This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I e = # |

° Errata
. Academic
Java Threads, Third Edition

By Scott Oaks, Henry Wong

Publisher: O'Reilly

Pub Date: September 2004
ISBN: 0-596-00782-5
Pages: 360

Threads are essential to Java programming, but learning to use them effectively is a nontrivial task. This new edition of
the classic Java Threads shows you how to take full advantage of Java's threading facilities and brings you up-to-date
with the watershed changes in Java 2 Standard Edition version 5.0 (J2SE 5.0). It provides a thorough, step-by-step
approach to threads programming.

< Day Day Up > HEST |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= |
< Day Day Up > HEST o |

° Errata
. Academic
Java Threads, Third Edition

By Scott Oaks, Henry Wong

Publisher: O'Reilly

Pub Date: September 2004
ISBN: 0-596-00782-5
Pages: 360

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Qartinn 11 2 Tha iava iitil Timar Clace

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

- = |
| FEEY < Day Day Up > HEST o |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[eemey T T T = % |

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
Java Threads, the image of a marine invertebrate, and related trade dress are trademarks of O'Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in
the United States and other countries. O'Reilly Media, Inc. is independent of Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no

reseon5|bll| y for errors or omissions, or for damages resulting from the use of the information contained herein.
[_# FREW < Day Day Up > HEAT il J

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eemey T T T = % |

Preface

When Sun Microsystems released the alpha version of Java® in the winter of 1995, developers all over the world took
notice. There were many features of Java that attracted these developers, not the least of which were the set of
buzzwords Sun used to promote the language. Java was, among other things, robust, safe, architecture-neutral,
portable, object-oriented, simple, and multithreaded. For many developers, these last two buzzwords seemed
contradictory: how could a language that is multithreaded be simple?

It turns out that Java's threading system is simple, at least relative to other threading systems. This simplicity makes
Java's threading system easy to learn so that even developers who are unfamiliar with threads can pick up the basics of
thread programming with relative ease.

In early versions of Java, this simplicity came with tradeoffs; some of the advanced features that are found in other
threading systems were not available in Java. Java 2 Standard Edition Version 5.0 (J2SE 5.0) changes all of that; it
provides a large number of new thread-related classes that make the task of writing multithreaded programs that much
easier.

Still, programming with threads remains a complex task. This book shows you how to use the threading tools in Java to
perform the basic tasks of threaded programming and how to extend them to perform more advanced tasks for more

complex programs. .
“ere T T T T %

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

TSR 0200 <owypayu> ey
Who Should Read This Book?

This book is intended for programmers of all levels who need to learn to use threads within Java programs. This
includes developers who have previously used Java and written threaded programs; J2SE 5.0 includes a wealth of new
thread-related classes and features. Therefore, even if you've written a threaded program in Java, this book can help
you to exploit new features of Java to write even more effective programs.

The first few chapters of the book deal with the issues of threaded programming in Java, starting at a basic level; no
assumption is made that the developer has had any experience in threaded programming. As the chapters progress,
the material becomes more advanced, in terms of both the information presented and the experience of the developer
that the material assumes. For developers who are new to threaded programming, this sequence should provide a
natural progression of the topic.

This book is ideally suited to developers targeting the second wave of Java programs—more complex programs that
fully exploit the power of Java's threading system. We make the assumption that readers of the book are familiar with
Java's syntax and features. In a few areas, we present complex programs that depend on knowledge of other Java
features: AWT, Swing, NIO, and so on. However, the basic principles we present should be understandable by anyone
with a basic knowledge of Java. We've found that books that deal with these other APIs tend to give short shrift to how
multiple threads can fully utilize these features of Java (though doubtless the reverse is true; we make no attempt to
explain nonthread-related Java APIs).

Though the material presented in this book does not assume any prior knowledge of threads, it does assume that the

reader has knowledge of other areas of the Java API and can write simple Java programs. .
[_ﬁ FREW < Day Day Up > HEST i |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

=R 00 0 <oaybyw> ey
Versions Used in This Book

Writing @ book on Java in the age of Internet time is hard—the sand on which we're standing is constantly shifting. But
we've drawn a line in that sand, and the line we've drawn is at the Java 2 Standard Edition (J2SE) Version 5.0 from Sun
Microsystems. This software was previously known as J2SE Version 1.5.

It's likely that versions of Java that postdate this version will contain some changes to the threading system not
discussed in this edition of the book. We will also point out the differences between J2SE 5.0 and previous versions of
Java as we go so that developers using earlier releases of Java will also be able to use this book.

Most of the new threading features in J2SE 5.0 are available (with different APIs) from third-parties for earlier versions
of Java (including classes we developed in earlier editions of this book). Therefore, even if you're not using J2SE 5.0,

ou'll get full benefit from the topics covered in this book. -
r i— < Day Day Up > HEST o |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[arrey WEST W |
What's New in This Edition?

This edition includes information about J2SE 5.0. One of the most significant changes in J2SE 5.0 is the inclusion of Java
Specification Request (JSR) 166, often referred to as the "concurrency utilities." JSR-166 specifies a number of thread-
related enhancements to existing APIs as well as providing a large package of new APIs.

These new APIs include:

Atomic variables

A set of classes that provide threadsafe operations without synchronization

Explicit locks

Synchronization locks that can be acquired and released programmatically

Condition variables

Variables that can be the subject of a targeted notification when certain conditions exist

Queues

Collection classes that are thread-aware

Synchronization primitives

New classes that perform complex types of synchronization

Thread pools

Classes that can manage a pool of threads to run certain tasks

Thread schedulers
Classes that can execute tasks at a particular point in time

We've fully integrated the new features of J2SE 5.0 throughout the text of this edition. The new features can be split
into three categories:

New implementations of existing features

The Java language has always had the capability to perform data synchronization and thread notification.
However, implementation of these features was somewhat limited; you could, for example, synchronize blocks
of code or entire methods but synchronizing across methods and classes required extra programming. In J2SE
5.0, explicit locks and condition variables allow you more flexibility when using these features.

These new implementations do not introduce new concepts for a developer. A developer who wants to write a
threadsafe program must ensure that her data is correctly synchronized, whether she uses J2SE 5.0's explicit
locks or the more basic synchronized keyword. Therefore, both are presented together when we talk about data
synchronization. The same is true of condition variables, which provide thread notification and are discussed
alongside Java's wait() and notify() methods, and of queues, which are discussed along with Java's other
collection classes.

Important thread utilities

At some point in time, virtually all developers who write threaded programs will need to use basic thread
utilities such as a pool or a scheduler; many of them will also need to use advanced synchronization primitives.
A recognition of this fact is one thing that drove JSR-166—it was certainly possible in previous versions of Java
to develop your own thread pools and schedulers. But given the importance of threading in the Java platform,
adding these basic utilities greatly increases programmer productivity.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Minimal synchronization utilities

Java's new atomic classes provide a means by which developers can, when necessary, write applications that
avoid synchronization. This can lead to programs that are highly concurrent.

If you've read previous editions of this book, the concepts presented in the first two categories will be familiar. In
previous editions, we developed our own data synchronization classes, thread pools, and so on. In those editions, we
explained in detail how our implementations worked and then used them in several examples. In this edition, we focus
solely on how to use these classes effectively.

The information that falls into the third category is completely new to this edition. The classes that perform minimal
synchronization require new support from the virtual machine itself and could not be developed independent of those

changes.

e ____ <omomwe =

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[awrmev =3

Organization of This Book

Here's an outline of the book, which includes 15 chapters and 1 appendix:

Chapter 1

This chapter forms a basic introduction to the topic of threads: why they are useful and our approach to
discussing them.

Chapter 2

This chapter shows you how to create threads and runnable objects while explaining the basic principles of how
threads work.

Chapter 3

This chapter discusses the basic level at which threads share data safely—coordinating which thread is allowed
to access data at any time. Sharing data between threads is the underlying topic of our next four chapters.

Chapter 4

This chapter discusses the basic technique threads use to communicate with each other when they have
changed data. This allows threads to respond to data changes instead of polling for such changes.

Chapter 5

This chapter discusses classes and programming methods that achieve data safety while using a minimal
amount of synchronization.

Chapter 6

In this chapter, we complete our examination of data sharing and synchronization with an examination of
deadlock, starvation, and miscellaneous locking classes.

Chapter 7

Swing classes are not threadsafe. This chapter discusses how multithreaded programs can take full advantage
of Swing.

Chapter 8

Java collection classes are written for a variety of circumstances. Some are threadsafe and some are not, and
J2SE 5.0 introduces new collection classes for use specifically with thread utilities. We sort all that out in this
chapter.

Chapter 9

Scheduling is the process whereby a single CPU selects a thread to run. Thread scheduling is more a property of
an operating system (OS) than a Java program, and this chapter discusses the relationship between the virtual
machine and the OS in this area.

Chapter 10

This chapter discusses thread pools—a collection of threads that can be used to run arbitrary tasks. We use the
thread pool implementation of J2SE 5.0 for discussion of the general principles of using thread pools.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 11

Task schedulers execute a task one or more times at some point in the future. This set of classes includes
timers (Java has had timer classes since JDK 1.3) and a general task scheduler available in J2SE 5.0.

Chapter 12

Dealing with I/O is one of the primary reasons why developers use threads in Java. In this chapter, we use all
of Java's threading features to show you how to handle I/0O effectively in multithreaded programs.

Chapter 13

In this chapter, we complete our examination of thread-related features of Java by examining thread security,
thread groups, thread stacks, and other topics.

Chapter 14

Performance of thread-related features—and particularly synchronization constructs—is key to writing
multithreaded programs. In this chapter, we test various low-level programming features and explore some
truths and myths about thread performance.

Chapter 15

In this chapter, we show a process for exploiting the power of multiprocessor machines to calculate CPU-
intensive loops in parallel.

Appendix A
J2SE 5.0 introduces a number of thread-related classes. Many of these classes are similar to classes developed

in previous editions of this book; we list those classes in this appendix as an aid to developers who cannot yet
upgrade to J2SE 5.0.

[awrrew HET

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e T T T S

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates URLs and filenames, and is used to introduce new terms. Sometimes we explain thread features using
a question-and-answer format. Questions posed by the reader are rendered in italic.

Constant width

Indicates code examples, methods, variables, parameters, and keywords within the text.

Constant width bold

Indicates user input, such as commands that you type on the command line.

. <omomw-____________ =

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eemey T T T = % |

Code Examples

All examples presented in the book are complete, running applications. However, many of the program listings are
shortened because of space and readability considerations. The full examples may be retrieved online from

http://www.oreilly.com/catalog/jthreads3.

This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Java Threads, Third Edition, by Scott Oaks and Henry Wong. Copyright 2004 O'Reilly Media, 0-596-00782-
5."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at

—

< Day Day Up > HEST il |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eemey T T T = % |

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

O'Reilly maintains a web page for this book, where we list errata, examples, and any additional information. You can
access this page at:

.) loa/i 3
To comment or ask technical questions about this book, send email to:
|) . i

For more information about O'Reilly books, conferences, Resource Centers, and the O'Reilly Network, see our web site
at:

http://www.oreilly.com

i FrEY < Day Day Up > HEST |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eemey T T T = % |

Safari Enabled

e e e

BOOKE OMLIME

EHABLED

When you see the Safari® Enabled icon on the back cover of your favorite technology book, that means the book is
available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
technology books, cut and paste code samples, download chapters, and find quick answers when you need the most

accurate, current information.

Trx it for free at h
[_ﬁ FREW

—

HEST i |

< Day Day Up >

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« T T -+ |
Acknowledgments

As readers of prefaces are well aware, writing a book is never an effort undertaken solely by the authors who get all the
credit on the cover. We are deeply indebted to the following people for their help and encouragement: Michael
Loukides, who believed us when we said that this was an important topic and who shepherded us through the creative
process; David Flanagan, for valuable feedback on the drafts; Deb Cameron, for editing sometimes rambling text into
coherency; Hong Zhang, for helping us with Windows threading issues; and Reynold Jabbour, Wendy Talmont, Steve
Wilson, and Tim Cramer for supporting us in our work over the past six years.

Mostly, we must thank our respective families. To James, who gave Scott the support and encouragement necessary to
see this book through (and to cope with his continual state of distraction), and to Nini, who knew to leave Henry alone
for the ten percent of the time when he was creative, and encouraged him the rest of the time—thank you for
everything!

Finally, we must thank the many readers of the earlier editions of this book who sent us invaluable feedback. We have

tried our best to answer every concern that they have raised. Keep those cards and letters coming! .
[_ﬁ FREW < Day Day Up > HEST i |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eemey T T T = % |

Chapter 1. Introduction to Threads

This is a book about using threads in the Java programming language and the Java virtual machine. The topic of
threads is very important in Java—so important that many features of the threading system are built into the Java
language itself while other features of the threading system are required by the Java virtual machine. Threading is an
integral part of using Java.

The concept of threads is not a new one: for some time, many operating systems have had libraries that provide the C
programmer a mechanism to create threads. Other languages, such as Ada, have support for threads embedded into
the language, much as support for threads is built into the Java language. Nonetheless, until Java came along, the topic
of threads was usually considered a peripheral programming topic, one that was only needed in special programming
cases.

With Java, things are different: it is impossible to write any but the simplest Java program without introducing the topic
of threads. And the popularity of Java ensures that many developers, who might never have considered learning about
threading possibilities in a language such as C or C++, need to become fluent in threaded programming.

