes make a lot of sense for a custom action where the page author should be able to specify dynamic
templates, or patterns, that are applied to elements of a collection. One example is a custom action that iterates over
the days in a month. The page author should be able to describe different templates for rendering weekdays than for
weekends, for instance. Let's develop a tag handler for a custom action that does just that and more. Here's how the
custom action can be used in a JSP page:

<table border="1" cellspacing="0">
 <caption>
 <fmt:formatDate value="${now}" pattern="MMMM yyyy" />
 </caption>
 <ora:calendar date="${now}" var="c">
 <jsp:attribute name="beforePattern">
 <tr>
 </jsp:attribute>
 <jsp:attribute name="afterPattern">
 </tr>
 </jsp:attribute>
 <jsp:attribute name="dayNamePattern">
 <th><fmt:formatDate value="${c}" pattern="EE" /></th>
 </jsp:attribute>
 <jsp:attribute name="padPattern">
 <td bgcolor="lightgrey" width="30" height="30" valign="top">
 <fmt:formatDate value="${c}" pattern="d" />
 </td>
 </jsp:attribute>
 <jsp:attribute name="weekdayPattern">
 <td bgcolor="lightblue" width="30" height="30" valign="top">
 <fmt:formatDate value="${c}" pattern="d" />
 </td>
 </jsp:attribute>
 <jsp:attribute name="weekendPattern">
 <td bgcolor="yellow" width="30" height="30" valign="top">
 <fmt:formatDate value="${c}" pattern="d" />
 </td>
 </jsp:attribute>
 </ora:calendar>
</table>

The <ora:calendar> custom action has two regular attributes: date, which must be set to a java.util.Date representing the
month to render, and var, which can optionally specify a variable to hold a reference to a java.util.Date instance for the
current day of the month the fragments are asked to process.

Fragment attributes are used for the different patterns, such as weekday and weekend patterns. All fragment attributes
must be set using the <jsp:attribute> action. The beforePattern and afterPattern fragments are evaluated before and after
the first and last day of a week, respectively. In this example, the calendar is rendered as an HTML table, so these
attributes are set to table row begin and end elements. The dayNamePattern fragment is evaluated once for each day in a
week, and the weekdayPattern and weekendPattern fragments are evaluated for each workday and weekend day in the
month. The padPattern attribute, finally, is evaluated for the days of the previous month and the following month needed
to produce full weeks. All these fragment attributes define a table cell with different background colors, containing just
the date. You could, of course, put any dynamic content in these fragments, such as custom actions that add
information about events scheduled for each day, pulled from a database or some other type of data source.

Allowing the page author to specify the different patterns like this is very flexible. The same custom action can be used
to produce a completely different type of calendar:

<code>
 <fmt:formatDate value="${now}" pattern="MMMM yyyy" />

 <ora:calendar date="${now}" var="c">
 <jsp:attribute name="afterPattern">

 </jsp:attribute>
 <jsp:attribute name="padPattern">
 | ------ |
 </jsp:attribute>
 <jsp:attribute name="weekdayPattern">
 | <fmt:formatDate value="${c}" pattern="EE dd" /> |
 </jsp:attribute>
 </ora:calendar>
</code>

Here I use only the afterPattern, padPattern and weekDayPattern (which is then also used for weekend days) fragments to
generate a simple ASCII calendar. Figure 21-2 shows how both versions look in a browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

generate a simple ASCII calendar. Figure 21-2 shows how both versions look in a browser.

Figure 21-2. Different calendar layout produced by the same custom action using
fragments for customization

Pretty cool, huh? Let's see the code. Example 21-4 shows the first part of the tag handler class for the <ora:calendar>
custom action.

Example 21-4. Setter methods for fragment attributes (MonthCalendarTag.java)

package com.ora.jsp.tags;

import java.util.*;
import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class MonthCalendarTag extends SimpleTagSupport {
 private Date date;
 private String var;
 private JspFragment padPattern;
 private JspFragment beforePattern;
 private JspFragment afterPattern;
 private JspFragment dayNamePattern;
 private JspFragment weekdayPattern;
 private JspFragment weekendPattern;

 public void setDate(Date date) {
 this.date = date;
 }

 public void setVar(String var) {
 this.var = var;
 }

 public void setBeforePattern(JspFragment beforePattern) {
 this.beforePattern = beforePattern;
 }

 public void setAfterPattern(JspFragment afterPattern) {
 this.afterPattern = afterPattern;
 }

 public void setPadPattern(JspFragment padPattern) {
 this.padPattern = padPattern;
 }

 public void setDayNamePattern(JspFragment dayNamePattern) {
 this.dayNamePattern = dayNamePattern;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.dayNamePattern = dayNamePattern;
 }

 public void setWeekdayPattern(JspFragment weekdayPattern) {
 this.weekdayPattern = weekdayPattern;
 }

 public void setWeekendPattern(JspFragment weekendPattern) {
 this.weekendPattern = weekendPattern;
 }

The type of all fragment attributes is javax.servlet.jsp.tagext.JspFragment. Fragment attributes must also be declared as
such in the TLD for the tag library:

 <tag>
 <name>calendar</name>
 <tag-class>com.ora.jsp.tags.MonthCalendarTag</tag-class>
 <body-content>empty</body-content>
 ...
 <attribute>
 <name>padPattern</name>
 <required>false</required>
 <fragment>true</fragment>
 </attribute>
 ...

 </tag>

The default value for the <fragment> element is false, so if you leave it out, the attribute is handled as a standard
attribute.

Example 21-5 shows the doTag() method, where the basic calendar processing control flow is implemented.

Example 21-5. Calendar processing control flow (MonthCalendarTag.java)

 public void doTag() throws JspException, IOException {
 Calendar calendar = new GregorianCalendar();
 int firstDayOfWeek = calendar.getFirstDayOfWeek();

 if (dayNamePattern != null) {
 evalDayNamePattern(calendar, firstDayOfWeek);
 }

 calendar.setTime(date);
 calendar.set(Calendar.DAY_OF_MONTH, 1);

 if (padPattern != null) {
 evalPrePadPattern(calendar, firstDayOfWeek);
 }

 evalDayPatterns(calendar, firstDayOfWeek);

 if (padPattern != null) {
 evalPostPattern(calendar, firstDayOfWeek);
 }
 }

A java.util.GregorianCalendar instance drives the processing. If a dayNamePattern fragment is provided, it's evaluated once
for each day in a week (e.g., Sunday through Saturday). Next, the calendar is set to the first day of the month specified
by the date attribute. If there's a padPattern fragment and the first day of this month is not the first day of the week, the
fragment is evaluated once for each day in the last week of the previous month to get a full first week. The
weekdayPattern and weekendPattern (if any) fragments are then evaluated for all days of the specified month, and finally,
the padPattern fragment is processed again for all days in the following month if needed to fill the last week.

The actual fragment evaluation is implemented in a number of private methods. Example 21-6 shows the method that
evaluates the dayNamePattern fragment.

Example 21-6. Day name fragment evaluation method (MonthCalendarTag.java)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 21-6. Day name fragment evaluation method (MonthCalendarTag.java)

 private void evalDayNamePattern(Calendar calendar, int firstDayOfWeek)
 throws JspException, IOException {
 if (beforePattern != null) {
 beforePattern.invoke(null);
 }
 for (int i = 0, day = firstDayOfWeek; i < 7; i++, day++) {
 calendar.set(Calendar.DAY_OF_WEEK, day);
 if (var != null) {
 getJspContext().setAttribute(var, calendar.getTime());
 }
 dayNamePattern.invoke(null);
 }
 if (afterPattern != null) {
 afterPattern.invoke(null);
 }
 }

The method loops through the calendar seven times, from the first day of the week to the last. For each iteration, the
method saves a java.util.Date instance representing the current calendar date as a page scope variable with the name
specified by the var attribute. Dynamic elements in the day name pattern can use this variable to create a header with
the day names, as shown in Figure 21-2. The fragment is evaluated just as the body fragment in the previous section,
by calling the invoke() method. Because this tag handler doesn't need to process the result, null is passed as the
argument value.

The rest of the fragment evaluation methods are very similar, as shown in Example 21-7.

Example 21-7. Remaining fragment evaluation methods (MonthCalendarTag.java)

 private void evalPrePadPattern(Calendar calendar, int firstDayOfWeek)
 throws JspException, IOException {
 // Reset to start of week, possibly in the previous month
 int firstDayOfMonth = calendar.get(Calendar.DAY_OF_WEEK);
 calendar.add(Calendar.DATE, firstDayOfWeek - firstDayOfMonth);

 if (beforePattern != null) {
 beforePattern.invoke(null);
 }

 int padDays = firstDayOfMonth - firstDayOfWeek;
 for (int i = 0; i < padDays; i++) {
 if (var != null) {
 getJspContext().setAttribute(var, calendar.getTime());
 }
 padPattern.invoke(null);
 calendar.add(Calendar.DAY_OF_WEEK, 1);
 }
 }

 private void evalDayPatterns(Calendar calendar, int firstDayOfWeek)
 throws JspException, IOException {

 int daysInMonth = calendar.getActualMaximum(Calendar.DAY_OF_MONTH);
 int lastDayOfWeek = firstDayOfWeek - 1 == 0 ? 7 : firstDayOfWeek - 1;
 for (int i = 0; i < daysInMonth; i++) {
 if (var != null) {
 getJspContext().setAttribute(var, calendar.getTime());
 }
 int day = calendar.get(Calendar.DAY_OF_WEEK);
 if (day == firstDayOfWeek && beforePattern != null) {
 beforePattern.invoke(null);
 }

 if ((day == Calendar.SATURDAY || day == Calendar.SUNDAY) &&
 weekendPattern != null) {
 weekendPattern.invoke(null);
 }
 else {
 weekdayPattern.invoke(null);
 }

 if (day == lastDayOfWeek && afterPattern != null) {
 afterPattern.invoke(null);
 }
 calendar.add(Calendar.DAY_OF_MONTH, 1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 calendar.add(Calendar.DAY_OF_MONTH, 1);
 }
 }

 private void evalPostPattern(Calendar calendar, int firstDayOfWeek)
 throws JspException, IOException {
 while (calendar.get(Calendar.DAY_OF_WEEK) != firstDayOfWeek) {
 if (var != null) {
 getJspContext().setAttribute(var, calendar.getTime());
 }
 padPattern.invoke(null);
 calendar.add(Calendar.DAY_OF_MONTH, 1);
 }
 if (afterPattern != null) {
 afterPattern.invoke(null);
 }
 }
}

All methods save the current date as a page scope variable and invoke the fragment corresponding to the pattern the
method handles.

Fragment attributes are very handy for some types of custom actions, as you can see, and are very easy to use. If
you're developing a custom action with multiple aspects that can be customized and processed a variable number of
times, you should consider using fragment attributes.

21.1.5 Handling Exceptions

Methods called by a tag handler may throw exceptions. Exception handling in a simple tag handler is very easy
compared to how it's done for a classic tag handler, since all processing takes place in the single doTag() method. You
must catch exceptions and either deal with them, or rethrow them wrapped in a JspException or the JspTagException
subclass. Both exception classes have the same types of constructors:

public JspTagException();
public JspTagException(String msg);
public JspTagException(String msg, Throwable rootCause);
public JspTagException(Throwable rootCause);

When you rethrow an exception that you have caught, use one of the two latter constructors and pass on the exception,
since the root cause is often needed to figure out what the problem is. Most containers unwrap the exception chain and
write stack traces for all of the exceptions in the chain to the application log file. When throwing exceptions, you should
avoid the no-argument constructor, since it doesn't let you say what's wrong, and use the second one for exceptions
generated internally in the tag handler, for instance to report an invalid input type or insufficient privileges.

An exception thrown by a custom action can be caught and handled in the JSP page with the JSTL <c:catch> action, as I
described in Chapter 9. If it's not caught, it's handled by the JSP container by forwarding to a custom error page, if
specified, or to a container default page.

Calling the invoke() method of a fragment may result in either a JspException or an IOException. Typically, the doTag()
method is declared to throw these same exceptions, so if it's okay to just let them propagate, you don't need to do
anything. The only time you really need to worry about catching exceptions thrown by a fragment is in tag handlers
that use resources that must be closed, such as a file, or returned to a pool, such as a database connection. If you fail
to catch exceptions thrown by a fragment in this type of tag handler, the application will eventually run out of its limited
resources. To illustrate how to handle fragment exceptions, Example 21-8 shows the tag handler for an action that
writes the result of the evaluation of its body to a file, identified by an attribute named fileName.

Example 21-8. A tag handler that handles exceptions properly

package com.ora.jsp.tags;

import java.io.*;
import javax.servlet.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class FileWriteTag extends SimpleTagSupport {
 private String fileName;

 public void setFileName(String fileName) {
 this.fileName = fileName;
 }

 public void doTag() throws JspException {
 JspFragment body = getJspBody();
 if (body == null) {
 throw new JspTagException("'fileWrite' used without a body");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 PrintWriter pw = null;
 if (fileName != null && !"log".equals(fileName)) {
 try{
 pw = new PrintWriter(new FileWriter(fileName, true));
 }
 catch (IOException e) {
 throw new JspTagException("Can not open file " + fileName +
 " for writing", e);
 }
 }

 ServletContext application =
 ((PageContext) getJspContext()).getServletContext();
 StringWriter evalResult = new StringWriter();
 try {
 body.invoke(evalResult);
 if (fileName == null) {
 System.out.println(evalResult);
 }
 else if ("log".equals(fileName)) {
 application.log(evalResult.toString());
 }
 else {
 pw.print(evalResult);
 }
 }
 catch (Throwable t) {
 String msg = "Exception in body of " + this.getClass().getName();
 application.log(msg, t);
 throw new JspTagException(msg, t);
 }
 finally {
 if (pw != null) {
 pw.close();
 }
 }
 }
}

The doTag() method first verifies that there's a body and throws a JspTagException if not, just as in Example 21-3. It then
tries to open the file for writing by creating a PrintWriter for it. If this fails, for instance because of an invalid filename or
access permission problems, the IOException is caught, and a JspTagException is thrown with a message about what went
wrong as well as the root cause exception.

The body fragment evaluation, plus any file manipulation operations that can go wrong, are protected by a
try/catch/finally block. If an exception is thrown, a message is written to the application log file and the exception is
rethrown, wrapped in a JspTagException, and the file is closed in the finally block. This way, no matter what happens, the
file is always closed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.2 Developing Classic Tag Handlers
Classic tag handler is the designation used in the JSP 2.0 specification for the original version of the tag handler API, to
distinguish it from the new, easier-to-use API. Given that a simple tag handler is so much easier to implement than a
classic tag handler and can do exactly the same things, why bother with the classic tag handler at all? The answer is
"you shouldn't," unless one of the following is true:

The tag library must work with JSP 1.1 or 1.2 as well as 2.0

The page author must be able to use Java code (scripting elements) in the custom action bodies

The tag handler instance is very expensive to create or initialize

It is hard to do anything about the first reason; if the tag library must work with JSP versions prior to 2.0, you have no
choice but to use classic tag handlers.

Scripting code is rarely needed nowadays, so the second reason should be looked at with suspicion. I suggest that you
think long and hard about other solutions, such as using JSTL, more custom actions, and EL expressions instead.

The third reason is related to the fact that simple tag handlers cannot be reused; the container creates a new instance
for every invocation. A container is, however, allowed to reuse classic tag handlers for multiple custom action
invocations, as long as the strict rules (described later) are followed. While this may sound like a great performance
boost, benchmarks have shown that it has very little effect in reality when using a modern Java version (J2SE 1.4 or
later). In most cases, the cost of maintaining the pool eats up most of the gain from reduced object creation, since
modern Java versions are pretty good at dealing with short-lived objects. Reuse can make a difference with an efficient
pool for tag handlers that use resources that are very expensive to create but can be retained between multiple
invocations, but these are very rare. A workaround is to maintain the resources as scoped variables instead, created by
the first tag handler instance and reused by all others.

That said, the classic tag handler is still supported in JSP 2.0, so I describe it in detail in this section. The main reasons
for its complexity are due to the support for scripting elements in the custom action body and potentially reusable tag
handler instances.

The classic tag handler API contains three primary interfaces, all part of the javax.servlet.jsp.tagext package: Tag,
IterationTag, and BodyTag. The Tag interface defines the methods you need to implement for any tag handler. The
IterationTag interface extends the Tag interface and adds methods needed for iteration over the action element's body.
The BodyTag interface extends the IterationTag interface and adds methods that provide access to the action element's
body evaluation result.

There's also a fourth interface named TryCatchFinally; it's a so-called mix-in interface, meaning it can be implemented in
addition to any of the three main interfaces. It defines methods that let the tag handler deal with exceptions, for
instance, exceptions thrown by JSP elements nested in the action element's body.

To make it easier to develop a classic tag handler, two support classes are defined by the API: TagSupport and
BodyTagSupport, as shown in Figure 21-3. The TagSupport class provides default implementations for the methods in both
the Tag and the IterationTag interfaces, and BodyTagSupport adds defaults for the BodyTag interface methods.

Figure 21-3. The primary classic tag handler interfaces and support classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declaration and deployment of classic tag handlers follow the same process as for simple tag handlers: declare the tag
handlers in a TLD and make the TLD and class files available to the web application, either as files directly in the
filesystem or packaged as a JAR file. The TLD elements are identical for both types, and you can mix simple and classic
tag handlers in the same tag library.

21.2.1 Developing a Basic Action

The main difference between the simple and classic tag handler APIs is that while the SimpleTag interface has only one
method for asking the tag handler to complete its processing, the Tag interface has two: doStartTag() and doEndTag()
(the Tag subinterfaces for more specialized classic tag handlers add even more methods). The container calls these
methods when the start tag and end tag are encountered, as shown in Figure 21-4.

Figure 21-4. Tag interface methods and property setter methods

Attribute values are set using bean setter methods, just as for the simple tag handler. The doStartTag() and doEndTag()
method return values that controls what happens next, for instance how to deal with the custom action body. This is
another significant difference compared to the simple tag handler; a classic tag handler needs to ask the container
(through the return value) to evaluate the body rather than doing it itself.

A tag handler that implements just the Tag interface can add dynamic content to the response body and set response
headers, add or remove variables in one of the JSP scopes, and tell the container to either include the action element's
body in the response or ignore it.

Here are the most important methods of the Tag interface:

public void setPageContext(PageContext pageContext);
public int doStartTag() throws JspException;
public int doEndTag() throws JspException;

Let's first look at the implementations the TagSupport class provides for these methods. This is the class most simple tag
handlers extend, so it's important to know how TagSupport implements the methods the tag handler inherits.

The first method of interest is the setPageContext() method:

public class TagSupport implements IterationTag, Serializable {
 ...
 protected PageContext pageContext;
 ...
 public void setPageContext(PageContext pageContext) {
 this.pageContext = pageContext;
 }

The JSP container calls this method before the tag handler is used. The TagSupport implementation simply sets an
instance variable to the current PageContext object. As you may recall, the PageContext provides access to the request
and response object and all the JSP scope variables, and it implements a number of utility methods the tag handler may
use.

When the start tag is encountered, the JSP container calls the doStartTag() method, implemented like this in the
TagSupport class:

public int doStartTag() throws JspException {
 return SKIP_BODY;
}

This method gives the tag handler a chance to initialize itself, perhaps verifying that all attributes have valid values.
Another use for this method is to decide what to do with the element's body content, if a body exists. The method
returns an int that must be one of two values defined by the Tag interface: SKIP_BODY or EVAL_BODY_INCLUDE. The
default implementation returns SKIP_BODY. As the name implies, this tells the JSP container to ignore the body
completely. If EVAL_BODY_INCLUDE is returned, the JSP container evaluates the body (for instance, executes scripting
elements and other actions in the body) and includes the result in the response. You can create a simple conditional tag
—similar to the JSTL <c:if> action—by testing some condition (set by action attributes) in the doStartTag(), and return
either SKIP_BODY or EVAL_BODY_INCLUDE, depending on whether the condition is true or false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

either SKIP_BODY or EVAL_BODY_INCLUDE, depending on whether the condition is true or false.

No matter which value the doStartTag() method returns, the JSP container calls doEndTag() when it encounters the end
tag for the corresponding action element:

public int doEndTag() throws JspException {
 return EVAL_PAGE;
}

This is the method that most classic tag handlers override to do the real work. It can also return one of two int values
defined by the Tag interface. The TagSupport class returns EVAL_PAGE, to tell the JSP container to continue processing the
rest of the page. A tag handler can also return SKIP_PAGE, which aborts the processing of the rest of the page. This is
appropriate for an action that forwards the processing to another page or sends a redirect response to the browser; the
JSTL <c:redirect> action is one example.

To get a better idea of how it all fits together, let's look at a classic tag implementation for the <ora:addCookie> action.
You can compare it to the simple tag handler implementation for the same custom action described earlier to see how
the two tag handler APIs differ. The tag handler class is called com.ora.jsp.tags.xmp.ClassicAddCookieTag and extends the
TagSupport class to inherit most of the Tag interface method implementations:

package com.ora.jsp.tags.xmp;

import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import com.ora.jsp.util.*;

public class ClassicAddCookieTag extends TagSupport {

 private String name;
 private String value;
 private String maxAgeString;

 public void setName(String name) {
 this.name = name;
 }

 public void setValue(String value) {
 this.value = value;
 }

 public void setMaxAge(String maxAgeString) {
 this.maxAgeString = maxAgeString;
 }

So far, the implementation is identical to the simple tag implementation, with setter methods for each attribute.

The doEndTag() method looks like this:

 public int doEndTag() throws JspException {
 int maxAge = -1;
 if (maxAgeString != null) {
 try {
 maxAge = Integer.valueOf(maxAgeString).intValue();
 }
 catch (NumberFormatException e) {
 throw new JspException("Invalid maxAge: " +
 e.getMessage());
 }
 }
 CookieUtils.sendCookie(name, value, maxAge,
 (HttpServletResponse) pageContext.getResponse());
 return EVAL_PAGE;
}

Compared to the simple tag handler implementation there are two differences. First, the classic tag handler gets
initialized with a PageContext instance instead of the more generic JspContext used for simple tag handlers; this happens
in the setPageContext() method, as shown earlier. Hence, the response object can be retrieved directly from the context
object without having to first cast it to the correct type. Second, the doEndTag() method has an int return type and must
return one of EVAL_PAGE or SKIP_PAGE, as opposed to the void return type declared for the simple tag handler's doTag()
method.

The rest is the same as for the simple tag handler. The optional maxAge attribute is converted to an int, and the cookie
is created and added to the response object by the sendCookie() method in the com.ora.jsp.util.CookieUtils class.

A classic tag handler class should also implement the release() method, to release all references to objects that it has
acquired:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

acquired:

public void release() {
 name = null;
 value = null;
 maxAgeString = null;
 super.release();
}

The container calls the release() method when the tag handler is no longer needed. The ClassicAddCookieTag class sets all
its properties to null and calls super.release() to let the TagSupport class do the same. This makes all objects used by the
tag handler available for garbage collection.

21.2.2 Developing an Iterating Action

For a simple tag handler, iterative evaluation of the body is simply done within the doTag() method, as described
earlier. A classic tag handler doesn't have this luxury. Instead, it must ask the container to evaluate the action
element's body repeatedly until some condition is true. To do so, it implements the IterationTag interface, which contains
only one method: public int doAfterBody() throws JspException, which is called by the container after it has processed the
action element's body.

A tag handler that implements the IterationTag interface is at first handled the same way as a tag handler implementing
the Tag interface: the container calls all property setter methods and the doStartTag() method. Then things divert
slightly, as illustrated in Figure 21-5.

Figure 21-5. IterationTag interface methods

After the call to doStartTag(), the doAfterBody() method may be called any number of times before the doEndTag()
method is called.

Let's implement the same scaled-down version of the <c:forEach> action that I used to illustrate iteration with a simple
tag handler again but this time as a classic tag handler. As before, the scaled down version supports only Collection data
structures. The class tag handler class is shown in Example 21-9.

Example 21-9. A tag handler implementing the IterationTag interface

package com.ora.jsp.tags.xmp;

import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class ClassicSimpleLoopTag extends TagSupport {
 private Iterator iterator;
 private String items;
 private String var;

 public void setItems(String items) {
 this.items = items;
 }

 public void setVar(String var) {
 this.var = var;
 }

 public int doStartTag() throws JspException {
 iterator = items.iterator();
 if (iterator.hasNext()) {
 pageContext.setAttribute(var, iterator.next());
 return EVAL_BODY_INCLUDE;
 }
 else {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else {
 return SKIP_BODY;
 }
 }

 public int doAfterBody() {
 if (iterator.hasNext()) {
 pageContext.setAttribute(var, iterator.next());
 return EVAL_BODY_AGAIN;
 }
 else {
 return SKIP_BODY;
 }
 }
}

The ClassicSimpleLoopTag class extends TagSupport. The TagSupport class implements the IteratorTag interface and provides
a default implementation for the method in this interface in addition to the methods in the Tag interface.

The custom action has two mandatory attributes, each represented by a setter method in the tag handler class. The
items attribute specifies an object that implements the Collection interface. The tag handler iterates over all collection
elements and makes the current element available as a page-scope variable in the element's body. The var attribute
specifies the name of the page-scope variable.

The doStartTag() method first creates an Iterator for the collection. Note that the Iterator must be declared as an instance
variable, since it's also used in the doAfterBody() method. If the Iterator contains at least one element, the doStartTag()
method makes the first element in the Collection available as a page-scope object with the name specified by the var
attribute and returns EVAL_BODY_INCLUDE. This tells the container to add the contents of the action element's body to
the response and then call doAfterBody().

The doAfterBody() method must return either EVAL_BODY_AGAIN (to iterate over the body) or SKIP_BODY (to stop the
iteration). The TagSupport default implementation just returns SKIP_BODY. Except for not initializing the Iterator, the
doAfterBody() method in the ClassicSimpleLoopTag class does exactly the same as the doStartTag() method. As long as the
Iterator contains at least one more element, doAfterBody() returns EVAL_BODY_AGAIN. When all elements have been
processed, it returns SKIP_BODY to stop the iteration.

When the doAfterBody() method returns SKIP_BODY, the container calls the doEndTag() method. In this example, the
default implementation provided by the TagSupport class is sufficient so there's no need to override it. It simply returns
EVAL_PAGE to tell the container to process the rest of the page.

21.2.3 Processing the Action Body

It's fairly easy to develop the most basic type of tag handlers even with the classic tag handler API. For a tag handler
that needs to read and process the element body, the difference between the simple and the classic API is more
apparent.

A classic tag handler that needs access to the action element's body must implement the BodyTag interface and tell the
container to capture the body evaluation result in an instance of the BodyContent class.

The BodyTag interface extends the IterationTag interface and adds two new methods:

public void setBodyContent(BodyContent bodyContent)

Provides a reference to the BodyContent instance that buffers the body evaluation result for this tag handler

public void doInitBody() throws JspException

Can be implemented by a tag handler to prepare for the first evaluation of the body

Figure 21-6 illustrates the container calling these new methods, which are relative to the methods inherited from the
IterationTag interface.

Figure 21-6. BodyTag interface methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 21-6. BodyTag interface methods

As with the Tag and IterationTag interfaces, there's a support class that implements all the methods of the BodyTag
interface, plus a few utility methods:

public class BodyTagSupport extends TagSupport implements BodyTag

The BodyTagSupport class overrides the doStartTag() method inherited from the TagSupport class:

public int doStartTag() throws JspException {
 return EVAL_BODY_BUFFERED;
}

Instead of returning SKIP_BODY as the TagSupport class does, it returns EVAL_BODY_BUFFERED. The EVAL_BODY_BUFFERED
value is only valid for a tag handler that implements the BodyTag interface. It means that not only should the action's
body be evaluated, but the container must also buffer the result and make it available to the tag handler.

The container uses a BodyContent object to buffer the body evaluation result—static text as well as dynamic content
created by nested action and scripting elements. This is a subclass of the JspWriter, the class used to write text to the
response body. In addition to the inherited methods for writing text, the BodyContent class has methods the tag handler
can use to read the body evaluation result.

This is how it works. To buffer the response body, as described in Chapter 17, the container creates an instance of the
JspWriter class before processing the page and directs all output to this instance. Everything that's added to the
response body—explicitly by JSP elements or implicitly by the JSP container (template text)—therefore ends up in the
JspWriter first before it's sent to the browser. When the JSP container encounters a custom action with a tag handler
that implements the BodyTag interface, it temporarily redirects all output to a BodyContent instance until it reaches the
action's end tag. The content produced when the element body is processed is therefore buffered in the BodyContent
instance where the tag handler can then read it.

The container gives the tag handler a reference to the BodyContent instance by calling the setBodyContent() method:

...
protected BodyContent bodyContent;
...
public void setBodyContent(BodyContent b) {
 this.bodyContent = b;
}

The BodyTagSupport class simply saves the reference to the BodyContent in an instance variable.

Before the container evaluates the body, it gives the tag handler a chance to initialize itself by calling doInitBody():

public void doInitBody() throws JspException {
}

The implementation in BodyTagSupport does nothing. A tag handler can override this method to prepare for the first pass
through the action body, perhaps writing initial content to the BodyContent that should precede any content added by the
evaluation of the nested elements. This method is, however, rarely used.

When the body has been processed, the doAfterBody() method is invoked:

public int doAfterBody() throws JspException {
 return SKIP_BODY;
}

The same as with the IterationTag interface, this method gives the tag handler a chance to decide whether the body
should be processed again. If so, it returns the EVAL_BODY_AGAIN value, otherwise SKIP_BODY. As opposed to a tag
handler that implements only the IterationTag interface, a BodyTag implementation can also use this method to read the
buffered body content and process it in some way. We'll look at an example of this shortly. The BodyTagSupport
implementation returns SKIP_BODY to let the processing continue to the doEndTag() method. As with a tag handler
implementing the Tag interface, this method must return either EVAL_PAGE or SKIP_PAGE.

To see how it all comes together we implement the <ora:menuItem> custom action from Chapter 17 again, but as a
classic tag handler this time. Example 21-10 shows the code for the tag handler class.

Example 21-10. The ClassicMenuItemTag class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 21-10. The ClassicMenuItemTag class

package com.ora.jsp.tags.xmp;

import java.io.*;
import java.util.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import com.ora.jsp.util.StringFormat;

public class ClassicMenuItemTag extends BodyTagSupport {
 private String page;

 public void setPage(String page) {
 this.page = page;
 }

 public int doEndTag() throws JspException {
 HttpServletRequest request =
 (HttpServletRequest) pageContext.getRequest();
 String requestURI = request.getServletPath();
 String pageURI = StringFormat.toContextRelativeURI(page,
 requestURI);

 StringBuffer text = null;
 String body = getBodyContent().getString();
 if (requestURI.equals(pageURI)) {
 text = new StringBuffer(body);
 }
 else {
 String contextPath = request.getContextPath();
 String uri = contextPath + pageURI;
 HttpServletResponse res =
 (HttpServletResponse) pageContext.getResponse();
 text = new StringBuffer("<a href=\"");
 text.append(res.encodeURL(uri)).append("\">").
 append(body).append("");
 }
 try {
 JspWriter out = getPreviousOut();
 out.print(text);
 }
 catch (IOException e) {}
 return EVAL_PAGE;
 }

 public void release() {
 page = null;
 super.release();
 }
}

The tag handler extends the BodyTagSupport class and overrides only the doEndTag() method. It also implements a setter
method for the page attribute.

Except for how the body evaluation result is captured and how text is added to the current response stream, the
doEndTag() method looks identical to the doTag() method in the simple tag handler we developed earlier. The classic tag
handler in Example 21-10 uses BodyTagSupport utility methods to handle both tasks.

The getBodyContent() method returns a reference to the BodyContent object and its content is read by the getString()
method. The BodyContent class also provides a getReader() method to get the content as a Reader, which can be handy if
you need to process the content as a stream, perhaps with an XML parser.

To get hold of an appropriate writer for the generated content, the tag handler calls the getPreviousOut() method. It
returns the BodyContent of the enclosing action, if any, or the main JspWriter for the page if the action is at the top level.
You may be wondering why the method is called getPreviousOut() as opposed to getOut(). The name is intended to
emphasize the fact that you want to use the object assigned as the output for the enclosing element in a hierarchy of
nested action elements. Say you have the following action elements in a page:

<xmp:foo>
 <xmp:bar>
 Some template text
 </xmp:bar>
</xmp:foo>

Let's recap how buffering works. The JSP container first creates a JspWriter and directs all output to it. When it
encounters the <xmp:foo> action, it creates a BodyContent object and temporarily redirects the output. It creates another
BodyContent for the <xmp:bar> action and, again, redirects the output. The container keeps track of this hierarchy of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BodyContent for the <xmp:bar> action and, again, redirects the output. The container keeps track of this hierarchy of
output objects. Template text and output produced by JSP elements end up in the current output object. Each element
can get access to its own BodyContent object by calling the getBodyContent() method and then reading the content. For
the <xmp:bar> element, the content is the template text. After processing the content, it can write it to the <xmp:foo>
body by getting the BodyContent for this element through the getPreviousOut() method. Finally, the <xmp:foo> element
can process the content provided by the <xmp:bar> element and add it to the top-level output object; it gets the
JspWriter object by calling the getPreviousOut() method. This method is implemented by the BodyTagSupport class like this:

public JspWriter getPreviousOut() {
 return bodyContent.getEnclosingWriter();
}

By calling getPreviousOut(), the tag handler in Example 21-10 gets the proper writer: either a parent action's BodyContent
or the top-level JspWriter. It then writes either the plain body content or the dynamically generated HTML link to it.

21.2.3.1 Dealing with empty elements

One thing to note about tag handlers: when they're implementing the BodyTag interface, the container doesn't call all
methods if the action element doesn't have a body in the JSP page—in other words, when the action is represented by
an empty element in the page. An action element is considered empty if it's:

Represented by the XML shorthand notation for an empty element:

<xmp:myTag/>

Represented by an opening and closing tag with an empty body:

<xmp:myTag></xmp:myTag>

Note that the element isn't considered empty if the body contains anything—even so-called whitespace characters
(blank, tab, linefeed) or scripting elements.

For an empty custom action element with a tag handler that implements the BodyTag interface, the container doesn't
call the following methods: setBodyContent(), doInitBody(), or doAfterBody(). This allows the container to generate more
efficient code for an empty BodyTag element, since it avoids creating a BodyContent instance that will never be used.[1]

[1] At least that was the intention with a number of clarifications in JSP 1.2. Unfortunately it turns out that JSP 1.2
is still not perfectly clear about this, so some JSP 1.2 containers call all the methods even for an empty element.
Even more clarifications were added to JSP 2.0, so eventually all containers should deal with this consistently.

If you're not careful, this can cause a problem for an action that can be used both with and without a body. An example
is an action that lets the page author specify input either as an attribute value or as the element body. A typical mistake
in this case is to assume that the tag handler always has access to a BodyContent instance and thus use code like this
(directly or indirectly by calling the getPreviousOut() method) to get hold of the writer in the doEndTag() method:

JspWriter out = bodyContent.getEnlosingWriter();

This code throws a NullPointerException if the custom action is used without a body, because the setBodyContent() method
is never called, and the bodyContent variable is therefore null. To avoid this problem, you should always check for null
with code like this instead:

JspWriter out = null;
if (bodyContent != null) {
 out = bodyContent.getEnclosingWriter();
}
else {
 out = pageContext.getOut();
}

An alternative is to access the bodyContent variable only in methods that are called exclusively for an element with a
body, in other words, the doInitBody() and doAfterBody() methods.

Another thing to think about for an action that is supposed to work with or without a body is this: do not put any logic
that should be executed even for an empty tag in the doInitBody() and doAfterBody() methods. Logic that's needed even
for an empty tag must be implemented by the doStartTag() and doEndTag() methods.

21.2.4 Handling Exceptions

In most cases, the default handling for an exception thrown by JSP elements is sufficient; the container forwards control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In most cases, the default handling for an exception thrown by JSP elements is sufficient; the container forwards control
to an error page where you can display a nice, user-friendly message. But for some types of tag handlers—for instance
a tag handler that uses a pooled resource (such as a connection from a connection pool)—there must be a fail-safe way
to handle exceptions thrown by nested elements, for instance to return the shared resource to the pool. If exceptions
aren't handled correctly, the resource pool "leaks," and eventually the application runs out of resources and comes to
an embarrassing halt. None of the three main classic tag handler interfaces include methods that are called in case of
an exception in the element's body, but a separate interface lets you deal with possible exceptions.

The TryCatchFinally interface is a so-called mix-in interface, which means that a tag handler can only implement it in
addition to one of the three main tag handler interfaces. It has two methods:

public void doCatch(Throwable t) throws Trowable
public void doFinally()

Example 21-11 shows the classic tag handler version for the action that writes the result of the evaluation of its body to
a file.

Example 21-11. A tag handler implementing TryCatchFinally

package com.ora.jsp.tags.xmp;

import java.io.*;
import javax.servlet.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class ClassicFileWriteTag extends BodyTagSupport
 implements TryCatchFinally {

 private String fileName;
 private PrintWriter pw;

 public void setFileName(String fileName) {
 this.fileName = fileName;
 }

 public int doStartTag() throws JspException {
 if (fileName != null && !"log".equals(fileName)) {
 try{
 pw = new PrintWriter(new FileWriter(fileName, true));
 }
 catch (IOException e) {
 throw new JspException("Can not open file " + fileName +
 " for writing", e);
 }
 }
 return EVAL_BODY_BUFFERED;
 }

 public int doAfterBody() throws JspException {
 String content = bodyContent.getString();
 if (fileName == null) {
 System.out.println(content);
 }
 else if ("log".equals(fileName)) {
 ServletContext application = pageContext.getServletContext();
 application.log(content);
 }
 else {
 pw.print(bodyContent.getString());
 }
 return SKIP_BODY;
 }

 public void doCatch(Throwable t) throws Throwable {
 ServletContext application = pageContext.getServletContext();
 application.log("Exception in body of " +
 this.getClass().getName(), t);
 throw t;
 }

 public void doFinally() {
 if (pw != null) {
 pw.close();
 }
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

If a filename is specified, the doStartTag() method tries to open the file for writing by creating a PrintWriter for it. If this
fails, for instance because of an invalid filename or access permission problems, the IOException is caught, and a
JspException is thrown with a message about what went wrong. In the doAfterBody() method, the content of the
BodyContent instance for the tag handler is written to the file.

The most interesting parts of this example are the doCatch() and the doFinally() methods. The container calls the
doCatch() method if elements nested in the body or any of the doStartTag(), doEndTag(), doInitBody(), or doAfterBody()
methods throw a Throwable—the mother of all exceptions. In this example, it's called if the file can't be opened in the
doStartTag() method or if a nested element throws an exception. All this method does in this example is to log the
problem and rethrow the Throwable to let the container deal with it in the standard way. You don't have to rethrow the
Throwable passed as an argument; in some cases it makes sense to throw another type of exception or no exception at
all (to allow the processing of the rest of the page to continue).

The doFinally() method is always called by the container—after doEndTag() in case of normal execution or after doCatch()
in the exception case. In this example, the method simply closes the PrintWriter. By doing this in the doFinally() method,
you're guaranteed that the file is always closed, ensuring that the application doesn't run out of file descriptors. One
other thing to note here: I test if the pw variable is null before I close it. That's because this method is called even in
the case where the doStartTag() method throws an exception because it can't create the PrintWriter. If I didn't check for
null, the doFinally() method would throw a NullPointerException, hiding the real problem.

21.2.5 The Classic Tag Handler Lifecycle and What It Means to You

Creating a new object is considered a relatively expensive operation in Java, even though it's less of an issue with the
latest Java runtime environments. For high-performance applications, it's therefore common to try to minimize the
number of objects created and reuse existing objects instead. The lifecycle defined for classic tag handlers in JSP 1.2
allowed a tag handler instance to be reused within the code generated for JSP pages under certain circumstances. This
feature has caused a lot of pain and misunderstanding, which is why the simple tag handlers introduced in JSP 2.0
cannot be reused at all; the potential small loss of performance is a huge gain in simplicity, leading to less error prone
code. For backward compatibility and for the scenarios where reuse still makes a difference, classic tag handlers are still
reusable in JSP 2.0.

The classic tag handler lifecycle details are pretty complex and are mostly of interest to container developers. But if you
develop classic tag handlers, you need to know at least how the lifecycle relates to instance reuse to ensure that your
tag handlers work correctly in a container that takes advantage of this feature. Figure 21-7 shows a state diagram for a
tag handler that implements just the Tag interface.

Figure 21-7. Lifecycle for a tag handler implementing the Tag interface

When the tag handler instance is created, all instance variables have default values; then all setter methods
(setPageContext(), setParent(), and all setters for attributes) are called. This brings the instance to a state where it's
initialized for use. The doStartTag() method is then called. This method may set instance variables to values that are
valid only for the current invocation. The doEndTag() method is called if no exception is thrown by doStartTag() or while
processing the element's body. The tag handler instance may then be reused for another occurrence of the custom
action that uses the same set of attributes, with the same or different values, in the same or a different page. If an
attribute for the other occurrence has a different value, the corresponding setter method is called, followed by the
doStartTag()/doEndTag() called as before. Eventually, the container is ready to get rid of the tag handler instance. At this
point, it calls the release() method to let the tag handler release internal resources it may have used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

point, it calls the release() method to let the tag handler release internal resources it may have used.

Let's look at what this means from a tag handler developer's perspective. There are a number of things you may need
to do in your tag handler, for instance:

Provide default values for optional attributes

Reset per-invocation state

Keep expensive resources for the lifetime of the tag handler object

The following sections describe the requirements the tag handler lifecycle places on you to get this right.

21.2.5.1 Providing default values for optional attributes

If some attributes are optional, you must provide default values for the attributes. You can do so in a number of ways—
for instance, in the variable declaration or through a getter method used by other tag handler methods:

private int optionalInt = 5;
private java.util.Date optionalDate;

private java.util.Date getOptionalDate() {
 if (optionalDate == null) {
 return new java.utl.Date();
 }
 else {
 return optionalDate;
 }
}

Given that the tag handler instance may be reused for another occurrence of the custom action, you may think you
need to reset the attributes to their defaults before this happens. But that isn't the case. Look at the description of the
lifecycle again. A tag handler instance can be reused only for an occurrence with the same set of attributes. Put another
way, if a tag handler instance is used for an occurrence that doesn't use an optional attribute, it can be reused only for
other occurrences that also omit this attribute. The default value will never need to be reset; it's never set for any of
the occurrences that use the instance in the first place.

Let's look at an example:

<xmp:myAction attr1="one" />
<xmp:myAction attr1="one" attr2="two" />
<xmp:myAction attr1="one" attr2="new" />

Here the container creates one tag handler instance for the first action element and calls the setter method for attr1.
This tag handler uses its default value for the optional attr2 attribute.

The container isn't allowed to use the same tag handler instance for the other two action elements because they don't
use the same set of attributes as the first element. Instead, it must create a new tag handler instance and call the
setter methods for both attributes with the values specified by the second element. After using the tag handler for the
second element, the container can reuse it for the third element. Only the setter method for attr2 must be called,
because the value for attr1 is the same in the second and third elements.

21.2.5.2 Resetting per-invocation state

A tag handler may create or collect data that is only valid for one invocation. One example is a list of values set by
custom actions nested in the body of the main action, for instance JSTL <c:param> actions adding values used by the
<c:redirect> actions:

<c:redirect url="mypage.jsp">
 <c:param name="foo" value="bar" />
 <c:param name="fee" value="baz" />
</c:forward>

In this example, the nested parameter actions call a method in the tag handler for the parent action to add the
parameter to a list that is then used in the forward URI:

private Map params;
 ...
public void addParameter(String name, String value) {
 if (params == null) {
 params = new HashMap();
 }
 params.put(name, value);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

If the container decides to reuse this tag handler, the list grows for each invocation unless you reset it at some point.
There's no guarantee that the doEndTag() method is called (in case of an exception in the body), so the best place to
reset the list is in the doStartTag() method:

public int doStartTag() throws JspException {
 // Reset per-invocation state
 params = null;
 ...
}

This approach works fine for objects that can hang around until the tag handler is used again. But what if you need to
use an expensive resource, such as a database connection, that must be released (or returned to a pool) as soon as
possible? That's when the TryCatchFinally interface comes in handy. As I described earlier and showed in Example 21-11,
the doFinally() method is always called, no matter if an exception is thrown or not. Expensive resources that are used
only on a per-invocation basis can be released in this method.

21.2.5.3 Keeping expensive resources for the lifetime of the tag handler instance

Some objects used by a tag handler can be expensive to create, such as a java.text.SimpleDateFormat instance or an XML
parser. Instead of creating objects like this every time the tag handler is invoked, it's better to create them once when
the tag handler itself is created or the first time they are used. The place to get rid of objects like this is in the release()
method:

private java.text.SimpleDateFormat dateFormat =
 new java.text.SimpleDateFormat();

 ...
public void release() {
 dateFormat = null;
}

The release() method is called just before the container gets rid of the tag handler to let it do this kind of cleanup. It's
never called between invocations.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.3 Developing Tag Library Functions
Besides tag handlers, a tag library can also contain EL functions. An EL function is implemented as a static method in a
regular Java class. There are no special interfaces to implement or any special conventions to follow; any static method
will do.

Example 21-12 shows a class with static methods for converting between degrees in Celsius and Fahrenheit.

Example 21-12. A class with static methods that can be used as EL functions

package com.ora.jsp.util;

public class TempConverter {
 public static double toCelsius(double fahrenheit) {
 return (fahrenheit - 32) * 5 / 9;
 }

 public static double toFahrenheit(double celsius) {
 return celsius * 9 / 5 + 32;
 }
}

The toCelsius() method takes a degree in Fahrenheit as its single argument and returns the corresponding Celsius value,
and toFahrenheit() does the reverse.

To make these methods accessible as EL functions, they must be declared in the TLD for the tag library. We'll look at
the details in the next section, but here's the bare minimum you need to add:

...
 <function>
 <name>toCelsius</name>
 <function-class>com.ora.jsp.util.TempConverter</function-class>
 <function-signature>double toCelsius(double)</function-signature>
 </function>

 <function>
 <name>toFahrenheit</name>
 <function-class>com.ora.jsp.util.TempConverter</function-class>
 <function-signature>double toFahrenheit(double)</function-signature>
 </function>
...

Each function is declared by three mandatory elements. The <name> element declares the function name to use in an
EL expression. It doesn't have to match the method name, but it often does. The <function-class> element contains the
fully qualified class name for the class containing the static method, and the <function-signature> element contains the
method signature. It's declared as a return type (a primitive type or a fully qualified class name), the method name,
and a comma-separated list of the argument types.

The container takes care of type conversion for the arguments according to the EL coercion rules. For instance, you can
use the toCelsius function like this in a JSP page:

<%@ taglib prefix="ora" uri="orataglib" %>

The temperature ${param.celsius} degrees Celsius
corresponds to ${ora:toFahrenheit(celsius)} degrees Fahrenheit

Here the argument is a String (the celsius request parameter value), so the container converts it to a double before
invoking the method mapped to the toFahrenheit() function in the TLD.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.4 Creating the Tag Library Descriptor
Now you have a good idea about what the Java classes for tag library functions and both simple and classic tag
handlers looks like. When the JSP container processes a page, it converts EL functions and custom action elements into
code that creates and calls the correct classes. To do this, it needs information about which tag handler implements
which custom action element, and which Java method corresponds to an EL function. It gets this information from the
Tag Library Descriptor (TLD). As you will see in Chapter 22, the JSP container also uses the TLD information to verify
that the attribute list for an action element is correct.

The TLD is an XML file with information about all custom actions and functions in a library. A JSP page that uses a
custom tag library must identify the corresponding TLD and the namespace prefix used for the actions and functions in
the page with the taglib directive:

<%@ taglib prefix="ora" uri="orataglib" %>
...
<ora:addCookie name="userName" value="${param.userName}" />
...
${ora:toCelsius(param.f)}

The uri attribute identifies the TLD, in one of several ways that I describe later in this section. The prefix attribute
assigns a prefix to use for the action elements and functions included in the library.

The JSP container then uses the TLD to find the information it needs to generate code for invoking the correct class
when it encounters action elements and functions with a matching prefix.

Example 21-13 shows a part of the JSP 2.0 version of the TLD for the custom actions in this book. Some changes were
made to the format of the TLD between JSP 2.0 and JSP 1.2, as well as between JSP 1.1 and 1.2; I describe the
differences at the end of this section. A JSP 2.0 container is required to accept a TLD in the JSP 1.1 and 1.2 formats as
well.

Example 21-13. Tag Library Descriptor (TLD)

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <description>
 A tag library for the examples in the O'Reilly JSP book
 </description>
 <tlib-version>3.0</tlib-version>
 <short-name>ora</short-name>
 <uri>orataglib</uri>

 <tag>
 <description>
 Processes the patterns specified as attributes to render a
 calendar for the specified month.
 </description>
 <name>calendar</name>
 <tag-class>com.ora.jsp.tags.MonthCalendarTag</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>date</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 ...
 <attribute>
 <description>
 A fragment used as a pattern for days in the previuous and following
 months, evaluated to get full weeks.
 </description>
 <name>padPattern</name>
 <required>false</required>
 <fragment>true</fragment>
 </attribute>
 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...
 </tag>
 ...
 <function>
 <description>
 Converts from Fahrenheit to Celsius
 </description>
 <name>toCelsius</name>
 <function-class>com.ora.jsp.util.TempConverter</function-class>
 <function-signature>double toCelsius(double)</function-signature>
 </function>
 ...
</taglib>

At the top of the TLD file, you find a standard XML declaration. Next follows the <taglib> root element with namespace
and XML Schema declarations and the version of the JSP specification the tag library is compliant with. An XML Schema
defines the rules for how elements in an XML file must be used, such as the order of the elements, which elements are
mandatory and which are optional, if an element can be included multiple times, etc. If you're not familiar with XML,
don't worry about this. Just accept the fact that you need to copy the first two elements in Example 21-13 faithfully into
your own TLD files. With regards to the order of the elements, just define them in the order in which they are described
here. Whether an element is mandatory or optional is also spelled out in the description of each element that follows. If
you're curious about the formal XML Schemas, it's available online at http://java.sun.com/xml/ns/j2ee/web-
jsptaglibrary_2_0.xsd.[2]

[2] The XML Schema allows additional extension elements to be used that are not described here, because they are
intended for use by tool vendors and their content is proprietary. See the JSP specification and the XML Schema for
details about these elements.

The root element of the TLD file must be the <taglib> element. This element encloses more specific elements that
describe the library as such, as well as the individual tag handlers and functions.

21.4.1 General Library Elements

The first set of top-level elements, in this order, describes the library itself:

The optional <description> element can provide a short description of the library, perhaps something a tool may
display to help users decide if the library is what they are looking for.

The <display-name> element is an optional element, containing a name of the library suitable for display by an
authoring tool.

An <icon> element with nested <small-icon> and <large-icon> elements can optionally be used to name image
files containing icons for the library, again something a page-authoring tool may use. The values are file paths
for files containing either GIF or JPEG images, interpreted as relative to the TLD file. The small icon should be
16x16 pixels, and the large 32x32 pixels.

The <tlib-version> element is mandatory and specifies the tag library version. The version should be specified as
a series of numbers separated by dots. In other words, the normal conventions for software version numbers,
such as 1.1 or 2.0.3, should be used.

The <short-name> element is intended for use by page-authoring tools. It's a mandatory element that should
contain the default prefix for the action elements. In Example 21-13, the value is ora, meaning that an
authoring tool by default generates custom action elements using the ora prefix, for instance <ora:menuItem
page="page1.jsp">. A tool may also use the element value as the value of the prefix attribute if it generates the
taglib directive in the JSP page. The element value must not include whitespace characters or other special
characters, or start with a digit or underscore.

The <uri> element value can be used as the default for the uri attribute in a taglib directive generated by an
authoring tool. It's an optional element, following the same character rules as the <short-name> element. While
the element is optional according to the Schema, it's required for the tag library auto-discovery feature
introduced in JSP 1.2. More about this feature later, but because of this, I recommend you always include this
element.

21.4.2 Validator and Listener Elements

Next comes an optional <validator> element, with nested <description>, <validator-class>, and <init-param> elements. I
describe how to use these elements in Chapter 22.

Another optional element is the <listener> element, with a mandatory <listener-class> element. These elements are also
described in detail in Chapter 22.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.4.3 Tag Elements

Following the general tag library elements, any number of <tag> elements can be used to describe tag handlers
implemented as Java classes. The <tag> element contains other elements that describe different aspects of the custom
action. In order, they are <description>, <display-name>, <icon>, <name>, <tag-class>, <tei-class>, <body-content>,
<variable>, <attribute>, <dynamic-attributes>, and <example>.

21.4.3.1 General tag elements

The <description>, <display-name>, and <icon> elements are all optional and can be used to describe each tag handler in
the same way as for the tag library itself.

The <name> element is mandatory and contains the name for the corresponding custom action element in the JSP
pages. It must be a name that is unique among all Java tag handlers and tag files in the tag library.

The <tag-class> element, also mandatory, contains the fully qualified class name for the tag handler class.

Actions that introduce variables or do special syntax validation, as described in Chapter 22, may need a TagExtraInfo
subclass in addition to the tag handler class. The optional <tei-class> element specifies the fully qualified class name for
the TagExtraInfo subclass. This class is rarely needed.

The <body-content> is mandatory for JSP 2.0. It can contain one of four values: empty, JSP, scriptless, or tagdependent.

The empty value means that the action body must be empty. If a custom action backed by this tag handler is included in
a page with a body, an error message is displayed.

If the body can contain JSP elements, such as EL expressions, standard and custom actions as well as scripting
elements, the JSP value must be used. If it can contain EL expressions and actions but not scripting elements, use the
scriptless value. Note that if the value is set to JSP, the tag handler must be implemented using the classic tag handler
API. All JSP elements in a JSP or scriptless body are processed and the result is handled as specified by the tag handler
(processed by the tag handler or sent through to the response body). JSP is the default value in case you omit the
<body-content> element.

The fourth alternative is tagdependent; this value means that the body can contain content that looks like JSP elements
but the container shouldn't evaluate them. Typically, this value is used when the tag handler processes the body and
the content may contain characters that could be confused with JSP elements, such as:

SELECT * FROM MyTable WHERE Name LIKE '<%>'.

If a tag that expects this kind of body content is declared as JSP, the <%> is likely to confuse the JSP container. The
tagdependent value can avoid this risk for confusion, but note that it also disables the processing of valid JSP elements.
Hence, this value is rarely used. Special characters can be escaped instead, as described in Appendix A, to avoid
potential confusion.

21.4.3.2 Variable elements

The <variable> element, with its nested <description>, <name-given>, or <name-from-attribute>, <variable-class>, <declare>,
and <scope> elements, can provide information about variables a custom action exposes as scripting variables. I
describe this in detail in Chapter 22.

21.4.3.3 Attribute elements

The <tag> element must also contain an <attribute> element for each action attribute it supports. Each <attribute>
element in turn contains nested elements that describe the attribute: <description>, <name>, <required>, <rtexprvalue>,
and <type> or <fragment>.

The optional <description> element can describe the purpose and use of the attribute, the same as for all other
places where this element may appear in the TLD.

The mandatory <name> element specifies the attribute name, which must be unique among all attributes for the
tag handler.

The optional <required> element tells whether the attribute is required. The values true, false, yes, and no are
valid, with false being the default.

The <rtexprvalue> element is an optional element that can have the same values as the <required> element. If
it's true or yes, a request-time expression (an EL or Java expression) can specify the attribute value, for
instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instance:

attr="${param.par}"
attr='<%= request.getParameter("par") %>'

The default value is false.

The optional <type> element can specify the attribute's Java type for attributes that allow a request-time
expression as its value. The value must be the fully qualified name of the Java class or interface for the
corresponding setter method in the tag handler class. This element is intended to be used only by authoring
tools and documentation generating tools in JSP 2.0; the container doesn't have to use it, but it may report an
error if the specified type doesn't match the type of the attribute in the tag handler class.

If the attribute value should be handled as a fragment (as described earlier in this chapter), you must include
the <fragment> element with the value true or yes. The default value is false.

21.4.3.4 Dynamic attributes element

After (or instead of) the <attribute> elements, you can use the <dynamic-attributes> element with the value true or yes to
specify that the tag handler accepts undeclared attributes, as described earlier in this chapter. If you omit this element
it defaults to false.

21.4.3.5 Example element

The final subelement for the <tag> element is the optional <example> element. As the name implies, it can provide an
example of how the custom action can be used. Tools can use this information, for instance display it as part of a tool
tip for the action or include it in automatically generated documentation.

21.4.4 Tag File Elements

A TLD can also include declarations of tag files, described in Chapter 11, with any number of <tag-file> elements
following the <tag> elements, if any. The <tag-file> element contains other elements that describe different aspects of
the custom action. In order, they are <description>, <display-name>, <icon>, <name>, <path>, and <example>.

The <description>, <display-name>, and <icon> elements are all optional and can be used to describe each tag file in the
same way as for other tag library artifacts.

The <name> element is mandatory and contains the name for the corresponding custom action element in the JSP
pages. It must be a name that is unique among tags and tag files in the tag library.

The mandatory <path> element contains the path to the tag file. If the tag file is packaged together with the TLD in a
JAR file, it must start with /META-INF/tags, and consequently, the tag file must be located somewhere in this structure in
the JAR file. If the tag file and the TLD reside directly in the web application structure (e.g., during development), the
path must start with /WEB-INF/tags.

