This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I l@ve RuBoard [T b

Learning Python
Mark Lutz

David Ascher
Publisher: O'Reilly

First Edition April 1999
ISBN: 1-56592-464-9, 384 pages

Learning Python is an introduction to the increasingly popular Python programming language—an
interpreted, interactive, object-oriented, and portable scripting language. This book thoroughly introduces
the elements of Python: types, operators, statements, classes, functions, modules, and exceptions. It also
demonstrates how to perform common programming tasks and write real applications.

| l@ve RuBoard TRt


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Learning Python
Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol,
CA 95472.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial
caps. The use of the wood rat image in association with learning Python is
a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard

Preface
About This Book
Font Conventions
Al t the P in This Bool
How to Contact Us

Acknowledgments

I l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
About This Book

This book provides a quick introduction to the Python programming language. Python
is a popular object-oriented language used for both standalone programs and
scripting applications in a variety of domains. It's free, portable, powerful, and
remarkably easy to use. Whether you're new to programming or a professional
developer, this book's goal is to bring you up to speed on the core Python language in
a hurry. Before we jump into details, we'd like to use this preface to say a few words
about the book's design.

This Book's Scope

Although this text covers the essentials of the Python language, we've kept its scope
narrow in the interest of speed and size. Put another way, the presentation is focused
on core concepts and is sometimes deliberately simplistic. Because of that, this book
is probably best described as both an introduction and a stepping stone to more
advanced and complete texts.

For example, we won't say anything about Python/C integration—a big, complicated
topic, with lots of big, complicated examples, which is nevertheless central to many
Python-based systems. We also won't talk much about the Python community,
Python's history, or some of the philosophies underlying Python development. And
popular Python applications such as GUIs, system tools, network scripting, and
numeric programming get only a short survey at the end (if they are mentioned at all).
Naturally, this misses some of the big picture.

By and large, Python is about raising the quality bar a few notches in the scripting
world. Some of its ideas require more context than can be provided here, and we'd be
remiss if we didn't recommend further study after you finish this text. We hope that
most readers of this book will eventually go on to gain a deeper and more complete
understanding, from texts such as O'Reilly's Programming Python. The rest of the
Python story requires studying examples that are more realistic than there is space
for here.(11

[1] See http://www.ora.com and http://www.python.org for details on supplemental Python texts. Programming
Python was written by one of this book's authors. As its title implies, it discusses practical programming issues in
detail.

But despite its limited scope (and perhaps because of it), we think you'll find this to be
a great first book on Python. You'll learn everything you need to get started writing
useful standalone Python programs and scripts. By the time you've finished this book,
you will have learned not only the language itself, but also how to apply it to day-to-
day tasks. And you'll be equipped to tackle more advanced topics as they come your
way.

This Book's Style
Much of this book is based on training materials developed for a three-day hands-on

Python course. You'll find exercises at the end of most chapters, with solutions in
Appendix C. The exercises are designed to get you coding right away, and are


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

usually one of the highlights of the course. We strongly recommend working through
the exercises along the way, not only to gain Python programming experience, but
also because some exercises raise issues not covered elsewhere in the text. The
solutions at the end should help if you get stuck (we encourage you to cheat as much
and as often as you like). Naturally, you'll need to install Python to run the exercises;
more on this in a moment.

Because this text is designed to introduce language basics quickly, we've organized
the presentation by major language features, not examples. We'll take a bottom-up
approach here: from built-in object types, to statements, to program units, and so on
(in fact, if you've seen Appendix E in Programming Python, parts of this book may stir
up feelings of déja vu). Each chapter is fairly self-contained, but later chapters use
ideas introduced in earlier ones (e.g., by the time we get to classes, we'll assume you
know how to write functions), so a linear reading probably makes the most sense.
From a broader perspective, this book is divided into three sections:

Part I

This part of the book presents the Python language, in a bottom-up fashion. It's
organized with one chapter per major language feature—types, functions, and so
forth—and most of the examples are small and self-contained (some might also call
the examples in this section artificial, but they illustrate the points we're out to make).
This section represents the bulk of the text, which tells you something about the focus
of the book.

Chapter 1

We begin with a quick introduction to Python and then look at how to run Python
programs so you can get started coding examples and exercises immediately.

Chapter 2

Next, we explore Python's major built-in object types: numbers, lists,
dictionaries, and so on. You can get a lot done in Python with these tools alone.

Chapter 3

The next chapter moves on to introduce Python's statements—the code you
type to create and process objects in Python.

Chapter 4

This chapter begins our look at Python's higher-level program structure tools.
Functions turn out to be a simple way to package code for reuse.

Chapter 5

Python modules let you organize statements and functions into larger
components, and this chapter illustrates how to create, use, and reload modules
on the fly.

Chapter 6


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Here we explore Python's object-oriented programming (OOP) tool, the class.
As you'll see, OOP in Python is mostly about looking up names in linked
objects.

Chapter 7

We wrap up the section with a look at Python's exception handling model and
statements. This comes last, because exceptions can be classes if you want
them to be.

Part 11

In this section, we sample Python's built-in tools, and put them to use in a more or
less random collection of small example programs.

Chapter 8Built-in Tools

This chapter presents a selection of the modules and functions that are included
in the default Python installation. By definition, they comprise the minimum set
of modules you can reasonably expect any Python user to have access to.
Knowing the contents of this standard toolset will likely save you weeks of work.

Chapter 9Common Tasks in Python

This chapter presents a few nontrivial programs. By building on the language
core explained in Part I and the built-in tools described in Chapter 8, we
present many small but useful programs that show how to put it all together. We
cover three areas that are of interest to most Python users: basic tasks, text
processing, and system interfaces.

Chapter 10Frameworks and Applications

This final chapter shows how real applications can be built, leveraging on more
specialized libraries that are either part of the standard Python distribution or
freely available from third parties. The programs in this chapter are the most
complex, but also the most satisfying to work through. We close with a brief
discussion of JPython, the Java port of Python, and a substantial JPython
program.

Part 111

The book ends with three appendixes that list Python resources on the Net
(Appendix A), give platform-specific tips for using Python on Unix, Windows, and
Macintosh-based machines (Appendix B), and provide solutions to exercises that
appear at the end of chapters (Appendix C). Note: the index can be used to hunt for
details, but there are no reference appendixes in this book per se. The Python Pocket
Reference from O'Reilly (http://www.ora.com), as well as the free Python
reference manuals maintained at http://www.python.org, will fill in the details.

Prerequisites


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

There are none to speak of, really. This is an introductory-level book. It may not be an
ideal text for someone who has never touched a computer before (for instance, we're
not going to spend a lot of time explaining what a computer is), but we haven't made
many assumptions about your programming background or education. On the other
hand, we won't insult readers by assuming they are "dummies" either (whatever that
means); it's easy to do useful things in Python, and we hope to show you how. The
text occasionally contrasts Python with languages such as C, C++, and Pascal, but
you can safely ignore these comparisons if you haven't used such languages in the
past.

One thing we should probably mention up front: Python's creator, Guido van Rossum,
named it after the BBC comedy series Monty Python's Flying Circus. Because of this
legacy, many of the examples in this book use references to that show. For instance,
the traditional "foo" and "bar" become "spam" and "eggs" in the Python world. You
don't need to be familiar with the series to make sense of the examples (symbols are
symbols), but it can't hurt.

Book Updates

Improvements happen (and so do mis®H*H”H typos). Updates, supplements, and
corrections for this book will be maintained (or referenced) on the Web, at one of the
following sites:

e http://www.oreilly.com (O'Reilly's site)

e http://rmi.net/~lutz (Mark's site)

e http://starship.skyport.net/~da (David's site)
e http://www.python.org (Python's main site)

If we could be more clairvoyant, we would, but the Web tends to change faster than
books.

I l@ve RuBoard m


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
Font Conventions

This book uses the following typographical conventions:
Italic

For email addresses, filenames, URLs, for emphasizing new terms when first
introduced, and for some comments within code sections.

Constant width

To show the contents of files or the output from commands and to designate
modules, methods, statements, and commands.

Constant width bold
In code sections to show commands or text that would be typed.
Constant width italic

To mark replaceables in code sections.

e This icon designates a note, which is an important aside to the
- 4 nearby text.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
About the Programs in This Book

This book, and all the program examples in it, are based on Python Version 1.5. But
since we'll stick to the core language here, you can be fairly sure that most of what we
have to say won't change very much in later releases of Python.21 Most of this book
applies to earlier Python versions too, except when it doesn't; naturally, if you try
using extensions added after the release you've got, all bets are off. As a rule of
thumb, the latest Python is the best Python. Because this book focuses on the core
language, most of it also applies to JPython, the new Java-based Python
implementation.

(21 well, probably. Judging from how Programming Python has stayed current over the last few years, the language
itself changes very little over time, and when it does, it's still usually backward compatible with earlier releases (Guido
adds things, but rarely changes things that are already there). Peripheral tools such as the Python/C API and the
Tkinter GUI interface seem to be more prone to change, but we'll mostly ignore them here. Still, you should always
check the release notes of later versions to see what's new.

Source code for the book's examples, as well as exercise solutions, can be fetched

from O'Reilly's web site http://www.oreilly.com/catalog/Ipython/.

So how do you run the examples? We'll get into start-up details in a few pages, but
the first step is installing Python itself, unless it's already available on your machine.
You can always fetch the latest and greatest Python release from
http://www.python.org, Python's official web site. There, you'll find both prebuilt
Python executables (which you just unpack and run) and the full source-code
distribution (which you compile on your machine). You can also find Python on CD-
ROMs, such as those sold by Walnut Creek, supplied with Linux distributions, or
shipped with bigger Python books. Installation steps for both executable and source
forms are well documented, so we won't say much more about this beyond a cursory
overview in Chapter 1 (see Programming Python for install details).


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m Tt B
How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in United States or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or

request a catalog, send email to nuts@oreilly.com.

To ask technical questions or comment on the book, send email to:

1@ve Rugoard [«ermvious Pt


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Acknowledgments

We'd like to express our gratitude to all the people who played a part in developing
this book, but this is too short a book to list them all. But we'd like to give a special
thanks to our editor, Frank Willison, and O'Reilly in general, for supporting another
Python book. Thanks also to everyone who took part in the early review of this book
—Eric Raymond, Guido van Rossum, Just van Rossum, Andrew Kuchling, Dennis
Allison, Greg Ward, and Jennifer Tanksley. And for creating such an enjoyable and
useful language, we owe an especially large debt to Guido, and the rest of the Python
community; like most freeware systems, Python is the product of many heroic efforts.

Mark Also Says:

Since writing Programming Python, I've had the opportunity to travel around the
country teaching Python to beginners. Besides racking up frequent flyer miles, these
courses helped me refine the core language material you'll see in the first part of this
book. I'd like to thank the early students of my course, at Badger, Lawrence
Livermore, and Fermi Labs, in particular. Your feedback played a big role in shaping
my contributions to this text. | also want to give a special thanks to Softronex, for the
chance to teach Python in Puerto Rico this summer (a better perk would be hard to
imagine).

Finally, a few personal notes of thanks. To coauthor David Ascher, for his hard work
and patience on this project. To the people | worked with at Lockheed Martin while
writing this book, including my teammate Linda Cordova, to whom I've lost a bet or
two. To the late Carl Sagan, for inspiration. To Lao Tzu, for deep thoughts. To the
Denver Broncos, for winning the big one. And most of all, to my wife Lisa, and my kids
—a set which now consists of Michael, Samantha, and Roxanne—for tolerating yet
another book project. | owe the latter bunch a trip to Wally World.

November 1998

Longmont, Colorado
David Also Says:

In addition to the thanks listed above, I'd like to extend special thanks to several
people.

First, thanks to Mark Lutz for inviting me to work with him on this book and for
supporting my efforts as a Python trainer. Belated thank yous go to the Python folks
who encouraged me in my early days with the language and its tools, especially
Guido, Tim Peters, Don Beaudry, and Andrew Mullhaupt.

Like Mark, I've developed a course in which | teach Python and JPython. The
students in these courses have helped me identify the parts of Python that are the
trickiest to learn (luckily, they are rare), as well as remind me of the aspects of the
language that make it so pleasant to use. | thank them for their feedback. | would also
like to thank those who have given me the chance to develop these courses: Jim


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Anderson (Brown University), Cliff Dutton (then at Distributed Data Systems),
Geoffrey Philbrick (Hibbitt, Karlsson & Sorensen, Inc.), Paul Dubois (Lawrence
Livermore National Labs), and Ken Swisz (KLA-Tencor).

Thanks to my scientific advisors, Jim Anderson, Leslie Welch, and Norberto
Grzywacz, who have all kindly supported my efforts with Python in general and this
book in particular, not necessarily understanding why | was doing it but trusting me
nonetheless.

The first victims of my Python evangelization efforts deserve gold stars for tolerating
my most enthusiastic (some might say fanatical) early days: Thanassi Protopapas,
Gary Strangman, and Steven Finney. Thanassi also gave his typically useful
feedback on an early draft of the book.

Finally, thanks to my family: my parents JacSue and Philippe for always encouraging
me to do what | want to do; my brother lvan for reminding me of some of my early
encounters with programming; my wife Emily for her constant support and utter faith
that writing a book was something | could do. | thank our son Hugo for letting me use
the keyboard at least some of the time, and only learning how to turn the computer off
in the last phase of this project. He was three days old when | received the first email
from Mark about this book. He's eighteen months old now. It's been a great year and
a half.

To the reader of this book, | hope you enjoy the book and through it, the Python
language. Through Python, I've learned more than | ever thought I'd want to about
many aspects of computing that once seemed foreboding. My aim in helping write this
book was to allow others the same experience. If your aim in learning Python is to
work on a specific problem, | hope that Python becomes so transparent that it
becomes invisible, letting you focus your efforts on the issues you're dealing with. |
suspect, however, that at least a few readers will have the same reaction that | had
when discovering Python, which was to find in Python itself a world worth learning
more about. If that's the case for you, be aware that exploring Python is not
necessarily a short-term project. After countless hours, I'm still poking around, and
still having fun.

November 1998

San Francisco, California


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
Part I: The Core Language

In this first section, we study the Python language itself. We call this part
"The Core Language," because our focus will be on the essentials of
Python programming: its built-in types, statements, and tools for
packaging program components. By the time you finish reading this
section and working through its exercises, you'll be ready to write scripts
of your own.

We also use the word "Core" in the title on purpose, because this section
isn't an exhaustive treatment of every minute detail of the language. While
we may finesse an obscurity or two along the way, the basics you'll see
here should help you make sense of the exceptions when they pop up.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| |@ve RuBoard m m
Chapter 1. Getting Started

This chapter starts with a nontechnical introduction to Python and then takes a quick
look at ways to run Python programs. Its main goal is to get you set up to run Python
code on your own machine, so you can work along with the examples and exercises
in the later chapters. Along the way, we'll study the bare essentials of Python
configuration—just enough to get started. You don't have to work along with the book
on your own, but we strongly encourage it if possible. Even if you can't, this chapter
will be useful when you do start coding on your own.

We'll also take a quick first look at Python module files here. Most of the examples
you see early in the book are typed at Python's interactive interpreter command-line.
Code entered this way goes away as soon as you leave Python. If you want to save
your code in a file, you need to know a bit about Python modules, so module
fundamentals are introduced here. We'll save most module details for a later chapter.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
1.1 Why Python?

If you've bought this book, chances are you already know what Python is, and why it's
an important tool to learn. If not, you probably won't be sold on Python until you've
learned the language by reading the rest of this book. But before jumping into details,
we'd like to use a few pages to briefly introduce some of the main reasons behind
Python's popularity. (Even if you don't care for nontechnical overviews, your manager
might.)

1.1.1 An Executive Summary

Python is perhaps best described as an object-oriented scripting language: its design
mixes software engineering features of traditional languages with the usability of
scripting languages. But some of Python's best assets tell a more complete story.

1.1.1.1 It's object-oriented

Python is an object-oriented language, from the ground up. Its class model supports
advanced notions such as polymorphism, operator overloading, and multiple
inheritance; yet in the context of Python's dynamic typing, object-oriented
programming (OOP) is remarkably easy to apply. In fact, if you don't understand
these terms, you'll find they are much easier to learn with Python than with just about
any other OOP language available.

Besides serving as a powerful code structuring and reuse device, Python's OOP
nature makes it ideal as a scripting tool for object-oriented systems languages such
as C++ and Java. For example, with the appropriate glue code, Python programs can
subclass (specialize) classes implemented in C++ or Java. Of equal significance,
OOP is an option in Python; you can go far without having to become an object guru
all at once.

1.1.1.2 It's free

Python is freeware—something which has lately been come to be called open source
software. As with Tcl and Perl, you can get the entire system for free over the
Internet. There are no restrictions on copying it, embedding it in your systems, or
shipping it with your products. In fact, you can even sell Python, if you're so inclined.

But don't get the wrong idea: "free" doesn't mean "unsupported." On the contrary, the
Python online community responds to user queries with a speed that most
commercial software vendors would do well to notice. Moreover, because Python
comes with complete source code, it empowers developers and creates a large team
of implementation experts. Although studying or changing a programming language's
implementation isn't everyone's idea of fun, it's comforting to know that it's available
as a final resort and ultimate documentation source.

1.1.1.3 It's portable


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Python is written in portable ANSI C, and compiles and runs on virtually every major
platform in use today. For example, it runs on Unix systems, Linux, MS-DOS, MS-
Windows (95, 98, NT), Macintosh, Amiga, Be-OS, OS/2, VMS, QNX, and more.
Further, Python programs are automatically compiled to portable bytecode, which
runs the same on any platform with a compatible version of Python installed (more on
this in Section 1.1.1.6).

What that means is that Python programs that use the core language run the same
on Unix, MS-Windows, and any other system with a Python interpreter. Most Python
ports also contain platform-specific extensions (e.g., COM support on MS-Windows),
but the core Python language and libraries work the same everywhere.

Python also includes a standard interface to the Tk GUI system called Tkinter, which
is portable to the X Window System, MS Windows, and the Macintosh, and now
provides a native look-and-feel on each platform. By using Python's Tkinter API,
Python programs can implement full-featured graphical user interfaces that run on all
major GUI platforms without program changes.

1.1.1.4 It's powerful

From a features perspective, Python is something of a hybrid. Its tool set places it
between traditional scripting languages (such as Tcl, Scheme, and Perl), and systems
languages (such as C, C++, and Java). Python provides all the simplicity and ease of
use of a scripting language, along with more advanced programming tools typically
found in systems development languages. Unlike some scripting languages, this
combination makes Python useful for substantial development projects. Some of the
things we'll find in Python's high-level toolbox:

Dynamic typing

Python keeps track of the kinds of objects your program uses when it runs; it
doesn't require complicated type and size declarations in your code.

Built-in object types

Python provides commonly used data structures such as lists, dictionaries, and
strings, as an intrinsic part of the language; as we'll see, they're both flexible
and easy to use.

Built-in tools

To process all those object types, Python comes with powerful and standard
operations, including concatenation (joining collections), slicing (extracting
sections), sorting, mapping, and more.

Library utilities

For more specific tasks, Python also comes with a large collection of pre-coded
library tools that support everything from regular-expression matching to
networking to object persistence.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Third-party utilities

Because Python is freeware, it encourages developers to contribute precoded
tools that support tasks beyond Python's built-ins; you'll find free support for
COM, imaging, CORBA ORBs, XML, and much more.

Automatic memory management

Python automatically allocates and reclaims ("garbage collects") objects when
no longer used, and most grow and shrink on demand; Python, not you, keeps
track of low-level memory details.

Programming-in-the-large support

Finally, for building larger systems, Python includes tools such as modules,
classes, and exceptions; they allow you to organize systems into components,
do OOP, and handle events gracefully.

Despite the array of tools in Python, it retains a remarkably simple syntax and design.
As we'll see, the result is a powerful programming tool, which retains the usability of a
scripting language.

1.1.1.5 It's mixable

Python programs can be easily "glued" to components written in other languages. In
technical terms, by employing the Python/C integration APIs, Python programs can
be both extended by (called to) components written in C or C++, and embedded in
(called by) C or C++ programs. That means you can add functionality to the Python
system as needed and use Python programs within other environments or systems.