Futhermore, the Java platform has matured throughout the years. In Java 2 Standard Edition Version 5.0 (J2SE 5.0),
the classes available for thread-related programming rival many professional threading packages, mitigating the need
to use any commercial library (as was somewhat common in previous releases of Java). So Java developers not only
need to become knowledgeable in threaded programming to write basic applications but will want to learn the complete,

rich set of classes available for writing complex, commercial-grade applications. .
[_* FREW < Day Day Up > HEST i |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[
I

[eemey T T T = % |

1.1 Java Terms

Let's start by defining some terms used throughout this book. Many Java-related terms are used inconsistently in
various sources; we endeavor to be consistent in our usage of these terms throughout the book.

Java

First, is the term Java itself. As you know, Java started out as a programming language, and many people today
still think of Java as being simply a programming language. But Java is much more than just a programming
language: it's also an API specification and a virtual machine specification. So when we say Java, we mean the
entire Java platform: the programming language, its APIs, and a virtual machine specification that, taken
together, define an entire programming and runtime environment. Often when we say Java, it's clear from the
context that we're talking specifically about the programming language, or parts of the Java API, or the virtual
machine. The point to remember is that the threading features we discuss in this book derive their properties
from all the components of the Java platform taken as a whole. While it's possible to take the Java
programming language, directly compile it into assembly code, and run it outside of the virtual machine, such
an executable may not necessarily behave the same as the programs we describe in this book.

Virtual machine, interpreters, and browsers

The Java virtual machine is the code that actually runs a Java program. Its purpose is to interpret the
intermediate bytecodes that Java programs are compiled into; the virtual machine is sometimes called the Java
interpreter. However, modern virtual machines usually compile the majority of the code they run into native
instructions as the program is executing; the result is that the virtual machine does little actual interpretation of
code.

Browsers such as Mozilla, Netscape Navigator, Opera, and Internet Explorer all have the capability to run
certain Java programs (applets). Historically, these browsers had an embedded virtual machine; today, the
standard Java virtual machine runs as a plug-in to these browsers. That means that the threading details of
Java-capable browsers are essentially identical to those of a standard Java virtual machine. The one significant
area of difference lies in some of the default thread security settings for browsers (see Chapter 13).

Virtual machine implementations are available from many different vendors and for many different operating
systems. For the most part, virtual machines are indistinguishable—at least in theory. However, because
threads are tied to the operating system on which they run, platform-specific differences in thread behavior do
crop up. These differences are important in relatively few circumstances, and we discuss them in Chapter 9.

Programs, applications, applets, and other code

This leads us to the terms that we use for things written in the Java language. Like traditional programming
models, Java supports the idea of a standalone application, which in the case of Java is run from the command
line (or through a desktop chooser or icon). The popularity of Java has led to the creation of many new types of
Java-enabled containers that run pieces of Java code called components. Web server containers allow you to
write components (servlets and Java Server Page or JSP classes) that run inside the web server. Java-enabled
browsers allow you to write applets: classes that run inside the Java plug-in. Java 2 Enterprise Edition (J2EE)
application servers execute Enterprise Java Beans (EJBs), servlets, JSPs, and so on. Even databases now
provide the ability to use server-side Java components.

As far as Java threads are concerned, the distinction between the different types of containers is usually only
the location of the objects to be executed. Certain containers place restrictions on threaded operations (which
we discuss in Chapter 13), and in that case, we discuss specific components. Apart from the rare case where we
specifically mention a type of component, we just use the term program since the concepts discussed apply to
all of the Java code you might write.

Concurrency and threads

J2SE 5.0 includes a package known as the "concurrency utilities," or JSR-166. Concurrency is a broad term. It
includes the ability to perform multiple tasks at the same time; we generally refer to that ability as parallelism.
As we'll see throughout this book, threaded programming is about more than parallelism: it's also about simpler
program design and coping with certain implementation features of the Java platform. The features of Java
(including those of JSR-166) help us with these tasks as well.

Concurrency also includes the ability to access data at the same time in two or more threads. These are issues
of data synchronization, which is the term we use when discussing those aspects of concurrency.

1.1.1 Java Versions, Tools, and Code

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We also need to be concerned with specific versions of Java itself. This is an artifact of the popularity of Java, which has
led to several major enhancements in the platform. Each version supplements the thread-related classes available to
developers, allowing them to work with new features or no longer to rely on externally developed classes.

We focus in this book on J2SE 5.0.[1] This version contains a wealth of new thread-related classes and features. These
classes greatly simplify much of the work in developing threaded applications since they provide basic implementations
of common threading paradigms.

[1] Note the version number change or perhaps we should say leap. The predecessor to J2SE 5.0 was J2SE 1.4. In
beta, J2SE 5.0 was also known as J2SE 1.5. In this book, we refer to earlier versions using the more commonly
used phrase JDK 1.x rather than J2SE 1.x.

The new features of J2SE 5.0 are integrated throughout the Java platform; we've integrated the new features
throughout our discussion as well. When we discuss J2SE 5.0, we clearly identify the new features as such. If you're
unable to use those features because you cannot yet upgrade the version of Java you're using, you'll find similar
functionality to almost all J2SE 5.0 features in the classes provided in the Appendix A, which contains implementations
of common threading utilities that were developed in previous versions of this book; these utilities use an earlier
version of Java.

All Things Just Keep Getting Better

It's interesting to note the differences between this edition of Java Threads and the previous editions. In
earlier editions of this book, we developed classes to perform explicit locks, condition variables, thread
pooling, task scheduling, and so on. All that functionality and more is now included in the core J2SE 5.0
platform. In Chapter 14, we look at thread performance; the performance of basic thread-related
operations (and especially uncontended lock acquisition) has greatly improved since we first looked at
this in JDK 1.1. And in order to obtain meaningful, long-running results for our parallelism tests in
Chapter 15, we had to increase the number of calculations by a significant factor.

-
[amrrew HET |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rew =
1.2 About the Examples

Full code to run all the examples in this book can be downloaded from http://www.oreilly.com/catalog/jthreads3.

Code is organized by packages in terms of chapter number and example number. Within a chapter, certain classes
apply to all examples and are in the chapter-related package (e.g., package javathreads.examples.ch02). The remaining
classes are in an example-specific package (e.g., package javathreads.examples.ch02.examplel). Package names are shown
within the text for all classes.

Examples within a chapter (and often between chapters) tend to be iterative, each one building on the classes of
previous examples. Within the text, we use ellipses in code samples to indicate that the code is unchanged from
previous examples. For instance, consider this partial example from Chapter 2:

package javathreads.examples.ch02.example2;
public class SwingTypeTester extends JFrame {
private JButton stopButton;
private void initComponents() {

stopButton = new JButton();

The package name tells us that this is the second example in Chapter 2. Following the ellipses, we see that there is a
new instance variable (stopButton) and some new code added to the initComponents() method.

For reference purposes, we list the examples and their main class at the end of each chapter.

1.2.1 Compiling and Running the Examples

The code examples are written to be compiled and run on J2SE 5.0. We use several new classes of J2SE 5.0 throughout
the examples and occasionally use new language features of J2SE 5.0 as well. This means that classes must be
compiled with a -source argument:

piccolo% java -source 1.5 javathreads/examples/ch02/examplel/*.java

While the -source argument is not needed for a great many of our examples, we always use it for consistency.
Running the examples requires using the entire package name for the main class:

piccolo% java javathreads.examples.ch02.examplel.SwingTypeTester

It is always possible to run each example in this fashion: first compile all the files in the example directory and then run
the specific class. This can lead to a lot of typing. To make this easier, we've also supplied an Ant build file that can be
used to compile and run all examples.

Ant

On its home page, http://ant.apache.org, the authors describe Ant as "a Java-based build tool. In theory,
it is kind of like Make, but without Make's wrinkles." Because it's written in Java, it is portable; its design
makes it extensible as well.

To use Ant, you must download it from http://ant.apache.org/. Unzip the downloaded archive, and add
the ant binary directory to your path.

You don't need to know anything about how ant works in order to use it for our examples, but if you're

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| planning on doing serious Java development, learning about ant is well worth the (rather minimal) effort.

The ant build file we supply has a target for each example that you can run; these targets are named by chapter and
example number. For instance, to run the first example from Chapter 2, you can execute this command:

piccolo% ant ch2-ex1

The ant target for each example is also listed at the end of each chapter. Some examples require a command-line
argument. When using ant, these arguments have a default value (specified in the build.xml file) and can be overridden
on the command line. For example, to specify the number of threads for a particular example in Chapter 5, you can run
the example like this:

piccolo% ant -DCalcThreadCount=5 ch5-ex4

The properties and their defaults are listed at the end of the chapter, like this:

<property name="CalcThreadCount" value="10"/>

e ___ <omomw-_ =

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[
I

[eemey T T T = % |

1.3 Why Threads?

The notion of threading is so ingrained in Java that it's almost impossible to write even the simplest programs in Java
without creating and using threads. And many of the classes in the Java API are already threaded, so often you are
using multiple threads without realizing it.

Historically, threading was first exploited to make certain programs easier to write: if a program can be split into
separate tasks, it's often easier to program the algorithm as separate tasks or threads. Programs that fall into this
category are typically specialized and deal with multiple independent tasks. The relative rareness of these types of
programs makes threading in this category a specialized skill. Often, these programs were written as separate
processes using operating system-dependent communication tools such as signals and shared memory spaces to
communicate between processes. This approach increased system complexity.

The popularity of threading increased when graphical interfaces became the standard for desktop computers because
the threading system allowed the user to perceive better program performance. The introduction of threads into these
platforms didn't make the programs any faster, but it created an illusion of faster performance for the user, who now
had a dedicated thread to service input or display output.

In the 1990s, threaded programs began to exploit the growing number of computers with multiple processors.
Programs that require a lot of CPU processing are natural candidates for this category since a calculation that requires
one hour on a single-processor machine could (at least theoretically) run in half an hour on a two-processor machine or
15 minutes on a four-processor machine. All that is required is that the program be written to use multiple threads to
perform the calculation.

Although computers with multiple processors have been around for a long time, we're now seeing these machines
become cheap enough to be very widely available. The advent of less expensive machines with multiple processors, and
of operating systems that provide programmers with thread libraries to exploit those processors, has made threaded
programming a hot topic as developers move to extract every benefit from these machines. Until Java, much of the
interest in threading centered on using threads to take advantage of multiple processors on a single machine.

However, threading in Java often has nothing at all to do with multiprocessor machines and their capabilities; in fact,
the first Java virtual machines were unable to take advantage of multiple processors on a machine. Modern Java virtual
machines no longer suffer from this limitation, and a multithreaded Java program takes advantage of all the CPUs
available on its host machine. However, even if your Java program is destined to be run on a machine with a single
CPU, threading is still very important.

One reason that threading is important in Java is that, until JDK 1.4, Java had no concept of asynchronous behavior for
I/0. This meant that many of the programming techniques you've become accustomed to using in typical programs
were not applicable in Java; instead, until recently, Java programmers had to use threading techniques to handle
asynchronous behavior. Another reason is the graphical nature of Java; since the beginning, Java was intended to be
used in browsers, and it is used widely in environments with graphical user interfaces. Programmers need to
understand threads merely to be able to use the asynchronous nature of the GUI library.

This is not to say there aren't other times when threads are a handy programming technique in Java; certainly it's easy
to use Java for a program that implements an algorithm that naturally lends itself to threading. And many Java
programs implement multiple independent behaviors. The next few sections cover some of the circumstances in which
Java threads are a needed component of the program — either directly using threads or using Java libraries that make
heavy use of threads. Many of these circumstances are due to the need for asynchronous behavior or the elegance that
threading lends to the program.

1.3.1 Nonblocking 1/O

In Java, as in most programming languages, when you try to get input from the user, you execute a read() method
specifying the user's terminal (System.in in Java). When the program executes the read() method, the program typically
waits until the user types at least one character before it continues and executes the next statement. This type of I/0 is
called blocking I/O : the program blocks until some data is available to satisfy the read() method.

This type of behavior is often undesirable. If you're reading data from a network socket, that data is often not available
when you want to read it: the data may have been delayed in transit over the network, or you may be reading from a
network server that sends data only periodically. If the program blocks when it tries to read from the socket, it's unable
to do anything else until the data is actually available. If the program has a user interface that contains a button and
the user presses the button while the program is executing the read() method, nothing happens: the program is unable
to handle the mouse events and execute the event processing method associated with the button. This can be very
frustrating for the user, who thinks the program has hung.

Traditionally, three techniques are available to handle this situation:

I/0 Multiplexing

Developers often take all input sources and use a system call like select() to notify them when data is available

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

from a particular source. This allows input to be handled much like an event from the user (in fact, many
graphical toolkits use this method transparently to the developer, who simply registers a callback function that
is called whenever data is available from a particular source).

Beginning with JDK 1.4, this feature is provided with the NIO library—a library that allows a programmer to deal
with I/O in an asynchronous manner.

Polling

Polling allows a developer to test if data is available from a particular source. If data is available, the data can
be read and processed: if it is not, the program can perform another task. Polling can be done either explicitly—
with a system call like poll()—or, in some systems, by making the read() function return an indication that no
data is immediately available.