An optional <example> element can be used to include an example of how the custom action implemented by the tag file
should be used, just as for the <tag> element.

21.4.5 Function Elements

Functions used in EL expressions are mapped to static methods in a Java class using any number of <function> elements
after the <tag-file> elements, if any. As with the other main elements, a number of nested elements define the details:
<description>, <display-name>, <icon>, <name>, <function-class>, <function-signature>, and <example>.

The optional <description>, <display-name>, and <icon> elements can be used to describe the function in the same way as
for all other items.

The mandatory <name> element contains the function name. Each function must have a unique name within the tag
library.

The name of the class that contains the implementation of the function is specified by the mandatory <function-class>
element as a fully qualified class name (i.e., including the package name).

The mandatory <function-signature> element specifies the function parameters and return type in the format returnType
functionName(parameterType, ...), e.g.:

java.lang.String truncate(java.lang.String, int)

The optional nested <example> element is used the same as in all other elements.

21.4.6 Differences Between a JSP 1.2 and a JSP 2.0 TLD

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A JSP 2.0 container is required to accept a TLD in the JSP 1.1 or 1.2 format, but you must use the new JSP 2.0 format
in order to take advantage of the new features, such as tag files and functions.

Some of the differences between the JSP 1.2 and JSP 2.0 TLD file format are due to the fact that JSP 2.0 uses XML
Schema for declaration (and validation) of the elements while JSP 1.2 used a Document Type Definition (DTD) for the
same purpose. The switch to XML Schema applies to all descriptor files in the specifications grouped under the J2EE 1.4
umbrella, allowing for shared type definitions and grouping rules for the elements they have in common. The following
differences can be attributed to the switch to XML Schema:

The namespace and schema declarations in the <taglib> root element replace the DTD DOCTYPE declaration, for
consistency with all other J2EE 1.4 configuration files.

The <jsp-version> element is replaced by the version attribute in the <taglib> root element.

The order and grouping of the description elements are changed: the <description> and <display-name> elements
have switched places and an <icon> element has been added to contain the <small-icon> and <large-icon>
elements. This group of elements now also always appear as the first nested elements where they are
supported; in the JSP 1.2 spec they were sometimes included in the middle of more specific elements.

The <body-content> element is mandatory, because the default used in previous versions of the specification is
invalid for the new simple tag handler type.

The other differences are due to new features:

The scriptless value for the <body-content> element is added to support the new simple tag handler API.

The <fragment> element is added to support the new fragment attribute feature.

The <tag-file> top-level element is added to support the new tag file feature.

The <function> top-level element is added to declare EL functions.

21.4.7 Differences Between a JSP 1.1 and a JSP 1.2 TLD

If you're jumping from JSP 1.1 directly to JSP 2.0, you may feel that the list above is incomplete. That's because a
number of things changed between JSP 1.1 and 1.2 as well.

Most of the differences were name changes for some elements for consistency with the naming conventions used in
other J2EE descriptor files. More precisely, hyphens were added to separate words in element names, and the <info>
element was replaced with the <description> element that is used for the same purpose in other descriptors. The
following table summarizes these name changes:

JSP 1.1 JSP 1.2

<tlibversion> <tlib-version>

<jspversion> <jsp-version>

<shortname> <short-name>

<info> <description>

<tagclass> <tag-class>

<teiclass> <tei-class>

<bodycontent> <body-content>

A number of new elements were also added to allow more descriptive information in the TLD. This information may be
used by page-authoring tools and also by tools that generate user documentation from the TLD: <display-name>, <small-
icon>, <large-icon>, <example>, <type>, and <variable>. How to use these new elements is described earlier in this
section.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

21.5 Packaging and Installing a Tag Library
There are basically two ways the files that make up a tag library (the TLD and all the class files) can be made available
to a container: packaged in a JAR file or kept as regular files directly in the web application structure in a WAR file (or
the filesystem for most containers). On top of this, there are three ways to identify the tag library you use in a JSP
page. Let's look at the topics one at a time.

21.5.1 Making the Tag Library Files Available to the Container

During development, you may want to let the tag library classes and the TLD file reside as is in the filesystem, since it
makes it easy to change the TLD and modify and recompile the classes. Just make sure the class files are stored in a
directory that's part of the classpath for the JSP container, such as the WEB-INF/classes directory for the web
application. The TLD must also be available as a file with a .tld extension in a directory where the JSP container can find
it. The recommended location is the WEB-INF/tlds directory.

When you're done with the development, you may want to package all class files and the TLD in a JAR file. This makes
it easier to install the library in an application. In this case, the TLD must be placed as a file with a .tld extension in the
META-INF directory in the JAR file, for instance as META-INF/taglib.tld. Tag files, if any, must be stored under META-
INF/tags, and the TLD must point to the exact location.

To create the JAR file, first arrange the files in a directory with a structure like this:

META-INF/
 taglib.tld
 tags/
 mytags/
 copyright.tag
 forEvenAndOdd.tag
com/
 ora/
 jsp/
 tags/
 AddCookieTag.class
 ...
 util/
 StringFormat.class
 ...

The structure for the class files must match the package names for your classes. I've shown a few of the classes in the
tag library for this book as an example.

With the file structure in place, use the jar command to create the JAR file:

jar cvf orataglib_3_0.jar META-INF com

This command creates a JAR file named orataglib_3_0.jar containing the files in the META-INF and com directories. Use
any JAR filename that makes sense for your own tag library. Including the version number for the library is also a good
idea, because it makes it easy for the users to see which version of the library they are using. The JAR file should be
placed in the WEB-INF/lib directory for the application.

21.5.2 Identifying the Tag Library in a JSP Page

To identify the library in JSP pages, you use a taglib directive like this:

<%@ taglib prefix="ora" uri="orataglib" %>

The container uses the uri attribute value to locate the TLD file for the tag library. The value must be either a symbolic
name or a file path. A symbolic name is any string that is unique in the application. An HTTP URL is often used to be
reasonably sure that it's unique in any application. Even when an HTTP URL is used, the container uses it only as a
symbolic name; it does not try to get the resource specified by the URL.

If the uri value is a symbolic name, it must be mapped to the actual location of the TLD file somehow. In JSP 1.2, a new
auto-discovery mechanism was introduced to make this very easy. Here's how it works. The TLD includes a <uri>
element to define the default URI for the library:

<taglib>
 ...
 <uri>orataglib</uri>
 ...
</taglib>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</taglib>

When the web application is started, the container scans through the WEB-INF directory structure for files with .tld
extensions and all JAR files containing files with .tld extensions in their META-INF directory. In other words, locating all
TLD files. For each TLD, the container looks for the <uri> element and creates a map from the URI to the TLD that
contains it. In your JSP page, you just have to place a taglib directive with a uri attribute value matching the URI in the
TLD.

Prior to JSP 1.2, you had to define the mapping manually in the deployment descriptor for the application (WEB-
INF/web.xml):

<web-app>
 ...
 <taglib>
 <taglib-uri>
 orataglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/lib/orataglib_1_0.jar
 </taglib-location>
 </taglib>
 ...
</web-app>

The <taglib-uri> element contains the symbolic name, and the <taglib-location> element contains the path to either the
JAR file or the extracted TLD file.

If the uri attribute value doesn't match a known symbolic name, the container assumes that it's a file path:

<%@ taglib prefix="ora" uri="/WEB-INF/lib/orataglib_3_0.jar" %>

If the path starts with a slash, it's interpreted as a context-relative path, otherwise as a path relative to the JSP page.
The file can be either the TLD file itself or a JAR file that includes the TLD file as META-INF/taglib.tld.

With the introduction of the auto-discovery feature in JSP 1.2, there's rarely a reason to use any of the other
mechanisms for identifying the tag library. The only reason I can think of is if you're unfortunate enough to be faced
with two third-party libraries that have the same default URI specified in their TLD files. To avoid the conflict, you can
use one of the explicit mapping types to identify one of the libraries.

21.5.3 Packaging Multiple Libraries in One JAR File

A beneficial side effect of the auto-discovery feature is that you can bundle more than one tag library in the same JAR
file. In JSP 1.1, a TLD contained in a JAR file had to be named exactly META-INF/taglib.tld, which meant that a JAR file
could contain only one TLD.

The auto-discovery feature, however, treats any file with a .tld extension in a JAR file's META-INF directory as a TLD.
You can therefore put multiple TLDs (along with the class files for the libraries) in one JAR file. This makes it easier for
your users to deploy related tag libraries. Note that you must use the auto-discovery mechanism to deploy multilibrary
JAR files, because there's no way to specify the path to an individual TLD in such a JAR file.[3]

[3] You can deliver the TLDs separate from the JAR file and require that they be mapped with <taglib> elements in
the application deployment descriptor as well, but that defeats the purpose of making deployment easy.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 22. Advanced Custom Tag Library Features
In the previous chapter, you learned how to develop basic tag handlers, such as conditional and iteration actions, with
and without access to the element body. But there's a lot more that you can do. In this chapter we look at some more
advanced features: how actions can cooperate, how to work with undeclared action element attributes, how to verify
that actions are used correctly, how to bundle listener classes with a tag library, and how to convert text attribute
values into types more appropriate for the tag handler. Most of these features work the same for both simple and
classic tag handlers.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.1 Developing Cooperating Actions
It's often necessary to develop custom actions so that they can be combined with other actions, letting them cooperate
in some fashion. You have seen examples of this throughout this book. For instance, in Chapter 12, <sql:param> action
elements are nested within the body of a <sql:query> action to set the values of placeholders in the SQL statement.
Another example of cooperation is how the <c:forEach> action can use the query result produced by the <sql:query>
action. In this section, we take a look at the cooperation techniques demonstrated by these two examples: explicit
cooperation between a parent element and elements nested in its body and implicit cooperation through objects
exposed as scoped variables.

22.1.1 Using Explicit Parent-Child Cooperation

Let's look at a possible implementation of the <sql:param> tag handler as one example of explicit parent-child
cooperation. As you may recall from Chapter 12, this action can be nested within the body of either an <sql:query> or an
<sql:update> action:

<sql:update sql="UPDATE Employee SET Salary = ? WHERE EmpId = ?">
 <sql:param value="${param.newSalary}" />
 <sql:param value="${param.empId}" />
</sql:update>

How does the <sql:param> action tell the enclosing <sql:update> action about the parameter it defines? The answer to
this question lies in a couple of SimpleTag and Tag interface methods that I didn't cover in Chapter 21, plus a utility
method implemented by both the SimpleTagSupport class and the TagSupport class.

The interface methods are setParent() and getParent(), implemented like this by the TagSupport class:

...
private Tag parent;
...
public void setParent(Tag t) {
 parent = t;
}

public Tag getParent() {
 return parent;
}

These two methods are standard accessor methods for the parent instance variable. The SimpleTagSupport
implementation differs only in that the parent's type is JspTag—the common superclass for Tag and SimpleTag—instead of
Tag.

For a nested action element, the setParent() method is always called on the tag handler with a reference to the
enclosing tag handler as its value. This way a nested tag handler always knows its parent. So a tag handler at any
nesting level can ask for its parent, using getParent(), and then ask for the parent's parent, and so on until it reaches a
tag handler that doesn't have a parent (getParent() returns null). This means it has reached the top level.

This is part of the puzzle. However, a tag handler is usually interested only in finding a parent it's been designed to
work with. It would be nice to have a method that works its way up the hierarchy until it finds the parent of interest.
That's exactly what the findAncestorWithClass() method does. Here's the TagSupport implementation:

public static final Tag findAncestorWithClass(Tag from, Class klass) {
 boolean isInterface = false;

 if (from == null ||
 klass == null ||
 (!Tag.class.isAssignableFrom(klass) &&
 !(isInterface = klass.isInterface()))) {
 return null;
 }

 for (;;) {
 Tag tag = from.getParent();
 if (tag == null) {
 return null;
 }
 if ((isInterface && klass.isInstance(tag)) ||
 klass.isAssignableFrom(tag.getClass()))
 return tag;
 else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else
 from = tag;
 }
}

The SimpleTagHandler implementation is similar but also deals with details needed in order to allow simple tag handlers
to be nested within the body of a classic tag handler. It's used exactly the same in both classic and simple tag handlers,
though, so don't worry about these details.

First of all, note that the findAncestorWithClass() method is a static method. Consequently, even tag handlers that
implement the SimpleTag or Tag interface explicitly, instead of extending the support classes, can use it. The method
takes two arguments: the tag handler instance to start searching from and the class or interface of the parent. After
making sure all parameters are valid, it starts working its way up the hierarchy of nested tag handlers. It stops when it
finds a tag handler of the specified class or interface and returns it. If the specified parent type isn't found, the method
returns null.

This is all that's needed to let a nested action communicate with its parent—the parent accessor methods and the
method that walks the action hierarchy to find the parent of interest. Example 22-1 shows how a <sql:param> tag
handler class (loosely based on the JSTL reference implementation) can use this mechanism to find the enclosing tag
handler instance.

Example 22-1. An <sql:param> tag handler class

...
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class SQLParamTag extends SimpleTagSupport {
 private Object value;

 public void setValue(String value) {
 this.value = value;
 }

 public void doTag() throws JspException {
 SQLExecutionTag parent = (SQLExecutionTag)
 findAncestorWithClass(this, SQLExecutionTag.class);
 if (parent == null) {
 throw new JspTagException("The param action is not " +
 "enclosed by a supported action type");
 }
 parent.addSQLParameter(value);
 }
}

The class has one instance variable, value, and the corresponding setter method. The most interesting method is the
doTag() method. This method first uses the findAncestorWithClass() method to try to locate the enclosing <sql:query> or
<sql:update> tag handler instance. Note that an interface, SQLExecutionTag, is used as the method argument instead of a
specific class. This makes it possible to let the <sql:param> action find both types of actions it cooperates with; all that's
required is that the parent tag handlers implement the SQLExecutionTag interface:

package javax.servlet.jsp.jstl.sql;

public interface SQLExecutionTag {
 void addSQLParameter(Object value);
}

The interface defines one method: addSQLParameter(). This is the method the nested SQLParamTag tag handler uses to
communicate with its parent. For each nested <sql:param> action, the addSQLParameter() method gets called when the
parent's body is processed. The value for each <sql:param> action is accumulated in the parent tag handler, ready to be
used when the parent's doTag() method is called. Example 22-2 shows how the addSQLParameter() method can be
implemented by the <sql:query> and <sql:update> tag handler classes.

Example 22-2. An <sql:param> parent tag handler class

...
public class SQLQueryTag extends SimpleTagSupport,
 implements SQLExecutionTag {
 private List params;
 ...
 public void addSQLParameter(Object value) {
 if (params == null) {
 params = new ArrayList();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 params.add(value);
 }
...

In addSQLParameter(), the parameter value is saved in an ArrayList. Since I choose a simple tag handler implementation
here, I don't have to worry about tag handler reuse issues. If I instead had implemented it as a classic tag handler, I
would also need to reset the parameter list, e.g., in the doStartTag() method.

22.1.2 Using Implicit Cooperation Through Variables

Many JSTL actions cooperate implicitly through JSP scoped variables; one action exposes the result of its processing as
a variable in one of the JSP scopes and another action uses the variable as its input. This type of cooperation is simple
yet powerful.

All that is required is that the tag handler that exposes the data saves it in one of the JSP scopes, for instance using the
PageContext.setAttribute() method:

public class VariableProducerTag extends SimpleTagSupport {
 private String var;
 private int scope = PageContext.PAGE_SCOPE;

 public void setVar(String var) {
 this.var = var;
 }

 public void setScope(String scope) {
 if ("page".equals(scopeName)) {
 scope = PageContext.PAGE_SCOPE;
 }
 else if ("request".equals(scopeName)) {
 scope = PageContext.REQUEST_SCOPE;
 }
 else if ("session".equals(scopeName)) {
 scope = PageContext.SESSION_SCOPE;
 }
 else if ("application".equals(scopeName)) {
 scope = PageContext.APPLICATION_SCOPE;
 }
 }

 public void doTag() {
 // Perform the main task for the action
 ...
 getJspContext().setAttribute(var, result, scope);
 JspFragment body = getJspBody();
 if (body != null) {
 body.invoke(null);
 }
 }
}

Here an attribute named var lets the page author specify the name of the variable. Even though this isn't strictly a
requirement (cooperating tags could be designed to use a predefined, hardcoded variable name), it's the most flexible
approach. The attribute name can be anything, but var is the name used by all JSTL actions. I suggest that you follow
the same convention to help page authors understand how to use your custom actions. Another convention is to
support a scope attribute, so the page author can decide how widely the variable should be made available.

You must also decide where in the page you want the variable to be available to other actions. If it should be available
to actions nested in the body of your custom action, you need to save the variable before invoking the body fragment in
a simple tag handler, or in the doStartTag() or doInitBody() method for a classic tag handler.

For a classic tag handler, you may also need to replace the variable with a new one in the doAfterBody() method. This is
the typical behavior of an iteration action, in which the doStartTag() or doInitBody() method saves the initial value, and
the doAfterBody() method replaces it with a new value for each iteration, for instance the current element of a collection
the action iterates over. If you implement the tag handler as a simple tag handler, just replace the value before
invoking the body fragment again, as described in Chapter 21.

If it's important that the variable is available for nested actions only and not available outside the body of your action,
you can remove it before exiting the doTag() method in a simple tag handler, or remove it in the doEndTag() method for
a classic tag handler:

 pageContext.removeAttribute(var);

This is what all JSTL actions do for nested availability variables. Another JSTL convention for this type of nested variable
is to always make it available in the page scope, without giving the page author the option to set another scope.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is to always make it available in the page scope, without giving the page author the option to set another scope.

In some cases, the variable should not be available until after the end tag, perhaps because the value depends on the
evaluation of the body, or the custom action doesn't support a body. For a classic tag handler, you can then save the
variable in the doEndTag() method. With a simple tag handler, you simply set it after invoking the body fragment in the
doTag() method.

In the examples in this section, the tag handlers expose only one variable, but there's no limitation on the number of
variables that can be exposed. If more than one variable is exposed, the recommendation is to use the var and scope
attribute names for the primary variable and names starting with var and scope for the others.

Other tag handlers can find the scoped variable using the JspContext.findAttribute() method:

public class VariableConsumerTag extends SimpleTagSupport {
 private String items;

 public void setItems(String items) {
 this.items = items;
 }

 public void doTag() throws JspException {
 Collection c = getJspContext().findAttribute(items);
 if (c == null) {
 throw new JspTagException("Collection named " + items +
 " could not be found");
 }
 // Perform the main task for the action
 ...
 }
}

The findAttribute() method looks for the specified attribute (variable) in all scopes, in the order page, request, session,
and application, and returns the first one it finds, or null if it can't find one.

A better approach, starting with JSP 2.0, is to delegate the variable lookup to the EL. In other words, declare the
attribute to be of the type you support instead of a variable name represented by a String:

public class VariableConsumerTag extends SimpleTagSupport {
 private Collection items;

 public void setItems(Collection items) {
 this.items = items;
 }

 public void doTag() throws JspException {
 if (items == null) {
 throw new JspTagException("The 'items' attribute is null");
 }
 // Perform the main task for the action
 ...
 }
}

When an EL expression is used as the attribute value, the EL machinery looks up the variable saved by the variable
producer tag handler:

<xmp:varProducer var="someList" />
<xmp:varConsumer items="${someList}" />

22.1.2.1 Creating a scripting variable

Besides making a variable available through the standard JSP scopes, a custom action can additionally make it available
as a scripting variable in the same way as the standard <jsp:useBean> action.

Note that creating a scripting variable isn't a requirement; actions can cooperate nicely through variables in the JSP
scopes. As I described in Chapter 16, there are almost no reasons for using scripting elements any longer, since the
JSTL actions and the EL provide convenient solutions for the type of problems that typically required scripting elements
in previous versions of JSP. In the rare event that the data exposed by a custom action needs to be accessed through a
scripting variable, the page author can use the <jsp:useBean> to declare a scripting variable and assign it a reference to
the object:

<xmp:varProducer var="someList" scope="session" />
<jsp:useBean id="someList" class="java.util.Collection" scope="session" />
<%= foo.size() %>

You may therefore want to think twice about if you really need to expose the data through a scripting variable, and if
so, why the <jsp:useBean> action isn't good enough for your needs. Not that it's extremely hard to let a custom action
create a scripting variable, but it does create overhead in terms of extra code generation and potential problems due to
the complex interaction with other code generated by the container when it converts the JSP page to a servlet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the complex interaction with other code generated by the container when it converts the JSP page to a servlet.

That said, the basic requirements for a custom action that creates a scripting variable are the same as for an action
exposing a variable through the JSP scopes: the tag handler needs to save the variable using the JspContext.setAttribute()
method in the doTag() method for a simple tag handler, or the doStartTag(), doInitBody(), doAfterBody(), or doEndTag()
method for a classic tag handler, depending on where it needs to be available to other actions.

On top of this, you must also tell the container about the variable, so it can generate the code for declaring the scripting
variable and assign it the value that your tag handler saves.

The id Versus the var Attribute
The JSP 1.1 specification suggested that an attribute named id should be used to name a variable created
by an action; the value of the id attribute had to be unique within the page, and because it was used as a
scripting variable name, it had to follow the variable naming rules for the scripting language. In JSP 1.2,
this rule was downplayed and now applies only to the <jsp:useBean> action, but if your tag handler creates
a scripting variable, it's still nice to use the same convention and name the attribute id.

For JSTL, the attribute name var was selected instead of id to clarify that the JSTL actions expose data only
as variables in a JSP scope, not through scripting variables. Using a name that is a valid Java identifier is
still a good idea to avoid having to quote the name when used in an EL expression. For variables that are
visible outside the body of an action element, the name should be unique, unless you want to overwrite an
existing variable with the same name.

The easiest way to tell the container what it needs to know is by declaring the variable in the TLD. As you may
remember from Chapter 21, a <variable> element can be nested in the body of a <tag> element in the TLD, as shown in
Example 22-3.

Example 22-3. Variable declaration using the TLD

<tag>
 <name>varProducer</name>
 <tag-class>com.xmp.VariableProducerTag</tag-class>

 <variable>
 <name-from-attribute>id</name-from-attribute>
 <variable-class>java.util.Collection</variable-class>
 <declare>true</declare>
 <scope>AT_END</scope>
 <description>This variable contains ...</description>
 </variable>
 ...
</tag>

In this example, the varProducer custom action introduces a scripting variable with the name specified by the page
author in the id attribute (defined by the <name-from-attribute> element) of type java.util.Collection (defined by the
<variable-class> element). The variable name specified by the page author through the id attribute must be unique within
the page. Because it's used as a scripting variable name, it must also follow the variable name rules for the scripting
language. For Java, this means it must start with a letter, followed by a combination of letters and digits and must not
contain special characters, such as a dot or a plus sign.

In most cases, letting the page author decide the variable name is the preferred design, but a hardcoded variable name
can be specified if it's more appropriate for a specific action. To do so, replace the <name-from-attribute> element with
the <name-given> element:

<variable>
 <name-given>foo</name-given>
 ...
</variable>

With this declaration in place, the container uses the hardcoded name foo as the variable name. Note that same rules
apply to the hardcoded name as for a name picked by the page author: it must be unique and a valid Java variable
name.

The <declare> element can be true or false. If it's true, the container creates a scripting variable declaration for this
variable. If you specify false instead, the container assumes that the variable has already been declared by another
action or a scripting element and just reassigns it the value saved in a JSP scope by the tag handler for this action.

The <scope> element tells the container where the variable should be available; it has nothing to do with the JSP scopes
we have seen so far (page, request, session, and application). Instead, it defines where the new scripting variable is
available to JSP scripting elements. A value of AT_BEGIN means that the variable is available from the action's start tag
and stays available after the action's end tag. AT_END means it isn't available until after the action's end tag. A variable
with scope NESTED is available only in the action's body, between the start and the end tag. The AT_BEGIN and NESTED

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with scope NESTED is available only in the action's body, between the start and the end tag. The AT_BEGIN and NESTED
values don't make sense for a simple tag handler, since the body of an action element implemented by a simple tag
handler cannot contain scripting elements.

To understand how all this works, let's look at the code the container generates from a JSP page that contains the
varProducer action, declared as in Example 22-3:

<%@ taglib prefix="xmp" uri="xmptaglib" %>

<xmp:varProducer id="someList" />

<%= someList.size() %>

The <xmp:varProducer> action creates a Collection object and saves it in the page scope with the name specified by the
var attribute, someList in this case. Because of the <variable> declaration for this action in the TLD, the container declares
a scripting variable with the same name and assigns it the value saved by the tag handler. The JSP scripting expression
calls the size() method of the Collection referenced by the scripting variable and writes the value to the response. This
JSP page fragment results in code similar to that shown in Example 22-4 in the generated servlet, assuming the custom
action is implemented as a classic tag handler.

Example 22-4. Code generated for JSP actions

// Code for <xmp:varProducer>
com.xmp.VariableProducerTag _jspx_th_xmp_varProducer_1 =
 new com.xmp.VariableProducerTag ();
_jspx_th_xmp_varProducer_1.setPageContext(pageContext);
_jspx_th_xmp_varProducer_1.setParent(null);
_jspx_th_xmp_varProducer_1.setId("myVariable");
try {
 _jspx_th_xmp_varProducer_1.doStartTag();
 if (_jspx_th_xmp_varProducer_1.doEndTag() == Tag.SKIP_PAGE)
 return;
} finally {
 _jspx_th_xmp_varProducer_1.release();
}
java.util.Collection someList = null;
someList = (String) pageContext.findAttribute("someList");
...
// Code for <%= someList.size() %>
out.print(someList.size());

First, a tag handler instance is created and initialized with the standard properties (pageContext and parent) plus the
property corresponding to the id attribute. Next, the doStartTag() and doEndTag() methods are called. Then comes the
code that makes the object created by the action available as a scripting variable. Note how a variable with the name
specified by the id attribute (someList) is declared, using the type specified by the <variable-class> element in the TLD.

Also note that the variable is declared after the call to the doEndTag() method. This is because the <scope> element in
the TLD is set to AT_END. If the scope is specified as AT_BEGIN instead, the declaration is added before the doStartTag()
call, and the assignment code is added right after the call. In this case, the tag handler must save the variable in a JSP
scope in the doStartTag() method. If the tag handler implements IterationTag, assignment code is also added so that the
variable gets reassigned for every evaluation of the body and after the call to doAfterBody(). This allows the tag handler
to modify the variable value in the doAfterBody() method, so each evaluation of the body has a new value. Finally, if the
scope is set to NESTED, both the declaration and the value assignment code is inserted in the code block representing
the action body. The tag handler must therefore make the variable available in either the doStartTag() method or the
doInitBody() method, and can also modify the value in the doAfterBody() method. For a simple tag handler, there's only
on method: doTag(). Hence, there's only one place where the variable can be created, so the AT_BEGIN and NESTED
values are not useful for a simple tag handler, as I mentioned earlier.

The variable is assigned the value of the object saved by the tag handler in one of the standard JSP scopes, using the
findAttribute() method. As you may recall, this method searches through the scopes in the order page, request, session,
and application, until it finds the specified object. With the value assigned to the Java variable, it's available to the JSP
expression.

22.1.2.2 Using a TagExtraInfo subclass to declare a variable

In most cases, the TLD can declare all information about a variable created by a custom action. Here are the
exceptions:

The type of the variable depends on attribute values

Whether to declare the variable or not depends on attribute values

To deal with these cases, you have to implement a TagExtraInfo subclass instead of declaring the variables in the TLD.
The TagExtraInfo class contains two methods a subclass can override to inform the container about scripting variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The TagExtraInfo class contains two methods a subclass can override to inform the container about scripting variables
and to perform validation. I describe the variable information method here and the validation method later in this
chapter. The TagExtraInfo class also provides a number of property access methods that can be used by the subclass to
get information about the custom action attributes specified by the page author.

Let's assume that the <xmp:varProducer> action lets the page author specify whether the variable should be declared
using an attribute named declare, which accepts true and false values. Let's also assume that the variable type can be
specified by a type attribute. Example 22-5 shows a TagExtraInfo subclass that handles these requirements.

Example 22-5. TagExtraInfo subclass for <xmp:varProducer>

package com.xmp;

import javax.servlet.jsp.tagext.*;

public class VariableProducerTEI extends TagExtraInfo {
 public VariableInfo[] getVariableInfo(TagData data) {
 String name = data.getAttributeString("id");
 String declare = data.getAttributeString("declare");
 String type = data.getAttributeString("type");
 VariableInfo[] vi = new VariableInfo[1];
 vi[0] =
 new VariableInfo(name, type,
 ("true".equals(declare) ? true : false),
 VariableInfo.AT_END)
 }
 return vi;
 }
}

When the JSP container converts the JSP page to a servlet it calls the getVariableInfo() method. The method returns an
array of VariableInfo objects, one per scripting variable exposed by the tag handler.

The VariableInfo class is a simple bean with four properties, all of them initialized to the values passed as arguments to
the constructor: varName, className, declare, and scope. These values have the same meaning as the corresponding
<variable> subelements in the TLD: the variable name, the variable class name, whether to declare the variable or not
(true or false), and where the variable should be visible (AT_BEGIN, AT_END, or NESTED).

The VariableProducerTEI class sets the varName and className properties of the VariableInfo bean to the values of the var
and type attributes specified by the page author in the JSP page. The declare property is set to true or false depending on
the value of the declare attribute.

To get the attribute value specified by the page author, another simple class named TagData is used. An instance of this
class is passed as the argument to the getVariableInfo() method as shown in Example 22-5. The TagData instance is
created by the JSP container and contains information about all action attributes specified by the page author in the JSP
page. It has two methods of interest. First, the getAttributeString() method simply returns the specified attribute as a
String. Some attributes values, however, may be specified by a JSP expression instead of a string literal, a so-called
request-time attribute value. Since such a value isn't known during the translation phase, the TagData class also
provides the getAttribute() method to indicate if an attribute value is a literal string, a request-time attribute value, or
not set at all. The getAttribute() method returns an Object. If the attribute is specified as a request-time attribute value,
the special REQUEST_TIME_VALUE object is returned. Otherwise a String is returned or null if the attribute isn't set.

The final piece of the puzzle is to tell the container to actually use the TagExtraInfo subclass for your custom action. You
do so with the <tei-class> element in the TLD:

<tag>
 <name>varProducer</name>
 <tag-class>com.xmp.VariableProducerTag</tag-class>
 <tei-class>com.xmp.VariableProducerTEI</tei-class>
 ...
</tag>

Note that you can't use both a <tei-class> element and a <variable> element for the same tag handler.

22.1.3 Supporting Undeclared Attributes

Say you need to generate an HTML table with product information in a number of pages. The information to be shown
for each product is subject to change, so you decide to create a custom action that does all the dirty work, allowing you
to make the changes in one place when needed. However, the HTML <table> element supports a number of attributes
affecting the table's look; there are 23 different attributes in HTML 4.0.1, to be exact.

You could define all 23 attributes for the custom action, in addition to the specific ones needed for the custom action's
core functionality, but then you would constantly have to add new attributes as they are added to new versions of the
HTML specification. A better approach is to tell the container that the custom action supports dynamic attributes (a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML specification. A better approach is to tell the container that the custom action supports dynamic attributes (a
more accurate name would have been "undeclared attributes"). The dynamic attributes support is a new feature added
in JSP 2.0. When a custom action is marked as supporting dynamic attributes, the page author can use attributes that
are not explicitly declared for the tag handler in the custom action element, without the container flagging them as
errors.

You tell the container that the tag handler can handle dynamic attributes by adding a declaration in the TLD:

.. ...
 <tag>
 <name>prodTable</name>
 <tag-class>com.ora.jsp.tags.xmp.ProdTableTag</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>prods</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <dynamic-attributes>true</dynamic-attributes>
 </tag>
 ...

We'll look at the TLD in more detail later, but notice the <dynamic-attributes> element here. This element, with the value
true, is what tells the container that the tag handler is ready to deal with dynamic attributes.

For regular attributes, the tag handler implements setter methods that the container calls, but that would defeat the
purpose for dynamic attributes. Hence, we need another way for the container to provide the dynamic attribute names
and values to the tag handler, and a way for the tag handler to read them. That's accomplished by the
javax.servlet.jsp.tagext.DynamicAttributes interface that can be implemented by both classic and simple tag handlers. This
interface declares a single method:

setDynamicAttribute(String uri, String localName, Object value);

The container calls this method for each undeclared attribute, in the order the attributes are encountered in the page.
The uri argument holds the XML namespace URI for the attribute if specified, or null otherwise, the localName argument
holds the attribute name minus the namespace prefix, and the value argument provides the value. Dynamic attributes
implicitly support request-time attribute values (i.e., Java and EL expressions), so the real type of the value depends on
the expression used to set it. In most cases, though, dynamic attributes are used for static string values, such as
optional HTML element attributes to be pushed through to the elements generated by the tag handler.

Example 22-6 shows the interesting part of the tag handler for the fictitious table-generating custom action.

Example 22-6. Tag handler that accesses context information (ProdTableTag.java)

package com.ora.jsp.tags.xmp;

import java.io.*;
import java.util.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class ProdTableTag extends SimpleTagSupport
 implements DynamicAttributes {

 private List prods;
 private Map dynamicAttrs;

 public void setProds(List prods) {
 this.prods = prods;
 }

 public void setDynamicAttribute(String uri, String localName, Object value) {
 if (dynamicAttrs == null) {
 dynamicAttrs = new HashMap();
 }
 dynamicAttrs.put(localName, value);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 public void doTag() throws JspException, IOException {
 StringBuffer html = new StringBuffer("<table");
 if (dynamicAttrs != null) {
 Iterator i = dynamicAttrs.keySet().iterator();
 while (i.hasNext()) {
 String name = (String) i.next();
 String value = dynamicAttrs.get(name).toString();
 html.append(" ").append(name).append("=\"").append(value).
 append("\"");
 }
 }
 JspWriter out = getJspContext().getOut();
 out.println(html.toString());
 // Generate rows from product list
 ...
 out.println("</table>");
 }
}

Every time the setDynamicAttribute() method is called, the attribute name and value are saved in a Map. Later, in the
doTag() method, all attributes accumulated in the Map are added as attributes of the generated HTML <table> element.

I ignore the namespace argument in this example. It is rarely, if ever, used. It could potentially be used for a custom
action in a JSP Document (i.e., JSP pages in XML format), where an action element attribute can contain a namespace
prefix declared in the document. JSP 2.0, however, doesn't provide a way to get the prefix declared for the namespace
URI; hence, it's hard to do much with it. I advise you to consider the namespace argument as preparation for XML
support enhancements in a future version of the specification, where additional support features can be fleshed out.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.2 Validating Syntax
It's easy to make mistakes when using custom actions in a JSP page. Everyone types the wrong attribute name now
and then or forgets to specify a mandatory attribute. When custom actions depend on each other, using the cooperation
techniques described earlier in this chapter, they typically need to be used in a specific order or nesting structure, and
this isn't always obvious from the documentation. As a custom action developer, you have a number of tools at your
disposal to help the page author find and correct errors like these.

The first tool is the TLD. The TLD contains information about the attributes each action element supports and whether a
body is supported or not. The JSP container uses this information to verify that the page author uses the custom action
correctly, at least in the most basic sense.

For more advanced validation, I'm afraid you have to do a bit of coding yourself. The most powerful validation tool
defined by the JSP specification is the TagLibraryValidator class. You can extend this class and bundle the subclass with
your tag library to validate all aspects of JSP pages that use your library. A less powerful option, but still useful in some
cases, is the TagExtraInfo class. Extensions of this class can validate the use of a single custom action, for instance that
optional attributes are used correctly.

The next three sections describe these validation alternatives in detail.

22.2.1 Validation Based on the TLD

When the JSP container converts a JSP page to a servlet, it compares each custom action element to the specification of
the action element in the TLD. First, it makes sure that the action name matches the name of an action specified in the
TLD corresponding to the action element's prefix. It then looks at the attribute list in the page and compares it to the
attribute specification in the TLD. If a required attribute is missing or an attribute is used in the page but not specified
in the TLD, it reports it as an error so the page author can correct the mistake. It also reports an error if a body is used
for a custom action that is declared to be empty.

22.2.2 Using a TagLibraryValidator

A feature introduced in JSP 1.2 is the tag library validator, represented by the javax.servlet.jsp.tagext.TagLibraryValidator
class. The container gives a validator access to an XML representation of the complete page. A validator can therefore
verify interactions between custom actions, for instance that a custom action that must be used as a subelement of
another action element isn't used anywhere else, or that action elements are used in the appropriate order. It can also
analyze the use of custom action attributes, perhaps making sure that mutually exclusive optional attributes aren't used
for an action element.

The container uses the validator defined for a tag library when it converts a JSP page to a servlet, after performing
validation of the page based on the information available in the TLD (attributes and empty bodies).

Example 22-7 shows the top part of a validator that verifies that a <xmp:child> custom action element is used only
within the body of an <xmp:parent> action element.

Example 22-7. Validator class declaration

package com.ora.jsp.tlv;

import java.util.*;
import javax.servlet.jsp.tagext.*;
import org.jdom.*;
import org.jdom.input.*;
public class OraTLV extends TagLibraryValidator {
 private SAXBuilder builder = new SAXBuilder();
 private Namespace jspNamespace =
 Namespace.getNamespace("http://java.sun.com/JSP/Page");

The validator class extends the TagLibraryValidator class that is part of the JSP API. In this particular validator, I use
JDOM to work with the XML representation of the page. JDOM is a great open source product that lets you work with
XML data in a way that's more suitable for Java than the standard DOM format defined by W3C. You can find out more
about JDOM at the project web site: http://www.jdom.org/. To use JDOM, you must import the JDOM packages
containing classes for parsing and the JDOM tree. If you don't want to use JDOM for some reason, you can, of course,
use any XML parser and validation tools you want.

For the validator in Example 22-7, I create an instance of the JDOM SAXBuilder class and save it as an instance variable.
If the container caches instances of validators, this saves me from having to create this object for every page that's
validated. I also create a JDOM Namespace instance for the JSP namespace as an instance variable. More about this
later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

later.

The validator must override the validate() method:

public ValidationMessage[] validate(String prefix, String uri,
 PageData pd) {

 ValidationMessage[] vms = null;
 ArrayList msgs = new ArrayList();
 Namespace taglibNamespace = Namespace.getNamespace(uri);
 try {
 Document doc = builder.build(pd.getInputStream());
 Element root = doc.getRootElement();
 validateElement(root, taglibNamespace, msgs);
 }
 catch (Exception e) {
 vms = new ValidationMessage[1];
 vms[0] = new ValidationMessage(null, e.getMessage());
 }

 if (msgs.size() != 0) {
 vms = new ValidationMessage[msgs.size()];
 msgs.toArray(vms);
 }
 return vms;
}

The container invokes the validate() method with an instance of the PageData class Through the PageData instance, the
validator can get the XML representation of the page by calling the getInputStream() method. The XML representation is
formally called the page's XML View. It's is almost the same as a JSP Document (a JSP page written from scratch with
the JSP XML syntax, described in Chapter 17). What's different is that all include directives have been processed, and all
template text is wrapped with <jsp:text> elements if the page being validated is written using the classic JSP syntax. The
JSP elements in the XML View also have a special jsp:id attribute that I'll get back to later. The prefix argument is the tag
library prefix declared for this library, for instance xmp in this example, and the uri argument is the URI for the library,
as it appear in the XML View.

In a JSP Document, different prefixes can be declared for different parts of a page (using standard XML namespace
declarations). In this case, the container calls the validator with the first prefix declared for the tag library. Since the
prefix is not accurate in all cases, I create a Namespace from the uri attribute value and use it to identify elements from
the tag library, as you will soon see.

In this example, the validator() method gets the XML View for the page and uses JDOM to parse it. It then calls the
validateElement() method with the document's root element, the namespace for this tag library, and an ArrayList used to
collect error messages. If the validateElement() method finds any errors, the message list is converted to an array of
ValidationMessage instances, used as the return value.

As you will see later, a ValidationMessage instance contains the error message itself and information about where the
error was found in the JSP source file. The fact that the validate() method returns an array of ValidationMessage instances
means that all errors found in the page can be presented in one shot, allowing the page author to fix them all at once
instead of one by one.

The validateElement() method is a dispatcher to methods that validate specific elements:

private void validateElement(Element e, Namespace ns, ArrayList msgs) {

 if (ns.equals(e.getNamespace())) {
 if (e.getName().equals("child")) {
 validateChild(e, ns, msgs);
 }
 }
 if (e.hasChildren()) {
 List kids = e.getChildren();
 Iterator i = kids.iterator();
 while(i.hasNext()) {
 validateElement((Element) i.next(), ns, msgs);
 }
 }
}

It's a recursive method that is called for all elements in the document tree. First, it checks if the namespace for the
current element matches the namespace for this tag library, i.e., if it's a custom action defined in this tag library. It
then checks if it's an element that needs to be validated, and if so, calls the appropriate method. In this example, I
validate only elements of type child, but this method can easily be extended to validate other elements as well.

For all types of elements that have child nodes, the validateElement() method calls itself with each child node. That's how
the method recursively scans the whole tree.

The real validation code in this example is found in the validateChild() method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The real validation code in this example is found in the validateChild() method:

private void validateChild(Element e, Namespace ns, ArrayList msgs) {
 Element parent = findParent(e, ns, "parent");
 if (parent == null) {
 String id = e.getAttributeValue("id", jspNamespace);
 ValidationMessage vm = new ValidationMessage(id,
 e.getQualifiedName() +
 " must only be used with 'parent'");
 msgs.add(vm);
 }
}

The validateChild() method uses the private findParent() method to see if the current child element has a parent element
of type parent. If it doesn't, it means that the child element is used incorrectly. In this case, a ValidationMessage instance
is created to report the error and added to the list of error messages.

A ValidationMessage contains two pieces of information: the error message itself and a unique ID for the element that the
message refers to. The unique ID is assigned by the container and is passed to the validator as an element attribute
named id in the JSP namespace, in other words, typically an attribute named jsp:id. Therefore, the first thing the
validateParam() method does if it finds an error is to try to get this attribute so it can include it in the ValidationMessage.
This is where the Namespace instance variable mentioned earlier is used. The container maintains a map between the ID
and the location (line and column) of the element in the JSP source file. With this information, it can generate user-
friendly error messages that include the location of the error. Figure 22-1 shows how Tomcat reports the errors
reported by the sample validator when faces with the page in Example 22-8.

Example 22-8. A page using the <xmp:child> action incorrectly (validation.jsp)

<%@ page contentType="text/plain" %>
<%@ taglib prefix="xmp" uri="xmplib" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%-- Correct usage. --%>
<xmp:parent>
 <xmp:child/>
</xmp:parent>

<%-- Incorrect usage. The validator finds and reports these errors. --%>
<xmp:child/>
<c:if test="true">
 <xmp:child/>
</c:if>

Figure 22-1. Validator error messages

Finally, the findParent() method that locates parent elements of a certain type looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the findParent() method that locates parent elements of a certain type looks like this:

private Element findParent(Element e, Namespace ns, String name) {
 if (e.getName().equals(name) &&
 ns.equals(e.getNamespace())) {
 return e;
 }
 Element parent = e.getParent();
 if (parent != null) {
 return findParent(parent, ns, name);
 }
 return null;
}

It simply calls itself recursively until it either finds an element of the specified type or reaches the top of the document
tree. If it finds a matching element, it returns it. Otherwise it returns null.

A validator is associated with a tag library through the <validator> element in the TLD:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <description>
 A tag library that illustrates the use of a TagLibraryValidator,
 containing two dummy custom actions and a validator. The "child"
 action must be nested within the body of a "parent" action element.
 </description>
 <tlib-version>1.0</tlib-version>
 <short-name>xmp</short-name>
 <uri>xmplib</uri>

 <validator>
 <validator-class>com.ora.jsp.tlv.OraTLV</validator-class>
 </validator>

 <tag>
 <name>child</name>
 <tag-class>com.ora.jsp.tags.xmp.ChildTag</tag-class>
 <body-content>empty</body-content>
 </tag>

 <tag>
 <name>parent</name>
 <tag-class>com.ora.jsp.tags.xmp.ParentTag</tag-class>
 <body-content>scriptless</body-content>
 </tag>
</taglib>

The <validator-class> element specifies the validator class name. Optional <init-param> elements can be nested within the
<validator> element to configure a generic validator for a specific tag library:

 <validator>
 <validator-class>com.ora.jsp.tlv.OraTLV</validator-class>
 <init-param>
 <param-name>logErrors</param-name>
 <param-value>true</param-name>
 </init-param>
 <init-param>
 <param-name>logFormat</param-name>
 <param-value>detailed</param-name>
 </init-param>
 </validator>

The validator can read its parameters with the getParameters() method inherited from the TagLibraryValidator base class:

Map params = getInitParameters();
String myInitParam = (String) params.get("myInitParam");

22.2.3 Using a TagExtraInfo Class for Validation

The TagLibraryValidator is the most powerful validation mechanism, but it comes at the price of complexity. You need to
be pretty well versed in XML to validate the use of your tag library. I recommend that you give it a shot and make it
your first choice, but it may be overkill for a small library with modest validation needs. If that's the case, you can
develop TagExtraInfo subclasses for the individual custom actions that need validation. A TagExtraInfo subclass can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

develop TagExtraInfo subclasses for the individual custom actions that need validation. A TagExtraInfo subclass can
validate the use of the action element attributes. Optional attributes may be mutually exclusive—if one is used, the
other must not be used—or using one optional attribute may require another optional attribute be used as well. A
TagExtraInfo subclass can verify rules like this, but it can't verify that a custom action is used correctly in the JSP page
relative to other actions.

After the JSP container has checked everything it can on its own and has used the TagLibraryValidator classes for all
libraries used in the page, it looks for TagExtraInfo declarations for each custom action element used in the page:

<tag>
 <name>myOptionalAttributesAction</name>
 <tag-class>com.foo.MyOptionalAttributesTag</tag-class>
 <tei-class>com.foo.MyOptionalAttributesTEI</tei-class>
 ...
</tag>

If it finds a <tei-class> element for an action, the container creates a TagData instance with the attribute values specified
in the action element and calls the TagExtraInfo validate() method:

public ValidationMessage[] validate(TagData data) {
 ValidationMessage[] vms = null;
 List errors = new ArrayList();
 // Mutually exclusive attributes: can't mix attr1 and attr2
 if (data.getAttribute("attr1") != null &&
 data.getAttribute("attr2" != null) {
 errors.add(new ValidationMessage(null,
 "'attr1' and 'attr2' are mutually exclusive"));
 }

 // Dependent optional attributes: attr3 requires attr4
 if (data.getAttribute("attr3") != null &&
 data.getAttribute("attr4" == null) {
 errors.add(new ValidationMessage(null, "'attr3' requires 'attr4'"));
 }

 if (errors.size() != 0) {
 vms = new ValidationMessage[errors.size()];
 errors.toArray(vms);
 }
 return vms;
}

A TagExtraInfo subclass uses the TagData argument to verify that all attribute dependencies are okay, as in this example,
and returns a ValidationMessage[] to report the errors, just as a TagLibraryValidator. The TagExtraInfo instance doesn't have
access to the jsp:id attribute, though. A smart container can still produce a friendly error message including the element
location, since it knows for which action element it called the validate() method.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.3 Using a Listener in a Tag Library
In Chapter 19, I described how to implement various types of listener components, as specified by the Servlet API:
servlet context, session and request lifecycle event listeners, session attribute modification listeners, and session
activation and passivation event listeners.

If you develop custom actions that interact with a listener in some way (for instance, an action that shows the current
number of active sessions maintained by the session lifecycle event listener described in Chapter 19), you can bundle
the event listener with your tag library. To get the listeners registered, you just define the listener implementation
classes in the TLD for your library using the <listener> element (placed after the <validator> element):

<taglib ...>
 ...
 <listener>
 <listener-class>
 com.ora.jsp.servlets.SessionCounterListener
 </listener-class>
 </listener>
 ...
</taglib>

When the container loads the web application, it looks through all TLDs for listener definitions and registers all listeners
it finds.

You can use listeners for a number of tasks. For instance, a servlet context lifecycle event listener can initialize
resources used by the custom actions in the library (such as a connection pool) when the application starts and shut
them down gracefully when it stops. A session lifecycle listener can initialize new sessions or keep track of the number
of active sessions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

22.4 Dynamic Attribute Values and Types
Throughout this book, you've seen how action element attributes can be given dynamic values, evaluated at runtime. A
dynamic attribute value can be assigned by an EL expression, a Java expression (as shown in Chapter 16), or by a
<jsp:attribute> element.

Not all attributes accept dynamic values, though. To tell the container that a custom action attribute accepts a dynamic
value, or a request-time attribute value as it's also called, you have to declare this fact in the TLD:

<tag>
 <name>geekContestEntry</name>
 <tag-class>com.xmp.GeekContextEntry</tag-class>
 <description>
 Saves the submitted data in the Geek Contest database.
 </description>

 <attribute>
 <name>yearsSinceLastVacation</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>hoursWithoutSleep</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>employersInAMonth</name>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

An <rtexprexprvalue> element with the value true enables this feature. You can then assign dynamic values to the
attributes in a page like this:

<xmp:geekContestEntry
 yearsSinceLastVacation="${param.noVacation}"
 hoursWithoutSleep='<%= request.getParameter("noSleep") %>'>
 <jsp:attribute name="employersInAMonth">
 <xmp:getAvgEmployers id="${param.geekId}" />
 </jsp:attribute>
</xmp:geekContestEntry>

An EL expression assigns the value of the noVacation request parameter to the first attribute, a Java expression assigns
the noSleep parameter value to the second attribute, and a <jsp:attribute> element assigns the value produced by
another custom action to the third attribute.

In the tag handler, each action attribute is implemented as a property setter method that takes one argument (the
value), in accordance with the JavaBeans conventions. As with regular beans, the property type for a tag handler
attribute can be of any Java type, for instance an int:

public setYearsSinceLastVacation(int value) {
 yearsSinceLastVacation = value;
}

When a Java expression is used to set the value of the attribute, the return type of the expression must match the Java
type declared for the property; otherwise an exception is thrown. For an EL expression, the value is converted to the
attribute's type according to the rules described in Table 22-1.

Table 22-1. EL type conversion rules
Attribute Java type Value conversion rule

String
null: to empty string ("")

All other types: to the corresponding String value

char or Character

null or empty string: to 0

String: to the first character

Numeric types: to the Short value of the number

Primitive number or
Number

null: 0

Character or char: to the value represented by the character code

String: parse as an Integer or Floating point literal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String: parse as an Integer or Floating point literal

Numeric types: to the requested precision

boolean or Boolean
null: to false

String: to true if the value is "true," ignoring case, otherwise false

Other type

null: keep as null

String: use the PropertyEditor for the requested type, if any, otherwise null if the string is
empty

Other: type cast, if possible

When the value is set by a <jsp:attribute> element, the body is evaluated and the result is converted to a String. This
value is then converted to the attribute's type according to the rules described next.

Even an attribute that accepts a dynamic value must sometimes be set to a fixed value. Let's look at an example. For
an attribute of type int, you can assign a fixed value with an EL expression like this:

<xmp:geekContestEntry
 yearsSinceLastVacation="${5}"
 ...
/>

It would be much nicer, however, if the value could be entered as a regular text value and still be converted to the
correct type:

<xmp:geekContestEntry
 yearsSinceLastVacation="5"
 ...
/>

That's exactly what the container does, with some help from the tag handler developer for types other than the most
basic ones. This lets a page author set an action attribute declared to accept a request-time attribute value to either a
static text value or a dynamic value. The next two sections describe this mechanism in detail.

22.4.1 Conversions Performed by the Container

The container automatically takes care of the conversion from text values to the most commonly used Java types. A JSP
2.0-compliant container supports the type conversions shown in Table 22-2.

Table 22-2. Conversion of text value to property type
Property type Conversion method

boolean or Boolean Boolean.valueOf(String), false for an empty string

byte or Byte Byte.valueOf(String), 0 for an empty string

char or Character String.charAt(0), 0 for an empty string

double or Double Double.valueOf(String), 0 for an empty string

int or Integer Integer.valueOf(String), 0 for an empty string

float or Float Float.valueOf(String), 0 for an empty string

long or Long Long.valueOf(String), 0 for an empty string

short or Short Short.valueOf(String), 0 for an empty string

Object new String(String)

These rules apply to attributes for standard actions and custom actions alike.

22.4.2 Using a PropertyEditor for Conversion

If the standard conversion rules are not enough for your needs, you can use a bean PropertyEditor to convert a literal
string value to any Java data type you like. If an action attribute value is specified as a literal string for an attribute of a
type other than String, the container looks for a property editor that can convert the string to the attribute's data type.
The property editor is also used for EL expressions that evaluate to a String, and for <jsp:attribute> element values.

Say you have an attribute of type java.util.Date. To let the page author specify it as a text value, you need a PropertyEditor
that converts a String to a Date. Here's how it's done.

First you implement the PropertyEditor:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First you implement the PropertyEditor:

package com.foo;

import java.beans.*;
import java.text.*;
import java.util.*;
public class MyDatePE extends PropertyEditorSupport
 implements PropertyEditor {

 private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
 private Date value;

 public Object getValue() {
 return value;
 }

 public void setAsText(String text)
 throws IllegalArgumentException {

 try {
 value = sdf.parse(text);
 }
 catch (ParseException e) {
 throw new IllegalArgumentException(e.getMessage());
 }
 }
}

The container calls the setAsText() method with the attribute's String value. This method creates a Date object from the
string and saves it in the instance variable named value. The container then calls the getValue() method—which returns
the new Date object—and uses the value to set the action's attribute value.

Simple enough, but you must also tell the container to use your PropertyEditor for this action. You can do so by creating
a BeanInfo class for the action's tag handler:

package com.foo;

import java.beans.*;
import java.util.*;
public class MyTagBeanInfo extends SimpleBeanInfo {

 public PropertyDescriptor[] getPropertyDescriptors() {
 PropertyDescriptor[] pds = new PropertyDescriptor[4];
 try {
 pds[0] = new PropertyDescriptor("anInt", MyTag.class,
 null, "setAnInt");
 pds[1] = new PropertyDescriptor("aString", MyTag.class,
 null, "setAString");
 pds[2] = new PropertyDescriptor("firstDate", MyTag.class,
 null, "setFirstDate");
 pds[3] = new PropertyDescriptor("secondDate", MyTag.class,
 null, "setSecondDate");
 }
 catch (Exception e) {}

 pds[2].setPropertyEditorClass(MyDatePE.class);
 pds[3].setPropertyEditorClass(MyDatePE.class);
 return pds;
 }
}

This BeanInfo class is for a tag handler with four attributes, named anInt, aString, firstDate, and secondDate. The
getPropertyDescriptors() method first creates an array with one PropertyDescriptor for each attribute and then sets the
property editors for the two Date attributes to the PropertyEditor class described earlier.

A BeanInfo class is automatically bound to its bean class (in this case, the tag handler class is considered to be a bean)
through a class-naming convention: the name of the BeanInfo class for a bean simply has the same name as the bean
class plus "BeanInfo." So in this example, MyTagBeanInfo is the BeanInfo class for the MyTag class. The MyTag class is a
regular tag handler class. You don't need to do anything special in the tag-handler class itself to use a PropertyEditor to
convert string values to other types.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 23. Integrating Custom Code with JSTL
In addition to providing a powerful set of JSP actions, the JSTL specification also contains a number of classes and
interfaces for setting defaults for the JSTL actions and for developing custom actions that integrate nicely with JSTL
actions. Another component of the JSTL specification is a couple of generic tag library validators you can use to enforce
policies in your application, such as preventing scripting elements and restricting the set of tag libraries that can be
used.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.1 Setting and Using Configuration Variables
Some of the JSTL tag libraries use default values for attributes that are not specified explicitly in the action elements,
e.g., the data source to be used by the database actions and the locale used by the I18N actions. As I described in Part
II, you can set these default values using context parameters in the deployment descriptor, but you can also set them
dynamically using a servlet, filter, or listener. A typical example is a filter or a servlet that sets the locale based on user
profile information. The term used for the dynamic settings in the JSTL spec is configuration variables, and when
combined with a context parameter, it's called a configuration setting.

Each configuration setting is identified by a unique name, such as javax.servlet.jsp.jstl.fmt.locale for the default locale. This
is the name you use when you set a default value through a context parameter:

<web-app ...>
 ...
 <context-param>
 <param-name>
 javax.servlet.jsp.jstl.fmt.locale
 </param-name>
 <param-value>
 en-US
 </param-value>
 </context-param>
 ...
</web-app>

The same names are used to set, read, and remove the configuration variables programmatically, using a JSTL class
called javax.servlet.jsp.jstl.core.Config. It has the following fields:

public static final String FMT_LOCALE =
 "javax.servlet.jsp.jstl.fmt.locale";
public static final String FMT_FALLBACK_LOCALE =
 "javax.servlet.jsp.jstl.fmt.fallbackLocale";
public static final String FMT_LOCALIZATION_CONTEXT =
 "javax.servlet.jsp.jstl.fmt.localizationContext";
public static final String FMT_TIME_ZONE =
 "javax.servlet.jsp.jstl.fmt.timeZone";

public static final String SQL_DATA_SOURCE =
 "javax.servlet.jsp.jstl.sql.dataSource";
public static final String SQL_MAX_ROWS =
 "javax.servlet.jsp.jstl.sql.maxRows";

The fields are simply constants for all variables names, to make it a bit easier to use the class.