Although we won't talk much about Python/C integration, it's a major feature of the
language and one reason Python is usually called a scripting language. By mixing
Python with components written in a compiled language such as C or C++, it
becomes an easy-to-use frontend language and customization tool. It also makes
Python good at rapid prototyping: systems may be implemented in Python first to
leverage its speed of development, and later moved to C for delivery, one piece at a
time, according to performance requirements.

Speaking of glue, the PythonWin port of Python for MS-Windows platforms also lets
Python programs talk to other components written for the COM API, allowing Python
to be used as a more powerful alternative to Visual Basic. And a new alternative
implementation of Python, called JPython, lets Python programs communicate with
Java programs, making Python an ideal tool for scripting Java-based web
applications.

1.1.1.6 It's easy to use


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

For many, Python's combination of rapid turnaround and language simplicity make
programming more fun than work. To run a Python program, you simply type it and
run it. There are no intermediate compile and link steps (as when using languages
such as C or C++). As with other interpreted languages, Python executes programs
immediately, which makes for both an interactive programming experience and rapid
turnaround after program changes.

Strictly speaking, Python programs are compiled (translated) to an intermediate form
called bytecode , which is then run by the interpreter. But because the compile step is
automatic and hidden to programmers, Python achieves the development speed of an
interpreter without the performance loss inherent in purely interpreted languages.

Of course, development cycle turnaround is only one aspect of Python's ease of use.
It also provides a deliberately simple syntax and powerful high-level built-in tools.
Python has been called "executable pseudocode": because it eliminates much of the
complexity in other tools, you'll find that Python programs are often a fraction of the
size of equivalent programs in languages such as C, C++, and Java.

1.1.1.7 It's easy to learn

This brings us to the topic of this book: compared to other programming languages,
the core Python language is amazingly easy to learn. In fact, you can expect to be
coding significant Python programs in a matter of days (and perhaps in just hours, if
you're already an experienced programmer). That's good news both for professional
developers seeking to learn the language to use on the job, as well as for end users
of systems that expose a Python layer for customization or control.(x1

(1] sp, you might ask, how in the world do Python trainers get any business? For one thing, there are still challenges
in Python beyond the core language that will keep you busy beyond those first few days. As we'll see, Python's
collection of libraries, as well as its peripheral tools (e.g., the Tkinter GUI and Python/C integration APIs) are a big part
of real Python programming.

1.1.2 Python on the Job

Besides being a well-designed programming language, Python is also useful for
accomplishing real-world tasks—the sorts of things developers do day in and day out.
It's commonly used in a variety of domains, as a tool for scripting other components
and implementing standalone programs. Some of Python's major roles help define
what it is.

1.1.2.1 System utilities

Python's built-in interfaces to operating-system services make it ideal for writing
portable, maintainable system-administration tools (sometimes called shell scripts).
Python comes with POSIX bindings and support for the usual OS tools: environment
variables, files, sockets, pipes, processes, threads, regular expressions, and so on.

1.1.2.2 GUIs

Python's simplicity and rapid turnaround also make it a good match for GUI


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

programming. As previously mentioned, it comes with a standard object-oriented
interface to the Tk GUI API called Tkinter, which allows Python programs to
implement portable GUIs with native look and feel. If portability isn't a priority, you can
also use MFC classes to build GUIs with the PythonWin port for MS Windows, X
Window System interfaces on Unix, Mac toolbox bindings on the Macintosh, and KDE
and GNOME interfaces for Linux. For applications that run in web browsers, JPython
provides another GUI option.

1.1.2.3 Component integration

Python's ability to be extended by and embedded in C and C++ systems makes it
useful as a glue language, for scripting the behavior of other systems and
components. For instance, by integrating a C library into Python, Python can test and
launch its components. And by embedding Python in a product, it can code on-site
customizations without having to recompile the entire product (or ship its source code
to your customers). Python's COM support on MS-Windows and the JPython system
provide alternative ways to script applications.

1.1.2.4 Rapid prototyping

To Python programs, components written in Python and C look the same. Because of
this, it's possible to prototype systems in Python initially and then move components
to a compiled language such as C or C++ for delivery. Unlike some prototyping tools,
Python doesn't require a complete rewrite once the prototype has solidified; parts of
the system that don't require the efficiency of a language such as C++ can remain
coded in Python for ease of maintenance and use.

1.1.2.5 Internet scripting

Python comes with standard Internet utility modules that allow Python programs to
communicate over sockets, extract form information sent to a server-side CGl script,
parse HTML, transfer files by FTP, process XML files, and much more. There are also
a number of peripheral tools for doing Internet programming in Python. For instance,
the HTMLGen and pythondoc systems generate HTML files from Python class-based
descriptions, and the JPython system mentioned above provides for seamless
Python/Java integration.t2!

[2] We say more about JPython and other systems in Chapter 10. Among other things, JPython can compile Python
programs to Java virtual machine code (so they may run as client-side applets in any Java-aware browser) and allows
Python programs to talk to Java libraries (for instance, to create AWT GUIs on a client).

1.1.2.6 Numeric programming

The NumPy numeric programming extension for Python includes such advanced
tools as an array object, interfaces to standard mathematical libraries, and much
more. By integrating Python with numeric routines coded in a compiled language for
speed, NumPy turns Python into a sophisticated yet easy-to-use numeric
programming tool.

1.1.2.7 Database programming


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Python's standard pickle module provides a simple object-persistence system: it
allows programs to easily save and restore entire Python objects to files. For more
traditional database demands, there are Python interfaces to Sybase, Oracle,
Informix, ODBC, and more. There is even a portable SQL database API for Python
that runs the same on a variety of underlying database systems, and a system named
gadfly that implements an SQL database for Python programs.

1.1.2.8 And more: Image processing, Al, distributed objects, etc.

Python is commonly applied in more domains than can be mentioned here. But in
general, many are just instances of Python's component integration role in action. By
adding Python as a frontend to libraries of components written in a compiled
language such as C, Python becomes useful for scripting in a variety of domains.

For instance, image processing for Python is implemented as a set of library
components implemented in a compiled language such as C, along with a Python
frontend layer on top used to configure and launch the compiled components. The
easy-to-use Python layer complements the efficiency of the underlying compiled-
language components. Since the majority of the "programming” in such a system is
done in the Python layer, most users need never deal with the complexity of the
optimized components (and can get by with the core language covered in this text).

1.1.3 Python in Commercial Products

From a more concrete perspective, Python is also being applied in real revenue-
generating products, by real companies. For instance, here is a partial list of current
Python users:

* Red Hat uses Python in its Linux install tools.
» Microsoft has shipped a product partially written in Python.

« Infoseek uses Python as an implementation and end-user customization
language in web search products.

¢ Yahoo! uses Python in a variety of its Internet services.
* NASA uses Python for mission-control-system implementation.

e Lawrence Livermore Labs uses Python for a variety of numeric programming
tasks.

e Industrial Light and Magic and others use Python to produce commercial-grade
animation.

There are even more exciting applications of Python we'd like to mention here, but
alas, some companies prefer not to make their use of Python known because they
consider it to be a competitive advantage. See Python's web site

(http://www.python.org) for a more comprehensive and up-to-date list of

companies using Python.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.1.4 Python Versus Similar Tools

Finally, in terms of what you may already know, people sometimes compare Python
to languages such as Perl, Tcl, and Java. While these are also useful tools to know
and use, we think Python:

« Is more powerful than Tcl, which makes it applicable to larger systems
development

* Has a cleaner syntax and simpler design than Perl, which makes it more
readable and maintainable

¢ Doesn't compete head-on with Java; Python is a scripting language, Java is a
systems language such as C++

Especially for programs that do more than scan text files, and that might have to be
read in the future by others (or by you!), we think Python fits the bill better than any
other scripting language available today. Of course, both of your authors are card-

carrying Python evangelists, so take these comments as you may.

And that concludes the hype portion of this book. The best way to judge a language is
to see it in action, so now we turn to a strictly technical introduction to the language.
In the remainder of this chapter, we explore ways to run Python programs, peek at
some useful configuration and install details, and introduce you to the notion of
module files for making code permanent. Again, our goal here is to give you just
enough information to run the examples and exercises in the rest of the book; we
won't really start programming until Chapter 2, but make sure you have a handle on
the start-up details shown here before moving on.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
1.2 How to Run Python Programs

So far, we've mostly talked about Python as a programming language. But it's also a
software package called an interpreter . An interpreter is a kind of program that
executes other programs. When you write Python programs, the Python interpreter
reads your program, and carries out the instructions it contains.z! In this section we
explore ways to tell the Python interpreter which programs to run.

(31 Technically, Python programs are first compiled (i.e., translated) to an intermediate form—byte-code— which is
then scanned by the Python interpreter. This byte-code compilation step is hidden and automatic, and makes Python
faster than a pure interpreter.

When the Python package is installed on your machine, it generates a number of
components. Depending on how you use it, the Python interpreter may take the form
of an executable program, or a set of libraries linked into another program. In general,
there are at least five ways to run programs through the Python interpreter:

« Interactively

e As Python module files

¢ As Unix-style script files

e Embedded in another system

« Platform-specific launching methods

Let's look at each of these strategies in turn.

Other Ways to Launch Python Programs

Caveat: to keep things simple, the description of using the interpreter in this
chapter is fairly generic and stresses lowest-common-denominator ways to
run Python programs (i.e., the command line, which works the same
everywhere Python runs). For information on other ways to run Python on
specific platforms, flip ahead to Appendix B. For instance, Python ports for
MS-Windows and the Macintosh include graphical interfaces for editing and
running code, which may be more to your taste.

Depending on your platform and background, you may also be interested in
seeing a description of the new IDLE Integrated Development Environment
for Python—a graphical interface for editing, running, and debugging Python
code that runs on any platform where Python's Tk support is installed (IDLE
is a Python program that uses the Tkinter extension we'll meet in Part
1I).You can find this description in Appendix A. Emacs users can also find
support at Python's web site for launching Python code in the Emacs
environment; again, see Appendix A for details.

1.2.1 The Interactive Command Line


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Perhaps the simplest way to run Python programs is to type them at Python's
interactive command line. Assuming the interpreter is installed as an executable
program on your system, typing pvthon at your operating system's prompt without
any arguments starts the interactive interpreter. For example:

% python

>>> print 'Hello world!'

Hello world!

>>> lumberjack = "okay"

>>> # Ctrl-D to exit (Ctrl-Z on some p

Here python is typed at a Unix (or MS-DOS) prompt to begin an interactive Python
session. Python prompts for input with >>> when it's waiting for you to type a new
Python statement. When working interactively, the results of statements are displayed
after the >>> lines. On most Unix machines, the two-key combination Ctrl-D (press
the Ctrl key, then press D while Ctrl is held down) exits the interactive command-line
and returns you to your operating system's command line; on MS-DOS and Windows
systems, you may need to type Ctrl-Z to exit.

Now, we're not doing much in the previous example: we type Python print and
assignment statements, which we'll study in detail later. But notice that the code we
entered is executed immediately by the interpreter. For instance, after typinga print
statement at the >>> prompt, the output (a Python string) is echoed back right away.
There's no need to run the code through a compiler and linker first, as you'd normally
do when using a language such as C or C++.

Because code is executed immediately, the interactive prompt turns out to be a handy
place to experiment with the language, and we'll use it often in this part of the book to
demonstrate small examples. In fact, this is the first rule of thumb: if you're ever in
doubt about how a piece of Python code works, fire up the interactive command line
and try it out. That's what it's there for.

The interactive prompt is also commonly used as a place to test the components of
larger systems. As we'll see, the interactive command line lets us import components
interactively and test their interfaces rapidly. Partly because of this interactive nature,
Python supports an experimental and exploratory programming style you'll find
convenient when starting out.

—— A word on prompts: we won't meet compound (multiple-line)

«: 4. statements until Chapter 3, but as a preview, you should know
—&  that when typing lines two and beyond of a compound statement
interactively, the prompt changes to . . . instead of >>>. At the

... prompt, a blank line (hitting the Enter key) tells Python that
you're done typing the statement. This is different from
compound statements typed into files, where blank lines are
simply ignored. You'll see why this matters in Chapter 3. These
two prompts can also be changed (in Part II, we'll see that they
are attributes in the built-in s vs module), but we'll assume they
haven't been in our examples.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1.2.2 Running Module Files

Although the interactive prompt is great for experimenting and testing, it has one big
disadvantage: programs you type there go away as soon as the Python interpreter
executes them. The code you type interactively is never stored in a file, so you can't
run it again without retyping it from scratch. Cut-and-paste and command recall can
help some here, but not much, especially when you start writing larger programs.

To save programs permanently, you need Python module files . Module files are
simply text files containing Python statements. You can ask the Python interpreter to
execute such a file by listing its name in a python command. As an example,
suppose we start our favorite text editor and type two Python statements into a text
file named spam.py:

import sys
print sys.argv # more on this later

Again, we're ignoring the syntax of the statements in this file for now, so don't sweat
the details; the point to notice is that we've typed code into a file, rather than at the
interactive prompt. Once we've saved our text file, we can ask Python to run it by
listing the filename as an argument on a python command in the operating system
shell:

> python spam.py -i eggs -o bacon
['spam.py', '-i', 'eggs', '-o', 'bacon']

Notice that we called the module file spam.py; we could also call it simply spam, but
for reasons we'll explain later, files of code we want to import into a client have to end
with a .py suffix. We also listed four command-line arguments to be used by the
Python program (the items after oy thon spam.py); these are passed to the Python
program, and are available through the name sy s . 2 rgv, which works like the C
argv array. By the way, if you're working on a Windows or MS-DOS platform, this
example works the same, but the system prompt is normally different:

C:\book\tests> python spam.py -i eggs -o bacon
['spam.py', '-i', 'eggs', '-o', 'bacon']

1.2.3 Running Unix-Style Scripts

So far, we've seen how to type code interactively and run files of code created with a
text editor (modules). If you're going to use Python on a Unix, Linux, or Unix-like
system, you can also turn files of Python code into executable programs, much as
you would for programs coded in a shell language such as csh or ksh. Such files are
usually called scripts; in simple terms, Unix-style scripts are just text files containing
Python statements, but with two special properties:

Their first line is special

Scripts usually start with a first line that begins with the characters # !, followed


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

by the path to the Python interpreter on your machine.
They usually have executable privileges

Script files are usually marked as executable, to tell the operating system that
they may be run as top-level programs. On Unix systems, a command such as
chmod +x file.py usually does the trick.

Let's look at an example. Suppose we use our favorite text editor again, to create a
file of Python code called brian:

#!/usr/local/bin/python
print 'The Bright Side of Life...' # another comment her

We put the special line at the top of the file to tell the system where the Python
interpreter lives. Technically, the first line is a Python comment. All comments in
Python programs start with a # and span to the end of the line; they are a place to
insert extra information for human readers of your code. But when a comment such
as the first line in this file appears, it's special, since the operating system uses it to
find an interpreter for running the program code in the rest of the file.

We also called this file simply brian, without the .py suffix we used for the module file
earlier. Adding a .py to the name wouldn't hurt (and might help us remember that this
is a Python program file); but since we don't plan on letting other modules import the
code in this file, the name of the file is irrelevant. If we give our file executable
privileges with a chmod +x brian shell command, we can run it from the operating
system shell as though it were a binary program:

% brian
The Bright Side of Life...

A note for Windows and MS-DOS users: the method described here is a Unix trick,
and may not work on your platform. Not to worry: just use the module file technique
from the previous section. List the file's name on an explicit ot hon command line:

C:\book\tests> python brian
The Bright Side of Life...

In this case, you don't need the special # ! comment at the top (though Python just
ignores it if it's present), and the file doesn't need to be given executable privileges. In
fact, if you want to run files portably between Unix and MS-Windows, your life will
probably be simpler if you always use the module file approach, not Unix-style scripts,
to launch programs.

On some systems, you can avoid hardcoding the path to the
Python interpreter by writing the special first-line comment like
this: #! /usr/bin/env python. When coded this way, the env
program locates the python interpreter according to your
system search-path settings (i.e., in most Unix shells, by looking
in all directories listed in the P2 TH environment variable). This
env-based scheme can be more portable, since you don't need



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

to hardcode a Python install path in the first line of all your
scripts; provided you have access to =nv everywhere, your
scripts will run no matter where oyt hon lives on your system.

1.2.4 Embedded Code and Objects

We've seen how to run code interactively, and how to launch module files and Unix-
style scripts. That covers most of the cases we'll see in this book. But in some
specialized domains, Python code may also be run by an enclosing system. In such
cases, we say that Python programs are embedded in (i.e., run by) another program.
The Python code itself may be entered into a text file, stored in a database, fetched
from an HTML page, and so on. But from an operational perspective, another system
—not you—may tell Python to run the code you've created.

For example, it's possible to create and run strings of Python code from a C program
by calling functions in the Python runtime API (a set of services exported by the
libraries created when Python is compiled on your machine):

#include <Python.h>

Py Initialize();
PyRun SimpleString("x = brave + sir + robin");

In this code snippet, a program coded in the C language (some i 1e.c) embeds the
Python interpreter by linking in its libraries and passes it a Python assignment
statement string to run. C programs may also gain access to Python objects, and
process or execute them using other Python API tools.

This book isn't about Python/C integration, so we won't go into the details of what's
really happening here.41 But you should be aware that, depending on how your
organization plans to use Python, you may or may not be the one who actually starts
the Python programs you create. Regardless, you can still use the interactive and file-
based launching techniques described here, to test code in isolation from those
enclosing systems that may eventually use it.

[4] See Programming Python for more details on embedding Python in C/C++.

1.2.5 Platform-Specific Startup Methods

Finally, depending on which type of computer you are using, there may be more
specific ways to start Python programs than the general techniques we outlined
above. For instance, on some Windows ports of Python, you may either run code
from a Unix-like command-line interface, or by double-clicking on Python program
icons. And on Macintosh ports, you may be able to drag Python program icons to the
interpreter's icon, to make program files execute. We'll have more to say about
platform-specific details like this in an appendix to this book.

1.2.6 What You Type and Where You Type It


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

With all these options and commands, it's easy for beginners to be confused about
which command is entered at which prompt. Here's a quick summary:

Starting interactive Python
The Python interpreter is usually started from the system's command line:
$ python
Entering code interactively
Programs may be typed at Python's interactive interpreter command line:
>>> print X
Entering code in files for later use
Programs may also be typed into text files, using your favorite text editor:
print X
Starting script files
Unix-style script files are started from the system shell:
3 brian
Starting program (module) files
Module files are run from the system shell:
> python spam.py
Running embedded code

When Python is embedded, Python code may be entered in arbitrary ways.

F

o J When typing Python programs (either interactively or into a text

file), be sure to start all your unnested statements in column 1. If
you don't, Python prints a "SyntaxError" message. Until the
middle of Chapter 3, all our statements will be unnested, so this
includes everything for now. We'll explain why later—it has to do
with Python's indentation rules—but this seems to be a recurring
confusion in introductory Python classes.

-
[

l1@ve RuBoard [ raivisis]fiwmxt ]


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
1.3 A First Look at Module Files

Earlier in this chapter, we saw how to run module files (i.e., text files containing
Python statements) from the operating-system shell's command line. It turns out that
we can also run module files from Python's interactive command line by importing or
reloading them, as we'd normally do from other system components. The details of
this process are covered in Chapter 5, but since this turns out to be a convenient
way to save and run examples, we'll give a quick introduction to the process.

The basic idea behind importing modules is that importers may gain access to names
assigned at the top level of a module file. The names are usually assigned to services
exported by the modules. For instance, suppose we use our favorite text editor to
create the one-line Python module file myfile.py, shown in the following code snippet.
This may be one of the world's simplest Python modules, but it's enough to illustrate
basic module use:

title = "The Meaning of Life"

Notice that the filename has a .py suffix: this naming convention is required for files
imported from other components. Now we can access this module's variable t it 1 e

in other components two different ways, either by importing the module as a whole
with an import statement and qualifying the module by the variable name we want to

access.

s python Start Python

>>> import myfile Run file, load module as a who
>>> print myfile.title Use its names: '.' qualificati

The Meaning of Life

or by fetching (really, copying) names out of a module with ©rom statements:

s python Start Python
>>> from myfile import title Run file, load 1its names
>>> print title Use name directly: no need to

The Meaning of Life

As we'll see later, £ rom is much like an import, with an extra assignment to names
in the importing component. Notice that both statements list the name of the module
file as simply myfile, without its .py suffix; when Python looks for the actual file, it
knows to include the suffix.