Polling is also supported by the NIO library of JDK 1.4. In the traditional I/O library, there is only limited support
for polling via the available() method of the FilterInputStream class. Unfortunately, this method does not have the
rich semantics that polling typically has in most operating systems and is not recommended as a reliable
technique to determine whether data is actually available.

Signals

A file descriptor representing the input source can often be set so that an asynchronous signal is delivered to
the program when data is available on that input source. This signal interrupts the program, which processes
the data and then returns to whatever task it had been doing. Java does not support this technique.

While the issue of blocking I/O can conceivably occur with any data source, it occurs most frequently with network
sockets. If you're used to programming sockets, you've probably used one of these techniques to read from a socket,
but perhaps not to write to one. Many developers, used to programming on a local area network (LAN), are vaguely
aware that writing to a socket may also block, but it's a possibility that many of them ignore because it happens only
under certain circumstances, such as a backlog in getting data onto the network. This backlog rarely happens on a fast
LAN, but if you're using Java to program sockets over the Internet, the chances of this backlog happening are greatly
increased, thus increasing the chance of blocking while attempting to write data onto the network. In Java, you may
need two threads to handle the socket: one to read from the socket and one to write to it.

As a result, writing a program that uses I/O means either using multiple threads to handle traditional (blocking) I/O or
using the NIO library (or both). The NIO library itself is very complex—much more complex than the thread library.
Consequently, it is still often easier to set up a separate thread to read the data (using traditional I/0) from a blocking
data source. This separate thread can block when data isn't available, and the other thread(s) in the Java program can
process events from the user or perform other tasks.

On the other hand, there are many times when the added complexity of the NIO library is worthwhile and where the
proliferation of threads required to process thousands of data sources would be untenable. But using the NIO library
doesn't remove all threading complexities; that library has its own thread-related issues.

We examine the threading issues related to I/O in depth in Chapter 12.

1.3.2 Alarms and Timers

Traditional operating systems typically provide some sort of timer or alarm call: the program sets the timer and
continues processing. When the timer expires, the program receives some sort of asynchronous signal that notifies the
program of the timer's expiration.

In early versions of Java, the programmer had to set up a separate thread to simulate a timer. That thread slept for the
duration of a specified time interval and then notified other threads when the timer expired. As Java matured, multiple

new classes that provide this functionality were added. These new classes use the exact same technique to provide the
functionality, but they hide (at least some of) the threading details from the developer. For complete details on these

timers, see Chapter 11.
1.3.3 Independent Tasks

A Java program is often called on to perform independent tasks. In the simplest case, a single applet may perform two
independent animations for a web page. A more complex program would be a calculation server that performs
calculations on behalf of several clients simultaneously. In either case, while it is possible to write a single-threaded
program to perform multiple tasks, it's easier and more elegant to place each task in its own thread.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The complete answer to the question "Why threads?" really lies in this category. As programmers, we're trained to think
linearly and often fail to see simultaneous paths that our program might take. But there's no reason why processes that
we've conventionally thought of in a single-threaded fashion need necessarily remain so: when the Save button in a
word processor is pressed, we typically have to wait a few seconds until we can continue. Worse yet, the word
processor may periodically perform an autosave, which invariably interrupts the flow of typing and disrupts the thought
process. In a threaded word processor, the save operation would be in a separate thread so that it didn't interfere with
the work flow. As you become accustomed to writing programs with multiple threads, you'll discover many
circumstances in which adding a separate thread makes your algorithms more elegant and your programs more
responsive.

1.3.4 Parallelizable Algorithms

With the advent of virtual machines that can use multiple CPUs simultaneously, Java has become a useful platform for
developing programs that use algorithms that can be parallelized; that is, running one iteration of the loop on one CPU
while another iteration of the loop is simultaneously running on another CPU. Dependencies between the data that each
iteration of the loop needs may prohibit a particular loop from being parallelized, and there may be other reasons why a
loop should not be parallelized. But for many programs with CPU-intensive loops, parallelizing the loop greatly speeds
up the execution of the program when it is run on a machine with multiple processors.

Many languages have compilers that support automatic parallelization of loops, but as yet, Java does not. However, as
we'll see in parallelizing a loop by hand is often not a difficult task.
HEST

[_* FREW < Day Day Up >

=)
|
4

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« T T -+ |
1.4 Summary

In this chapter, we've provided a basic overview of where we're going in our exploration of threaded programs.
Threading is a basic feature of Java, and we've seen some of the reasons why it's more important to Java than to other
programming platforms.

In the next few chapters, we look into the basics of thread programming. We start by looking at how threads are

created and used in an application. .
[_‘ FREW < Day Day Up > HERT W |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eemey T T T = % |

Chapter 2. Thread Creation and Management

In this chapter, we cover all the basics about threads: what a thread is, how threads are created, and some details
about the lifecycle of a thread. If you're new to threading, this chapter gives you all the information you need to create
some basic threads. Be aware, however, that we take some shortcuts with our examples in this chapter: it's impossible
to write a good threaded program without taking into account the data synchronization issues that we discuss in
Chapter 3. This chapter gets you started on understanding how threads work; coupled with the next chapter, you'll

have the ability to start using threads in your own Java applications. .
[_* PREW < Day Day Up > HEAT W |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[arrey WET # |
2.1 What Is a Thread?

Let's start by discussing what a thread actually is. A thread is an application task that is executed by a host computer.
The notion of a task should be familiar to you even if the terminology is not. Suppose you have a Java program to
compute the factorial of a given number:

package javathreads.examples.ch02.examplel;

public class Factorial {
public static void main(String[] args) {
int n = Integer.parselnt(args[0]);

System.out.print(n + "lis ");

int fact = 1;
while (n > 1)
fact *= n--;

System.out.printin(fact);

When your computer runs this application, it executes a sequence of commands. At an abstract level, that list of
commands looks like this:

® Convert args[0] to an integer.

® Store that integer in a location called n.
® Print some text.

® Store 1 in a location called fact.

® Test if n is greater than 1.

® If it is, multiply the value stored in fact by the value stored in n and decrement n by 1.

If it isn't, print out the value stored in fact.

Behind the scenes, what happens is somewhat more complicated since the instructions that are executed are actually
machine-level assembly instructions; each of our logical steps requires many machine instructions to execute. But the
principle is the same: an application is executed as a series of instructions. The execution path of these instructions is a

thread.[11

[1] Don't get hung up on the strict sequential ordering of the list. As a concept, thinking of a thread as an ordered
list of instructions makes a lot of sense, but the ordering can change under certain circumstances (see Chapter 5).

Consequently, every computer program has at least one thread: the thread that executes the body of the application.
In a Java application, that thread is called the main thread, and it begins executing statements with the first statement
of the main() method of your class. In other programming languages, the starting point may be different, and the
terminology may be different, but the basic idea is the same.

Starting a Program

For Java applications, execution begins with the main() method of the class being run. What about other
Java programs?

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In applets, servlets, and other J2EE programs, execution still begins with the main() method of the
program, but in this case, the main() method belongs to the Java plug-in or J2EE container. Those
containers then call your code through predetermined, well-known locations. An applet is called via its
init() and start() methods; a servlet is called through its doGet() and doPost() methods, and so on.

In any case, the procedure is the same: execution of your code begins with the first statements and
proceeds by a single thread sequentially.

In a Java program, it turns out that every program has more than one thread. Many of these are threads that
developers are unaware of, such as threads that perform garbage collection and compile Java bytecodes into machine-
level instructions. In a graphical application, other threads handle input from the mouse and keyboard and play audio.
Your Java application is highly threaded, whether you program additional threads into it or not.

Returning to our example, let's suppose that we wrote a program that performed two tasks: one calculated the factorial
of a number and one calculated the square root of that number. These are two separate tasks, and so you could choose
to write them as two separate threads. Now how would your application run?

The answer to that depends on the conditions under which the application is run. The Java virtual machine now has two
distinct lists of instructions to execute. One list calculates the factorial of a number (as we outlined earlier), and the
other list calculates the square root of the number. The Java virtual machine executes both of these lists almost
simultaneously.

Although you may not have thought about it in these terms, this situation should also be familiar to you from the
computer on which you normally do your work. The program you use to read your email is a list of instructions that the
computer executes. So too is the program that you use to listen to music. You're able to read email and listen to music
at the same time because the computer executes both lists of instructions at about the same time.

In fact, what happens is that the computer executes a handful of instructions from the email application and then
executes a handful of instructions from the music program. It continues this procedure, switching back and forth
between lists of instructions, and it does that quickly enough so that both programs appear to be executing at the same
time. Quickly enough, in fact, that there are no gaps in the music.

If you happen to have more than one CPU on your computer, the lists of instructions can execute at exactly the same
time: one list can execute on each CPU. But multiple CPUs aren't necessary to give the appearance of simultaneous
execution or to exploit the power of threading. A single CPU can appear to execute both lists of instructions in parallel,
letting you read your email and listen to music simultaneously.

Threads behave exactly the same way. In our case, the Java virtual machine executes a handful of the instructions to
calculate the factorial and then executes a handful of instructions to calculate the square root, and so on.

So threads are simply tasks that you want to execute at roughly the same time. Why, then, write an application with
multiple threads? Why not just write multiple applications? The answer lies in the fact that because threads are running
in the same application, they share the same memory space in the computer. This allows them to share information
seamlessly. Your email program and your music application don't communicate very well. At best, you can copy and
paste some data (like the name of a file) between the two. That allows you to double-click on an MP3 attachment in
your email and play it in your music application, but the only information that is shared between the two is the name of
the MP3 file. This type of cooperation is shown in Figure 2-1.

Figure 2-1. Processes in a multitasking environment

In a multitasking environment, data in the programs is separated by default: each has its own stack for local variables,
and each has its own area for objects and other data. All the programs can access various types of shared memory
(including the name of the MP3 file that you clicked on in your email program). The shared memory is restricted to
information put there by other programs, and the APIs to access it are usually quite different than the APIs used to
access other data in the program.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This type of data sharing is fine for dissimilar programs, but it is inadequate for other programs. Consider a network
server that sends stock quotes to multiple clients. Sending a quote to a client is a discrete task and may be done in a
separate thread. In fact, if the client must acknowledge the quote, then sending the data in separate threads is highly
recommended: you don't want all clients to wait for a particularly slow client to respond. Here the data to be sent to the
clients is the same; you don't want each client to require a separate server process which must then replicate all the
data held by every other server process. Instead, you want multiple threads in one program so that they may share
data and each perform discrete tasks on that data. That type of sharing is shown in Figure 2-2.

Figure 2-2. Threads in a multithreaded environment

Conceptually, the threads seem to be the same as programs. The key difference here is that the global memory is the
entire Java heap: threads can transparently share access between any object in the heap. Each thread still has its own
space for local variables (variables specific to the method the thread is executing). But objects are shared automatically
and transparently.

A thread, then, is a discrete task that operates on data shared with other threads.
| FREY < Day Day Up > HEST |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rew =12
2.2 Creating a Thread

Threads can be created in two ways: using the Thread class and using the Runnable interface. The Runnable interface
(generally) requires an instance of a thread, so we begin with the Thread class.

In this section, we start developing a typing game. The idea of this game is that characters are displayed and the user
must type the key corresponding to the character. Through the next few chapters, we add enough logic to score the
user's accuracy and timing and provide enough feedback so that the user can improve her typing skills.

For now, we are content to display a random character and display the character the user types in response. This
application has two tasks: one task must continually display a random character and then pause for some random
period of time. The second task must display characters typed on the keyboard.

2.2.1 The Example Architecture

Before we delve into the threading aspects of our code, let's look at a few utility classes used in this and subsequent
examples. The typing game has two sources for characters: characters that the user types at the keyboard and
characters that are randomly generated. Both sources of characters are represented by this interface:

package javathreads.examples.ch02;

public interface CharacterSource {
public void addCharacterListener(CharacterListener cl);
public void removeCharacterListener(CharacterListener cl);

public void nextCharacter();

We want to use the standard Java pattern of event listeners to handle these characters: a listener can register with a
particular source and be notified when a new character is available. That requires the typical set of Java classes for a
listener pattern, starting with the listener interface:

package javathreads.examples.ch02;

public interface CharacterListener {

public void newCharacter(CharacterEvent ce);

The events themselves are objects of this class:

package javathreads.examples.ch02;

public class CharacterEvent {
public CharacterSource source;

public int character;

public CharacterEvent(CharacterSource cs, int) {
source = cs;

character = c;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

And finally, we need a helper class that fires the events when appropriate:

package javathreads.examples.ch02;

import java.util.*;

public class CharacterEventHandler {

private Vector listeners = new Vector();

public void addCharacterListener(CharacterListener cl) {

listeners.add(cl);

public void removeCharacterListener(CharacterListener cl) {

listeners.remove(cl);

public void fireNewCharacter(CharacterSource source, int c) {
CharacterEvent ce = new CharacterEvent(source, c);
CharacterListener[] cl = (CharacterListener[])
listeners.toArray(new CharacterListener[0]);
for (inti = 0; i < cl.length; i++)

cl[i].newCharacter(ce);

In our graphical display, one canvas registers to be notified when the user types a character; that canvas displays the
character. A second canvas registers to be notified when a random character is generated; it displays the new
characters as they are generated. We've chosen this design pattern since, in later examples, multiple objects will be
interested in knowing when new characters are generated.