The following get() methods read the value of a configuration variable:

public static Object get(javax.servlet.jsp.tagext.PageContext page,
 String name, int scope)
public static Object get(javax.servlet.ServletRequest request,
 String name)
public static Object get(javax.servlet.http.HttpSession session,
 String name)
public static Object get(javax.servlet.ServletContext application,
 String name)

These methods get a variable value from any scope, the request scope, the session scope, and the application scope,
respectively. The method that takes a PageContext instance and a scope identifier as arguments is intended for custom
actions, while the others are primarily intended for other component types, such as a servlet, that do not have access
to a PageContext. The name argument is the configuration variable name, typically specified using the corresponding
constant.

To set a configuration value, use one of the following methods:

public static void set(javax.servlet.jsp.tagext.PageContext page,
 String name, Object var, int scope)
public static void set(javax.servlet.ServletRequest request,
 String name, Object var)
public static void set(javax.servlet.http.HttpSession session,
 String name, Object var)
public static void set(javax.servlet.ServletContext application,
 String name, Object var)

The set() methods set a variable value in any scope, the request scope, the session scope and the application scope,
respectively, following the same pattern as the get() methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

respectively, following the same pattern as the get() methods.

The find() method scans all scopes in the order page, request, session, and application and returns the first occurrence,
or null if it can't find it:

public static Object find(javax.servlet.jsp.tagext.PageContext page,
 String name)

The remaining methods remove configuration variables:

public static void remove(javax.servlet.jsp.tagext.PageContext page,
 String name, int scope)
public static void remove(javax.servlet.ServletRequest request,
 String name)
public static void remove(javax.servlet.http.HttpSession session,
 String name)
public static void remove(javax.servlet.ServletContext application,
 String name)

Even though the configuration variables are simply attributes of the objects that represent the different JSP scopes, it's
important that you use the Config class methods to manipulate them, instead of calling the setAttribute(), getAttribute(),
and removeAttribute() methods directly on the scope objects. The reason is that the JSP specification states that all
scopes should behave as a single namespace,[1] which means, for instance, that if you set a variable in the page scope,
it should replace a variable with the same name in any other scope. The configuration variables, on the other hand, are
intended to just temporarily override a value for the same variable in another scope, for instance temporarily override
an application scope value with a page or request scope value. To accomplish this in a portable way, the Config class
uses implementation-depended attribute names for the configuration variables in each scope (typically, it appends the
scope name to the configuration variable name).

[1] This rule is not enforced by many containers, but breaking it can lead to portability problems between
containers that do and those that don't.

To set the locale for the JSTL I18N actions based on a clever combination of the preferences sent with the request
headers and the client's IP address, for instance, a controller servlet or a filter can use the Config class like this before
asking a JSP page to render the result:

import javax.servlet.jsp.jstl.core.Config;
import java.util.Locale;
import javax.servlet.*;
...
Locale prefLocale = getPrefLocale(request);
Config.set(request, Config.FMT_LOCALE, prefLocale);

The details about each configuration setting are described in the sections that follow.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.2 Integrating Custom Conditional Actions
The JSTL core library contains one, generic conditional action: <c:if>. This action handles all conditions that can be
expressed as Boolean EL expressions, but you often need more than that. Examples from Part II of this book include:
testing if a mail address has valid syntax and if the current user belongs to a specific group.

To help developing this type of conditional custom action, JSTL includes a base class called
javax.servlet.jsp.jstl.core.ConditionalTagSupport:

public abstract class ConditionalTagSupport
 extends javax.servlet.jsp.tagext.TagSupport

It contains the following public methods:

protected abstract boolean condition() throws JspTagException
public void setVar(String var)
public void setScope(String scope)
public int doStartTag() throws JspException
public void release()

The doStartTag() implementation calls the condition() method and takes care of saving the result if the var and scope
attributes are set.

By extending this class and providing an implementation of the condition() and setter methods for all attributes you
need, you get a conditional action that is consistent with the semantics of the JSTL version.

Example 23-1 shows the tag handler class for <ora:ifUserInRole>, which takes advantage of this JSTL support class.

Example 23-1. Tag handler for a conditional action

package com.ora.jsp.tags;

import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.jstl.core.*;
import org.apache.taglibs.standard.lang.support.*;

public class IfUserInRoleTag extends ConditionalTagSupport {
 private String value;

 public void setValue(String value) {
 this.value = value;
 }

 public boolean condition() throws JspTagException {
 HttpServletRequest request =
 (HttpServletRequest) pageContext.getRequest();
 return request.isUserInRole(value);
 }
}

The only method of interest is condition(). All it does is calling the isUserInRole() method provided by the
HttpServletRequest class. It's that simple.

You may wonder if there's a similar support class for custom actions to be used within a <c:choose> block. The answer is
no. Allowing custom actions as alternatives to <c:when> can cause strange side-effects, so instead, the recommended
model is to use a conditional action, save the result as a variable, and test the variable value with a <c:when> action:

<ora:ifUserInRole value="admin" var="isAdmin" />
<c:choose>
 <c:when test="${isAdmin}">
 ...
 </c:when>
 <c:otherwise>
 ...
 </c:otherwise>
</c:choose>

It's a little bit more work, but it's a clean solution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.3 Integrating Custom Iteration Actions
JSTL offers two utilities for customized iterations: a support class that can be extended for application-specific iteration
actions and interfaces that actions nested in the body of an iteration action can use to get information about the
iteration status.

23.3.1 Implementing a Custom Iteration Action

The JSTL <c:forEach> action is so flexible that it probably covers most cases, but to help develop application-specific
iteration actions when needed, JSTL provides a base class for this as well. It's named
javax.servlet.jsp.jstl.core.LoopTagSupport:

public abstract class LoopTagSupport
 extends javax.servlet.jsp.tagext.TagSupport
 implements javax.servlet.jsp.jstl.core.LoopTag,
 javax.servlet.jsp.tagext.IterationTag,
 javax.servlet.jsp.tagext.TryCatchFinally

The class has the following fields a subclass can access:

protected int begin
protected int end
protected int step
protected String itemId
protected String statusId
protected boolean beginSpecified
protected boolean endSpecified
protected boolean stepSpecified

These variables hold the value of the corresponding attributes. The variable names for the var and varStatus attributes
(itemId and statusId) are, unfortunately, not in sync with the attribute names, due to an oversight when the attribute
naming conventions where changed. Nobody's perfect. For the int variables, there are also boolean variables that tell
whether the corresponding attributes were set.

Here are the main methods a subclass must implement:

protected abstract void prepare()
 throws javax.servlet.jsp.JspTagException
protected abstract Object next() throws javax.servlet.jsp.JspTagException
protected abstract boolean hasNext()
 throws javax.servlet.jsp.JspTagException

The prepare() method prepares for the iteration, for instance by creating an Iterator for the collection to iterate over. The
next() method returns the next item from the collection, and the hasNext() method tells whether there are more items.

The LoopTagSupport class provides implementations for the standard Tag and TryCatchFinally methods, plus setter methods
for the var and varStatus attributes:

public void setVar(String varName)
public void setVarStatus(String statusName)
public void doStartTag() throws JspException
public void doAfterBody() throws JspException
public void doCatch(Throwable t) throws Throwable
public void doFinally()
public void release()

Setter methods for begin, end, and step must be implemented by the subclass. They are not included in the support class
because some subclasses may not want to support these attributes.[2]

[2] Another reason is that before the EL got integrated in the JSP spec, how to deal with dynamic values was best
left to each tag handler subclass. This class was introduced in JSTL 1.0, based on JSP 1.2, and the EL processing
was then a part of the JSTL specification so it required special processing in the tag handler.

The doStartTag() method calls the prepare() method. It then calls the hasNext() and next() methods begin number of
times to throw away the items up to the start index (if it's not 0). Next, it calls hasNext(), and if that returns true, it calls
next() to advance to the first item to process and saves a reference to this item.

If step is set to a value other than 1, it calls next() as many times as needed to advance to the next valid item. Finally it
exposes the current item and the status object through the variables defined by var and varStatus, if any, and returns
EVAL_BODY_INCLUDE.

The doAfterBody() method is similar to doStartTag(). It calls hasNext() to see if there are more items, and if it returns true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The doAfterBody() method is similar to doStartTag(). It calls hasNext() to see if there are more items, and if it returns true
and the end index has not been reached, it calls next(), exposes the returned item through var, calls next() again to
advance according to step, and returns EVAL_BODY_AGAIN.

The doCatch() method simply rethrows the exception, and doFinally() removes the var and varStatus variables, since they
are available only to nested actions.

The LoopTagSupport class also provides implementations for the methods defined by the LoopTag interface:

public Object getCurrent() throws javax.servlet.jsp.JspTagException
public LoopTagStatus getLoopStatus()

This interface can be used by custom actions that depend on the loop status. The getCurrent() method returns the
current item, and the getLoopStatus() method returns a LoopTagStatus instance. I show an example of a custom action
that uses this information at the end of this section.

Finally, there are three utility methods for validating the values of the begin, end, and step attribute values:

protected void validateBegin()throws javax.servlet.jsp.JspTagException
protected void validateEnd()throws javax.servlet.jsp.JspTagException
protected void validateStep() throws javax.servlet.jsp.JspTagException

A custom action should use these to make sure the basic requirements for these values are satisfied: begin and end
must be greater than or equal to 0, and step must be greater than or equal to 1.

To see how you can use all of this in a custom iteration action, let's develop an action that helps generate HTML form
elements for selecting predefined values, such as a selection list or a group of checkboxes or radio buttons. The custom
action can be used as shown in Example 23-2.

Example 23-2. Using a custom iteration action

<form action="validate.jsp">
 <xmp:forEachOption options="${options}"
 selections="${paramValues.choice}" var="current">
 <input type="checkbox" name="choice"
 value="${current.value}" ${current.selected ? 'checked' : ''}>
 ${current.text}

 </xmp:forEachOption>
 <input type="submit">
</form>

The <xmp:forEachOption> action takes a Map as the value of the options attribute. The Map contains keys representing the
text and value for each option. The selections attribute takes an array of String objects, each representing the value for
an option that should be marked as selected. The action uses this information to expose a bean with three properties to
the actions in its body: text, value, and selected. The first two are the key and value of the current Map entry, while the
third is a boolean with the value true if the value for the current entry is present in the selections list. As shown in
Example 23-2, EL expressions use the bean properties to set the checkbox value and text and test if the checked
attribute should be set.

Extending the LoopTagSupport class makes it easy to implement this action. The complete class is shown in Example 23-
3.

Example 23-3. The ForEachOptionTag class

package com.ora.jsp.tags.xmp;

import java.util.*;
import java.lang.reflect.Array;
import javax.servlet.jsp.*;
import javax.servlet.jsp.jstl.core.*;
import org.apache.taglibs.standard.lang.support.*;
import com.ora.jsp.util.StringFormat;

public class ForEachOptionTag extends LoopTagSupport {
 private Map options;
 private String[] selections;
 private Iterator iterator;

 public void setOptions(Map options) {
 this.options = options;
 }

 public void setSelections(String[] selections) {
 this.selections = selections;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 protected void prepare() {
 if (options != null) {
 iterator = options.entrySet().iterator();
 }
 }

 protected boolean hasNext() {
 if (iterator == null) {
 return false;
 }
 else {
 return iterator.hasNext();
 }
 }

 protected Object next() {
 Map.Entry me = (Map.Entry) iterator.next();
 String text = (String) me.getKey();
 String value = (String) me.getValue();
 boolean selected = isSelected(value);
 return new OptionBean(text, value, selected);
 }

 private boolean isSelected(String value) {
 return StringFormat.isValidString(value, selections, false);
 }

 public class OptionBean {
 private String text;
 private String value;
 private boolean selected;

 public OptionBean(String text, String value, boolean selected) {
 this.text = text;
 this.value = value;
 this.selected = selected;
 }

 public String getText() {
 return text;
 }

 public String getValue() {
 return value;
 }

 public boolean isSelected() {
 return selected;
 }
 }
}

The only things you need to implement are setter methods for the two unique attributes and the three iteration
methods: prepare(), hasNext(), and next(). The LoopTagSupport class takes care of the rest.

The prepare() method saves a reference to the Iterator for the Map entries in an instance variable, unless the options
attribute value is null. In this case, the action should simply do nothing, just as the <c:forEach> action.

The hasNext() method returns false if the options attribute is null and calls hasNext() on the Iterator created by prepare() if
not.

The real magic happens in the next() method. This method can be called only if hasNext() returns true, so we don't have
to worry about the Iterator being null. First, the next entry is retrieved from the Iterator, and the text and value values are
extracted. Then the private isSelected() method sets the selected value, and a bean with the text, value, and selected
flag is returned. The LoopTagSupport class exposes this bean as the current item through the variable specified by the var
attribute.

The rest is just plain old Java code. The bean class is defined as an inner class, with a constructor for all property values
and getter methods for each property. The isSelected() method uses a utility class that's bundled with the source code
for this book to see if the specified value is included in the list of selected values.

23.3.2 Interacting with an Iteration Action

The JSTL specification also defines two interfaces for iteration actions. The javax.servlet.jsp.jstl.core.LoopTag interface must
be implemented by iteration actions that want to cooperate with actions nested in their bodies:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

be implemented by iteration actions that want to cooperate with actions nested in their bodies:

public interface LoopTag extends javax.servlet.jsp.tagext.Tag

It defines two methods nested actions can call:

public java.lang.Object getCurrent()
public LoopTagStatus getLoopStatus()

The getCurrent() method returns the current object in the collection the action iterates over. The getLoopStatus() returns
an object that implements the other JSTL iteration interface: javax.servlet.jsp.jstl.core.LoopTagStatus.

Before we look at the LoopTagStatus interface, let's see how a custom action can use the LoopTag interface. Example 23-
4 shows how such a custom action can be used for the same purpose as the custom iteration action described earlier,
namely to generate an HTML checkbox element with the checked attribute set depending on a dynamic list of selections.

Example 23-4. Using a custom action that gets the iteration status from its parent

<form action="foreachoption.jsp">
 <c:forEach items="${options}">
 <xmp:buildCheckbox name="choice"
 selections="${paramValues.choice}" />

 </c:forEach>
 <input type="submit">
</form>

Here the JSTL <c:forEach> action loops through a Map with option texts and values, the same way as in the previous
example. The <xmp:buildCheckbox> action generates a checkbox element using the specified name as the name attribute
value, the current Map entry value as the value attribute, and the current Map entry key as the text. To decide whether
to set the checked attribute or not, it checks if the current Map entry value is included in the list specified by the selections
attribute.

Example 23-5 shows the code for the custom action.

Example 23-5. The BuildCheckboxTag class

package com.ora.jsp.tags.xmp;

import java.io.*;
import java.util.*;
import java.lang.reflect.Array;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.jstl.core.*;
import org.apache.taglibs.standard.lang.support.*;
import com.ora.jsp.util.StringFormat;

public class BuildCheckboxTag extends TagSupport {
 private String name;
 private String[] selections;

 public void setName(String name) {
 this.name = name;
 }

 public void setSelections(String[] selections) {
 this.selections = selections;
 }

 public int doEndTag() throws JspException {
 LoopTag parent =
 (LoopTag) findAncestorWithClass(this, LoopTag.class);
 if (parent == null) {
 throw new JspTagException("buildCheckbox: invalid parent");
 }

 Map.Entry current = (Map.Entry) parent.getCurrent();
 String text = (String) current.getKey();
 String value = (String) current.getValue();
 JspWriter out = pageContext.getOut();
 StringBuffer checkbox =
 new StringBuffer("<input type=\"checkbox\"");
 checkbox.append(" name=\"").append(name).append("\"").
 append(" value=\"").append(value).append("\"");
 if (isSelected(value, selections)) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (isSelected(value, selections)) {
 checkbox.append(" checked");
 }
 checkbox.append(">").append(text);
 try {
 out.write(checkbox.toString());
 }
 catch (IOException e) {}
 return EVAL_PAGE;
 }

 private boolean isSelected(String value, String[] selections) {
 return StringFormat.isValidString(value, selections, false);
 }
}

The doEndTag() method is where all the action takes place. The parent tag is located using the findAncestorWithClass()
method from Chapter 22. Note how the LoopTag interface is specified as the type of parent to look for. With a reference
to a LoopTag parent in hand, the current iteration object is retrieved simply by calling the getCurrent() method. The key
and the value is extracted and used as the text and value for the generated <input> element, and the checked attribute
is set if the current value matches one in the selections list.

This custom action doesn't need the detailed status information provided by the LoopTagStatus interface, but it's as easy
to get as the current iteration object; just call the parent's getLoopStatus() method. The LoopTagStatus interface provide a
wealth of information through the following methods:

public java.lang.Object getCurrent()
public int getIndex()
public int getCount()
public boolean isFirst()
public boolean isLast()
public Integer getBegin()
public Integer getEnd()
public Integer getStep()

The getIndex() method returns the actual 0-based index of the current element in the collection, while getCount()
returns the 1-based number for the current iteration. For example, for the second pass through the body of a
<c:forEach> action with begin set to 10, getIndex() returns 11, and getCount() returns 2. The isFirst() and isLast() methods
returns true for the first and last iteration, respectively, taking the values of begin, end, and step into consideration. The
other methods are self-explanatory.

You can use the methods in this interface for custom actions that should do something only at certain points in the
iteration, for instance for every second pass or only for the first or last pass.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.4 Integrating Custom I18N Actions
The default locale, resource bundle, and time zone for the JSTL I18N actions can be specified through four configuration
settings, described in Tables Table 23-1 through Table 23-4.

Table 23-1. Locale configuration setting
Variable
name: Javax.servlet.jsp.jstl.fmt.locale

Java
constant: Config.FMT_LOCALE

Java type: String or java.util.Locale

Set by: <fmt:setLocale>, context parameter, or custom code

Used by: <fmt:bundle>, <fmt:setBundle>, <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>,
and <fmt:parseDate>

Table 23-2. Fallback locale configuration setting
Variable
name: javax.servlet.jsp.jstl.fmt.fallbackLocale

Java
constant: Config.FMT_FALLBACK_LOCALE

Java type: String or java.util.Locale

Setby: Context parameter or custom code

Used by: <fmt:bundle>, <fmt:setBundle>, <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>,
and <fmt:parseDate>

Table 23-3. Localization context configuration setting
Variable name: javax.servlet.jsp.jstl.fmt.localizationContext

Java constant: Config.FMT_LOCALIZATION_CONTEXT

Java type: String or javax.servlet.jsp.jstl.fmt.LocalizationContext

Set by: <fmt:setBundle>, context parameter, or custom code

Used by: <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>, and <fmt:parseDate>

Table 23-4. Time zone configuration setting
Variable name: javax.servlet.jsp.jstl.fmt.timeZone

Java constant: Config.FMT_TIME_ZONE

Java type: String or java.util.TimeZone

Set by: <fmt:setTimeZone>, context parameter, or custom code

Used by: <fmt:formatDate> and <fmt:parseDate>

Setting the locale variable disables the lookup of a locale based on user preferences (passed through the Accept-
Language header value), while setting the fallback locale variable preserves this feature and provides a default value
that is used only if none of the preferred locales are available. When String values are used to set these two variables,
they must be specified as a two-letter lowercase ISO-639 language code, optionally followed by a two-letter uppercase
ISO-3166 country code, separated by a hyphen or an underscore character.

The localization context variable can be set to a String value containing the name of the default resource bundle base
name. The formatting actions then locate the locale-specific version of this bundle. The <fmt:setBundle> sets the variable
to an instance of the LocalizationContext class, which contains references to both a locale and a resource bundle for a
locale.

String values for the time-zone setting must be of the type defined for the java.util.TimeZone class: an abbreviation, a full
name, or a GMT offset.

The configuration variables can be set by the calling the Config.set() methods, as described earlier in this chapter. It can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The configuration variables can be set by the calling the Config.set() methods, as described earlier in this chapter. It can
be used to simplify the JSP pages in an application with a Controller implemented in Java and JSP only for the View
part. For instance, the Controller may pick up the preferred locale and time zone from a database when a user logs in
and sets the corresponding configuration settings.

If you develop custom actions that need to produce localized text, you can piggyback on the locale-lookup logic
provided by JSTL by using the javax.servlet.jsp.jstl.fmt.LocaleSupport class. It provides the following methods:

public static String getLocalizedMessage(PageContext pc, String key)
public static String getLocalizedMessage(PageContext pc, String key,
 String basename)

public static String getLocalizedMessage(PageContext pc, String key,
 Object[] args)
public static String getLocalizedMessage(PageContext pc, String key,
 Object[] args, String basename)

There are two sets of methods. The first is for simple messages and the second for parameterized messages. In each
set, one method has a basename parameter and one doesn't. The versions without the basename parameter rely on the
localization context configuration setting to find the resource bundle to get the message from, and the others locate the
locale-specific resource bundle for the specified base name. Both sets return the localized message for the specified
key.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.5 Integrating Custom Database Actions
The JSTL database access actions look for the default values set by the configuration settings described in Tables Table
23-5 and Table 23-6.

Table 23-5. Data-source configuration setting
Variable name: javax.servlet.jsp.jstl.sql.dataSource

Java constant: Config.SQL_DATA_SOURCE

Java type: String or javax.sql.DataSource

Set by: <sql:setDataSource>, context parameter or custom code

Used by: <sql:query>, <sql:update>, and <sql:transaction>

Table 23-6. Maximum rows configuration setting
Variable name: javax.servlet.jsp.jstl.sql.maxRows

Java constant: Config.SQL_MAX_ROWS

Java type: String or Integer

Set by: Context parameter or custom code

Used by: <sql:query>

The data-source setting can be set as a String in this format, in which optional parts are shown between brackets:

url [, [driver] [, [user] [, [password]]]

Commas separate the parts, so if the value for any part contains a comma, it must be escaped with a backslash. This
type of value creates a simple DataSource without any pooling capabilities, and is intended only for prototype and low-
end applications, as described in Chapter 12. It can also be set to a JNDI path for a DataSource made available by the
container or to a DataSource created by custom code, such as a servlet or listener. These options are described in detail
in Chapter 24.

The maximum rows setting can be set as a String value for a context parameter or as an Integer by custom code. It can
be used to prevent runaway queries, because it sets a limit for how many rows are retrieved for a query result.

There are also two support classes related to the JSTL database actions. The javax.servlet.jsp.jstl.sql.SQLExcecutionTag
interface is implemented by the tag handlers for both <sql:query> and <sql:update>. It provides one method that allows a
nested custom action to add a value for a parameter placeholder in the SQL statement:

public void addSQLParameter(Object value)

The value must be of a type that is accepted for the corresponding column when set by calling
java.sql.PreparedStatement.setObject(int index, Object value).

The ResultSupport class provides methods for converting a JDBC ResultSet into a JSTL Result object, described in Chapter
12:

public static Result toResult(java.sql.ResultSet rs)
public static Result toResult(java.sql.ResultSet rs, int maxRows)

I'll show you an example of how to use it in Chapter 24.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

23.6 Using JSTL Tag Library Validators
JSP 1.2 introduced a powerful mechanism for validation of the elements used in a page: the tag library validator
described in Chapter 22. JSTL includes two generic validators you can configure and use in your application to control
how scripting elements and custom tag libraries are used.

The ScriptFreeTLV class is a validator that can be configured to reject pages with scripting elements. To use it, you can
include it in the TLD for your custom library or create a TLD file that defines it as the validator for a dummy library,
used only for validation:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <description>
 Validates JSP pages to prohibit use of scripting elements.
 </description>
 <tlib-version>1.1</tlib-version>
 <short-name>scriptfree</scriptfree>
 <uri>http://mycompany.org/taglibs/scriptfree</uri>

 <validator>
 <validator-class>
 javax.servlet.jsp.jstl.tlv.ScriptFreeTLV
 </validator-class>
 <init-param>
 <param-name>allowDeclarations</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>allowScriptlets</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>allowExpressions</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>allowRTExpressions</param-name>
 <param-value>true</param-value>
 </init-param>
 </validator>
</taglib>

The initialization parameters define which type of scripting elements to accept and reject. By default, all are rejected.
Starting with JSP 2.0, you can disable all types of scripting elements with a configuration setting in the web.xml file. I
recommend that option, but this validator is still available and can be used if you need more fine-grained control.

The PermittedTaglibsTLV can limit the set of tag libraries that are used in a page:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.xsd"
 version="2.0">

 <description>
 Validates JSP pages to only allow a defined set of tag libraries.
 </description>
 <tlib-version>1.1</tlib-version>
 <short-name>onlyJSTL</scriptfree>
 <uri>http://mycompany.org/taglibs/onlyJSTL</uri>

 <validator>
 <validator-class>
 javax.servlet.jsp.jstl.tlv.PermittedTaglibsTLV
 </validator-class>
 <init-param>
 <param-name>permittedTaglibs</param-name>
 <param-value>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <param-value>
 http://java.sun.com/jsp/jstl/core
 http://java.sun.com/jsp/jstl/xml
 http://java.sun.com/jsp/jstl/fmt
 http://java.sun.com/jsp/jstl/sql
 http://java.sun.com/jsp/jstl/functions
 </param-value>
 </init-param>
 </validator>
</taglib>

Here it's configured to allow only the JSTL 1.1 libraries to be used. You can, of course, add other custom tag libraries
that should be permitted to the list.

Including taglib directives that should be checked activates the validators:

<%@ taglib prefix="scriptfree" uri="http://mycompany.org/taglibs/scriptfree" %>
<%@ taglib prefix="onlyJSTL" uri="http://mycompany.org/taglibs/onlyJSTL" %>

To make sure all pages include these directives, you may want to create a file that contains these taglib directives plus
the taglib directives for all real tag libraries that you use for the application. You can then include this file in all JSP
pages using the web.xml prelude configuration element described in Chapter 17, instead of including the taglib directives
in every page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 24. Database Access Strategies
In this final chapter, we take a closer look at the strategies for using a database in a web application that I've
mentioned in the previous chapters.

In case you're new to Java database access, we start with a brief overview of the most important JDBC classes and
interfaces. Next, we focus in on the JDBC Connection class and how pooling Connection objects helps to solve a number of
common problems. We look at two ways to implement connection-pooling capabilities: the JDBC 2.0 way and using a
JDBC 1.0 connection pool that simulates a JDBC 2.0 pool.

A connection pool can be made available to the rest of the application—servlets as well as the JSTL database access
actions—in a number of ways. In this chapter we discuss the approach used in Chapter 19 (using an application event
listener) in more detail, as well as an approach that's more flexible but that only works in web containers that support
the Java Naming and Directory Interface (JNDI).

No matter if you use a servlet or a custom action to access the database, there are a number of JDBC details that must
be handled. To help with this grunt work, we look at a generic database access bean that simplifies life and makes the
result of a query easy to use. The last section contains an example of an application-specific custom action using this
bean.

If you need to learn more about JDBC programming than what's covered here, I recommend that you look at the JDBC
documentation online at http://java.sun.com/products/jdbc/ or read a book about JDBC, such as George Reese's
Database Programming with JDBC and Java (O'Reilly) or Java Database Best Practices (O'Reilly)—which also covers how
to use Java Database Objects (JDO) and Enterprise JavaBeans (EJB) for database access.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.1 JDBC Basics
The JDBC API is a set of classes and interfaces that allows a Java application to send SQL statements to a database in a
vendor-independent way. The API consists mostly of interfaces that define the methods you use in your program.
Database engine vendors and third parties provide implementations of these interfaces for a specific database engine;
such an implementation is called a JDBC driver. This allows you to develop your program in a database-independent
way and connect to a specific database engine by plugging in the appropriate JDBC driver at deployment time. There
are JDBC drivers for most database engines on the market, both commercial and open source. If you can't get one from
your vendor, check out Sun's list of third-party drivers at http://industry.java.sun.com/products/jdbc/drivers.

Figure 24-1 shows how the main interfaces and classes are related.

Figure 24-1. Main JDBC interfaces and classes

All JDBC core classes and interfaces belong to the java.sql package. Of the types shown in Figure 24-1, only the
DriverManager is a class (part of the standard J2SE package); the rest are interfaces implemented by each unique JDBC
driver.

The Driver implementation is the entry point to all the other interface implementations. When the Driver is loaded, it
register itself with the DriverManager. When the JDBC application needs a connection to a database, it asks the
DriverManager for one, and the DriverManager asks each registered Driver if it knows how to create connections for the
requested database. When a Driver replies "yes," the DriverManager asks it for a Connection on the application's behalf; the
Driver attempts to create one and return it to the application.

The Connection is another core JDBC type. Through the Connection instance, the JDBC application can create Statement
instances of different types. The main Statement type can execute a plain SQL statement, such as SELECT, UPDATE, or
DELETE. When a SELECT statement is executed, the result is returned as an instance of ResultSet. The ResultSet has
methods for navigating the result rows and asking for the column values in the current row.

There are two specialized Statement types: PreparedStatement and CallableStatement. For a PreparedStatement, you can
specify an SQL statement where, instead of literal column values, the statement contains parameter placeholders,
symbolized by question marks:

SELECT * FROM Enployee WHERE UserName = ?

Special setter methods assign values to the placeholders before the SQL statement is executed. The same
PreparedStatement can then be assigned new placeholder values and executed again. This allows a database to parse the
statement once, typically caching a strategy for how to execute it in the most efficient way, and then execute it over
and over again with new values. This can result in dramatically improved performance over using a regular Statement.
The PreparedStatement is also useful in other ways, as we will discuss later.

The CallableStatement is for stored procedures. The same as for a PreparedStatement, you can assign values to input
arguments, but in addition, there are methods for declaring the types of output arguments.

Other interfaces in the JDBC API provide access to metadata about the database and the JDBC driver itself
(DatabaseMetaData, available from the Connection, containing information about supported features) as well as about a
ResultSet (ResultSetMetaData, available from the ResultSet, containing information about column data types, null values,
etc.).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

etc.).

To see how it all fits together, here's a simple program that uses most of these classes:

import java.sql.*;
public class DBTest {
 public static void main(String[] args) throws Exception {
 // Load the JDBC Driver
 Class.forName("oracle.jdbc.OracleDriver");

 // Get a Connection
 String url = "jdbc:oracle:thin:@myhost:1521:ORASID";
 Connection conn = DriverManager.getConnection(url, "scott",
 "tiger");

 ResultSet rs = null;
 PreparedStatement pstmt = null;
 String sql = "SELECT * From Employee WHERE UserName = ?";
 try {
 pstmt = conn.prepareStatement(sql);
 pstmt.setString(1, "hans");
 rs = pstmt.executeQuery();

 while (rs.next()) {
 System.out.println(rs.getString("FirstName"));
 System.out.println(rs.getString("LastName"));
 }
 }
 finally {
 if (rs != null) {
 try {rs.close();} catch (SQLException e) {}
 }
 if (pstmt != null) {
 try {pstmt.close();} catch (SQLException e) {}
 }
 if (conn != null) {
 try {conn.close();} catch (SQLException e) {}
 }
 }
 }
}

It first loads a Driver (an Oracle JDBC driver in this example) and then gets a Connection. The getConnection() argument is
a JDBC URL that identifies a specific database. Different JDBC drivers use different URL syntax. All JDBC URLs starts
with jdbc: followed by a JDBC driver identifier, such as oracle: for Oracle's drivers. The rest of the URL is used to identify
other details for the driver and database instance. For the Oracle driver used here, it's the type of driver, the host and
port where the database runs, and the database instance system identifier. Consult the documentation for your JDBC
driver to see how the URL should look like if you use a different driver.

The program then creates a PreparedStatement for an SQL statement with a placeholder symbol, assigns a value to the
placeholder, executes the query, and loops through all result rows represented by the ResultSet.

To run a program that uses JDBC, you need to include the JDBC driver classes for your database in the class path. They
are typically delivered as a JAR file, so for a web application you just place the JAR file in the WEB-INF/lib directory. If
they are delivered as a ZIP file (as some of Oracle's JDBC drivers are, for instance), you can still place it in the WEB-
INF/lib directory if you change the file extension from .zip to .jar.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.2 Using Connections and Connection Pools
In a JDBC-based application, a lot revolves around the java.sql.Connection interface. Before any database operations can
take place, the application must create a Connection to the database. It then acts as the communication channel
between the application and the database, carrying the SQL statements sent by the application and the results returned
by the database. A Connection is associated with a database user account to allow the database to enforce access control
rules for the SQL statements submitted through the Connection. Finally, the Connection is also the boundary for database
transactions. Only SQL statements executed through the same Connection can make up a transaction. A transaction
consists of a number of SQL statements that must either all succeed or all fail as one atomic operation. A transaction
can be committed (the changes resulting from the statements are permanently saved) or rolled back (all changes are
ignored) by calling Connection methods.

In a standalone application, a Connection is typically created once and kept open until the application is shut down. This
isn't surprising, since a standalone application serves only one user at a time, and all database operations initiated by a
single user are typically related to each other. In a server application that deals with unrelated requests from many
different users, it's not so obvious how to deal with connections. There are three things to consider: a Connection is
time-consuming to create, it must be used for only one user at a time to avoid transaction clashes, and it's expensive to
keep open.

Creating a Connection is an operation that can actually take a second or two to perform. Besides establishing a network
connection to the database, the database engine must authenticate the user and create a context with various data
structures to keep track of transactions, cached statements, results, and so forth. Creating a new Connection for each
request received by the server, while simple to implement, is far too time-consuming in a high-traffic server application.

One way to minimize the number of times a connection needs to be created is to keep one Connection per servlet or JSP
page that need access to the database. A Connection can be created when the web resource is initialized and be kept in
an instance variable until the application is shut down. As you will discover when you deploy an application based on
this approach, this route leads to numerous multithreading issues. Each request executes as a separate thread through
the same servlet or JSP page. Some JDBC drivers don't support multiple threads accessing the same Connection at all,
causing all kinds of runtime errors. Others support it by serializing all calls, leading to poor scalability. Another serious
problem with this approach is that requests from multiple users, all using the same Connection, operate within the same
transaction. If one request leads to a rollback, all other database operations using the same Connection are also rolled
back.

A connection is expensive to keep open in terms of server resources such as memory. Many commercial database
products use licenses that are priced based on the number of simultaneously open connections, so a connection can
also be expensive in terms of real money. Therefore, it's wise to try to minimize the number of connections the
application needs. An alternative to the "one Connection per resource" approach is to create a Connection for each user
when the first request is received and keep it as a session scope object. However, a drawback with this approach is that
the Connection will be inactive most of the time, because the user needs time to look at the result of one request before
making the next.

The best alternative is to use a connection pool. A connection pool contains a number of Connection objects shared by all
servlets and JSP pages. For each request, one Connection is checked out from the pool, used, and checked back in. Using
a pool solves the problems described for the other alternatives:

It's time consuming to create a Connection

A pooled Connection is created only once and then reused. Most pool implementations let you specify an initial
number of Connection objects to create at start up, as well as a maximum number. New Connection objects are
created as needed up to the maximum number. Once the maximum number has been reached, the pool clients
wait until an existing Connection object becomes available instead of creating a new one.

There are multithreading problems with a shared Connection

With a pool, each request gets its own Connection so it's used by only one thread at a time, eliminating any
potential multithreading issues.

A Connection is a limited resource

With a pool, each Connection is used efficiently. It never sits idle if there are requests pending. If the pool allows
you to specify a maximum number of Connection objects, you can also balance a license limit for the number of
simultaneous connections against acceptable response times.

A connection pool doesn't solve all problems, however. Because all users are using the same Connection objects, you
can't rely on the database engine to limit access to protected data on a per-user basis. Instead, you have to define
data-access rules in terms of roles (groups of users with the same access rights). You can then use separate pools for
different roles, each pool creating Connection objects with a database account that represents the role.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

24.2.1 Using a JDBC 2.0 Optional Package Connection Pool

Connection pools exist in many forms. You find them in books, articles, and on the Web. Yet prior to JDBC 2.0, there
was no standard defined for how a Java application would interact with a connection pool. The JDBC 2.0 Optional
Package (formerly known as a Standard Extension), now part of JDBC 3.0 and included in the Java SDK 1.4, changed
this by introducing a set of interfaces that connection pools should implement:

javax.sql.DataSource

A DataSource represents a database. This is the interface the application always uses to get a Connection. The
class that implements the interface can provide connection-pooling capabilities or hand out regular, unpooled
Connection objects; the application code is identical for both cases, as described later.

javax.sql.ConnectionPoolDataSource

A DataSource implementation that provides pooling capabilities uses a class that implements the
ConnectionPoolDataSource interface. A ConnectionPoolDataSource is a factory for PooledConnection objects. The
application code never calls methods in this interface directly.

javax.sql.PooledConnection

The objects a DataSource with pooling capabilities keeps in its pool implement the PooledConnection interface.
When the application asks the DataSource for a Connection, it locates an available PooledConnection object or gets a
new one from its ConnectionPoolDataSource if the pool is empty.

The PooledConnection provides a getConnection() method that returns a Connection object. The DataSource calls this
method and returns the Connection to the application. This Connection object behaves like a regular Connection
with one exception: when the application calls the close() method, instead of closing the connection to the
database, it informs the PooledConnection it belongs to that it's no longer used. The PooledConnection relays this
information to the DataSource, which returns the PooledConnection to the pool.

Figure 24-2 outlines how an application uses implementations of these interfaces to obtain a pooled connection and how
to return it to the pool.

Figure 24-2. Application using a JDBC connection pool

The application calls the DataSource getConnection() method. The DataSource looks for an available PooledConnection object
in its pool. If it doesn't find one, it uses its ConnectionPoolDataSource object to create a new one. It then calls the
getConnection() method on the PooledConnection object and returns the Connection object associated with the
PooledConnection. The application uses the Connection and calls its close() method when it's done. This results in a
notification event being sent to the DataSource, which puts the corresponding PooledConnection object back in the pool. If
you would like to learn more about the JDBC 2.0 connection pool model, you can download the JDBC 2.0 Optional
Package specification or the JDBC 3.0 specification from http://java.sun.com/products/jdbc/.

By implementing these JDBC 2.0 interfaces, JDBC driver vendors and middleware vendors can offer portable connection
pooling implementations. The latest version of the JDBC specification, JDBC 3.0, adds statement pooling to the list of
features a DataSource can provide. What this means is that in addition to pooling connections, an implementation can
pool prepared statements associated with each pooled connection. The result can be dramatically improved
performance, while leaving the application untouched; it doesn't need to do anything different compared to using a
JDBC 2.0 DataSource. When I write this, very few (if any) vendors offer statement pooling, but you should ask your
vendor if they support it.

24.2.2 Making a JDBC 1.0 Connection Pool Behave as a JDBC 2.0 Connection
Pool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you can't find a JDBC 2.0 connection pool implementation for your database, there are plenty of implementations
based on JDBC 1.0 available. A popular one is the DBConnectionBroker, available at http://www.javaexchange.com/.
Another one, DBCP, is developed by the Jakarta Commons project: http://jakarta.apache.org/commons/index.html and
is bundled with Tomcat. In this section I describe a couple of wrapper classes you can use with minimal changes for
implementations like these so they can be used in place of a JDBC 2.0 connection pool implementation. This way the
JSTL database access actions and other generic database tools can use your wrapped JDBC 1.0 pool, and it's easy to
replace it with a real JDBC 2.0 pool when one becomes available from your database vendor or a third party.

The interaction between the wrapper classes and a connection pool implementation is illustrated in Figure 24-3.

Figure 24-3. A connection pool wrapped with JDBC 2.0 interface classes

The application calls the DataSourceWrapper getConnection() method. The DataSourceWrapper obtains a Connection object
from its ConnectionPool object (which represents the JDBC 1.0 pool implementation). The ConnectionPool either finds an
available Connection in its pool or creates a new one. The DataSourceWrapper creates a new ConnectionWrapper object for
the Connection it obtained or created and returns the ConnectionWrapper to the application. The application uses the
ConnectionWrapper object as a regular Connection. The ConnectionWrapper relays all calls to the corresponding method in
the Connection it wraps except for the close() method. When the application calls the close() method, the
ConnectionWrapper returns its Connection to the DataSourceWrapper, which in turn returns it to its ConnectionPool.

The wrapper classes included with the book examples wrap the connection pool described in Java Servlet Programming
by Jason Hunter and William Crawford (O'Reilly). It's a simple connection pool implementation, intended only to
illustrate the principles of connection pooling. The source code for the connection pool is included with the code for this
book, but I will not discuss the implementation of the pool itself, only how to make it look like a JDBC 2.0 connection
pool using the wrapper classes. For production use, I recommend that you use a pool intended for real use instead of
this code, such as one of the implementations mentioned earlier. The first wrapper class is called
com.ora.jsp.sql.ConnectionWrapper, shown in Example 24-1.

Example 24-1. The ConnectionWrapper class

package com.ora.jsp.sql;

import java.sql.*;
import java.util.*;

class ConnectionWrapper implements Connection {
 private Connection realConn;
 private DataSourceWrapper dsw;
 private boolean isClosed = false;

 public ConnectionWrapper(Connection realConn,
 DataSourceWrapper dsw) {
 this.realConn = realConn;
 this.dsw = dsw;
 }

 /**
 * Inform the DataSourceWrapper that the ConnectionWrapper
 * is closed.
 */
 public void close() throws SQLException {
 isClosed = true;
 dsw.returnConnection(realConn);
 }

 /**
 * Returns true if the ConnectionWrapper is closed, false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * Returns true if the ConnectionWrapper is closed, false
 * otherwise.
 */
 public boolean isClosed() throws SQLException {
 return isClosed;
 }

 /*
 * Wrapped methods.
 */
 public void clearWarnings() throws SQLException {
 if (isClosed) {
 throw new SQLException("Pooled connection is closed");
 }
 realConn.clearWarnings();
 }
 ...
}

An instance of this class is associated with a real Connection object, retrieved from a connection pool, in the constructor.
The constructor parameter list also includes a reference to the DataSourceWrapper instance that creates it.

The ConnectionWrapper class implements the Connection interface. The implementations of all the methods except two
simply relay the call to the real Connection object, so it can perform the requested database operation. The
implementation of the close() method, however, doesn't call the real Connect object's method. Instead, it calls the
DataSourceWrapper object's returnConnection() method, to return the Connection to the pool. The isClosed() method, finally,
returns the state of the ConnectionWrapper object as opposed to the real Connection object.

Example 24-2 shows how the com.ora.jsp.sql.DataSourceWrapper gets a connection from a pool and returns it when the
pool client is done with it.

Example 24-2. The DataSourceWrapper class

package com.ora.jsp.sql;

import java.io.*;
import java.sql.*;
import javax.sql.*;

public class DataSourceWrapper implements DataSource {
 private ConnectionPool pool;
 private String driverClassName;
 private String url;
 private String user;
 private String password;
 private int initialConnections;

 public void setDriverClassName(String driverClassName) {
 this.driverClassName = driverClassName;
 }

 public void setUrl(String url) {
 this.url = url;
 }

 public void setUser(String user) {
 this.user = user;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 private void setInitialConnections(int initialConnections) {
 this.initialConnections = initialConnections;
 }

 /**
 * Gets a connection from the pool and returns it wrapped in
 * a ConnectionWrapper.
 */
 public Connection getConnection() throws SQLException {
 if (pool == null) {
 createConnectionPool();
 }
 return new ConnectionWrapper(pool.getConnection(), this);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return new ConnectionWrapper(pool.getConnection(), this);
 }

 /**
 * Returns a Connection to the pool. This method is called by
 * the ConnectionWrapper's close() method.
 */
 public void returnConnection(Connection conn) {
 pool.returnConnection(conn);
 }

 /**
 * Always throws an SQLException. Username and password are set
 * with the setter methods and can not be changed.
 */
 public Connection getConnection(String username, String password)
 throws SQLException {
 throw new SQLException("Not supported");
 }

 public int getLoginTimeout() throws SQLException {
 throw new SQLException("Not supported");
 }
 ...
 /**
 * Create a Connection pool based on the configuration properties.
 */
 private void createConnectionPool() throws SQLException {

 try {
 pool = new ConnectionPool(driverClassName, url, user,
 password, initialConnections);
 }
 catch (SQLException e) {
 throw e;
 }
 catch (Exception e) {
 SQLException sqle =
 new SQLException("Error creating pool: " +
 e.getClass().getName() + " : " + e.getMessage());
 throw sqle;
 }
 }
}

The DataSourceWrapper class implements the DataSource interface, so it can be used as a JDBC 2.0 connection pool
implementation:

DataSource ds = null;
try {
 ds = new DataSourceWrapper();
 ds.setDriverClassName("org.gjt.mm.mysql.Driver");
 ds.setUrl("jdbc:mysql:///test");
 ds.setUser("scott");
 ds.setPassword("tiger");
}
catch (Exception e) {
 // Deal with it
}

Connection conn = ds.getConnection();

The getConnection() method creates an instance of the real connection pool class the first time it's called, using the JDBC
driver, URL, user, and password information provided through the corresponding setter methods. The two most
interesting methods are getConnection() and returnConnection().

The pool client application calls the getConnection() method, and the DataSourceWrapper relays the call to the connection
pool class. It then wraps the Connection object it receives in a ConnectionWrapper object and returns it to the client
application.

As described earlier, the ConnectionWrapper object calls the returnConnection() method when the pool client calls close() on
the ConnectionWrapper object. The returnConnection() method hands over the Connection to the real connection pool so it
can be recycled.

All other DataSource interface methods throw an SQLException in this implementation. If you modify the wrapper classes
presented here to wrap a more sophisticated connection pool, you may be able to relay some of these method calls to
the real connection pool instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the real connection pool instead.

The real beauty of the JDBC 2.0 connection pool interfaces is that the application doesn't have to be aware it's using a
connection pool. All configuration data, such as which driver class and JDBC URL to use, the number of initial and
maximum number of pooled connections, and the database account name and password, are set by a server
administrator. The completely configured DataSource object is made available to the application, as described in the next
section, and then any component can get, use, and return a Connection with code like this:

Connection conn = null;
try {
 conn = ds.getConnection();
 // Use the Connection
}
catch (SQLException e) {
 // Deal with it
}
finally {
 // Return the Connection to the pool
 if (conn != null)
 try {
 conn.close();
 }
 catch (SQLException e) {}
}

If the DataSource provides connection-pooling capabilities, the close() call returns the Connection to the pool; otherwise
it's really closed. The application doesn't care; these details are in the hands of the server administrator, as they should
be. As shown here, you should always use a try/catch/finally statement for all code that uses the Connection, and close it
in the finally block to make sure it's closed no matter what happens.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.3 Making a Connection Pool Available to Application Components
The next part of the puzzle is how to make the DataSource available to the application components that need it. In
principle, there are two ways to do this. The first one—using an application scope variable—works in any type of web
container, while the second one—using JNDI—is more flexible but only works in a container that supports J2EE style
resource access.

24.3.1 Using an Application Scope Variable

One place for resources that all components in an application need access to is the application scope, corresponding to
ServletContext attributes in the servlet world. As I described in Chapter 19, the most appropriate component for
initialization and release of this type of shared resources is the application lifecycle listener.

The container informs an application lifecycle listener when the application is started and stopped. It can create the
resource objects and make them available to other application components in its contextInitialized() method before any
user requests are received, and release them when the application is shut down in its contextDestroyed() method. Finally,
a listener can use configuration data (defined as context parameters in the deployment descriptor) to work in different
settings. To recap, here's an application lifecycle listener similar to the one used in Chapter 19:

package com.ora.jsp.servlets;

import javax.servlet.*;
import javax.servlet.http.*;
import oracle.jdbc.pool.*;

public class ResourceManagerListener2 implements
 ServletContextListener {
 private OracleConnectionCacheImpl ds = null;

 public void contextInitialized(ServletContextEvent sce) {

 ServletContext application = sce.getServletContext();
 String jdbcURL = application.getInitParameter("jdbcURL");
 String user = application.getInitParameter("user");
 String password = application.getInitParameter("password");
 String maxLimit = application.getInitParameter("maxLimit");

 try {
 ds = new OracleConnectionCacheImpl();
 ds.setURL(jdbcURL);
 ds.setMaxLimit(Integer.parseInt(maxLimit));
 ds.setUser("scott");
 ds.setPassword("tiger");
 }
 catch (Exception e) {
 application.log("Failed to create data source: " +
 e.getMessage());
 }
 application.setAttribute("appDataSource", ds);
 }

 public void contextDestroyed(ServletContextEvent sce) {
 ServletContext application = sce.getServletContext();
 application.removeAttribute("appDataSource");
 // Close the connections in the DataSource
 try {
 ds.close();
 }
 catch (java.sql.SQLException e) {}
 ds = null;
 }
}

In the contextInitialized() method, the JDBC URL, database user, and password, and the maximal number of connections
to keep in the pool are read from the deployment descriptor and used to create and configure an instance of Oracle's
DataSource implementation that provides pooling capabilities: oracle.jdbc.pool.OracleConnectionCacheImpl. I'm using only
some of its features here, so you should also read Oracle's documentation if you plan to use it in your application. When
the data source has been configured, it's saved as a servlet context attribute named appDataSource. To refresh your
memory on the implementation and configuration details, you may want to take a look at Chapter 19 again.

An application component, such as a servlet, can pick up the DataSource registered by the listener like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An application component, such as a servlet, can pick up the DataSource registered by the listener like this:

ServletContext application = getServletContext();
DataSource ds = (DataSource) application.getAttribute("appDataSource");

Servlet context attributes appear to JSP as application scope variables, so you can also tell the JSTL database actions to
use this DataSource by specifying it with an EL expression for the dataSource attribute:

<sql:query dataSource="${appDataSource}" ... />

If you want to make the DataSource the default used by the JSTL database actions, you must use the application scope
variable name they expect, controlled by the javax.servlet.jsp.jstl.core.Config class described in Chapter 23:

public void contextInitialized(ServletContextEvent sce) {

 ServletContext application = sce.getServletContext();
 String jdbcURL = application.getInitParameter("jdbcURL");
 String user = application.getInitParameter("user");
 String password = application.getInitParameter("password");
 String maxLimit = application.getInitParameter("maxLimit");

 try {
 ds = new OracleConnectionCacheImpl();
 ds.setURL(jdbcURL);
 ds.setMaxLimit(Integer.parseInt(maxLimit));
 ds.setUser("scott");
 ds.setPassword("tiger");
 }
 catch (Exception e) {
 application.log("Failed to create data source: " +
 e.getMessage());
 }
 Config.set(application, Config.SQL_DATA_SOURCE, ds);
 }

Using the Config class set() method guarantees that the implementation-dependent variable is set so that the JSTL
actions find and use this DataSource by default. Other components in the application can access it through the Config
class get() method:

import javax.servlet.jsp.jstl.core.Config;
...
ServletContext application = getServletContext();
DataSource ds =
 (DataSource) Config.get(application, Config.SQL_DATASOURCE);

The listener also implements the contextDestroyed() method, called by the container before the application is shut down.
In this method, the context attribute is removed, and all connections in the data source are closed. How to gracefully
shut down a DataSource isn't defined by the JDBC specification, but for Oracle, you do it by calling the close() method on
the OracleConnectionCacheImpl instance.

24.3.2 Using JNDI

J2EE defines an even more flexible way to make a DataSource, or any other shared resource, available through a Java
Naming and Directory Interface (JNDI) service. Through JNDI, the connection pool is available to all parts of the
application, even to components that don't have access to the servlet context. This should therefore be your first choice
for resource sharing, unless you need to target containers that don't support JNDI. All J2EE-compliant application
servers support JNDI, and many pure web containers (containers without EJB support), such as Tomcat, JRun, Resin,
and ServletExec, provide resource access through JNDI even though the servlet and JSP specifications don't require it.

To use JNDI, you first define the resource in the web application deployment descriptor, using the <resource-ref>
element:

<web-app ...>
 ...
 <resource-ref>
 <description>
 JNDI DataSource for example database
 </description>
 <res-ref-name>jdbc/Example</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Sharable</res-sharing-scope>
 </resource-ref>

The optional <description> element describes the resource and may be used to help the person that deploys the
application.

The <res-ref-name> element is mandatory and must contain the unique name that the application components use to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <res-ref-name> element is mandatory and must contain the unique name that the application components use to
retrieve the resource, as you will see shortly. For a data-source resource, the J2EE specification recommends that you
use the naming convention shown here, i.e., a name in the JNDI jdbc subcontext.

The type of the resource must be defined by the <res-type> element. It must be the fully qualified class name for the
resource, and for a data source, it's always javax.sql.DataSource.

Next comes the <res-auth> element. It accepts one of two values: Container or Application. Container means that database
account information needed to get connections from the data source must be provided to the container when the data
source is registered as a JNDI resource, so the container can take care of authentication. Application means that the
application will provide this information every time it gets a connection. This boils down to whether the application will
call getConnection() (in the container-controlled authentication case) or getConnection(String username, String password) (in
the application-controlled case). In most cases you want the container to take care of it.

The <res-sharing-scope> element is optional and accepts one of Sharable or Unsharable. This element tells the data source
if it should return the same connection when being asked for one multiple times within the same transaction (if the
transaction is controlled by the container or the Java Transaction API, JTA) or if it should return a unique connection
each time. If you use only the JDBC transaction control methods, commit() and rollback(), this element doesn't matter
because the connections can never be shared. The default is Sharable, and that's fine for almost all cases.

Application components—servlets, custom actions, beans, or any other type of class used by the application—use the
JNDI API to grab the DataSource and a Connection like this:

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sql.Connection;
...

 Context ctx = new InitialContext();
 DataSource ds =
 (DataSource) ctx.lookup("java:comp/env/jdbc/Example");
 Connection conn = ds.getConnection();

The InitialContext represents the entry point to the container's JNDI resource naming service. The lookup() method
argument is the path for the DataSource. The first part, java:comp/env/ is the base for all J2EE resources, followed by the
value declared by the <res-ref-name> element in the deployment descriptor. With the DataSource retrieved through JNDI,
the application gets a Connection by calling getConnection() as usual.

When you use the JSTL database actions, you can specify a JNDI path as the data source, either as the corresponding
configuration setting as described in Chapter 23 or as the dataSource attribute value:

<sql:query dataSource="jdbc/Example" ... />

The path must be the path relative to the J2EE base; in other words, the same value as you define with the <res-ref-
name> element.

All I've said about how to declare the resource in the deployment descriptor and get access to it through JNDI is defined
by the J2EE and servlet specifications. How to register a DataSource with a container's naming service, however, is a
process that differs between containers. I'll show you how it's done for Tomcat, but you need to read the
documentation to see how to do it for other containers.

For Tomcat, resource registration is done in the conf/server.xml file. This is the main configuration file for Tomcat. To
register the JNDI resource, you must use a <Context> element to declare your web application explicitly in the
conf/server.xml file (just placing it in Tomcat's webapps directory isn't enough in this case) and add a nested
<ResourceParams> element to register and configure the JNDI DataSource factory for your application:

<Server port="8005" shutdown="SHUTDOWN" debug="0">
 ...
 <Service name="Tomcat-Standalone">
 ...
 <Engine name="Standalone" defaultHost="localhost" debug="0">
 ...
 <Host name="localhost" debug="0" appBase="webapps"
 unpackWARs="true">
 ...
 <!-- Book examples context -->
 <Context path="/ora" docBase="ora">
 <ResourceParams name="jdbc/Example">
 <parameter>
 <name>factory</name>
 <value>com.ora.jsp.sql.DataSourceFactory</value>
 </parameter>
 <parameter>
 <name>dataSourceClassName</name>
 <value>oracle.jdbc.pool.OracleConnectionCacheImpl</value>
 </parameter>
 <parameter>
 <name>maxLimit</name>
 <value>2</value>
 </parameter>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </parameter>
 <parameter>
 <name>URL</name>
 <value>jdbc:oracle:thin:@voyager2:1521:Oracle9i</value>
 </parameter>
 <parameter>
 <name>user</name>
 <value>scott</value>
 </parameter>
 <parameter>
 <name>password</name>
 <value>tiger</value>
 </parameter>
 </ResourceParams>
 </Context>
 ...

The Tomcat server can be configured in many different ways, with or without some of the higher-level elements shown
here. I'm using the default configuration, so the <Context> element is nested within a <Host> element that defines the
base directory for all applications, and the <Context> element defines its base directory (ora in this example) relative to
the host's base (webapps in this example) and its context path (/ora in this example). To learn more about the
conf/server.xml file and all its elements, I suggest you read the Tomcat Server Configuration Reference, available at
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/index.html.

The <ResourceParams> element's name attribute must be set to the same name as you defined for the resource with the
<res-ref-name> element in the deployment descriptor. With exception for factory and dataSourceClassName, the nested
<parameter> elements set the parameter values supported by the specific DataSource you use. In this example I use
some of the parameters supported by the Oracle OracleConnectionCacheImpl data source.

The factory parameter identifies the JNDI object factory Tomcat uses to create the data source object. A JNDI object
factory is a class that implements the single method defined by the javax.naming.spi.ObjectFactory interface. Some JDBC
drivers may bundle an object factory that produces data-source objects for the implementations included with the
driver, but here I use a generic data source factory that I implemented for this book. It uses introspection to set the
parameters for any DataSource implementation, for instance the Oracle connection pool data source in this example.

The object factory source code is shown in Example 24-3.