Whether we use import or £ rom, the statements in the module file myfile.py are
executed, and the importing component (here, the interactive prompt) gains access to
names assigned at the top level of the file. There's only one such name in this simple
example—the variable t i t 1 ¢, assigned to a string—but the concept will be more


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

useful when we start defining objects such as functions and classes. Such objects
become services accessed by name from one or more client modules.

When a module file is imported the first time in a session, Python executes all the
code inside it, from the top to the bottom of the file. Because of this, importing a
module interactively is another way to execute its code all at once (instead of, for
instance, running it from the system shell with a command such as python
myfile.py). Butthere's one catch to this process: Python executes a module file's
code only the first time it's imported. If you import it again during the same interactive
session, Python won't reexecute the file's code, even if you've changed it with your
editor. To really rerun a file's code without stopping and restarting the interactive
interpreter, you can use the Python r<10ad function, as follows:

% python Start Python
>>> import myfile Run/load module
>>> print myfile.title Qualify to fetch name

The Meaning of Life

Change myfile.py in your text editor
>>> import myfile will NOT rerun the file's code
>>> reload(myfile) WILL rerun the file's (current

While this scheme works, r=10ad has a few complications, and we suggest you
avoid it for now (just exit and reenter the interpreter between file changes). On the
other hand, this has proven to be a popular testing technique in Python classes, so
you be the judge.

1.3.1 A First Look at Namespace Inspection

Another trick that has proven popular is using the < i r built-in function to keep track of
defined names while programming interactively. We'll have more to say about it later,
but before we turn you loose to work on some exercises, here is a brief introduction. If
you call the d i r function without arguments, you get back a Python list (described in

Chapter 2) containing all the names defined in the interactive namespace:

>>> x =1

>>> y = "shrubbery"

>>> dir ()

[' builtins ', ' doc ', ' mname ', 'x', 'y']

Here, the expression dir () is a function call; it asks Python to run the function
named dir. We'll meet functions in Chapter 4; but for now, keep in mind that you
need to add parenthesis after a function name to call it (whether it takes any
arguments or not).

When di r is called, some of the names it returns are names you get "for free": they
are built-in names that are always predefined by Python. For instance, _ _name__is
the module's filename, and __builtins__ is a module containing all the built-in
names in Python (including d i r). Other names are variables that you've assigned


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

values to (here, x and v). If you call di r with a module as an argument, you get back
the names defined inside that module:s!

[5] Technically, in the module's namespace—a term we'll soon use so often that you'll probably get tired of hearing it.
Since we're being technical anyhow, the interactive command line is really a module too, called __m=in__; code you
enter there works as if it were put in a module file, except that expression results are printed back to you. Notice that
the result of a di r call is a list, which could be processed by a Python program. For now, hold that thought:
namespaces can be fetched in other ways too.

% cat threenames.py

a = 'dead'

b = 'parrot'
c = 'sketch'
$ python

>>> import threenames
>>> dir (threenames )
(' builtins ', ' doc ', ' file ', ' name ', 'a', 'b', 'c

>>> dir( builtins )

All the names Pythonipredefines for you

Later, we'll see that some objects have additional ways of telling clients which names
they expose (e.g., special attributes suchas __ methods___and __members__ ). But
for now, the di r function lets you do as much poking around as you'll probably care
to do.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
1.4 Python Configuration Details

So far, we've seen how to make the Python interpreter execute programs we've
typed. But besides the interpreter, a Python installation also comes with a collection
of utility programs, stored in the Python source library. Moreover, the Python
interpreter recognizes settings in the system shell's environment, which let us tailor
the interpreter's behavior (where it finds the source-code files, for example). This
section talks about the environment settings commonly used by Python programmers,
peeks at Python installation details, and presents an example script that illustrates
most of the configuration steps you'll probably need to know about. If you have
access to a ready-to-run Python, you can probably skip much of this section, or
postpone it for a later time.

1.4.1 Environment Variables

The Python interpreter recognizes a handful of environment variable settings, but only

a few are used often enough to warrant explanation here. Table 1.1 summarizes the
main Python variable settings.

Table 1.1. Important Environment Variables

Role Variable
System shell search path (for finding "python") PATH (Or path)
Python module search path (for imports) PYTHONPATH
Path to Python interactive startup file PYTHONSTARTUP
GUI extension variables (Tkinter) TCL LIBRARY, TK LIBRARY

These variables are straightforward to use, but here are a few pointers:

e The pATH setting lists a set of directories that the operating system searches for
executable programs. It should normally include the directory where your
Python interpreter lives (the oyt hon program on Unix, or the python.exe file on
Windows). You don't need to set this on the Macintosh (the install handles path
details).

e The pyTHONPATH setting serves a role similar to P~ TH: the Python interpreter
consults the pvTHONPATH variable to locate module files when you import them
in a program. This variable is set to a list of directories that Python searches to
find an imported module at runtime. You'll usually want to include your own
source-code directories and the Python source library's directory (unless it's
been preset in your Python installation).

e If byTHONSTARTUP is set to the pathname of a file of Python code, Python
executes the file's code automatically whenever you start the interactive
interpreter, as though you had typed it at the interactive command line. This is a
handy way to make sure you always load utilities whenever you're working
interactively.

« Provided you wish to use the Tkinter GUI extension (see Chapter 10), the two
GUI variables in Table 1.1 should be set to the name of the source library


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

directories of the Tcl and Tk systems (much like PYTHONPATH).

Unfortunately, the way to set these variables and what to set them to depends on
your system's configuration. For instance, on Unix systems the way to set variables
depends on the shell; under the csh shell, you might set this to the Python module
search path:

setenv PYTHONPATH .:/usr/local/lib/python:/usr/local/lib/python/

which tells Python to look for imported modules in three directories: the current
directory (.), the directory where the Python source library is installed on your
machine (here, /usr/local/lib/python), and the t ki nter source library subdirectory,
where the Python GUI extension support code resides. But if you're using the ksh
shell, the setting might instead look like this:

export PYTHONPATH=".:/usr/local/lib/python:/usr/local/lib/python

And if you're using MS-DOS, an environment configuration could be something very
different still:

set PYTHONPATH=.;c:\python\lib;c:\python\lib\tkinter

Since this isn't a book on operating system shells, we're going to defer to other
sources for more details. Consult your system shell's manpages or other
documentation for details. And if you have trouble figuring out what your settings must
be, ask your system administrator (or other local guru) for help.

1.4.2 An Example Startup Script

The code below, call it runpy, pulls some of these details together in a simple Python
startup script. It sets the necessary environment variables to reasonable values (on
Mark's machine, at least) and starts the Python interactive interpreter. To use it, type
runpy at your system shell's prompt.

#!/bin/csh
# Give this file executable privileges (chmod +x runpy) .
# Put this info in your .cshrc file to make it permanent.

# 1) Add path to command-line interpreter
set path = (/usr/local/bin $path)

# 2) Set python library search paths (unless predefined)

# add your module file directories to the list as desired

setenv PYTHONPATH \
.:/usr/local/lib/python:/usr/local/lib/python/tkinter

# 3) Set tk library search paths for GUIs (unless predefined)
setenv TCL LIBRARY /usr/local/lib/tcl8.0
setenv TK LIBRARY /usr/local/lib/tk8.0

# 4) Start up the interactive command-line
python


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

runpy illustrates a typical Python configuration, but it has a few drawbacks:

« It's written to only work under the csh shell, a command-line processor common
on Unix and Linux platforms; you'll need to interpolate if you're not a csh user.

e The settings it illustrates are usually made once in your shell's startup file
(~/.cshrc for csh users), instead of each time you run Python.

e Depending on how your Python was built, you may not need to list the paths to
standard source libraries, since they might be hardwired into your installation.

A note for MS-Windows users: a similar configuration can be created in a MS-DOS
batch file, which might look something like this, depending on which Windows port of
Python you've installed:

PATH c:\python; $PATH%

set PYTHONPATH=.;c:\python\lib;c:\python\lib\tkinter
set TCL LIBRARY=c:\Program Files\Tcl\1lib\tcl8.0

set TK LIBRARY=c:\Program Files\Tcl\1lib\tk8.0

python

1.4.3 A GUI Test Session

If you or your administrator have installed Python with the Tkinter GUI extension, the
following interactive session shows one way to test your Python/GUI configuration.
(You can skip this section if you won't be using Tkinter.)

5 runpy
Version/copyright information...

>>> from Tkinter import *

>>> w = Button(text="Hello", command='exit')
>>> w.pack()

>>> w.mainloop ()

Type runpy at the system shell and then all the Python code shown after the Python
>>> prompts. Ignore the details in the example's code for now; we study Tkinter in
Chapter 10. If everything is set up properly, you should get a window on your screen
that looks something like Figure 1.1 (shown running on a MS-Windows machine; it
looks slightly different on the X Window System or a Macintosh, since Tkinter
provides for native look and feel).

Figure 1.1. Tkinter GUI test screen



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If this test doesn't work, start checking your environment variable path settings, and/or
the Python install. Tkinter is an optional extension that must be explicitly enabled, so
make sure it's in your version of Python. Also make sure you have access to the
Tcl/Tk source libraries; they're required by the current Python Tkinter implementation.
See the README files in the Python source distribution and the Python web site for
more details.

1.4.4 Installation Overview

In the interest of completeness, this section provides a few pointers on the Python
installation process. When you're just getting started with Python, you normally
shouldn't need to care about Python installation procedures. Hopefully, someone else
—perhaps your system administrator—has already installed Python on your platform,
and you can skip most of the information here.

But this isn't always the case, and even if Python is already installed on your
machine, installation details may become more important as your knowledge of
Python grows. In some scenarios, it's important to know how to build Python from its
source code, so you can bind in extensions of your own statically. But again, this isn't
a book on Python/C integration, so if Python has already been installed for you, you
may want to file this section away for future reference.

Python comes in binary or C source-code forms

You can get Python as either a prebuilt binary executable (which runs "out of
the box") or in its C source-code form (which you must compile on your machine
before it can run). Both forms can be found in a variety of media—the Python
web/FTP sites (see Appendix A), CDs accompanying Python books,
independent CD distributors, Linux distributions, and so on. Naturally, if you go
for the binary format, you must get one that's compatible with your machine; if
you use the C source-code distribution, you'll need a C compiler/build system
on your machine. Both forms are usually distributed as compressed archive
files, which means you usually need utilities such as gz ip and tar to unpack
the file on your computer (though some Windows ports install themselves).

C source code configures/builds automatically

Although getting Python in binary form means you don't need to compile it
yourself, it also means you have little control over what extensions are enabled;
you'll get the extensions that the person who built the binary happened to think
were important. Moreover, besides the Python binary itself, you need to get and
install the Python source library, which may or may not be included in a Python
binary package. For more control, fetch the full Python C source-code
distribution and compile it on your machine. We won't list the compile
commands here, but the source-code build procedure is largely automatic;
Python configures its own m=ke i 1es according to your platform, and Python
compiles without a glitch on just about any platform you might mention.

Don't build from source unless you've used a C compiler before


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Having said that, we should note that even automated C compiles of a large
system like Python are not to be taken lightly. If you've never used a C compiler
before, we suggest you try to obtain a Python binary package for your platform
first, before falling back on building Python from its source-code on your
machine. And as usual, you can always ask a local C guru for assistance with
the build or install.

Prebuilt Python binaries exist for most platforms now, including MS-Windows, the
Macintosh, and most flavors of Unix; see Python's web site for links. We should also
note that the full C source-code distribution contains the entire Python system, and is
true freeware; there are no copyright constraints preventing you from using it in your
products. Although hacking an interpreter's source code isn't everybody's cup of tea,
it's comforting to know that you have control over all the source code in your Python
system.

For more details on installing and building Python, see the README files in the C
source-code distribution, the Python web site, and other Python texts such as
Programming Python. And for pointers to various Python distributions, see the URLs

listed in Appendix A.
| l@ve RuBoard m m


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m
1.5 Summary

In this chapter, we've explored ways to launch Python programs, the basics of Python
module files and namespace inspection, and Python configuration and installation
details. Hopefully, you should now have enough information to start interacting with
the Python interpreter. In Chapter 2, we explore basic object types in Python, before
looking at statements and larger program components.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
1.6 Exercises

Okay: time to start doing a little coding on your own. This session is fairly simple, but
a few of these questions hint at topics to come in later chapters. Remember, check
Appendix C, for the answers; they sometimes contain supplemental information not
discussed in the chapters. In other words, you should peek, even if you can manage
to get all the answers on your own.

1. Interaction. Start the Python command line, and type the expression: "tHello
World!" (including the quotes). The string should be echoed back to you. The
purpose of this exercise is to get your environment configured to run Python.
You may need to add the path to the oy thon executable to your PATH
environment variable. Set it in your .cshrc or .kshrc file to make Python
permanently available on Unix systems; use a setup.bat or autoexec.bat file on
Windows.

2. Programs. With the text editor of your choice, write a simple module file—a file
containing the single statement: print "Hello module world! '. Store this
statement in a file named module1.py. Now, run this file by passing it to the
Python interpreter program on the system shell's command line.

3. Modules. Next, start the Python command line and import the module you wrote
in the prior exercise. Does your pyTHONPATH setting include the directory
where the file is stored? Try moving the file to a different directory and importing
it again; what happens? (Hint: is there still a file named module1.pyc in the
original directory?)

4. Scripts. If your platform supports it, add the # ! line to the top of your
module1.py module, give the file executable privileges, and run it directly as an
executable. What does the first line need to contain?

5. Errors. Experiment with typing mathematical expressions and assignments at
the Python command line. First type the expression: 1 / 0; what happens?
Next, type a variable name you haven't assigned a value to yet; what happens
this time? You may not know it yet, but you're doing exception processing, a
topic we'll explore in depth in Chapter 7. We'll also see Python's source
debugger, odb, in Chapter 8; if you can't wait that long, either flip to that
chapter, or see other Python documentation sources. Python's default error
messages will probably be as much error handling as you need when first
starting out.

6. Breaks. At the Python command line, type:

L = [1, 2]
L.append (L)
L

What happens? If you're using a Python version older than 1.5.1, a Ctrl-C key
combination will probably help on most platforms. Why do you think this occurs?
What does Python report when you type the Ctrl-C key combination? Warning: if


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

you have a Python older than release 1.5.1, make sure your machine can stop a
program with a break-key combination of some sort before running this test, or
you may be waiting a long time.

l1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| |@ve RuBoard m m
Chapter 2. Types and Operators

This chapter begins our tour of the Python language. From an abstract perspective, in
Python we write programs that do things with stuff.;z; Programs take the form of
statements, which we'll meet later. Here, we're interested in the stuff our programs do
things to. And in Python, stuff always takes the form of objects. They may be built-in
kinds of objects Python provides for us, or objects we create using Python or C tools.
Either way, we're always doing things to objects in Python.

(1] pardon our formality: we're computer scientists.

Naturally, there's more to Python development than doing things to stuff. But since
the subjects of Python programs are the most fundamental notion in Python
programming, we start with a survey of Python's built-in object types.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m TEET B
2.1 Python Program Structure

By way of introduction, let's first get a clear picture of how what we study in this
chapter fits into the overall Python picture. From a more concrete perspective, Python
programs can be decomposed into modules, statements, and objects, as follows:

1. Programs are composed of modules.

2. Modules contain statements.

3. Statements create and process objects.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
2.2 Why Use Built-in Types?

If you've used lower-level languages such as C or C++, you know that much of your
work centers on implementing objects—what some folks call data structures—to
represent the components in your application's domain. You need to lay out memory
structures, manage memory allocation, implement search and access routines, and
so on. These chores are about as tedious (and error prone) as they sound, and
usually distract from your programs' real goals.

In typical Python programs, most of this grunt work goes away. Because Python
provides powerful object types as an intrinsic part of the language, there's no need to
code object implementations before you start solving problems. In fact, unless you
have a need for special processing that built-in types don't provide, you're almost
always better off using a built-in object instead of implementing your own. Here are
some reasons why:

Built-in objects make simple programs easy to write

For simple tasks, built-in types are often all you need to represent the structure
of problem domains. Because we get things such as collections (lists) and
search tables (dictionaries) for free, you can use them immediately. You can get
a lot of work done with just Python's built-in object types alone.

Python provides objects and supports extensions

In some ways, Python borrows both from languages that rely on built-in tools
(e.g., LISP), and languages that rely on the programmer to provide tool
implementations or frameworks of their own (e.g., C++). Although you can
implement unique object types in Python, you don't need to do so just to get
started. Moreover, because Python's built-ins are standard, they're always the
same; frameworks tend to differ from site to site.

Built-in objects are components of extensions

For more complex tasks you still may need to provide your own objects, using
Python statements and C language interfaces. But as we'll see in later chapters,
objects implemented manually are often built on top of built-in types such as
lists and dictionaries. For instance, a stack data structure may be implemented
as a class that manages a built-in list.

Built-in objects are often more efficient than custom data structures

Python's built-in types employ already optimized data structure algorithms that
are implemented in C for speed. Although you can write similar object types on
your own, you'll usually be hard-pressed to get the level of performance built-in
object types provide.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

In other words, not only do built-in object types make programming easier, they're
also more powerful and efficient than most of what can be created from scratch.
Regardless of whether you implement new object types or not, built-in objects form
the core of every Python program.

Table 2.1 previews the built-in object types in this chapter. Some will probably seem
familiar if you've used other languages (e.g., numbers, strings, and files), but others
are more general and powerful than what you may be accustomed to. For instance,
you'll find that lists and dictionaries obviate most of the work you do to support
collections and searching in lower-level languages.

Table 2.1. Built-in Objects Preview

Object Type Example Constants/Usage
Numbers 3.1415, 1234, 999L, 3+4j
Strings 'spam', "guido's"
Lists [1, [2, 'three']l, 4]
Dictionaries {'food':'spam', 'taste':'yum'}
Tuples (1, 'spam', 4, 'U'")
Files text = open('eggs', 'r').read()

I l@ve RuBoard

[«ermvious Pt


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
2.3 Numbers

On to the nitty-gritty. The first object type on our tour is Python numbers. In general,
Python's number types are fairly typical and will seem familiar if you've used just
about any other programming language in the past. Python supports the usual
numeric types (integer and floating point), constants, and expressions. In addition,
Python provides more advanced numeric programming support, including a complex
number type, an unlimited precision integer, and a variety of numeric tool libraries.
The next few sections give an overview of the numeric support in Python.

2.3.1 Standard Numeric Types

Among its basic types, Python supports the usual suspects: both integer and floating-
point numbers, and all their associated syntax and operations. Like C, Python also
allows you to write integers using hexadecimal and octal constants. Unlike C, Python
also has a complex number type (introduced in Python 1.4), as well as a long integer
type with unlimited precision (it can grow to have as many digits as your memory
space allows). Table 2.2 shows what Python's numeric types look like when written
out in a program (i.e., as constants).

Table 2.2. Numeric Constants
Constant Interpretation
Normal integers (C longs)
, Long integers (unlimited size)
1.23,3.14e-10, 4E210, 4.0e+210 Floating-point (C doubles)

0177, 0x9ff Octal and hex constants
3+445,3.0+4.07, 3J Complex number constants

By and large, Python's numeric types are straightforward, but a few are worth
highlighting here:

Integer and floating-point constants

Integers are written as a string of decimal digits. Floating-point numbers have
an embedded decimal point, and/or an optional signed exponent introduced by
an < or . If you write a number with a decimal point or exponent, Python makes
it a floating-point object and uses floating-point (not integer) math when it's used
in an expression. The rules for writing floating-point numbers are the same as
with C.

Numeric precision

Plain Python integers (row 1) are implemented as C 1 ongs internally (i.e., at
least 32 bits), and Python floating-point numbers are implemented as C
doubles; Python numbers get as much precision as the C compiler used to
build the Python interpreter gives to 1 ongs and doubles. On the other hand, if
an integer constant ends with an 1 or 1, it becomes a Python long integer (not
to be confused with a C 1ong) and can grow as large as needed.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

H exadecimal and octal constants

The rules for writing hexadecimal (base 16) and octal (base 8) integers are the
same as in C: octal constants start with a leading zero (0), and hexadecimals
start with a leading 0x or 0x. Notice that this means you can't write normal
base-ten integers with a leading zero (e.g., 01); Python interprets them as octal
constants, which usually don't work as you'd expect!

Complex numbers

Python complex constants are written as real-part + imaginary-part, and
terminated with a - or J. Internally, they are implemented as a pair of floating-
point numbers, but all numeric operations perform complex math when applied
to complex numbers.