Here's a utility class that can display a given character:

package javathreads.examples.ch02;

import java.awt.*;

import javax.swing.*;

public class CharacterDisplayCanvas extends JComponent implements CharacterListener {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

protected FontMetrics fm;
protected char[] tmpChar = new char[1];

protected int fontHeight;

public CharacterDisplayCanvas() {
setFont(new Font("Monospaced", Font.BOLD, 18));
fm = Toolkit.getDefaultToolkit().getFontMetrics(getFont());

fontHeight = fm.getHeight();

public CharacterDisplayCanvas(CharacterSource cs) {
this();

setCharacterSource(cs);

public void setCharacterSource(CharacterSource cs) {

cs.addCharacterListener(this);

public Dimension preferredSize() {
return new Dimension(fm.getMaxAscent() + 10,

fm.getMaxAdvance() + 10);

public synchronized void newCharacter(CharacterEvent ce) {
tmpChar[0] = (char) ce.character;

repaint();

protected synchronized void paintComponent(Graphics gc) {
Dimension d = getSize();
gc.clearRect(0, 0, d.width, d.height);
if (tmpChar[0] == 0)
return;
int charWidth = fm.charWidth((int) tmpChar[0]);
gc.drawChars(tmpChar, 0, 1,

(d.width - charWidth) / 2, fontHeight);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Although this class has no references to threads, it still has thread-related issues: namely, we had to use the
synchronized keyword for some of the methods. This is because of something known as a race condition (see Chapter 3).

Real-Life Race Conditions

In order to understand threaded programming fully, you must understand how threads run and are
created (the topic of this chapter) as well as how they interact with data (the topic of the next chapter).
Any interesting threaded program uses both features.

This means that a forward reference to some details (like the synchronized keyword) is unavoidable. This
is the essence of a race condition: two things need to complete sequentially in order to end up in a
coherent state.

This race condition also applies to Swing programming. We use Swing components in our examples
because they make the applications more relevant and interesting. Swing components have some special
thread programming considerations, as we'll see over the next few chapters, but we won't be able to
explain them fully until we understand more about how multiple threads work.

2.2.2 The Thread Class

Now we can program our first task (and our first thread): a thread that periodically generates a random character. In
Java, threads are represented by instances of the java.lang.Thread class. They are created just like any other Java object,
but they contain a special method that tells the virtual machine to begin executing the code of the thread as a separate
"list." Here's a partial API of the Thread class, showing its constructors and its execution-related methods:

package java.lang;
public class Thread implements Runnable {
public Thread();
public Thread(Runnable target);
public Thread(ThreadGroup group, Runnable target);
public Thread(String name);
public Thread(ThreadGroup group, String name);
public Thread(Runnable target, String name);
public Thread(ThreadGroup group, Runnable target, String name);
public Thread(ThreadGroup group, Runnable target, String name,
long stackSize);
public void start();

public void run();

As you see, threads are created with four pieces of information:

Thread name

The name of a thread is part of the information shown when a thread object is printed. Otherwise, it has no
significance, so give your threads names that make sense to you when you see them printed. The default name
for a thread is Thread-N, where N is a unique number.

Runnable target

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We discuss runnables in depth later in this chapter. A runnable object is the list of instructions that the thread
executes. By default, this is the information in the run() method of the thread itself. Note that the Thread class
itself implements the Runnable interface.

Thread group

Thread groups are an advanced topic (see Chapter 13). For the vast majority of applications, thread groups are
unimportant. By default, a thread is assigned to the same thread group as the thread that calls the constructor.

Stack size

Every thread has a stack where it stores temporary variables as it executes methods. Everything related to the
stack size of a thread is platform-dependent: its default stack size, the range of legal values for the stack size,
the optimal value for the stack size, and so on. Use of the stack size in portable programs is highly discouraged.
For more information, see Chapter 13.

We can use these methods of the Thread class to create our first thread:

package javathreads.examples.ch02.example2;

import java.util.*;

import javathreads.examples.ch02.*;

public class RandomCharacterGenerator extends Thread implements CharacterSource {
static char[] chars;
static String charArray = "abcdefghijkimnopgrstuvwxyz0123456789";
static {

chars = charArray.toCharArray();

Random random;

CharacterEventHandler handler;

public RandomCharacterGenerator() {

random = new Random();

handler = new CharacterEventHandler();

public int getPauseTime() {

return (int) (Math.max(1000, 5000 * random.nextDouble()));

public void addCharacterListener(CharacterListener cl) {

handler.addCharacterListener(cl);

public void removeCharacterListener(CharacterListener cl) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

handler.removeCharacterListener(cl);

public void nextCharacter() {
handler.fireNewCharacter(this,

(int) chars[random.nextInt(chars.length)]);

public void run() {
for) {
nextCharacter();
try {
Thread.sleep(getPauseTime());
} catch (InterruptedException ie) {

return;

The first thing to note about this example is that it extends the Thread class. The class itself is constructed simply by
calling its (only) constructor, and the actual list of instructions we want to execute is in the run() method. The run()
method is a standard method of the Thread class; it is the place where the thread begins its execution.

In a sense, the run() method is similar to the main() method of a standalone Java application: the main() method is
where your first thread starts executing. Subsequent threads start executing with the run() method of the thread.
Though some subtle differences between run() and main() exist, this is the best way to think of the relationship between
them.

So when the run() method of this class is eventually called, it fires off a new character to its listeners, sleeps for a
random period of time between 1 and 5 seconds, and then repeats the process (forever, as the loop never terminates).

The second task of our application is responsible for displaying the characters typed at the keyboard. It is also
responsible for creating and starting our second thread. That code looks like this:

package javathreads.examples.ch02.example2;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

import javathreads.examples.ch02.*;

public class SwingTypeTester extends JFrame implements CharacterSource {

protected RandomCharacterGenerator producer;

private CharacterDisplayCanvas displayCanvas;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

private CharacterDisplayCanvas feedbackCanvas;
private JButton quitButton;
private JButton startButton;

private CharacterEventHandler handler;

public SwingTypeTester() {

initComponents();

private void initComponents() {
handler = new CharacterEventHandler();
displayCanvas = new CharacterDisplayCanvas();
feedbackCanvas = new CharacterDisplayCanvas(this);
quitButton = new JButton();
startButton = new JButton();
add(displayCanvas, BorderLayout.NORTH);
add(feedbackCanvas, BorderLayout.CENTER);
JPanel p = new JPanel();
startButton.setLabel("Start");
quitButton.setLabel("Quit");
p.add(startButton);
p.add(quitButton);

add(p, BorderLayout.SOUTH);

addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent evt) {

quit();

0

feedbackCanvas.addKeyListener(new KeyAdapter() {
public void keyPressed(KeyEvent ke) {
char ¢ = ke.getKeyChar();
if (c != KeyEvent.CHAR_UNDEFINED)
newCharacter((int) c);
b
i

startButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

producer = new RandomCharacterGenerator();
displayCanvas.setCharacterSource(producer);
producer.start();
startButton.setEnabled(false);
feedbackCanvas.setEnabled(true);
feedbackCanvas.requestFocus();
b
oF
quitButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
quit();
b
i

pack();

private void quit() {

System.exit(0);

public void addCharacterListener(CharacterListener cl) {

handler.addCharacterListener(cl);

public void removeCharacterListener(CharacterListener cl) {

handler.removeCharacterListener(cl);

public void newCharacter(int c) {

handler.fireNewCharacter(this, c);

public void nextCharacter() {

throw new IllegalStateException("We don't produce on demand");

public static void main(String args[]) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

new SwingTypeTester().show();

Most of this code is, of course, GUI code. The lines to note with respect to the Thread class are in the actionPerformed()

method associated with the Start button. In the event callback, we construct a thread object (i.e., the instance of the

RandomCharacterGenerator class) like any other Java object, and then we call the start() method on that object. Note that
we did not call the RandomCharacterGenerator object's run() method. The start() method of the Thread class calls the run()

method (see Section 2.3).

Other threads are involved in this example, even though you don't see references to them. First, there is the main
thread of the application. This thread starts when you begin execution of the program (i.e., when you type the java
command). That thread calls the main() method of your application.

The second thread of the application is the instance of the RandomCharacterGenerator class. It is created the first time the
Start button is pressed.

A third thread in the application is the event-processing thread. That thread is started by the Swing toolkit when the
first GUI element of the application is created. That thread is significant to us because that's the thread that executes
the actionPerformed() and keyPressed() methods of the application. There are many other threads in the virtual machine
that we don't interact with; for now, we're concerned about the three threads we've just discussed.

At this point, you can compile and run the application. Using our master ant script, execute this command:

piccolo% ant ch2-ex2

The GUI window shown in Figure 2-3 appears. After you press the Start button, characters appear at random intervals
in the top half of the window; as you type characters, they appear in the bottom half of the window.

Figure 2-3. The SwingTypeTester window

At this point, we can't do much about scoring what the user types. That would require communication between the two
threads of the program, which is the topic of the next chapter. However, we can clear up a few things in the display as
_vye discuss how the RandomCharacterGenerator thread runs.

[4w rrew HET W

-
|
|

4

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[

[rew =3
2.3 The Lifecycle of a Thread

In our example, we gloss over some of the details of how the thread is actually started. We'll discuss that in more depth
now and also give details on other lifecycle events of a thread. The lifecycle itself is shown in Figure 2-4. The methods
of the Thread class that affect the thread's lifecycle are:

package java.lang;

public class Thread implements Runnable {
public void start();
public void run();
public void stop(); // Deprecated, do not use
public void resume(); // Deprecated, do not use
public void suspend(); // Deprecated, do not use
public static void sleep(long millis);
public static void sleep(long millis, int nanos);
public boolean isAlive();
public void interrupt();
public boolean isInterrupted();
public static boolean interrupted();

public void join() throws InterruptedException;

Figure 2-4. Lifecycle of a thread

2.3.1 Creating a Thread

The first phase in this lifecycle is thread creation. Threads are represented by instances of the Thread class, so creating
a thread is done by calling a constructor of that class. In our example, we use the simplest constructor available to us.
Additional constructors of the Thread class allow you to specify the thread's name or a Runnable object to serve as the
thread's target.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

All threads have names that serve to identify them in the virtual machine. By default, that name consists of information
about the thread: its priority, its thread group, and other thread information we discuss in later chapters. If you like,
you can give a thread a different name, perhaps one that will have meaning to you if you print it out.

We discuss the Runnable interface later in this chapter.

2.3.2 Starting a Thread

A thread exists once it has been constructed, but at that point it is not executing any code. The thread is in a waiting
state.

In this waiting state, other threads can interact with the existing thread object. Various attributes of the waiting thread
can be set: its priority, its name, its daemon status, and so on. We'll see examples of these throughout the book, but
each of these attributes is set simply by calling a method on the waiting thread. Therefore, even though the thread is
waiting, its state may be changed by other threads.

When you're ready for the thread to begin executing code, you call its start() method. This method performs some
internal housekeeping and calls the thread's run() method. When the start() method returns, two threads are now
executing in parallel: the original thread (which has returned from calling the start() method) and the newly started
thread (which is now executing its run() method).

After its start() method has been called, the new thread is said to be alive. In fact, the Thread class has an isAlive()
method that tells you the state of the thread: if the isAlive() method returns true, the thread has been started and is
executing its run() method. If the isAlive() method returns false, however, the thread may not be started yet or may be
terminated.

2.3.3 Terminating a Thread

Once started, a thread executes only one method: the run() method. The run() method may be very complicated, it may
execute forever, and it may call millions of other methods. Regardless, once the run() method finishes executing, the
thread has completed its execution. Like all Java methods, the run() method finishes when it executes a return
statement, when it executes the last statement in its method body, or when it throws an exception (or fails to catch an
exception thrown to it).

As a result, the only way to terminate a thread is to arrange for its run() method to complete. If you look at the
documentation of the Thread class, you notice that the class contains a stop() method which seems like it might be used
to terminate a thread. It turns out that the stop() method has an inherent problem (an internal race condition, see
Chapter 3). As a result, the stop() method is deprecated and should not be used. Some Java implementations prohibit its
use directly, and the security manager can also be used to prohibit programs from calling it.

There are many threads that you don't need to stop. Often, threads are performing a fixed task, and you always want
the task to run to completion. In other cases, such as our example, the thread can run until the application exits (e.g.,
when we call the System.exit() method in response to the user pressing the Quit button).

Often, however, you want a thread to continue to execute until some other condition is met. In our typing game, we
might want one RandomCharacterGenerator thread to terminate so that we can start a different one (perhaps one with a
different set of characters available to it). We explore some basic ways to arrange for a thread to stop later in this
chapter.

The run() method cannot throw a checked exception, but like all Java methods, it can throw an unchecked exception.
Throwing an unchecked exception (an exception that extends the RuntimeException class)—or failing to catch a runtime
exception thrown by something the run() method has called—also causes a thread to stop. Threads can arrange for
special exception processing in their termination; for details, see Chapter 13.

2.3.4 Pausing, Suspending, and Resuming Threads

Once a thread begins executing its run() method, it continues execution until the run() method completes. If you're
familiar with other thread models, you may know of a concept called thread suspension, where a thread is told to pause
its execution. Later, the thread is resumed, which is to say that it is told to continue its execution. The Thread class
contains suspend() and resume() methods, but they suffer from the same race condition problem as the stop() method,
and they, too, are deprecated.