Example 24-3. A generic DataSource factory class

package com.ora.jsp.sql;

import java.beans.*;
import java.lang.reflect.*;
import java.util.*;
import javax.naming.*;
import javax.naming.spi.ObjectFactory;

public class DataSourceFactory implements ObjectFactory {
 public Object getObjectInstance(Object obj, Name name,
 Context nameCtx, Hashtable environment)
 throws NamingException {

 System.out.println("Generic factory called");
 Reference ref = (Reference) obj;
 RefAddr ra = ref.get("dataSourceClassName");
 if (ra == null) {
 throw new NamingException("No class name specified");
 }

 String className = (String) ra.getContent();
 Object ds = null;
 try {
 ds = Class.forName(className).newInstance();
 }
 catch (Exception e) {
 throw new NamingException("Can't create DataSource: "
 + e.getMessage());
 }

 Enumeration addrs = ref.getAll();
 while (addrs.hasMoreElements()) {
 RefAddr addr = (RefAddr) addrs.nextElement();
 String prop = addr.getType();
 String value = (String) addr.getContent();
 if (!(prop.equals("dataSourceClassName") ||
 prop.equals("scope") ||
 prop.equals("auth") || prop.equals("factory"))) {
 setProperty(prop, value, ds);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setProperty(prop, value, ds);
 }
 }
 return ds;
 }
 ...
}

Tomcat calls the getObjectInstance() method the first time the application asks for the JNDI resource with the name the
factory is registered for. The method creates an instance of the DataSource class specified by the dataSourceClassName
parameter in the config/server.xml file, calls all setter methods matching the parameters specified within the
<ResourceParams> element, and returns the configured instance. A number of private methods, not shown here, use the
Introspection API to find and call the setter methods for the parameters. The source code is bundled with the book
examples, so you can look at these details at your leisure.

When you use JNDI, you must also place the JDBC driver classes in a directory that Tomcat itself can use: namely in
the common/lib directory if they are packaged in a JAR file, otherwise in common/classes. Classes in the WEB-INF/lib
and WEB-INF/classes directories are available only to the application, not the container, so they are no good in this
case. The same goes for the factory class. The factory class shown in Example 24-3 is part of the oraclasses_2_0.jar
file, located in the WEB-INF/lib directory for the book examples application. To use this factory, you must move the JAR
file to the common/lib directory.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.4 Using a Generic Database Bean
Some consider using the JSTL database access actions in JSP pages a bad idea because so much business logic ends up
in the presentation layer (the View). For a very simple application, it's no big deal, but for a more complex application
it's better to move the SQL statements to some other component type. You have basically two options: move it to a
Controller servlet (or an action class that the servlet delegates to), as in the Chapter 19 example, or encapsulate it in a
custom action. In both cases it makes sense to add yet another abstraction layer in the form of a bean that
encapsulates the SQL statements and let the servlet or tag handler access the data in a purer form. One example of
such a bean is the EmployeeRegistryBean used in Chapter 19 for authentication as well as for retrieving and saving
information about an employee.

When you develop this type of database access components, you can of course use the JDBC API directly. I find it
handy to use a generic JDBC bean, such as the com.ora.jsp.beans.sql.SQLCommandBean described in this section. Besides
taking care of a lot of the grunt work, it also converts a query result into an instance of the same class that the JSTL
<sql:query> action uses to expose the result. This makes it easy to use in a JSP page that renders the result.

The SQLCommandBean has three write-only properties. Example 24-4 shows the beginning of the class file with the setter
methods.

Example 24-4. SQLCommandBean property setter methods

package com.ora.jsp.beans.sql;

import java.util.*;
import java.sql.*;
import javax.servlet.jsp.jstl.sql.*;

public class SQLCommandBean {
 private Connection conn;
 private String sqlValue;
 private List values;

 public void setConnection(Connection conn) {
 this.conn = conn;
 }

 public void setSqlValue(String sqlValue) {
 this.sqlValue = sqlValue;
 }

 public void setValues(List values) {
 this.values = values;
 }
 ...

The connection property holds the Connection to use, and the sqlValue property is set to the SQL statement to execute,
with question marks as placeholders for variable values, if any. The application provides the values for the placeholders
through the values property, a List with one object per placeholder.

Two methods in the SQLCommandBean execute the SQL statement: the executeQuery() method for a SELECT statement
and the executeUpdate() method for all other types of statements. Example 24-5 shows the executeQuery() method.

Example 24-5. The SQLCommandBean's executeQuery() method

 public Result executeQuery() throws SQLException {
 Result result = null;
 ResultSet rs = null;
 PreparedStatement pstmt = null;
 Statement stmt = null;
 try {
 if (values != null && values.size() > 0) {
 // Use a PreparedStatement and set all values
 pstmt = conn.prepareStatement(sqlValue);
 setValues(pstmt, values);
 rs = pstmt.executeQuery();
 }
 else {
 // Use a regular Statement
 stmt = conn.createStatement();
 rs = stmt.executeQuery(sqlValue);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 rs = stmt.executeQuery(sqlValue);
 }
 result = ResultSupport.toResult(rs);
 }
 finally {
 if (rs != null) {
 try {rs.close();} catch (SQLException e) {}
 }
 if (stmt != null) {
 try {stmt.close();} catch (SQLException e) {}
 }
 if (pstmt != null) {
 try {pstmt.close();} catch (SQLException e) {}
 }
 }
 return result;
 }

If the values property is set, a JDBC PreparedStatement is needed to associate the values with the placeholders in the SQL
statement. A private method named setValues() takes care of setting all values using the PreparedStatement setObject()
method. If the values property isn't set, a regular JDBC Statement is created instead. In both cases, the JDBC driver is
asked to execute the statement, and the resulting ResultSet is turned into a javax.servlet.jsp.jstl.sql.Result, which is
returned to the caller. The conversion is performed by a static method in the javax.servlet.jsp.jstl.sql.ResultSupport support
class defined by the JSTL specification. Besides the toResult() method used in Example 24-5, this class also provides a
toResult() method that takes the maximum number of rows to include in the Result object as an argument.

You may wonder why a Result object is created and returned instead of returning the ResultSet directly. The reason is
that a ResultSet is tied to the Connection that was used to generate it. When the Connection is closed or executes a new
SQL statement, all open ResultSet objects for the Connection are released. You must therefore make sure you save the
information from the ResultSet in a new data structure before reusing the Connection or return it to the pool.

The code for the creation of the PreparedStatement or Statement object and the execution of the statement is enclosed in a
try/finally block. This is important, because if something fails (due to an invalid SQL statement, for instance), the JDBC
methods throw an SQLException. The exception should be handled by the application using the SQLCommandBean, but
first, all JDBC resources must be released, and the Connection object returned to the pool. Using a try block with a finally
clause but no catch clause provides this behavior. If an exception is thrown, the finally clause is executed, and the
exception is automatically thrown to the object that called the executeQuery() method. In the finally clause, the ResultSet
object and either the PreparedStatement or Statement object are closed. It should be enough to close the statement object
according to the JDBC specification (closing the statement should also close the ResultSet associated with the statement)
but closing all resources used by the statement explicitly doesn't hurt and makes the code work even with a buggy
JDBC driver. Each resource is closed within its own try/catch block, since the close() method can also throw an exception.

Example 24-6 shows the private setValues() method.

Example 24-6. The SQLCommandBean's setValues() method

private void setValues(PreparedStatement pstmt, List values)
 throws SQLException {
 for (int i = 0; i < values.size(); i++) {
 Object v = values.get(i);
 // Set the value using the method corresponding to the type.
 // Note! Set methods are indexed from 1, so we add 1 to i
 pstmt.setObject(i + 1, v);
 }
}

The setValues() method loops through all elements in the List with values. For each element, it uses the setObject()
method to set the value of the corresponding placeholders in the PreparedStatement. You may wonder why a
PreparedStatement is used here, since it's used only once. It's true that a PreparedStatement is intended to be reused over
and over again to execute the same SQL statement with new values. However, it offers a convenient solution to the
problem with different literal value syntax for date/time and number column values. When a PreparedStatement is used,
the placeholders in the SQL statement can be set using the appropriate Java types instead, without worrying about
what literal representation a certain JDBC driver supports. So even though it's only used once here, a PreparedStatement
still has an advantage over a regular Statement.

The executeUpdate() method, shown in Example 24-7, is very similar to the executeQuery() method.

Example 24-7. The SQLCommandBean's executeUpdate() method

 public int executeUpdate() throws SQLException {
 int noOfRows = 0;
 ResultSet rs = null;
 PreparedStatement pstmt = null;
 Statement stmt = null;
 try {
 if (values != null && values.size() > 0) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (values != null && values.size() > 0) {
 // Use a PreparedStatement and set all values
 pstmt = conn.prepareStatement(sqlValue);
 setValues(pstmt, values);
 noOfRows = pstmt.executeUpdate();
 }
 else {
 // Use a regular Statement
 stmt = conn.createStatement();
 noOfRows = stmt.executeUpdate(sqlValue);
 }
 }
 finally {
 if (rs != null) {
 try {rs.close();} catch (SQLException e) {}
 }
 if (stmt != null) {
 try {stmt.close();} catch (SQLException e) {}
 }
 if (pstmt != null) {
 try {pstmt.close();} catch (SQLException e) {}
 }
 }
 return noOfRows;
 }

The main difference is that the executeUpdate() method executes SQL statements that don't return rows, only the
number of rows affected by the statement. Examples of such statements are UPDATE, INSERT, and DELETE. As for the
executeQuery() method, a PreparedStatement is created and initialized with the values defined by the values property, if
set. Otherwise a regular Statement is used. The statement is executed, and the number of affected rows is returned to
the caller.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

24.5 Developing Application-Specific Database Components
The SQLCommandBean class described in this chapter can be used for application-specific components that access a
database. The bean is used like this:

SQLCommandBean sqlCommandBean = new SQLCommandBean();
sqlCommandBean.setConnection(dataSource.getConnection());
String sql = "SELECT * FROM Employee WHERE UserName = ?");
sqlCommandBean.setSqlValue(sql);
List values = new ArrayList();
values.add(userName);
sqlCommandBean.setValues(values);
Result result = sqlCommandBean.executeQuery();

Chapter 19 includes a more advanced example of an application-specific bean (the EmployeeRegisterBean) that uses the
SQLCommandBean.

You can also use these classes in your application-specific custom actions. One example is the custom action that's
mentioned in Chapter 12 as an alternative to the generic database actions for inserting or updating employee
information:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ taglib prefix="myLib" uri="mytaglib" %>

<myLib:saveEmployeeInfo dataSource="${appDataSource}" />

<%-- Get the new or updated data from the database --%>
<sql:query var="newEmpDbInfo"="${example}" scope="session">
 SELECT * FROM Employee
 WHERE UserName = ?
 <sql:param value="${param.userName}" />
</sql:query>

<%-- Redirect to the confirmation page --%>
<c:redirect url="confirmation.jsp" />

Example 24-8 shows one way to implement this custom action.

Example 24-8. SaveEmployeeInfoTag class

package com.mycompany.tags;

import java.sql.*;
import java.text.*;
import java.util.*;
import javax.sql.*;
import javax.servlet.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.jstl.sql.Result;
import com.ora.jsp.beans.sql.SQLCommandBean;
import com.ora.jsp.util.*;

public class SaveEmployeeInfoTag extends SimpleTagSupport {
 private DataSource dataSource;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public void doTag() throws JspException {
 // Get all request parameters
 PageContext pageContext = (PageContext) jspContext;
 ServletRequest request = pageContext.getRequest();
 String userName = request.getParameter("userName");
 String password = request.getParameter("password");
 String firstName = request.getParameter("firstName");
 String lastName = request.getParameter("lastName");
 String dept = request.getParameter("dept");
 String empDateString = request.getParameter("empDate");
 String emailAddr = request.getParameter("emailAddr");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 String emailAddr = request.getParameter("emailAddr");
 if (userName == null || password == null ||
 firstName == null || lastName == null ||
 dept == null || empDateString == null ||
 emailAddr == null) {
 throw new JspException("Missing a mandatory parameter");
 }

 SQLCommandBean sqlCommandBean = new SQLCommandBean();
 if (dataSource == null) {
 throw new JspException("The data source cannot be found");
 }

 Connection conn = null;
 try {
 conn = dataSource.getConnection();
 sqlCommandBean.setConnection(conn);

 // Get the current info, if any
 String sqlValue =
 "SELECT * FROM Employee WHERE UserName = ?";
 List values = new ArrayList();
 values.add(userName);
 sqlCommandBean.setSqlValue(sqlValue);
 sqlCommandBean.setValues(values);
 Result result = sqlCommandBean.executeQuery();

 // Create values for insert/update
 values.clear();
 values.add(password);
 values.add(firstName);
 values.add(lastName);
 values.add(dept);
 // Must convert the String value to java.sql.Date
 java.util.Date empDate =
 StringFormat.toDate(empDateString, "yyyy-MM-dd")
 java.sql.Date empSQLDate =
 new java.sql.Date(empDate.getTime());
 values.add(empSQLDate);
 values.add(emailAddr);
 values.add(new Timestamp(System.currentTimeMillis()));
 values.add(userName);

 if (result.getRowCount() == 0) {
 // New user. Insert
 StringBuffer sb = new StringBuffer();
 sb.append("INSERT INTO Employee ").
 append("(Password, FirstName, LastName, Dept, ").
 append("EmpDate, EmailAddr, ModDate, UserName) ").
 append("VALUES(?, ?, ?, ?, ?, ?, ?, ?)");
 sqlCommandBean.setSqlValue(sb.toString());
 }
 else {
 // Existing user. Update
 StringBuffer sb = new StringBuffer();
 sb.append("UPDATE Employee ").
 append("SET Password = ?, FirstName = ?, ").
 append("LastName = ?, Dept = ?, EmpDate = ?, ").
 append("EmailAddr = ?, ModDate = ? ").
 append("WHERE UserName = ?");
 sqlCommandBean.setSqlValue(sb.toString());
 }
 sqlCommandBean.executeUpdate();
 }
 catch (SQLException e) {
 throw new JspException("SQL error: " + e.getMessage());
 }
 catch (ParseException e) {
 throw new JspException("Invalid empDate format: " +
 e.getMessage());
 }
 finally {
 try {
 if (conn != null) {
 conn.close();
 }
 }
 catch (SQLException e) {
 // Ignore

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Ignore
 }
 }
 }
}

This tag handler has one property, named dataSource. It's marked as required in the TLD for the tag so it must always
be set. It's also declared to accept a request-time attribute value, so an EL expression can be used to assign it a
reference to the data source:

 ...
 <tag>
 <name>saveEmployeeInfo</name>
 <tag-class>com.mycompany.tags.SaveEmployeeInfoTag</tag-class>
 <body-content>empty</body-content>

 <attribute>
 <name>dataSource</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
 ...

In the doTag() method, all request parameters with information about the employee are first retrieved. If a parameter
is missing, an exception is thrown. An SQLCommandBean instance is then created and provided a Connection, retrieved
from the DataSource.

The tag handler uses the bean to execute a SELECT statement to find out if the specified employee is already defined in
the database. If not, the tag handler sets the bean's SQL statement to an INSERT statement and executes it with all the
information provided through the request parameters; otherwise the tag handler uses the bean to execute an UPDATE
statement.

The tag handler class described here is intended to show you how to use the database access classes to implement your
own custom actions. The tag handler class can be improved in several ways. For instance, it can use the JSTL Config
class (see Chapter 23) to get hold of a default DataSource if the dataSource attribute is omitted, and provide default
values for missing parameters, such as the current date for a missing employment date and an email address based on
the employee's first and last name if the email address is missing. You can also use a bean as input to the action
instead of reading request parameters directly. This allows the bean to be used as described in Chapter 8 to capture
and validate user input until all information is valid, and then pass it on to the custom action for permanent storage of
the information in a database. Finally, it's a good idea to encapsulate all database access in a bean, such as the
EmloyeeRegistryBean, and use this bean in the tag handler class instead of using the SQLCommandBean directly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Part IV: Appendixes
In this part of the book, you'll find reference material, such as descriptions of JSP and JSTL elements
and classes, the JSTL Expression Language, all book example components, and the web application
deployment descriptor:

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix A. JSP Elements Reference
JSP defines three types of elements: directives, scripting elements, and action elements. In addition, you can define
your own custom actions. This appendix contains descriptions of all standard JSP elements, as well as the general
syntax rules for custom actions.

Each element is described with an overview, a syntax reference, an attribute table, and an example. The syntax
reference shows all supported attributes, with optional attributes embedded in square brackets ([]). Mutually exclusive
attributes are separated with vertical bars (|). For attributes that accept predefined values, all values are listed
separated with vertical bars; the default value (if any) is in boldface. Italics are used for attribute values that don't have
a fixed set of accepted values.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.1 Directive Elements
Directive elements are used to specify information about the page itself, especially information that doesn't differ
between requests for the page. The classic general directive syntax is:

<%@ directiveName attr1="value1" attr2="value2" %>

The following XML equivalent syntax must be used in a JSP Document (a JSP page written in XML syntax) and can
optionally be used as an alternative to the classic syntax in a regular JSP page:

<jsp:directive.directiveName attr1="value1" attr2="value2" />

Only the classic syntax is shown in the detailed sections that follow.

The attribute values can be enclosed with single quotes instead of double quotes. The directive name and all attribute
names are case-sensitive.

Attribute Directive

This directive can only be used in tag files. It declares the attributes the tag file supports.

Syntax

<%@ attribute name="attrName "
 [description="description "] [required="true|false "]
 [fragment="true|false " | [type="attrDataType "] [rtexprvalue="true |false"]]
%>

Attributes

Attribute
name Default Description

description No
default A description of the attribute that can be presented to a page author by an authoring tool.

fragment false Set to true if the attribute represents a fragment, set by a <jsp:attribute> element. If false, the
attribute is converted to the type specified by the type attribute.

name No
default The attribute name.

required false Set to true if the page author must provide an attribute value.

rtexprvalue true Set to false if the attribute value must be provided as a static text value. If true, the attribute can
be set by an EL or Java expression or a <jsp:attribute> element, evaluated at runtime.

type String The attribute data type. Primitive types are not supported, only Java classes and interfaces.

When the fragment attribute is used, the rtexprvalue and type attributes must not be used. For a fragment, a runtime
expression value is always accepted and the type is fixed to javax.servlet.jsp.tagext.JspFragment.

Example

<%@ attribute name="date" type="java.util.Date" %>
<%@ attribute name="pattern" fragment="true" %>

Include Directive

Includes a static file, merging its content with the including page before the combined result is converted to a JSP page
implementation class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

<%@ include file="pageOrContextRelativePath" %>

Attributes

Attribute name Default Description

file No default A page-relative or context-relative URI path for the file to include.

A page can contain multiple include directives. The including page and all included pages taken together forms what is
called a JSP translation unit.

Example

<%@ include file="header.html" %>

Page Directive

This directive can only be used in JSP pages, not in tag files. It defines page-dependent attributes, such as scripting
language, error page, and buffering requirements.

Syntax

<%@ page [autoFlush="true |false"] [buffer="8kb |NN kb|none"]
 [contentType="mimeType "] [errorPage="pageOrContextRelativePath "]
 [extends="className "] [import="packageList "] [info="info "]
 [isELIgnored="true|false] [isErrorPage="true|false "]
 [isThreadSafe="true |false"] [language="java|language "]
 [pageEncoding="encoding "] [session="true |false"]
%>

Attributes

Attribute
name Default Description

autoFlush true Set to true if the page buffer should be flushed automatically when it's full, or to
false if an exception should be thrown when it's full.

buffer 8kb Specifies the buffer size for the page. The value must be expressed as the size in
kilobytes followed by kb, or be the keyword none to disable buffering.

contentType text/html or text/xml

The MIME type for the response generated by the page and optionally the response
charset, e.g., text/html;charset=Shift_JIS. The charset applies to the JSP page file as
well, if pageEncoding isn't specified.

The default MIME type is text/html for a regular JSP page and text/xml for a JSP
Document.

If no charset is specified, ISO-8859-1 is used for a regular JSP page and UTF-8 for
a JSP Document.

errorPage No default A page- or context-relative URI path for the JSP page, servlet, or static page to
forward to in case an exception is thrown by code in the page.

extends No default

The fully qualified name of a Java class that the generated JSP page implementation
class shall extend. The class must implement the JspPage or HttpJspPage interface in
the javax.servlet.jsp.package.

Note that the recommendation is to not use this attribute. Specifying your own
superclass restricts the JSP container's ability to provide a specialized, high-
performance superclass.

import No default A Java import declaration, i.e., a comma-separated list of fully qualified class names
or package names followed by .* (for all public classes in the package).

info No default Text that a web container may use as a description of the page in its administration
user interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isELIgnored false[1] Set to true to treat ${...} character sequences as template text instead of EL
expressions, false otherwise.

isErrorPage false Set to true for a page that is used as an error page, to make the implicit exception
variable available to scripting elements. Use false for regular JSP pages.

isThreadSafe true

Set to true if the container is allowed to run multiple threads through the page (i.e.,
let the page serve parallel requests). If set to false, the container serializes all
requests for the page. It may also use a pool of page implementation class
instances to serve more than one request at a time. The recommendation is to
always use true and handle multithread issues by avoiding JSP declarations, and to
ensure that all objects used by the page are thread-safe.

language java Defines the scripting language used in the page.

pageEncoding See Description

The encoding used for the JSP page file, as well as the response charset if no
charset is specified by contentType.

If this attribute is omitted, but a charset is specified for contentType, that charset is
also used of the page; if contentType doesn't specify a charset, ISO-8859-1 is used
for a regular JSP page, and UTF-8 is used for a JSP Document.

session true
Set to true if the page should participate in a user session. If set to false, neither the
session scope nor the implicit session variable is available to JSP elements in the
page.

[1] The default is false for a JSP 2.0 application (i.e., an application deployed with a Servlet 2.4 deployment
descriptor), but it's true for an application deployed with a deployment descriptor for any prior version of the
JSP/Servlet specification to ensure backward compatibility.

A translation unit (the JSP source file and any files included via the include directive) can contain more than one page
directive, as long as duplicated attributes all have the same value, with the exception for the import and pageEncoding
attributes. If multiple import attribute values are used, they are combined into one list of import definitions. The
pageEncoding attribute must only be used once in each file in the translation unit and applies only to the file in which it
appears.

Example

<%@ page language="java" contentType="text/html;charset=Shift_JIS"%>
<%@ page import="java.util.*, java.text.*" %>
<%@ page import="java.sql.Date" %>

Taglib Directive

Declares a tag library, containing custom actions, that is used in the page.

Syntax

<%@ taglib prefix="prefix" [uri="taglibURI" | tagdir="contextRelativePath"]%>

Attributes

Attribute
name Default Description

prefix No
default The prefix to use in the action element names for all actions in the library.

uri No
default

Either a symbolic name for the tag library that is defined in the TLD for the library or in the
web.xml file for the application, or a page-relative or context-relative URI path for the library's
TLD file or JAR file.

tagdir No
default The context-relative path to a directory containing tag files, starting with /WEB-INF/tags.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<%@ taglib prefix="ora" uri="orataglib" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="mylib" tagdir="/WEB-INF/tags/mylib" %>

Tag Directive

This directive can only be used in tag files. It defines properties of the file itself, such as encoding and how to treat EL
expressions, as well as properties of the custom action the tag file implements the behavior for, such as developer
information an authoring tool can display.

Syntax

<%@ tag [body-content="empty|scriptless |tagdependent"]
 [description="description "] [display-name="displayName "]
 [dynamic-attributes="attrCollVar "] [example="example "]
 [import="packageList "] [isELIgnored="true|false "] [language="java |language "]
 [large-icon="largeIconPath "] [pageEncoding="encoding "]
 [small-icon="smallIconPath "]
%>

Attributes

Attribute
name Default Description

body-content scriptless The custom action body content type, one of empty, scriptless, or tagdependent.

description No
default A description of the custom action that can be displayed by a page-authoring tool.

display-name No
default A descriptive name for the custom action that can be displayed by a page-authoring tool.

dynamic-attributes No
default

The name of a variable to hold undeclared attributes. The variable is made available in
the tag file's page scope as a java.util.Map with the attribute names as keys and the
attribute values as the values.

example No
default

An example of how to use the custom action that can be displayed by a page-authoring
tool.

import No
default

A Java import declaration, i.e., a comma-separated list of fully qualified class names or
package names followed by .* (for all public classes in the package).

isElIgnored false[2] Set to true to treat ${...} character sequences as template text instead of EL expressions,
false otherwise.

language java Defines the scripting language used in the page.

large-icon No
default

A context- or file-relative path to a 32x32 pixel GIF or JPEG image file that can be
displayed by a page-authoring tool.

pageEncoding ISO-
8859-1 The encoding used for the tag file.

small-icon No
default

A context- or file-relative path to a 16x16 pixel GIF or JPEG image file that can be
displayed by a page-authoring tool.

[2] The default is false for a JSP 2.0 application (i.e., an application deployed with a Servlet 2.4 deployment
descriptor), but it's true for an application deployed with a deployment descriptor for any prior version of the
JSP/Servlet specification to ensure backward compatibility.

Example

<%@ tag body-content="empty" dynamic-attributes="dynAttrs" %>

Variable Directive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This directive can be used only in tag files. It declares variables exposed by the tag file to the page where the
corresponding custom action is used.

Syntax

<%@ variable name-given="attrAndVarName " |
 name-from-attribute="attrName " alias="varName "
 [declare="true |false"] [description="description "]
 [scope="AT_BEGIN|AT_END|NESTED "] [variable-class="varType "]
%>

Attributes

Attribute Name Default Description

alias No
default

The name of the local page scope variable the tag file uses to hold the value it creates.
The container copies the value of the local variable to the variable in the invoking page's
page scope named by the attribute specified by the name-from-attribute attribute.

declare true Set to false if no scripting variable declaration should be created in the page
implementation class.

description No
default A description of the variable that can be displayed by a page-authoring tool.

name-from-attribute No
default

The name of the attribute that specifies the variable to hold the value created by the tag
file. This attribute must be used in combination with the alias attribute, and must not be
used with the name-given attribute.

name-given No
default

The name of the variable in the invoking page's page scope the tag file uses to expose
the value it creates. This attribute must not be used with the name-from-attribute
attribute.

scope NESTED The visibility of the variable, one of AT_BEGIN, AT_END, or NESTED.

variable-class String The variable type; a fully qualified class or interface name.

Example

<%@ variable name-from-attribute="var" alias="current"
 variable-class="java.util.Date" scope="AT_END" %>
<%@ attribute name="var" required="true" rtexprvalue="false" %>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.2 Scripting Elements
The scripting elements let you add small pieces of code in a JSP page, such as an if statement to generate different
HTML depending on some condition. The scripting code must be written in the language defined by the page directive.

Declaration

Declarations are used to declare scripting language variables or methods. The content must be a complete valid
declaration in the language defined by the page directive. The JSP implicit scripting variables aren't visible in a
declaration element.

When the language is Java, a variable declared by a declaration element ends up as an instance variable in the JSP
page implementation class. It's therefore visible to parallel threads (requests) processing the page and needs to be
handled in a thread-safe manner. A thread-safe alternative is to declare variables within a scriptlet element instead. It
then becomes a local variable of the method in the page implementation class used to process each request, and isn't
shared by parallel threads.

Syntax 1: In a regular JSP page

<%! declaration %>

Syntax 2: In a JSP Document (a JSP page written in XML syntax)

<jsp:declaration>declaration</jsp:declaration>

Attributes

None.

Example

<%! int globalCounter = 0; %>

Expression

An expression is used to add the result of executing a scripting expression to the response. The content between the
start and the end characters must be a complete valid expression in the language defined by the page directive that
results in a string or can be converted to a string. All JSP implicit scripting variables are visible in an expression
element.

Syntax 1: In a regular JSP page

<%= expression %>

Syntax 2: In a JSP Document (a JSP page written in XML syntax)

<jsp:expression>expression</jsp:expression>

Attributes

None.

Example

<%= globalCounter++ %>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scriptlet

Scriptlets are used to embed scripting code fragments in a page. The content must be a code fragment in the language
defined by the page directive. Scriptlet code fragments are combined with code for sending the template data between
them to the browser. The combination of all scriptlets in a page must form valid scripting language statements. All JSP
implicit scripting variables are visible in a scripting element.

Syntax 1: In a regular JSP page

<% scripting code fragment %>

Syntax 2: In a JSP Document (a JSP page written in XML syntax)

<jsp:scriptlet> scripting code fragment </jsp:scriptlet>

Attributes

None.

Example

<% java.util Date clock = new java.util.Date() %>

<% if (clock.getHours() < 12) { %>
 Good morning!
<% } else if (clock.getHours() < 17) { %>
 Good day!
<% } else { %>
 Good evening!
<% } %>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.3 Action Elements
Action elements use XML element syntax and represent components that are invoked when a client requests the JSP
page. They may encapsulate functionality such as input validation using beans, database access, or passing control to
another page. The JSP specification defines a few standard action elements, described in this section, and also includes
a framework for developing custom action elements.

An action element consists of a start tag (optionally with attributes), a body, and an end tag. Template text and other
JSP elements can be nested in the body. Here's an example:

<jsp:forward page="nextPage.jsp">
 <jsp:param name="aParam" value="aValue" />
</jsp:forward>

If the action element doesn't have a body, a shorthand notation can be used where the start tag ends with "/>" instead
of ">", as shown by the <jsp:param> action in this example. The action element name and attribute names are case-
sensitive.

Some standard action attributes accept a request-time attribute value (marked with "Yes" in the "Dynamic value
accepted" column in the Attributes table for each action that follows). For such an attribute, the value can be specified
as an EL or Java expression, or by a <jsp:attribute> element:

<% String headerPage = currentTemplateDir + "/header.jsp"; %>
<%-- Using a Java expression --%>
<jsp:include page="<%= headerPage %>" />

<% pageContext.setAttribute("scopedVar", headerPage);

<%-- Using an EL expression --%>
<jsp:include page="${scopedVar}" />

<%-- Using a <jsp:attribute> element --%>
<jsp:include>
 <jsp:attribute name="page">
 ${scopedVar}
 </jsp:attribute>
</jsp:include>

The attribute descriptions for each action in this section define whether a request-time attribute value is accepted or
not.

<jsp:attribute>

The <jsp:attribute> element defines an attribute value for another JSP action element, as an alternative to entering the
attribute value as a regular XML attribute value in the opening tag or to define fragment input. It can also be used in
conjunction with the <jsp:element> action to dynamically build a template text markup element.

Syntax

<jsp:attribute name="attrName " [trim="true |false"]>
 Attribute value, typically created by nested JSP elements
</jsp:attribute>

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

name String No The name of the attribute to assign a value. When the action is used with an
action other than <jsp:element>, the named attribute must accept a dynamic value.

trim boolean No Set to false to disable removal of leading and trailing whitespace from the body
evaluation result.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<%-- Setting a JSP action attribute value --%>
<jsp:include>
 <jsp:attribute name="page">
 ${someValue}
 </jsp:attribute>
</jsp:include>

<%-- Defining an attribute for a generated markup element --%>
<jsp:element name="a">
 <jsp:attribute name="href">
 <c:url value="${someURL}" />
 </jsp:attribute>
</jsp:element>

<jsp:body>

The <jsp:body> action defines a body for an action element. It's required only when the action attributes are defined by
<jsp:attribute> elements.

Syntax

<jsp:body>
 Body content
</jsp:body>

Attributes

None.

Example

<jsp:plugin type="applet" code="Clock2.class"
 codebase="applet" jreversion="1.2">
 <jsp:attribute name="width">160</jsp:attribute>
 <jsp:attribute name="height">150</jsp:attribute>
 <jsp:body>
 <jsp:params>
 <jsp:param name="bgcolor" value="ccddff" />
 </jsp:params>
 <jsp:fallback>
 Plugin tag OBJECT or EMBED not supported by browser.
 </jsp:fallback>
 </jsp:body>
</jsp:plugin>

<jsp:doBody>

The <jsp:doBody> action must only be used in a tag file. It evaluates the corresponding custom action body, adding the
output to the calling page's output stream or capturing it in a variable.

Syntax

<jsp:doBody [var="var " | varReader="varReader "]
 [scope="page |request|session|application"] />

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

scope String No The scope for the variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var String No The name of the variable to hold the evaluation result as a String.

varReader String No The name of the variable to capture and expose the evaluation result
as a java.io.Reader.

Example

<%-- Adding the evaluation result to the response --%>
<jsp:doBody/>

<%-- Capturing the evaluation result for further processing --%>
<jsp:doBody var="result" />

<jsp:element>

The <jsp:element> dynamically creates an XML element and adds it to the response. It's useful primarily in JSP
Documents (JSP pages in XML syntax), where other approaches can't be used because of the well-formedness
requirement.

Syntax 1: Without a body

<jsp:element name="elementName" />

Syntax 2: With a body

<jsp:element name="elementName">
 <jsp:attribute> and/or <jsp:body> actions
</jsp:element>

Attributes

Attribute name Java type Dynamic value accepted Description

name String Yes The name of the generated element.

Example

<%-- Generates Some text
<jsp:element name="a">
 <jsp:attribute name="href">somepage.jsp</jsp:attribute>
 <jsp:body>Some text</jsp:body>
</jsp:element>

<jsp:fallback>

The <jsp:fallback> action can only be used in the body of a <jsp:plugin> action. Its body specifies the template text to use
for browsers that don't support the HTML <embed> or <object> elements.

Syntax

<jsp:fallback>
 Fallback body
</jsp:fallback>

Attributes

None.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<jsp:plugin type="applet" code="Clock2.class"
 codebase="applet"
 jreversion="1.2" width="160" height="150" >
 <jsp:fallback>
 Plugin tag OBJECT or EMBED not supported by browser.
 </jsp:fallback>
</jsp:plugin>

<jsp:forward>

The <jsp:forward> action passes the request processing control to another JSP page or servlet in the same web
application. The execution of the current page is terminated, giving the target resource full control over the request.

If any response content has been buffered when the <jsp:forward> action is executed, the buffer is cleared first. If the
response has already been committed (i.e., partly sent to the browser), the forwarding fails with an IllegalStateException.

The URI path information available through the request object is adjusted to reflect the URI path information for the
target resource. All other request information is left untouched, so the target resource has access to all the original
parameters and headers passed with the request. Additional parameters can be passed to the target resource through
<jsp:param> elements in the <jsp:forward> element's body.

Syntax 1: Without parameters

<jsp:forward page="pageOrContextRelativePath" />

Syntax 2: With nested <jsp:param> actions

<jsp:forward page="pageOrContextRelativePath" />
 One or more <jsp:param> actions
</jsp:forward>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

page String Yes Page- or context-relative URI path for the resource to
forward to.

Example

<jsp:forward page="list.jsp" />

<jsp:getProperty>

The <jsp:getProperty> action adds the value of a bean property, converted to a string, to the response generated by the
page.

Syntax

<jsp:getProperty name="beanVariableName" property="propertyName" />

Attributes

Attribute name Java type Dynamic value accepted Description

name String No The name assigned to a bean in one of the JSP scopes.

property String No The name of the bean's property to include in the page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<jsp:getProperty name="clock" property="hours" />

<jsp:include>

The <jsp:include> action includes the response from another JSP page, servlet, or static file in the same web application.
The execution of the current page continues after including the response generated by the target resource.

If any response content has been buffered when the <jsp:include> action is executed, the flush attribute controls whether
or not to flush the buffer.

The URI path information available through the request object reflects the URI path information for the source JSP page
even in the target resource. All other request information is also left untouched, so the target resource has access to all
the original parameters and headers passed with the request. Additional parameters can be passed to the target
resource through <jsp:param> elements in the <jsp:include> element's body.

Syntax

<jsp:include page="pageOrContextRelativePath " [flush="true|false "] />

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

page String Yes A page- or context-relative URI path for the resource to
include.

flush boolean No Set to true to flush the buffer before including the target.

Example

<jsp:include page="navigation.jsp" />

<jsp:invoke>

The <jsp:invoke> action must only be used in a tag file. It evaluates the named fragment, adding the output to the
calling page's output stream or capturing it in a variable.

Syntax

<jsp:invoke fragment="fragmentName " [var="var " | varReader="varReader "]
 [scope="page |request|session|application"] />

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

fragment String No The name of an attribute that defines a fragment.

scope String No The scope for the variable.

var String No The name of the variable to hold the evaluation result as a String.

varReader String No The name of the variable to capture and expose the evaluation result
as a java.io.Reader.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<%@ attribute name="pattern" fragment="true" %>

<%-- Adding the evaluation result to the response --%>
<jsp:invoke fragment="pattern"/>

<%-- Capturing the evaluation result for further processing --%>
<jsp:invoke fragment="pattern" var="result" />

<jsp:output>

The <jsp:output> element can only be used in JSP Documents (JSP pages in XML syntax) and tag files in XML syntax. It
modifies properties of the generated response.

Syntax

<jsp:output [omit-xml-declaration="true|yes|false|no"]
 [doctype-root-element="elementName"
 [doctype-public="publicID"] doctype-system="systemID"]
/>

Attributes

Attribute name Java
type

Dynamic
value

accepted
Description

omit-xml-declaration boolean No

Set to true or yes to prevent an XML declaration to be added to the
response, or to false or no to force an XML declaration to be added.

The default is yes for a JSP Document with a <jsp:root> element and for
tag files in XML syntax, no for all other cases.

doctype-root-element String No The root element name to use in the generated DOCTYPE declaration.

doctype-public String No The Public ID to use in the generated DOCTYPE declaration.

doctype-system String No The System ID to use in the generated DOCTYPE declaration.

Example

<!-- Add an XML declaration to the response -->
<jsp:output omit-xml-declaration="true" />

<!-- Add a DOCTYPE declaration to the response -->
 <jsp:output doctype-root-element="html"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system='http://www.w3c.org/TR/xhtml1/DTD/xhtml1-transitional.dtd'/>

<jsp:param>

The <jsp:param> action can be used in the body of a <jsp:forward> or <jsp:include> action to specify additional request
parameters for the target resource, as well as in the body of a <jsp:params> action to specify applet parameters.

Syntax

<jsp:param name="parameterName" value="parameterValue" />

Attributes

Attribute name Java type Dynamic value accepted Description

name String No The parameter name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value String Yes The parameter value.

Example

<jsp:include page="navigation.jsp">
 <jsp:param name="bgColor" value="<%= currentBGColor %>" />
</jsp:include>

<jsp:params>

The <jsp:params> action can only be used in the body of a <jsp:plugin> action to enclose a set of <jsp:param> actions that
specify applet parameters.

Syntax

<jsp:params>
 One or more <jsp:param> actions
</jsp:params>

Attributes

None.

Example

<jsp:plugin type="applet" code="Clock2.class"
 codebase="applet"
 jreversion="1.2" width="160" height="150" >
 <jsp:params>
 <jsp:param name="bgcolor" value="ccddff" />
 </jsp:params>
</jsp:plugin>

<jsp:plugin>

The <jsp:plugin> action generates HTML <embed> or <object> elements (depending on the browser type) that result in
the download of the Java Plugin software (if required) and subsequent execution of the specified Java applet or
JavaBeans component. The body of the action can contain a <jsp:params> element to specify applet parameters and a
<jsp:fallback> element to specify the text shown in browsers that don't support the <embed> or <object> HTML elements.
For more information about the Java Plugin, see http://java.sun.com/products/plugin/.

Syntax

<jsp:plugin [align="bottom|middle |top"] [archive="archiveList "]
 code="className " codeBase="relativePath " [height="height "]
 [hspace="horizontalSpace "] [iepluginurl="pluginURL "]
 [jreversion="jreVersion "] [name="appletName "]
 [nspluginurl="pluginURL "] [title="title "] type="applet|bean"
 [vspace="verticalSpace "] [width="width "] >
 Optionally one <jsp:param> and one <jsp:fallback> action
</jsp:plugin>

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

align String No Alignment of the applet area. One of bottom, middle, or top.

archive String No

A comma-separated list of URIs for archives containing classes and other resources
that will be preloaded. The classes are loaded using an instance of an AppletClassLoader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

archive String No that will be preloaded. The classes are loaded using an instance of an AppletClassLoader
with the given codebase. Relative URIs for archives are interpreted with respect to the
applet's codebase.

code String No The fully qualified class name for the applet.

codebase String No The relative URL for the directory that contains the class file. The directory must be a
subdirectory to the directory holding the page according to the HTML 4.0 spec.

height String Yes The height of the applet area, in pixels or percentage.

hspace String No The amount of whitespace to be inserted to the left and right of the applet area, in
pixels.

iepluginurl String No The URL for the location of the Internet Explorer Java Plugin. The default is
implementation dependent.

jreversion String No Identifies the spec version number of the JRE the component requires in order to
operate. The default is 1.1.

name String No Applet name, used by other applets on the same page that need to communicate with
it.

nspluginurl String No The URL for the location of the Netscape Java Plugin. The default is implementation
dependent.

title String No Text to be rendered by the browser for the applet in some way, for instance as a tool
tip.

type String No The type of object to embed, one of applet or bean.

vspace String No The amount of whitespace to be inserted above and below the applet area, in pixels.

width String Yes The width of the applet area, in pixels or percentage.

Example

<jsp:plugin type="applet" code="Clock2.class"
 codebase="applet"
 jreversion="1.2" width="160" height="150" >
 <jsp:params>
 <jsp:param name="bgcolor" value="ccddff" />
 </jsp:params>
 <jsp:fallback>
 Plugin tag OBJECT or EMBED not supported by browser.
 </jsp:fallback>
</jsp:plugin>

<jsp:root>

The <jsp:root> action element can only be used as the root element in a JSP Document (a JSP page in XML syntax). In
specification versions prior JSP 2.0, using a <jsp:root> element was the only way to identify a JSP page as a JSP
Document, but there are now other means (see Chapter 16) to do so. Hence, the <jsp:root> element is optional and
should rarely be used.

Syntax

<jsp:root version="jspVersion">
 Well-formed XML content
</jsp:root>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

version String No The JSP specification with which the JSP Document is
compliant.

Example

<jsp:root version="2.0">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<jsp:root version="2.0">
 <employee>
 <name>${param.empName}</name>
 <dept>${param.empDept}</dept>
 <employee>
</jsp:root>

<jsp:setProperty>

The <jsp:setProperty> action sets the value of one or more bean properties.

Syntax

<jsp:setProperty name="beanVariableName" property="propertyName"
 [param="parameterName" | value="value"] />

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

name String No The name assigned to a bean in one of the JSP scopes.

property String No The name of the bean's property to set or an asterisk (*) to set all properties with
name matching request parameters.

param String No
The name of a request parameter that holds the value to use for the specified
property. If omitted, the parameter name and the property name must be the
same.

value See
below Yes An explicit value to assign to the property. This attribute can't be combined with

the param attribute.

The property type can be any valid Java type, including primitive types and arrays (i.e., an indexed property). If a
runtime attribute value is specified by the value attribute as a Java expression, the type of the expression must match
the property's type.

If the value is a String, either in the form of a request parameter value or explicitly specified by the value attribute, it's
converted to the property's type as follows:

Property type Conversion method

boolean or Boolean Boolean.valueOf(String), false for an empty string

byte or Byte Byte.valueOf(String), 0 for an empty string

char or Character String.charAt(0), 0 for an empty string

double or Double Double.valueOf(String), 0 for an empty string

int or Integer Integer.valueOf(String), 0 for an empty string

float or Float Float.valueOf(String), 0 for an empty string

long or Long Long.valueOf(String), 0 for an empty string

short or Short Short.valueOf(String), 0 for an empty string

Object new String(String)

For other types, such as a java.util.Date, the JSP container use a java.beans.PropertyEditor registered for the type and calls
its setAsText(String) method. A property editor associated with a bean can, for instance, convert a string like 2001-11-22
to a Date object that represents this date. How to do so is described in Chapter 22.

Example

<jsp:setProperty name="user" property="*" />
<jsp:setProperty name="user" property="modDate"
 value="<%= new java.util.Date() %>" />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<jsp:text>

The <jsp:text> action is primarily intended for JSP Documents (JSP pages in XML syntax). Its body must only contain
template text and EL expressions; neither JSP action elements nor scripting elements are allowed. When used in an
XML document, the body content must be well-formed. The action's body content is evaluated and the result is added to
the response with whitespace preserved.

Syntax

<jsp:text>
 Template text and EL expressions only
</jsp:text>

Attributes

None.

Example

<jsp:text>
 Some text and ${anELexpression}
</jsp:text>

<jsp:text>
 <![CDATA[<unknownelement/>]]>
</jsp:text>

<jsp:useBean>

The <jsp:useBean> action associates a Java bean with a name in one of the JSP scopes and also makes it available as a
scripting variable. An attempt is first made to find a bean with the specified name in the specified scope. If it's not
found, a new instance of the specified class is created.

Syntax 1: Using a concrete class, no body

<jsp:useBean id="beanVariableName " class="className "
 [scope="page |request|session|application"] />

Syntax 2: Using a concrete class, with a body

<jsp:useBean id="beanVariableName " class="className "
 [scope="page |request|session|application"]>
 Evaluated if a new instance is created
</jsp:useBean>

Syntax 3: Using a type and optionally a class or a serialized bean, no body

<jsp:useBean id="beanVariableName " type="className "
 [class="className " | beanName="className "]
 [scope="page |request|session|application"] />

Syntax 4: Using a type and optionally a class or a serialized bean, with a body

<jsp:useBean id="beanVariableName " type="className "
 [class="className " | beanName="className "]
 [scope="page |request|session|application"]>
 Evaluated if a new instance is created
</jsp:useBean>

Attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

beanName String Yes The name of the bean, as expected by the instantiate() method of the Beans.
class in the java.beans package.

class String No The fully qualified class name for the bean.

id String No The name to assign to the bean in the specified scope, as well as the name
of the scripting variable.

scope String No The scope for the bean, one of page, request, session, or application. The
default is page.

type String No The fully qualified type name for the bean (i.e., a superclass or an interface
implemented by the bean's class).

Of the optional attributes, at least one of class or type must be specified. If both are specified, class must be assignable
to type. The beanName attribute must be combined with the type attribute, and isn't valid with the class attribute.

The action is processed in these steps:

1. Attempt to locate an object based on the id and scope attribute values.

2. Define a scripting language variable with the given id of the specified type or class.

3. If the object is found, the variable's value is initialized with a reference to the located object, cast to the type
specified by type or class. This completes the processing of the action. If the action element has a nonempty
body, it's ignored.

4. If the object isn't found in the specified scope and neither class nor beanName is specified, an InstantiationException
is thrown. This completes the processing of the action.

5. If the object isn't found in the specified scope, and the class attribute specifies a non-abstract class with a public
no-args constructor, a new instance of the class is created and associated with the scripting variable and with
the specified name in the specified scope. After this, step 7 is performed.

If the object isn't found, and the specified class doesn't fulfill the requirements, an InstantiationException is
thrown. This completes the processing of the action.

6. If the object isn't found in the specified scope, and the beanName attribute is specified, the instantiate() method
of the java.beans.Beans class is invoked with the ClassLoader of the JSP implementation class instance and the
beanName as arguments. If the method succeeds, the new object reference is associated with the scripting
variable and with the specified name in the specified scope. After this, step 7 is performed.

7. If the action element has a nonempty body, the body is processed. The scripting variable is initialized and
available within the scope of the body. The text of the body is treated as elsewhere; if there is template text,
it's passed through to the response; scriptlets and action tags are evaluated.

A common use of a nonempty body is to complete initializing the created instance; in that case, the body
typically contains <jsp:setProperty> actions and scriptlets.

Example

<jsp:useBean id="clock" class="java.util.Date" />

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.4 Custom actions
A custom action can be developed by a programmer to extend the JSP language. The JSP Standard Tag Library (JSTL)
actions are developed using the API defined by the JSP specification. Application-specific custom actions can also be
developed using this API, such as the custom actions for adding cookies to a response and setting headers for no
caching used in this book. The JSTL actions are described in Appendix B and all custom actions of a generic nature used
in this book are described in Appendix E.

The general syntax for custom actions is the same as for the JSP standard actions: a start tag (optionally with
attributes), a body, and an end tag. Other elements and template text can be nested in the body. Here's an example:

<ora:ifUserInRole value="admin">
 Greetings Master, I hope your day has been pleasant.
</ora:ifUserInRole>

The tag library containing the custom actions must be declared by the taglib directive, assigning a prefix for the custom
action elements (ora in this example), before a custom action can be used in a JSP page.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.5 Comments
You can use JSP comments in JSP pages to describe what a scripting element or action is doing:

<%-- This is a comment --%>

All text between the start and stop tag is ignored by the JSP container and isn't included in the response. The comment
text can be anything except the character sequence representing the closing tag: --%>.

Besides describing what's going on in the JSP page, comments can also be used to "comment out" portions of the JSP
page, for instance during testing:

<jsp:useBean id="user" class="com.mycompany.UserBean" />
<%--
<jsp:setProperty name="user" property="*" />
<jsp:setProperty name="user" property="modDate"
 value="<%= new java.util.Date() %>" />
<% boolean isValid = user.isValid(); %>
--%>

The action and scripting elements within the comment aren't executed.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A.6 Escape Characters
Because certain character sequences are used to represent start and stop tags, you sometimes need to escape a
character so the container doesn't interpret it as part of a special character sequence.

In a scripting element, if you need to use the characters %> literally, you must escape the greater-than character with
a backslash:

<% String msg = "Literal %\> must be escaped"; %>

To avoid the character sequence <% in template text to be interpreted as the start of a scripting element, you must
escape the percent sign:

This is template text and <\% is not a start of a scriptlet.

Similarly, the dollar sign that start an EL expression must be escaped in a page where EL evaluation is enabled:

This is template text and \${this is not an EL expression}.

In an attribute value, you must use the following escapes:

attr='a value with an escaped \' single quote'
attr="a value with an escaped \" double quote"
attr="a value with an escaped \\ backslash"
attr="a value with an escaped %\> scripting end tag"
attr="a value with an escaped <\% scripting start tag"
attr="a value with an escaped \$ dollar sign"

As an alternative to escaping quote characters, you can use the ' and " character entities.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix B. JSTL Actions and API Reference
This appendix contains reference material for all JSTL actions, functions, support and utility classes, and configuration
settings.

The actions are described using the same conventions as for the JSP standard actions in Appendix A.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.1 JSTL Library URIs and Default Prefixes
The URIs and default prefixes for the JSTL libraries are listed in Table B-1.

Table B-1. URIs and prefixes for the JSTL libraries
Library URI Prefix

Core http://java.sun.com/jsp/jstl/core c

XML Processing http://java.sun.com/jsp/jstl/xml x

I18N Formatting http://java.sun.com/jsp/jstl/fmt fmt

Database Access http://java.sun.com/jsp/jstl/sql sql

Functions http://java.sun.com/jsp/jstl/functions fn

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.2 Core Library Actions
The core library contains actions for control-flow, URL manipulation, importing resources, and other general-purpose
tasks.

<c:catch>

The <c:catch> action catches an exception thrown by JSP elements in its body, providing fine-grained error control. The
exception can optionally be saved as a page scope variable.

Syntax

<c:catch [var="var"]>
 JSP elements
</c:catch>

Attributes

Attribute name Java type Dynamic value accepted Description

var String No The variable name.

Example

<c:catch var="importException">
 <fmt:parseDate value="${param.empDate}" dateStyle="short" />
</c:catch>
<c:if test="${importException != null}">
 <jsp:forward page="input.jsp">
 <jsp:param name="msg" value="Invalid date format" />
 </jsp:forward>
</c:if>

<c:choose>

The <c:choose> action controls the processing of nested <c:when> and <c:otherwise> actions. It allows only the first
<c:when> action with a test expression that evaluates to true to be processed; it gives the go-ahead to the single
<c:otherwise> action if none do.

Syntax

<c:choose>
 <c:when> actions and optionally one <c:otherwise> action
</c:choose>

Attributes

None.

Example

<c:choose>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<c:choose>
 <c:when test="${product.onSale}">
 ${product.salesPrice} On sale!
 </c:when>
 <c:otherwise>
 ${product.price}
 </c:otherwise>
</c:choose>

<c:forEach>

The <c:forEach> action evaluates its body a fixed number of times or once for each element in a collection. The current
element (or the current index if no collection is specified) and the iteration status can be exposed to action elements in
the body through nested variables.

The action accepts collections of the types listed in the Attributes table. The type of the current element is the type of
the underlying collection, with two exceptions. For an array of a primitive type, the current element is exposed as an
instance of the corresponding wrapper class (Integer, Float, etc.) For a java.util.Map, the current element is exposed as a
java.util.Map.Entry.

Syntax 1: Iteration over collection elements

<c:forEach items="collection" [var="var"] [varStatus="varStatus"]
 [begin="startIndex"] [end="stopIndex"] [step="increment"]>
 JSP elements
</c:forEach>

Syntax 2: Fixed number of iterations

<c:forEach [var="var"] [varStatus="varStatus"]
 begin="startIndex" end="stopIndex" [step="increment"]>
 JSP elements
</c:forEach>

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

begin int Yes The start index, 0-based when used with a collection.
Default is 0 for a collection.

end int Yes
The stop index (inclusive), 0-based when used with a
collection. The default is the last element for a collection.
If end is less than begin, the body is not evaluated at all.

items
java.util.Collection, java.util.Iterator,
java.util.Enumeration, java.util.Map,
array of objects or primitive types.

Yes The collection to iterate over.

step int Yes The index-increment value for each iteration. Default is 1.

var String No The name of the nested variable holding the current
element.

varStatus String No The name of the nested variable holding the LoopTagStatus
object.

Example

<%-- Iterate five times, writing 1, 2, 3, 4, 5 --%>
<c:forEach begin="1" end="5" var="current">
 ${current}
</c:forEach>

<%-- Iterate over all request parameters --%>
<c:forEach items="${param}" var="current">
 Name: <c:out value="${current.key}" />
 Value: <c:out value="${current.value}" />
</c:forEach>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</c:forEach>

<c:forTokens>

The <c:forTokens> action evaluates its body once for each token in a String, delimited by one of the specified delimiter
characters. The current token and the iteration status can be exposed to action elements in the body through nested
variables.

Syntax

<c:forTokens items="stringOfTokens" delims="delimiters"
 [var="var"] [varStatus="varStatus"]
 [begin="startIndex"] [end="stopIndex"] [step="increment"]>
 JSP elements
</c:forTokens>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

items String Yes The tokens to iterate over.

delims String Yes The list of delimiter characters.

var String No The name of the nested variable holding the current element.

varStatus String No The name of the nested variable holding the LoopTagStatus object.

begin int Yes The 0-based start index. Default is 0.

end int Yes The 0-based stop index (inclusive). The default is the last token. If end is less
than begin, the body is not evaluated at all.

step int Yes The index-increment value for each iteration. Default is 1.

Example

<%-- Iterate over tokens separated by vertical bars --%>
<c:forTokens items="${tokens}" delims="|" var="current">
 <c:out value="${current }" />
</c:forTokens>

<c:if>

The <c:if> action evaluates its body only if the specified expression evaluates to true. Alternatively, the evaluation result
can be saved as a scoped Boolean variable.

Syntax 1: Without a body

<c:if test="booleanExpression "
 var="var " [scope="page |request|session|application"]/>

Syntax 1: With a body

<c:if test="booleanExpression">
 JSP elements
</c:if>

Attributes

Attribute name Java type Dynamic value accepted Description

test boolean Yes The test expression.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var String No The variable name.

scope String No The variable scope.

Example

<c:if test="${empty param.empDate}">
 <jsp:forward page="input.jsp">
 <jsp:param name="msg" value="Missing the Employment Date" />
 </jsp:forward>
</c:if>

<c:import>

The <c:import> action imports the content of an external or internal (same web application) resource. An external
resource can be either a resource owned by a different application in the same web container or a resource on a
different server that can be accessed through one of the protocols supported by the web container (e.g., HTTP or FTP).

When importing an internal resource, the behavior is the same as for the <jsp:include> standard action; the target
resource has access to the same request parameters and the same request, session, and application scope variables as
the originating page. A target resource owned by a different application in the same web container has access only to
the same request parameters and request scope data, and a resource owned by a different server has access only to
the request parameters specified as a query string or nested <c:param> actions.

An internal resource can be identified by a context- or page-relative path. An external resource owned by another
application in the same container must be identified by a context-relative path plus the context-path for the application.
For resources owned by an external server, an absolute URL with a scheme (protocol), server name and resource
identifier must be used.

The character encoding for the imported content can be specified for the cases where it can't be determined through
other means (e.g., HTTP headers). This is typically needed only for resources imported using a protocol other than
HTTP with a character encoding other than ISO-8859-1, which is the default.

This action throws an exception if the underlying import mechanism throws an exception or if the target resource
responds with an HTTP status code other than 200 through 299. In the latter case, the exception message includes the
resource path and the status code.

The imported content can be added to the current response buffer (JspWriter), saved as a String in a scoped variable, or
exposed through a java.io.Reader to nested actions.

Syntax 1: Content saved in a String variable or added to the response

<c:import url="url " [context="externalContextPath "]
 [var="var "] scope="page |request|session|application"]]
 [charEncoding="charEncoding "]>
 Optional <c:param> actions
</c:import>

Syntax 2: Content exposed as a Reader to nested actions

<c:import url="url" [context="externalContextPath"]
 varReader="varReader"
 [charEncoding="charEncoding"]>
 Actions using the Reader
</c:import>

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

url String Yes The URL for the resource to import.

context String Yes The context-path for an external application in the same container, starting
with a slash.

var String No The name of the variable to hold the content as a String.

scope String No The scope for the variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

varReader String No The name of the nested variable to expose the content as a java.io.Reader.

charEncoding String Yes Character encoding for the content. Default is the encoding reported by the
import mechanism or ISO-8859-1 if none is reported.