2.3.2 Built-in Tools and Extensions

Besides the built-in number types shown in Table 2.2, Python provides a set of tools
for processing number objects:

Expression operators
+, *, >>, % x etc.

Built-in mathematical functions
pow, abs, etc.

Utility modules
rand, math, etc.

We'll meet all of these as we go along. Finally, if you need to do serious number-
crunching, an optional extension for Python called Numeric Python provides
advanced numeric programming tools, such as a matrix data type and sophisticated
computation libraries. Because it's so advanced, we won't say more about Numeric
Python in this chapter; see the examples later in the book and Appendix A. Also
note that, as of this writing, Numeric Python is an optional extension; it doesn't come
with Python and must be installed separately.

2.3.3 Python Expression Operators

Perhaps the most fundamental tool that processes numbers is the expression : a
combination of numbers (or other objects) and operators that computes a value when
executed by Python. In Python, expressions are written using the usual mathematical
notation and operator symbols. For instance, to add two numbers x and v, we say x +
v, which tells Python to apply the + operator to the values named by x and v. The
result of the expression is the sum of x and v, another number object.

Table 2.3 lists all the operator expressions available in Python. Many are self-


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

explanatory; for instance, the usual mathematical operators are supported: +, -, *, /,
and so on. A few will be familiar if you've used C in the past: = computes a division
remainder, << performs a bitwise left-shift, ¢ computes a bitwise and result, etc.
Others are more Python-specific, and not all are numeric in nature: the i s operator
tests object identity (i.e., address) equality, 1 ambda creates unnamed functions, and
SO on.

Table 2.3. Python Expression Operators and Precedence

Operators Description

X or vy,
Logical or ( v is evaluated only if = is false), anonymous function

lambda args: expression
x and y Logical and (v is evaluated only if < is true)
not x Logical negation
in, not in sequence membership
x |y Bitwise o r
X Ny Bitwise exclusive or
X &y Bitwise and
X <<y, X >> ¥y Shift = left or right by v bits
X+ vy, X -y Addition/concatenation, subtraction
x *y, x /vy, x y Multiplication/repetition, division, remainder/format
-x, +%X, ~X Unary negation, identity, bitwise complement
x[1], x[i:3], x.y, ®x(...) Indexing, slicing, qualification, function calls
(voo)y, Lo, (...), ... [|Tuple, list, dictionary, conversion to string

Table 2.3 is mostly included for reference; since we'll see its operators in action
later, we won't describe every entry here. But there are a few basic points we'd like to
make about expressions before moving on.

2.3.3.1 Mixed operators: Operators bind tighter lower in the table

As in most languages, more complex expressions are coded by stringing together
operator expressions in the table. For instance, the sum of two multiplications might
be written as: 2 * & + ¢ * D. So how does Python know which operator to perform
first? When you write an expression with more than one operator, Python groups its
parts according to what are called precedence rules, and this grouping determines
the order in which expression parts are computed. In the table, operators lower in the
table have higher precedence and so bind more tightly in mixed expressions. For
example, if you write x + v * 7z, Python evaluates the multiplication first (v * 7), then
adds that result to %, because * has higher precedence (is lower in the table) than +.

2.3.3.2 Parentheses group subexpressions

If the prior paragraph sounded confusing, relax: you can forget about precedence
completely if you're careful to group parts of expressions with parentheses. When you
parenthesize subexpressions, you override Python precedence rules; Python always
evaluates parenthesized expressions first, before using their results in enclosing
expressions. For instance, instead of x + v * 7, write (x + v) * 7, or for that matter x
+ (v * 7) to force Python to evaluate the expression in the desired order. In the
former case, + is applied to x and v first; in the latter, the * is performed first (as if



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

there were no parentheses at all). Generally speaking, adding parentheses in big
expressions is a great idea; it not only forces the evaluation order you want, but it also
aids readability.

2.3.3.3 Mixed types: Converted up just as in C

Besides mixing operators in expressions, you can also mix numeric types. For
instance, you can add an integer to a floating-point number, but this leads to another
dilemma: what type is the result—integer or floating-point? The answer is simple,
especially if you've used almost any other language before: in mixed type
expressions, Python first converts operands up to the type of the most complex
operand, and then performs the math on same-type operands. Python ranks the
complexity of numeric types like so: integers are simpler than long integers, which are
simpler than floating-point numbers, which are simpler than complex numbers. So,
when an integer is mixed with a floating-point, the integer is converted up to a
floating-point value first, and then floating-point math yields the floating-point result.
Similarly, any mixed-type expression where one operand is a complex number results
in the other operand being converted up to a complex, and yields a complex result.

2.3.3.4 Preview: operator overloading

Although we're focusing on built-in numbers right now, keep in mind that all Python
operators may be overloaded by Python classes and C extension types, to work on
objects you implement. For instance, you'll see later that objects coded with classes
may be added with + expressions, indexed with [ i ] expressions, and so on.
Furthermore, some operators are already overloaded by Python itself: they perform
different actions depending on the type of built-in objects being processed. For
example, the + operator performs addition when applied to numbers, but (as we'll see
in a moment) performs concatenation when applied to sequence objects such as
strings and lists.[2!

(2] This is usually called polymorphism—the meaning of an operation depends on the type of objects being operated
on. But we're not quite ready for object-oriented ideas like this yet, so hold that thought for now.

2.3.4 Numbers in Action

Perhaps the best way to understand numeric objects and expressions is to see them
in action. Let's fire up the interactive command line and type some basic, but
illustrative operations.

2.3.4.1 Basic operations

First of all, let's exercise some basic math: addition and division. In the following
interaction, we first assign two variables (= and b) to integers, so we can use them
later in a larger expression. We'll say more about this later, but in Python, variables
are created when first assigned; there is no need to predeclare the names = and b
before using them. In other words, the assignments cause these variables to spring
into existence automatically.

s python
>>> a = 3 # name created


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

>>> b = 4

We've also used a comment here. These were introduced in Chapter 1, but as a
refresher: in Python code, text after a # mark and continuing to the end of the line is
considered to be a comment, and is ignored by Python (it's a place for you to write
human-readable documentation for your code; since code you type interactively is
temporary, you won't normally write comments there, but we've added them to our
examples to help explain the code). Now, let's use our integer objects in expressions;
as usual, expression results are echoed back to us at the interactive prompt:

>>b / 2 + a # same as ((4 / 2) + 3)

5

>> b / (2.0 + a) # same as (4 / (2.0 + 3))
0.8

In the first expression, there are no parentheses, so Python automatically groups the
components according to its precedence rules; since / is lower in Table 2.3 than +,
it binds more tightly, and so is evaluated first. The result is as if we had parenthesized
the expression as shown in the comment to the right of the code. Also notice that all
the numbers are integers in the first expression; because of that, Python performs
integer division and addition.

In the second expression, we add parentheses around the + part to force Python to
evaluate it first (i.e., before the / ). We also made one of the operands floating point
by adding a decimal point: 2 . 0. Because of the mixed types, Python converts the
integer referenced by = up to a floating-point value (= . 0) before performing the +. It
also converts b up to a floating-point value (4 . 0) and performs a floating-point
division: (4.0 / 5.0) yields a floating-point result of 0 . 5. If this were integer division
instead, the result would be a truncated integer zero.

2.3.4.2 B itwise operations

Besides the normal numeric operations (addition, subtraction, and so on), Python
supports most of the numeric expressions available in the C language. For instance,
here it's at work performing bitwise shift and Boolean operations:

>>> x =1 # 0001

>>> x << 2 # shift left 2 bits: 0100
4

>>> x | 2 # bitwise OR: 0011

2

>>> x & 1 # bitwise AND: 0001

1

In the first expression, a binary 1 (in base 2, 0001) is shifted left two slots to create a
binary 4 (0100). The last two operations perform a binary o+ (0001 | 0010 =
0011),and abinary and (0001 &« 0001 = 0001). We won't go into much more detail
on bit-twiddling here. It's supported if you need it, but be aware that it's often not as
important in a high-level language such as Python as it is in a low-level language
such as C. As a rule of thumb, if you find yourself wanting to flip bits in Python, you
should think long and hard about which language you're really using. In general, there
are often better ways to encode information in Python than bit strings.(2!


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(31 Usually. As for every rule there are exceptions. For instance, if you interface with C libraries that expect bit strings
to be passed in, our preaching doesn't apply.

2.3.4.3 L ong integers

Now for something more exotic: here's a look at long integers in action. When an
integer constant ends with an 1. (or lowercase 1), Python creates a long integer,
which can be arbitrarily big:

>>> 9990000099999999999999999999 + 1
OverflowError: integer literal too large
>>> 999909099999999999999999999999L, + 1
10000000000000000000000000000L

Here, the first expression fails and raises an error, because normal integers can't
accommodate such a large number. On the other hand, the second works fine,
because we tell Python to generate a long integer object instead.

count the national debt in pennies, if you are so inclined. But
because Python must do extra work to support their extended
precision, long integer math is usually much slower than normal
integer math. If you need the precision, it's built in for you to use.
But as usual, there's no such thing as a free lunch.

J Long integers are a convenient tool. In fact, you can use them to

2.3.4.4 Complex numbers

C omplex numbers are a recent addition to Python. If you know what they are, you
know why they are useful; if not, consider this section optional reading.#! Complex
numbers are represented as two floating-point numbers—the real and imaginary parts
—and are coded by adding a j or J suffix to the imaginary part. We can also write
complex numbers with a nonzero real part by adding the two parts with a +. For
example, the complex number with a real part of 2 and an imaginary part of -3 is
written: 2 + -35. Some examples of complex math at work:

[4] One of your authors is quick to point out that he has never had a need for complex numbers in some 15 years of
development work. The other author isn't so lucky.

>>> 19 * 1J
(-1+073)

>>> 2 + 13 * 3
(2+37)

>>> (2+1]3) *3
(6+37)

Complex numbers also allow us to extract their parts as attributes, but since complex
math is an advanced tool, check Python's language reference manual for additional
details.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.3.4.5 Other numeric tools

As mentioned above, Python also provides both built-in functions and built-in modules
for numeric processing. Here are the built-in m= th module and a few built-in functions

at work; we'll meet more built-ins in Chapter 8.

>>> import math
>>> math.pi
3.14159265359

>>>
>>> abs (-42), 2**4, pow(2, 4)
(42, 16, 16)

Notice that built-in modules such as mat h must be imported and qualified, but built-in
functions such as == are always available without imports. Really, modules are
external components, but built-in functions live in an implied namespace, which
Python searches to find names used in your program. This namespace corresponds
to the module called = _builtin_ . We talk about name resolution in Chapter 4;
for now, when we say "module", think "import."


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
2.4 Strings

The next major built-in type is the Python string —an ordered collection of characters,
used to store and represent text-based information. From a functional perspective,
strings can be used to represent just about anything that can be encoded as text:
symbols and words (e.g., your name), contents of text files loaded into memory, and
SO on.

You've probably used strings in other languages too; Python's strings serve the same
role as character arrays in languages such as C, but Python's strings are a higher
level tool. Unlike C, there is no char type in Python, only one-character strings. And
strictly speaking, Python strings are categorized as immutable sequences— big
words that just mean that they respond to common sequence operations but can't be
changed in place. In fact, strings are representative of the larger class of objects
called sequences; we'll have more to say about what this means in a moment, but
pay attention to the operations introduced here, because they'll work the same on
types we'll see later.

[able 2.4 introduces common string constants and operations. Strings support
expression operations such as concatenation (combining strings), slicing (extracting
sections), indexing (fetching by offset), and so on. Python also provides a set of utility
modules for processing strings you import. For instance, the st r i ng module exports
most of the standard C library's string handling tools, and the regex and re modules
add regular expression matching for strings (all of which are discussed in Chapter
8).

Table 2.4. Common String Constants and Operations

Operation Interpretation
sl = ' Empty string
s2 = "spam's" Double quotes
block = m™mm o Triple-quoted blocks
1+ =2 Concatenate,
- repeat
Index,
s2[1i]
s2[1i:31, slice,
len (s2)
length
"a %s parrot" % 'dead' String formatting
for - Iteration,
or X 1n s«
S membership

Empty strings are written as two quotes with nothing in between. Notice that string
constants can be written enclosed in either single or double quotes; the two forms
work the same, but having both allows a quote character to appear inside a string
without escaping it with a backslash (more on backslashes later). The third line in the
table also mentions a triple-quoted form; when strings are enclosed in three quotes,
they may span any number of lines. Python collects all the triple-quoted text into a
multiline string with embedded newline characters.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.4.1 Strings in Action

Rather than getting into too many details right away, let's interact with the Python
interpreter again to illustrate the operations in Table 2.4.

2.4.1.1 Basic operations

Strings can be concatenated using the + operator, and repeated using the * operator.
Formally, adding two string objects creates a new string object with the contents of its
operands joined; repetition is much like adding a string to itself a number of times. In
both cases, Python lets you create arbitrarily sized strings; there's no need to
predeclare anything in Python, including the sizes of data structures.ts1 Python also
provides a 1 en built-in function that returns the length of strings (and other objects
with a length):

[5] Unlike C character arrays, you don't need to allocate or manage storage arrays when using Python strings. Simply
create string objects as needed, and let Python manage the underlying memory space. Internally, Python reclaims
unused objects’ memory space automatically, using a reference-count garbage collection strategy. Each object keeps
track of the number of names, data-structures, etc. that reference it; when the count reaches zero, Python frees the
object's space. This scheme means Python doesn't have to stop and scan all of memory to find unused space to free;
it also means that objects that reference themselves might not be collected automatically.

% python

>>> len('abc') # length: number items

3

>>> 'abec' + 'def' # concatenation: a new string
"abcdef'

>>> 'Ni!' * 4 # like "Ni!"™ 4+ "Ni!"™ +

"NI!Ni!N1!Ni!'

Notice that operator overloading is at work here already: we're using the same
operators that were called addition and multiplication when we looked at numbers.
Python is smart enough to do the correct operation, because it knows the types of
objects being added and multiplied. But be careful; Python doesn't allow you to mix
numbers and strings in + and * expressions: 'abc' + 9 raises an error, instead of
automatically converting © to a string. As shown in the last line in Table 2.4, you can
also iterate over strings in loops using o r statements and test membership with the
in expression operator:

>>> myjob = "hacker"
>>> for ¢ in myjob: print c, # step though items

hacker
>>> "k" in myjob # 1 means true
1

But since you need to know something about statements and the meaning of truth in
Python to really understand for and in, let's defer details on these examples until
later.

2.4.1.2 Indexing and slicing


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

Because strings are defined as an ordered collection of characters, we can access
their components by position. In Python, characters in a string are fetched by indexing
—providing the numeric offset of the desired component in square brackets after the
string. As in C, Python offsets start at zero and end at one less than the length of the
string. Unlike C, Python also lets you fetch items from sequences such as strings
using negative offsets. Technically, negative offsets are added to the length of a
string to derive a positive offset. But you can also think of negative offsets as counting
backwards from the end (or right, if you prefer).

>>> S = 'spam'

>>> S[O], S[-2] # indexing from front or end
(' | 'a'>

>>> S[l 3], S[1:], S[:-1] # slicing: extract section
(‘pa', 'pam', 'spa')

In the first line, we define a four-character string and assign it the name S. We then
index it two ways: 5[ 0] fetches the item at offset from the left (the one-character
string "= "), and s [ -2 gets the item at offset 2 from the end (or equivalently, at
offset (4 + -2) from the front). Offsets and slices map to cells as shown in Figure 2.1.

Figure 2.1. Using offsets and slices

The last line in the example above is our first look at slicing. When we index a
sequence object such as a string on a pair of offsets, Python returns a new object
containing the contiguous section identified by the offsets pair. The left offset is taken
to be the lower bound, and the right is the upper bound; Python fetches all items from
the lower bound, up to but not including the upper bound, and returns a new object
containing the fetched items.

Forinstance, 5 [1:3] extracts items at offsets 1 and 2, s [ 1 : ] gets all items past the
first (the upper bound defaults to the length of the string), and s [ : -1 ] gets all but the
last item (the lower bound defaults to zero). This may sound confusing on first glance,
but indexing and slicing are simple and powerful to use, once you get the knack.
Here's a summary of the details for reference; remember, if you're unsure about what
a slice means, try it out interactively.

Indexing (s [11):

¢ Fetches components at offsets (the first item is at offset zero)


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

¢ Negative indexes mean to count from the end (added to the positive length)

e 5[ 0] fetches the first item

e 5[ -2 fetches the second from the end (it's the sameas s [ 1en(s) - 27)
Slicing (s[1:71):

o Extracts contiguous sections of a sequence

« Slice boundaries default to zero and the sequence length, if omitted

e 5[1:3] fetches from offsets 1 up to, but not including, 3

e 5 [1:] fetches from offsets 1 through the end (length)

e 5[ :-1] fetches from offsets up to, but not including, the last item
Later in this chapter, we'll see that the syntax used to index by offset (the square

brackets) is also used to index dictionaries by key; the operations look the same, but
have different interpretations.

Why You Will Care: Slices

Throughout this part of the book, we include sidebars such as this to give
you a peek at how some of the language features being introduced are
typically used in real programs. Since we can't show much of real use until
you've seen most of the Python picture, these sidebars necessarily contain
many references to topics we haven't introduced yet; at most, you should
consider them previews of ways you may find these abstract language
concepts useful for common programming tasks.

For instance, you'll see later that the argument words listed on a command
line used to launch a Python program are made available in the o rgv
attribute of the built-in == module:

s cat echo.py
import sys
print sys.argv

% python echo.py -a -b -c
['GChO.py', |_a|, '_b', '_C'}

Usually, we're only interested in inspecting the arguments past the program
name. This leads to a very typical application of slices: a single slice
expression can strip off all but the first item of the list. Here, s ys.argv[1:]
returns the desired list, ['-=2', "-b', '-c'].You can then process
without having to accommodate the program name at the front.

Slices are also often used to clean up lines read from input files; if you know
that a line will have an end-of-line character at the end (a ' \n ' newline



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

marker), you can get rid of it with a single expression suchas 1 ine[:-1],
which extracts all but the last character in the line (the lower limit defaults to
0). In both cases, slices do the job of logic that must be explicit in a lower-
level language.

2.4.1.3 C hanging and formatting

Remember those big words—immutable sequence? The immutable part means that
you can't change a string in-place (e.g., by assigning to an index). So how do we
modify text information in Python? To change a string, we just need to build and
assign a new one using tools such as concatenation and slicing:

>>> § = 'spam'
>>> S[0] = "x"
Raises an error!

>>> S =S + 'Spam!' # to change a string, make a new one
>>> S

'spamSpam! "'

>>> S = S[:4] + 'Burger' + S[-1]

>>> S

'spamBurger!’

>>> 'That is %d %s bird!' $ (1, 'dead') # like C sprintf

That is 1 dead bird!

Python also overloads the = operator to work on strings (it means remainder-of-
division for numbers). When applied to strings, it serves the same role as C's
sprintf function: it provides a simple way to format strings. To make it go, simply
provide a format string on the left (with embedded conversion targets—e.g., = d),
along with an object (or objects) on the right that you want Python to insert into the
string on the left, at the conversion targets. For instance, in the last line above, the
integer 1 is plugged into the string where the = d appears, and the string 'dead' is

inserted at the = . String formatting is important enough to warrant a few more

examples:
>>> exclamation = "Ni"
>>> "The knights who say %s!" % exclamation

'The knights who say Ni!'
>>> "%d %s %d you" % (1, 'spam',6 4)
'l spam 4 you'

>>> "%s -- %$s -- $s" $ (42, 3.14159, [1, 2, 3])
'42 -- 3.14159 -- [1, 2, 31"

In the first example, plug the string "11i " into the target on the left, replacing the = s
marker. In the second, insert three values into the target string; when there is more
than one value being inserted, you need to group the values on the right in
parentheses (which really means they are put in a tuple, as we'll see shortly).

Python's string = operator always returns a new string as its result, which you can
print or not. It also supports all the usual C print ¢ format codes. Table 2.5 lists the
more common string-format target codes. One special case worth noting is that = =
converts any object to its string representation, so it's often the only conversion code


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

you need to remember. For example, the last line in the previous example converts
integer, floating point, and list objects to strings using = = (lists are up next).
Formatting also allows for a dictionary of values on the right, but since we haven't told
you what dictionaries are yet, we'll finesse this extension here.