It is possible for a thread to suspend its own execution for a specific period of time by calling the sleep() method. We
use that method in our RandomCharacterGenerator thread. When a thread executes the sleep() method, it pauses for a
given number of milliseconds (or milliseconds plus nanoseconds), during which it is said to be asleep. When the pause
time has elapsed, the thread wakes up and continues execution with the statements immediately following the sleep()
method.

Sleep Time Resolution

The Thread class provides a version of the sleep() method that allows the developer to specify the time in

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

nanoseconds. Most Java virtual machines do not support this sort of precise timing. When the sleep()
method executes, it rounds the nanosecond argument to the nearest millisecond. In fact, most operating
systems then further adjust the millisecond argument so that it is a multiple of some number: e.g., 20 or
50 milliseconds. Consequently, the least amount of time that you can sleep on most Java
implementations is 20 or 50 milliseconds.

Note that this is true even in J2SE 5.0, which introduces other nanosecond time functionality (e.g., the
System.nanoTime() method). The resolution of the sleep() method is still only good to a few milliseconds.

Ongoing projects within the Java Community Process are working on a real-time Java implementation;
on such an implementation, the precise resolution specified in the sleep() method may eventually be
realized. For most platforms, developers cannot design applications that require support of nanoseconds
(or even exact milliseconds).

Strictly speaking, sleeping is not the same thing as thread suspension. One important difference is that with true thread
suspension, one thread would suspend (and later resume) another thread. Conversely, the sleep() method affects only
the thread that executes it; it's not possible to tell another thread to go to sleep.

Threads can use the wait and notify mechanism discussed in Chapter 4 to achieve the functionality of thread suspension
and resumption. The difference is that the threads must be coded to use that technique (rather than a generic
suspend/resume mechanism that could be imposed from other threads).

2.3.5 Thread Cleanup

A thread that has completed its run() method has terminated. It is no longer active (the isAlive() method returns false).
However, the thread object itself may be holding interesting information. As long as some other active object holds a
reference to the terminated thread object, other threads can execute methods on the terminated thread and retrieve
that information. If the thread object representing the terminated thread goes out of scope, the thread object is
garbage collected. On some platforms, this also has the effect of cleaning up system resources associated with the
thread.

In general, then, you should not hold onto thread references so that they may be collected when the thread terminates.

One reason to hold onto a thread reference is to determine when it has completed its work. That can be accomplished
with the join() method. The join() method is often used when you have started threads to perform discrete tasks and
want to know when the tasks have completed. You'll see that technique in use in the examples in Chapter 15.

The join() method blocks until the thread has completed its run() method. If the thread has already completed its run()
method, the join() method returns immediately. This means that you may call the join() method any number of times to
see whether a thread has terminated. Be aware, though, that the first time you call the join() method, it blocks until the
thread has actually completed. You cannot use the join() method to poll a thread to see if it's running (instead, use the

|_§A||veg2 method just discussed). .
| FREY < Day Day Up > HEST o |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= =3
2.4 Two Approaches to Stopping a Thread

When you want a thread to terminate based on some condition (e.g., the user has quit the game), you have several
approaches available. Here we offer the two most common.

2.4.1 Setting a Flag

The most common way of stopping a thread is to set some internal flag to signal that the thread should stop. The
thread can then periodically query that flag to determine if it should exit.

We can rewrite our RandomCharacterGenerator thread to follow this approach:

package javathreads.examples.ch02.example3;

public class RandomCharacterGenerator extends Thread implements CharacterSource {
private volatile boolean done = false;
public void run() {

while ('done) {

b
public void setDone() {

done = true;

Here we've created the boolean flag done to signal the thread that it should quit. Now instead of looping forever, the
run() method examines the state of that variable on every loop and returns when the done flag has been set. That

terminates the thread.f21

[2] we've also introduced the use of the Java keyword volatile for that variable. Like the synchronized keyword, it is
intrinsically related to thread programming (see Chapter 3).

We must now modify our application to set this flag:

package javathreads.examples.ch02.example3;

public class SwingTypeTester extends JFrame implements CharacterSource {
private JButton stopButton;

private void initComponents() {

stopButton = new JButton();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

stopButton.setLabel("Stop");

p.add(stopButton);

stopButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
startButton.setEnabled(true);
stopButton.setEnabled(false);
producer.setDone();

feedbackCanvas.setEnabled(false);

;i

Now we have two buttons: a Start and a Stop button. When the Stop button is pressed, the setDone() method is called,
and the next time the RandomCharacterGenerator thread executes the top of its loop, that thread exits. This process also
reenables the Start button: we can start a new thread at any time.

This raises an interesting design question: is it better to create a new thread like this, or would it be better somehow to
suspend the existing thread and resume it when we're ready? Of course, we don't yet have the tools necessary to
program the suspension and resumption of the thread, so that's the reason we've done it this way. It would be more
natural simply to suspend and resume the thread, as we do in Chapter 4.

However, in a case like this, it actually does not matter. In our experience, developers become too hung up on the
perceived performance penalties they attribute to creating a thread. If you're writing a program and it is easier to
abandon a thread and create a new one rather than reusing an existing one, in most cases that's what you should do.
We revisit this topic in more depth when we discuss thread pools in Chapter 10 and thread performance in Chapter 14.

Calling the setDone() method is a simple way for threads to communicate with each other. Threads must use special
rules for communication like this (see Chapter 3). In general, though, threads can call methods on each other, as well
as accessing the same objects, to pass information between themselves.

2.4.2 Interrupting a Thread

The last example has a delay between when the actionPerformed() method called the setDone() method and the
RandomCharacterGenerator thread exited. Delays of some sort when arranging for a thread to terminate are inevitable, but
sometimes the delay needs to be minimized.

In our example, the delay occurs because the RandomCharacterGenerator thread executes some number of statements
after the setDone() method is called and before it checks the value of the done variable. In the worst case, the event
thread executing the actionPerformed() method calls the setDone() method just after the RandomCharacterGenerator thread
checks the value of the done variable. Then, even though it's done, the loop gets a new character out of the array,
prints it to the screen, and goes to sleep for some amount of time. Finally it wakes up, returns to the top of the loop,
sees that the done variable has been set to true, and returns.

The delay in this case is minimal, but it's likely to be close to the amount of time that the RandomCharacterGenerator
thread is sleeping (since the other operations are very short). If we originally specify a 15-second delay, we probably
won't want to wait the entire 15 seconds before the thread terminates.

In other cases, the delay can be worse: if the thread is executing a read() method to obtain data from a socket, the data
may never come. Or the thread may be executing the wait() method (see Chapter 4) and waiting for an event that may
never come. Methods like these are called blocking methods because they block execution of the thread until something
happens (e.g., the expiration of the sleep() method).

When you arrange for a thread to terminate, you often want it to complete its blocking method immediately: you don't
want to wait for the data (or whatever) anymore because the thread is going to exit anyway. You can use the interrupt()
method of the Thread class to interrupt any blocking method.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The interrupt() method has two effects. First, it causes any blocked method to throw an InterruptedException. In our
example, the sleep() method is a blocking method. If the event-processing thread interrupts the
RandomCharacterGenerator thread while that thread is executing the sleep() method, the sleep method immediately wakes
up and throws an InterruptedException. Other methods that behave this way include the wait() method, the join() method,
and methods that read I/O (though there are complications when handling 1/0, as we discuss Chapter 12).

The second effect is to set a flag inside the thread object that indicates the thread has been interrupted. To query this
flag, use the isInterrupted() method. That method returns true if the thread has been interrupted (even if it was not
blocked).

Here's how a thread uses this information to determine whether or not it should terminate:

package javathreads.examples.ch02.example4;

public class RandomCharacterGenerator extends Thread {

// Note: the done instance variable and setDone() method are removed from

// example 2

public void run() {

while (lisInterrupted()) {

This example is almost exactly the same as the one in which we use a done flag to signal that the thread should return.
In this case, we use the interrupted flag instead. That means we no longer need the setDone() method. Instead of calling
the setDone() method, the actionPerformed() method associated with the Stop button in our application now does this:

producer.interrupt();

If the main thread executes this statement while the RandomCharacterGenerator thread is sleeping, the
RandomCharacterGenerator thread gets the interrupted exception and immediately returns from the run() method.
Otherwise, when the character-feeding thread next gets to the top of its loop, it sees that the interrupted flag has been
set and returns from its run() method then. Either way, the random character generator thread completes its task.

Note that this technique does not completely eliminate the possibility that we sleep for some amount of time after the
thread is asked to stop. It's possible for the main thread to call the interrupt() method just after the
RandomCharacterGenerator has called the isInterrupted() method. The character-reading thread still executes the sleep()
method, which won't be interrupted (since the main thread has already completed the interrupt() method). This is
another example of a race condition that we solve in the next chapter. Since the race condition in this case is benign (it
just means we sleep one more time than we'd like), this is sufficient for our purposes.

< Day Day Up >

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[rrew WEST W |
2.5 The Runnable Interface

When we talked about creating a thread, we mentioned the Runnable interface (java.lang.Runnable). The Thread class
implements this interface, which contains a single method:

package java.lang;
public interface Runnable {

public void run();

The Runnable interface allows you to separate the implementation of a task from the thread used to run the task. For
example, instead of extending the Thread class, our RandomCharacterGenerator class might have implemented the Runnable
interface:

package javathreads.examples.ch02.example5;

// Note: Use Example 3 as the basis for comparison

public class RandomCharacterGenerator implements Runnable {

This changes the way in which the thread that runs the RandomCharacterGenerator object must be constructed:

package javathreads.examples.ch02.example5;
public class SwingTypeTester extends JFrame implements CharacterSource {
private void initComponents() {

startButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {

producer = new RandomCharacterGenerator();
displayCanvas.setCharacterSource(producer);
Thread t = new Thread(producer);
t.start();
startButton.setEnabled(false);
stopButton.setEnabled(true);
feedbackCanvas.setEnabled(true);

feedbackCanvas.requestFocus();

n

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now we must construct the thread directly and pass the runnable object (producer) to the thread's constructor. Then we
start the thread (instead of starting the runnable object).

This leads to the question of whether you should use the Runnable interface or the Thread class when designing your own
application. The answer is yes.

The truth is that sometimes it makes sense to use the Runnable interface and sometimes it makes sense to use the
Thread class. The answer depends on whether you would like your new class to inherit behavior from the Thread class or
if your class needs to inherit from other classes.

If you extend the Thread class as we do in our first examples, then you inherit the behavior and methods of the Thread
class. That is very important in example 4, where we used the interrupt() method to signal that the
RandomCharacterGenerator should cease operations. The interrupt() method is part of the Thread class, and the reason why
we are able to interrupt the RandomCharacterGenerator thread is because it extends the Thread class.

In fact, we should point out that the full source code for example 5 is based on example 3, not example 4. We have to
use the setDone() method to signal that the random character generator's run() method should terminate because that
class no longer has an interrupt() method. If we still want to interrupt the sleep() method of the RandomCharacterGenerator
class, then we must write the SwingTypeTester class like this:

package javathreads.examples.ch02.example6;

public class SwingTypeTester extends JFrame implements CharacterSource {

private void initComponents() {

stopButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

displayThread.interrupt();

;i

A similar example can be used to show why it is sometimes preferable to use the Runnable interface. Let's suppose that
we want the character in our display canvas to move across the screen until the user types in the matching character.
This requires another thread, one that controls the animation of the character. Every few milliseconds, the character
needs to be redisplayed on the canvas just slightly to the right of where it was previously displayed. This makes the
character appear to be moving.

We could develop a brand new class to do this, but it shares most of the logic of the existing CharacterDisplayCanvas class.
The newChar() method is somewhat different and there's now some animation logic to deal with, but clearly it's better in
this example if we extend CharacterDisplayCanvas (and inherit the methods that set up the canvas size and font) than if
we extend the Thread class. This is a case that calls for the Runnable interface:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

package javathreads.examples.ch02.example7;

import java.awt.*;
import javax.swing.*;

import javathreads.examples.ch02.*;

public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas

implements CharacterListener, Runnable {

private volatile boolean done = false;

private int curX = 0;

public AnimatedCharacterDisplayCanvas() {

b

public AnimatedCharacterDisplayCanvas(CharacterSource cs) {

super(cs);

public synchronized void newCharacter(CharacterEvent ce) {
curX = 0;
tmpChar[0] = (char) ce.character;

repaint();

protected synchronized void paintComponent(Graphics gc) {
Dimension d = getSize();
gc.clearRect(0, 0, d.width, d.height);
if (tmpChar[0] == 0)
return;
int charWidth = fm.charWidth(tmpChar[0]);
gc.drawChars(tmpChar, 0, 1,

curX++, fontHeight);

public void run() {
while ('done) {
repaint();

try {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Thread.sleep(100);
} catch (InterruptedException ie) {

return;

public void setDone(boolean b) {

done = b;

This class demonstrates the canonical technique to handle animation in Java: a thread makes successive calls to the
repaint() method, which in turn calls the paintComponent() method. Every time the paintComponent() method is called, we
display the character with a new X coordinate that is slightly shifted to the right.