Example

<%--
 Add the response produced by an internal resource to the response.
-->
<c:import url="navigation.jsp" />

<%-- Process the imported content -->
<c:import url="http://meerkat.oreillynet.com/?&p=4999&_fl=xml&t=ALL"
 varReader="xmlSource">
 <x:parse var="doc" xml="${xmlSource}" scope="application" />
</c:import>

<c:otherwise>

The <c:otherwise> action represents the default alternative within a <c:choose> block. It evaluates its body only if none
of the <c:when> actions in the block has a test expression that evaluates to true.

Syntax

<c:otherwise>
 JSP elements
</c:otherwise>

Attributes

None.

Example

<c:choose>
 <c:when test="${product.onSale}">
 ${product.salesPrice} On sale!
 </c:when>
 <c:otherwise>
 ${product.price}
 </c:otherwise>
</c:choose>

<c:out>

The <c:out> action adds the evaluation result of an expression to the current response buffer (JspWriter), or a default
value if the main expression evaluates to null. The evaluation result is always converted to a Stringfollowing the coercing
rules described in Appendix C unless the evaluation result is of type java.io.Reader. For a Reader, the characters it
contains are used instead of the value returned by the toString() method.

Syntax 1: Without a body

<c:out value="expression " [escapeXml="[true |false]"]
 [default="defaultExpression "] />

Syntax 2: With a body

<c:out value="expression " [escapeXml="[true |false]"]>
 defaultExpression
</c:out>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

value Object Yes The expression to evaluate.

escapeXml boolean Yes If true, the characters < > & ' " are converted to the corresponding XML character
entity codes.

default Object Yes The default expression to use if the expression defined by value evaluates to null.
If no default is specified, the empty string is used as the ultimate default.

Example

<c:out value="${param.phone}" default="No phone" />

<c:out value="${user.imageURL}">
 <c:url value="/defaultUserImage.jpg" />
</c:out>

<c:param>

The <c:param> action is used as a nested action for <c:import>, <c:redirect>, and <c:url> to add a request parameter to a
URL.

Syntax 1: Without a body

<c:param name="parameterName" value="parameterValue" />

Syntax 2: With a body

<c:param name="parameterName">
 parameterValue
</c:param>

Attributes

Attribute name Java type Dynamic value accepted Description

name String Yes Parameter name

value String Yes Parameter value

Example

<c:import value="stock.jsp">
 <c:param name="id" value="${param.stockSymbol}" />
</c:import>

<c:redirect>

The <c:redirect> action sends a redirect response to the client, telling it to make a new request for the specified
resource. Internal and external resources can be specified in the same ways as for <c:url>, and the URL and parameters
specified by nested <c:param> actions are also converted in the same way, if needed.

Syntax 1: Without a body

<c:redirect url="url" [context="externalContextPath"] />

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax 1: With a body

<c:redirect url="url" [context="externalContextPath"]>
 <c:param> actions
</c:redirect>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

value String Yes A page- or context-relative path, or an absolute URL.

context String Yes The context-path for an external application in the same container,
starting with a slash.

Example

<c:redirect url="result.jsp" />

<c:remove>

The <c:remove> action removes a scoped variable. If no scope is specified, the variable is removed from the first scope
where it's found; it scans the scopes in the order page, request, session, and application, otherwise from the specified
scope. If the variable is not found, this action does nothing.

Syntax

<c:remove var="var" [scope="page|request|session|application"] />

Attributes

Attribute name Java type Dynamic value accepted Description

var String No The name of the variable to remove.

scope String No The variable scope.

Example

<c:remove var="authenticationToken" scope="session" />

<c:set>

The <c:set> action sets a scoped variable or a property of a target object to the value of an expression evaluation
result. The target object must be a java.util.Map or a bean with a matching property setter method.

If the evaluation result is null, the variable is removed or the property is reset (removed or set to null, depending on the
type of target). Otherwise, when setting a variable or a Map entry, the type of the value is the type of the expression
evaluation value. When setting a bean property, the expression evaluation value is coerced to the property type
according to the rules described in Appendix C.

Syntax 1: Setting a variable, without a body

<c:set value="expression " var="var "
 [scope="page |request|session|application"] />

Syntax 2: Setting a variable, with a body

<c:set var="var " [scope="page |request|session|application"]>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<c:set var="var " [scope="page |request|session|application"]>
 JSP elements
</c:set>

Syntax 3: Setting a property, without a body

<c:set value="expression" target="beanOrMap" property="propertyName" />

Syntax 4: Setting a property, with a body

<c:set target="beanOrMap" property="propertyName">
 JSP elements
</c:set>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

value Object Yes The expression to use as the value.

var String No The name of the variable.

scope String No Scope for the variable.

target Object Yes The target object, either a java.util.Map or a bean with a setter
method for property.

property String Yes The target object's property name.

Example

<c:set var="selectedLocale" value="${bundle.locale}" />

<c:set target="${msgMap}" property="empDateError">
 The Employment Date format is invalid
</c:set>

<c:url>

The <c:url> action applies the appropriate encoding and conversion rules for a relative or absolute URL. Specifically, it
handles three types of rules: URL encoding of parameters specified by nested <c:param> actions (converting special
characters to hexadecimal codes); converting a context-relative path into a server-relative path; and adding a session
ID path parameter for a context- or page-relative path ("URL rewriting"), if needed to enable session tracking. The
result is either saved in a scoped variable or added to the current response buffer (JspWriter).

Syntax 1: Without a body

<c:url value="url " [context="externalContextPath "]
 [var="var "] scope="page |request|session|application"]] />

Syntax 2: With a body

<c:url value="url" [context="externalContextPath"]
 [var="var"] scope="page|request|session|application"]]>
 <c:param> actions
</c:url>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

value String Yes A page- or context-relative path, or an absolute URL.

context String Yes The context-path for an external application in the same container,
starting with a slash.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var String No The variable name. The type is String.

scope String No The variable scope.

Example

<a href="<c:url value="/privacypolicy.jsp" />">Our privacy policy

<c:when>

The <c:when> action represents one of the mutually exclusive alternatives within a <c:choose> block. It evaluates its
body only if it's the first <c:when> action in the block with a test expression that evaluates to true.

Syntax

<c:when test="booleanExpression">
 JSP elements
</c:when>

Attributes

Attribute name Java type Dynamic value accepted Description

test Boolean Yes The test expression.

Example

<c:choose>
 <c:when test="${product.onSale}">
 ${product.salesPrice} On sale!
 </c:when>
 <c:otherwise>
 ${product.price}
 </c:otherwise>
</c:choose>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.3 Internationalization and Formatting Actions

<fmt:bundle>

The <fmt:bundle> action establishes a localization context for actions in its body. The localization context contains a
locale and the best match for the specified resource bundle. The locale is either the locale defined by the locale
configuration setting or the best match for the user preferences specified by the Accept-Language HTTP request header.

Syntax

<fmt:bundle basename="resourceBundleBasename" [prefix="keyPrefix"]>
 JSP elements
</fmt:bundle>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

basename String Yes The basename for a resource bundle, see java.util.ResourceBundle
for details.

prefix String Yes Prefix to be prepended to keys specified for nested <fmt:message>
actions.

Example

<fmt:bundle basename="labels">
 <h1><fmt:message key="title" /></h1>
</fmt:bundle>

<fmt:formatDate>

The <fmt:formatDate> action formats a date and time value according to locale specific rules. A custom pattern can be
specified or locale-dependent default patterns for one or both of the date and the time portion can be selected.

The locale is taken from the locale configuration setting or the locale from the localization context setting, or if none of
these are set, determined as the best match for the user preferences (Accept-Language request header).

If the value to format is null or an empty string, no output is generated, and if a variable to hold the output is specified,
it's removed.

Syntax

<fmt:formatDate value="dateAndTime "
 [pattern="pattern " |
 [type="time|date |both"]
 [dateStyle="default |short|medium|long|full"]
 [timeStyle="default |short|medium|long|full"]]
 [timeZone="timeZone "]
 [var="var " [scope="page |request|session|application"]] />

Attributes

Attribute
name Java type Dynamic value

accepted Description

value java.util.Date Yes The date and time to format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pattern String Yes A custom pattern in the form accepted by
java.text.SimpleDateFormat (see the next table).

type String Yes Which portions to format.

dateStyle String Yes One of the predefined locale-dependent date patterns.

timeStyle String Yes One of the predefined locale-dependent time patterns.

timeZone String or java.util.TimeZone Yes The time zone to use instead of the default.

var String No The variable name. The type is String.

scope String No The variable scope.

The symbols that can be used in a custom pattern, set by the pattern attribute, are the same as those supported by the
java.text.SimpleDateFormat:

Symbol Description Presentation format Example

G Era designator Text AD

y Year Number 2002

M Month in year Text or Number May or 05

d Day in month Number 16

h Hour in AM/PM (1-12) Number 4

H Hour in day (0-23) Number 16

m Minute in hour Number 18

s Second in minute Number 23

S Millisecond Number 678

E Day in week Text Thursday

D Day in year Number 144

F Day of week in month Number 3

w Week in year Number 20

W Week in month Number 3

a AM/PM marker Text PM

k Hour in day (1-24) Number 17

K Hour in AM/PM (0-11) Number 3

z Time zone Text GMT

' Escape for text Delimiter
'' Single quote in text Literal `

The number of symbols in the pattern determines the presentation format. For Text, four or more symbols means that
the full form is used (e.g., "Thursday"), while less than four means that an abbreviation is used (e.g., "Thu"). For
Number, the number of symbols sets the minimum number of digits. For Text or Number values, three or more symbols
mean that the text format is used, otherwise the number format is used.

Example

<fmt:formatDate value="${now}" type="both" dateStyle="full" />

<fmt:formatNumber>

The <fmt:formatNumber> action formats a numeric value according to locale specific rules. A custom pattern can be
specified, or the locale-dependent default pattern for a certain number type (currency, percentage, or a regular
number) can be used as a starting point and optionally adjusted (currency code, max and min number of digits and
fractional digits, grouping character or not).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fractional digits, grouping character or not).

The locale is taken from the locale configuration setting or the locale from the localization context setting. If neither is
set, the locale is determined as the best match for the user preferences (Accept-Language request header).

If the value to format is null or an empty string, no output is generated, and if a variable to hold the output is specified,
it's removed.

Syntax 1: Without a body

<fmt:formatNumber value="number "
 [pattern="pattern " |
 [type="number |currency|percent"]
 [currencyCode="currencyCode " | currencySymbol="currencySymbol "]
 [groupingUsed="true |false"]
 [minIntegerDigits="min "] [maxIntegerDigits="max "]
 [minFractionDigits="min "] [maxFractionDigits="max "]]
 [var="var " [scope="page |request|session|application"]] />

Syntax 1: With a body

<fmt:formatNumber
 [pattern="pattern " |
 [type="number |currency|percent"]
 [currencyCode="currencyCode " | currencySymbol="currencySymbol "]
 [groupingUsed="true |false"]
 [minIntegerDigits="min "] [maxIntegerDigits="max "]
 [minFractionDigits="min "] [maxFractionDigits="max "]]
 [var="var " [scope="page |request|session|application"]]>
 number
</fmt:formatNumber>

Attributes

Attribute
name Java type Dynamic value

accepted Description

value String or Number Yes The value to format. If specified as a String it must be in the
format of a Java numeric literal.

pattern String Yes A custom pattern in the form accepted by java.text.DecimalFormat
(see the next table).

type String Yes The name of one of the predefined locale-dependent patterns.

currencyCode String Yes An ISO-4217 currency code.

currencySymbol String Yes A Java string to use as the currency symbol.

groupingUsed boolean Yes Set to true to include grouping separators in the result.

minInteger
Digits int Yes The minimum number of digits in the integer portion.

maxInteger
Digits int Yes The maximum number of digits in the integer portion.

minFraction
Digits int Yes The minimum number of digits in the fractional portion.

maxFraction
Digits int Yes The maximum number of digits in the fractional portion.

var String No The variable name. The type is String.

scope String No The variable scope.

The symbols that can be used in a custom pattern, set by the pattern attribute, are the same as those supported by the
java.text.DecimalFormat:

Symbol Description Location

0 Required digit Number

Digit, zero is not displayed Number

. Decimal separator Number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

- Minus sign Number

, Grouping separator Number

E Separates mantissa and exponent in scientific notation Number

% Multiply by 100 and show as percentage Prefix or suffix

\u2030 Multiply by 1000 and shows as mille Prefix or suffix

¤ or \u00A4 Currency sign Prefix or suffix

' Escape for text Prefix or suffix

'' Single quote in text Prefix or suffix

Example

<fmt:formatNumber value="1000.00" type="currency" />
<fmt:formatNumber value="${aNumber}" minFractionDigits="2" />

<fmt:message>

The <fmt:message> action adds the localized message for the specified key to the current response buffer (JspWriter) or
saves it in a scoped variable. For a parameterized message, the parameter values are specified by nested <fmt:param>
actions.

Syntax 1: Without a body

<fmt:message key="messageKey " [bundle="resourceBundle "]
 [var="var " [scope="page |request|session|application"]] />

Syntax 2: With a body for parameters

<fmt:message key="messageKey " [bundle="resourceBundle "]
 [var="var " [scope="page |request|session|application"]]>
 <fmt:param> actions
</fmt:message>

Syntax 3: With a body for the key and parameters

<fmt:message [bundle="resourceBundle "]
 [var="var " [scope="page |request|session|application"]]>
 messageKey
 <fmt:param> actions
</fmt:message>

Attributes

Attribute
name Java type Dynamic value

accepted Description

key String Yes Message key.

bundle javax.servlet.jsp.jstl.fmt.LocalizationContext Yes Localization context with the resource
bundle to use.

var String No The variable name. The type is String.

scope String No The variable scope.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<fmt:message key="simpleMessage" />

<fmt:message key="result">
 <fmt:param value="${result.total}" />
 <fmt:param value="${result.percentage}" />
</fmt:message>

<fmt:param>

The <fmt:param> action is used as a nested action for <fmt:message> to supply a parameter value for a parameterized
message.

The parameter syntax that can be used in the parameterized message is the syntax accepted by the
java.text.MessageFormat class, i.e., a 0-based order number optionally followed by a data type name and a format
specification, within curly braces:

{orderNumber [, dataType [, format]]}

The data type must be one of time, date, number, or choice.

For a time or date type, the format specification can be one of short, medium, long, full, or the type of customized pattern
described for <fmt:formatDate>.

For a number type, the format specification can be currency, percent, integer, or the type of customized pattern described
for <fmt:formatNumber>.

See the java.text.MessageFormat documentation for details about the choice type.

Syntax 1: Without a body

<fmt:param value="parameterValue" />

Syntax 2: With a body

<fmt:param>
 parameterValue
</fmt:param>

Attributes

Attribute name Java type Dynamic value accepted Description

value Object Yes The parameter value.

Example

<fmt:message key="result">
 <fmt:param value="${result.total}" />
 <fmt:param value="${result.percentage}" />
</fmt:message>

<fmt:parseDate>

The <fmt:parseDate> action parses a date and time value formatted according to locale specific rules. A custom pattern
can be specified or locale-dependent default patterns for one or both of the date and the time portion can be selected.

The locale used is the one explicitly specified or is taken from the locale configuration setting or the locale from the
localization context setting. If none of these are set, the locale is determined as the best match for the user preferences
(Accept-Language request header).

Syntax 1: Without a body

<fmt:parseDate value="dateAndTime "

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<fmt:parseDate value="dateAndTime "
 [pattern="pattern " |
 [type="time|date |both"]
 [dateStyle="default |short|medium|long|full"]
 [timeStyle="default |short|medium|long|full"]]
 [timeZone="timeZone "]
 [parseLocale="locale "]
 [var="var " [scope="page |request|session|application"]] />

Syntax 2: With a body

<fmt:parseDate
 [pattern="pattern " |
 [type="time|date |both"]
 [dateStyle="default |short|medium|long|full"]
 [timeStyle="default |short|medium|long|full"]]
 [timeZone="timeZone "]
 [parseLocale="locale "]
 [var="var " [scope="page |request|session|application"]]>
 dateAndTime
</fmt:parseDate>

Attributes

Attribute
name Java type Dynamic value

accepted Description

value String Yes The date and time to parse.

pattern String Yes A custom pattern in the form accepted by
java.text.SimpleDateFormat; see <fmt:formatDate>.

type String Yes Which portions the value contains.

dateStyle String Yes One of the predefined locale-dependent date patterns.

timeStyle String Yes One of the predefined locale-dependent time patterns.

timeZone String or java.util.
TimeZone Yes The time zone to use instead of the default.

parseLocale String or java.util.Locale Yes A locale to be used instead of the default.

var String No The variable name. The type is java.util.Date.

scope String No The variable scope.

Example

<fmt:parseDate value="${param.emDate}" pattern="yyyy-MM-dd" />

<fmt:parseNumber>

The <fmt:parseNumber> action parses a number formatted according to locale specific rules. A custom pattern can be
specified or a locale specific default pattern for a certain number type (currency, percentage, or a regular number) can
be used.

The locale used is the one explicitly specified or is taken from the locale configuration setting or the locale from the
localization context setting. If none of these are set, the locale is determined as the best match for the user preferences
(Accept-Language request header).

Syntax 1: Without a body

<fmt:parseNumber value="number "
 [pattern="pattern " | type="number |currency|percent"]
 [parseLocale="locale "]
 [integerOnly="true|false "]
 [var="var " [scope="page |request|session|application"]] />

Syntax 1: With a body

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax 1: With a body

<fmt:formatNumber
 [pattern="pattern " | type="number |currency|percent"]
 [parseLocale="locale "]
 [integerOnly="true|false "]
 [var="var " [scope="page |request|session|application"]]>
 number
</fmt:parseNumber>

Attributes

Attribute
name Java type Dynamic value

accepted Description

value String Yes The value to parse.

pattern String Yes A custom pattern in the form accepted by
java.text.DecimalFormat, see <fmt:formatNumber>.

type String Yes The name of one of the predefined locale-dependent
patterns.

parseLocale String or java.util.Locale Yes A locale to be used instead of the default.

integerOnly boolean Yes Set to true to only parse the integer portion.

var String No The variable name. The type is Number.

scope String No The variable scope.

Example

<fmt:parseNumber value="${param.annualSalary}" type="currency" />

<fmt:requestEncoding>

The <fmt:requestEncoding> action sets the character encoding for the request to facilitate correct interpretation of
request parameter values when the encoding is different from ISO-8859-1. The encoding can be specified explicitly. It
can also be determined based on the request Content-Type header, if any, or the encoding session variable set by all
JSTL actions that set the locale for a response (javax.servlet.jsp.jstl.fmt.request.charset).

Syntax

<fmt:requestEncoding [value="encodingName"] />

Attributes

Attribute name Java type Dynamic value accepted Description

Value String Yes The encoding name.

Example

<%--
 Sets the request encoding to the same encoding as was used for
 the previous response in the current session.
-->
<fmt:requestEncoding />

<fmt:setBundle>

The <fmt:setBundle> action sets the localization context configuration variable, which establishes the localization context
for all other JSTL actions that rely on one and disables the locale lookup based on user preferences. Alternatively, the
localization context may be saved as a scoped variable and provided as explicit input to other actions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

localization context may be saved as a scoped variable and provided as explicit input to other actions.

The localization context contains a locale and the best match for the specified resource bundle. The locale for the
localization context is either the locale defined by the locale configuration setting or the best match for the user
preferences specified by the Accept-Language HTTP request header.

Syntax

<fmt:setBundle basename="resourceBundleBasename "
 [var="var "] [scope="page |request|session|application"] />

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

basename String Yes The basename for a resource bundle, see java.util.ResourceBundle for details.

var String No The variable name. If omitted, the actions sets the localization context
configuration variable. The type is javax.servlet.jsp.jstl.fmt.Localization.Context.

scope String No The scope for the variable or the configuration variable.

Example

<fmt:setBundle basename="labels" scope="session" />

<fmt:setLocale>

The <fmt:setLocale> action sets the locale configuration variable, establishing the locale for all other JSTL actions that
rely on a locale and disabling the locale lookup based on user preferences.

Syntax

<fmt:setLocale value="locale " [variant="variant "]
 [scope="page |request|session|application"] />

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

value String or java.util.Locale Yes
The locale. If set as a String, it must be an ISO-639 language code,
optionally followed by an ISO-3166 country code, separated by a
hyphen or an underscore character.

variant String Yes A locale variant, see java.util.Locale for details.

scope String No The configuration variable scope.

Example

<fmt:setLocale value="en-US" />

<fmt:setTimeZone>

The <fmt:setTimeZone> action sets the time zone configuration variable, establishing the time zone for all other JSTL
actions that rely on one. Alternatively, the time zone may be saved as a scoped variable and provided as explicit input
to other actions.

Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

<fmt:setTimeZone value="timeZone "
 [var="var "] [scope="page |request|session|application"] />

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

value String or java.util.
TimeZone Yes The time zone. If specified as a String, it's an abbreviation, a name, or

a GMT offset; see java.util.TimeZone for details.

var String No The variable name. If omitted, the actions sets the time-zone context
configuration variable. The type is java.util.TimeZone.

scope String No The scope for the variable or the configuration variable.

Example

<fmt:setTimeZone value="GMT-8" />

<fmt:timeZone>

The <fmt:timeZone> action establishes the time zone for actions in its body.

Syntax

<fmt:TimeZone value="timeZone">
 JSP elements
</fmt:timeZone>

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

value String or java.util.TimeZone Yes The time zone. If specified as a String, it's an abbreviation, a
name, or a GMT offset; see java.util.TimeZone for details.

Example

<fmt:timeZone value="America/Los Angeles">
 <fmt:formatDate value="${now}" type="both" />
</fmt:timeZone>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.4 Database Access Actions

<sql:dateParam>

The <sql:dateParam> action is used as a nested action for <sql:query> and <sql:update> to supply a date and time value
for a value placeholder. If a null value is provided, the value is set to SQL NULL for the placeholder. To ensure portability
between different database engines, this action must be used when setting values for DATE, TIME, and TIMESTAMP
columns.

The value must be of type java.util.Date or one of the SQL specific subclasses: java.sql.Date, java.sql.Time or
java.sql.Timestamp. If it's a java.util.Date, the action converts it to the specified subclass.

Syntax

<sql:dateParam value="parameterValue "
 [type="timestamp |time|date"] />

Attributes

Attribute
name Java type Dynamic value

accepted Description

value java.util.Date Yes The parameter value.

type String Yes The SQL type the value should be converted to, if
needed.

Example

<sql:update>
 UPDATE Employee SET EmpDate = ? WHERE EmpId = ?
 <sql:dateParam value="${empDate}" />
 <sql:param value="${empId}" />
</sql:update>

<sql:param>

The <sql:param> action is used as a nested action for <sql:query> and <sql:update> to supply a value for a value
placeholder. If a null value is provided, the value is set to SQL NULL for the placeholder. To ensure portability between
different database engines, the value type must be a supported type for the target column, for instance a numeric value
for an INT or FLOAT column and a String value for a CHAR or VARCHAR column. See <sql:dateParam> for setting values for
DATE, TIME, and TIMESTAMP columns.

Syntax 1: Without a body

<sql:param value="parameterValue" />

Syntax 2: With a body

<sql:param>
 parameterValue
</sql:param>

Attributes

Attribute name Java type Dynamic value accepted Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

value Object Yes The parameter value.

Example

<sql:update>
 DELETE * FROM Employee WHERE Id = ?
 <sql:param value="${empId}" />
</sql:update>

<sql:query>

The <sql:query> action executes an SQL SELECT statement and saves the result in a scoped variable. The statement may
contain question marks as placeholders for values assigned by nested <sql:param> and <sql:dateParam> actions.

The action uses a connection provided by an <sql:transaction> action, or—if not part of a transaction—from the explicitly
specified data source or the data-source configuration setting. The number of rows to retrieve can be limited explicitly
or by the maximum rows configuration setting.

Syntax 1: Without a body

<sql:query sql="sqlSelectStatement "
 [dataSource="dataSource "]
 [maxRows="maxRows "]
 [startRow="index "]
 var="var " [scope="page |request|session|application"] />

Syntax 2: With a body for parameters

<sql:query sql="sqlSelectStatement"
 [dataSource="dataSource "]
 [maxRows="maxRows "]
 [startRow="index "]
 var="var " [scope="page |request|session|application"]>
 <sql:param> actions
</sql:query>

Syntax 3: With a body for the statement and parameters

<sql:query
 [dataSource="dataSource "]
 [maxRows="maxRows "]
 [startRow="index "]
 var="var " [scope="page |request|session|application"]>
 sqlSelectStatement
 <sql:param> actions
</sql:query>

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

sql String Yes The SQL statement.

dataSource String or javax.sql.DataSource Yes
The data source to use. If specified as a String, it can be either a
JNDI path or a list of JDBC parameters as described for the data-
source configuration setting.

maxRows int Yes The maximum number of rows to include in the result. If omitted
or -1, all rows are included.

startRow int Yes The 0-based index for the first row to include in the result.

var String No The variable name. The type is javax.servlet.jsp.jstl.sql.Result.

scope String No The variable scope.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<sql:query var="result">
 SELECT * FROM Employee WHERE Name = ?
 <sql:param value="${param:empName}" />
</sql:query>

<sql:setDataSource>

The <sql:setDataSource> action sets the data source configuration variable, or saves the data source information in a
scoped variable that can be used as input to the other JSTL database actions.

This action is primarily intended for prototyping and small, simple applications. See Chapter 12 and Chapter 24 for
alternative ways to make a data source available.

Syntax

<sql:setDataSource
 [dataSource="dataSource " |
 url="url "
 [driver="driverClassName "]
 [user="username "]
 [password="password "]]
 [var="var "] [scope="page |request|session|application"] />

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

dataSource String or javax.sql.DataSource Yes
The data source to expose. If specified as a String, it can be either
a JNDI path or a list of JDBC parameters as described for the
data-source configuration setting.

url String Yes The JDBC URL.

driver String Yes The JDBC driver class name.

user String Yes The database username.

password String Yes The database user password.

var String No The variable name. If omitted, the data source configuration
variable is set. The type is either javax.sql.DataSource or String.

scope String No The variable or configuration variable scope.

Example

<sql:setDataSource var="snapshot"
 url="jdbc:odbc:snapshot"
 driver="sun.jdbc.odbc.JdbcOdbcDriver" />
<sql:query dataSource="${snapshot}" sql="..." var="result" />

<sql:transaction>

The <sql:transaction> action establishes a transaction context for a set of <sql:query> and <sql:update> actions. It ensures
that the database modifications performed by the nested actions are either committed or rolled back if an exception is
thrown by any nested action.

The action provides a connection to the nested database actions, either from the explicitly specified data source or from
the data-source configuration setting.

Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

<sql:transaction [dataSource="dataSource"]
 [isolation="read_committed|read_uncommitted|repeatable_read|
 serializable"]>
 <sql:query> and <sql:update> actions, and optionally other JSP elements
</sql:transaction>

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

dataSource String or javax.sql.DataSource Yes
The data source to use. If specified as a String, it can be either a
JNDI path or a list of JDBC parameters as described for the data-
source configuration setting.

isolation String Yes The transaction isolation level. If omitted, the isolation level the
data source has been configured with is used.

Example

<sql:transaction>
 <sql:update>
 UPDATE Account
 SET Balance = Balance - ?
 WHERE AccountNo = ?
 <sql:param value="${amount}" />
 <sql:param value="${fromAccount}" />
 </sql:update>
 <sql:update>
 UPDATE Account
 SET Balance = Balance + ?
 WHERE AccountNo = ?
 <sql:param value="${amount}" />
 <sql:param value="${toAccount}" />
 </sql:update>
</sql:transaction>

<sql:update>

The <sql:update> action executes an SQL statement that updates the database, such as an INSERT, UPDATE, or DELETE
statement, and optionally saves the number of affected rows in a scoped variable. SQL DDL statements, such as CREATE
TABLE, can also be executed with this action. The statement may contain question marks as placeholders for values
assigned by nested <sql:param> and <sql:dateParam> actions.

The action uses a connection provided by an <sql:transaction> action, or—if not part of a transaction—from the explicitly
specified data source or the data-source configuration setting.

Syntax 1: Without a body

<sql:update sql="sqlStatement "
 [dataSource="dataSource "]
 [var="var " [scope="page |request|session|application"]] />

Syntax 2: With a body for parameters

<sql:update sql="sqlStatement "
 [dataSource="dataSource "]
 [var="var " [scope="page |request|session|application"]]>
 <sql:param> actions
</sql:update>

Syntax 3: With a body for the statement and parameters

<sql:update
 [dataSource="dataSource "]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [dataSource="dataSource "]
 [var="var " [scope="page |request|session|application"]]>
 sqlStatement
 <sql:param> actions
</sql:update>

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

sql String Yes The SQL statement.

dataSource String or javax.sql.DataSource Yes
The data source to use. If specified as a String, it can be either a
JNDI path or a list of JDBC parameters as described for the data-
source configuration setting.

var String No The variable name. The type is Integer.

scope String No The variable scope.

Example

<sql:update>
 DELETE * FROM Employee WHERE Id = ?
 <sql:param value="${empId}" />
</sql:update>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.5 XML Processing Actions

<x:choose>

The <x:choose> action controls the processing of nested <x:when> and <x:otherwise> actions. It allows only the first
<x:when> action with a test expression that evaluates to true to be processed, or gives the go-ahead to the single
<x:otherwise> action if none do.

Syntax

<x:choose>
 <x:when> actions and optionally one <x:otherwise> action
</x:choose>

Attributes

None.

Example

<x:choose>
 <x:when select="category[. = 'General']">
 <td bgcolor="lightgreen">
 </x:when>
 <x:otherwise>
 <td>
 </x:otherwise>
</x:choose>

<x:forEach>

The <x:forEach> action evaluates its body once for each node in an XPath expression evaluation result and sets the
context node used by XPath expressions in nested actions to the current node. The current node can also be exposed to
action elements in the body through a nested variable.

Syntax

<x:forEach select="XPathExpression" [var="var"] [varStatus="varStatus"]
 [begin="startIndex"] [end="stopIndex"] [step="increment"]>
 JSP elements
</x:forEach>

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

begin int Yes The first index, 0-based.

end int Yes The last index, 0-based. If end is less than begin, the body is not
evaluated at all.

select String No The XPath expression.

step int Yes Optional. Index increment per iteration.

var String No The name of the nested variable holding the current element.

varStatus String No The name of the variable to hold a LoopTagStatus object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<x:forEach select="$doc//story">
 <x:out select="title/text()" />
</x:forEach>

<x:if>

The <x:if> action evaluates its body only if the specified XPath expression evaluates to true. Alternatively, the evaluation
result can be saved as a scoped Boolean variable.

Syntax 1: Without a body

<x:if select="booleanXPathExpression"
 var="var " [scope="page |request|session|application"]/>

Syntax 1: With a body

<x:if select="booleanXPathExpression">
 JSP elements
</x:if>

Attributes

Attribute name Java type Dynamic value accepted Description

select String No The XPath expression to evaluate.

var String No The variable name. The type is Boolean.

scope String No The variable scope.

Example

<x:if select="category[. = 'General']">
 General
</x:if>

<x:otherwise>

The <x:otherwise> action represents the default alternative within an <x:choose> block. It evaluates its body only if none
of the <x:when> action in the block has a test expression that evaluates to true.

Syntax

<x:otherwise>
 JSP elements
</x:otherwise>

Attributes

None.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<x:choose>
 <x:when select="category[. = 'General']">
 <td bgcolor="lightgreen">
 </x:when>
 <x:otherwise>
 <td>
 </x:otherwise>
</x:choose>

<x:out>

The <x:out> action adds the evaluation result of an XPath expression to the current response buffer (JspWriter). The
evaluation result is always converted to a String, following the coercing rules for the XPath string() function.

Syntax

<x:out select="XPathExpression " [escapeXml="true |false"] />

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

select String No The XPath expression to evaluate.

escapeXml boolean Yes If true, the characters < > & ' " are converted to the corresponding XML
character entity codes.

Example

<x:out select="$doc/meerkat/image/url/text()" />

<x:param>

The <x:param> action supplies a value to a parameter used in an XSLT stylesheet. It can only be used within the body of
an <x:transform> action.

Syntax

<x:param name="parameterName" value="parameterValue" />

Attributes

Attribute name Java type Dynamic value accepted Description

name String Yes The parameter name.

value Object Yes The parameter value.

Example

<x:transform xml="${doc}" xslt="${stylesheet}">
 <x:param name="custId" value="${param.id}" />
</x:transform>

<x:parse>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <x:parse> action parses an XML document and saves the result either as a standard org.w3c.dom.Document object or
as an implementation-dependent object.

Syntax 1: Without a body

<x:parse doc="xmlDocument "
 [var="var " [scope="page |request|session|application"] |
 varDom="var " [scopeDom="page |request|session|application"]]
 [systemId="systemId "]
 [filter="filter "] />

Syntax 2: With a body

<x:parse
 [var="var " [scope="page |request|session|application"] |
 varDom="var " [scopeDom="page |request|session|application"]]
 [systemId="systemId "]
 [filter="filter "]>
 xmlDocument
</x:parse>

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

doc String or Reader Yes The XML document.

systemId String Yes A URI to use as a base for relative references in the document, as an
absolute URL, or as a page- or context-relative path.

filter org.xml.sax.XMLFilter Yes A filter that can remove elements that aren't of interest.

var String No The variable name. The type is implementation-dependent.

scope String No The variable scope.

varDom String No The DOM variable name. The type is org.w3c.dom.Document.

scopeDom String No The DOM variable scope.

Example

<c:import url="http://meerkat.oreillynet.com/?&p=4999&_fl=xml&t=ALL"
 varReader="xmlSource">
 <x:parse var="doc" xml="${xmlSource}" scope="application" />
</c:import>

<x:set>

The <x:set> action sets a scoped variable to the value of an XPath expression evaluation result.

Syntax

<x:set select="XPathExpression "
 var="var " [scope="page |request|session|application"] />

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

select String No The XPath expression to evaluate.

var String No The variable name. The type is the type of the expression evaluation,
converted to the corresponding Java type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scope String No The variable scope.

Example

<x:set var="nodes"
 select="$doc//story/category[. = $param:selCat]/.." />

<x:transform>

The <x:transform> action transforms an XML document using an XSLT stylesheet. The result is added to the current
response buffer (JspWriter), saved in a scoped variable, or captured or processed further by a javax.xml.transform.Result
object. Nested <x:param> actions can supply values for parameters used in the stylesheet.

Syntax 1: Without a body

<x:transform doc="XMLDocument " xslt="XSLTStylesheet "
 [docSystemId="systemId "] [xsltSystemId="systemId "]
 [var="var " [scope="page |request|session|application"] |
 result="resultObject "] />

Syntax 2: With a body for parameter values

<x:transform doc="XMLDocument " xslt="XSLTStylesheet "
 [docSystemId="systemId "] [xsltSystemId="systemId "]
 [var="var " [scope="page |request|session|application"] |
 result="resultObject "]>
 <x:param> actions
</x:transform>

Syntax 2: With a body for the XML document and parameter values

<x:transform xslt="XSLTStylesheet "
 [docSystemId="systemId "] [xsltSystemId="systemId "]
 [var="var " [scope="page |request|session|application"] |
 result="resultObject "]>
 XMLDocument
 <x:param> actions
</x:transform>

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

doc
String, Reader, javax.transformation.Source,
org.w3c.dom.Document, or object exposed
by <x:parse> or <x:set>

Yes The XML document.

xslt String, Reader, javax.transformation.Source Yes The XSLT stylesheet.

docSystemId String Yes
A URI to use as a base for relative references in
the document, as an absolute URL or as a page-
or context-relative path.

xsltSystemId String Yes
A URI to use as a base for relative references in
the stylesheet, as an absolute URL or as a page-
or context-relative path.

result javax.xml.transform.Result Yes Object that captures or processes the result.

var String No The variable name. The type is
org.w3c.dom.Document.

scope String No The variable scope.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<x:transform xml="${doc}" xslt="${stylesheet}" />

<x:when>

The <x:when> action represents one of the mutually exclusive alternatives within an <x:choose> block. It evaluates its
body only if it's the first <x:when> action in the block with a test expression that evaluates to true.

Syntax

<x:when select="booleanXPathExpression">
 JSP elements
</x:when>

Attributes

Attribute name Java type Dynamic value accepted Description

select String No The test XPath expression.

Example

<x:choose>
 <x:when select="category[. = 'General']">
 <td bgcolor="lightgreen">
 </x:when>
 <x:otherwise>
 <td>
 </x:otherwise>
</x:choose>
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.6 EL Functions
Starting with JSTL 1.1, one tag library contains a set of functions for use in EL expressions. The description of each
function follows a similar pattern as the action descriptions: an overview, a syntax reference, a parameter table, and an
example. The syntax reference section shows the return type, followed by the function name and the parameters in
italics within parentheses.

Unless otherwise stated, a parameter value of null is treated as an empty string.

fn:contains

This function tests if a string contains a substring and returns true if it does, otherwise false.

Syntax

boolean: fn:contains(string, substring)

Parameters

Parameter name Java type Description

string String The string to test.

substring String The substring to look for.

Example

<c:if test="${fn:contains(header['User-Agent'], 'MSIE')}">
 Your browser claims to be Internet Explorer
</c:if>

fn:containsIgnoreCase

This function tests if a string contains a substring regardless of the character case, and returns true if it does, otherwise
false.

Syntax

boolean: fn:containsIgnoreCase(string, substring)

Parameters

Parameter name Java type Description

string String The string to test.

substring String The substring to look for.

Example

<c:if test="${fn:containsIgnoreCase(param:answer, 'YES')}">
 You answered Yes (or YES, or yes, or YEs, or ...)
</c:if>

fn:endsWith

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This function tests if a string ends with a specific suffix and returns true if it does, otherwise false.

Syntax

boolean: fn:endsWith(string, suffix)

Parameters

Parameter name Java type Description

string String The string to test.

suffix String The suffix to look for.

Example

<c:if test="${fn:endsWith(pageContext.request.requestURI, '.asp')}">
 You must be kidding!
</c:if>

fn:escapeXml

This function replaces all characters with a special meaning in XML and HTML (i.e., < > & ' ") to their corresponding
character entity code (i.e., < > & ' ") and returns the resulting string.

Syntax

String: fn:escapeXml(string)

Parameters

Parameter name Java type Description

string String The string to convert.

Example

<input name="firstName" value="${fn:escapeXml(param.firstName)}">

fn:indexOf

This function looks for a substring in a string and returns the 0-based index of the first occurrence or -1 if the substring
is not found.

Syntax

int: fn:indexOf(string, substring)

Parameters

Parameter name Java type Description

string String The string to test.

substring String The substring to look for.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<%-- Pick the first word from a text --%>
 fn:substring(descr, 0, $fn:indexOf(descr, ' '))}

fn:join

This function creates and returns a string constructed by concatenating array elements, separated by a separator
string. If the array is null an empty string is returned.

Syntax

String: fn:join(array, separator)

Parameters

Parameter name Java type Description

array String[] The array to process.

separator String The string used to separate the elements in the returned value.

Example

All 'foo' parameter values: ${fn:join(paramValues.foo, ', ')}

fn:length

This function returns the number of characters in a string or the number of elements in a collection. It returns 0 if the
value is null.

Syntax

int: fn:length(value)

Parameters

Parameter
name Java type Description

value Any type that can be used as a <c:forEach> items attribute value,
or String.

The string or collection to
measure.

Example

There are ${fn:length(collection)} items in this collection.

fn:replace

This function replaces all occurrences of one substring in a string with another substring and returns the resulting
string.

Syntax

String: fn:replace(string, before, after)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String: fn:replace(string, before, after)

Parameters

Parameter name Java type Description

string String The string to convert.

before String The substring to replace.

after String The substring to replace with.

Example

${fn:replace(descr, 'ASP', 'JSP')}

fn:split

This function creates and returns an array where the elements are the parts of a string that are separated by a
separator. The separators are not included in the result.

Syntax

String[]: fn:split(string, separator)

Parameters

Parameter name Java type Description

string String The string to split.

separator String The string that separates the parts of the source string.

Example

<c:forEach items="${fn:split(csvString, ',')}">
 ...
</c:forEach>

fn:startsWith

This function tests if a string starts with a specific prefix and returns true if it does, otherwise false.

Syntax

boolean: fn:startsWith(string, prefix)

Parameters

Parameter name Java type Description

string String The string to test.

prefix String The prefix to look for.

Example

<c:if test="${fn:startsWith(fn:toUpperCase(param:day), 'THU')}">
 It must be Thursday!
</c:if>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fn:substring

This function extracts the part of a string between two indexes and returns it. If the "begin" index is less than 0 it's
treated as 0, and if it's greater than the length of the string, an empty string is returned. If the "end" index is less than
0 or greater than the length of the string, it's treated as if it had the length of the string as its value. If the "end" index
is less than the "begin" index, an empty string is returned.

Syntax

String: fn:substring(string, begin, end)

Parameters

Parameter name Java type Description

string String The string to extract from.

begin int The index of the first character to include, inclusive.

end Int The index of the last character to include, exclusive.

Example

You can't spell Evil without ${fn:substring('Evil', 1, 3)}

fn:substringAfter

This function extracts the part of a string that follows a substring and returns it.

Syntax

String: fn:substringAfter(string, substring)

Parameters

Parameter name Java type Description

string String The string to extract from.

substring String The substring to look for.

Example

${fn:substringAfter('Writing appendixes is no fun', 'no')}

fn:substringBefore

This function extracts the part of a string that precedes a substring and returns it.

Syntax

String: fn:substringBefore(string, substring)

Parameters

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parameter name Java type Description

string String The string to extract from.

substring String The substring to look for.

Example

${fn:substringBefore('Writing appendixes is fun, not!', ', not')}

fn:toLowerCase

This function converts all characters in a string to lowercase and returns the resulting string.

Syntax

String: fn:toLowerCase(string)

Parameters

Parameter name Java type Description

string String The string to convert.

Example

<c:if test="${fn:startsWith(fn:toLowerCase(param:day), 'fri')}">
 It must be Friday!
</c:if>

fn:toUpperCase

This function converts all characters in a string to uppercase and returns the resulting string.

Syntax

String: fn:toUpperCase(string)

Parameters

Parameter name Java type Description

string String The string to convert.

Example

<c:if test="${fn:startsWith(fn:toUpperCase(param:day), 'SAT')}">
 It must be Saturday!
</c:if>

fn:trim

This function removes leading and trailing whitespace (blanks, tabs, and linefeed characters) from a string and returns
the resulting string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

String: fn:trim(string)

Parameters

Parameter name Java type Description

string String The string to convert.

Example

${fn:trim(param:descr)}
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.7 Support and Utility Types

ConditionalTagSupport

The ConditionalTagSupport class can be extended by a tag handler for a custom conditional action.

Synopsis

Class Name: javax.servlet.jsp.jstl.core.
ConditionalTagSupport

Extends: javax.servlet.jsp.tagext.TagSupport

Implements: None

Methods

protected abstract boolean condition()throws javax.servlet.jsp.tagext.JspTagException

Returns the value of test condition. This method must be implemented by the subclass.

public void setScope(String scope)

Sets the scope attribute value.

public void setVar(String var)

Sets the var attribute value.

LocaleSupport

The LocaleSupport class can be used by a tag handler to get a localized message from a resource bundle.

Synopsis

Class name: javax.servlet.jsp.jstl.core.
LocaleSupport

Extends: None

Implements: None

Methods

public static String getLocalizedMessage(javax.servlet.jsp.PageContext p, String key)

Returns the message matching the key from the resource bundle and locale specified by the localization context
setting, or ???key??? if the key isn't found.

public static String getLocalizedMessage(javax.servlet.jsp.PageContext p, String key, String basename)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the message matching the key from the specified resource bundle and the locale specified by the locale
context setting or the localization context setting, or ???key??? if the key isn't found.

public static String getLocalizedMessage(javax.servlet.jsp.PageContext p, String key, Object[] params)

Returns the parameterized message matching the key from the resource bundle and locale specified by the
localization context setting, or ???key??? if the key isn't found.

public static String getLocalizedMessage(javax.servlet.jsp.PageContext p, String key, Object[] params, String basename)

Returns the parameterized message matching the key from the specified resource bundle and the locale
specified by the locale context setting or the localization context setting, or ???key??? if the key isn't found.

LocalizationContext

The LocalizationContext class represents a localization context.

Synopsis

Class name: javax.servlet.jsp.jstl.core.LocaleSupport

Extends: None

Implements: None

Constructors

public LocalizationContext()

Creates an empty context.

public LocalizationContext(java.util.ResourceBundle bundle)

Creates a context with the specified resource bundle but no locale.

public LocalizationContext(java.util.ResourceBundle bundle, java.util.Locale locale)

Creates a context with the specified resource bundle and locale.

Methods

public java.util.ResourceBundle getResourceBundle()

Returns the resource bundle.

public java.util.Locale getLocale()

Returns the locale.

LoopTag

The LoopTag interface is implemented by tag handlers for iteration actions, such as the <c:forEach> action. Its methods
provide access to the current iteration element and the iteration status.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Synopsis

Interface name: javax.servlet.jsp.jstl.core.LoopTag

Extends: javax.servlet.jsp.tagext.Tag

Implemented by: JSTL and custom action tag handler classes

Methods

public Object getCurrent()

Returns the current iteration element.

public javax.servlet.jsp.jstl.core.LoopTagStatus getLoopStatus()

Returns the iteration status.

LoopTagStatus

The LoopTagStatus interface methods provides access to the iteration status and the current iteration element. Instances
of this interface can be accessed through the LoopTag interface, implemented by iteration actions such as the
<c:forEach> action.

Synopsis

Interface name: javax.servlet.jsp.jstl.core.LoopTagStatus

Extends: None

Implemented by: JSTL and custom action tag handler classes

Methods

public Integer getBegin()

Returns the begin attribute value for the associated action element, or null if not specified.

public int getCount()

Returns the current 1-based iteration count.

public Object getCurrent()

Returns the current iteration element.

public int getIndex()

Returns the current 0-based iteration index.

public Integer getStart()

Returns the start attribute value for the associated action element, or null if not specified.

public Integer getStep()

Returns the step attribute value for the associated action element, or null if not specified.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the step attribute value for the associated action element, or null if not specified.

public boolean isFirst()

Returns true for the first iteration round.

public boolean isLast()

Returns true for the last iteration round.

LoopTagSupport

The LoopTagSupport class can be extended by a tag handler for a custom iteration action.

Synopsis

Class name: javax.servlet.jsp.jstl.core.LoopTagSupport

Extends: javax.servlet.jsp.tagext.TagSupport

Implements: javax.servlet.jsp.jstl.core.LoopTag, javax.servlet.jsp.tagext.IterationTag, javax.servlet.jsp.tagext.TryCatchFinallyTag

Fields

protected int begin
protected boolean beginSpecified
protected int end
protected boolean endSpecified
protected int itemId
protected int statusId
protected int step
protected boolean stepSpecified

Methods

public void doAfterBody() throws javax.servlet.jsp.tagext.JspTagException

Prepares for the next iteration until hasNext() returns false.

public void doCatch(Throwable t) throws Throwable

Rethrows the exception.

public void doFinally() throws javax.servlet.jsp.tagext.JspTagException

Removes the nested variables.

public void doStartTag() throws javax.servlet.jsp.tagext.JspTagException

Prepares for the iteration.

protected abstract Object getCurrent()

Returns the current iteration element.

public javax.servlet.jsp.jstl.core.LoopTagStatus getLoopStatus()

Returns the iteration status.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the iteration status.

protected abstract boolean hasNext() throws javax.servlet.jsp.tagext.JspTagException

Returns true if there are more iteration elements.

protected abstract Object next() throws javax.servlet.jsp.tagext.JspTagException

Returns the next iteration element.

protected abstract void prepare() throws javax.servlet.jsp.tagext.JspTagException

Prepares for the iteration.

public void setScope(String scope)

Sets the scope attribute value.

public void setVar(String var)

Sets the var attribute value.

protected void validateBegin() throws javax.servlet.jsp.tagext.JspTagException

Throws an exception if the begin attribute has an invalid value.

protected void validateEnd() throws javax.servlet.jsp.tagext.JspTagException

Throws an exception if the end attribute has an invalid value.

protected void validateStep() throws javax.servlet.jsp.tagext.JspTagException

Throws an exception if the step attribute has an invalid value.

Result

The Result interface is implemented by the object returned as the result from the <sql:query> action. Its methods
provide access to the query result.

Synopsis

Interface name: javax.servlet.jsp.jstl.sql.Result

Extends: None

Implemented by: The JSTL <sql:query> tag handler class

Methods

public String[] getColumnNames()

Returns an array of String objects, representing the column values in the same order as in the arrays returned
by getRowsByIndex().

public int getRowCount()

Returns the number of rows in the result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the number of rows in the result.

public java.util.SortedMap[] getRows()

Returns an array of SortedMap objects. Each array element represents a row, and the map contains the column
values, with the column name as a case-insensitive key.

public Object[][] getRowsByIndex()

Returns an array of arrays. The first array dimension represents rows and the second the column values.

public boolean isLimitedByMaxRows()

Returns true if the result was limited by the maximum rows configuration setting or action element attribute.

ResultSupport

The ResultSupport class can be used by custom code to create a Result object from a java.sql.ResultSet.

Synopsis

Class name: javax.servlet.jsp.jstl.sql.ResultSupport

Extends: None

Implements: None

Methods

public static javax.servlet.jsp.jstl.sql.Result toResult(java.sql.ResultSet rs)

Returns a Result object with the data from the specified ResultSet.

public static javax.servlet.jsp.jstl.sql.Result toResult(java.sql.ResultSet rs, int maxRows)

Returns a Result object with the data from the specified ResultSet, up to the specified number of maximum rows

SQLExecutionTag

The SQLExecutionTag interface is implemented by the <sql:query> and <sql:update> tag handlers so that they can receive
placeholder parameter values from nested actions.

Synopsis

Interface name: javax.servlet.jsp.jstl.sql.SQLExecutionTag

Extends: None

Implemented by: The JSTL <sql:query> and <sql:update> tag handler classes

Methods

public void addSQLParameter(Object value)

Adds a parameter value suitable for use with java.sql.PreparedStatement.setObject().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

B.8 Configuration Settings

Data Source

The data-source configuration setting can be set as a String in this format, in which optional parts are embedded in
brackets:

url [, [driver] [, [user] [, [password]]]

This type of value creates a simple DataSource without any pooling capabilities, and is intended only for prototype and
low-end applications, as described in Chapter 12. It can also be set to a JNDI path for a DataSource made available by
the container, or to a DataSource created by custom code, such as a servlet or listener. These options are described in
detail in Chapter 24.

Details

Variable name: javax.servlet.jsp.jstl.sql.dataSource

Java constant: Config.SQL_DATA_SOURCE

Java type: String or javax.sql.DataSource

Set by: <sql:setDataSource>, context parameter or custom code

Used by: <sql:query>, <sql:update>, and <sql:transaction>

Fallback Locale

Setting the fallback locale configuration setting provides a default locale to be used when the lookup of a locale based
on user preferences (passed through the Accept-Language header value) fails to match an available locale. When a String
value is used to set this variable, it must be specified as a two-letter lowercase ISO-639 language code, optionally
followed by a two-letter uppercase ISO-3166 country code, separated by a hyphen or an underscore character.

Details

Variable
name: javax.servlet.jsp.jstl.fmt.fallbackLocale

Java
constant: Config.FMT_FALLBACK_LOCALE

Java type: String or java.util.Locale

Set by: Context parameter or custom code

Used by: <fmt:bundle>, <fmt:setBundle>, <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>
and <fmt:parseDate>

Locale

Setting the locale configuration setting disables the lookup of a locale based on user preferences (passed through the
Accept-Language header value). When a String value is used to set this variable, it must be specified as a two-letter
lowercase ISO-639 language code, optionally followed by a two-letter uppercase ISO-3166 country code, separated by
a hyphen or an underscore character.

Details

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Details

Variable
name: javax.servlet.jsp.jstl.fmt.locale

Java
constant: Config.FMT_LOCALE

Java type: String or java.util.Locale

Set by: <fmt:setLocale>, context parameter or custom code

Used by: <fmt:bundle>, <fmt:setBundle>, <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>,
and <fmt:parseDate>

Localization Context

The localization context setting can be set to a String value containing the name of the default resource bundle base
name. The formatting actions then locate the locale-specific version of this bundle. The <fmt:setBundle> sets the variable
to an instance of the LocalizationContext class, which contains references to both a locale and a resource bundle for a
locale.

Details

Variable name: javax.servlet.jsp.jstl.fmt.localizationContext

Java constant: Config.FMT_LOCALIZATION_CONTEXT

Java type: String or javax.servlet.jsp.jstl.fmt.LocalizationContext

Set by: <fmt:setBundle>, context parameter or custom code

Used by: <fmt:message>, <fmt:formatNumber>, <fmt:parseNumber>, <fmt:formatDate>, and <fmt:parseDate>

Max Rows

The maximum rows configuration setting can be set as a String value for a context parameter or as an Integer by custom
code. It can be used to prevent run-away queries, because it sets a limit as to how many rows are retrieved for a query
result.

Details

Variable name: javax.servlet.jsp.jstl.sql.maxRows

Java constant: Config.SQL_MAX_ROWS

Java type: String or Integer

Set by: Context parameter or custom code

Used by: <sql:query>

Time Zone

The time zone configuration setting provides a default time zone for the JSTL actions formatting and parsing dates.
String values for the time zone setting must be of the type defined for the java.util.TimeZone class: an abbreviation, a full
name, or a GMT offset.

Details

Variable name: javax.servlet.jsp.jstl.fmt.timeZone

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Java constant: Config.FMT_TIME_ZONE

Java type: String or java.util.TimeZone

Set by: <fmt:setTimeZone>, context parameter or custom code

Used by: <fmt:formatDate> and <fmt:parseDate>

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix C. JSP Expression Language Reference
This appendix contains a reference to the JSP Expression Language (EL). EL expressions can be used directly in
template text and in attribute values for action attributes declared to accept request-time attribute values, for both
standard and custom actions.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.1 Syntax
An EL expression starts with the ${ delimiter (a dollar sign plus a left curly brace) and ends with } (a right curly brace):

${anExpression}

When used in an attribute value, any number of EL expressions and static text parts can be combined. The attribute is
set to the evaluation result of each expression converted to a String concatenated with the text parts:

<c:out value="The result of 1 + 2 + 3 is ${1 + 2 + 3}" />

If the type for the attribute is not String, the result is converted to the attribute's Java type as described later.

The language is case-sensitive. All keywords are in lowercase, and identifiers must be written with correct
capitalization.

C.1.1 Literals

Literals represent strings, numbers, Boolean values, and the null value.

String
Enclosed with single or double quotes. A quote of the same type within the string must be escaped with
backslash: \' in a string enclosed with single quotes, \" in a string enclosed with double quotes. The
backslash character must be escaped as \\ in both cases.

Integer An optional sign (+ or -) followed by digits between 0 and 9.

Floating
point

The same as an Integer literal, except that a dot is used as the separator for the fractional part and that an
exponent can be specified as e or E followed by an Integer literal.

Boolean true or false.

Null null.

C.1.2 Keywords and Reserved Words

The following words are keywords or reserved for potential use in a future version:

and or not eq ne lt gt le ge true false null instanceof empty div mod

They can't be used as property names or variable names, unless they are quoted.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.2 Variables
Variables are named references to data (objects), created by the application or made available implicitly by the EL.
Application-specific variables can be created in many ways, for instance using the <jsp:useBean> action. They can also
be created by custom actions or be passed to the JSP page by a servlet. Every object that is available in one of the JSP
scopes can be used as an EL variable:

${aScopedVariable}

C.2.1 Implicit Variables

All information about a request and other data can be accessed through the EL implicit variables:

Variable
name Description

pageScope A collection (a java.util.Map) of all page scope variables.

requestScope A collection (a java.util.Map) of all request scope variables.

sessionScope A collection (a java.util.Map) of all session scope variables.

applicationScope A collection (a java.util.Map) of all application scope variables.

param A collection (a java.util.Map) of all request parameter values as a single String value per parameter.

paramValues A collection (a java.util.Map) of all request parameter values as a String array per parameter.

header A collection (a java.util.Map) of all request header values as a single String value per header.

headerValues A collection (a java.util.Map) of all request header values as a String array per header.

cookie A collection (a java.util.Map) of all request cookie values as a single javax.servlet.http.Cookie value per
cookie. See Appendix D for a list of properties for the Cookie class.

initParam A collection (a java.util.Map) of all application initialization parameter values as a single String value per
parameter.

pageContext An instance of the javax.servlet.jsp.PageContext class, providing access to various request data. See
Appendix D for a list of its properties.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.3 Data Types
A variable is always of a specific Java type. Besides the standard Java types for numeric, Boolean, and text values, the
EL provides special support for custom classes developed according to the JavaBeans guidelines, java.util.Map objects,
java.util.List objects, and arrays.

Bean properties can be accessed using the special property accessor operator (a dot), and be nested to any length:

${aBean.aProperty.aPropertyOfTheProperty.andSoOn}

Map entries can be accessed the same way:

${aMap.aKey}

List and array elements can be accessed using the array accessor operator (square brackets):

${aList[0]}
${anArray[0]}
${anArrayOrList[anExressionWithANumbericValue]}

The array accessor operator can also access bean properties and Map entries. It must be used when the property name
is determined by a subexpression, the property name is a reserved word or contains characters used for operators,
such as a dot:

${aMap[param.customerName]}
${aBean['empty']}
${aMap['com.mycomp.logo']}

C.3.1 Coercion Rules

The EL automatically converts, or coerces, variable values and the result of an expression to the type required by an
attribute or an operator:

To Java type Conversion rule

String
null: to empty string ("").