Table 2.5. String Formatting Codes

%  |String (or any object's print format) %X |Hex integer (uppercase)
%c |Character %e |Floating-point format 161
%d |Decimal (int) %E |Floating-point format 2
%i |Integer %f Floating-point format 3
%u |Unsigned (int) %g |Floating-point format 4
%0 |Octal integer %G  |Floating-point format 5
%x |Hex integer %% |Literal %

(6] The floating-point codes produce alternative representations for floating-point numbers. See print ¢
documentation for details; better yet, try these formats out in the Python interactive interpreter to see how the
alternative floating-point formats look (e.g., "= =t =g" (1.1, 2.2, 3.3)).

2.4.1.4 Common string tools

As previously mentioned, Python provides utility modules for processing strings. The
string module is perhaps the most common and useful. It includes tools for
converting case, searching strings for substrings, converting strings to numbers, and
much more (the Python library reference manual has an exhaustive list of string

tools).

>>> import string # standard utilities module
>>> § = "spammify"

>>> string.upper (S) # convert to uppercase
'SPAMMIFY'

>>> string.find (S, "mm" # return index of substring
3

>>> string.atoi ("42"), "42° # convert from/to string
(42, '42")

>>> string.join(string.split(S, "mm"), "XX")

'spaXXify'

The last example is more complex, and we'll defer a better description until later in the
book. But the short story is that the sp1 1t function chops up a string into a list of
substrings around a passed-in delimiter or whitespace; join puts them back
together, with a passed-in delimiter or space between each. This may seem like a
roundabout way to replace "mm" with "xx ", but it's one way to perform arbitrary
global substring replacements. We study these, and more advanced text processing
tools, later in the book.

Incidentally, notice the second-to-last line in the previous example: the ot o1 function
converts a string to a number, and backquotes around any object convert that object
to its string representation (here, 42 converts a number to a string). Remember
that you can't mix strings and numbers types around operators such as +, but you can
manually convert before that operation if needed:

>>> "spam" + 42


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Raises an error

>>> "spam" + "42°

'spamé?2’

>>> string.atoi("42") + 1
43

Later, we'll also meet a built-in function called v a1 that converts a string to any kind
of object; st ring.atoi and its relatives convert only to numbers, but this restriction
means they are usually faster.

2.4.1.5 String constant variations

Finally, we'd like to show you a few of the different ways to write string constants; all
produce the same kind of object (a string), so the special syntax here is just for our
convenience. Earlier, we mentioned that strings can be enclosed in single or double
quotes, which allows embedded quotes of the opposite flavor. Here's an example:

>>> mixed
>>> mixed
"Guido's"
>>> mixed
>>> mixed
'"Guido"s'
>>> mixed
>>> mixed
"Guido's™"

"Guido's" # single in double

'Guido"s' # double in single

'Guido\'s' # backslash escape

Notice the last two lines: you can also escape a quote (to tell Python it's not really the
end of the string) by preceding it with a backslash. In fact, you can escape all kinds of
special characters inside strings, as listed in Table 2.6; Python replaces the escape
code characters with the special character they represent. In general, the rules for
escape codes in Python strings are just like those in C strings.iz! Also like C, Python
concatenates adjacent string constants for us:

[7] But note that you normally don't need to terminate Python strings with a \ 0 null character as you would in C. Since
Python keeps track of a string's length internally, there's usually no need to manage terminators in your programs. In
fact, Python strings can contain the null byte \ 0, unlike typical usage in C. For instance, we'll see in a moment that file
data is represented as strings in Python programs; binary data read from or written to files can contain nulls because
strings can too.

>>> split = "This" "is" "concatenated"
>>> split
'Thisisconcatenated'

And last but not least, here's Python's triple-quoted string constant form in action:
Python collects all the lines in such a quoted block and concatenates them in a single
multiline string, putting an end-of-line character between each line. The end-of-line
prints as a "\ 012" here (remember, this is an octal integer); you can also call it "\ n "
as in C. For instance, a line of text with an embedded tab and a line-feed at the end
might be written in a program as python\tstuff\n (see Table 2.6).

>>> big = """This is
a multi-line block


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

of text; Python puts
an end-of-line marker
... after each line."""
>>>
>>> big
'"This 1s\012a multi-line block\0120f text; Python puts\0l12an end
marker\0l2after each line.'

Python also has a special string constant form called raw strings, which don't treat
backslashes as potential escape codes (see Table 2.6). For instance, strings
r'a\b\c'and R"a\b\c" retain their backslashes as real (literal) backslash
characters. Since raw strings are mostly used for writing regular expressions, we'll
defer further details until we explore regular expressions in Chapter 8.

Table 2.6. String Backslash Characters

\newline Ignored (a continuation) \n Newline (linefeed)

AN\ Backslash (keeps one \) \v Vertical tab

\! Single quote (keeps ') \t Horizontal tab

\" Double quote (keeps ") \r Carriage return

\a Bell \f Formfeed

\b Backspace \ 0XX Octal value XX

\e Escape (usually) \xXX Hex value XX

\000 Null (doesn't end string) \other Any other char (retained)

2.4.2 Generic Type Concepts

Now that we've seen our first composite data type, let's pause a minute to define a
few general type concepts that apply to most of our types from here on. One of the
nice things about Python is that a few general ideas usually apply to lots of situations.
In regard to built-in types, it turns out that operations work the same for all types in a
category, so we only need to define most ideas once. We've only seen numbers and
strings so far, but they are representative of two of the three major type categories in
Python, so you already know more about other types than you think.

2.4.2.1 Types share operation sets by categories

When we introduced strings, we mentioned that they are immutable sequences: they
can't be changed in place (the immutable part), and are ordered collections accessed
by offsets (the sequence bit). Now, it so happens that all the sequences seen in this
chapter respond to the same sequence operations we previously saw at work on
strings—concatenation, indexing, iteration, and so on. In fact, there are three type
(and operation) categories in Python:

* Numbers support addition, multiplication, etc.
¢ Sequences support indexing, slicing, concatenation, etc.

e Mappings support indexing by key, etc.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

We haven't seen mappings yet (we'll get to dictionaries in a few pages), but other
types are going to be mostly more of the same. For example, for any sequence
objects x and v:

e X + ¥ makes a new sequence object with the contents of both operands.

e X * N makes a new sequence object with 1 copies of the sequence operand
X.

In other words, these operations work the same on any kind of sequence. The only
difference is that you get back a new result object that is the same type as the
operands x and v (if you concatenate strings, you get back a new string, not a list).
Indexing, slicing, and other sequence operations work the same on all sequences too;
the type of the objects being processed tells Python which flavor to perform.

2.4.2.2 Mutable types can be changed in place

The immutable classification might sound abstract, but it's an important constraint to
know and tends to trip up new users. If we say an object type is immutable, you
shouldn't change it without making a copy; Python raises an error if you do. In
general, immutable types give us some degree of integrity, by guaranteeing that an
object won't be changed by another part of a program. We'll see why this matters
when we study shared object references later in this chapter.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
2.5 Lists

Our next stop on the built-in object tour is the Python list. Lists are Python's most
flexible ordered collection object type. Unlike strings, lists can contain any sort of
object: numbers, strings, even other lists. Python lists do the work of most of the
collection data structures you might have to implement manually in lower-level

languages such as C. In terms of some of their main properties, Python lists are:

Ordered collections of arbitrary objects

From a functional view, lists are just a place to collect other objects, so you can
treat them as a group. Lists also define a left-to-right positional ordering of the
items in the list.

Accessed by offset

Just as with strings, you can fetch a component object out of a list by indexing
the list on the object's offset. Since lists are ordered, you can also do such tasks
as slicing and concatenation.

Variable length, heterogeneous, arbitrarily nestable

Unlike strings, lists can grow and shrink in place (they're variable length), and
may contain any sort of object, not just one-character strings (they're
heterogeneous). Because lists can contain other complex objects, lists also
support arbitrary nesting; you can create lists of lists of lists, and so on.

Of the category mutable sequence

In terms of our type category qualifiers, lists can be both changed in place
(they're mutable) and respond to all the sequence operations we saw in action
on strings in the last section. In fact, sequence operations work the same on
lists, so we won't have much to say about them here. On the other hand,
because lists are mutable, they also support other operations strings don't, such
as deletion, index assignment, and methods.

Arrays of object references

Technically, Python lists contain zero or more references to other objects. If
you've used a language such as C, lists might remind you of arrays of pointers.
Fetching an item from a Python list is about as fast as indexing a C array; in
fact, lists really are C arrays inside the Python interpreter. Moreover, references
are something like pointers (addresses) in a language such as C, except that
you never process a reference by itself; Python always follows a reference to an
object whenever the reference is used, so your program only deals with objects.
Whenever you stuff an object into a data structure or variable name, Python
always stores a reference to the object, not a copy of it (unless you request a
copy explicitly).

Table 2.7 summarizes common list object operations.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Table 2.7. Common List Constants and Operations

Operation Interpretation
Lt = [ An empty list
Lz = 10, 1, 2, 3] Four items: indexes 0.3
L3 = ['abc', ['def', 'ghi']] Nested sublists
Index,
L2[1i], L3[1][37]
L2[i:31, slice,
len (L2)
length
L1 + L2, Concatenate,
L2 * 3
repeat
for x in L2, Iteration,
3 in L2 .
membership

Methods: grow,

L2.append(4),
L2.sort (),

L2.index (1),
L2 .reverse ()

sort,
search,

reverse, etc.

del L2[k], L
L2[i:9] = [] Shrinking
L2[i] = 1, Index assignment,
= 4 5
o o slice assignment
range (4), xrange(0, 4) Make lists/tuples of integers

Lists are written as a series of objects (really, expressions that return objects) in
square brackets, separated by commas. Nested lists are coded as a nested square-
bracketed series, and the empty list is just a square-bracket set with nothing inside.(s!

[8] But we should note that in practice, you won't see many lists written out like this in list-processing programs. It's
more common to see code that processes lists constructed dynamically (at runtime). In fact, although constant syntax
is important to master, most data structures in Python are built by running program code at runtime.

Most of the operations in Table 2.7 should look familiar, since they are the same
sequence operations we put to work on strings earlier—indexing, concatenation,
iteration, and so on. The last few table entries are new; lists also respond to method
calls (which provide utilities such as sorting, reversing, adding items on the end, etc.),
as well as in-place change operations (deleting items, assignment to indexes and
slices, and so forth). Remember, lists get these last two operation sets because they
are a mutable object type.

2.5.1 Lists in Action

Perhaps the best way to understand lists is to see them at work. Let's once again turn
to some simple interpreter interactions to illustrate the operations in Table 2.7.

2.5.1.1 Basic operations

Lists respond to the + and * operators as with strings; they mean concatenation and
repetition here too, except that the result is a new list, not a string. And as Forrest


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Gump was quick to say, "that's all we have to say about that"; grbuping types into
categories is intellectually frugal (and makes life easy for authors like us).

$ python

>>> len([1, 2, 3]) # length

3

>>> [1, 2, 3] + [4, 5, 6] # concatenation
(1, 2, 3, 4, 5, 6]

>>> ['Ni!'] * 4 # repetition
['Ni!', 'NQ!', 'Nil!', 'Nil!']

>>> for x in [1, 2, 3]: print x, # iteration

12 3

We talk about iteration (as well as range built-ins) in Chapter 3. One exception
worth noting here: + expects the same sort of sequence on both sides, otherwise you
get a type error when the code runs. For instance, you can't concatenate a list and a
string, unless you first convert the list to a string using backquotes or = formatting (we
met these in the last section). You could also convert the string to a list; the 11 s+t
built-in function does the trick:

>>> " [1, 2] + "34" # same as "[1, 2]" + "34"
"[1, 2]34°

>>> [1, 2] + list("34") # same as [1, 2] + ["3", "4"]
(1, 2, '3', '4']

2.5.1.2 In dexing and slicing

Because lists are sequences, indexing and slicing work the same here too, but the
result of indexing a list is whatever type of object lives at the offset you specify, and
slicing a list always returns a new list:

>>> L = ['spam', 'Spam',6 'SPAM!']

>>> L[2] # offsets start at =zero
'SPAM!!

>>> L[-2] # negative: count from th
'Spam'

>>> L[1:] # slicing fetches section
['Spam', 'SPAM!']

2.5.1.3 Changing lists in place

Finally something new: because lists are mutable, they support operations that
change a list object in-place; that is, the operations in this section all modify the list
object directly, without forcing you to make a new copy as you had to for strings. But
since Python only deals in object references, the distinction between in-place
changes and new objects can matter; if you change an object in place, you might
impact more than one reference to it at once. More on that later in this chapter.

When using a list, you can change its contents by assigning to a particular item
(offset), or an entire section (slice):


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

>>> L = ['spam', 'Spam',6 'SPAM!']

>>> L[1] = 'eggs' # index assignment

>>> L

['spam', 'eggs', 'SPAM!']

>>> L[0:2] = ['eat', 'more'] # slice assignment: delete+in
>>> L # replaces items 0,1

['eat', 'more', 'SPAM!']

Index assignment works much as it does in C: Python replaces the object reference at
the designated slot with a new one. Slice assignment is best thought of as two steps:
Python first deletes the slice you specify on the left of the -, and then inserts (splices)
the new items into the list at the place where the old slice was deleted. In fact, the
number of items inserted doesn't have to match the number of items deleted; for
instance, given a list ©. that has the value [1, 2, 3],theassignmentr[1:2] =

4, 5] setsitothelist (1, 4, 5, 31.Python first deletes the 2 (a one-item
slice), then inserts items 4 and 5 where 2 used to be. Python list objects also support
method calls:

>>> L.append('please') # append method call

>>> L

['eat', 'more', 'SPAM!', 'please']

>>> L.sort () # sort list items ('S' < 'e')
>>> L

['SPAM!', 'eat', 'more', 'please']

Methods are like functions, except that they are associated with a particular object.
The syntax used to call methods is similar too (they're followed by arguments in
parentheses), but you qualify the method name with the list object to get to it.
Qualification is coded as a period followed by the name of the method you want; it
tells Python to look up the name in the object's namespace—set of qualifiable names.
Technically, names such as append and sort are called attributes—names
associated with objects. We'll see lots of objects that export attributes later in the
book.

The list append method simply tacks a single item (object reference) to the end of the
list. Unlike concatenation, =ppend expects us to pass in a single object, not a list.
The effect of 1.. append (%) is similar to 1.+ [ %1, but the former changes 1. in place,
and the latter makes a new list.2! The sort method orders a list in-place; by default,
it uses Python standard comparison tests (here, string comparisons; you can also
pass in a comparison function of your own, but we'll ignore this option here).

[91 Also unlike + concatenation, =ppernd doesn't have to generate new objects, and so is usually much faster. On the
other hand, you can mimic zppend with clever slice assignments: 1.[ 1en (1) : | =[x] islike 1. append (), and

) [x] is like appending at the front of a list. Both delete an empty slice and insert X, changing L in place quickly
like zppend. C programmers might be interested to know that Python lists are implemented as single heap blocks
(rather than a linked list), and zppend is really a call to r=z 11 oc behind the scenes. Provided your heap manager is
smart enough to avoid copying and re-mallocing, z=ppend can be very fast. Concatenation, on the other hand, must
always create new list objects and copy the items in both operands.

- Here's another thing that seems to trip up new users: append
- s J and sort change the associated list object in-place, but don't

return the list as a result (technically, they both return a value
called none , which we'll meet in a moment). If you say



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

something like . = 1..2ppend (¥), you won't get the modified
value of 1. (in fact, you'll lose the reference to the list altogether);
when you use attributes such as zppend and sort, objects are
changed as a side effect, so there's no reason to reassign.

Finally, because lists are mutable, you can also use the de 1 statement to delete an
item or section. Since slice assignment is a deletion plus an insert, you can also
delete sections of lists by assigning an empty listtoaslice (.[i:7] = []); Python
deletes the slice named on the left and then inserts nothing. Assigning an empty list
to an index, on the other hand, just stores a reference to the empty list in the specified
slot: L[0] = [] sets the first item of . to the object [ |, rather than deleting it (1
winds up looking like [ [1, ... ]):

>>> L

['SPAM!', 'eat', 'more', 'please']

>>> del L[O] # delete one item

>>> L

['eat', 'more', 'please']

>>> del LJ[1:] # delete an entire section
>>> L # same as L[l:] = []
['eat ']

Here are a few pointers before moving on. Although all the operations above are
typical, there are additional list methods and operations we won't illustrate here
(including methods for reversing and searching). You should always consult Python's
manuals or the Python Pocket Reference for a comprehensive and up-to-date list of
type tools. Even if this book was complete, it probably couldn't be up to date (new
tools may be added any time). We'd also like to remind you one more time that all the
in-place change operations above work only for mutable objects: they won't work on
strings (or tuples, discussed ahead), no matter how hard you try.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
2.6 Dictionaries

Besides lists, dictionaries are perhaps the most flexible built-in data type in Python. If
you think of lists as ordered collections of objects, dictionaries are unordered
collections; their chief distinction is that items are stored and fetched in dictionaries by
key, instead of offset. As we'll see, built-in dictionaries can replace many of the
searching algorithms and data-structures you might have to implement manually in
lower-level languages. Dictionaries also sometimes do the work of records and
symbol tables used in other languages. In terms of their main properties, dictionaries
are:

Accessed by key, not offset

Dictionaries are sometimes called associative arrays or hashes. They associate
a set of values with keys, so that you can fetch an item out of a dictionary using
the key that stores it. You use the same indexing operation to get components
in a dictionary, but the index takes the form of a key, not a relative offset.

Unordered collections of arbitrary objects

Unlike lists, items stored in a dictionary aren't kept in any particular order; in
fact, Python randomizes their order in order to provide quick lookup. Keys
provide the symbolic (not physical) location of items in a dictionary.

Variable length, heterogeneous, arbitrarily nestable

Like lists, dictionaries can grow and shrink in place (without making a copy),
they can contain objects of any type, and support nesting to any depth (they can
contain lists, other dictionaries, and so on).

Of the category mutable mapping

They can be changed in place by assigning to indexes, but don't support the
sequence operations we've seen work on strings and lists. In fact, they can't:
because dictionaries are unordered collections, operations that depend on a
fixed order (e.g., concatenation, slicing) don't make sense. Instead, dictionaries
are the only built-in representative of the mapping type category—objects that
map keys to values.

Tables of object references (hash tables)

If lists are arrays of object references, dictionaries are unordered tables of
object references. Internally, dictionaries are implemented as hash tables (data
structures that support very fast retrieval), which start small and grow on
demand. Moreover, Python employs optimized hashing algorithms to find keys,
so retrieval is very fast. But at the bottom, dictionaries store object references
(not copies), just like lists.

Table 2.8 summarizes some of the most common dictionary operations (see the
library manual for a complete list). Dictionaries are written as a series of key:value


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

pairs, separated by commas, and enclosed in curly braces.2o! An empty dictionary is
an empty set of braces, and dictionaries can be nested by writing one as a value in
another dictionary, or an item in a list (or tuple).

[10] The same note about the relative rarity of constants applies here: we often build up dictionaries by assigning to
new keys at runtime, rather than writing constants. But see the following section on changing dictionaries; lists and
dictionaries are grown in different ways. Assignment to new keys works for dictionaries, but fails for lists (lists are

grown with append).

Table 2.8. Common Dictionary Constants and Operations

Operation Interpretation
dl = {} Empty dictionary
d2 = {'spam': 2, 'eggs': 3} Two-item dictionary
d3 = {'food': {'ham': 1, 'egg': 2}} Nesting
d2['eggs'], d3['food']['ham'] Indexing by key
Methods: membership test,
d2.has key('eggs'),
d2.keys (), keys list,
d2.values ()
values list, etc.
len(dl) Length (number stored entries)
42 [key] = new, Adding/changing,
del d2[key]

deleting

As Table 2.8 illustrates, dictionaries are indexed by key; in this case, the key is a
string object (' =ggs '), and nested dictionary entries are referenced by a series of
indexes (keys in square brackets). When Python creates a dictionary, it stores its
items in any order it chooses; to fetch a value back, supply the key that stores it.

2.6.1 Dictionaries in Action

Let's go back to the interpreter to get a feel for some of the dictionary operations in

Table 2.8.