The thread that controls the animation in this canvas is created just as before: the actionPerformed() method of the Start
button needs to create a new thread, passing in the AnimatedCharacterCanvas as its runnable target. It also needs to start
that thread. The stop() method, on the other hand, calls the setDone() method to terminate the animation. Here's how it
looks:

package javathreads.examples.ch02.example7;

public class SwingTypeTester extends JFrame implements CharacterSource {

private void initComponents() {

startButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

displayCanvas.setDone(false);
Thread t = new Thread(displayCanvas);

t.start();

b

i

stopButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {

displayCanvas.setDone(true);

n

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We began this section by wondering whether it was preferable to program a task using the Runnable interface or the
Thread class. We've seen examples of why you would need each. There's an additional advantage to the Runnable
interface, however. With Runnable, Java provides a number of classes that handle threading issues for you. These
classes handle thread pooling, task scheduling, or timing issues. If you're going to use such a class, your task must be a
Runnable object (or, in some cases, an object that has an embedded Runnable object).

If you do a thorough program design and Unified Modeling Language (UML) model of your application, the resulting
object hierarchy tells you pretty clearly whether your task needs to subclass another class (in which case you must use
the Runnable interface) or whether you need to use the methods of the Thread class within your task. But if your object
hierarchy is silent on the parent class for your task, or if you do a lot of prototyping or extreme programming, then
what? Then the choice is yours: you can use the Runnable interface, which gives you a little more flexibility at the cost of
the overhead of keeping track of the thread objects separately, or you can trade that flexibility for simplicity and
subclass the Thread class.

[ewrmey 0] 1V =+ % |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= owoayw-_ @y
2.6 Threads and Objects

Let's talk a little more about how threads interact. Consider the RandomCharacterGenerator thread. We saw how another
class (the SwingTypeTester class) kept a reference to that thread and how it continued to call methods on that object.

Although those methods are defined in the RandomCharacterGenerator class, they are not executed by that thread.
Instead, methods like the setDone() method are executed by the Swing event-dispatching thread as it executes the
actionPerformed() method within the SwingTypeTester class. As far as the virtual machine is concerned, the setDone()
method is just a series of statements; those statements do not "belong" to any particular thread. Therefore, the event-
dispatching thread executes the setDone() method in exactly the same way in which it executes any other method.

This point is often confusing to developers who are new to threads; it can be confusing as well to developers who
understand threads but are new to object-oriented programming. In Java, an instance of the Thread class is just an
object: it may be passed to other methods, and any thread that has a reference to another thread can execute any
method of that other thread's Thread object. The Thread object is not the thread itself; it is instead a set of methods and
data that encapsulates information about the thread. And that method and data can be accessed by any other thread.

For a more complex example, examine the AnimatedCharacterCanvas class and determine how many threads execute
some of its methods. You should be comfortable with the fact that four different threads use this object. The
RandomCharacterGenerator thread invokes the newChar() method on that object. The timing thread invokes the run()
method. The setDone() method is invoked by the Swing event-dispatching thread. And the constructor of the class (i.e.,
the default constructor) is invoked by the main method of the application as it constructs the GUI.

The upshot of this is that you cannot look at any object source code and know which thread is executing its methods or
examining its data. You may be tempted to look at a class or an object and wonder which thread is running the code.

The answer — even if the code is with a class that extends the Thread class — is that any of potentially thousands of
threads could be executing the code.

2.6.1 Determining the Current Thread

Sometimes, you need to find out what the current thread is. In the most common case, code that belongs to an
arbitrary object may need to invoke a method of the thread class. In other circumstances, code within a thread object
may want to see if the code is being executed by the thread represented by the object or by a completely different
thread.
You can retrieve a reference to the current thread by calling the currentThread() method (a static method of the Thread
class). Therefore, to see if code is being executed by an arbitrary thread (as opposed to the thread represented by the
object), you can use this pattern:
public class MyThread extends Thread {
public void run() {
if (Thread.currentThread() != this)
throw new IllegalStateException(

"Run method called by incorrect thread");

... main logic ...

Similarly, within an arbitrary object, you can use the currentThread() method to obtain a reference to a current thread.
This technique can be used by a Runnable object to see whether it has been interrupted:

public class MyRunnable implements Runnable {
public void run() {
while ('Thread.currentThread().isInterrupted()) {

... main logic ...

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In fact, the Thread class includes a static method interrupted() that simply returns the value of Thread.currentThread(
).isInterrupted(), but you'll often see both uses within threaded programs. In examples in later chapters, we use the
currentThread() method to obtain a thread reference in order to invoke other methods of the Thread class that we haven't
ret examined.

-
= ____ owowwe_________ (=

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« T T - » |
2.7 Summary

In this chapter, we've had our first taste of threads. We've learned that threads are separate tasks executed by a single
program. This is the key to thinking about how to design a good multithreaded program: what logical tasks make up
your program? How can these tasks be separated to make the program logic easier, or benefit your program by running
in parallel? In our case, we have two simple tasks: display a random character and display the key that a user types in
response. In later chapters, we add more tasks (and more threads) to this list.

At a programming level, we've learned how to construct, start, pause, and stop threads. We've also learned about the
Runnable interface and how that interface allows us a great degree of flexibility in how we develop the class hierarchy for
our objects. Tasks can be either Thread objects or Runnable objects associated with a thread. Using the Runnable interface
allows more flexibility in how you define your tasks, but both approaches have merit in different situations.

We've also touched on how threads interoperate by calling methods on the same object. The ability of threads to
interoperate in this manner includes the ability for them to share data as well as code. That data sharing is key to the
benefits of a multithreaded program, but it carries with it some pitfalls. This is covered in the next chapter.

2.7.1 Example Classes

Here are the class names and Ant targets for the examples in this chapter:

Description Main Java class Ant target
Factorial Example javathreads.examples.ch02.examplel.Factorial number ch2-ex1
First Swing Type Tester javathreads.examples.ch02.example2.SwingTypeTester ch2-ex2
Type Tester (with Stop button) javathreads.examples.ch02.example3.SwingTypeTester ch2-ex3
Type Tester (uses interrupt() method) javathreads.examples.ch02.example4.SwingTypeTester ch2-ex4
Type Tester (uses Runnable interface) javathreads.examples.ch02.example5.SwingTypeTester ch2-ex5
Type Tester (Runnable and interrupt()) javathreads.examples.ch02.example6.SwingTypeTester ch2-ex6
Type Tester (animated display) javathreads.examples.ch02.example7.SwingTypeTester ch2-ex7

The factorial program accepts a command-line argument to indicate the integer whose factorial should be calculated;
that can be set with this Ant property:

<property name="FactorialArg" value="10"/>

(e L L L L =" o |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[eemey T T T = % |

Chapter 3. Data Synchronization

In the previous chapter, we covered a lot of ground: we examined how to create and start threads, how to arrange for
them to terminate, how to name them, how to monitor their lifecycles, and so on. In the examples of that chapter,
however, the threads that we examined were more or less independent: they did not need to share data between them.

There were some exceptions to that last point. In some examples, we needed the ability for one thread to determine
whether another was finished with its task (i.e., the done flag). In others, we needed to change a character variable that
was used in the animation canvas; this was done by a thread different than the Swing thread that redraws the canvas.
We glossed over the details at the time, which may have given the implication that they are minor issues. However, we
must understand that when two threads share data, complexities arise. These complexities must be taken into
consideration whether we're implementing a large shared database or simply sharing a done flag.

In this chapter, we look at the issue of sharing data between threads. Sharing data between threads can be problematic
due to what is known as a race condition between threads that attempt to access the same data more or less
simultaneously (i.e., concurrently). In this chapter, we examine the concept of a race condition and mechanisms that
solve the race condition. We will see how these mechanisms can be used to coordinate access to data as well as solve
some other problems in thread communication. .

s <owowue- Qe

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= |
[_ prm— < Day Day Up > HEHT B |

3.1 The Synchronized Keyword

Let's revisit our AnimatedDisplayCanvas class from the previous chapter:

package javathreads.examples.ch02.example7;
private volatile boolean done = false;

private int curX = 0;

public class AnimatedCharacterDisplayCanvas extends CharacterDisplayCanvas

implements CharacterListener, Runnable {

public synchronized void newCharacter(CharacterEvent ce) {
curX = 0;
tmpChar[0] = (char) ce.character;

repaint();

protected synchronized void paintComponent(Graphics gc) {
Dimension d = getSize();
gc.clearRect(0, 0, d.width, d.height);
if (tmpChar[0] == 0)
return;
int charWidth = fm.charWidth(tmpChar[0]);
gc.drawChars(tmpChar, 0, 1,

curX++, fontHeight);

public void run() {
while (!done) {
repaint();
try {
Thread.sleep(100);
} catch (InterruptedException ie) {

return;

public void setDone(boolean b) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

done = b;

This example has multiple threads. The most obvious is the one that we created and which executes the run() method.
That thread is specifically created to wake up every 0.1 seconds to send a repaint request to the system. To fulfill the
repaint request, the system—at a later time and in a different thread (the event-dispatching thread, to be precise)—
calls the paintComponent() method to adjust and redraw the canvas. This constant adjustment and redrawing is what is
seen as animation by the user.

There is no race condition between these threads since no data in this object is shared between them. However, as we
mentioned at the end of the last chapter, other threads invoke methods of this object. For example, the newCharacter()
method is called from the random character-generating thread (a character source) whenever the character to be typed
changes.

In this case, there is a race condition. The thread that calls the newCharacter() method is accessing the same data as the
thread that calls the paintComponent() method. The random character-generating thread may change the character while
the event-dispatching thread is using it. Both threads are also changing the X location that specifies where the
character is to be drawn.

A race condition exists because the paintComponent() and newCharacter() methods are not atomic. It is possible for the
newCharacter() method to change the values of the tmpChar and curX variables while the paintComponent() method is using
them. Or for the newCharacter() and paintComponent() methods to leave the curX variable in a state that depends on which
individual instructions of the two threads are executed first. We examine race conditions in more detail later; for now,
we just have to understand that race conditions can generate different results, including unexpected results, that are
dependent on execution order.

Definition: Atomic

The term atomic is related to the atom, once considered the smallest possible unit of matter, unable to
be broken into separate parts. When computer code is considered atomic, it cannot be interrupted during
its execution. This can either be accomplished in hardware or simulated in software. Generally, atomic
instructions are provided in hardware and are used to implement atomic methods in software.

In our case, we define atomic code as code that can't be found in an intermediate state. In our animated
canvas example, if the acts of "resetting the variable" and "redrawing one frame of the animation" were
atomic, it would not be possible to set the variable at the very moment that the character is being
animated. The animation thread also couldn't find the variables in an intermediate state.

The Java specification provides certain mechanisms that deal specifically with this problem. The Java language provides
the synchronized keyword; in comparison with other threading systems, this keyword allows the programmer access to a
resource that is very similar to a mutex lock. For our purposes, it simply prevents two or more threads from calling the
methods of the same object at the same time.

Definition: Mutex Lock

A mutex lock is also known as a mutually exclusive lock. This type of lock is provided by many threading
systems as a means of synchronization. Only one thread can grab a mutex at a time: if two threads try

to grab a mutex, only one succeeds. The other thread has to wait until the first thread releases the lock
before it can grab the lock and continue operation.

In Java, every object has an associated lock. When a method is declared synchronized, the executing
thread must grab the lock associated with the object before it can continue. Upon completion of the
method, the lock is automatically released.

By declaring the newCharacter() and paintComponent() methods synchronized, we eliminate the race condition. If one
thread wants to call one of these methods while another thread is already executing one of them, the second thread
must wait: the first thread gets to complete execution of its method before the second thread can execute its method.
Since only one thread gets to call either method at a time, only one thread at a time accesses the data.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Under the covers, the concept of synchronization is simple: when a method is declared synchronized, the thread that
wants to execute the method must acquire a token, which we call a lock. Once the method has acquired (or checked
out or grabbed) this lock, it executes the method and releases (or returns) the lock. No matter how the method returns
—including via an exception—the lock is released. There is only one lock per object, so if two separate threads try to
call synchronized methods of the same object, only one can execute the method immediately; the other has to wait
until the first thread releases the lock before it can execute the method. -

= _ <omomw-_______________ =

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[« T T TR - |
3.2 The Volatile Keyword

There is still one more threading issue in this example, and it has to do with the setDone() method. This method is called
from the event-dispatching thread when the Stop button is pressed; it is called by an event handler (an actionPerformed()
method) that is defined as an inner class to the SwingTypeTester class. The issue here is that this method is executed by
the event-dispatching thread and changes data that is being used by another thread: the done flag, which is accessed
by the thread of the AnimatedDisplayCanvas class.

So, can't we just synchronize the two methods, just as we did previously? Yes and no. Yes, Java's synchronized keyword
allows this problem to be fixed. But no, the techniques that we have learned so far will not work. The reason has to do
with the run() method. If we synchronized both the run() and setDone() methods, how would the setDone() method ever
execute? The run() method does not exit until the done flag is set, but the done flag can't be set because the setDone()
method can't execute until the run() method completes.

Definition: Scope of a Lock

The scope of a lock is defined as the period of time between when the lock is grabbed and released. In
our examples so far, we have used only synchronized methods; this means that the scope of these locks
is the period of time it takes to execute the methods. This is referred to as method scope.

Later in this chapter, we'll examine locks that apply to any block of code inside a method or that can be
explicitly grabbed and released; these locks have a different scope. We'll examine this concept of scope
as locks of various types are introduced.