All other types: to the corresponding String value.

Primitive number or Number

null or empty string: 0.

Character or char: to the value represented by the character code.

String: parse as an Integer or Floating point literal.

Numeric types: coerce to the requested precision.

boolean or Boolean
null: to false.

String: to true if the value is "true", ignoring case, otherwise false.

Other type

null: keep as null.

String: use the PropertyEditor for the requested type, if any, otherwise null if the string is
empty.

Other: type cast, if possible.

In all cases, the EL evaluator throws an exception for attempts to convert between types not defined in the table or if
the defined conversion rule fails.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

C.4 Expressions and Operators
The combination of literal values, variables, and the following operators form an EL expression:

Operator Precedence Operation performed

. 1 Access a bean property or Map entry.

[] 1 Access an array or List element.

() 2 Group a subexpression to change the evaluation order.

? : 10 Conditional test: condition ? ifTrue : ifFalse.

+ 5 Addition.

- 5 Subtraction.

- 3 Negation of a value.

* 4 Multiplication.

/ or div 4 Division.

% or mod 4 Modulo (remainder).

== or eq 7 Test for equality.

!= or ne 7 Test for inequality.

< or lt 6 Test for less than.

> or gt 6 Test for greater than.

<= or le 6 Test for less than or equal.

>= or ge 6 Test for greater than or equal.

&& or and 8 Test for logical AND.

|| or or 9 Test for logical OR.

! or not 3 Unary Boolean complement.

empty 3 Test for empty variable values (null or an empty String, array, Map, or Collection).

func(args) N/A A function call, where func is the function name and args is a comma-separated list of
arguments.

Expressions are evaluated in the order defined by the operator precedence and left to right for operators of the same
precedence.

C.4.1 Operand Coercing Rules

Before the operator is applied, the EL evaluator coerces the types of the operand values. An exception is thrown if no
rule matches, the coercing fails, or applying the operator leads to an exception.

C.4.1.1 Property and array accessor operators

An expression of the form ${exprA.identifierB} is evaluated the same way as ${exprA['identifierB']}.

To evaluate an expression of the form ${exprA[exprB]}, the following rules are used:

If exprA is null, return null.

If exprB is null, return null.

If exprA is a Map with a key matching exprB, return the value.

If exprA is a List or array with an index matching exprB coerced to an int, return the value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If exprA is a List or array with an index matching exprB coerced to an int, return the value.

If exprA is a bean with a property matching exprB coerced to a String, return the value.

C.4.1.2 Arithmetic operators

For addition, subtraction, and multiplication, if any operand is null, the result is 0. Otherwise both operands are coerced
to numbers (to BigDecimal if one of them is BigDecimal or if one is BigInteger and the other is Float, Double, or a String with
floating-point syntax, to double if one of them is Float, Double, or a String with floating-point syntax, to BigInteger if one of
them is BigInteger, to long otherwise), and the result of applying the operator is returned.

For division, if any operand is null, the result is 0. Otherwise both operands are coerced to numbers (to BigDecimal if one
of them is BigInteger or BigDecimal, to double otherwise), and the result of applying the operator is returned.

For modulo, if any operand is null, the result is 0. Otherwise both operands are coerced to numbers (to double if one of
them is BigDecimal, Float, Double, or a String with floating-point syntax, to BigInteger if one of them is BigInteger, to long
otherwise), and the result of applying the operator is returned.

For negation, if the operand is null, the result is 0. Otherwise if the operand is a String, it's coerced to a number (to
double if it represents a floating-point value, to long otherwise), and the result of applying the operator is returned. For
numeric types, the operator is applied without coercing the value and the result is returned.

C.4.1.3 Relational operators

For "less than," "greater than," "less than or equal," and "greater than or equal," if the operands are equal, true is
returned for "less than or equal" and "greater than or equal"; false otherwise. If the operands are not equal and one of
them is null, false is returned. If one of the operands is a BigDecimal, the other is coerced to BigDecimal and the result of
compareTo() is returned. If one of the operands is a Float or a Double, both are coerced to double, and the result of
applying the operator is returned. If one of the operands is a BigInteger, the other is coerced to BigInteger and the result
of compareTo() is returned. If one of the operands is a Byte, Short, Character, Integer, or Long, both are coerced to long,
and the result of applying the operator is returned. If one operand is a String, the other is coerced to a String, and the
result of compareTo() is returned. Otherwise, if one of the operands is a Comparable, the result of comparing it to the
other with the compareTo() method is returned.

For "equal" and "not equal," if the operands are equal, the operator is applied and the result is returned. If one of the
operands is null, false is returned for "equal" and true for "not equal." If one of the operands is a BigDecimal, the other is
coerced to BigDecimal and the result of equals() is used, negated for "not equal." If one of the operands is a Float or a
Double, both are coerced to double, and the result of applying the operator is returned. If one of the operands is a
BigInteger, the other is coerced to BigInteger and the result of equals() is used, negated for "not equal." If one of the
operands is a Byte, Short, Character, Integer, or Long, both are coerced to long, and the result of applying the operator is
returned. If one of the operands is a Boolean, both are coerced to boolean, and the result of applying the operator is
returned. Otherwise, the result of comparing the values with the equals() method is returned, negated for "not equal."

C.4.1.4 Logical operators

For "and" and "or," both operands are coerced to boolean, and the result of applying the operator is returned. The
evaluation stops as soon as the result can be determined, i.e., for the expression ${a && b && c && d}, only ${a && b} is
evaluated if b is false.

For "not," the operand is coerced to boolean and the result of applying the operator is returned.

C.4.1.5 Empty operator

The "empty" operator returns true if the operand is null or an empty string, an empty array, an empty Map, or an empty
Collection; otherwise it returns false.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix D. JSP API Reference
Besides the JSP elements described in Appendix A, the JSP specification also defines a number of Java classes and
interfaces. Instances of some of these classes are assigned to the implicit variables available to scripting elements and
Expression Language (EL) expressions in a JSP page. Others are used to develop custom actions and to allow JSP
container vendors to encapsulate internal implementations. This appendix describes the classes and interfaces in all
these categories in the JSP 2.0 specification, as well as the classes and interfaces exposed through the JSP types
defined by the Servlet 2.4 specification.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.1 Implicit Variables
The JSP specification defines a number of implicit scripting variables. Most of the implicit variables have types defined
by classes and interfaces in the Servlet specification's javax.servlet.http package, but two are part of the JSP
javax.servlet.jsp package and one is part of the Java core API. Scripting elements in a JSP page can use these objects to
access request and response information as well as objects saved in one of the JSP scopes: page, request, session, and
application.

Most of these objects are also available to EL expressions through the EL implicit variables. The detailed sections
include the EL expression in the Synopsis sections where applicable.

application

The application variable contains a reference to a ServletContext instance. The ServletContext provides resources shared
within a web application. It holds attribute values representing the JSP application scope. An attribute value can be an
instance of any Java class. It also defines a set of methods that a JSP page or a servlet use to communicate with its
container, for example, to get the MIME type of a file, dispatch requests, or write to a log file. The web container is
responsible for providing an implementation of the ServletContext interface.

A ServletContext is assigned a specific URI path prefix within a web server. For example a context could be responsible
for all resources under http://www.mycorp.com/catalog. All requests that start with the /catalog request path, which is
known as the context path, are routed to this servlet context.

A single instance of a ServletContext is available to the all servlets and JSP pages in a web application, unless the web
application indicates that it is distributable. For a distributed application, there's a single instance of the ServletContext
class per application per Java Virtual Machine (JVM).

Synopsis

Variable name: application

EL expression ${pageContext.servletContext}

Interface name: javax.servlet.ServletContext

Extends: None

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error pages

Methods

public Object getAttribute(String name)

Returns the servlet context attribute with the specified name, or null if there is no attribute by that name.
Context attributes, representing the JSP application scope, can be set by a servlet or a JSP page. A container
can also use attributes to provide information that is not already available through methods in this interface.

public java.util.Enumeration getAttributeNames()

Returns an Enumeration of String objects containing the attribute names available within this servlet context.

public ServletContext getContext(String uripath)

Returns a ServletContext object that corresponds to the specified URI in the web container. This method allows
servlets and JSP pages to gain access to other contexts than its own. The URI path must be absolute (beginning
with "/") and is interpreted based on the containers' document root. In a security-conscious environment, the
container may return null for a given URI.

public String getInitParameter(String name)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public String getInitParameter(String name)

Returns a String containing the value of the named context-wide initialization parameter or null if the parameter
does not exist. Context initialization parameters can be defined in a web application deployment descriptor.

public java.util.Enumeration getInitParameterNames()

Returns the names of the context's initialization parameters as an Enumeration of String objects or an empty
Enumeration if the context has no initialization parameters.

public int getMajorVersion()

Returns the major version of the Java Servlet API that this web container supports. A container that complies
with the Servlet 2.3 API returns 2.

public String getMimeType(String filename)

Returns the MIME type of the specified file or null if the MIME type is not known. The MIME type is determined
by the configuration of the web container and may be specified in a web application deployment descriptor.

public int getMinorVersion()

Returns the minor version of the Java Servlet API that this web container supports. A container that complies
with the Servlet 2.3 API returns 3.

public RequestDispatcher getNamedDispatcher(String name)

Returns a RequestDispatcher object that acts as a wrapper for the named servlet or JSP page. Names can be
defined for servlets and JSP pages in the web application deployment descriptor.

public String getRealPath(String path)

Returns a String containing the filesystem path for specified context-relative path. This method returns null if the
web container can't translate the path to a filesystem path for any reason (such as when the content is being
made available directly from a WAR archive).

public RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object that acts as a wrapper for the resource located at the specified context-
relative path. The resource can be dynamic (servlet or JSP) or static (for instance, a regular HTML file).

public java.net.URL getResource(String path) throws MalformedURLException

Returns a URL to the resource that is mapped to the specified context-relative path. This method allows the web
container to make a resource available to servlets and JSP pages from sources other than a local filesystem,
such as a database or a WAR file.

The URL provides access to the resource content directly, so be aware that requesting a JSP page returns a URL
for the JSP source page as opposed to the processed result. Use a RequestDispatcher instead to include results of
an execution.

This method returns null if no resource is mapped to the pathname.

public java.io.InputStream getResourceAsStream(String path)

Returns the resource mapped to the specified context-relative path as an InputStream object. See getResource()
for details.

public java.util.Set getResourcePaths(String path)

Returns a list of String instances with all valid resource paths under the specified path in the resource
namespace hierarchy. Values ending with a slash represent a directory in the hierarchy. All paths are returned
as context-relative paths, so they can be used directly as the argument to getResource() or getResourceAsStream(
).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

).

public String getServerInfo()

Returns the name and version of the servlet container on which the servlet or JSP page is running as a String
with the format "servername/versionnumber" (for example, "Tomcat/3.2"). Optionally, a container may include
other information, such as the Java version and operating system information, within parentheses.

public String getServletContextName()

Returns the servlet context (application) name defined by the <display-name> element in the deployment
descriptor.

public void log(String message)

Writes the specified message to a container log file. The name and type of the log file is container dependent.

public void log(String message, Throwable cause)

Writes the specified message and a stack trace for the specified Throwable to the servlet log file. The name and
type of the log file is container dependent.

public void removeAttribute(String name)

Removes the attribute with the specified name from the servlet context.

public void setAttribute(String name, Object attribute)

Binds an object to the specified attribute name in this servlet context. If the specified name is already used for
an attribute, this method removes the old attribute and binds the name to the new attribute.

The following methods are deprecated:

public Servlet getServlet(String name) throws ServletException

This method was originally defined to retrieve a servlet from a ServletContext. As of the Servlet 2.1 API, this
method always returns null and remains only to preserve binary compatibility. This method will be removed
permanently in a future version of the Java Servlet API.

public Enumeration getServlets()

This method was originally defined to return an Enumeration of all the servlets known to this servlet context. As
of the Servlet 2.1 API, this method always returns an empty Enumeration and remains only to preserve binary
compatibility. This method will be removed permanently in a future version of the Java Servlet API.

public Enumeration getServletNames()

This method was originally defined to return an Enumeration of all the servlet names known to this context. As of
Servlet 2.1, this method always returns an empty Enumeration and remains only to preserve binary
compatibility. This method will be permanently removed in a future version of the Java Servlet API.

public void log(Exception exception, String message)

This method was originally defined to write an exception's stack trace and an explanatory error message to the
web container log file. As of the Servlet 2.1 API, the recommendation is to use log(String, Throwable) instead.

config

The config variable contains a reference to a ServletConfig instance. A web container uses a ServletConfig instance to pass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The config variable contains a reference to a ServletConfig instance. A web container uses a ServletConfig instance to pass
information to a servlet or JSP page during initialization. The configuration information contains initialization parameters
(defined in the web application deployment descriptor) and the ServletContext object representing the web application
the servlet or JSP page belongs to.

Synopsis

Variable name: config

EL expression ${pageContext.servletConfig}

Interface name: javax.servlet.ServletConfig

Extends: None

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error pages

Methods

public String getInitParameter(String name)

Returns a String containing the value of the specified servlet or JSP page initialization parameter or null if the
parameter does not exist.

public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet's or JSP page's initialization parameters as an Enumeration of String objects or
an empty Enumeration if the servlet has no initialization parameters.

public ServletContext getServletContext()

Returns a reference to the ServletContext the servlet or JSP page belongs to.

public String getServletName()

Returns the name of this servlet instance or JSP page. The name may be assigned in the web application
deployment descriptor. For an unregistered (and thus unnamed) servlet instance or JSP page, the servlet's class
name is returned.

exception

The exception variable is assigned a reference to the subclass of Throwable that caused an error page to be invoked. The
Throwable class is the superclass of all error and exception classes in the Java language. Only instances of this class (or
of one of its subclasses) are thrown by the Java Virtual Machine (JVM) or can be thrown by an application using the
Java throw statement.

Synopsis

Variable name: exception

EL expression ${pageContext.exception}

Class name: java.lang.Throwable

Extends: None

Implements: java.io.Serializable

Implemented by: Part of the standard Java library

JSP page type: Available only in a page marked as an error page using the page directive isErrorPage attribute

Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Methods

See the Java documentation at http://java.sun.com/docs/index.html for a description of the Throwable class.

out

The out variable is assigned to a concrete subclass of the JspWriter abstract class by the web container. JspWriter
emulates some of the functionality found in the java.io.BufferedWriter and java.io.PrintWriter classes. It differs, however, in
that it throws a java.io.IOException from the print methods, which the PrintWriter does not.

If the page directive attribute autoflush is set to true, all the I/O operations on this class automatically flush the contents
of the buffer when it's full. If autoflush is set to false, all the I/O operations on this class throws an IOException when the
buffer is full.

Synopsis

Variable name: out

EL expression N/A

Class name: javax.servlet.jsp.JspWriter

Extends: java.io.Writer

Implements: None

Implemented by: A concrete subclass of this abstract class is provided as an internal container-dependent class

JSP page type: Available in both regular JSP pages and error pages

Constructor

protected JspWriter(int bufferSize, boolean autoFlush)

Creates an instance with at least the specified buffer size and the specified auto-flush behavior.

Methods

public abstract void clear() throws java.io.IOException

Clears the contents of the buffer. If the buffer has already been flushed, throws an IOException to signal the fact
that some data has already been irrevocably written to the client response stream.

public abstract void clearBuffer() throws java.io.IOException

Clears the current contents of the buffer. Unlike clear(), this method does not throw an IOException if the buffer
has already been flushed. It just clears the current content of the buffer and returns.

public abstract void close() throws java.io.IOException

Closes the JspWriter after flushing it. Calls to flush() or write() after a call to close() cause an IOException to be
thrown. If close() is called on a previously closed JspWriter, it is ignored.

public abstract void flush() throws java.io.IOException

Flushes the current contents of the buffer to the underlying writer and flushes the underlying writer as well. This
means that the buffered content is delivered to the client immediately.

public int getBufferSize()

Returns the size of the buffer in bytes, or 0 if it is not buffered.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the size of the buffer in bytes, or 0 if it is not buffered.

public abstract int getRemaining()

Returns the number of unused bytes in the buffer.

public boolean isAutoFlush()

Returns true if this JspWriter is set to auto-flush the buffer, false otherwise.

public void newLine()

Writes a line separator, as defined by the line.separator system property, to the buffer.

It also overrides all print methods inherited from java.io.Writer to handle buffering.

page

The page variable is assigned to the instance of the JSP implementation class, declared as an Object. This variable is
rarely, if ever, used.

Synopsis

Variable name: page

EL expression N/A

Class name: Object

Extends: None

Implements: None

Implemented by: Part of the standard Java library

JSP page type: Available in both regular JSP pages and error pages

Methods

See the Java documentation at http://java.sun.com/docs/index.html for a description of the Object class.

pageContext

A PageContext instance provides access to all the JSP scopes and several page attributes. It offers a layer above the
container-implementation details that enables a container to generate portable JSP implementation classes. The JSP
page scope is represented by PageContext attributes. The web container assigns a unique instance of this class to the
pageContext variable for each request.

The PageContext is provided to tag handler classes to give them access to the runtime context data. The class was
refactored in JSP 2.0 to extend a generic context class: JspContext. All nonservlet specific methods were moved to the
JspContext class, described in the Tag Handler Types section. Classic tag handlers are given an instance of PageContext
but the new simple tag handler API uses the new JspContext type instead. In a servlet-based JSP container, the instance
provided to a simple tag handler is always a PageContext, so tag handlers can safely cast the JspContext instance to a
PageContext. These changes were made to allow the simple tag handler mechanism to be used in nonservlet based
environments in the future.

Synopsis

Variable name: pageContext

EL expression ${pageContext}

Class name: javax.servlet.jsp.PageContext

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extends: javax.servlet.jsp.JspContext

Implements: None

Implemented by: A concrete subclass of this abstract class is provided as an internal container-dependent class

JSP page type: Available in both regular JSP pages and error pages

Fields

public static final String APPLICATION
public static final int APPLICATION_SCOPE
public static final String CONFIG
public static final String EXCEPTION
public static final String OUT
public static final String PAGE
public static final int PAGE_SCOPE
public static final String PAGECONTEXT
public static final String REQUEST
public static final int REQUEST_SCOPE
public static final String RESPONSE
public static final String SESSION
public static final int SESSION_SCOPE

Constructor

public PageContext()

Creates an instance of the PageContext class. Typically, an instance is created and initialized by the JspFactory
class.

Methods

public abstract void forward(String relativeUrlPath) throws ServletException, java.io.IOException

Forwards the current request to another active component, such as a servlet or JSP page, in the application. If
the specified URI starts with a slash, it's interpreted as a context-relative path, otherwise as a page-relative
path.

The response must not be modified after calling this method, because the response is committed before this
method returns.

public abstract ErrorData getErrorData()

Returns an instance of ErrorData containing information about the error that caused an error JSP page (declared
by the isErrorPage attribute of the page directive) to be invoked. If this method is called while processing a page
that isn't an error page, the information it contains is meaningless.

public abstract Exception getException()

Returns the Exception that caused the current page to be invoked if its page directive isErrorPage attribute is set to
true.

public abstract Object getPage()

Returns the object that represents the JSP page implementation class instance this PageContext is associated
with.

public abstract ServletRequest getRequest()

Returns the current ServletRequest.

public abstract ServletResponse getResponse()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the current ServletResponse.

public abstract ServletConfig getServletConfig()

Returns the ServletConfig for this JSP page implementation class instance.

public abstract ServletContext getServletContext()

Returns the ServletContext for this JSP page implementation class instance.

public abstract HttpSession getSession()

Returns the current HttpSession or null if the page directive session attribute is set to false.

public abstract void handlePageException(Exception e) throws ServletException, java.io.IOException

This method is only kept for backward compatibility. New implementations should use the version that takes a
Throwable argument instead.

public abstract void handlePageException(Throwable e) throws ServletException, java.io.IOException

This method is intended to be called only by the JSP page implementation class to process unhandled
exceptions by forwarding the request exception to either the error page specified by the page directive errorPage
attribute or perform an implementation dependent action if no error page is specified.

public abstract void include(String relativeUrlPath) throws ServletException, java.io.IOException

Causes the specified resource to be processed as part of the current request. The current JspWriter is flushed
before invoking the target resource, and the output of the target resource's processing of the request is written
directly to the current ServletResponse object's writer. If the specified URI starts with a slash, it's interpreted as a
context-relative path, otherwise as a page-relative path.

public abstract void include(String relativeUrlPath, boolean flush) throws ServletException, java.io.IOException

Causes the specified resource to be processed as part of the current request. If flush is true, the current JspWriter
is flushed before invoking the target resource. The output of the target resource's processing of the request is
written to the current JspWriter object's writer. If the specified URI starts with a slash, it's interpreted as a
context-relative path, otherwise as a page-relative path.

public abstract void initialize(Servlet servlet, ServletRequest request, ServletResponse response, String errorPageURL, boolean
needsSession, int bufferSize, boolean autoFlush) throws java.io.IOException, IllegalStateException,IllegalArgumentException

This method is called to initialize a PageContext object so that it may be used by a JSP implementation class to
service an incoming request. This method is typically called from the JspFactory.getPageContext() method.

public BodyContent pushBody()

This method is intended to be called only by the JSP page implementation class to get a new BodyContent object
and save the current JspWriter on the PageContext object's internal stack.

public abstract void release()

Resets the internal state of a PageContext, releasing all internal references and preparing the PageContext for
potential reuse by a later invocation of initialize(). This method is typically called from the
JspFactory.releasePageContext() method.

request

The request variable is assigned a reference to an internal container-dependent class that implements a protocol-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The request variable is assigned a reference to an internal container-dependent class that implements a protocol-
dependent interface that extends the javax.servlet.ServletRequest. Since HTTP is the only protocol support by JSP 2.0, the
class always implements the javax.servlet.http.HttpServletRequest interface. The method descriptions in this section include
all methods from both interfaces.

Information stored as ServletRequest attributes corresponds to objects in the JSP request scope.

Synopsis

Variable name: request

EL expression ${pageContext.request}

Interface name: javax.servlet.http.HttpServletRequest

Extends: javax.servlet.ServletRequest

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error pages

Fields

public static final String BASIC_AUTH
public static final String CLIENT_CERT_AUTH
public static final String DIGEST_AUTH
public static final String FORM_AUTH

Methods

public Object getAttribute(String name)

Returns the value of the named attribute as an Object or null if no attribute of the given name exists.

public java.util.Enumeration getAttributeNames()

Returns an Enumeration containing the names of the attributes available to this request. The Enumeration is empty
if the request doesn't have any attributes.

public String getAuthType()

Returns the name of the authentication scheme used to protect the servlet, one of BASIC_AUTH,
CLIENT_CERT_AUTH, DIGEST_AUTH, FORM_AUTH, or a container-dependent string or null if the servlet isn't
protected.

public String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request or null if the request doesn't
specify a character encoding.

public int getContentLength()

Returns the length, in bytes, of the request body and made available by the input stream or -1 if the length is
not known.

public String getContentType()

Returns the MIME type of the body of the request or null if the type is not known.

public String getContextPath()

Returns the portion of the request URI that indicates the context of the request.

public javax.servlet.http.Cookie[] getCookies()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public javax.servlet.http.Cookie[] getCookies()

Returns an array containing all of the Cookie objects the client sent with this request, or null if the request
contains no cookies.

public long getDateHeader(String name)

Returns the value of the specified request header as a long value that represents a date value or -1 if the
header isn't included in the request.

public String getHeader(String name)

Returns the value of the specified request header as a String or null if the header isn't included with the request.

public java.util.Enumeration getHeaderNames()

Returns all the header names this request contains as an Enumeration of String objects. The Enumeration is empty
if the request doesn't have any headers.

public java.util.Enumeration getHeaders(String name)

Returns all the values of the specified request header as an Enumeration of String objects. The Enumeration is
empty if the request doesn't contain the specified header.

public ServletInputStream getInputStream() throws java.io.IOException

Retrieves the body of the request as binary data using a ServletInputStream.

public int getIntHeader(String name)

Returns the value of the specified request header as an int or -1 if the header isn't included in the request.

public String getLocalAddr()

Returns the IP address of the interface on which the request was received.

public java.util.Locale getLocale()

Returns the preferred Locale that the client will accept content in, based on the Accept-Language header.

public java.util.Enumeration getLocales()

Returns an Enumeration of Locale objects indicating, in decreasing order and starting with the preferred locale,
the locales that are acceptable to the client based on the Accept-Language header.

public String getLocalName()

Returns the host name associated with the IP address of the interface on which the request was received.

public String getLocalPort()

Returns the IP port number of the interface on which the request was received.

public String getMethod()

Returns the name of the HTTP method with which this request was made, for example GET, POST, or PUT.

public String getParameter(String name)

Returns the value of a request parameter as a String or null if the parameter does not exist.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the value of a request parameter as a String or null if the parameter does not exist.

public java.util.Map getParameterMap()

Returns a Map of all parameters for the request with the parameter names as keys and String arrays as values.

public java.util.Enumeration getParameterNames()

Returns an Enumeration of String objects containing the names of the parameters contained in this request.

public String[] getParameterValues(String name)

Returns an array of String objects containing all of the values the given request parameter has or null if the
parameter does not exist.

public String getPathInfo()

Returns any extra path information associated with the URI the client sent when it made this request or null if
there is no extra path information. For a JSP page, this method always returns null.

public String getPathTranslated()

Returns the result of getPathInfo() translated into the corresponding file system path. Returns null if getPathInfo()
returns null.

public String getProtocol()

Returns the name and version of the protocol the request uses in the form protocol/majorVersion.minorVersion,
for example, HTTP/1.1.

public String getQueryString()

Returns the query string that is contained in the request URI after the path.

public java.io.BufferedReader getReader() throws java.io.IOException

Retrieves the body of the request as character data using a BufferedReader.

public String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client that sent the request.

public String getRemoteHost()

Returns the fully qualified name of the client host or last proxy that sent the request or the IP address if the
hostname can't be determined.

public String getRemotePort()

Returns the IP source port of the client or last proxy that sent the request.

public String getRemoteUser()

Returns the login name of the user making this request if the user has been authenticated or null if the user has
not been authenticated.

public RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object that acts as a wrapper for the resource located at the given path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns a RequestDispatcher object that acts as a wrapper for the resource located at the given path.

public String getRequestedSessionId()

Returns the session ID specified by the client.

public String getRequestURI()

Returns the part of this request's URL from the protocol name up to the query string in the first line of the HTTP
request.

public StringBuffer getRequestURL()

Returns a reconstructed request URL, including the protocol, server name, port number, and the URI path, but
not the query string.

public String getScheme()

Returns the name of the scheme (protocol) used to make this request, for example, http, https, or ftp.

public String getServerName()

Returns the hostname of the server that received the request.

public int getServerPort()

Returns the port number on which this request was received.

public String getServletPath()

Returns the part of this request's URI that identifies the servlet. For a JSP page, this is the complete context-
relative path for the JSP page.

public HttpSession getSession()

Returns the current HttpSession associated with this request. If the request doesn't have a session, a new
HttpSession object is created, associated with the request, and returned.

public HttpSession getSession(boolean create)

Returns the current HttpSession associated with this request. If there is no current session, and create is true, a
new HttpSession object is created, associated with the request, and returned. If create is false, and the request
isn't associated with a session, this method returns null.

public java.security.Principal getUserPrincipal()

Returns a Principal object containing the name of the current authenticated user.

public boolean isRequestedSessionIdFromCookie()

Checks whether the requested session ID came in as a cookie.

public boolean isRequestedSessionIdFromURL()

Checks whether the requested session ID came in as part of the request URL.

public boolean isRequestedSessionIdValid()

Checks whether the requested session ID is still valid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Checks whether the requested session ID is still valid.

public boolean isSecure()

Returns a boolean indicating whether this request was made using a secure channel, such as HTTPS.

public boolean isUserInRole(String role)

Returns a boolean indicating whether the authenticated user is included in the specified logical "role."

public void removeAttribute(String name)

Removes the specified attribute from this request.

public Object setAttribute(String name, Object attribute)

Stores the specified attribute in this request.

public void setCharacterEncoding(String encoding)

Sets the character encoding name used when reading the request. This method must be called before reading
request parameters or reading the body through a Reader returned by getReader().

The following methods are deprecated:

public String getRealPath()

As of the Servlet 2.1 API, use ServletContext.getRealPath(String) instead.

public boolean isRequestSessionIdFromUrl()

As of the Servlet 2.1 API, use isRequestedSessionIdFromURL() instead.

response

The response variable is assigned a reference to an internal container-dependent class that implements a protocol-
dependent interface that extends the javax.servlet.ServletResponse. Since HTTP is the only protocol supported by JSP 2.0,
the class always implements the javax.servlet.http.HttpServletResponse interface. The method descriptions in this section
include all methods from both interfaces.

Synopsis

Variable name: response

EL expression ${pageContext.response}

Interface name: javax.servlet.http.HttpServletResponse

Extends: javax.servlet.ServletResponse

Implemented by: Internal container-dependent class

JSP page type: Available in both regular JSP pages and error pages

Methods

public void addCookie(Cookie cookie)

Adds the specified cookie to the response.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adds the specified cookie to the response.

public void addDateHeader(String headername, long date)

Adds a response header with the given name and date value. The date is specified in terms of milliseconds since
the epoch (January 1, 1970, 00:00:00 GMT).

public void addHeader(String headername, String value)

Adds a response header with the specified name and value.

public void addIntHeader(String headername, int value)

Adds a response header with the given name and integer value.

public boolean containsHeader(String name)

Returns a boolean indicating whether the named response header has already been set.

public String encodeRedirectURL(String url)

Encodes the specified URL for use in the sendRedirect() method by including the session ID in it. If encoding
(URL rewriting) isn't needed, it returns the URL unchanged.

public String encodeURL(String url)

Encodes the specified URL for use in a reference element (e.g., <a>) by including the session ID in it. If
encoding (URL rewriting) isn't needed, it returns the URL unchanged.

public void flushBuffer() throws IOException

Forces any content in the response body buffer to be written to the client.

public int getBufferSize()

Returns the actual buffer size (in bytes) used for the response. If no buffering is used, this method returns 0.

public String getCharacterEncoding()

Returns the name of the charset used for the MIME body sent in this response.

public String getContentType()

Returns the content type for the MIME body sent in this response.

public Locale getLocale()

Returns the locale assigned to the response. This is either a Locale object for the server's default locale or the
Locale set with setLocale().

public ServletOutputStream getOutputStream() throws IOException

Returns a ServletOutputStream suitable for writing binary data in the response. It's recommended that this
method is not used in a JSP page, since JSP pages are intended for text data.

public PrintWriter getWriter throws IOException

Returns a PrintWriter object that can send character text to the client. It's recommended that this method not be
used in a JSP page, because it may interfere with the container's writer mechanism. Use the PageContext
methods instead to get the current JspWriter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

methods instead to get the current JspWriter.

public boolean isCommitted()

Returns a boolean indicating if the response has been committed.

public void reset()

Clears any data that exists in the buffer as well as the status code and headers. If the response has been
committed, this method throws an IllegalStateException.

public void resetBuffer()

Clears any data that exists in the buffer without clearing the status code and headers. If the response has been
committed, this method throws an IllegalStateException.

public void sendError(int status) throws IOException

Sends an error response to the client using the specified status. If the response has already been committed,
this method throws an IllegalStateException. After using this method, the response should be considered to be
committed and should not be written to.

public void sendError(int status, String message) throws IOException

Sends an error response to the client using the specified status code and descriptive message. If the response
has already been committed, this method throws an IllegalStateException. After using this method, the response
should be considered to be committed and should not be written to.

public void sendRedirect(String location) throws IOException

Sends a temporary redirect response to the client using the specified redirect location URL. This method can
accept relative URLs; the servlet container converts the relative URL to an absolute URL before sending the
response to the client. If the response is already committed, this method throws an IllegalStateException. After
using this method, the response should be considered to be committed and should not be written to.

public void setBufferSize(int size)

Sets the preferred buffer size (in bytes) for the body of the response. The servlet container uses a buffer at
least as large as the size requested. The actual buffer size used can be found using getBufferSize().

public void setCharacterEncoding(String encoding)

Sets the character encoding for the response body, communicated through charset attribute of the Content-Type
response header. If a character encoding has already been set, this method overrides it. It must be called
before the getWriter() method is called.

public void setContentLength(int length)

Sets the length (in bytes) of the content body in the response. In HTTP servlets, this method sets the HTTP
Content-Length header. It's recommended that this method not be used in a JSP page, because it may interfere
with the container's writer mechanism.

public void setContentType(String type)

Sets the content type of the response being sent to the client, communicated through the Content-Type response
header. If the type includes a charset attribute, it's used to set the character encoding for the response body. If
a content type and character encoding have already been set, this method overrides them. It must be called
before the getWriter() method is called.

public void setDateHeader(String headername, long date)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets a response header with the given name and date value. The date is specified in terms of milliseconds since
the epoch (January 1, 1970, 00:00:00 GMT). If the header is already set, the new value overwrites the
previous one.

public void setHeader(String headername, String value)

Sets a response header with the given name and value. If the header is already set, the new value overwrites
the previous one.

public void setIntHeader(String headername, int value)

Sets a response header with the given name and integer value. If the header is already set, the new value
overwrites the previous one.

public void setLocale(Locale locale)

Sets the locale of the response, communicated to an HTTP client through the Content-Language response header.
If a character encoding for the response has not been set with calls to setCharacterEncoding() or setContentType(),
this method implicitly sets the character encoding based on mappings in the web application deployment
descriptor or container-dependent mappings if no mapping is found.

public void setStatus(int statuscode)

Sets the status code for this response. As opposed to the sendError() method, this method only sets the status
code; it doesn't add a body, and it doesn't commit the response.

The following methods are deprecated:

public String encodeRedirectUrl(String url)

As of the Servlet 2.1 API, use encodeRedirectURL(String url) instead.

public String encodeUrl(String url)

As of the Servlet 2.1 API, use encodeURL(String url) instead.

public void setStatus(int statuscode, String message)

As of the Servlet 2.1 API, due to ambiguous meaning of the message parameter. To set a status code, use
setStatus(int); to send an error with a description, use sendError(int, String).

session

The session variable is assigned a reference to the HttpSession object that represents the current client's session.
Information stored as HttpSession attributes corresponds to objects in the JSP session scope.

By default, the session persists for a time period, specified in the web application deployment descriptor, across more
than one page request from the user. The container can maintain a session in many ways such as using cookies or
rewriting URLs.

Synopsis

Variable name: session

EL expression ${pageContext.session}

Interface
name: javax.servlet.http.HttpSession

Extends: None

Implemented
by: Internal container-dependent class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSP page type: Available in both regular JSP pages and error pages, unless the page directive session attribute is set
to false

Methods

public Object getAttribute(String name)

Returns the object associated with the specified name in this session or null if the object isn't found.

public java.util.Enumeration getAttributeNames()

Returns an Enumeration of String objects containing the names of all the objects in this session.

public long getCreationTime()

Returns the time when this session was created, measured in milliseconds since midnight January 1, 1970 GMT.

public String getId()

Returns a string containing the unique identifier assigned to this session.

public long getLastAccessedTime()

Returns the time for the previous request associated with this session as the number of milliseconds since
midnight January 1, 1970 GMT.

public int getMaxInactiveInterval()

Returns the maximum time interval, in seconds, that the servlet container will keep this session active between
client accesses.

public javax.servlet.ServletContext getServletContext()

Returns the ServletContext the session belongs to.

public void invalidate()

Invalidates this session and unbinds any objects bound to it.

public boolean isNew()

Returns true if a request for this session has not yet been received from the client.

public void removeAttribute(String name)

Removes the object bound with the specified name from this session.

public void setAttribute(String name, Object attribute)

Associates the specified object with this session using the name specified.

public void setMaxInactiveInterval(int interval)

Specifies the time, in seconds, between client requests before the servlet container invalidates this session.

The following methods are deprecated:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public HttpSessionContext getSessionContext()

As of the Servlet 2.1 API, this method is deprecated and has no replacement.

public Object getValue(String name)

As of the Servlet 2.2 API, this method is replaced by getAttribute(String).

public String[] getValueNames()

As of the Servlet 2.2 API, this method is replaced by getAttributeNames().

public void putValue(String name, Object value)

As of the Servlet 2.2 API, this method is replaced by setAttribute(String, Object).

public void removeValue(String name)

As of the Servlet 2.2 API, this method is replaced by setAttribute(String, Object).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.2 Other Servlet Types Accessible Through Implicit Variables
This section contains descriptions of the servlet API classes that methods on the objects assigned to the implicit
variables can return instances of.

Cookie

A Cookie object represents an HTTP cookie—a small amount of information sent by a server to a web browser, saved by
the browser, and later sent back to the server with new requests. A cookie's value can uniquely identify a client, so
cookies are commonly used for session management. A cookie has a name, a single value, and optional attributes such
as a comment, path and domain qualifiers, a maximum age, and a version number.

This class supports both the Version 0 (the informal specification first introduced by Netscape) and the Version 1
(formally defined by RFC 2109) cookie specifications. By default, cookies are created using Version 0 to ensure the best
interoperability.

Synopsis

Class name: javax.servlet.http.Cookie

Extends: None

Implements: Clonable

Implemented
by:

Internal container-dependent class. Most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public Cookie(String name, String value)

Creates a new instance with the specified name and value. The name must conform to RFC 2109, meaning it
can't contain commas, semicolons, whitespace, or start with a dollar sign.

Methods

public Object clone()

Overrides the standard Object.clone() method to return a copy of this cookie.

public String getComment()

Returns the comment describing the purpose of this cookie or null if the cookie has no comment. For a cookie
received from the browser, this method always returns null.

public String getDomain()

Returns the domain name set for this cookie or null if the cookie has no domain. For a Version 0 cookie received
from the browser, this method always returns null.

public int getMaxAge()

Returns the maximum age of the cookie, specified in seconds, or -1 if not set, indicating that the cookie will
persist until browser shutdown. For a cookie received from the browser, this method always returns -1.

public String getName()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public String getName()

Returns the name of the cookie.

public String getPath()

Returns the server path to which the browser returns this cookie. For a Version 0 cookie received from the
browser, this method always returns null.

public boolean getSecure()

Returns true if the browser should be required to send the cookie only over a secure protocol or false if the
browser is allowed to send it using any protocol. For a cookie received from the browser, this method always
returns -1.

public String getValue()

Returns the value of the cookie.

public int getVersion()

Returns the version of the protocol this cookie complies with. A value of 0 means that the cookie complies with
the original Netscape specification; a value of 1 means that the cookie complies with RFC 2109.

public void setComment(String comment)

Specifies a comment that describes a cookie's purpose.

public void setDomain(String domain)

Specifies the domain within which this cookie should be presented, as defined by RFC 2109. By default, the
cookie is returned only to the server that sets it.

public void setMaxAge(int expiry)

Sets the maximum age of the cookie in seconds. 0 means that the cookie shall be deleted from the browser,
and -1 that it should only be kept until the browser is shut down.

public void setPath(String uriPath)

Specifies a server path to which the client should return the cookie, as defined by RFC 2109. By default, the
cookie is returned with all requests for any resource on the server.

public void setSecure()

Indicates to the browser whether the cookie should only be sent using a secure protocol, such as HTTPS.

public void setValue(String value)

Assigns a new value to a cookie after the cookie is created. With Version 0 cookies, values should not contain
whitespace, brackets, parentheses, equal signs, commas, double quotes, slashes, question marks, at signs,
colons, and semicolons. Empty values may not behave the same way on all browsers.

public void setVersion(int version)

Sets the version of the cookie protocol this cookie complies with. A value of 0 means that the cookie must be
sent to the browser as described by the original Netscape specification; 1 that the cookie must be sent as
defined by RFC 2109.

RequestDispatcher

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The RequestDispatcher class defines an object that receives requests from the client and sends them to any resource
(such as a servlet, HTML file, or JSP file) in the same web container. The container creates the RequestDispatcher object,
which is used as a wrapper around a resource located at a particular URI path or identified by a particular name.

Synopsis

Interface name: javax.servlet.RequestDispatcher

Extends: None

Implemented by: Internal container-dependent class

Methods

public void forward(ServletRequest req, ServletResponse res)

Forwards a request from a servlet to another resource (servlet, JSP file, or HTML file) on the server. For a
RequestDispatcher obtained via getRequestDispatcher(), the ServletRequest object has its path elements and
parameters adjusted to match the path of the target resource.

This method must be called before the response has been committed to the client (before response body output
has been flushed). If the response has already been committed, this method throws an IllegalStateException.
Uncommitted output in the response buffer is automatically cleared before the forward.

The request and response parameters must be the same objects as were passed to the calling servlet's service
method or be subclasses of the ServletRequestWrapper or ServletResponseWrapper classes that wrap them.

public void include(ServletRequest req, ServletResponse res)

Includes the response generated by a resource (servlet, JSP page, HTML file) in the response.

The ServletResponse object's path elements and parameters remain unchanged from the caller's. The included
servlet cannot change the response status code or set headers; any attempt to make a change is ignored.

The request and response parameters must be the same objects that were passed to the calling servlet's
service method or be subclasses of the ServletRequestWrapper or ServletResponseWrapper classes that wrap them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.3 Tag Handler Types
The JSP specification defines a number of classes and interfaces in the javax.servlet.jsp.tagext package. These classes are
used to develop tag handler classes for JSP custom actions. This section contains descriptions of each class and
interface. Chapter 21 and Chapter 22 show examples of how you can use these classes and interfaces to develop
custom actions.

BodyContent

The container creates an instance of the BodyContent class to encapsulate the element body of a custom action element
if the corresponding tag handler implements the BodyTag interface. The container makes the BodyContent instance
available to the tag handler by calling the setBodyContent() method, so the tag handler can process the body content.

Synopsis

Class name: javax.servlet.jsp.tagext.BodyContent

Extends: javax.servlet.jsp.JspWriter

Implements: None

Implemented by: Internal container-dependent class

Constructor

protected BodyContent(JspWriter e)

Creates a new instance with the specified JspWriter as the enclosing writer.

Methods

public void clearBody()

Removes all buffered content for this instance.

public void flush() throws java.io.IOException

Overwrites the behavior inherited from JspWriter to always throw an IOException, because it's invalid to flush a
BodyContent instance.

public JspWriter getEnclosingWriter()

Returns the enclosing JspWriter, i.e., either the top level JspWriter or the JspWriter (BodyContent subclass) of the
parent tag handler.

public abstract java.io.Reader getReader()

Returns the value of this BodyContent as a Reader with the content produced by evaluating the element's body.

public abstract String getString()

Returns the value of this BodyContent as a String with the content produced by evaluating the element's body.

public abstract void writeOut(java.io.Writer out)throws java.io.IOException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public abstract void writeOut(java.io.Writer out)throws java.io.IOException

Writes the content of this BodyContent into a Writer.

BodyTag

The BodyTag interface extends the IterationTag interface. It must be implemented by classic tag handler classes that need
access to the body contents of the corresponding custom action element, for instance in order to perform a
transformation of the contents before it's included in the response. A tag handler that implements this interface must
return EVAL_BODY_BUFFERED from doStartTag() to tell the container to capture the result of evaluating the body. It can
also return EVAL_BODY_AGAIN from doAfterBody() to tell the container to evaluate the body again and capture the result.

Unless you need to allow scripting elements in the corresponding custom action element body, I recommend that you
use the SimpleTag interface instead.

Synopsis

Interface name: javax.servlet.jsp.tagext.BodyTag

Extends: javax.servlet.jsp.tagext.IterationTag

Implemented by: Custom action tag handler classes and javax.servlet.jsp.tagext.BodyTagSupport

Fields

public static final int EVAL_BODY_BUFFERED

Methods

public void doInitBody() throws JspException

Prepares for evaluation of the body. This method is invoked once per action invocation by the page
implementation after a new BodyContent has been obtained and set on the tag handler via the setBodyContent()
method and before the evaluation of the element's body.

This method isn't invoked if the element body is empty or if doStartTag() returns SKIP_BODY.

public void setBodyContent(BodyContent b)

Sets the BodyContent created for this tag handler. This method isn't invoked if the element body is empty or if
doStartTag() returns SKIP_BODY.

BodyTagSupport

BodyTagSupport is a support class that provides default implementations of all BodyTag interface methods. It's intended to
be used as a superclass for classic tag handlers that need access to the body contents of the corresponding custom
action element.

Unless you need to allow scripting elements in the corresponding custom action element body, I recommend that you
use the SimpleTagSupport class instead.

Synopsis

Class name: javax.servlet.jsp.tagext.BodyTagSupport

Extends: javax.servlet.jsp.tagext.TagSupport

Implements: javax.servlet.jsp.tagext.BodyTag

Implemented
by:

Internal container-dependent class. Most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fields

protected javax.servlet.jsp.tagext.BodyContent bodyContent

Constructor

public BodyTagSupport()

Creates a new BodyTagSupport instance.

Methods

public int doAfterBody()

Returns SKIP_BODY.

public int doEndTag()

Returns EVAL_PAGE.

public void doInitBody()

This method does nothing in the BodyTagSupport class.

public int doStartTag()

Returns EVAL_BODY_BUFFERED.

public BodyContent getBodyContent()

Returns the BodyContent object assigned to this instance.

public JspWriter getPreviousOut()

Returns the enclosing writer of the BodyContent object assigned to this instance.

public void release()

Removes the references to all objects held by this instance.

public void setBodyContent(BodyContent b)

Saves a reference to the BodyContent in the bodyContent instance variable.

DynamicAttributes

The DynamicAttributes interface can be implemented by a tag handler in addition to one of the main tag handler
interfaces to support attributes not declared in the TLD.

Synopsis

Interface name: javax.servlet.jsp.tagext.DynamicAttributes

Extends: None

Implemented by: Custom action tag handler classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Methods

public void setDynamicAttribute(String uri, String localName, Object value) throws JspException

Called by the container to pass the tag handler an undeclared attribute. The URI is the attribute's XML
namespace identifier or null if it's in the default namespace.

IterationTag

The IterationTag interface extends the Tag interface. Classic tag handler classes that need their corresponding action
element body evaluated more than once but that don't need to access the result of the body evaluation must implement
this interface.

Unless you need to allow scripting elements in the corresponding custom action element body, I recommend that you
use the SimpleTag interface instead.

Synopsis

Interface name: javax.servlet.jsp.tagext.IterationTag

Extends: javax.servlet.jsp.tagext.Tag

Implemented by: Custom action tag handler classes and javax.servlet.jsp.tagext.TagSupport.

Fields

public static final int EVAL_BODY_AGAIN

Methods

public int doAfterBody() throws JspException

Performs actions after the body has been evaluated. This method is invoked after every body evaluation. If this
method returns EVAL_BODY_AGAIN, the body is evaluated again, typically after changing the value of variables
used in the body. If it returns SKIP_BODY, the processing continues with a call to doEndTag().

This method is not invoked if the element body is empty or if doStartTag() returns SKIP_BODY.

JspContext

The JspContext class represents an interface to the generic runtime environment available to a simple tag handler, even
in a nonservlet environment. In a servlet-based JSP container, an instance of the PageContext subclass, described in the
Implicit Variables section, is always used.

Synopsis

Class name: javax.servlet.jsp.JspContext

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constructor

public JspContext()

Creates a new JspContext instance.

Methods

public abstract Object findAttribute(String name)

Searches for the named attribute in the page, request, session (if valid), and application scope in order and
returns the first value it finds or null if the attribute is not found.

public abstract Object getAttribute(String name)

Returns the object associated with the specified attribute name in the page scope or null if the attribute is not
found.

public abstract Object getAttribute(String name, int scope)

Returns the object associated with the specified attribute name in the specified scope or null if the attribute is
not found. The scope argument must be one of the int values specified by the PageContext static scope variables.

public abstract java.util.Enumeration getAttributeNamesInScope(int scope)

Returns an enumeration of String objects containing all attribute names for the specified scope. The scope
argument must be one of the int values specified by the PageContext static scope variables.

public abstract int getAttributesScope(String name)

Returns one of the int values specified by the PageContext static scope variables for the scope of the object
associated with the specified attribute name or 0 if the attribute is not found.

public abstract ExpressionEvaluator getExpressionEvaluator()

Returns an ExpressionEvaluator that can be used for programmatic EL expression evaluation.

public abstract JspWriter getOut()

Returns the current JspWriter for the page. When a tag handler that implements BodyTag (or is nested in the
body of another action element) calls this method, the returned object may be an instance of the BodyContent
subclass.

public abstract VariableEvaluator getVariableEvaluator()

Returns a VariableEvaluator that can be used with an ExpressionEvaluator for programmatic EL expression
evaluation.

public JspWriter popBody()

This method is intended to be called only by the JSP page implementation class. It reassigns the previous
JspWriter, saved by the matching pushBody() method, as the current JspWriter and returns the same instance.

public JspWriter pushBody(java.io.Writer writer)

This method is intended to be called only by the JSP page implementation class. It returns a new JspWriter that
ultimately writes to the provided Writer and updates the out variable to point to the new instance. A reference to
the old JspWriter, if any, is also kept so it can be reassigned when popBody() is called.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public abstract void removeAttribute(String name)

Removes the object reference associated with the specified attribute name in the page scope.

public abstract void removeAttribute(String name, int scope)

Removes the object reference associated with the specified attribute name in the specified scope. The scope
argument must be one of the int values specified by the PageContext static scope variables.

public abstract void setAttribute(String name, Object attribute)

Saves the specified attribute name and object in the page scope.

public abstract void setAttribute(String name, Object o, int scope)

Saves the specified attribute name and object in the specified scope. The scope argument must be one of the int
values specified by the PageContext static scope variables.

JspFragment

The JspFragment class represents an object that encapsulates a set of JSP actions and/or EL expressions, possibly mixed
with template text, that a tag handler can invoke as many times as needed. The container creates an instance of this
class for the body of a custom action implemented by a simple tag handler, as well as for the body of the <jsp:attribute>
for an attribute of type JspFragment.

Synopsis

Class name: javax.servlet.jsp.tagext.JspFragment

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Methods

public abstract JspContext getJspContext()

Returns the JspContext that is bound to this fragment.

public abstract void invoke(java.io.Writer out) throws JspException

Executes the fragment and directs all output to the provided Writer or to the JspWriter returned by the getOut()
method of the JspContext associated with the fragment if no Writer is provided.

JspTag

The JspTag interface is an empty interface, serving as the common parent interface for the Tag and SimpleTag interfaces
to allow nesting of custom actions implemented by both classic and simple tag handlers.

SimpleTag

The SimpleTag interface defines the new, easier to use, tag handler API introduced in JSP 2.0. Tag handlers
implementing this interface are referred to as simple tag handler (tag handlers based on the older API are referred to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

implementing this interface are referred to as simple tag handler (tag handlers based on the older API are referred to
as classic tag handlers). The container creates a new instance of the class that implements this interface for each
invocation.

A tag handler implementing this interface can do everything a classic tag handler can do, except that the corresponding
custom action element must not contain scripting elements (i.e., the tag handler must be declared to have a body
content of empty, scriptless, or tagdependent).

Synopsis

Interface name: javax.servlet.jsp.tagext.SimpleTag

Extends: javax.servlet.jsp.tagext.JspTag

Implemented by: Custom action tag handler classes

Methods

public void doTag() throws JspException, SkipPageException, java.io.IOException

Performs all processing for the tag handler using the properties and attributes previously set by the setter
methods. If the page processing must be terminated after processing of this tag handler (e.g., if the tag handler
forwards or redirects to another resource), this method must throw a SkipPageException.

public JspTag getParent()

Returns the parent tag handler or null if there's no parent.

public void setJspBody(JspFragment jspBody)

Sets the fragment that represents the custom action element's body. The container doesn't call this method if
the custom action element body is empty.

public void setJspContext(JspContext context)

Sets the context for the JSP page. In a JSP environment, this is always an instance of the PageContext subclass.
The tag handler can access all JSP scopes, request and response information, and more through the context
object.

public void setParent(JspTag parent)

Sets the parent tag handler. The container doesn't call this method if the tag handler doesn't have a parent.

SimpleTagSupport

The SimpleTagSupport class provides default implementations of all SimpleTag interface methods, plus a method for finding
a parent of a specific type. It's intended to be used as a superclass for simple tag handlers.

Synopsis

Class name: javax.servlet.jsp.tagext.SimpleTagSupport

Extends: None

Implements: javax.servlet.jsp.tagext.SimpleTag

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constructor

public SimpleTagSupport()

Creates a new instance.

Methods

public void doTag() throws JspException, SkipPageException, java.io.IOException

Performs all processing for the tag handler using the properties and attributes previously set by the setter
methods. If the page processing must be terminated after processing of this tag handler (e.g., if the tag handler
forwards or redirects to another resource), this method must throw a SkipPageException. The default
implementation in this class doesn't do anything, so this method must be implemented by the subclass.

public static final JspTag findAncestorWithClass(JspTag from, Class klass)

Locates the closest parent tag handler of the specified class for the specified tag handler. It uses the getParent()
method of the Tag and SimpleTag interfaces to look for the parent. For every instance of TagAdapter returned by a
getParent() call, the object returned by TagAdapter getAdaptee() is compared to the specified class. If a match is
found this way, the getAdaptee() value is returned by this method.

public JspFragment getJspBody()

Returns the fragment passed to the setJspBody() method or null if there's nobody.

public JspContext getJspContext()

Returns the context passed to the setJspContext() method.

public JspTag getParent()

Returns the parent tag handler passed to the setParent() method or null if there's no parent.

public void setJspBody(JspFragment jspBody)

Sets the fragment that represents the custom action element's body. The container doesn't call this method if
the custom action element body is empty.

public void setJspContext(JspContext context)

Sets the context for the JSP page. In a JSP environment, this is always an instance of the PageContext subclass.
The tag handler can access all JSP scopes, request and response information, and more through the context
object.

public void setParent(JspTag parent)

Sets the parent tag handler. The container doesn't call this method if the tag handler doesn't have a parent.

Tag

The Tag interface is the main classic tag handler interface. It should be implemented by classic tag handler classes that
do not need the body of the corresponding action element evaluated more than once and that do not need access to the
result of the body evaluation.

Unless you need to allow scripting elements in the corresponding custom action element body, I recommend that you
use the SimpleTag interface instead.

Synopsis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Synopsis

Interface name: javax.servlet.jsp.tagext.Tag

Extends: javax.servlet.jsp.tagext.JspTag

Implemented by: Custom action tag handler classes

Fields

public static final int EVAL_BODY_INCLUDE
public static final int EVAL_PAGE
public static final int SKIP_BODY
public static final int SKIP_PAGE

Methods

public int doEndTag() throws JspException

Performs actions when the end tag is encountered. If this method returns SKIP_PAGE, execution of the rest of
the page is aborted, and the _jspService() method of JSP page implementation class returns. If EVAL_PAGE is
returned, the code following the custom action in the _jspService() method is executed.

public int doStartTag() throws JspException

Performs actions when the start tag is encountered. This method is called after all property setter methods have
been called. The return value from this method controls how the action's body, if any, is handled. If it returns
EVAL_BODY_INCLUDE, the JSP container evaluates the body and processed possible JSP elements. The result of
the evaluation is added to the response. If SKIP_BODY is returned, the body is ignored.

A tag handler class that implements the BodyTag interface (extending the IterationTag interface, which extends
the Tag interface) can return EVAL_BODY_BUFFERED instead of EVAL_BODY_INCLUDE. The JSP container then
creates a BodyContent instance and makes it available to the tag handler for special processing.

public Tag getParent()

Returns the tag handler's parent (the Tag instance for the enclosing action element, if any) or null if the tag
handler doesn't have a parent.

public void release()

Removes the references to all objects held by this instance.

public void setPageContext(PageContext pc)

Saves a reference to the current PageContext.

public void setParent(Tag t)

Saves a reference to the tag handler's parent (the Tag instance for the enclosing action element).

TagAdapter

The TagAdapter class makes it possible to nest classic and simple tag handlers by working around a type mismatch
between the old and new tag handler APIs, namely the fact that the setParent() method in the Tag interface takes an
instance of Tag while the SimpleTag interface doesn't extend Tag.

The container creates an instance of TagAdapter to wrap a SimpleTag implementation when a simple tag handler is the
parent of a classic tag handler and uses the TagAdapter as the setParent() argument. The findAncestorWithClass() method
in SimpleTagSupport knows how to deal with TagAdapter instances it may find in the parent chain.

Synopsis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Synopsis

Class name: javax.servlet.jsp.tagext.TagAdapter

Extends: None

Implements: javax.servlet.jsp.tagext.Tag

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public TagAdapter(SimpleTag adaptee)

Creates a new instance that wraps the given SimpleTag.

Methods

public int doEndTag() throws JspException

Never called by the container. Throws UnsupportedOperationException.

public int doStartTag() throws JspException

Never called by the container. Throws UnsupportedOperationException.

public JspTag getAdaptee()

Returns the wrapped tag handler.

public Tag getParent()

Returns the wrapped tag handler's parent tag handler.

public void release()

Never called by the container. Throws UnsupportedOperationException.

public void setPageContext()

Never called by the container. Throws UnsupportedOperationException.

public void setParent()

Never called by the container. Throws UnsupportedOperationException.

TagSupport

TagSupport is a support class that provides default implementations of all IterationTag interface methods. It's intended to
be used as a superclass for classic tag handlers that do not need to evaluate the corresponding action element body or
need access to the evaluation result.