2.6.1.1 Basic operations

Generally, you create dictionaries and access items by key. The built-in 1en function
works on dictionaries too; it returns the number of items stored away in the dictionary,
or equivalently, the length of its keys list. Speaking of keys lists, the dictionary ke v s
method returns all the keys in the dictionary, collected in a list. This can be useful for
processing dictionaries sequentially, but you shouldn't depend on the order of the
keys list (remember, dictionaries are randomized).

% python

>>> d2 = {'spam': 2, 'ham': 1, 'eggs': 3}

>>> d2['spam'] # fetch value for key

2

>>> len(d2) # number of entries in dictionary
3

>>> d2.has_key('ham') # key membership test (1 means tr
1

>>> d2.keys () # list of my keys

['eggs', 'spam', 'ham']


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2.6.1.2 Changing dictionaries

Dictionaries are mutable, so you can change, expand, and shrink them in place
without making new dictionaries, just as for lists. Simply assign a value to a key to
change or create the entry. The de 1 statement works here too; it deletes the entry
associated with the key specified as an index. Notice that we're nesting a list inside a
dictionary in this example (the value of key "ham™):

>>> d2['ham'] = ['grill',6 'bake', 'fry'] # change entry
>>> d2

{'eggs': 3, 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> del d2['eggs'] # delete entry
>>> d2

{'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> d2['brunch'] = 'Bacon' # add new entry
>>> d2

{"brunch': 'Bacon', 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

As with lists, assigning to an existing index in a dictionary changes its associated
value. Unlike lists, whenever you assign a new dictionary key (i.e., one that hasn't
been assigned before), you create a new entry in the dictionary, as done previously
for 'brunch'. This doesn't work for lists, because Python considers an offset out of
bounds if it's beyond the end of a list. To expand a list, you need to use such tools as
the 2ppend method or slice assignment instead.

2.6.1.3 A marginally more real example

Here is a more realistic dictionary example. The following example creates a table
that maps programming language names (the keys) to their creators (the values). You
fetch a creator name by indexing on language name:

>>> table = {'Python': 'Guido van Rossum',
'Perl’': 'Larry Wall',
'Tel': 'John Ousterhout' }

>>> language = 'Python'

>>> creator = table[language]

>>> creator
'Guido wvan Rossum'
>>> for lang in table.keys(): print lang, '\t', table[lang]

Tcl John Ousterhout

Python Guido van Rossum
Perl Larry Wall

Notice the last command. Because dictionaries aren't sequences, you can't iterate
over them directly with a o r statement, as for strings and lists. But if you need to
step through the items in a dictionary it's easy: calling the dictionary ks method
returns a list of all stored keys you can iterate through with a for. If needed, you can


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

index from key to value inside the o loop as done previously. We'll talk about the
print and for statements in more detail in Chapter 3.

2.6.2 Dictionary Usage Notes

Before we move on to more types, here are a few additional details you should be
aware of when using dictionaries:

Sequence operations don't work

We're being redundant on purpose here, because this is another common
question from new users. Dictionaries are mappings, not sequences; because
there's no notion of ordering among their items, things like concatenation (an
ordered joining) and slicing (extracting contiguous section) simply don't apply. In
fact, Python raises an error when your code runs, if you try.

Assigning to new indexes adds entries

Keys can be created either when you write a dictionary constant (in which case
they are embedded in the constant itself), or when you assign values to new
keys of an existing dictionary object. The end result is the same.

Keys need not always be strings

We've been using strings as keys here, but other immutable objects (not lists)
work just as well. In fact, you could use integers as keys, which makes a
dictionary look much like a list (albeit, without the ordering). Tuples (up next) are
sometimes used as dictionary keys too, allowing for compound key values. And
class instance objects (discussed in Chapter 6) can be used as keys, as long
as they have the proper protocol methods; they need to tell Python that their
values won't change, or else they would be useless as fixed keys.

Why You Will Care: Dictionary Interfaces

Besides being a convenient way to store information by key in your programs, some
Python extensions also present interfaces that look and work the same as dictionaries.
For instance, Python's interface to dbm access-by-key files looks much like a dictionary
that must be opened; strings are stored and fetched using key indexes:

import anydbm

file = anydbm.open ("filename") # link to external file
file['key'] = 'data' # store data by key
data = file['key'] # fetch data by key

Later, we'll see that we can store entire Python objects this way too, if we replace
"anydbm" in the above with "shelve" (shelves are access-by-key databases of persistel
Python objects). For Internet work, Python's CGI script support also presents a dictiong
like interface; a call to cgi.FieldStorage yields a dictionary-like object, with one entry pe
input field on the client's web page:



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

import cgi

form = cgi.FieldStorage /() # parse form data (stdin, envirc
if form.has key('name'):
showReply ('Hello, ' + form['name'].value)

All of these (and dictionaries) are instances of mappings. More on CGl scripts in Chap!
9.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m
2.7 Tuples

The last collection type in our survey is the Python tuple. Tuples construct simple
groups of objects. They work exactly like lists, except that tuples can't be changed in
place (they're immutable) and are usually written as a series of items in parentheses,
not square brackets. Tuples share most of their properties with lists. They are:

Ordered collections of arbitrary objects

Like strings and lists, tuples are an ordered collection of objects; like lists, they
can embed any kind of object.

Accessed by offset

Like strings and lists, items in a tuple are accessed by offset (not key); they
support all the offset-base access operations we've already seen, such as
indexing and slicing.

Of the category immutable sequence

Like strings, tuples are immutable; they don't support any of the in-place change
operations we saw applied to lists. Like strings and lists, tuples are sequences;
they support many of the same operations.

Fixed length, heterogeneous, arbitrarily nestable

Because tuples are immutable, they can't grow or shrink without making a new
tuple; on the other hand, tuples can hold other compound objects (e.g., lists,
dictionaries, other tuples) and so support nesting.

Arrays of object references

Like lists, tuples are best thought of as object reference arrays; tuples store
access points to other objects (references), and indexing a tuple is relatively
quick.

[able 2.9 highlights common tuple operations. Tuples are written as a series of
objects (really, expressions), separated by commas, and enclosed in parentheses. An
empty tuple is just a parentheses pair with nothing inside.

Table 2.9. Common Tuple Constants and Operations
Operation Interpretation
@ An empty tuple
0,) A one-item tuple (not an expression)

)
0, 1, 2, 3) A four-item tuple

(
t2 (
t2 0, 1, 2, 3 Another four-item tuple (same as prior line)
t3 ("abc', ('def', 'ghi')) Nested tuples
tl[i], t3[1][J] Index,

tl[i:37], slice,



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

en(tl) length
tl + t2 Concatenate,
t2 * 3 repeat
for x in t2, Iteration,
in t2 membership

The second and fourth entries in Table 2.9 merit a bit more explanation. Because
parentheses can also enclose expressions (see Section 2.3), you need to do
something special to tell Python when a single object in parentheses is a tuple object
and not a simple expression. If you really want a single-item tuple, simply add a
trailing comma after the single item and before the closing parenthesis.

As a special case, Python also allows us to omit the opening and closing parentheses
for a tuple, in contexts where it isn't syntactically ambiguous to do so. For instance, in
the fourth line of the table, we simply listed four items, separated by commas; in the
context of an assignment statement, Python recognizes this as a tuple, even though
we didn't add parentheses. For beginners, the best advice here is that it's probably
easier to use parentheses than it is to figure out when they're optional.

Apart from constant syntax differences, tuple operations (the last three rows in the
table) are identical to strings and lists, so we won't show examples here. The only
differences worth noting are that the +, *, and slicing operations return new tuples
when applied to tuples, and tuples don't provide the methods we saw for lists and
dictionaries; generally speaking, only mutable objects export callable methods in
Python.

2.7.1 Why Lists and Tuples?

This seems to be the first question that always comes up when teaching beginners
about tuples: why do we need tuples if we have lists? Some of it may be historic. But
the best answer seems to be that the immutability of tuples provides some integrity;
you can be sure a tuple won't be changed through another reference elsewhere in a
program. There's no such guarantee for lists, as we'll discover in a moment. Some
built-in operations also require tuples, not lists; for instance, argument lists are
constructed as tuples, when calling functions dynamically with built-ins such as
apply (of course, we haven't met =pp 1y yet, so you'll have to take our word for it for
now). As a rule of thumb, lists are the tool of choice for ordered collections you expect
to change; tuples handle the other cases.

| 1@ve RuBoard [eraivisvs]fiwmxt ]


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
2.8 Files

Hopefully, most readers are familiar with the notion of files—named storage
compartments on your computer that are managed by your operating system. Our
last built-in object type provides a way to access those files inside Python programs.
The built-in cpen function creates a Python file object, which serves as a link to a file
residing on your machine. After calling open, you can read and write the associated
external file, by calling file object methods.

Compared to types we've seen so far, file objects are somewhat unusual. They're not
numbers, sequences, or mappings; instead, they export methods only for common file
processing tasks. Technically, files are a prebuilt C extension type that provides a thin
wrapper over the underlying C stdio filesystem; in fact, file object methods have an
almost 1-to-1 correspondence to file functions in the standard C library.

Table 2.10 summarizes common file operations. To open a file, a program calls the
open function, with the external name first, followed by a processing mode (' '
means open for input, ' w' means create and open for output, ' = ' means open for
appending to the end, and others we'll ignore here). Both arguments must be Python

strings.
Table 2.10. Common File Operations

Operation Interpretation
output = open('/tmp/spam', 'w') Create output file (' w' means write)
input = open('data', 'r'") Create input file (' r ' means read)
S = input.read() Read entire file into a single string
S = input.read (N) Read N bytes (1 or more)
S = input.read Read next line (through end-line marker)
L = input.readlines() Read entire file into list of line strings
output.write (S) Write string S onto file
output.writelines (L) Write all line strings in list L onto file
output.close () Manual close (or it's done for you when collected)

Once you have a file object, call its methods to read from or write to the external file.
In all cases, file text takes the form of strings in Python programs; reading a file
returns its text in strings, and text is passed to the wr i t = methods as strings.
Reading and writing both come in multiple flavors; Table 2.10 gives the most
common.

Calling the file ¢ 1 o se method terminates your connection to the external file. We
talked about garbage collection in a footnote earlier; in Python, an object's memory
space is automatically reclaimed as soon as the object is no longer referenced
anywhere in the program. When file objects are reclaimed, Python automatically
closes the file if needed. Because of that, you don't need to always manually close
your files, especially in simple scripts that don't run long. On the other hand, manual
close calls can't hurt and are usually a good idea in larger systems.

2.8.1 Files in Action


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Here is a simple example that demonstrates file-processing basics. We first open a
new file for output, write a string (terminated with an end-of-line marker, ' \n "), and
close the file. Later, we open the same file again in input mode, and read the line
back. Notice that the second rcad1 ine call returns an empty string; this is how
Python file methods tell us we've reached the end of the file (empty lines are strings
with just an end-of-line character, not empty strings).

>>> myfile = open('myfile', 'w') # open for output (
>>> myfile.write('hello text file\n') # write a line of t
>>> myfile.close()

>>> myfile = open('myfile', 'r') # open for input
>>> myfile.readline() # read the line bac
'hello text file\012'

>>> myfile.readline () # empty string: end

L}

There are additional, more advanced file methods not shown in Table 2.10; for
instance, sceck resets your current position in a file, £ 1 ush forces buffered output to
be written, and so on. See the Python library manual or other Python books for a
complete list of file methods. Since we're going to see file examples in Chapter 9, we
won't present more examples here.

2.8.2 Related Python Tools

File objects returned by the cpen function handle basic file-interface chores. In

Chapter 8, you'll see a handful of related but more advanced Python tools. Here's a
quick preview of all the file-like tools available:

File descriptor-based files

The os module provides interfaces for using low-level descriptor-based files.
DBM keyed files

The anvydbm module provides an interface to access-by-key files.
Persistent objects

The shelve and pickle modules support saving entire objects (beyond
simple strings).

Pipes
The os module also provides POSIX interfaces for processing pipes.
Other

There are also optional interfaces to database systems, B-Tree based files, and
more.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
2.9 General Object Properties

Now that we've seen all of Python's built-in types, let's take a quick look at some of
the properties they share. Some of this section is a review of ideas we've already
seen at work.

2.9.1 Type Categories Revisited

Table 2.11 classifies all the types we've seen, according to the type categories we
introduced earlier. As we've seen, objects share operations according to their
category—for instance, strings, lists, and tuples all share sequence operations. As
we've also seen, only mutable objects may be changed in place. You can change lists
and dictionaries in place, but not numbers, strings, or tuples.i:11 Files only export
methods, so mutability doesn't really apply (they may be changed when written, but
this isn't the same as Python type constraints).

(111 you might think that number immutability goes without saying, but that's not the case in every programming
language. For instance, some early versions of FORTRAN allowed users to change the value of an integer constant by
assigning to it. This won't work in Python, because numbers are immutable; you can rest assured that 2 will always be
2.

Table 2.11. Object Classifications

Object type Category Mutable?
Numbers Numeric No
Strings Sequence No
Lists Sequence Yes
Dictionaries Mapping Yes
Tuples Sequence No
Files Extension N/A

Why You Will Care: Operator Overloading

Later, we'll see that objects we implement ourselves with classes can pick
and choose from these categories arbitrarily. For instance, if you want to
provide a new kind of specialized sequence object that is consistent with
built-in sequences, code a class that overloads things like indexing, slicing,
and concatenation:

class MySequence:
def getitem (self, index):

# called on selflindex], for x in self, x in self
def getslice (self, low, high):

# called on self[low:high]
def add (self, other):

# called on self 4+ other

and so on. You can also make the new object mutable or not, by selectively
implementing methods called for in-place change operations (e.g.,
__setitem__iscalledon self[index]=value assignments). Although



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

this book isn't about C integration, it's also possible to implement new objects
in C, as C extension types. For these, you fill in C function pointer slots to
choose between number, sequence, and mapping operation sets. Python
built-in types are really precoded C extension types; like Guido, you need to
be aware of type categories when coding your own.

2.9.2 Generality

We've seen a number of compound object types (collections with components). In
general:

e Lists, dictionaries, and tuples can hold any kind of object.
e Lists, dictionaries, and tuples can be arbitrarily nested.
e Lists and dictionaries can dynamically grow and shrink.

Because they support arbitrary structures, Python's compound object types are good
at representing complex information in a program. For instance, the following
interaction defines a tree of nested compound sequence objects; to access its
components, we string as many index operations as required. Python evaluates the
indexes from left to right, and fetches a reference to a more deeply nested object at
each step. (This may be a pathologically complicated data structure, but it illustrates
the syntax used to access nested objects in general.)

>>> L = ['abe', [(1, 2), ([3], 4)], 5]
>>> L[1]

((1, 2), ([3], 4)]

>>> L[1]1[1]

([31, 4)

>>> L[1]1[1]1[O0]

[3]

>>> L[1][1][0][O]

3

2.9.3 Shared References

We mentioned earlier that assignments always store references to objects, not
copies. In practice, this is usually what you want. But because assignments can
generate multiple references to the same object, you sometimes need to be aware
that changing a mutable object in place may affect other references to the same
object in your program. For instance, in the following, we create a list assigned to x
and another assigned to 1. that embeds a reference back to list . We also create a
dictionary D that contains another reference back to list x:

>>> X = [1, 2, 3]
>> L = ['a', X, 'b']
>>> D = {'x':X, 'y':2}

At this point, there are three references to the list we created first: from name x, from
the list assigned to 1, and from the dictionary assigned to D. The situation is sketched


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

in Figure 2.2.

Figure 2.2. Shared object references

Since lists are mutable, changing the shared list object from any of the three
references changes what the other two reference:

>>> X[1] = 'surprise' # changes all three references!
>>> L

['a', [1, 'surprise', 3], 'b']

>>> D

{'x'": [1, 'surprise', 3], 'y': 2}

One way to understand this is to realize that references are a higher-level analog of
pointers in languages such as C. Although you can't grab hold of the reference itself,
it's possible to store the same reference in more than one place

2.9.4 Comparisons, Equality, and Truth

All Python objects also respond to the comparisons: test for equality, relative
magnitude, and so on. Unlike languages like C, Python comparisons always inspect
all parts of compound objects, until a result can be determined. In fact, when nested
objects are present, Python automatically traverses data structures and applies
comparisons recursively. For instance, a comparison of list objects compares all their
components automatically:

>>> L1 = [1, ('a', 3)] # same value, unique objects
>>> L2 = [1, ('a', 3)]

>>> L1 == L2, L1 is L2 # equivalent?, same object?
(1, 0)

Here, 1.1 and 1.2 are assigned lists that are equivalent, but distinct objects. Because
of the nature of Python references, there are two ways to test for equality:

The == operator tests value equivalence
Python performs an equivalence test, comparing all nested objects recursively

The is operator tests object identity


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Python tests whether the two are really the same object (i.e., live at the same
address).

In our example, 1.1 and 1.2 pass the —- test (they have equivalent values because all
their components are equivalent), but fail the i s check (they are two different
objects). As a rule of thumb, the == operator is used in almost all equality checks, but
we'll see cases of both operators put to use later in the book. Relative magnitude
comparisons are applied recursively to nested data structures too:

>>> L1 = [1, ('a', 3)]

>>> L2 = [1, ('a', 2)]

>>> L1 < L2, L1 == L2, L1 > L2 # less, equal, greater: a tup
(0, 0, 1)

Here, 1.1 is greater than 1.2 because the nested = is greater than 2. Notice that the
result of the last line above is really a tuple of three objects—the results of the three
expressions we typed (an example of a tuple without its enclosing parentheses). The
three values represent true and false values; in Python as in C, an integer represents
false and an integer 1 represents true. Unlike C, Python also recognizes any empty
data structure as false and any nonempty data structure as true. Table 2.12 gives
examples of true and false objects in Python.

Table 2.12. Example Object Truth Values
Object Value
"spam" True
False
[] False
{} False
True
0.0 False
None False

Python also provides a special object called none (the last item in Table 2.12),
which is always considered to be false. None is the only value of a special data type
in Python; it typically serves as an empty placeholder, much like a NULL pointer in C.
In general, Python compares the types we've seen in this chapter, as follows:

e Numbers are compared by relative magnitude.

e Strings are compared lexicographically, character-by-character ("abc" < "ac").

e Lists and tuples are compared by comparing each component, from left to right.
« Dictionaries are compared as though comparing sorted (key, value) lists.

In later chapters, we'll see other object types that can change the way they get
compared. For instance, class instances are compared by address by default, unless
they possess special comparison protocol methods.

2.9.5 Python's Type Hierarchies


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Finally, Figure 2.3 summarizes all the built-in object types available in Python and
their relationships. In this chapter, we've looked at the most prominent of these; other
kinds of objects in Figure 2.3 either correspond to program units (e.g., functions and
modules), or exposed interpreter internals (e.g., stack frames and compiled code).

Figure 2.3. Built-in type hierarchies

The main point we'd like you to notice here is that everything is an object type in a
Python system and may be processed by your Python programs. For instance, you
can pass a stack frame to a function, assign it to a variable, stuff it into a list or
dictionary, and so on. Even types are an object type in Python: a call to the built-in
function © ype (%) returns the type object of object . Besides making for an amazing
tongue-twister, type objects can be used for manual type comparisons in Python.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
2.10 Built-in Type Gotchas

In this and most of the next few chapters, we'll include a discussion of common
problems that seem to bite new users (and the occasional expert), along with their
solutions. We call these gofchas—a degenerate form of "got you"—because some
may catch you by surprise, especially when you're just getting started with Python.
Others represent esoteric Python behavior, which comes up rarely (if ever!) in real
programming, but tends to get an inordinate amount of attention from language
aficionados on the Internet (like us).(x21 Either way, all have something to teach us
about Python; if you can understand the exceptions, the rest is easy.

[12] we should also note that Guido could make some of the gotchas we describe go away in future Python releases,
but most reflect fundamental properties of the language that are unlikely to change (but don't quote us on that).