The problem at this point relates to the scope of the lock: the scope of the run() method is too large. By synchronizing
the run() method, the lock is grabbed and never released. There is a way to shrink the scope of a lock by synchronizing
only the portion of the run() method that protects the done flag (which we examine later in this chapter). However, there
is @ more elegant solution in this case.

The setDone() method performs only one operation with the done flag: it stores a value into the flag. The run() method
also performs one operation with the done flag: it reads the value during each iteration of the loop. Furthermore, it does
not matter if the value changes during the iteration of these methods, as each loop must complete anyway.

The issue here is that we potentially have a race condition because one piece of data is being shared between two
different threads. In our first example, the race condition came about because the threads were accessing multiple
pieces of data and there was no way to update all of them atomically without using the synchronized keyword. When only
a single piece of data is involved, there is a different solution.

Java specifies that basic loading and storing of variables (except for long and double variables) is atomic. That means
the value of the variable can't be found in an interim state during the store, nor can it be changed in the middle of
loading the variable to a register. The setDone() method has only one store operation; therefore, it is atomic. The run()
method has only one read operation. Since the rest of the run() method does not depend on the value of the variable
remaining constant, the race condition should not exist in this case.

Unfortunately, Java's memory model is a bit more complex. Threads are allowed to hold the values of variables in local
memory (e.g., in @ machine register). In that case, when one thread changes the value of the variable, another thread
may not see the changed variable. This is particularly true in loops that are controlled by a variable (like the done flag
that we are using to terminate the thread): the looping thread may have already loaded the value of the variable into a
register and does not necessarily notice when another thread changes the variable.

One way to solve this problem is to provide setter and getter methods for the variable. We can then simply synchronize
access by using the synchronized keyword on these methods. This works because acquiring a synchronization lock means
that all temporary values stored in registers are flushed to main memory. However, Java provides a more elegant
solution: the volatile keyword. If a variable is marked as volatile, every time the variable is used it must be read from
main memory. Similarly, every time the variable is written, the value must be stored in main memory. Since these
operations are atomic, we can avoid the race condition in our example by marking our done flag as volatile.

In most releases of the virtual machine prior to JDK 1.2, the actual implementation of Java's memory model made
using volatile variables a moot point: variables were always read from main memory. In subsequent iterations of Java,
up to and including J2SE 5.0, implementations of virtual machines became more sophisticated and introduced new
memory models and optimizations: this trend is expected to continue in future versions of Java. With all modern virtual
machine implementations, developers can not assume that variables will be accessed directly from main memory.

So why is volatile necessary? Or even useful? Volatile variables solve only the problem introduced by Java's memory
model. They can be used only when the operations that use the variable are atomic, meaning the methods that access
the variable must use only a single load or store. If the method has other code, that code may not depend on the
variable changing its value during its operation. For example, operations like increment and decrement (e.g., ++ and --)
can't be used on a volatile variable because these operations are syntactic sugar for a load, change, and a store.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As we mentioned, we could have solved this problem by using synchronized setter and getter methods to access the
variable. However, that would be fairly complex. We must invoke another method, including setting up parameters and
the return variable. We must grab and release the lock necessary to invoke the method. And all for a single line of
code, with one atomic operation, that is called many times within a loop. The concept of using a done flag is common
enough that we can make a very strong case for the volatile keyword.

The requirements of using volatile variables seem overly restrictive. Are they really important? This question can lead to
an unending debate. For now, it is better to think of the volatile keyword as a way to force the virtual machine not to
make temporary copies of a variable. While we can agree that you might not use these types of variables in many
cases, they are an option during program design. In Chapter 5, we examine similar variables (atomic variables) that are
less restrictive: variables that are not only atomic but can be built on using programming techniques. This allows us to
build complex atomic functionality.

How does volatile work with arrays? Declaring an array volatile makes the array reference itself volatile. The elements
within the array are not volatile; the virtual machine may still store copies of individual elements in local registers.
There is no way to specify that the elements of an array should be treated as volatile. Consequently, if multiple threads
are going to access array elements, they must use synchronization in order to protect the data. Atomic variables can

also help in this situation.
| FREY < Day Day Up > HEST o |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[awrmev =3

3.3 More on Race Conditions

Let's examine a more complex example; so far, we have looked at simple data interaction used either for loop control
or for redrawing. In this next iteration of our typing game, we share useful data between the threads in order to
calculate additional data needed by the application.

Our application has a display component that presents random numbers and letters and a component that shows what
the user typed. While there are data synchronization issues between the threads of this example, there is little
interaction between these two actions: the act of typing a letter does not depend on the animation letter that is shown.
But now we will develop a scoring system. Users see feedback on whether they correctly typed what was presented.
Our new code must make this comparison, and it must make sure that no race condition exists when comparing the
data.

To accomplish this, we will introduce a new component, one that displays the user's score, which is based on the
number of correct and incorrect responses:

package javathreads.examples.ch03.examplel;

import javax.swing.*;
import java.awt.event.*;

import javathreads.examples.ch03.*;
public class ScoreLabel extends JLabel implements CharacterListener {

private volatile int score = 0;
private int char2type = -1;

private CharacterSource generator = null, typist = null;

public ScoreLabel (CharacterSource generator, CharacterSource typist) {
this.generator = generator;

this.typist = typist;

if (generator != null)
generator.addCharacterListener(this);
if (typist != null)

typist.addCharacterListener(this);

public ScoreLabel () {

this(null, null);

public synchronized void resetGenerator(CharacterSource newGenerator) {
if (generator != null)

generator.removeCharacterListener(this);

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

generator = newGenerator;
if (generator '= null)

generator.addCharacterListener(this);

public synchronized void resetTypist(CharacterSource newTypist) {
if (typist != null)
typist.removeCharacterListener(this);
typist = newTypist;
if (typist != null)

typist.addCharacterListener(this);

public synchronized void resetScore() {
score = 0;
char2type = -1;

setScore();

private synchronized void setScore() {
// This method will be explained later in chapter 7
SwingUtilities.invokeLater(new Runnable() {
public void run() {

setText(Integer.toString(score));

n

public synchronized void newCharacter(CharacterEvent ce) {
// Previous character not typed correctly: 1-point penalty
if (ce.source == generator) {
if (char2type != -1) {
score--;
setScore();
b

char2type = ce.character;

// If character is extraneous: 1-point penalty

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// If character does not match: 1-point penalty
else {
if (char2type != ce.character) {
score--;
} else {
score++;
char2type = -1;

¥

setScore();

The heart of this class is the newCharacter() method, which is called from multiple character sources. It is called, at
random times, by the source (and thread) that generates random characters. It is also called by a character source
every time the user types a character (from the event dispatching thread). In our simple scoring system, we increment
the score every time a character is entered correctly and decrement the score every time a character is entered
incorrectly. We also penalize the user for entering the same correct character more than once or for not entering the
correct character in time.

Interestingly, we don't actually need to know which threads call this method (or the other methods that access the
same data). The conditional check in the method is used to find out which source sent the character—not which thread.
In terms of threads, we just need to understand that this and other methods may be called by different threads,
potentially at the same time. We need to understand what is being shared between the different methods—or even the
same method if they are called by different threads. For this class, the actual score, the character that needs to be
typed, and a few variables that hold the character sources for registration purposes comprise the shared data. Solving
the race conditions means synchronizing this data at the correct scope.

In this case, synchronizing at the method level solves the problem, and making the variables volatile would not solve
the problem. Since it is easier to understand the problem by examining a failure case, let's quickly examine one such
case: what could happen if the newCharacter() method were not synchronized. Note that this is only one case of many in
which incorrect synchronization would lead to incorrect behavior in this class.

® The user types a character, which happens to be correct. The event-dispatching thread calls the newCharacter()
method, which routes to the else statement because the source is the typist. The character is determined to be
correct and the score is incremented. However, before the char2type variable can be set to -1, indicating that the
correct character has been typed, another thread starts to run.

® The random character source calls the newCharacter() method, which routes to the if statement. Since the
char2type variable is not set to -1, the score is decremented as a penalty for failure to type the character
correctly.

® The random character thread stores the new character in the char2type variable, the score is updated (via the
setScore() method), and the method returns.

® The first thread sets the char2type variable to -1, updates the score, and returns from the method.

This case is dependent on a scheduling change occurring at an unfortunate time. The key to understanding this
behavior is to realize that when multiple threads are executing their own list of instructions, the operating system may
switch from one list of statements (i.e., one thread) to another list of statements (i.e., a different thread) at any
arbitrary point in time. In reality, a scheduling change may occur at more complicated locations, such as in the middle
of an instruction that is not atomic. In that case, the symptoms may be very complicated. Even with this simple failure
case, we have many symptoms of failure:

® Since the score is both incremented and decremented, the user is not given credit for typing the character
correctly.

® The new character from the random character generator is lost. It is actually set correctly, but the event-
dispatching thread incorrectly deletes it as soon as that thread is allowed to execute.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® The character is lost only to the scoring component, not to the animation component. The user is correctly
informed of the new character to be typed but is penalized again when the new character is typed correctly.

The resetScore() method also accesses the same common data and therefore also needs to be synchronized. You may
think this is not necessary since the method is called only when the game is restarted: the other threads are not
running then. The resetScore(), resetGenerator(), and resetTypist() methods are all administrative methods: they are all
probably called only once and only during initialization. In this case, they are being synchronized to make the class
threadsafe—allowing the methods to be called at any time—should the programmer decide to use these methods later
in an unexpected manner.

This is an important point in designing classes for use in a multithreaded environment. Even if you believe that a race
condition cannot occur based on the current use of the class, defensive programming principles would argue that you
make the entire class safe for execution by multiple threads.

The setScore() method illustrates a few interesting points. First, the implemenation of the setScore() method uses a utility
method (the invokelater() method) because of threading issues related to Swing. Second, the setScore() method requires
that the score variable be declared volatile (again because of Swing-related threading issues). The implementation of
this method is explained in Chapter 7, but for now, we'll just point out that the method allows Swing code (e.g., setting
the value of the label in this example) to be executed in a threadsafe manner.

When Is a Race Condition a Problem?

A race condition occurs when the order of execution of two or more threads may affect some variable or
outcome in the program. It may turn out that all the different possible orders of thread execution have
the same final effect on the program: the effect caused by the race condition may be insignificant and
may not even be relevant. For example, if the animation thread draws the previous character instead of
the new character, it is not a problem if the character has already been typed since the new character is
drawn in the next repaint iteration. Alternatively, the timing of the threading system may be such that
the race condition never manifests itself, despite the fact that it exists in the code.

Race conditions can be considered harmless (or benign) if you can prove that the result of the race
condition is always the same. This is a common technique in some of Java's core classes (most
commonly, the atomic classes discussed in Chapter 5); we'll see a few examples of it in this book. But in
general, a race condition is a problem that is waiting to happen. Simple changes in the algorithm can
cause race conditions to manifest themselves in problematic ways. Since different virtual machines have
different ordering of thread execution, the developer should never let a race condition exist even if it is
currently not causing a problem on the development system.

At this point, we may have introduced more questions than answers. So before we continue, let's try to answer some of
those questions.

How can synchronizing two different methods prevent multiple threads calling those methods from stepping on each
other? As stated earlier, synchronizing a method has the effect of serializing access to the method. This means that it is
not possible to execute the same method in one thread while the method is already running in another thread. The
implementation of this mechanism is done by a lock that is assigned to the object itself. The reason another thread
cannot execute the same method at the same time is that the method requires the lock that is already held by the first
thread. If two different synchronized methods of the same object are called, they also behave in the same fashion
because they both require the lock of the same object, and it is not possible for both methods to grab the lock at the
same time. In other words, even if two or more methods are involved, they are never run in parallel in separate
threads. This is illustrated in Figure 3-1. When thread 1 and thread 2 attempt to acquire the same lock (L1), thread 2
must wait until thread 1 releases the lock before it can continue to execute.

Figure 3-1. Acquiring and releasing a lock

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The point to remember here is that the lock is based on a specific instance of an object and not on any particular
method or class. Assume that we have two different scoring components that score based on different formulas; we'll
call these two ScorelLabel objects called objectA and objectB. One thread can execute the objectA.newCharacter() method
while another thread executes the objectB.resetGenerator() method. These two methods can execute in parallel because
the call to the objectA.newCharacter() method grabs the lock associated with instance variable objectA, and the call to the
objectB.resetGenerator() method grabs the object lock associated with instance variable objectB. Since the two objects are
different objects, two different locks are grabbed by the two threads: neither thread has to wait for the other.

How does a synchronized method behave in conjunction with an unsynchronized method? To understand this, we must
remember that all synchronizing does is to grab an object lock. This, in turn, provides the means of allowing only one
synchronized method to run at a time, which in turn provides the data protection that solves the race condition. Simply
put, a synchronized method tries to grab the object lock, and an unsynchronized method doesn't. This means that
unsynchronized methods can execute at any time, by any thread, regardless of whether a synchronized method is
currently running. At any given moment on any given object, any number of unsynchronized methods can be executing,
but only one synchronized method can be executing.

What does synchronizing static methods do? And how does it work? Throughout this discussion, we keep talking about
"obtaining the object lock." But what about static methods? When a synchronized static method is called, which object
are we referring to? A static method does not have a concept of the this reference. It is not possible to obtain the object
lock of an object that does not exist. So how does synchronization of static methods work? To answer this question, we
will introduce the concept of a class lock. Just as there is an object lock that can be obtained for each instance of a class
(i.e., each object), there is a lock that can be obtained for each class. We refer to this as the class lock. In terms of
implementation, there is no such thing as a class lock, but it is a useful concept to help us understand how all this
works.