Unless you need to allow scripting elements in the corresponding custom action element body, I recommend that you
use the SimpleTagSupport class instead.

Synopsis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class name: javax.servlet.jsp.tagext.TagSupport

Extends: None

Implements: java.io.Serializable, javax.servlet.jsp.tagext.IterationTag

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Fields

protected String id
protected PageContext pageContext

Constructor

public TagSupport()

Creates a new instance.

Methods

public int doAfterBody()

Returns SKIP_BODY.

public int doEndTag()

Returns EVAL_PAGE.

public int doStartTag()

Returns SKIP_BODY.

public static final Tag findAncestorWithClass(Tag from, Class klass)

Returns the instance of the specified class, found by testing for a match of each parent in a tag handler nesting
structure (corresponding to nested action elements) starting with the specified Tag instance or null if not found.

public String getId()

Returns the id attribute value or null if not set.

public Tag getParent()

Returns the parent of this Tag instance (representing the action element that contains the action element
corresponding to this Tag instance) or null if the instance has no parent (at the top level in the JSP page).

public Object getValue(String k)

Returns the value for the specified attribute that has been set with the setValue() method or null if not found.

public java.util.Enumeration getValues()

Returns an Enumeration of all attribute names for values set with the setValue() method.

public void release()

Removes the references to all objects held by this instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Removes the references to all objects held by this instance.

public void removeValue(String k)

Removes a value set with the setValue() method.

public void setId(String id)

Sets the id attribute value.

public void setPageContext(PageContext pageContext)

Saves a reference to the current PageContext.

public void setParent(Tag t)

Saves a reference to the parent for this instance.

public void setValue(String k, Object o)

Saves the specified attribute with the specified value. Subclasses can use this method to save attribute values
as an alternative to instance variables.

TryCatchFinally

The TryCatchFinally interface provides methods for handling exceptions thrown while evaluating the body of an action
element and can be implemented by a tag handler in addition to one of the main tag handler interfaces: Tag,
IterationTag, and BodyTag.

Synopsis

Interface name: javax.servlet.jsp.tagext.TryCatchFinally

Extends: None

Implemented by: Custom action tag handler classes

Methods

public void doCatch(Throwable exception) throws Throwable

Handles the specified exception and may optionally rethrow the same exception or a new exception. This
method is invoked by the container if an exception is thrown when evaluating the body or by calling doStartTag(
), doEndTag(), doInitBody(), or doAfterBody().

public void doFinally()

Typically clears per-invocation state, such as closing expensive resources used only for one invocation. This
method is invoked after doEndTag() or after doCatch() if an exception is thrown when evaluating the body or by
calling doStartTag(), doEndTag(), doInitBody(), or doAfterBody().

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.4 Translation Time Types
This section describes the classes and interfaces used when a JSP page is translated into an implementation class, such
as the types used for the tag library validation and the types for holding information about the JSP pages, tag files, and
the TLD used by the container.

FunctionInfo

The container uses the FunctionInfo class to hold information about an EL function declaration from the TLD. It's
primarily intended to be used by the JSP container itself during the translation phase.

Synopsis

Class name: javax.servlet.jsp.tagext.FunctionInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public FunctionInfo(String name, String klass, String signature)

Creates a new instance.

Methods

public String getFunctionClass()

Returns the function class name.

public String getFunctionSignature()

Returns the function signature.

public String getName()

Returns the function name.

PageData

The PageData class provides access to the JSP page in the form of its XML View, essentially an XML version of the page
with all include directives expanded (see Chapter 17 for details).

Synopsis

Class name: javax.servlet.jsp.tagext.PageData

Extends: None

Implements: None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public PageData()

Creates a new instance.

Methods

public abstract java.io.InputStream getInputStream()

Returns an input stream for the XML View of the JSP page, in which all include directives have been expanded.

TagAttributeInfo

TagAttributeInfo instances are created by the JSP container to provide information found in the Tag Library Descriptor
(TLD) about each attribute supported by a custom action. It's primarily intended to be used by the JSP container itself
during the translation phase.

Synopsis

Class name: javax.servlet.jsp.tagext.TagAttributeInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Fields

public static final String ID

Constructor

public TagAttributeInfo(String name, boolean required, String type, boolean reqTime)

Pre-JSP 2.0 constructor. Creates a new instance with the specified information from the TLD. Instances of this
class should only be created by the JSP container.

public TagAttributeInfo(String name, boolean required, String type, boolean reqTime, boolean fragment)

Creates a new instance with the specified information from the TLD, including information about whether the
attribute is a fragment. Instances of this class should only be created by the JSP container.

Methods

public boolean canBeRequestTime()

Returns true if a request time attribute value can be used for this attribute.

public static TagAttributeInfo getIdAttribute(TagAttributeInfo[] a)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Convenience method that returns the TagAttributeInfo instance in the specified array that represents an attribute
named id or null if not found.

public String getName()

Returns the attribute name.

public String getTypeName()

Returns the attribute's Java type (a fully qualified class or interface name).

public boolean isFragment()

Returns true if this attribute is a fragment attribute, false otherwise.

public boolean isRequired()

Returns true if this attribute is required, false otherwise.

public String toString()

Returns a String representation of the attribute info.

TagData

TagData instances are created by the JSP container during the translation phase to provide information about the
attribute values specified for a custom action to the TagExtraInfo subclass for the corresponding tag handler, if any.

Synopsis

Class name: javax.servlet.jsp.tagext.TagData

Extends: None

Implements: Clonable

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Fields

public static final Object REQUEST_TIME_VALUE

Constructors

public TagData(Object[][] attrs)

Creates a new instance with the attribute name/value pairs specified by the Object[][]. Element 0 of each Object[]
contains the name and element 1 the value or REQUEST_TIME_VALUE if the attribute value is defined as a request
time value (a JSP expression).

public TagData(java.util.Hashtable attrs)

Creates a new instance with the attribute name/value pairs specified by the Hashtable.

Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public Object getAttribute(String attName)

Returns the specified attribute value as a String or as the REQUEST_TIME_VALUE Object if the attribute value is
defined as a request-time value (a Java expression, an EL expression or set by <jsp:attribute>).

public java.util.Enumeration getAttributes()

Returns an Enumeration of all attributes names.

public String getAttributeString(String attName)

Returns the specified attribute value as a String. A ClassCastException is thrown if the attribute value is defined as
a request time value (a JSP expression).

public String getId()

Returns the attribute named id as a String or null if not found.

public void setAttribute(String attName, Object value)

Sets the specified attribute to the specified value.

TagExtraInfo

For custom actions that expose scripting variables or require additional translation time validation of the tag attributes,
a subclass of the TagExtraInfo class can be developed for the custom action and declared in the Tag Library Descriptor.
The JSP container creates an instance of the TagExtraInfo subclass during the translation phase.

Note that for most cases, the variable information can instead be declared in the TLD, and a TagLibraryValidator class can
perform validation in a more flexible manner than a TagExtraInfo class.

Synopsis

Class name: javax.servlet.jsp.tagext.TagExtraInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public TagExtraInfo()

Creates a new TagExtraInfo instance.

Methods

public TagInfo getTagInfo()

Returns the TagInfo instance for the custom action associated with this TagExtraInfo instance. The TagInfo
instance is set by the setTagInfo() method (called by the container).

public VariableInfo[] getVariableInfo(TagData data)

Returns a VariableInfo[] with information about scripting variables created by the tag handler class associated
with this TagExtraInfo instance. The default implementation returns an empty array. A subclass must override

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with this TagExtraInfo instance. The default implementation returns an empty array. A subclass must override
this method if the corresponding tag handler creates scripting variables, unless the variable declarations can be
made in the TLD instead.

public boolean isValid(TagData data)

Returns true if the set of attribute values specified for the custom action associated with this TagExtraInfo
instance is valid, false otherwise. The default implementation returns true. A subclass can override this method if
the validation performed by the JSP container based on the TLD information is not enough, but starting with JSP
2.0, the preferred method for validation is validate(). In a JSP 2.0 container, the isValid() method is only called
indirectly by the default validate() implementation.

public void setTagInfo(TagInfo tagInfo)

Sets the TagInfo for this instance. This method is called by the JSP container before any of the other methods
are called.

public ValidationMessage[] validate(TagData data)

Returns an array with one ValidationMessage instance per error or null or an empty array if no errors are found.
This method is preferred over isValid() because it allows the subclass implementation to return meaningful error
messages instead of just a Boolean value. For backward compatibility, the default implementation in this class
calls isValid() and returns a generic error message if it returns false.

TagFileInfo

The container creates instances of the TagFileInfo class to hold information found in the TLD about a custom action
implemented as a tag file. It's primarily intended to be used by the JSP container itself during the translation phase.

Synopsis

Class name: javax.servlet.jsp.tagext.TagFileInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public TagFileInfo(String name, String path, TagInfo tagInfo)

Creates a new instance with the specified values, based on the information available in the TLD.

Methods

public String getName()

Returns the custom action name.

public String getPath()

Returns the path for the tag file.

public String getTagInfo()

Returns tag file information based on the directives in the tag file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TagInfo

TagInfo instances are created by the JSP container to provide information about a custom action found in the TLD or in a
tag file, as well as information about the attribute values used in a JSP page for an instance of the custom action. It's
primarily intended to be used by the JSP container itself during the translation phase.

Synopsis

Class name: javax.servlet.jsp.tagext.TagInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Fields

public static final String BODY_CONTENT_EMPTY
public static final String BODY_CONTENT_JSP
public static final String BODY_CONTENT_SCRIPTLESS
public static final String BODY_CONTENT_TAG_DEPENDENT

Constructor

public TagInfo(String tagName, String tagClassName, String bodycontent, String infoString, TagLibraryInfo taglib, TagExtraInfo
tagExtraInfo, TagAttributeInfo[] attributeInfo)

Creates a new instance with the specified values, based on the information available in a JSP 1.1 TLD.

public TagInfo(String tagName, String tagClassName, String bodycontent, String infoString, TagLibraryInfo taglib, TagExtraInfo
tagExtraInfo, TagAttributeInfo[] attributeInfo, String displayName, String smallIcon, String largeIcon, TagVariableInfo[] tvi)

Creates a new instance with the specified values, based on the information available in a JSP 1.2 TLD.

public TagInfo(String tagName, String tagClassName, String bodycontent, String infoString, TagLibraryInfo taglib, TagExtraInfo
tagExtraInfo, TagAttributeInfo[] attributeInfo, String displayName, String smallIcon, String largeIcon, TagVariableInfo[] tvi, boolean
dynamicAttributes)

Creates a new instance with the specified values, based on the information available in a JSP 2.0 TLD.

Methods

public TagAttributeInfo[] getAttributes()

Returns information from the TLD about all attribute values or null if no attributes are declared.

public String getBodyContent()

Returns one of BODY_CONTENT_EMPTY, BODY_CONTENT_JSP, or BODY_CONTENT_TAG_DEPENDENT based on the
value in the TLD.

public String getDisplayName()

Returns the display name value from the TLD or null if no value is specified.

public String getInfoString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public String getInfoString()

Returns the tag information value from the TLD or null if no value is specified.

public String getLargeIcon()

Returns the large icon path from the TLD or null if no value is specified.

public String getSmallIcon()

Returns the small icon path from the TLD or null if no value is specified.

public String getTagClassName()

Returns the tag handler class name declared in the TLD.

public TagExtraInfo getTagExtraInfo()

Returns an instance of the TagExtraInfo subclass for the tag or null if no class is declared in the TLD.

public TagLibraryInfo getTagLibrary()

Returns a TagLibraryInfo instance for the library the tag is part of.

public String getTagName()

Returns the name for the tag declared in the TLD.

public TagVariableInfo[] getTagVariableInfos()

Returns an array with a TagVariableInfo instance for each variable declaration in the TLD.

public VariableInfo[] getVariableInfo(TagData data)

Returns information about scripting variables created by the tag handler or null if no variables are created. This
information is obtained from the TagExtraInfo for the tag, if any.

public boolean hasDynamicAttributes()

Returns true if the tag handler is declared to accept dynamic (undeclared) attributes.

public boolean isValid(TagData data)

Returns true if the set of attributes specified for the custom action associated with this TagExtraInfo instance is
valid, false otherwise. This information is obtained from the TagExtraInfo for the tag, if any.

public void setTagExtraInfo(TagExtraInfo tei)

Sets the TagExraInfo value held by the instance.

public void setTagLibrary(TagLibrary tl)

Sets the TagLibrary value held by the instance.

public ValidationMessage[] validate(TagData data)

Calls the validate() method on the TagExtraInfo class held by an instance of this class, if any.

TagLibraryInfo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TagLibraryInfo

TagLibraryInfo instances are created by the JSP container to provide information found in the TLD about a tag library as
well as information from the taglib directive used in a JSP page. It's primarily intended to be used by the JSP container
itself during the translation phase.

Synopsis

Class name: javax.servlet.jsp.tagext.TagLibraryInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Fields

Protected FunctionInfo[] functions
protected String info
protected String jspversion
protected String prefix
protected String shortname
protected TagFileInfo[] tagFiles
protected TagInfo[] tags
protected String tlibversion
protected String uri
protected String urn

Constructor

protected TagLibraryInfo(String prefix, String uri)

Creates a new instance with the specified prefix and URI (from the taglib directive in the JSP page).

Methods

public FunctionInfo getFunction(String name)

Returns the information about the specified function or null if the function is not declared in this library.

public FunctionInfo[] getFunctions()

Returns the information about all functions declared in this library or an empty array if no functions are
declared.

public String getInfoString()

Returns the information string from the TLD for the library.

public String getPrefixString()

Returns the prefix assigned by the taglib directive for the library.

public String getReliableURN()

Returns URI value from the TLD for the library.

public String getRequiredVersion()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public String getRequiredVersion()

Returns the required JSP version from the TLD for the library.

public String getShortName()

Returns the short name (prefix) from the TLD for the library.

public TagInfo getTag(String shortname)

Returns a TagInfo instance for the specified tag in the library or null if the tag is not declared.

public TagFileInfo getTagFile(String shortname)

Returns a TagFileInfo instance for the specified tag file in the library or null if the tag file is not declared.

public TagFileInfo[] getTagFiles()

Returns a TagFileInfo[] for all tag files in the library or an empty array if no tag files are declared.

public TagInfo[] getTags()

Returns a TagInfo[] for all tags in the library or an empty array if no tags are declared.

public String getURI()

Returns the URI assigned by the taglib directive for the library.

TagLibraryValidator

A subclass of the TagLibraryValidator class can be declared as the validator for a tag library. The container invokes it at
translation time, providing it with the XML View of the page through a PageData instance.

Synopsis

Class name: javax.servlet.jsp.tagext.TagLibraryValidator

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public TagLibraryValidator()

Creates a new instance.

Methods

public java.util.Map getInitParameters()

Returns a Map containing all initialization parameters declared in the TLD for the validator, with the parameter
names as keys.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void release()

Releases any resources kept as instance data.

public void setInitParameters(java.util.Map)

Sets the Map containing all initialization parameters declared in the TLD for the validator, with the parameter
names as keys.

public ValidationMessage[] validate(String prefix, String uri, PageData page)

Validates the specified page data, and returns null or an empty array if the page is valid. If errors are found,
descriptions of the errors are returned as an array of ValidationMessage instances. The prefix and uri arguments
have the values of the corresponding taglib directive attributes or the first corresponding namespace declaration
in a JSP Document. Note that in a JSP Document, the tag library can be bound to more than one prefix in the
same document, so the namespace URI should always be used when determining if a tag belongs to the library
the validator is associated with.

TagVariableInfo

The TagVariableInfo instance represents a variable declaration in the TLD. The container creates instances of this class
during the translation phase and it's used to generate variable declarations in the JSP page implementation class.

Synopsis

Class name: javax.servlet.jsp.tagext.TagVariableInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public TagVariableInfo(String nameGiven, String nameFromAttribute, String className, boolean declare, int scope)

Creates a new instance with the specified values.

Methods

public String getClassName()

Returns the declared class name.

public boolen getDeclare()

Returns true if the variable is defined as one to be declared.

public String getNameFromAttribute()

Returns the name of the attribute declared to hold the name of the variable at translation time.

public String getNameGiven()

Returns the declared variable name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public int getScope()

Returns the declared scope, as one of VariableInfo.AT_BEGIN, VariableInfo.AT_END, or VariableInfo.NESTED.

ValidationMessage

A ValidationMessage instance holds information about an error found by a tag library validator.

Synopsis

Class name: javax.servlet.jsp.tagext.ValidationMessage

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public ValidationMessage(String id, String message)

Creates a new instance with the specified values.

Methods

public String getId()

Returns the value of the jsp:id attribute for the element associated with this validation message or null if no jsp:id
attribute is available.

public String getMessage()

Returns the validation message text, describing the problem.

VariableInfo

VariableInfo instances are created by TagExtraInfo subclasses to describe each scripting variable that the corresponding
tag handler class creates.

Synopsis

Class name: javax.servlet.jsp.tagext.VariableInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Fields

public static final int AT_BEGIN
public static final int AT_END
public static final int NESTED

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constructor

public VariableInfo(String varName, String className, boolean declare, int scope)

Creates a new instance with the specified values.

Methods

public String getClassName()

Returns the scripting variable Java type.

public boolean getDeclare()

Returns true if the JSP container should create a declaration statement for the scripting variable. It returns false
if the variable has already been declared by another tag handler and is only updated by the tag handler
corresponding to the TagExtraInfo subclass creating this VariableInfo instance. If so, the JSP container assigns the
new value to the existing variable.

public int getScope()

Returns one of AT_BEGIN (make the scripting variable available from the start tag to the end of the JSP page),
AT_END (make the variable available after the end tag to the end of the JSP page), or NESTED (make the
variable available only between the start and the stop tag.

public String getVarName()

Returns the variable name.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.5 Other JSP Types
The JSP specification defines a number of other classes and interfaces that don't fit into the categories above. The
exception classes, the interface for JSP page implementation classes, and the classes that let a JSP container vendor
hide implementation details are described in this section.

ErrorData

The container makes an instance of ErrorData available to JSP error pages through the PageContext for the page.

Synopsis

Class name: javax.servlet.jsp.ErrorData

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public ErrorData(Throwable throwable, int statusCode, String uri, String name)

Creates a new instance.

Methods

public String getRequestURI()

Returns the URI for the failed request.

public String getServletName()

Returns the name of the servlet that handled the failed request.

public int getStatusCode()

Returns the status code that caused the error page to be invoked.

public Throwable getThrowable()

Returns the exception that caused the error page to be invoked.

HttpJspPage

The HttpJspPage interface must be implemented by the generated JSP page implementation classes when HTTP is used.

The jspInit() and jspDestroy() methods (inherited from the JspPage interface) can be defined by a JSP page author, but
the _jspService() method is automatically defined by the JSP container based on the contents of the JSP page.

Synopsis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Synopsis

Interface name: javax.servlet.jsp.HttpJspPage

Extends: javax.servlet.jsp.JspPage

Implemented by: JSP page implementation classes serving HTTP requests

Methods

public void _jspService(javax.servlet.http.HttpServletRequest request, javax.servlet.http.HttpServletResponse response) throws
javax.servlet.ServletException, java.io.IOException

This method corresponds to the body of the JSP page. This method is defined automatically by the JSP
processor and should never be defined by the JSP page author.

JspEngineInfo

JspEngineInfo is an abstract class that provides information about the JSP container. Each specific JSP container provides
a concrete subclass.

Synopsis

Class name: javax.servlet.jsp.JspEngineInfo

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public JspEngineInfo()

Creates a new JspEngineInfo instance.

Methods

public abstract String getSpecificationVersion()

Returns the version of the JSP specification implemented by the container, for instance "2.0" for a JSP 2.0
compliant container.

JspException

The JspException class is the superclass for all JSP-related exceptions.

Synopsis

Class name: javax.servlet.jsp.JspException

Extends: Exception

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Constructors

public JspException()

Creates a new JspException instance.

public JspException(String msg)

Creates a new JspException instance with the specified message.

public JspException(String msg, Throwable rootCause)

Creates a new JspException instance with the specified message and root cause.

public JspException(Throwable rootCause)

Creates a new JspException instance with the specified root cause.

Methods

public Throwable getRootCause()

Returns the root cause for this exception.

JspFactory

The JspFactory is an abstract class that defines a number of factory methods available to a JSP page at runtime for the
purposes of creating instances of various interfaces and classes used to support the JSP implementation.

A JSP container creates an instance of a concrete subclass during its initialization phase and makes it globally available
for use by JSP implementation classes by registering the instance via the static setDefaultFactory() method.

Synopsis

Class name: javax.servlet.jsp.JspFactory

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructor

public JspFactory()

Creates a new JspFactory instance.

Methods

public static synchronized JspFactory getDefaultFactory()

Returns the default JspFactory for the container.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the default JspFactory for the container.

public abstract JspEngineInfo getEngineInfo()

Returns the JspEngineInfo for the container.

public abstract getPageContext getPageContext(javax.servlet.Servlet servlet, javax.servlet.ServletRequest request,
javax.servlet.ServletResponse response, String errorPageURL, boolean needsSession, int buffer, boolean autoflush)

Returns a properly initialized instance of an implementation dependent PageContext subclass. This method is
typically called early in the processing of the _jspService() method of a JSP implementation class to get a
PageContext object for the request being processed. Calling this method results in the PageContext.initialize()
method being invoked.

public abstract void releasePageContext(PageContext pc)

Releases a previously allocated PageContext object. Calling this method results in PageContext.release() being
invoked. This method should be invoked prior to returning from the _jspService() method of a JSP
implementation class.

public static synchronized void setDefaultFactory(JspFactory deflt)

Sets the default factory for this implementation. It is illegal for any other than the JSP container to call this
method.

JspPage

The JspPage interface must be implemented by the generated JSP page implementation classes. The interface defines a
protocol with three methods; only two of them, jspInit() and jspDestroy(), are part of this interface as the signature of
the third method, _jspService(), depends on the specific protocol used and cannot be expressed in a generic way in Java.
See also HttpJspPage.

The JspPage interface represents the basic, protocol-independent contract between the container and a JSP page
implementation object. A protocol-dependent subinterface, such as HttpJspPage, must be implemented by the class
generated from a JSP page.

The jspInit() and jspDestroy() methods can be defined by a JSP page author.

Synopsis

Interface name: javax.servlet.jsp.JspPage

Extends: javax.servlet.Servlet

Implemented by: JSP page implementation classes

Methods

public void jspDestroy()

This method is invoked when the JSP page implementation instance is about to be destroyed. It can be used to
perform clean-up, such as saving the state kept in instance variables to permanent storage.

public void jspInit()

This method is invoked when the JSP page implementation instance is initialized. It can be used to perform
tasks such as restoring the state kept in instance variables from permanent storage.

JspTagException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JspTagException is intended to be used by a tag handler to indicate an unrecoverable error.

Synopsis

Class name: javax.servlet.jsp.JspTagException

Extends: javax.servlet.jsp.JspException

Implements: None

Implemented
by:

Internal container-dependent class. Most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructors

public JspTagException()

Creates a new JspTagException instance.

public JspTagException(String msg)

Creates a new JspTagException instance with the specified message.

public JspTagException(String msg, Throwable throwable)

Creates a new JspTagException instance with the specified message and root cause.

public JspTagException(Throwable throwable)

Creates a new JspTagException instance with the specified root cause.

SkipPageException

A simple tag handler throws a SkipPageException to tell the container to stop processing the page, e.g., because the tag
handler forwards or redirects the request to another resource.

Synopsis

Class name: javax.servlet.jsp.SkipPageException

Extends: javax.servlet.jsp.JspException

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructors

public SkipPageException()

Creates a new SkipTagException instance.

public SkipPageException(String msg)

Creates a new SkipTagException instance with the specified message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public SkipPageException(String msg, Throwable throwable)

Creates a new SkipPageException instance with the specified message and root cause.

public SkipPageException(Throwable throwable)

Creates a new SkipPageException instance with the specified root cause.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

D.6 Expression Language Types
The API for EL evaluation is defined in the javax.servlet.jsp.el package. The types in this package are designed without
dependencies on the rest of the JSP API, to allow the EL machinery to be used in other environments besides JSP. In a
JSP environment, application code should rarely use these types directly—the container takes care of all EL evaluation—
but they can be used for special cases, such as code getting text that contains EL expressions from an external source.

ELException

The EL evaluator signals parsing and evaluation errors by throwing an ELException.

Synopsis

Class name: javax.servlet.jsp.el.ELException

Extends: Exception

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructors

public ELException()

Creates a new ELException instance.

public ELException(String msg)

Creates a new ELException instance with the specified message.

public ELException(String msg, Throwable throwable)

Creates a new ELException instance with the specified message and root cause.

public ELException(Throwable throwable)

Creates a new ELException instance with the specified root cause.

Methods

public Throwable getRootCause()

Returns the root cause for this exception.

ELParseException

The EL evaluator signals parsing errors by throwing an ELParseException.

Synopsis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Class name: javax.servlet.jsp.el.ELParseException

Extends: javax.servlet.jsp.el.ELException

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructors

public ELParseException()

Creates a new ELParseException instance.

public ELParseException(String msg)

Creates a new ELParseException instance with the specified message.

Expression

The Expression class represents an EL expression, which may or may not be syntactically valid.

Synopsis

Class name: javax.servlet.jsp.el.Expression

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructors

public Expression()

Creates a new Expression instance.

Methods

public abstract Object evaluate(VariableResolver variableResolver) throws ELException

Evaluates the expression using the variables provided by the VariableResolver. Some implementations may need
to parse the expression when this method is called, so the caller should be prepared to handle parse exceptions
as well as runtime exceptions.

ExpressionEvaluator

The ExpressionEvaluator is the main class for the EL machinery, providing methods for preparation and evaluation of a
single EL expression. In a JSP environment, an instance of this class can be obtained from the JspContext.

Synopsis

Class name: javax.servlet.jsp.el.ExpressionEvaluator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Extends: None

Implements: None

Implemented
by:

Internal container-dependent class; most containers use the reference implementation of the class
(developed in the Apache Jakarta project)

Constructors

public ExpressionEvaluator()

Creates a new ExpressionEvaluator instance.

Methods

public abstract Object evaluate(String expression, Class expectedType, VariableResolver variableResolver, FunctionMapper
functionMapper) throws ELException

Evaluates the expression (a String starting with ${ and ending with }) using the variables provided by the
VariableResolver and the functions provided by the FunctionMapper. The evaluation result is coerced to the
specified expected type according to the rules described in Appendix C and returned.

public abstract Object parseExpression(String expression, Class expectedType, FunctionMapper functionMapper) throws ELException

Prepares the expression (a String starting with ${ and ending with }) for later evaluation. The method typically
performs syntactic validation and throws an ELParseException if an error is found.

FunctionMapper

The FunctionMapper interface is implemented by a container-dependent class that provides mappings between function
names and the static methods implementing the functions.

Synopsis

Interface name: javax.servlet.jsp.el.FunctionMapper

Extends: None

Implemented by: Internal container-dependent class

Methods

public java.lang.reflect.Method resolveFunction(String prefix, String localName)

Returns the Method matching the prefix and name, or null if no match is found.

VariableResolver

The VariableResolver interface is implemented by a container-dependent class that resolves variable names to objects
representing implicit variables or scoped variables.

Synopsis

Interface name: javax.servlet.jsp.el.VariableResolver

Extends: None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implemented by: Internal container-dependent class

Methods

public Object resolveVariable(String name) throws ELException

Returns the object matching the variable name or null if no match is found.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix E. Book Example Custom Actions and API
Reference
This appendix contains reference material for all custom actions, utility classes, and beans described in this book that
can be used as is in other applications.

Example code used in the book that isn't intended for reuse isn't included in this appendix. All source code for the book
can, however, be downloaded either from the O'Reilly web site at http://www.oreilly.com/catalog/jserverpages3/ or
from the web site dedicated to this book at http://www.TheJSPBook.com/.

The actions are described using the same conventions as for the JSP standard actions in Appendix A and the JSTL
actions in Appendix B. Most of the custom actions accept request-time attribute values (EL or Java expressions),
indicated by "Yes" in the "Dynamic value accepted" column in the Attribute tables.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.1 Generic Custom Actions

<ora:addCookie>

The <ora:addCookie> action sets response headers for creating or deleting a cookie. It must be used before the response
is committed, for instance before a <jsp:include> action with the flush attribute set to true.

Syntax

<ora:addCookie name="cookieName" value="cookieValue"
 [maxAge="ageInSeconds"] />

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

name String Yes The cookie name.

value String Yes The cookie value.

maxAge String Yes
The number of seconds before the cookie expires. Default is -1, meaning that the
cookie expires when the browser is closed. Use 0 to delete the cookie from the
browser.

Example

<%--
 Add a cookie named "userName", using the value from a
 request parameter with the same name, that expires in
 30 days
--%>
<ora:addCookie name="userName"
 value="${param:username}"
 maxAge="${30 * 24 * 60 * 60}"
/>

<%--
 Delete a cookie named "userName"
--%>
<ora:addCookie name="userName"
 value="ignored"
 maxAge="0"
/>

<ora:calendar>

The <ora:calendar> action renders a calendar for the specified month using the patterns defined by the attributes
representing weekdays, weekend days, etc. when rendering the individual days.

Syntax

<ora:calendar date="aDate" [var="var"]
 [beforePattern="beforePattern"] [afterPattern="afterPattern"]
 [padPattern="padPattern"] [dayNamePattern="dayNamePattern"]
 [weekdayPattern="weekdayPattern"] [weekendPattern="weekendPattern"]
/>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attributes

Attribute
name Java type

Dynamic
value

accepted
Description

date java.util.Date Yes A date in the month to render.

var String No The name of the variable to hold the current Date
while evaluating the patterns.

beforePattern javax.servlet.jsp.tagext.JspFragment Yes The pattern to use before rendering the first day in a
week.

afterPattern javax.servlet.jsp.tagext.JspFragment Yes The pattern to use after rendering the last day in a
week.

padPattern javax.servlet.jsp.tagext.JspFragment Yes
The pattern to use for days in the previous and
following months, to pad the current month to full
weeks.

dayNamePattern javax.servlet.jsp.tagext.JspFragment Yes The pattern to use for the day names, rendered once
before rendering the days.

weekdayPattern javax.servlet.jsp.tagext.JspFragment Yes The pattern to use for weekdays.

weekendPattern javax.servlet.jsp.tagext.JspFragment Yes
The pattern to use for weekends. If this pattern is
omitted, the weekdayPattern is used for weekends as
well.

Example

<code>
 <fmt:formatDate value="${now}" pattern="MMMM yyyy" />

 <ora:calendar date="${now}" var="c">
 <jsp:attribute name="afterPattern">

 </jsp:attribute>
 <jsp:attribute name="padPattern">
 | ------ |
 </jsp:attribute>
 <jsp:attribute name="weekdayPattern">
 | <fmt:formatDate value="${c}" pattern="EE dd" /> |
 </jsp:attribute>
 </ora:calendar>
</code>

<ora:debug>

The <ora:debug> action writes debug information to the response, the console or the application log, depending on the
value of the debug request parameter: resp, stdout, or log, or a combination of these values.

Syntax

<ora:debug type="debugInfoType" />

Attributes

Attribute
name

Java
type

Dynamic
value

accepted
Description

type String Yes The type of debug info to write, one of requestInfo, headers, cookies, params,
pageScope, requestScope, sessionScope, or applicationScope.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<%--
 Write all request information and parameters and page scope
 Variables.
--%>
<ora:debug type="requestInfo" />
<ora:debug type="params" />
<ora:debug type="pageScope" />

<ora:fileWrite>

The <ora:fileWrite> action writes its body content to the console, the application log, or a specific file.

Syntax

<ora:fileWrite [fileName="fileName"] />

Attributes

Attribute
name

Java
type

Dynamic value
accepted Description

fileName String Yes Either an absolute file path or log to write to the application log file. If
omitted, writes to System.out.

Example

<%--
 Write and error message to the application log file.
--%>
<ora:fileWrite filename="log">
 Error message: <c:out value="${pageContext.exception.message}" />
</ora:fileWrite>

<ora:ifUserInRole>

The <ora:ifUserInRole> action tests if the user authenticated for the request belongs to the specified role. If so, its body
is evaluated or the Boolean test result is saved in the specified variable. Note that this action only works with container-
provided authentication, using the security roles declared in the application deployment descriptor.

Syntax 1: Conditionally evaluate the body

<ora:ifUserInRole value="roleName">
 Evaluated if the current user belongs to roleName
</ora:ifUserInRole>

Syntax 2: Saving the test result

<ora:ifUserInRole value="roleName " var="var "
 [scope="page |request|session|application"] />

Attributes

Attribute name Java type Dynamic value accepted Description

value String Yes The role name.

var String No The name of the variable.

scope String No Scope for the variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

<%--
 Evaluate the body if the current user belongs to the "admin" role
--%>
<ora:ifUserInRole value="admin">
 You're an admin
</ora:ifUserInRole>

<%--
 Save true in the isAdmin variable if the current user belongs to
 the "admin" role
--%>
<ora:ifUserInRole value="admin" var="isAdmin" />

<ora:ifValidEmailAddr>

The <ora:ifValidEmailAddr> action tests if the specified value matches the syntax for a valid email address: only one at-
sign (@), except as the first or last character, no whitespace and at least one dot after the at-sign, except as the first or
last character. If so, its body is evaluated, or the Boolean test result is saved in the specified variable. Note that the
validation rule isn't always correct; for example, on an intranet, it may be okay with just a name. It doesn't guarantee a
valid Internet email address, but it takes care of the most obvious SMTP mail address format errors.

Syntax 1: Conditionally evaluate the body

<ora:ifValidEmailAddrs value="emailAddr">
 Evaluated if the emailAddr has valid syntax
</ora:ifValidEmailAddr>

Syntax 2: Saving the test result

<ora:ifValidEmailAddr value="emailAddr " var="var "
 [scope="page |request|session|application"] />

Attributes

Attribute name Java type Dynamic value accepted Description

value String Yes The email address to syntax validate.

var String No The name of the variable.

scope String No Scope for the variable.

Example

<%--
 Evaluate the body if the specified email address has valid syntax
--%>
<ora:ifValidEmailAddr value="${param.email}">
 You specified a valid email address
</ora:ifValidEmailAddr>

<%--
 Save true in the isValid variable if the specified email address
 has valid syntax
--%>
<ora:ifValidEmailAddr value="${param.email}" var="isValid" />

<ora:invalidateSession>

The <ora:invalidateSession> action invalidates the current session, telling the container to remove all session variables
and mark the session as expired.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

<ora:invalidateSession />

Attributes

None.

Example

<%--
 Invalidate the current session
--%>
<ora:invalidateSession/>

<ora:menuItem>

The <ora:menuItem> action writes its body contents to the response. If the specified page is the currently requested
page, the content is used as is; otherwise it's embedded in an HTML link element (<a>), using the specified page as the
link target and the body contents as the link text. The page value is converted to a server-relative path and URL
rewritten, if needed. The intended use for this action is in navigation bars to generate links for all page menu items
except for the current page.

Syntax

<ora:menuItem page="pageOrContextRelativePath">
 Menu text for the page
</ora:menuItem>

Attributes

Attribute name Java type Dynamic value accepted Description

page String Yes The page path for the menu item.

Example

<%--
 Generate a navigation menu table with two page menu items.
--%>
<table bgcolor="lightblue">
 <tr>
 <td>
 <ora:menuItem page="page1.jsp">
 Page 1
 </ora:menuItem>
 </td>
 </tr>
 <tr>
 <td>
 <ora:menuItem page="page2.jsp">
 Page 2
 </ora:menuItem>
 </td>
 </tr>
</table>

<ora:noCache>

The <ora:noCache> action sets response headers that prevent the page from being cached by a browser or proxy server.
It must be used before the response is committed, for instance before a <jsp:include> action with the flush attribute set
to true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to true.

Attributes

None.

Example

<%--
 Set headers to prevent caching.
--%>
<ora:noCache />

<ora:setHeader>

The <ora:setHeader> action sets the specified response headers to the specified value. It must be used before the
response is committed, for instance before a <jsp:include> action with the flush attribute set to true.

Syntax

<ora:setHeader name="headerName" value="headerValue" />

Attributes

Attribute name Java type Dynamic value accepted Description

name String Yes The header name.

value String Yes The header value.

Example

<%--
 Set the Content-Type header to "text/plain"
--%>
<ora:setHeader name="Content-Type" value="text/plain" />

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

E.2 Generic Utility Classes

ConnectionPool

This class implements a connection pool. It's the same class as the ConnectionPool class described in O'Reilly's Java
Servlet Programming, copied with permission from Jason Hunter. It's used by the DataSourceWrapper class to provide a
JDBC 2.0 DataSource interface to the pool. It's intended only as an example; there are many implementations with more
features available on the Net.

Synopsis

Class name: com.ora.jsp.sql.ConnectionPool

Extends: None

Implements: None

Constructors

public ConnectionPool(String driverClassName, String dbURL, String user, String password, int initialConnections) throws
java.sql.SQLException, ClassNotFoundException

Creates a connection pool for the specified JDBC URL using the specified JDBC driver class and database user
and password. The specified number of connections are created before service requests.

public ConnectionPool(java.util.Properties props, int initialConnections) throws java.sql.SQLException, ClassNotFoundException

Creates a connection pool for the JDBC URL, JDBC driver class, database user, and password specified by the
properties: connection.url, connection.driver, user, password. The specified number of connections are created before
service requests.

Methods

public java.sql.Connection getConnection() throws java.sql.SQLException

Returns a Connection from the pool.

public void returnConnection(java.sql.Connection returned)

Used by the connection pool client to return a Connection to the pool.

ConnectionWrapper

This class is a wrapper around a Connection, with a close() method that just informs its DataSourceWrapper it's available
for reuse again, and an isClosed() method to return the state of the wrapper instead of the wrapped Connection. All other
methods just relay the call to the wrapped Connection.

Synopsis

Class name: com.ora.jsp.sql.ConnectionWrapper

Extends: None

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implements: java.sql.Connection

Constructor

public ConnectionWrapper(Connection realConn, DataSourceWrapper dsw);

Creates a new ConnectionWrapper around the specified Connection, owned by the specified DataSourceWrapper.

Methods

public void close() throws SQLException;

Informs the DataSourceWrapper that this ConnectionWrapper is closed by calling its returnConnection() method.

public boolean isClosed() throws SQLException;

Returns true if the close() method has been called, false otherwise.

All wrapped methods simply call the corresponding method on the wrapped Connection. See the Java documentation at
http://java.sun.com/docs/index.html for details about these methods.

CookieUtils

The CookieUtils class contains a number of static methods that can be used to work with javax.servlet.Cookie objects.

Synopsis

Class name: com.ora.jsp.util.CookieUtils

Extends: None

Implements: None

Methods

public static String getCookieValue(String name, javax.servlet.http.HttpServletRequest req)

Returns the value of the Cookie with the specified name, or null if not found.

public static boolean isCookieSet(String name, javax.servlet.http.HttpServletRequest req)

Returns true if a cookie with the specified name is present in the request.

public static void sendCookie(String name, String value, int maxAge, javax.servlet.http.HttpServletResponse res)

Creates a Cookie with the specified name, value and max age, and adds it to the response.

DataSourceFactory

This class is a generic JNDI object factory intended for producing DataSource instances using custom DataSource
implementations, such as those often bundled with a JDBC driver. It can be used with Tomcat, and likely with other web
containers that supports JNDI, such as Resin and JRun.

Synopsis

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Synopsis

Class name: com.ora.jsp.sql.DataSourceFactory

Extends: None

Implements: javax.naming.spi.ObjectFactory

Methods

public Object getObjectInstance(Object obj, javax.naming.Name name, javax.naming.Context, java.util.Hashtable environment) throws
javax.naming.NamingException

Returns a DataSource, created as an instance of the class specified by the dataSourceClassName parameter
accessible through the javax.naming.Reference instance passed as the obj argument, configured by calling all
setter methods matching other parameters passed through the Reference instance.

DataSourceWrapper

This class is a wrapper implementing the JDBC 2.0 SE DataSource interface, used to make the ConnectionPool class look
like a JDBC 2.0 DataSource. It can easily be modified to be used as a wrapper for any JDBC 1.0 connection pool
implementation.

Synopsis

Class name: com.ora.jsp.sql.DataSourceWrapper

Extends: None

Implements: javax.sql.DataSource

Methods

public java.sql.Connection getConnection() throws java.sql.SQLException

Returns a ConnectionWrapper from the pool.

public void returnConnection(java.sql.Connection conn)

Used by the ConnectionWrapper to return a Connection to the pool when the client calls close().

public void setDriverClassName(String driverClassName)

Sets the driver class to be used for the data source.

public void setInitialConnections(int initialConnections)

Sets the initial connections to be created by the data source.

public void setPassword(String password)

Sets the database user password to be used for the data source.

public void setUrl(String url)

Sets the JDBC URL to be used for the data source.

public void setUser(String user)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public void setUser(String user)

Sets the database user to be used for the data source.

StringFormat

The StringFormat class contains a number of static methods that can be used to validate the format of strings, typically
received as input from a user, and to format values as strings that can be used in HTML output without causing browser
interpretation problems.

Synopsis

Class name: com.ora.jsp.util.StringFormat

Extends: None

Implements: None

Methods

public static boolean isValidDate(String dateString, String dateFormatPattern)

Returns true if the specified date string represents a valid date in the specified format. The dateFormatPattern is a
String specifying the format to be used when parsing the dateString. The pattern is expressed with the pattern
letters defined for the java.text.SimpleDateFormat class.

public static boolean isValidEmailAddr(String emailAddrString)

Returns true if the email string contains only one at-sign, except as the first or last character, no whitespace and
at least one dot after the at-sign, except as the first or last character. Note! This rule is not always correct
(e.g., on an intranet it may be okay with just a name) and it does not guarantee a valid Internet email address,
but it takes care of the most obvious Internet mail address format errors.

public static boolean isValidInteger(String numberString, int min, int max)

Returns true if the specified number string represents a valid integer in the specified range.

public static boolean isValidString(String value, String[] validStrings, boolean ignoreCase)

Returns true if the specified string matches a string in the set of provided valid strings, ignoring case if specified.

public static boolean isValidString(String[] values, String[] validStrings, boolean ignoreCase)

Returns true if all the specified strings match as string in the set of provided valid strings, ignoring case if
specified.

public static String replaceInString(String in, String from, String to)

Replaces one String with another throughout a source String.

public static String toContextRelativeURI(String relURI, String currURI) throws IllegalArgumentException

Returns the page-relative or context-relative relURI as a context-relative URI based on the currURI.

public static java.util.Date toDate(String dateString, String dateFormatPattern) throws java.text.ParseException

Converts a String to a Date, using the specified pattern. (See java.text.SimpleDateFormat for pattern description.)

public static String toHTMLString(String in)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public static String toHTMLString(String in)

Returns the specified string converted to a format suitable for HTML. All single-quote, double-quote, greater-
than, less-than, and ampersand characters are replaces with their corresponding HTML Character Entity code.

public static Number toNumber(String numString, String numFormatPattern) throws java.text.ParseException

Converts a String to a Number, using the specified pattern. (ee java.text.NumberFormat for pattern description.)

SQLCommandBean

The SQLCommandBean class is a bean for executing SQL statements, intended to encapsulate database access and to be
used by database custom actions and other classes. The bean has three properties that can be set: connection, sqlValue
and values. The connection and sqlValue properties must always be set before calling one of the execute methods. If the
values property is set, the sqlValue property must be a SQL statement with question marks as placeholders for the value
objects in the values property.

Synopsis

Class name: com.ora.jsp.beans.sql.SQLCommandBean

Extends: None

Implements: None

Description

The SQLCommandBean class also provides the following regular methods for executing The SQLCommandBean class also
provides the following regular methods for executing the SQL statement:

Property
name Java type Access Description

connection java.sql.Connection write The database Connection to use.

sqlValue String write The SQL statement to execute, optionally with question marks as
placeholders for values.

values java.util.List write A Vector with values for all placeholders in the SQL statement.

public javax.servlet.jsp.jstl.sql.Result executeQuery() throws java.sql.SQLException

Returns a JSTL Result object with the result of executing a SELECT statement.

public int executeUpdate() throws java.sql.SQLException

Returns the number of rows affected by a DELETE, INSERT, or UPDATE statement.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Appendix F. Web Application Structure and
Deployment Descriptor Reference
A complete web application may consist of several different resources: JSP pages, servlets, applets, static HTML pages,
custom tag libraries, and other Java class files. Starting with Version 2.2, the servlet specification defines a portable
way to package all these resources together with a deployment descriptor that contains configuration information, such
as how all the resources fit together, security requirements, etc. This appendix describes the standard file structure for
a web application and how to use the deployment descriptor elements defined by the Servlet 2.4 and JSP 2.0
specifications to configure the application.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

F.1 Web Application File Structure
The portable distribution and deployment format for a web application defined by the servlet specification is the Web
Application Archive (WAR). All Servlet 2.2-compliant servers (or later) provide tools for installing a WAR file and
associate the application with a servlet context.

A WAR file has a .war file extension and can be created with the Java jar command or a ZIP utility program, such as
WinZip, as described at the end of this appendix. The internal structure of the WAR file is defined by the servlet
specification:

/index.html
/company/index.html
/company/contact.html
/company/phonelist.jsp
/products/searchform.html
/products/list.jsp
/images/banner.gif
/WEB-INF/web.xml
/WEB-INF/lib/bean.jar
/WEB-INF/lib/actions.jar
/WEB-INF/classes/com/mycorp/servlets/PurchaseServlet.class
/WEB-INF/classes/com/mycorp/util/MyUtils.class
...

The top level in this structure is the document root for all application web page files. This is where you place all your
HTML pages, JSP pages, and image files. A browser can access all these files, using a URI starting with the context-
path. For instance, if the application has been assigned the context path /sales, the URI /sales/products/list.jsp is used
to access the JSP page named list.jsp in the products directory in this example.

F.1.1 Placing Java Class Files in the Right Directory

The WEB-INF directory contains files and subdirectories for other types of resources used by the application. Files under
this directory aren't directly accessible to a browser. Two WEB-INF subdirectories have special meaning: lib and classes.
The lib directory contains JAR files with Java class files, for instance JavaBeans classes, custom action handler classes,
and utility classes. The classes directory contains class files that are not packaged in JAR files. The web application has
access automatically to all class files in the lib and classes directories (in other words, you do not have to add them to
the CLASSPATH environment variable).

If you store class files in the classes directory, they must be stored in subdirectories mirroring the package structure.
For instance, if you have a class named com.mycorp.util.MyUtils, you must store the class file in WEB-
INF/classes/com/mycorp/util/MyUtils.class. Another type of file that can be stored in the classes directory is the type of
a resource properties file used by the PropertyResourceBundle class, as described in Chapter 14.

The WEB-INF directory can also contain other directories. For instance, a directory named tlds is by convention used for
tag library Tag Library Descriptor (TLD) files when they are not packaged in JAR files.

During development it's more convenient to work with the web application files in a regular filesystem structure instead
creating a new WAR file every time something changes. Most containers therefore support the WAR structure in an
open filesystem as well. The book example application is distributed as an open filesystem structure to make it easier
for you to see all the files.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

F.2 Web Application Deployment Descriptor
A very important file is the WEB-INF/web.xml file. It is the application deployment descriptor that contains all
configuration information for the application. If your application consists only of JSP and HTML files, you typically don't
need to worry about this file at all. But if the application also contains servlets or uses the container provided security
mechanisms, you often need to define some configuration information in the web.xml file.

The deployment descriptor is an XML file. Starting with Servlet 2.3 and JSP 2.0, the elements it can contain and how
they must be arranged are controlled by a number of XML Schema documents.[1] The main XML Schema document,
which includes the others, is available online at http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd. This XML Schema
document must be referenced in the root element of the deployment description, as shown in Example F-1.

[1] Prior versions used a Document Type Definition (DTD) to define the deployment descriptor content, with the
rules being more strict in some areas (e.g., fixed ordering of top-level elements) but less strict in other areas (e.g.,
no formal uniqueness rules were defined).

Example F-1. Java Web Application Descriptor root element

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4>
 ...
</web-app>

If you're not familiar with the intricate details of XML Schema and namespace declarations, just accept the fact that you
need to enclose all other elements in the deployment descriptor within a <web-app> element exactly as shown in
Example F-1.

Within the <web-app> element body, top-level elements can be included in any order. Each top-level element is
described in a separate section in this appendix. The top-level elements are all optional and can be included more than
once, unless otherwise stated. Most top-level elements contain other elements.

I use syntax descriptions similar to those in the other appendixes to show the rules for the elements nested within top-
level elements. The nested elements must be included in the order they are listed in the syntax description. Mutually
exclusive elements are separated by vertical bars (|). Optional nested elements are embedded in square brackets ([]),
followed by an asterisk (*) if more than one element of this type may be used. An element name followed by a plus sign
(+) means the element is required, but it can be used more than once. For elements that accept predefined values, all
values are listed separated by vertical bars; the default value (if any) is bold. Italics are used for element values that
don't have a fixed set of accepted values. Element attribute values are described using the same syntax as element
values.

<description>, <display>, and <icon>

These three elements provide information a web container deployment tool can use to describe the application. As an
exception to the rule that top-level elements can be included in any order, these three must be in the order shown
here.

Syntax

<description [xml:lang="lang"]>description</description>

<display-name [xml:lang="lang"]>displayName</display-name>

<icon [xml:lang="lang"]>
 [<small-icon>iconPath</small-icon>]
 [<large-icon>iconPath</large-icon>]
</icon>

The <icon> element can contain a <small-icon> and a <large-icon> element, each with a context-relative path to an image
file (GIF and JPEG formats are supported). The small icon must be 16x16 pixels, and the large 32x32. The <display-
name> element can specify a name for the application, and the <description> element a longer description.

You can use different versions of all these top-level elements for multiple languages, each with a unique xml:lang
attribute value ("en", for English, is the default value):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

attribute value ("en", for English, is the default value):

<icon>
 <small-icon>/images/small.gif</small-icon>
 <large-icon>/images/large.gif</large-icon>
</icon>
<display-name>The application name</display-name>
<description>
 A longer description of
 the application.
</description>

<distributable>

The <distributable> element is used to tell the web container that the application is designed to run in a distributed web
container.

Syntax

<distributable/>

This element does not contain a body. A distributable application does not rely on servlet instance variables, static
classes or variables, servlet context attributes, or any other mechanism for shared information that is restricted to one
Java Virtual Machine (JVM). It also means that all objects placed in the session scope are serializable, so that the
container can move the session data from one JVM to another. For more information about distributed applications, see
Chapter 18.

<context-param>

Using the <context-param> element, you can define context parameters that are available to all components of the
application (both servlets and JSP pages).

Syntax

<context-param>
 [<description [xml:lang="lang"]>description</description>]*
 <param-name>paramName</param-name>
 <param-value>paramValue</param-value>
</context-param>

The <param-name> subelement specifies the name and the <param-value> element the value. Optionally, the
<description> element can be used for a description that can be displayed by a deployment tool:

<context-param>
 <param-name>jdbcURL</param-name>
 <param-value>jdbc:idb:/usr/local/db/mydb.prp</param-value>
</context-param>

<filter>

The <filter> element registers a filter component, described in Chapter 20.

Syntax

<filter>
 [<description [xml:lang="lang"]>description</description>]*
 [<display-name [xml:lang="lang"]>displayName</display-name>]*
 [<icon [xml:lang="lang"]>
 [<small-icon>iconPath</small-icon>]
 [<large-icon>iconPath</large-icon>]
 </icon>]*
 <filter-name>filterName</filter-name>
 <filter-class>className</filter-class>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <filter-class>className</filter-class>
 [<init-param>
 [<description [xml:lang="lang"]>description</description>]*
 <param-name>paramName</param-name>
 <param-value>paramValue</param-value>
 </init-param>]*
</filter>

Nested <icon>, <display-name>, and <description> elements can optionally define icons and descriptions that can be used
by a tool. The nested <filter-name> element defines a unique logical name for the filter, and the <filter-class> element the
class name. A set of initialization parameters can optionally be defined by <init-param> elements.

<filter>
 <filter-name>accessControl</filter-name>
 <filter-class>com.mycomp.AccessControlFilter</filter-class>
 <init-param>
 <param-name>loginPage</param-name>
 <param-value>/login.jsp</param-value>
 </init-param>
</filter>

<filter-mapping>

A filter is mapped to either to a URI pattern or a servlet using the <filter-mapping> element.

Syntax

<filter-mapping>
 <filter-name>filterName</filter-name>
 <url-pattern>urlPattern</url-pattern> |
 <servlet-name>servletName</servlet-name>
 [<dispatcher>FORWARD|INCLUDE|REQUEST|ERROR</dispatcher>]*
</filter-mapping>

The <filter-name> subelement identifies the filter using a name defined by a <filter> element. A <url-pattern> or a <servlet-
name> defines when the filter shall be invoked. If a URL mapping is used, the same values as for a <servlet-mapping>
element can be used. More than one filter may match a specific request. If so, the container chains them in the order
the matching <filter-mapping> elements appear in the deployment descriptor.

Up to four <dispatcher> elements may be used to define for what circumstances the filter should be applied: FORWARD
and INCLUDE mean it's applied for internal request made through the javax.servlet.RequestDispatcher forward() and include()
methods, respectively; ERROR means it's applied when dispatching to an error page as part of the error mechanism;
REQUEST means it's applied for regular, external client requests. If no <dispatcher> element is used, the default behavior
is as if an element with the REQUEST value had been specified:

<filter-mapping>
 <filter-name>accessControl</filter-name>
 <url-pattern>/protected</url-pattern>
</filter-mapping>

<listener>

All the listener types described in Chapter 20 must be registered with a <listener> element.

Syntax

<listener>
 [<description [xml:lang="lang"]>description</description>]*
 [<display-name [xml:lang="lang"]>displayName</display-name>]*
 [<icon [xml:lang="lang"]>
 [<small-icon>iconPath</small-icon>]
 [<large-icon>iconPath</large-icon>]
 </icon>]*
 <listener-class>className</listener-class>
</listener>

The <description>, <display-name>, and <icon>, elements can optionally be used, the same as for many other top-level
elements. The nested <listener-class> element contains the listener class name:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

elements. The nested <listener-class> element contains the listener class name:

<listener>
 <listener-class>com.mycomp.AppInitListener</listener-class>
</listener>

<servlet>

The <servlet> element defines servlet class or JSP page details.

Syntax

<servlet>
 [<description [xml:lang="lang"]>description</description>]*
 [<display-name [xml:lang="lang"]>displayName</display-name>]*
 [<icon [xml:lang="lang"]>
 [<small-icon>iconPath</small-icon>]
 [<large-icon>iconPath</large-icon>]
 </icon>]*
 <servlet-name>servletName</servlet-name>
 <servlet-class>className</servlet-class> |
 <jsp-file>jspPath</jsp-file>
 [<init-param>
 [<description [xml:lang="lang"]>description</description>]*
 <param-name>paramName</param-name>
 <param-value>paramValue</param-value>
 </init-param>]*
 [<load-on-startup>startupValue</load-on-startup>]
 [<run-as>roleName</run-as>]
 [<security-role-ref>
 [<description [xml:lang="lang">description</description>]*
 <role-name>internalRoleName</role-name>
 [<role-link>roleName</role-link>]
 </security-role-ref>]*
</servlet>

Most commonly, this element just associates a servlet or JSP page with a short name and specifies initialization
parameters:

<servlet>
 <servlet-name>
 purchase
 </servlet-name>
 <servlet-class>
 com.mycorp.servlets.PurchaseServlet
 </servlet-class>
 <init-param>
 <param-name>maxAmount</param-name>
 <param-value>500.00</param-value>
 </init-param>
</servlet>

<servlet>
 <servlet-name>
 order-form
 </servlet-name>
 <jsp-file>
 /po/orderform.jsp
 </jsp-file>
 <init-param>
 <param-name>bgColor</param-name>
 <param-value>blue</param-value>
 </init-param>
</servlet>

The same servlet class (or JSP page) can be defined with multiple names, typically with different initialization
parameters. The container creates one instance of the class for each name.

The <load-on-startup> subelement can tell the container to load the servlet when the application is started. The value is a
positive integer, indicating when the servlet is to be loaded relative to other servlets. A servlet with a low value is
loaded before a servlet with a higher value:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loaded before a servlet with a higher value:

<servlet>
 <servlet-name>
 controller
 </servlet-name>
 <servlet-class>
 com.mycorp.servlets.ControllerServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The <icon>, <display-name>, and <description> elements describe the servlet or JSP page, the same way as for other top-
level elements.

<security-role-ref> elements, combined with <security-role> elements, can link a security role name used in a servlet as
the argument to the HttpServletRequest.isUserInRole() method to a role name known by the web container:

<servlet>
 <servlet-name>
 controller
 </servlet-name>
 <servlet-class>
 com.mycorp.servlets.ControllerServlet
 </servlet-class>
 <security-role-ref>
 <role-name>administrator</role-name>
 <role-link>admin</role-link>
 </security-role-ref>
</servlet>
...
<security-role>
 <role-name>admin</role-name>
</security-role>

All role names defined by <security-role> elements must be mapped to users and/or groups known by the web container.
How this is done is container-dependent. The <security-role-ref> element allows you to use a servlet that uses a role
name in the isUserInRole() method that is not defined by a <security-role> element. A typical scenario where this can be
useful is when you combine servlets from different sources into one application, and the servlets use different role
names for the same logical role.