2.10.1 Assignment Creates References, Not Copies

We've talked about this earlier, but we want to mention it again here, to underscore
that it can be a gotcha if you don't understand what's going on with shared references
in your program. For instance, in the following, the list object assigned to name 1 is
referenced both from 1. and from inside the list assigned to name 1. Changing 1. in
place changes what 1 references too:

>> L = [1, 2, 3]

>> M= ['X', L, 'Y'] # embed a reference to L
>>> M

[('x', [1, 2, 31, 'Y']

>>> L[1] = 0 # changes M too

>>> M

[('x', [1, 0o, 31, 'Y']

2.10.1.1 Solutions

This effect usually becomes important only in larger programs, and sometimes shared
references are exactly what you want. If they're not, you can avoid sharing objects by
copying them explicitly; for lists, you can always make a top-level copy by using an
empty-limits slice:

>>> L = [1, 2, 3]

>> M = ['X', L[:], 'Y'] # embed a copy of L

>>> L[1] = 0 # only changes L, not M
>>> L

(1, 0, 3]

>>> M

['xX', [1, 2, 31, 'Y']

Remember, slice limits default to and the length of the sequence being sliced; if both
are omitted, the slice extracts every item in the sequence, and so makes a top-level
copy (a new, unshared object).(131


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[13] Empty-limit slices still only make a top-level copy; if you need a complete copy of a deeply nested data structure,
you can also use the standard copy module that traverses objects recursively. See the library manual for details.

2.10.2 Repetition Adds One-Level Deep

When we introduced sequence repetition, we said it's like adding a sequence to itself
a number of times. That's true, but when mutable sequences are nested, the effect
might not always be what you expect. For instance, in the following, x is assigned to ©.
repeated four times, whereas v is assigned to a list containing 1. repeated four
times:

>>> L
>>> X
>>> Y

I
— -

>>> X

(4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]

>>> Y

(4, 5, o1, 1[4, 5, 61, [4, 5, 6], [4, 5, 6]]

Because 1. was nested in the second repetition, ¥ winds up embedding references
back to the original list assigned to 7., and is open to the same sorts of side effects we
noted in the last section:

>>> L[1] = 0 # impacts Y but not X
>>> X

(4, 5, o, 4, 5, o, 4, 5, 6, 4, 5, 6]

>>> Y

(4, o0, o1, 1[4, 0, ©1, [4, 0, 61, [4, 0, 6]1]

2.10.2.1 Solutions

This is really another way to trigger the shared mutable object reference issue, so the
same solutions above apply here. And if you remember that repetition, concatenation,
and slicing copy only the top level of their operand objects, these sorts of cases make
much more sense.

2.10.3 Cyclic Data Structures Can't Be Printed

We actually encountered this gotcha in a prior exercise: if a compound object
contains a reference to itself, it's called a cyclic object. In Python versions before
Release 1.5.1, printing such objects failed, because the Python printer wasn't smart
enough to notice the cycle (you'll keep seeing the same text printed over and over,
until you break execution). This case is now detected, but it's worth knowing; cyclic
structures may also cause code of your own to fall into unexpected loops if you're not
careful. See the solutions to Chapter 1 exercises for more details.

>>> L = ['hi.']; L.append(L) # append reference to same object
>>> L # before 1.5.1: a loop! (cntl-C b

2.10.3.1 Solutions


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Don't do that. There are good reasons to create cycles, but unless you have code that
knows how to handle them, you probably won't want to make your objects reference
themselves very often in practice (except as a parlor trick).

2.10.4 Immutable Types Can't Be Changed in Place

Finally, as we've mentioned plenty of times by now: you can't change an immutable
object in place:

4 # error!
T[:2] + (4,) # okay: (1, 2, 4)

2.10.4.1 Solutions

Construct a new object with slicing, concatenation, and so on, and assign it back to
the original reference if needed. That might seem like extra coding work, but the
upside is that the previous gotchas can't happen when using immutable objects such
as tuples and strings; because they can't be changed in place, they are not open to
the sorts of side effects that lists are.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
2.11 Summary

In this chapter, we've met Python's built-in object types—numbers, strings, lists,
dictionaries, tuples, and files—along with the operations Python provides for
processing them. We've also noticed some of the themes underlying objects in
Python along the way; in particular, the notions of operation overloading and type
categories help to simplify types in Python. Finally, we've seen a few common pitfalls
of built-in types.

Almost all the examples in this chapter were deliberately artificial to illustrate the
basics. In the next chapter, we'll start studying statements that create and process
objects and let us build up programs that do more realistic work.

Other Types in Python

Besides the core objects we've studied in this chapter, a typical Python
installation has dozens of other object types available as linked-in C
extensions or Python classes. We'll see examples of a few later in the book
—regular expression objects, DBM files, GUI widgets, and so on. The main
difference between these extra tools and the built-in types we've just seen is
that the built-ins provide special language creation syntax for their objects
(e.g., 4 foran integer, [ 1, 21 for a list, the cpen function for files). Other
tools are generally exported in a built-in module that you must first import to
use. See Python's library reference for a comprehensive guide to all the
tools available to Python programs.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m
2.12 Exercises

This session asks you to get your feet wet with built-in object fundamentals. As

before, a few new ideas may pop up along the way, so be sure to flip to Appendix C
when you're done (and even when you're not).

1. The basics. Experiment interactively with the common type operations found in
this chapter's tables. To get you started, bring up the Python interactive
interpreter, type the expressions below, and try to explain what's happening in
each case:

2 ** 16
2/ 5 2/ 5.0

"Spam" + "eggs"

S = "ham"
"eggs " + S
S * 5
S[:0]
"green %s and %s" % ("eggs", S)
("x",)[0]
('x', 'y')[1]
L =11,2,3] + [4,5,6]
L, L[:], L[:0], L[-2], L[-2:]
([1,2,3] + [4,5,6])[2:4]
[L[2], LI3
(

L.index (4)

{'a':1, "b':2}['b"]

D= {'"x'":1, '"y':2, 'z':3}

D['w'] =0

D['x'"] + D['w"]

D[(1,2,3)] = 4

D.keys (), D.values(), D.has key((1,2,3))
(ell, """, 01, ), {}1,None]

2. Indexing and slicing. At the interactive prompt, define a list named 1. that
contains four strings or numbers (e.g., =10, 1, 2, 31). Now, let's experiment
with some boundary cases.

a. What happens when you try to index out of bounds (e.g., 1.141)?

b. What about slicing out of bounds (e.g., L. [-1000:1001)?


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

c. Finally, how does Python handle it if you try to extract a sequence in
reverse—with the lower bound greater than the higher bound (e.g.,
L [3:1])? Hint: try assigning to this slice (1.[3:1] = ['2'])and see
where the value is put. Do you think this may be the same phenomenon
you saw when slicing out of bounds?

Indexing, slicing, and del. Define another list 1. with four items again, and assign
an empty list to one of its offsets (e.g., . (2] = []): what happens? Then try
assigning an empty listtoaslice (1.12:3] = [1): what happens now? Recall
that slice assignment deletes the slice and inserts the new value where it used
to be. The de=1 statement deletes offsets, keys, attributes, and names: try using
it on your list to delete an item (e.g., de1 1.[0]). What happens if you de 1 an
entire slice (de1 1.[1:]1)? What happens when you assign a nonsequence to a
slice(L[1:2] = 1)?

Tuple assignment. What do you think is happening to x and v when you type

this sequence? We'll return to this construct in Chapter 3, but it has something
to do with the tuples we've seen here.

>>> X 'spam'
>>> Y 'eggs'
>>> X, Y=Y, X

Dictionary keys. Consider the following code fragments:

>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'

We learned that dictionaries aren't accessed by offsets; what's going on here?
Does the following shed any light on the subject? (Hint: strings, integers, and
tuples share which type category?)

>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

Dictionary indexing. Create a dictionary named D with three entries, for keys =,
b, and c. What happens if you try to index a nonexistent key ¢ (D[ 'd ' 1)? What
does Python do if you try to assign to a nonexistent key d (e.g., D[ 'd'] =
"spam')? How does this compare to out-of-bounds assignments and
references for lists? Does this sound like the rule for variable names?

Generic operations. Run interactive tests to answer the following questions.

a. What happens when you try to use the + operator on different/mixed types
(e.g., string + list, list + tuple)?

b. Does + work when one of the operands is a dictionary?

c. Does the append method work for both lists and strings? How about the


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

10.

11.

12.

using the ke v s method on lists? (Hint: What does =ppend assume about
its subject object?)

d. Finally, what type of object do you get back when you slice or concatenate
two lists or two strings?

String indexing. Define a string s of four characters: s = "spam". Then type the
following expression: s [0] (01 [0][0] [0].Any clues as to what's happening
this time? (Hint: recall that a string is a collection of characters, but Python
characters are one-character strings.) Does this indexing expression still work if
you applyittoalistsuchas: ['s', 'p', 'a', 'm']?Why?

Immutable types. Define a string S of 4 characters again: s = "spam". Write
an assignment that changes the string to "= 1zm", using only slicing and
concatenation. Could you perform the same operation using just indexing and
concatenation? How about index assignment?

Nesting. Write a data-structure that represents your personal information: name
(first, middle, last), age, job, address, email ID, and phone number. You may
build the data structure with any combination of built-in object types you like:
lists, tuples, dictionaries, strings, numbers. Then access the individual
components of your data structures by indexing. Do some structures make
more sense than others for this object?

Files. Write a script that creates a new output file called myfile.txt and writes the
string "Hello file world! " init. Then write another script that opens
myfile.txt, and reads and prints its contents. Run your two scripts from the
system command line. Does the new file show up in the directory where you ran
your scripts? What if you add a different directory path to the filename passed to
open?

The dir function revisited. Try typing the following expressions at the interactive
prompt. Starting with Version 1.5, the di r function we met in Chapter 1 has
been generalized to list all attributes of any Python object you're likely to be
interested in. If you're using an earlier version than 1.5, the __ methods_
scheme has the same effect.

[]. methods
dir([])
dir ({})

#
id

1.4 .
1.5 and later


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
Chapter 3. Basic Statements

Now that we've seen Python's fundamental built-in object types, we're going to move
on in this chapter to explore its basic statement types. In simple terms, statements are
the things you write to tell Python what your programs should do. If programs do
things with stuff, statements are the way you specify what sort of things a program
does. By and large, Python is a procedural, statement-based language; by combining
statements, you specify a procedure Python performs to satisfy a program's goals.

Another way to understand the role of statements is to revisit the concept hierarchy

we introduced in Chapter 2. In that chapter we talked about built-in objects; now we
climb the hierarchy to the next level:

1. Programs are composed of modules.
2. Modules contain statements.
3. Statements create and process objects.

Statements process the objects we've already seen. Moreover, statements are where
objects spring into existence (e.g., in assignment statement expressions), and some
statements create entirely new kinds of objects (functions, classes, and so on). And
although we won't discuss this in detail until Chapter 5, statements always exist in
modules, which themselves are managed with statements.

[able 3.1 summarizes Python's statement set. We've introduced a few of these
already; for instance, in Chapter 2, we saw that the de1 statement deletes data
structure components, the assignment statement creates references to objects, and
so on. In this chapter, we fill in details that were skipped and introduce the rest of
Python's basic procedural statements. We stop short when statements that have to
do with larger program units—functions, classes, modules, and exceptions—are
reached. Since these statements lead to more sophisticated programming ideas, we'll
give them each a chapter of their own. More exotic statements like «xc (which
compiles and executes code we create as strings) and =ssert are covered later in
the book.

Table 3.1. Python Statements

Statement Role Examples
Assignment references curly, moe, larry = 'good', 'bad', 'ugly'
Calls functions stdout.write ("spam, ham, toast\n")
Print Printing objects print 'The Killer', joke
If/elif/else Selecting actions if "python" in text: print text
For/else iteration for x in mylist: print x
While/else General loops while 1: print 'hello'
Pass placeholder while 1: pass
Continue Loop jumps W“ll?flr’wt line: break
Try/except/ﬁna”y exceptions iilepsz}lY?r(\i 'action error'



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Raise exception raise endSearch, location
Import, From Module access import sys; from sys import stdin

Def, Return functions def f(a, b, c=1, *d): return a+b+c+d[0]
Class Building objects class subclass: staticData = []

Global Namespaces def function(): global x, y; x = 'new'
Del Deleting things del datal(k]; del datal[i:j]; del obj.attr
Exec Running code strings |exec "import " + modName in gdict, ldict
Assert Debugging checks assert X > Y



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
3.1 Assignment

We've been using the Python assignment statement already, to assign objects to
names. In its basic form, you write a target of an assignment on the left of an equals
sign and an object to be assigned on the right. The target on the left may be a name
or object component, and the object on the right can be an arbitrary expression that
computes an object. For the most part, assignment is straightforward to use, but here
are a few properties to keep in mind:

Assignments create object references

As we've already seen, Python assignment stores references to objects in
names or data structure slots. It always creates references to objects, instead of
copying objects. Because of that, Python variables are much more like pointers
than data storage areas as in C.

Names are created when first assigned

As we've also seen, Python creates variable names the first time you assign
them a value (an object reference). There's no need to predeclare names ahead
of time. Some (but not all) data structure slots are created when assigned too
(e.g., dictionary entries, some object attributes). Once assigned, a name is
replaced by the value it references when it appears in an expression.

Names must be assigned before being referenced

Conversely, it's an error to use a name you haven't assigned a value to yet.
Python raises an exception if you try, rather than returning some sort of
ambiguous (and hard to notice) default value.

Implicit assignments: import, from, def, class, for, function arguments, etc.

In this section, we're concerned with the = statement, but assignment occurs in
many contexts in Python. For instance, we'll see later that module imports,
function and class definitions, o loop variables, and function arguments are
all implicit assignments. Since assignment works the same everywhere it pops
up, all these contexts simply bind names to object references at runtime.

Table 3.2 illustrates the different flavors of the assignment statement in Python.

Table 3.2. Assignment Statement Forms

Operation Interpretation
spam = 'Spam' Basic form
spam, ham = 'yum', 'YUM' Tuple assignment (positional)
[spam, ham] = ['yum',6 'YUM'] List assignment (positional)
spam = ham = 'lunch' Multiple-target

The first line is by far the most common: binding a single object to a name (or data-
structure slot). The other table entries represent special forms:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tuple and list unpacking assignments

The second and third lines are related. When you use tuples or lists on the left
side of the =, Python pairs objects on the right side with targets on the left and
assigns them from left to right. For example, in the second line of the table,
name spam is assigned the string ' yum', and name ham is bound to string
"vuMm'. Internally, Python makes a tuple of the items on the right first, so this is
often called tuple (and list) unpacking assignment.

Multiple-target assignments

The last line shows the multiple-target form of assignment. In this form, Python
assigns a reference to the same object (the object farthest to the right) to all the
targets on the left. In the table, names spam and ham would both be assigned a
reference to the string ' 1unch ', and so share the same object. The effect is
the same as if you had coded ham="1unch', followed by spam=ham, since
ham evaluates to the original string object.

Here's a simple example of unpacking assignment in action. We introduced the effect
of the last line in a solution to the exercise from Chapter 2: since Python creates a
temporary tuple that saves the items on the right, unpacking assignments are also a
way to swap two variables' values without creating a temporary of our own.

>>> nudge = 1

>>> wink = 2

>>> A, B = nudge, wink # tuples

>>> A, B

(1, 2)

>>> [C, D] = [nudge, wink] # lists

>>> C, D

(1, 2)

>>> nudge, wink = wink, nudge # tuples: swaps values
>>> nudge, wink # same as T=nudge; nudge=wink
(2, 1)

3.1.1 Variable Name Rules

Now that we've told you the whole story of assignment statements, we should also get
a bit more formal in our use of variable names. In Python, names come into existence
when you assign values to them, but there are a few rules to follow when picking
names for things in our program. Python's variable name rules are similar to C's:

Syntax: (underscore or letter) + (any number of letters, digits, or underscores)

Variable names must start with an underscore or letter, and be followed by any
number of letters, digits, or underscores. spam, spam, and Sspam 1 are legal
names, but 1 spam, spam$, and @4 ! are not.

Case matters: SPAM is not the same as spam

Python always pays attention to case in programs, both in names you create
and in reserved words. For instance, names x and = refer to two different


http://www.colorpilot.com/chm2pdf.html

variables.

Reserved words are off limits

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Names we define cannot be the same as words that mean special things in the
Python language. For instance, if we try to use a variable name like c 1ass,
Python will raise a syntax error, but k12ss and C1zss work fine. The list below
displays the reserved words (and hence off limits to us) in Python.

and assert break class continue
def del elif else except
exec finally for from global
if import in is lambda
not or pass print raise
return try while

Before moving on, we'd like to remind you that it's crucial to keep Python's distinction
between names and objects clear. As we saw in Chapter 2, objects have a type
(e.g., integer, list), and may be mutable or not. Names, on the other hand, are just
references to objects. They have no notion of mutability and have no associated type
information apart from the type of the object they happen to be bound to at a given
point in time. In fact, it's perfectly okay to assign the same name to different kinds of
objects at different times:

>>> X 0 # x bound to an integer object

>>> X "Hello" # now it's a string
>>> x = [1, 2, 3] # and now it's a list

In later examples, we'll see that this generic nature of names can be a decided
advantage in Python programming.t

[l you've used C++ in the past, you may be interested to know that there is no notion of C++'s con st declaration in
Python; certain objects may be immutable, but names can always be assigned. Or usually; as we'll see in later
chapters, Python also has ways to hide names in classes and modules, but they're not the same as C++'s
declarations.

[« rewvisus Lrax o]

I l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
3.2 Expressions

In Python, you can use expressions as statements too. But since the result of the
expression won't be saved, it makes sense to do so only if the expression does
something useful as a side effect. Expressions are commonly used as statements in
two situations:

For calls to functions and methods

Some functions and methods do lots of work without returning a value. Since
you're not interested in retaining the value they return, you can call such
functions with an expression statement. Such functions are sometimes called
procedures in other languages; in Python, they take the form of functions that
don't return a value.

For printing values at the interactive prompt

As we've already seen, Python echoes back the results of expressions typed at
the interactive command line. Technically, these are expression statements too;
they serve as a shorthand for typing o r i nt statements.

Table 3.3 lists some common expression statement forms in Python; we've seen
most before. Calls to functions and methods are coded with a list of objects (really,
expressions that evaluate to objects) in parentheses after the function or method.

Table 3.3. Common Python Expression Statements

Operation Interpretation
spam (eggs, ham) Function calls
spam.ham(eggs) Method calls
spam Interactive print
spam < ham and ham != eggs Compound expressions
spam < ham < eggs Range tests

The last line in the table is a special form: Python lets us string together magnitude
comparison tests, in order to code chained comparisons such as range tests. For
instance, the expression (2 < B < C) tests whether = is between ~ and c; it's
equivalent to the Boolean test (2 < B and B < C) but is easier on the eyes (and
keyboard). Compound expressions aren't normally written as statements, but it's
syntactically legal to do so and can even be useful at the interactive prompt if you're
not sure of an expression's result.

&

. Although expressions can appear as statements in Python,

- statements can't be used as expressions. For instance, unlike C,
©  Python doesn't allow us to embed assignment statements (=) in

other expressions. The rationale for this is that it avoids common

coding mistakes; you can't accidentally change a variable by

typing = when you really mean to use the == equality test.

8



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m Tt B
3.3 Print

The print statement simply prints objects. Technically, it writes the textual
representation of objects to the standard output stream. The standard output stream
happens to be the same as the C st dout stream and usually maps to the window
where you started your Python program (unless you've redirected it to a file in your
system's shell).

In Chapter 2, we also saw file methods that write text. The print statement is
similar, but more focused: print writes objects to the stdout stream (with some
default formatting), but file w i - « methods write strings to files. Since the standard
output stream is available in Python as the st dout object in the built-in == module
(aka sys.stdout), it's possible to emulate pr i nt with file writes (see below), but
print is easier to use.

lable 3.4 lists the print statement's forms.

Table 3.4. Print Statement Forms

Operation Interpretation
print spam, ham Print objects to sys . stdout, add a space between
print spam, ham, Same, but don't add newline at end

By default, pr i nt adds a space between items separated by commas and adds a
linefeed at the end of the current output line. To suppress the linefeed (so you can
add more text on the same line later), end your print statement with a comma, as
shown in the second line of the table. To suppress the space between items, you can
instead build up an output string using the string concatenation and formatting tools in

Chapter 2:

>>> print "a", "b"

a b

>>> print "a" + "b"

ab

>>> print "%s...%s" % ("a", "b")
a...pb

3.3.1 The Python "Hello World" Program

And now, without further delay, here's the script you've all been waiting for (drum roll
please)—the hello world program in Python. Alas, it's more than a little anticlimactic.
To print a hello world message in Python, you simply print it:

>>> print 'hello world' # print a string object
hello world

>>> 'hello world' # interactive prints
'hello world'

>>> import sys # printing the hard way


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

>>> sys.stdout.write('hello world\n')
hello world

Printing is as simple as it should be in Python; although you can achieve the same
effect by calling the wr i te method of the sys . stdout file object, the print
statement is provided as a simpler tool for simple printing jobs. Since expression
results are echoed in the interactive command line, you often don't even need to use
a print statement there; simply type expressions you'd like to have printed.