When a static synchronized method is called, the program obtains the class lock before calling the method. This
mechanism is identical to the case in which the method is not static; it is just a different lock. And this lock is used
solely for static methods. Apart from the functional relationship between the two locks, they are not operationally
related at all. These are two distinct locks. The class lock can be grabbed and released independently of the object lock.
If a nonstatic synchronized method calls a static synchronized method, it acquires both locks.

As we mentioned, a class lock does not actually exist. The class lock is the object lock of the Class object that models
the class. Since there is only one Class object per class, using this object achieves the synchronization for static
methods. For the developer, it is best envisioned as follows. Only one thread can execute a synchronized static method
per class. Only one thread per instance of the class can execute a nonstatic synchronized method. Any number of
threads can execute nonsynchronized methods — static or otherwise.

We have introduced the concept of "lock scope" but only touched on avoiding a scope that is too large by locking only
specific methods. What if we need to lock specific blocks of code? What if we need to lock only a few lines of code? Do
we have to create private methods that can contain as little as one line of code, just to keep one line of code atomic?

What if we want to do other tasks if we can't obtain the lock? What if we only want to wait for a specific period of time
for a lock? What if we want locks issued in a fashion that is fair? What does it mean to be fair? We answer these

ﬂuestions in the remainder of this chapter. .
| rEEY < Day Day Up > HEAT i |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= =3
3.4 Explicit Locking

The purpose of the synchronized keyword is to provide the ability to allow serialized entrance to synchronized methods in
an object. Although almost all the needs of data protection can be accomplished with this keyword, it is too primitive
when the need for complex synchronization arises. More complex cases can be handled by using classes that achieve
similar functionality as the synchronized keyword. These classes are available beginning in J2SE 5.0, but alternatives for
use with earlier versions of Java are shown in Appendix A.

The synchronization tools in J2SE 5.0 implement a common interface: the Lock interface. For now, the two methods of
this interface that are important to us are lock() and unlock(). Using the Lock interface is similar to using the synchronized
keyword: we call the lock() method at the start of the method and call the unlock() method at the end of the method,
and we've effectively synchronized the method.

The lock() method grabs the lock. The difference is that the lock can now be more easily envisioned: we now have an
actual object that represents the lock. This object can be stored, passed around, and even discarded. As before, if
another thread owns the lock, a thread that attempts to acquire the lock waits until the other thread calls the unlock()
method of the lock. Once that happens, the waiting thread grabs the lock and returns from the lock() method. If
another thread then wants the lock, it has to wait until the current thread calls the unlock() method. Let's implement our
scoring example using this new tool:

package javathreads.examples.ch03.example2;

import java.util.concurrent.*;

import java.util.concurrent.locks.*;
public class ScoreLabel extends JLabel implements CharacterListener {
private Lock scoreLock = new ReentrantLock();

public void resetGenerator(CharacterSource newGenerator) {
try {
scoreLock.lock();
if (generator != null)

generator.removeCharacterListener(this);

generator = newGenerator;
if (generator != null)
generator.addCharacterListener(this);
} finally {

scoreLock.unlock();

public void resetTypist(CharacterSource newTypist) {
try {
scoreLock.lock();

if (typist != null)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

typist.removeCharacterListener(this);

typist = newTypist;
if (typist = null)
typist.addCharacterListener(this);
} finally {

scoreLock.unlock();

public void resetScore() {
try {
scoreLock.lock();
score = 0;
char2type = -1;
setScore();
} finally {

scoreLock.unlock();

private void setScore() {
// This method will be explained later in chapter 7
SwingUtilities.invokeLater(new Runnable() {
public void run() {

setText(Integer.toString(score));

A

public void newCharacter(CharacterEvent ce) {
try {
scoreLock.lock();
// Previous character not typed correctly: 1-point penalty
if (ce.source == generator) {
if (char2type !=-1){
score--;

setScore();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

char2type = ce.character;

// If character is extraneous: 1-point penalty
// If character does not match: 1-point penalty
else {
if (char2type != ce.character) {
score--;
}else {
score++;
char2type = -1;
b

setScore();
b

} finally {

scoreLock.unlock();

This new version of the ScoreLabel class is very similar to the previous version. The implementation now declares an
object that implements the Lock interface: the scoreLock object which we'll now use to synchronize the methods. We
instantiate an instance of the ReentrantLock class, a class that implements the Lock interface. Instead of declaring
methods as synchronized, those methods now call the lock() method on entry and the unlock() method on exit. Finally,
the method bodies are now placed in try/finally clauses to handle possible runtime exceptions. With the synchronized
keyword, locks are automatically released when the method exits. Using locks, we need to call the unlock() method: by
placing the unlock() method call in a finally clause, we guarantee the method is called when the method exits, even if an
unexpected runtime exception is thrown.

In terms of functionality, this example is exactly the same as the previous example. In terms of possible enhancements,
there is a difference. The difference is that by using a lock class, we can now utilize other functionality—functionality, as
we shall see, that can't be accomplished by just using the synchronized keyword.

Using a lock class, we can now grab and release a lock whenever desired. We can test conditions before grabbing or
releasing the lock. And since the lock is no longer attached to the object whose method is being called, it is now
possible for two objects to share the same lock. It is also possible for one object to have multiple locks. Locks can be

attached to data, groups of data, or anything else, instead of just the objects that contain the executing methods. .
[_* FREW < Day Day Up > HEST o |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= owoayw-_ @y
3.5 Lock Scope

Since we now have t he lock-related classes available in our arsenal, many of our earlier questions can now be
addressed. Let's begin looking at the issue of lock scope by modifying our ScoreLabel class:

package javathreads.examples.ch03.example3;
public class ScoreLabel extends JLabel implements CharacterListener {

public void newCharacter(CharacterEvent ce) {
if (ce.source == generator) {
try {

scoreLock.lock();

// Previous character not typed correctly: 1-point penalty

if (char2type != -1) {
score--;
setScore();

i

char2type = ce.character;

} finally {

scoreLock.unlock();

b
// If character is extraneous: 1-point penalty
// If character does not match: 1-point penalty
else {
try {
scoreLock.lock();
if (char2type != ce.character) {
score--;
}else {
score++;
char2type = -1;
i

setScore();

} finally {

scoreLock.unlock();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Since the lock() and unlock() method calls are explicit, we can move them anywhere, establishing any lock scope, from a
single line of code to a scope that spans multiple methods and objects. By providing the means of specifying the scope
of the lock, we can now move time-consuming and threadsafe code outside of the lock scope. And we can now lock at a
scope that is specific to the program design instead of the object layout. In this example, we moved the source check
outside of the lock, and we also split the lock in two, one for each of the conditions.

3.5.1 Synchronized Blocks

It is possible for the synchronized keyword to lock a block of code within a method. It is also possible for the synchronized
keyword to specify the object whose lock is grabbed instead of using the lock of the object that contains the method.
Much of what we accomplish with the Lock interface can still be done with the synchronized keyword. It is possible to lock
at a scope that is smaller than a method, and it is possible to create an object just so that it can be used as an
synchronization object. We can implement our last example just by using the synchronized keyword:

package javathreads.examples.ch03.example4;

public class ScoreLabel extends JLabel implements CharacterListener {

// Definition for score lock deleted

public synchronized void resetGenerator(CharacterSource newGenerator) {

}

public synchronized void resetTypist(CharacterSource newTypist) {

¥

public synchronized void resetScore() {

¥

private synchronized void setScore() {

}
public void newCharacter(CharacterEvent ce) {
// Previous character not typed correctly: 1-point penalty
if (ce.source == generator) {
synchronized(this) {
if (char2type !=-1) {
score--;
setScore();
¥

char2type = ce.character;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

// If character is extraneous: 1-point penalty
// If character does not match: 1-point penalty
else {
synchronized(this) {
if (char2type != ce.character) {
score--;
}else {
score++;
char2type = -1;
b

setScore();

This syntax of the synchronized keyword requires an object whose lock is obtained. This is similar to our scoreLock object
in the previous example. For this example, we are locking with the same object that was used for the synchronization of
the method: the this object. Using this syntax, we can now lock individual lines of code instead of the whole method. We
can also share data across multiple objects by locking on other objects instead, such as the data object to be shared.

Synchronized Methods Versus Synchronized Blocks

It is possible to use only the synchronized block mechanism even when we need to synchronize the
whole method. For clarity in this book, we synchronize the whole method with the synchronized method
mechanism and use the synchronized block mechanism otherwise. It is the programmer's personal
preference to decide when to synchronize on a block of code and when to synchronize the whole method
— with the caveat that it's always better to establish as small a lock scope as possible.

= |
[_ PREW < Day Day Up > HEST # |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(e YT T - = |
3.6 Choosing a Locking Mechanism

If we compare our first implementation of the ScoreLabel class (using synchronized methods) to our second (using an
explicit lock), it's easy to conclude that using the explicit lock is not as easy as using the synchronized keyword. With the
keyword, we didn't need to create the lock object, we didn't need to call the lock object to grab and release the lock,
and we didn't need to worry about exceptions (therefore, we didn't need the try/finally clause). So, which technique
should you use? That is up to you as a developer. It is possible to use explicit locking for everything. It is possible to
code to just use the synchronized keyword. And it is possible to use a combination of both. For more complex thread
programming, however, relying solely on the synchronized keyword becomes very difficult, as we will see.

How are the lock classes related to static methods? For static methods, the explicit locks are actually simpler to
understand than the synchronized keyword. Lock objects are independent of the objects (and consequently, methods)
that use them. As far as lock objects are concerned, it doesn't matter if the method being executed is static or not. As
long as the method has a reference to the lock object, it can acquire the lock. For complex synchronization that involves
both static and nonstatic methods, it may be easier to use a lock object instead of the synchronized keyword.

Synchronizing entire methods is the simplest technique, but as we have already mentioned, it is possible that doing so
creates a lock whose scope is too large. This can cause many problems, including creating a deadlock situation (which
we examine later in this chapter). It may also be inefficient to hold a lock for the section of code where it is not actually
needed.

Using the synchronized block mechanism may also be a problem if too many objects are involved. As we shall see, it is
also possible to have a deadlock condition if we require too many locks to be acquired. There is also a slight overhead in
grabbing and releasing the lock, so it may be inefficient to free a lock just to grab it again a few lines of code later.
Synchronized blocks also cannot establish a lock scope that spans multiple methods.

In the end, which technique to use is often a matter of personal preference. In this book, we use both techniques. We
tend to favor using explicit locks in the later sections of this book, mainly because we use functionality that the Lock
interface provides.

3.6.1 The Lock Interface

Let's look a little deeper into the Lock interface:

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long time, TimeUnit unit)
throws InterruptedException;
void unlock();

Condition newCondition();

What if we want to do other tasks if we can't obtain the lock? The Lock interface provides an option to try to obtain the
lock: the tryLock() method. It is similar to the lock() method in that if it is successful, it grabs the lock. Unlike the lock()
method, if the lock is not available, it does not wait. Instead, it returns with a boolean value of false. If the lock is
obtained, the return value is a boolean value of true. By inspecting the return value, we can route the thread to
separate tasks: if the value returned is false, for instance, we can route the thread to perform alternative tasks that do
not require obtaining the lock.

What if we want to wait only for a specific period of time for a lock? The tryLock() method is overloaded with a version
that lets you specify the maximum time to wait. This method takes two parameters: one that specifies the number of
time units and a TimeUnit object that specifies how the first parameter should be interpreted. For example, to specify 50
milliseconds, the long value is set to 50 and the TimeUnit value is set to TimeUnit.MILLISECONDS. New in J2SE 5.0, the
TimeUnit class specifies time in units that are easier to understand. In previous versions of Java, most time-based
functionality is either specified in nanoseconds or milliseconds (depending on the method).

This method is similar to the lock() method in that it waits for the lock, but only for a specified amount of time. It is
similar to the tryLock() method in that it may return without acquiring the lock: it returns with a value of true if the lock
is acquired and false if not.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

What are the other methods of the Lock interface used for? We address them later in this book, starting in Chapter 4.
For now, we can already see that the functionality offered by the Lock interface exceeds the functionality offered by the
synchronized keyword. By using explicit locks, the developer is free to address issues specific to his program instead of

belng swamped with concurrency issues. .
[_* FREW < Day Day Up > HEST o |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= |
[_ prm— < Day Day Up > HEHT B |

3.7 Nested Locks

Our implementation of the newCharacter() method could be refactored into multiple methods. This isolates the generator
and typist logic into separate methods, making the code easier to maintain.

package javathreads.examples.ch03.example5;

private synchronized void newGeneratorCharacter(int c) {
if (char2type '=-1){
score--;
setScore();

b
char2type = c;

private synchronized void newTypistCharacter(int c) {
if (char2type !=c) {
score--;
Yelse {
score++;
char2type = -1;
¥

setScore();

public synchronized void newCharacter(CharacterEvent ce) {
// Previous character not typed correctly: 1-point penalty
if (ce.source == generator) {

newGeneratorCharacter(ce.character);

// If character is extraneous: 1-point penalty
// If character does not match: 1-point penalty
else {

newTypistCharacter(ce.character);

http://www.colorpilot