Finally, the <run-as> element can define the security role that the servlet should be presented as if it makes calls into an
EJB container. The nested <role-name> value must be defined by a <security-role> element:

<servlet>
 <servlet-name>
 controller
 </servlet-name>
 <servlet-class>
 com.mycorp.servlets.ControllerServlet
 </servlet-class>
 <run-as>
 <role-name>admin</role-name>
 </run-as>
</servlet>
...
<security-role>
 <role-name>admin</role-name>
</security-role>

See the J2EE documentation for details about how to use this element.

<servlet-mapping>

The <servlet-mapping> element maps a servlet or JSP page to a URL pattern.

Syntax

<servlet-mapping>
 <servlet-name>servletName</servlet-name>
 <url-pattern>urlPattern</url-pattern>
</servlet-mapping>

Most containers support a special URI prefix (/servlet) that can invoke any servlet class that the container has access
to, for instance the URI /servlet/com.mycompany.MyServlet can invoke the servlet class com.mycomapany.MyServlet. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to, for instance the URI /servlet/com.mycompany.MyServlet can invoke the servlet class com.mycomapany.MyServlet. This
isn't mandated by the specification, however, so to make sure the application is portable, it's better to map a unique
path to a servlet instead. Explicit mapping also simplifies references between servlets and JSP pages, as described in
Chapter 19. The <servlet-mapping> element is used for this purpose. The <servlet-name> subelement contains a name
defined by a <servlet> element, and the <url-pattern> contains the pattern that should be mapped to the servlet (or JSP
page):

<servlet-mapping>
 <servlet-name>purchase</servlet-name>
 <url-pattern>/po/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>sales-report</servlet-name>
 <url-pattern>/report</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>XMLProcessor</servlet-name>
 <url-pattern>*.xml</url-pattern>
</servlet-mapping>

A pattern can take one of four forms:

A path prefix pattern starts with a slash (/) and ends with /*, for instance /po/*.

An extension mapping pattern starts with *., for instance *.xml.

A default servlet pattern consists of just the / character.

All other patterns are exact match patterns.

When the container receives a request, it strips off the context path and then tries to find a pattern that matches a
servlet mapping. Exact match patterns are analyzed first, then the path prefix patterns starting with the longest one,
and then the extension mapping patterns. If none of these patterns match, the default servlet pattern is used, if
specified. As a last resort, the containers default request processor handles the request.

With the mappings defined here, a URI like /po/supplies invokes the purchase servlet, /report invokes the sales-report
servlet (but note that /report/spring doesn't, because an exact match pattern is used), and /eastcoast/forecast.xml
invokes the XMLProcessor servlet.

<session-config>

The <session-config> element can customize session handling attributes. You must only use one element of this type in a
deployment descriptor.

Syntax

<session-config>
 [<session-timeout>minutes</session-timeout>]
</session-config>

It contains just one subelement: the <session-timeout> element used to specify the default session timeout value in
minutes. A value of 0 or less means that sessions never time out. Omitting the nested element means the container
uses its own default:

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

<mime-mapping>

The <mime-mapping> element can define the mappings an application requires.

Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

<mime-mapping>
 <extension>fileExtension</extension>
 <mime-type>mimeType</mime-type>
</mime-mapping>

A servlet may need to know which MIME type a file extension corresponds to, and such a mapping can be defined with
this element:

<mime-mapping>
 <extension>wml</extension>
 <mime-type>text/vnd.wap.wml</mime-type>
</mime-mapping>

Most containers provide default mappings for the most commonly used extensions, such as .html, .htm, .gif, .jpg, and
so on, but if you need to be absolutely sure that a mapping is defined for your application, put it in the web.xml file.

<welcome-file-list>

The <welcome-file-list> element can define an ordered list of files to look for in the directory and serve if present. If you
use more than one element of this type, the container merges them.

Syntax

<welcome-file-list>
 <welcome-file>fileName</welcome-file>+
</welcome-file-list>

A welcome file is a file (or a URL mapped to a servlet) that the container serves when it receives a request URI that
identifies a directory as opposed to a web page or a servlet:

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>default.html</welcome-file>
 <welcome-file>default.htm</welcome-file>
</welcome-file-list>

When a directory entry request (a request for a URI ending with a slash) is received that does not match a servlet
mapping, the container appends each welcome file name in the order specified in the deployment descriptor to the
request URI and checks whether a resource in the WAR is mapped to the new URI. If it is, the request is sent to the
resource. If no matching resource is found, the behavior is container dependent. The container may, for instance,
return a directory listing an HTTP 404 status code (Not Found).

<error-page>

The <error-page> element can define pages that inform the user about various errors.

Syntax

<error-page>
 <error-code>errorCode</error-code> |
 <exception-type>className</exception-type>
 <location>pagePath</location>
</error-page>

A page can be specified for an HTTP error status code, such as 404 (Not Found), using the <error-code> subelement. As
an alternative, the <exception-type> subelement can be used to specify a Java exception class name, to use a special
page to handle exceptions thrown by servlets and JSP pages. The <location> subelement contains the context-relative
path for the error page:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

path for the error page:

<error-page>
 <error-code>404</error-code>
 <location>/errors/404.html</location>
</error-page>
<error-page>
 <exception-type>javax.servlet.ServletException</exception-type>
 <location>/errors/exception.jsp</location>
</error-page>

<jsp-config>

The <jsp-config> element embeds most elements dealing JSP configuration. You must only use one element of this type
in a deployment descriptor.

Syntax

<jsp-config>
 [<taglib>
 <taglib-uri>taglibURI</taglib-uri>
 <taglib-location>filePath</taglib-location>
 </taglib>]*
 [<jsp-property-group>
 [<description [xml:lang="lang"]>description</description>]*
 [<display-name [xml:lang="lang"]>displayName</display-name>]*
 [<icon [xml:lang="lang"]>
 [<small-icon>iconPath</small-icon>]
 [<large-icon>iconPath</large-icon>]
 </icon>]*
 <url-pattern>urlPattern</url-pattern>+
 [<el-ignored>true|false</el-ignored>]
 [<page-encoding>encoding</page-encoding>]
 [<scripting-invalid>true|false</scripting-invalid>]
 [<is-xml>true|false</is-xml>]
 [<include-prelude>filePath</include-prelude>]*
 [<include-coda>filePath</include-coda]*
 </jsp-property-group>]*
</jsp-config>

Nested <taglib> elements map the symbolic name for a tag library specified by the taglib directive in a JSP page to the
location of the Tag Library Descriptor (TLD) file or JAR file that contains the TLD file. The <taglib-uri> element value
must match the uri attribute value used in the JSP page and the <taglib-location> subelement contains the context-
relative path to the library file:

<jsp-config>
 <taglib>
 <taglib-uri>orataglib</taglib-uri>
 <taglib-location>/WEB-INF/lib/orataglib_1_0.jar</taglib-location>
 </taglib>
</jsp-config>

With the introduction of the auto-discovery feature in JSP 1.2, this element is rarely needed. For more details, see
Chapter 21.

Nested <jsp-property-group> elements define a number of attributes for a set of JSP pages. The set of pages is defined by
one or more <url-pattern> elements, with the same pattern types as are valid for the <servlet-mapping> element. The
other elements define the attributes shared by these pages.

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.xml</url-pattern>
 <el-ignored>true</el-ignored>
 <page-encoding>Shift_JIS</page-encoding>
 <scripting-invalid>true</scripting-invalid>
 <is-xml>true</is-xml>
 <include-prelude>/copyright.txt</include-prelude>
 </jsp-property-grop>
</jsp-config>

An <el-ignored> value of true means that character sequences that look like EL expressions, i.e., starts with ${, are
treated as template text instead of EL expressions. This can be useful when pre-JSP 2.0 pages must be used in a JSP
2.0 application. The default is true for an application deployed with a pre-JSP 2.0 deployment descriptor and it's false for
an application with a JSP 2.0 deployment descriptor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an application with a JSP 2.0 deployment descriptor.

The <page-encoding> element defines the file encoding for all matching JSP files.

The <scripting-invalid> element can be used to define an application-wide policy for use of the JSP scripting elements
(i.e., Java code). With a value of true, a page that contains scripting elements is rejected at translation time.

A <is-xml> element with a value of true tells the container that matching pages are written as JSP Documents, i.e., as
XML documents instead of regular JSP pages.

The <include-prelude> and <include-coda> elements provide for automatic inclusion of files during the translation phase.
Files defined by <include-prelude> elements are included at the top of each matching page; files defined by <include-coda>
are included at the end. The file location is specified as a context-relative path.

For more on all the <jsp-property-group> elements, see Chapter 17.

<resource-env-ref>

The <resource-env-ref> element declares an application resource accessible through JNDI.

Syntax

<resource-env-ref>
 [<description [xml:lang="lang"]>description</description>]*
 <resource-env-ref-name>envRefName</resource-env-ref-name>
 <resource-env-ref-type>envRefType</resource-env-ref-type>
</resource-env-ref>

In a complete J2EE-compliant container (i.e., one that supports other J2EE technologies besides servlets and JSP), the
container can provide access to so-called administered objects through JNDI. Examples of this type of object are the
ones used by the Java Messaging System (JMS) API. The <resource-env-ref> elements declares the JNDI path used to
access the object in the application and its type, using nested <resource-env-ref-name> and <resource-end-ref-type>
elements:

<resource-env-ref>
 <resource-env-ref-name>/jms/StockQueue</resource-env-ref-name>
 <resource-env-ref-type>/javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

Optionally, descriptions can be provided by the <description> element.

<resource-ref>

The <resource-ref> element defines JNDI accessible object factories for application objects.

Syntax

<resource-ref>
 [<description [xml:lang="lang"]>description</description>]*
 <res-ref-name>refName</res-ref-name>
 <res-ref-type>refType</res-ref-type>
 <res-auth>Application|Container</res-auth>
 [<res-sharing-scope>Shareable|Unshareable</res-sharing-scope>]
</resource-ref>

A J2EE-compliant container (and some web containers that support JNDI in addition to servlets and JSP) can also
provide access to resource factories that produce the objects used in an application, such as a DataSource that produces
Connection objects for database access, as described in Chapter 24. The <resource-ref> element defines these factories
using the <res-ref-name> to specify the JNDI path used in the application, the <res-type> for the factory type, and <res-
auth> to define whether the authentication is performed by the application (with the Application value) or the container
(with the Container value). An optional <res-sharing-scope> element can be used to define if the objects produced by the
factory may be shared or not (with Shareable and Unshareable, respectively, the prior being the default):

<resource-ref>
 <res-ref-name>/jms/Production</res-ref-name>
 <res-ref-type>/javax.sql.DataSource</res-ref-type>
 <res-auth>Container</res-auth>
</resource-ref>

As for most elements, <description> elements can provide descriptions in multiple languages to help the deployer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As for most elements, <description> elements can provide descriptions in multiple languages to help the deployer.

<security-constraint>

The <security-constraint> element defines how and by whom resources can be accessed.

Syntax

<security-constraint>
 [<display-name [xml:lang="lang"]>displayName</display-name>]*
 <web-resource-collection>
 <web-resource-name>resName</web-resource-name>
 [<description [xml:lang="lang"]>description</description>]*
 <url-pattern>urlPattern</url-pattern>+
 [<http-method>GET|POST|PUT|DELETE|HEAD|OPTIONS|TRACE</http-method>]
 </web-resource-collection>+
 [<auth-constraint>
 [<description [xml:lang="lang"]>description</description>]*
 [<role-name>roleName</role-name>]*
 </auth-constraint>]
 [<user-data-constraint>
 <transport-guarantee>
 NONE|INTEGRAL|CONFIDENTIAL
 </ transport-guarantee>
 </user-data-constraint>]
</security-constraint>

<security-constraint> contains a <web-resource-collection> subelement that defines the resources to be protected and an
<auth-constraint> subelement that defines who has access to the protected resources. It can also contain a <user-data-
constraint> subelement that describes security requirements for the connection used to access the resource:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>admin</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</ transport-guarantee>
 </user-data-constraint>
</security-constraint>

Within the <web-resource-collection> element, the resource is given a name with the <web-resource-name> subelement and
the URI patterns for the protected resources are specified with <url-pattern> elements. <http-method> subelements can
also be used to restrict the types of accepted requests. This example protects all resources accessed with URIs that
starts with /admin and says that only the GET method can access these resources.

The <role-name> subelements within the <auth-constraint> element specify the roles that the current user must have to
get access to the resource. The value must be a role name defined by a <security-role> element. In this example, the
user must belong to the admin role in order to access resources under /admin. How the role names are mapped to user
and/or group names in the container's security system is container dependent.

A <transport-guarantee> element can contain one of three values:

NONE. No special requirements. This is the default.

INTEGRAL. Data must be sent between the client and server in such a way that it can't be changed in transit.
Typically this means that an SSL connection is required.

CONFIDENTIAL. Data must be sent in such a way that it can't be observed by others. This is also typically
satisfied by an SSL connection.

<login-config>

The <login-config> element declares which authentication method to use for protected resources. You must only use one

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <login-config> element declares which authentication method to use for protected resources. You must only use one
element of this type in a deployment descriptor.

Syntax

<login-config>
 [<auth-method>BASIC|DIGEST|FORM|CLIENT-CERT</auth-method>]
 [<realm-name>realmName</realm-name>]
 [<form-login-config>
 <form-login-page>loginPagePath</form-login-page>
 <form-error-page>errorPagePath</form-error-page>
 </form-login-config>]
</login-config>

For an application that uses the <security-constraint> element to protect resources, you must also define how to
authenticate users with a <login-config> element. It can contain three subelements: <auth-method>, <realm-name>, and
<form-login-config>:

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Protected pages</realm-name>
</login-config>

The <auth-method> element can have one of the values BASIC, DIGEST, FORM, and CLIENT-CERT, corresponding to the four
container-provided authentication methods described in Chapter 13. The <realm-name> element can specify the name
shown by the browser when it prompts for a password when the BASIC authentication is used.

If FORM authentication is used, the <form-login-config> element defines the login page and an error pages (used for
invalid login attempts):

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login/login.html</form-login-page>
 <form-error-page>/login/error.html</form-error-page>
 </form-login-config>
</login-config>

For more about the FORM authentication method, see Chapter 13.

<security-role>

<security-role> elements are used to define the role names that the application uses.

Syntax

<security-role>
 [<description [xml:lang="lang"]>description</description>]*
 <role-name>roleName</role-name>
</security-role>

All names used in isUserInRole() calls, in <security-role-ref> elements and <auth-constraint> elements must be declared by
a separate <security-role> element:

<security-role>
 <role-name>admin</role-name>
</security-role>
<security-role>
 <role-name>user</role-name>
</security-role>

Each role must be mapped to a user and/or group in the container's security domain in a container dependent way.

<locale-encoding-mapping-list>

The <locale-encoding-mapping-list> element defines mappings between locales and response encodings. If you use more
than one element of this type, the container merges them.

Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

<locale-encoding-mapping-list>
 <locale-encoding-mapping>
 <locale>locale</locale>
 <encoding>encoding</encoding>
 </locale-encoding-mapping>+
</locale-encoding-mapping-list>

Unless a specific response encoding is been specified explicitly, setting the locale for a response also sets its encoding.
The <locale-encoding-mapping-list> element allows you to define how locales map to response encodings, overriding the
container's default mappings. The <locale> element contains the locale value as an ISO-639 language code, optionally
combined with an ISO-3166 country code, separated by an underscore or a dash. The <encoding> element contains an
encoding (charset) value recognized by Java:

<locale-encoding-mapping-list>
 <locale-encoding-mapping>
 <locale>en-US</locale>
 <encoding>UTF-8</encoding>
 </locale-encoding-mapping>
 <locale-encoding-mapping>
 <locale>ja</locale>
 <encoding>Shift_JIS</encoding>
 </locale-encoding-mapping>
</locale-encoding-mapping-list>

<env-entry>

The <env-entry> element is used to define simple objects, such as a String or Boolean, accessed by the application
through JNDI.

Syntax

<env-entry>
 [<description [xml:lang="lang"]>description</description>]*
 <env-entry-name>entryName</env-entry-name>
 <env-entry-type>entryType</env-entry-type>
 [<env-entry-value>entryValue</env-entry-value>]
</env-entry>

The <env-entry-name> defines the JNDI name relative to the java:comp/env context and <env-entry-type> the type, which
must be one of java.lang.Boolean, java.lang.Byte, java.lang.Character, java.lang.String, java.lang.Short, java.lang.Integer,
java.lang.Long, java.lang.Float, or java.lang.Double. The value can optionally be defined statically, using the <env-entry-value>
element or be provided at deployment. An optional <description> element is also supported:

<env-entry>
 <env-entry-name>maxConnections</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>100</env-entry-value>
</env-entry>

<ejb-ref>

The <ejb-ref> element is often used to declare a remote EJB reference used by the application.

Syntax

<ejb-ref>
 [<description [xml:lang="lang"]>description</description>]*
 <ejb-ref-name>ejbRefName</ejb-ref-name>
 <ejb-ref-type>Entity|Session</ejb-ref-type>
 <home>homeInterfaceName</home>
 <remote>remoteInterfaceName</remote>
 [<ejb-link>linkedEJBName</ejb-link>]
</ejb-ref>

In a J2EE-compliant container, the <ejb-ref> element is used to declare EJB objects. The name (JNDI path), type (Entity
or Session), home and remote interface class names must be specified with the <ejb-ref-name>, <ejb-ref-type>, <home>,
and <remote> elements:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and <remote> elements:

<ejb-ref>
 <ejb-ref-name>ejb/Payroll</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.mycomp.PayrollHome</home>
 <remote>com.mycomp.Payroll</remote>
</ejb-ref>

An optional <ejb-link> element can be used to uniquely identify a specific bean if more than one EJB has the same
name. In addition, an optional <description> element can be used to add a description of the EJB.

<ejb-local-ref>

The <ejb-local-ref> element is often used to declare a local EJB reference used by the application.

Syntax

<ejb-local-ref>
 [<description [xml:lang="lang"]>description</description>]*
 <ejb-ref-name>ejbRefName</ejb-ref-name>
 <ejb-ref-type>Entity|Session</ejb-ref-type>
 <local-home>homeInterfaceName</local-home>
 <local>localInterfaceName</local>
 [<ejb-link>linkedEJBName</ejb-link>]
</ejb-local-ref>

The <ejb-local-ref> element serves the same purpose as the <ejb-ref> element but for local beans. It supports all the
same nested elements, except that <home> is replaced by <local-home> and <remote> is replaced by <local>:

<ejb-local-ref>
 <ejb-ref-name>ejb/Payroll</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>com.mycomp.PayrollHome</local-home>
 <local>com.mycomp.Payroll</local>
</ejb-local-ref>

<service-ref>

The <service-ref> element is used to declare a reference to a web service used by the application.

Syntax

<service-ref>
 [<description [xml:lang="lang"]>description</description>]*
 [<display-name [xml:lang="lang"]>displayName</display-name>]*
 [<icon [xml:lang="lang"]>
 [<small-icon>iconPath</small-icon>]
 [<large-icon>iconPath</large-icon>]
 </icon>]*
 <service-ref-name>serviceRefName</service-ref-name>
 <service-interface>jaxrpcInterfaceName</service-interface>
 [<wsdl-file>wsdlFilePath</wsdl-file>]
 [<jaxrpc-mapping-file>mappingFilePath</jaxrpc-mapping-file>]
 [<service-qname>wdslQName</service-qname>]
 [<port-component-ref>portComponentRef</port-component-ref>]*
 [<handler>portComponentHandler</handler>]*
</service-ref>

See the Servlet 2.4 and J2EE 1.4 web services specifications for details on how to use this element.

<message-destination-ref>

The <message-destination-ref> element declares a JMS message destination reference used by the application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Syntax

<message-destination-ref>
 [<description [xml:lang="lang"]>description</description>]*
 <message-destination-ref-name>refName</message-destination-ref-name>
 <message-destination-type>typeName</message-destination-type>
 <message-destination-usage>
 Consumes|Produces|ConsumesProduces
 </message-destination-usage>
 [<message-destination-link>linkedDestName</message-destination-link>]
</message-destination-ref>

See the Servlet 2.4 and J2EE 1.4 messaging specifications for details on how to use this element.

<message-destination>

The <message-destination> element declares a logical name for a JMS message destination used by the application.

Syntax

<message-destination>
 [<description [xml:lang="lang"]>description</description>]*
 [<display-name [xml:lang="lang"]>displayName</display-name>]*
 [<icon [xml:lang="lang"]>
 [<small-icon>iconPath</small-icon>]
 [<large-icon>iconPath</large-icon>]
 </icon>]*
 <message-destination-name>destName</message-destination-name>
</message-destination>

See the Servlet 2.4 and J2EE 1.4 messaging specifications for details on how to use this element.

F.2.1 Example Application Deployment Descriptor

Example F-2 shows an example of a deployment descriptor (web.xml) file.

Example F-2. Example deployment descriptor file

<?xml version="1.0" encoding="ISO-8859-1"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3c.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4>
 <servlet>
 <servlet-name>
 purchase
 </servlet-name>
 <servlet-class>
 com.mycomp.servlets.PurchaseServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>
 purchase
 </servlet-name>
 <url-pattern>
 /po/*
 </url-pattern>
 </servlet-mapping>
</web-app>

At the top of the file, you find a standard XML declaration and the <web-app> element, with the reference to the
deployment descriptor schema. Then follows a <servlet> element that defines a servlet named purchase, and a <servlet-
mapping> element that maps the servlet to the /po/* path prefix pattern.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

F.3 Creating a WAR File
A WAR file is an archive file, used to group all application files into a convenient package. A WAR file can be created
with the jar command, included in the Java runtime environment, or a ZIP utility program such as WinZip. To create a
WAR file, you first need to create the file structure as directories in the filesystem and place all files in the correct
location as described earlier.

With the file structure in place, cd to the top-level directory for the application in the filesystem. You can then use the
jar command to create the WAR file:

C:\> cd myapp
C:\myapp> jar cvf myapp_1_0.war *

This command creates a WAR file named myapp_1_0.war containing all files in the myapp directory. You can use any
filename that makes sense for your application, but avoid spaces in the filename, because they are known to cause
problems on many platforms. Including the version number for the application in the filename is a good idea, because it
is helpful for the users to know which version of the application the file contains.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of JavaServer Pages, Third Edition, is a grey wolf (Canis lupus), also known as a timberwolf.
Once common all over North America, grey wolves wander the open tundra and forests of Alaska, Canada, and parts of
the United States-just half their former range. These social animals mate for life and live in packs of two to fifteen
animals; the strongest male is the leader of the group. Only the dominant pair in a pack breeds, the female giving birth
to an average of seven pups sometime in April, May, or June, and all members of the group care for the young.

Sarah Sherman was the production editor and copyeditor, and Marlowe Shaeffer was the proofreader for JavaServer
Pages, Third Edition. Mary Anne Weeks Mayo and Claire Cloutier provided quality control. John Bickelhaupt wrote the
index.

Pam Spremulli designed the cover of this book, based on a series design by Edie Freedman. The cover image is an
original engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Leanne Soylemez.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

directives)
${ (dollar sign-curly brace delimiter)
<attribute> element
<auth-constraint> element
<body-content> element
<c:catch>
<c:choose>
<c:forEach> 2nd 3rd
 request parameters, online shopping example
<c:forTokens>
<c:if>
<c:import> 2nd 3rd
<c:otherwise>
<c:out> 2nd 3rd 4th
 attribute values for
 debugging, usage in
 param variable, using with
<c:param>
<c:redirect> 2nd
<c:remove> 2nd
<c:set> 2nd 3rd
 vs <jsp:setProperty>
<c:url> 2nd
<c:when>
<context-param> element
<description> element 2nd 3rd 4th
<display> element
<display-name> element
<distributable> element 2nd
<ejb-local-ref> element
<ejb-ref> element
<env-entry> element
<error-page> element
<example> element
<filter> element
<filter-mapping> element
<fmt:bundle>
 localization context
<fmt:formatDate>
 internationalization
<fmt:formatNumber> 2nd
<fmt:message>
 internationalization
<fmt:param>
<fmt:parseDate> 2nd 3rd
<fmt:parseNumber> 2nd
<fmt:requestEncoding> 2nd
<fmt:setBundle>
 internationalization
<fmt:setLocale> 2nd
<fmt:setTimeZone> 2nd
<fmt:timeZone>
<function-class> element
<function-signature> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<icon> element 2nd
 elements
<jsp-config> element
<jsp:attribute>
<jsp:body>
<jsp:doBody>
 JSP fragment invocation
<jsp:doBody> standard action
<jsp:element>
<jsp:fallback> 2nd
<jsp:forward> 2nd 3rd
<jsp:getProperty>
<jsp:include> 2nd
<jsp:invoke> 2nd
<jsp:output>
<jsp:param>
<jsp:param> elements
<jsp:params>
<jsp:plugin> 2nd
<jsp:root>
<jsp:setProperty>
 JavaBeans
<jsp:text>
<jsp:useBean> 2nd 3rd 4th
<large-icon> element
<listener> element 2nd
<locale-encoding-mapping-list> element
<login-config> element 2nd
<message-destination> element
<message-destination-ref> element
<mime-mapping> element
<my:forEvenAndOdd> custom action
 tag file
<my:htmlFormat> custom action
<name> element 2nd 3rd
<ora:addCookie> 2nd
<ora:calendar>
<ora:debug>
<ora:debug> custom action
<ora:fileWrite>
<ora:ifUserInRole> 2nd
<ora:ifValidEmailAddr> 2nd
<ora:invalidateSession>
<ora:menuItem>
<ora:motd>
<ora:noCache>
<ora:setHeader>
<ora:simpleLoop>
<realm-name> element
<required> element
<res-auth>element
<res-ref-name> element
<res-sharing-scope> element
<res-type> element
<resource-env-ref> element
<resource-ref> element
<ResourceParams> element
<role-name> element
<rtexprvalue> element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<security-constraint> element 2nd
<security-role> element 2nd
<service-ref> element
<servlet> element
<servlet-mapping> element
<session-config> element
<short-name> element
<small-icon> element
<sql:dateParam> 2nd
<sql:param> 2nd
<sql:query> 2nd
<sql:setDataSource> 2nd
<sql:transaction> 2nd
<sql:update> 2nd 3rd
<tag> element
<tag-class> element
<tag-file> element
<tlib-version> element
<type> element
<uri> element
<validator> element
<variable> element
<welcome-file-list> element
<x:choose>
<x:forEach>
<x:if>
<x:otherwise>
<x:out>
<x:param>
<x:parse> 2nd
<x:set>
<x:transform> 2nd
<x:when>
<xsl:for-each> element
<xsl:template> element
<xsl:value-of> element
? (SQL parameter placeholder)
${ (dollar sign-curly brace delimiter)
<%--.... --%> (comment scripting element)
<%! ... %> (declaration scripting element)
<%@...%> (directive scripting element)
<%= ... %> (expression scripting element)
<% ... %> (scriptlet scripting element)
\ (backslash)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

aborting page processing
absolute paths
absolute URIs
Accept headers
Accept-Language header
access control filter class source code
accessor methods, JavaBeans
action classes, Struts, implementing
action elements 2nd
 <c:import> 2nd
 <c:redirect>
 <c:remove>
 <c:url>
 <fmt:bundle>
 <fmt:formatDate>
 <fmt:formatNumber> 2nd
 <fmt:message>
 <fmt:parseDate> 2nd
 <fmt:parseNumber>
 <fmt:requestEncoding>
 <fmt:setBundle>
 <fmt:setLocale>
 <fmt:setTimeZone>
 <jsp:fallback>
 <jsp:forward>
 <jsp:getProperty>
 <jsp:include>
 <jsp:plugin>
 <jsp:setProperty> 2nd
 <jsp:useBean>
 <ora:addCookie>
 <ora:ifUserInRole>
 <ora:ifValidEmailAddr>
 <ora:simpleLoop>
 <sql:dateParam>
 <sql:param>
 <sql:query>
 <sql:setDataSource>
 <sql:transaction>
 <sql:update> 2nd
 <x:parse>
 <x:transform>
 attribute values, setting
 body, processing of 2nd
 empty element tags
 standard actions
 structure
ActionMapping class
actions [See also action elements]
 conditional custom actions, creating
 cooperative actions
 implicit through variables
 parent-child cooperation
 scripting variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 cooperative custom actions
 custom actions [See custom actions]
 custom I18N actions
 databases, accessing 2nd
 internationalization
 iteration, implementing
 parameter values, accessing with
 runtime errors
add-ons
Apache Ant
Apache JMeter
Apache Struts [See Struts]
APIs (application program interfaces
 Java APIs accessible to JSP
 JNDI
APIs (application program interfaces)
 J2EE APIs
 Java Enterprise APIs
 Java Introspection API
 Java Servlet API [See servlets]
 JDBC [See JDBC]
 JNDI
 JSP reference
 JSTL [See JSTL]
 tag handlers [See tag handlers]
applet.jsp code
applets
 embedding in JSP pages
application scope 2nd
 memory usage considerations
 page hit counters
application variables 2nd
application-controlled authentication
applications [See web applications]
ASP (Active Server Pages)
ASP.NET
attribute directive
attributes [See also actions]
 pageEncoding
 setting, request-time attribute values
 tag files and
 tag handler classes, default values
authenticate() method
authenticate.jsp
AuthenticateAction class
authentication
 access control, filters
 accessing web resources
 action classes
 application-controlled
 containers and
 databases
 elements
 filters
 form-based authentication
 HTTP basic authentication
 HTTP client authentication
 HTTP digest authentication
 logging out

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 message digests and
 personalized content and
 Tomcat server
 users
authentication.jsp page
authorization
autoFlush attribute, buffering and
automatic type conversions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

backslash (\)
base names
BEA WebLogic
beans [See JavaBeans]
bits, character representation by
body-content attribute, tag files
BodyContent class
BodyTag interface 2nd
 methods
BodyTagSupport class 2nd
book examples [See examples]
bookmarks
browsers
 redirecting 2nd
 URIs and
 View Source command
buffering
 autoFlush attribute
business logic

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Cache-Control header
caching
 preventing
 XML data
calculate.jsp page (internationalization application)
CallableStatement, JDBC
 stored procedures
CartBean (online shopping example)
case sensitivity, JSP directories and filenames
CATALINA_HOME environment variable
CatalogBean (online shopping example)
Caucho Technology Resin
centralized request processing, servlets
CERT advisory, cross site scripting attacks
CGI (Common Gateway Interface) compared to JSP
character entity codes, custom action conversion of
characters
 representation by bits
 URL encoding
charsets
 determining
classes directory
classic tag handler
CLASSPATH environment variable, servlets, compiling
client tier (Enterprise applications)
client-side code
 generating, clientscript.jsp
 mixing with server-side code
client/server architecture and the request/response model
clientscript.jsp page
coercion
ColdFusion
com.ora.jsp.beans.userinfo.UserInfoBean
comments
comments, JSP
compilation
 JavaBeans
 servlets
 tag handler classes
components, databases, application specific components
conditional custom actions, creating
ConditionalTagSupport class 2nd
confidentiality
config variable
configuration (filters), deployment descriptors
configuration files, Struts
configuration settings
 fallback locale
 locale
 localization context
 maximum rows
 time zone
configuration variables
 internationalization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setting
confirmation.jsp page (employee register application) 2nd
Connection instance, JDBC
connection pools
 application components and
 database access
 JDBC
 JNDI and
 optional packages
 scope variables
ConnectionPool class
Connections, JDBC
ConnectionWrapper class 2nd
containers 2nd
 authentication and
 syntax errors, reporting of
Content-Length headers
Content-Type headers
Content-Type response header
contentType attribute, hardcoding
context parameter value, database access
context path
context paths 2nd
context-relative paths 2nd
 converting to server-relative paths
 URIs
contextDestroyed() method 2nd
contextInitialized() method 2nd
Controller servlets
 dispatching requests to an action class 2nd
 invoking
 mapping application requests
Cookie object
cookies
 <ora:addCookie>
 creating, custom action example
 deleting
 multiple browser windows
 passwords and
 setting
CookieUtils class
country codes
cross site scripting attacks
cross-site scripting attacks
 custom action for protection against
currency values, formatting
custom action elements 2nd
custom actions 2nd 3rd 4th
 attribute values, converting from text to property type
 body, processing 2nd
 conditional, creating
 cooperating actions
 implicitly through variables
 parent-child cooperation
 scripting variables
 creating
 databases
 databases and
 elements 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 examples 2nd 3rd 4th
 I18N
 implementing 2nd
 iterating actions, creating
 iteration actions
 LoopTag interface 2nd
 naming of 2nd
 output processing
 processing output
 simple, creating
 syntax, validating
 tag files, compared to
 tag library actions, using
 validating syntax
 vs. JavaBeans
custom tag libraries
 declaring
 developing as tag files
 identifying in JSP1.1 containers
 installing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data privacy
data types
 automatic conversion
data-source configuration setting
database access, context parameter
databases
 access actions, configuration settings
 accessing
 actions 2nd
 columns
 drivers for
 inserting data
 JavaBeans
 authentication using
 components, application-specific
 custom actions
 date and time formatting
 deleting information
 employee register application
 tables
 entering information
 generic beans
 HTML tables, creating
 input, validating
 Microsoft Access
 MySQL
 numbers, converting from string values
 PostgreSQL
 query results, displaying
 query results, multipage
 displaying
 limiting row numbers
 memory considerations
 setting result set size
 relational
 primary keys
 search results, displaying
 searching feature
 TIMESTAMP columns
 transactions
 updating
dataSource attribute, accessing databases
DataSource class
 creating
DataSource interface
DataSourceFactory class
DataSourceWrapper class 2nd
date and number input form (localization example)
date and time formatting
 in databases
 internationalization
DateFormat class
DBCP connection tool implementation
debugging

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <ora:debug> custom action
 printing variable values
 Visual Age for Java debugging tool
declarations 2nd 3rd
 variables
 TagExtraInfo class
definitions, listeners
DELETE method
delete.jsp page (employee register application) 2nd
deleting
 cookies
 database information
deployment descriptors 2nd
 access control, configuring filters for
 request processing, mapping rules
destroy() method, HttpServlet class
device-dependent format transformation, XML
directive elements 2nd 3rd
doAfterBody() method
 IterationTag interface 2nd
 LoopTagSupport class
doCatch() method
 LoopTagSupport class
 TryCatchFinally interface
doEndTag() method 2nd 3rd
 Tag interface
doFilter() method
doFinally() method, TryCatchFinally interface
doGet() method, HttpServlet class
doInitBody() method, BodyTag interface
dollar sign-curly brace delimiter (${)
doPost() method, HttpServlet class
doStartTag() method
 IterationTag interface
 LoopTagSupport class
 resetting tag handler state
 Tag interface
doTag() method 2nd
 exceptions
DriverManager
drivers, database access
DSN (Data Source Name)
DTD (Document Type Definition), XML
dynamic content
 ASP (Active Server Pages), development using
 CGI, development using
 ColdFusion, development using
 data sources for
 JSP, development using
 PHP, development using
dynamic values, database access security risks
dynamic-attributes attribute
DynamicAttributes interface
dynamicscript.jsp

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

EIS (Enterprise Information System) tier
EJB (Enterprise JavaBeans)
 entity and session beans
 MVC design model applications, using in
 vs JavaBeans
EJB containers
EL (Expressioin Language)
 function calls
EL (Expression Language) 2nd 3rd
 arithmetic operators
 array accessor operators
 bean properties, accessing
 coercion rules
 data types
 dollar sign-curly brace delimiter (${)
 empty operator
 expressions
 implicit variables 2nd
 keywords
 literals
 logical operators
 operand coercion rules
 operators 2nd
 property operators
 relational operators
 reserved words
 supported data types
 syntax
 syntax errors
 types
 variables 2nd
elements
 custom actions
 syntax errors
 TLD
ELException class
ELParseException class
email addresses, validating
embedded HTML, problems with
embedded servlet containers
employee register application
 tables
EmployeeBean object
enter.jsp page (employee register application)
Enterprise JavaBeans [See EJB]
entity beans
environment variables, CLASSPATH for compiling servlets
error handling
 attribute names, typos in
 catching exceptions
 exception stack trace
 improperly terminated actions
 missing taglib directives
 runtime errors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 syntax errors
 EL syntax errors
 element syntax errors
 unterminated elements
error pages, modular applications
ErrorData class
errorData property
errorMsg request parameter
errorPage attribute
escape characters 2nd
event handling, JavaBeans
events, JavaBeans
exact match rule, request processing
examples
 installation
 Web application
exception handling, tag handlers
exception stack trace
exception variable 2nd
exceptions
 TryCatchFinally interface, implementing
executeQuery() method
executeUpdate() method
ExpressionEvaluator class
expressions 2nd 3rd
 request-time attribute value
extension rule, request processing
external files, accessing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

fallback locale
 configuration settings
fallback locale configuration setting
file extension, JSP pages
files
 configuration files, Struts
 external files, accessing
filters
 access control
 authentication
 configuration variables, setting
filters (servlets)
find.jsp page (employee registration application) 2nd
findAncestorWithClass() method
fn:contains
fn:containsIgnoreCase
fn:endsWith
fn:escapeXml
fn:indexOf
fn:join
fn:length
fn:replace
fn:split
fn:startsWith
fn:substring
fn:substringAfter
fn:substringBefore
fn:toLowerCase
fn:toUpperCase
fn:trim
<form> element
form-based authentication
forms
forwarding compared to redirection
fragments
 fragment attributes, processing 2nd
 navigation bar
 page fragments, including
FreeMarker template engines
FunctionInfo class
FunctionMapper interface

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Gefion Software LiteWebServer
generic database beans
generic utility classes
GET method
getConnection() argument, JDBC
getConnection() method 2nd
getContextRelativeURI() method
getCurrent() method
 LoopTag interface
 LoopTagSupport class
getHeader() method
getInitParameter() method
getLoopStatus() method
 LoopTag interface
 LoopTagSupport class
GETmethod
 POST method, compared to
getName() method
 HttpSessionBindingEvent class
getOutputStream() method
getParameter() method
 request parameters
getParameterMap() method
getParameterValues() method
 request parameters
getParent() method
getPathInfo() method 2nd
getRedirect() method
getRequestDispatcher() method
getRequestURI() method
getResourceAsStream() method 2nd
getServletContext() method
getServletPath() method
getSession() method
 HttpSessionBindingEvent class
getter methods
getter methods, JavaBeans
getWriter() method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hasNext() method, LoopTagSupport class
HEAD method
Hello World servlet
hidden fields, state tracking
hit counters, scope and data sharing
Host headers
HTML (Hypertext Markup Language)
 embedded, problems with
 form elements
 formatting of output
 HTML forms login page
 JSP, embedding of active elements using
 XML transformation
HTTP (HyperText Transport Protocol) 2nd
 basic authentication
 digest authentication
 request messages
 request/response model
 response messages
HttpJspPage interface
HTTPS client authentication
HttpServlet class
HttpServletRequest interface methods
HttpServletResponse interface methods
HttpSessionBindingListener interface
HyperText Transport Protocol [See HTTP]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

I18N custom actions
I18N formatting library
IBM Jikes compiler
IBM Visual Age for Java
IDE (Interactive Development Environments)
 for JSP, online listing
IDEs (Interactive Development Environments)
 debuggers
IIS (Internet Information Server) and authentication
implementation
 scriptlets
 Struts action classes
 tag handler classes
 TryCatchFinally interface
implicit cooperation, actions
 scripting variables
 variables
implicit objects, scripting elements
implicit variables
 coopeative actions
 servlet types accessible through
import attributes, page directives
importing packages
include directives
 page fragments
indexed properties, JavaBeans
init() method, HttpServlet class
initializing shared resources
input
 JavaBeans, capture using
 localization
 non-Western European
 validating 2nd
 using JavaBeans
 using JSTL actions
 security and
<input> element
input_nw.jsp (localization example)
INSERT statement
installating JavaBeans
installating servlets
instance variables
 thread safety
integrity checking
interfaces
 BodyTag
 DataSource
 HttpServletResponse, methods
 HttpSessionBindingListener
 IterationTag
 tag handler class for
 JDBC
 listeners
 JavaBeans

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LoopTag methods
 Servlet
 SimpleTag
 SQL statement processing
 Tag 2nd
 TryCatchFinally
 methods
internationalization [See also localization]2nd
 Accept-Language header
 actions
 configuration variables
 date and time formatting
 numbers, formatting
 sample application, overview
introspection, JavaBeans
Ironflare AB Orion Applica tion Server
ISO-8859 standards
iteration actions 2nd
 custom
 implementing
IterationTag interface 2nd
 methods
 tag handler for

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

j_security_check
j_security_check attribute
J2EE (Java 2 Enterprise Edition)
 APIs, capabilities of
 tiers
 Version 1.4 APIs
Jakarta
 Commons project
 Taglibs project
 Tomcat server [See Tomcat]
 web site
JAR files, TLDs
 multiple
Java applets
Java IDEs (Interactive Development Environments)
 debuggers
Java Introspection API
Java programmers
Java SDK (Software Development Kit)
 installation
Java servlets [See servlets]
JavaBeans
 <jsp:setProperty> action
 accessing
 classes
 compiling and installing
 components
 database access
 databases, generic beans
 event handling
 event listeners
 initializing
 listener interfaces
 multithreading
 naming conventions
 online shopping example
 overview
 package names
 parameter values, capturing
 populating
 properties
 setting
 runtime errors
 session events
 types of
 utility beans
 value beans
 vs Enterprise JavaBeans
 vs. custom actions
javax.servlet.http.HttpServletRequest class
javax.servlet.jsp.ErrorData class
JDBC (Java Database Connectivity) 2nd
 classes
 Connection instance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 connection pools
 optional packages
 Connections
 driver, directory
 getConnection() argument
 interfaces
 setter methods
 statement pooling
 statements
 stored procedures, CallableStatement
JDBC drivers 2nd
 URL
Jikes compiler
JMeter
JNDI (Java Naming and Directory Interface)
 database access
JRE (Java Runtime Environment)
JSP (JavaServer Pages) 2nd 3rd
 advantages
 compilation
 division of labor
 Java APIs, integration with
 APIs
 CGI compared to
 changes, Version 2.0 specification
 dynamic content development and
 MVC design model applications, using in
 required resources
JSP actions [See actions]
JSP comments 2nd
JSP containers [See containers]
JSP elements
directives)
JSP elements [See also (see also actions]2nd 3rd
 action elements
 directive elements
 scripting elements
JSP fragments
JSP pages
 caching, preventing
 creating
 debugging [See debugging]
 development tools
 HTML output formatting
 installing
 MVC model
 precompiling
 processing
 running
 structure
 tag files, declaration
 writing as XML documents
 XML editors, editing with
<jsp:getProperty>
<jsp:setProperty>
JspC (JSP Compiler) tool
JspContext class
jspDestroy() method
JspEngineInfo class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JspException class
JspFactory class
JspFragment class
jspInit() method
JspPage interface
JspTag interface
JspTagException class
JSTL (JSP Standard Tag Library) 2nd 3rd 4th
 action elements [See action elements]
 actions 2nd
 parameter values, accessing with
 runtime errors
 configuration settings
 database access actions
 default prefixes
 EL (Expression Language) functions
 internationalization and formatting actions
 JSTL 1.1 libraries, URIs and prefixes
 JSTL functions
 support and utility types
 URIs
 XML processing actions
JTA (Java Transaction API)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

keys
 relational databases
keys (Maps)
keys (resource bundle files)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

language attribute, page directives
language codes
Last-Modified headers
lib directory
libraries
 I18N formatting
 tag
 setting configuration variables
lifecycles of servlets
LIKE operator (SELECT statement)
Linux
 PATH environment variable
 Tomcat server installation
list.jsp page (employee register application)
listener interfaces, JavaBeans
listeners
 defining
 JavaBeans
 servlets
 shared resources, initializing
 tag libraries, bundling with
ListResourceBundle class
literals
 strings, SQL statements
load-testing web applications
local variables
Locale class
locales
 configuration settings 2nd
 number formatting
LocaleSupport class
localization [See also internationalization]2nd
 Accept-Language header
 default language
 language selection, allowing
 non-Western European input
 numbers, formatting
 resources
 sample application, overview
 text
 user input
 using separate pages per locale
localization context configuration settings 2nd
LocalizationContext class
logging out, authentication and
login page, HTML forms and
login.jsp page 2nd
 Project Billboard application
longest path prefix rule, request processing
looping, custom iterating actions
LoopTag interface
 methods
LoopTagStatus interface
LoopTagSupport class 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LoopTagSupport class 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Mac OS X, Tomcat server installation
Macromedia
main.jsp page
 EmployeeBean object and
 Project Billboard application
Maps and keys
maximum rows configuration setting 2nd
maxRows attribute
Meerkat news feed
memory
 database query results, keeping in
 release() method
 usage considerations, scope and
message digests
MessageFormat class
method attribute, requests
methods
 BodyTag interface
 configuration variables
 custom iteration actions
 HttpServletRequest interface
 HttpServletResponse interface
 IterationTag interface
 JDBC setter methods
 JSP servlets
 LoopTag interface
 servlets
 setter, SQLCommandBean property
 Tag interface 2nd
 TryCatchFinally interface
Microsoft Access
middle tier (Enterprise applications)
milestone builds
Minq Software PureLoad
Model-View-Controller [See MVC]
modular applications
 access control
 common error page
 Controller servlet, invoking
 servlets, centralized request processing
 shared resources, initializing
multithreading
 JavaBeans
 variables and
multivalue properties, JavaBeans
multivalue request parameters
MVC (Model-View-Controller) design model 2nd 3rd
 control, passing from one page to another
 data, passing from one page to another 2nd
 overview
 using EJB, servlets, and JSP
 using Jsp
 using servlets and JSP
MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

named fragments
names, configuration settings
naming conventions, JavaBeans
navigation bar fragments
New Atlanta ServletExec
NewsBean, personalized content and
NewsItemBean object
next() method, LoopTagSupport class
nightly builds
non-Western European input handling (localization)
nonces
number formatting
 online shopping example
numbers
 converting from string values, databases
numbers formatting
 internationalization
 localization

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

online shopping example
 main page code
 number formatting
 redirection compared to forwarding
 request parameters
 request processing example
OPTIONS method
out variable 2nd
output formatting
output processing, custom actions

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

package names, JavaBeans
packages, importing
page authors
page directives 2nd
 attributes
 error page definitions
 scripting attributes 2nd
 tag files and
page fragments, including
page hit counters, scope and data sharing
page processing, aborting
page scope
 tag files and
page variable
page-relative paths 2nd
 URIs
PageContext instance
pageContext variable
PageData class
pageEncoding attribute
param variable
 <c:out> and
parameters
 URL encoding, special characters
 values, capturing with beans
 values, validating in databases
ParamTag class, parent-child cooperation example
paramValues variable 2nd
parent-child cooperation between actions
parsing
 dates, localization
 numbers, localization
passwords, cookies and
PATH environment variable
paths
 context paths
 context-relative paths
 page-relative paths
perform() method, authentication action class
PermittedTaglibsTLV class
persistence, JavaBeans
personalization
personalized content
 NewsBean and
PHP
PKC (Public Key Certificate)
plug-ins
poll.jsp page (internationalization application) 2nd
port 80
POST method
 parameters, valid sessions
 updateprofile.jsp page
POST rmethod
 GET method, compared to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL
Pragma header
precompilation
precompiling JSP pages
prepare() method, LoopTagSupport class
PreparedStatement, JDBC
presentation
primary keys
process.jsp page (localization example)
process_nw.jsp page (localization example)
processActionForward() method
processPath() method
ProductBean (online shopping example)
Project Billboard application
 access control
 common error page
 component types
 Controller servlet
 servlets, centralized request processing
 shared resources, initializing
properties
 JavaBeans 2nd
 getter and setter methods
property accessor operator
property editors
PropertyResourceBundle class
PureLoad
PUT method

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

query results

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

redirection
 compared to forwarding
relational databases [See also databases]2nd
 primary keys
relative paths, URIs
release builds
release() method
request messages
request parameters
 getParameter() method
 getParameterValues() method
 online shopping example
request processing
 centralized, servlets
 dispatching to action class
 servlets
 mapping to
 Struts 2nd 3rd
request processing page, online shopping example
request processing phase
request property
request scope
request variable 2nd
request-time attribute values 2nd 3rd
request/response model, HTTP
RequestDispatcher class
requests 2nd
 methods
 parameters
 reading
resource
resource bundle files
ResourceBundle class
resources
 localization
 shared, initializing
 tag handlers, retaining
 web resources, authentication
response headers
response variable 2nd
responses 2nd
 generating
 XML, generating
Result interface
Result properties, rowCount
result.jsp page (internationalization application)
ResultSupport class
rowCount property
rtexprvalue
runtime errors

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

scalability
scope
 memory usage considerations
 variables
 connection pools and
scoped variables
 accessing
 compared to scripting variables
ScriptFreeTLV class
scripting
 code, scoped variable access
 syntax error examples
 syntax error handling
scripting elements 2nd 3rd
 declarations 2nd
 expressions 2nd
 page directive attributes
 scriptlets 2nd
 types of
scripting objects
scripting variables compared to scoped variables
scriptlets 2nd
 implementing
search.html (database application)
search.html page (employee register application)
searching databases 2nd
security
 access control, filters
 constraints, definition
 database access risks
 validation and
SELECT statements (SQL)
sendCookie() method, CookieUtils class 2nd
sendError() method 2nd
sendRedirect() method
server-relative paths, converting to context-relative paths
server-side code, mixing with client side
server-side data in code
servers, Controller
Servlet API
servlet contexts
Servlet interface
servlets 2nd
 advantages
 centralized request processing
 compiling
 configuration variables, setting
 context paths
 data sharing among application components
 filters
 Hello World
 installing
 JSP methods
 JSP page implementation class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 lifecycle
 listeners
 MVC design model applications, using in
 problems with
 request processing
 dispatching to action classes
 mapping to
 Struts
 requests, reading
 responses, generating
 servlet containers
 servlet contexts
 Struts
 implementing action classes
 request processing
 template engines
 thread safety
 typical servlet class
session beans
session events, JavaBeans
session IDs, URL rewriting
session scope 2nd
 memory usage considerations
 page hit counters
session tracking, multiple browser windows
session variable 2nd
sessions
 starting and stopping
 state, tracking
 terminating
 valid, checking for
setBodyContent() method
setContentType() method
setDateHeader() method
setLoginCookies() method
setPageContext() method
 Tag interface
setParent() method
setPath() method
setter methods
 JavaBeans
 JDBC
setting cookies
setValues() method
sharing data
 <jsp:forward> action
 among application components
 application scope
 session scope
SimpleLoopTag class
SimpleTag interface
SimpleTagSupport class
single-value properties, JavaBeans
SkipPageException class
special characters
 URL encoding
SQL (Structured Query Language)
 INSERT statement
 processing, classes and interfaces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SELECT statement
 LIKE operator
 string literals
 transaction processing
 wildcard characters
SQLCommandBean class 2nd
SQLCommandBean property setter methods
SQLException
SQLExecutionTag interface
SSL (Secure Socket Layer)
SSL-based session tracking
standalone servers
standard action elements
standard actions
startRow attribute
stateless protocols
statement pooling, JDBC
statements
 JDBC
static content, include files
store.jsp page (employee register application) 2nd
stored procedures, CallableStatement, JDBC
StringFormat class
strings
 literals, SQL statements
 nonces
Struts
 action classes, implementing
 advantages
 application requests
 dispatching to action class
 mapping
 configuration file
 JAR file for Struts classes
 request processing
syntax
 validating, custom actions
syntax errors 2nd [See also Tomcat, error reporting]
 EL syntax errors
 element syntax errors
 scripting
 handling

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tables
 employee register application
 HTML, creating
tag directive
tag extension mechanism
tag files 2nd
 accessing attribute values using
 body-content attribute
 custom actions for body content transformation
 data, exposure through variables
 directory
 JAR files, packaging in
 JSP pages, declaration in
 packaging for reuse
 undeclared attributes, using
 web application structure, placement in
tag handlers
 classic tag handler
 exception handling
 state, resetting 2nd
 tag handler classes 2nd
 conditional actions
 implementing
 lifecycle
 optional attributes, default values for
 output stream handling
 resources, retaining
 tag handler types
 TLD, creating
Tag interface 2nd
 methods 2nd
tag libraries 2nd
 configuration variables, setting
 generic validators
 listeners, bundling
tag scope
TagAdapter class
TagAttributeInfo instance
TagData instance
tagdir attribute
TagExtraInfo class
 custom action syntax, validating
 declaring variables
TagFileInfo class
TagInfo instance
taglib directives 2nd 3rd 4th
 internationalization application
 missing directives
TagLibraryInfo instance
TagLibraryValidator class 2nd
 custom action syntax, validating
taglibs
 Jakarta Taglibs project
TagSupport class 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TagVariableInfo instance
target page, MVC model
template engines
template text 2nd
thread safety, servlets
time and date formatting
 databases
 internationalization
time zone settings 2nd 3rd
TIMESTAMP columns, databases
TLDs (Tag Library Descriptors) 2nd 3rd
 creating
 custom action syntax, validating
 elements
 JAR files
 multiple libraries
 PermittedTaglibsTLV validator
 ScriptFreeTLV validator
 source code
 Version 1.1 compared to Version 1.2
Tomcat
 authentication and
 binary distribution, download web site
 error reporting
 EL syntax
 missing curly braces
 missing end curly brace
 misspelled property names
 syntax errors
 implementation class storage
 installation directories
 JspC tool
 Server Configuration Reference
 server installation
 Unix, Linux and Mac OS X
 Windows
 testing
 proxy settings, adjustment
 Version 5
 version builds
TRACE method
transactions
translation phase
translation time types
TryCatchFinally interface 2nd 3rd
 methods
typos [See syntax errors]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Unicode
Uniform Resource Identifiers [See URIs]
Uniform Resource Names [See URNs]
Unix
 PATH environment variable
 Tomcat server installation
updateprofile.jsp page 2nd
updating databases
URIs (Uniform Resource Identifiers)
 access control with
 interpreting
URLs (Uniform Resource Identifiers)
URLs (Uniform Resource Locators)
 encoding of special characters
 encoding, session tracking
 JDBC drivers
 Uniform Resource Locators [See URLs]
 URL rewriting
 multiple browser windows
 session IDs
 URL-encoding
URNs (Uniform Resource Names) 2nd
user authentication
 <ora:ifUserInRole> action
 form-based authentication
 HTTP basic authentication 2nd
 HTTPS client authentication
 list.jsp code
 personalized content
User Info application, parts of
user input
 databases, validating
 JavaBeans, capture using
 localization
 non-Western European input
 handling
 validating
 validation
 using JSTL actions
 using JavaBeans
 security and
User-Agent headers
userinfoinput.jsp page
usernames, cookies and
utility beans 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

valid sessions, checking for
validate.jsp page (employee registration application) 2nd
validation
 database input
 user input
validation object
validation page
ValidationMessage instance
validators, tag libraries
value beans 2nd
valueBound() method
valueUnbound() method
var attribute, accessing databases
variable directive
VariableInfo instance
VariableResolver interface
variables
 application
 CLASSPATH environment, compiling servlets
 configuration
 internationalization
 setting
 declaring
 TagExtraInfo class
 exception
 export of data to pages using
 implicit variables [See implicit variables]
 instances, thread safety
 JavaBeans, accessing
 out
 pageContext
 request
 response
 scope variables, connection pools
 scripting, cooperative actions
 session
Velocity template engine
VeriSign
View Source command, browsers
Visual Age for Java

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

WARs (Web Application Archives) 2nd 3rd
 creating files
Web Application Archives [See WARs]
web applications 2nd
 access control 2nd
 centralized request processing
 common error pages
 components, sharing data among
 context paths 2nd
 databases and
 databases, custom actions
 deployment descriptors
 example
 design models
 scalability
 design, importance of
 directory structure
 tag files placement in
 distributable
 marking as
 employee register database
 tables
 file structure
 HTTP and
 initializing shared resources
 internationalization
 invoking Controller servlets
 J2EE (Java 2 Enterprise Edition) design model
 JSP, developing with
 load-testing
 MVC (Model-View-Controller) design model 2nd
 using EJB, servlets, and JSP
 using JSP
 using servlets and JSP
 Project Billboard, selecting component types
 security
 separating functions of
 servlet context and
 Tomcat, installation using
 typical structure
 URI path prefix
 XML and
 XML application
 XSLT and
web containers 2nd 3rd
 differences between
 DSNs and
 error reporting by
 example code and
 inclusion in IDEs
 Java Virtual Machines and
 JNDI support
 JSTL support
 load balancing modules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 locale information and the pageContext object
 memory demands of
 servlet lifecycles and
 tag files and
 tiers and
web resources, access authentication
web sites
 charsets (ISO-8859)
 country codes (ISO 3166)
 J2EE Blueprint papers
 JDBC drivers
 language codes (ISO 639)
 Unicode
WEB-INF directory 2nd
 case sensitivity
web.xml
Windows
 PATH environment variable, setting
 Tomcat server installation
 "Out of environment space" message
WML (Wireless Markup Language)
WML phone book JSP page code
wrapper classes

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML (Extensible Markup Language)
 applications
 authentication and
 caching and
 data processing
 declarations
 device-dependent format transformation
 documents, writing JSP pages as
 DTDs
 responses, generating
 transforming to HTML
XPath expressions
XSL (Extensible Stylesheet Language)
XSLT (Extensible Stylesheet Language Transformations)
 HTML table generation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