Why You Will Care: print and stdout

The equivalence between the print statement and writingto svs . stdout is importar
notice. It's possible to reassign svs.stdout to a user-defined object that provides the
methods as files (e.g., write). Since the print statement just sends text to the
sys.stdout.write method, you can capture printed text in your programs by assign
sys.stdout to an object whose write method saves the text. For instance, you can
printed text to a GUI window by defining an object with a wr i t = method that does the r
We'll see an example of this trick later in the book, but abstractly, it looks like this:

class FileFaker:
def write(self, string):
# do something with the string

import sys
sys.stdout = FileFaker ()
print someObjects # sends to the write method of the

Python's built-in 2w input () function reads from the sys.stdin file, so you can
intercept read requests in a similar way (using classes that implement file-like read met
Notice that since print text goes to the stdout stream, it's the way to print HTML in C(

scripts (see Chapter 9). It also means you can redirect Python script input and output
operating system's command line, as usual:

python script.py < inputfile > outputfile
python script.py | filter



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
3.4 if Tests

The Python i © statement selects actions to perform. It's the primary selection tool in
Python and represents much of the logic a Python program possesses. It's also our
first compound statement; like all compound Python statements, the i £ may contain
other statements, including other i © =. In fact, Python lets you combine statements in
a program both sequentially (so that they execute one after another), and arbitrarily
nested (so that they execute only under certain conditions).

3.4.1 General Format

The Python i ¢ statement is typical of most procedural languages. It takes the form of
an i test, followed by one or more optional =1 i t tests (meaning "else if"), and ends
with an optional =1 s block. Each test and the « 1 s« have an associated block of
nested statements indented under a header line. When the statement runs, Python
executes the block of code associated with the first test that evaluates to true, or the
e 1 se block if all tests prove false. The general form of an i © looks like this:

i1f <testl>: # 1f test
<statementsl> # associated block

elif <test2>: # optional elif's
<statements2>

else: # optional else

<statements3>
3.4.2 Examples

Here are two simple examples of the i © statement. All parts are optional except the
initial i £ test and its associated statements. Here's the first:

>>> if 1:
print 'true'
true
>>> if not 1:
print 'true'
else:
print 'false'

false

Now, here's an example of the most complex kind of i ¢ statement—with all its
optional parts present. The statement extends from the i r line, through the c1se's
block. Python executes the statements nested under the first test that is true, or else

the =1 se part. In practice, both the =11 © and <1 s« parts may be omitted, and there
may be more than one statement nested in each section:

>>> x = 'killer rabbit'
>>> if x == 'roger':


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print "how's jessica?"
elif x == 'bugs':

print "what's up doc?"
else:

print 'Run away! Run away!'

Run away! Run away!

If you've used languages like C or Pascal, you might be interested to know that there
isno switch (or case) statement in Python. Instead, multiway branching is coded as
a series of i 7/e 11t tests as done above, or by indexing dictionaries or searching
lists. Since dictionaries and lists can be built at runtime, they're sometimes more
flexible than hardcoded logic:

>>> choice = 'ham'

>>> print {'spam': 1.25, # a dictionary-based 'switch
'ham' : 1.99, # use has key() test for def
'eggs': 0.99,

L 'bacon': 1.10}[choice]

1.99

An almost equivalent i © statement might look like the following:

>>> if choice == 'spam':

print 1.25

elif choice == 'ham':
print 1.99

elif choice == 'eggs':
print 0.99

elif choice == 'bacon':
print 1.10

else:

print 'Bad choice'
1.99
Dictionaries are good at associating values with keys, but what about more
complicated actions you can code in i © statements? We can't get into many details

yet, but in Chapter 4, we'll see that dictionaries can also contain functions to
represent more complex actions.

3.4.3 Python Syntax Rules

Since the i © statement is our first compound statement, we need to say a few words
about Python's syntax rules now. In general, Python has a simple, statement-based
syntax. But there are a few properties you need to know:

Statements execute one after another, until you say otherwise

Python normally runs statements in a file or nested block from first to last, but
statements like the i © (and, as we'll see in a moment, loops) cause the


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

interpreter to jump around in your code. Because Python's path through a
program is called the control flow, things like the i © that affect it are called
control-flow statements.

Block and statement boundaries are detected automatically

There are no braces or begin/end delimiters around blocks of code; instead,
Python uses the indentation of statements under a header to group the
statements in a nested block. Similarly, Python statements are not normally
terminated with a semicolon as in C; rather, the end of a line marks the end of
most statements.

Compound statements = header, "', indented statements

All compound statements in Python follow the same pattern: a header line
terminated with a colon, followed by one or more nested statements indented
under the header. The indented statements are called a block (or sometimes, a
suite). In the 1 ¢ statement, the =11 ¢ and <1 se clauses are part of the i £, but
are header lines in their own right.

S paces and comments are usually ignored

Spaces inside statements and expressions are almost always ignored (except in
string constants and indentation). So are comments: they start with a #
character (not inside a string constant) and extend to the end of the current line.
Python also has support for something called documentation strings associated
with objects, but we'll ignore these for the time being.

As we've seen, there are no variable type declarations in Python; this fact alone
makes for a much simpler language syntax than what you may be used to. But for
most new users, the lack of braces and semicolons to mark blocks and statements
seems to be the most novel syntactic feature of Python, so let's explore what this
means in more detail here.21

(2] 1p's probably more novel if you're a C or Pascal programmer. Python's indentation-based syntax is actually based
on the results of a usability study of nonprogrammers, conducted for the ABC language. Python's syntax is often called
the "what you see is what you get" of languages; it enforces a consistent appearance that tends to aid readability and
avoid common C and C++ errors.

3.4.3.1 B lock delimiters

As mentioned, block boundaries are detected by line indentation: all statements
indented the same distance to the right belong to the same block of code, until that
block is ended by a line less indented. Indentation can consist of any combination of
spaces and tabs; tabs count for enough spaces to move the current column number
up to a multiple of 8 (but it's usually not a good idea to mix tabs and spaces). Blocks
of code can be nested by indenting them further than the enclosing block. For

instance, Figure 3.1 sketches the block structure of this example:

Figure 3.1. Nested code blocks


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

x =1

if x:
y = 2
if vy

print 'block2'
print 'blockl'
print 'blockO0'

Notice that code in the outermost block must start in column 1, since it's unnested,;
nested blocks can start in any column, but multiples of 4 are a common indentation
style. If this all sounds complicated, just code blocks as you would in C or Pascal, and
omit the delimiters; consistently-indented code always satisfies Python's rules.

3.4.3.2 S tatement delimiters

As also mentioned, statements normally end at the end of the line they appear on, but
when statements are too long to fit on a single line, a few special rules may be used:

Statements may span lines if you're continuing an open syntactic pair

For statements that are too long to fit on one line, Python lets you continue
typing the statement on the next line, if you're coding something enclosed in (),
{},or [] pairs. For instance, parenthesized expressions and dictionary and list
constants can span any number of lines. Continuation lines can start at any
indentation level.

Statements may span lines if they end in a backslash

This is a somewhat outdated feature, but if a statement needs to span multiple
lines, you can also add a backslash (') at the end of the prior line to indicate
you're continuing on the next line (much like C # de £ ine macros). But since you
can also continue by adding parentheses around long constructs, backslashes
are almost never needed.

Other rules


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Very long string constants can span lines arbitrarily. In fact, the triple-quoted
string blocks in Chapter 2 are designed to do so. You can also terminate
statements with a semicolon if you like (this is more useful when more than one
statement appears on a line, as we'll see in a moment). Finally, comments can
appear anywhere.

3.4.3.3 A few special cases

Here's what a continuation line looks like, using the open pairs rule; we can span
delimited constructs across any number of lines:

L = ["Good",
"Bad" ,
"Ugly"] # open pairs may span lines

This works for anything in parentheses too: expressions, function arguments,

functions headers (see Chapter 4), and so on. If you like using backslashes to
continue you can, but it's more work, and not required:

if a == b and ¢ == d and \
d == e and £ == g:
print 'olde' # backslashes allow continuatio
if (a == b and c¢c == d and
d == e and e == f):
print 'new' # but parentheses usually do to

As a special case, Python allows you to write more than one simple statement (one
without nested statements in it) on the same line, separated by semicolons. Some
coders use this form to save program file real estate:

x = 1; y = 2; print x # more than 1 simple statement

And finally, Python also lets you move a compound statement's body up to the
header line, provided the body is just a simple statement. You'll usually see this most
often used for simple i © statements with a single test and action:

if 1: print 'hello' # simple statement on header 11

You can combine some of these special cases to write code that is difficult to read,
but we don't recommend it; as a rule of thumb, try to keep each statement on a line of
its own. Six months down the road, you'll be happy you did.

3.4.4 Truth Tests Revisited

We introduced the notions of comparison, equality, and truth values in Chapter 2.
Since i  statements are the first statement that actually uses test results, we'll
expand on some of these ideas here. In particular, Python's Boolean operators are a
bit different from their counterparts in languages like C. In Python:

e True means any nonzero number or nonempty object.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

¢ False means not true: a zero number, empty object, or None.
e Comparisons and equality tests return 1 or O (true or false).
¢ Boolean =nd and or operators return a true or false operand object.

The last item here is new; in short, Boolean operators are used to combine the results
of other tests. There are three Boolean expression operators in Python:

XandY
Is true if both x and v are true
XorY
Is true if either x or v are true
not X
Is true if x is false (the expression returns 1 or 0)

Here, xx and v may be any truth value or an expression that returns a truth value (e.g.,
an equality test, range comparison, and so on). Unlike C, Boolean operators are
typed out as words in Python (instead of C's ¢« <, | |, and !). Also unlike C, Boolean
and and or operators return a true or false object in Python, not an integer 1 or O.
Let's look at a few examples to see how this works:

>>> 2 < 3, 3< 2 # less-than: return 1 or O
(1, 0)

Magnitude comparisons like these return an integer 1 or as their truth value result.
But 2=nd and o r operators always return an object instead. For o r tests, Python
evaluates the operand objects from left to right, and returns the first one that is true.
Moreover, Python stops at the first true operand it finds; this is usually called short-
circuit evaluation, since determining a result short-circuits (terminates) the rest of the

expression:

>>> 2 or 3, 3 or 2 # return left operand if true

(2, 3) # else return right operand (whether tru
>>> [] or 3

3

>>> [] or {}
{}

In the first line above, both operands are true (2, 3), so Python always stops and
returns the one on the left. In the other two tests, the left operand is false, so Python
evaluates and returns the object on the right (that may have a true or false value).
and operations also stop as soon as the result is known; in this case, Python
evaluates operands from left to right and stops at the first false object:

>>> 2 and 3, 3 and 2 # return left operand if false


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(3, 2) # else return right operand (whether tru
>>> [] and {}

[]
>>> 3 and []

[]

Both operands are true in the first line, so Python evaluates both sides and returns
the object on the right. In the second test, the left operand is false ([ 1), so Python
stops and returns it as the test result. In the last test, the left side is true (3), so
Python evaluates and returns the object on the right (that happens to be false). The
end result is the same as in C (true or false), but it's based on objects, not integer
flags.t3

[3]1 One common way to use Python Boolean operators is to select from one or more objects with an o r; a statement

suchas x = 2 or B or C sets x to the first nonempty (true) object among 2, 5, and c. Short-circuit evaluation is

important to understand, because expressions on the right of a Boolean operator might call functions that do much
work or have side effects that won't happen if the short-circuit rule takes effect.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
3.5 while Loops

Python's wh i 1e statement is its most general iteration construct. In simple terms, it
repeatedly executes a block of indented statements, as long as a test at the top
keeps evaluating to a true value. When the test becomes false, control continues after
all the statements in the wh i1 e, and the body never runs if the test is false to begin
with.

The whi 1< statement is one of two looping statements (along with the o+, which
we'll meet next). We call it a loop, because control keeps looping back to the start of
the statement, until the test becomes false. The net effect is that the loop's body is
executed repeatedly while the test at the top is true. Python also provides a handful of
tools that implicitly loop (iterate), such as the map, reduce, and i1 ter functions,
and the i n membership test; we explore some of these later in this book.

3.5.1 General Format

In its most complex form, the wh i 1« statement consists of a header line with a test
expression, a body of one or more indented statements, and an optional =1 se part
that is executed if control exits the loop without running into a b re= k statement (more
on these last few words later). Python keeps evaluating the test at the top, and
executing the statements nested in the wh i 1 e part, until the test returns a false value:

while <test>:
<statementsl>

else:
<statements2>

loop test

loop body

optional else

run if didn't exit loop with break

S

3.5.2 Examples

To illustrate, here are a handful of simple wh i 1< loops in action. The first just prints a
message forever, by nesting a print statementin a while loop. Recall that an
integer 1 means true; since the test is always true, Python keeps executing the body
forever or until you stop its execution. This sort of behavior is usually called an infinite
loop (and tends to be much less welcome when you don't expect it):

>>> while 1:
print 'Type Ctrl-C to stop me!'

The next example keeps slicing off the first character of a string, until the string is
empty. Later in this chapter, we'll see other ways to step more directly through the
items in a string.

>>> x = 'spam'
>>> while x:
print x,
x = x[1:] # strip first character off x

Spam pam am m


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Finally, the code below counts from the value of =, up to but not including b. It works
much like a C 7o r loop; we'll see an easier way to do this with a Python o+ and
range in a moment.

>>> a=0; b=10
>>> while a < b: # one way to code counter loops
print a,

a = a+l

01 2 3456 789
3.5.3 break, continue, pass, and the Loop else

Now that we've seen our first Python loop, we should introduce two simple statements
that have a purpose only when nested inside loops—the break and continue
statements. If you've used C, you can skip most of this section, since they work the
same in Python. Since break and loop <1 se clauses are intertwined, we'll say more
about = 1 s here too. And while we're at it, let's also look at Python's empty statement
—the pass, which works just like C's empty statement (a bare semicolon). In Python:

break

Jumps out of the closest enclosing loop (past the entire loop statement).
continue

Jumps to the top of the closest enclosing loop (to the loop's header line).
pass

Does nothing at all: it's an empty statement placeholder.
loop else block

Run if and only if the loop is exited normally—i.e., without hitting a b rea k.
3.5.3.1 General loop format

When we factor in break and cont inue statements, the general format of the
while loop looks like this:

while <test>:
<statements>

if <test>: break # exit loop now, skip else

if <test>: continue # go to top of loop now
else:

<statements> # 1f we didn't hit a 'break'

break and cont inue statements can appear anywhere inside the whi 1 e loop's
body, but they are usually coded further nested in an i © test as we've shown, to take
action in response to some sort of condition.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3.5.3.2 Examples

Let's turn to a few simple examples to see how these statements come together in

practice. The pzss statement is often used to code an empty body for a compound
statement. For instance, if you want to code an infinite loop that does nothing each
time through, do itwitha pass:

while 1: pass # type Ctrl-C to stop me!

Since the body is just an empty statement, Python gets stuck in this loop, silently
chewing up CPU cycles.i! pass is to statements as None is to objects—an explicit
nothing. Notice that the wh i 1< loop's body is on the same line as the header above;
as in the i, this only works if the body isn't a compound statement.

4] This probably isn't the most useful Python program ever written, but frankly, we couldn't think of a better pzss
example. We'll see other places where it makes sense later in the book (for instance, to define empty classes).

The continue statement sometimes lets you avoid statement nesting; here's an
example that uses it to skip odd numbers. It prints all even numbers less than 10 and
greater than or equal to 0. Remember, means false, and = is the remainder-of-
division operator, so this loop counts down to zero, skipping numbers that aren't
multiples of two (it prints & ¢ 4 2 0):

x = 10

while x:
x = x-1
if x $ 2 !'= 0: continue # odd?--skip print
print x,

Because cont inue jumps to the top of the loop, you don't need to nest the print
statement inside an i f test; the print is only reached if the continue isn't run. If
this sounds similar to a got o in other languages it should; Python has no ot o per
se, but because continue lets you jump around a program, all the warnings about
readability you may have heard about ot o apply. It should probably be used
sparingly, especially when you're first getting started with Python.

The break statement can often eliminate the search status flags used in other
languages. For instance, the following piece of code determines if a number v is
prime, by searching for factors greater than one:

x =v / 2
while x > 1:
if v $ x == 0: # remainder
print y, 'has factor', x
break # skip else
x = x-1
else: # normal exit
print y, 'is prime'

Rather than setting a flag to be tested when the loop is exited, insert a brezk where
a factor is found. This way, the loop =1 s can assume that it will be executed only if
no factor was found; if you don't hit the b re2k, the number is prime. Notice that a


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

loop =1 se is also run if the body of the loop is never executed, since you don't run a
break in that event either; in a whi 1 e loop, this happens if the test in the header is
false to begin with. In the example above, you still get the i s prime message if x is
initially less than or equal to 1 (e.g., if v is 2).

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
3.6 for Loops

The tfor loop is a generic sequence iterator in Python: it can step through the items in
any object that responds to the sequence indexing operation. The o r works on
strings, lists, tuples, and new objects we'll create later with classes. We've already
seen the for in action, when we mentioned the iteration operation for sequence

types in Chapter 2. Here, we'll fill in the details we skipped earlier.
3.6.1 General Format

The Python o loop begins with a header line that specifies an assignment target (or
targets), along with an object you want to step through. The header is followed by a
block of indented statements, which you want to repeat:

for <target> in <object>: # assign object items to target
<statements> # repeated loop body: use target
else:
<statements> # 1f we didn't hit a 'break'

When Python runs a ©or loop, it assigns items in the sequence object to the target,
one by one, and executes the loop body for each.ts] The loop body typically uses the
assignment target to refer to the current item in the sequence, as though it were a
cursor stepping through the sequence. Technically, the 7o+ works by repeatedly
indexing the sequence object on successively higher indexes (starting at zero), until
an index out-of-bounds exception is raised. Because 7o r loops automatically
manage sequence indexing behind the scenes, they replace most of the counter style
loops you may be used to coding in languages like C.

[5] The name used as the assignment target in a £or header line is simply a (possibly new) variable in the namespace
(scope) where the 1o statement is coded. There's not much special about it; it can even be changed inside the o~
loop's body, but it's automatically set to the next item in the sequence when control returns to the top of the loop again.

The for also supports an optional =1 se block, which works exactly as it does in
while loops; it's executed if the loop exits without running into a b re= k statement
(i.e., if all items in the sequence were visited). The break and cont inue statements
we introduced above work the same in the for loop as they do in the whi1e too; we
won't repeat their descriptions here, but the 7o r loop's complete format can be
described this way:

for <target> in <object>: # assign object items to target
<statements>

if <test>: break # exit loop now, skip else

if <test>: continue # go to top of loop now
else:

<statements> # 1f we didn't hit a 'break'

3.6.2 Examples

Let's type a few o loops interactively. In the first example below, the name = is
assigned to each of the three items in the list in turn, from left to right, and the print


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

statement is executed for each. Inside the print statement (the loop body), the
name x refers to the current item in the list:

>>> for x in ["spam", "eggs", "ham"]:
print x,

spam eggs ham

The next two examples compute the sum and product of all the items in a list. In
Chapter 8, we'll see built-ins that apply operations like + and * to items in a list, but
it's usually just as easytousea for:

>>> sum = 0

>>> for x in [1, 2, 3, 4]:
sum = sum + X

>>> sum

10

>>> prod = 1

>>> for item in [1, 2, 3, 4]: prod = prod * item
>>> prod

24

As mentioned, o r loops work on strings and tuples too. One thing we haven't
mentioned is that, if you're iterating through a sequence of tuples, the loop target can
actually be a tuple of targets. This is just another case of tuple unpacking assignment
at work; remember, the ©or assigns items in the sequence to the target, and
assignment works the same everywhere:

>>> S, T = "lumberjack", ("and", "I'm", "okay")
>>> for x in S: print x,

lumber jacik

>>> for x in T: print x,

555 I'm okay

>>> T = [(1, 2), (3, 4), (5, 6)]

>>> for (a, b) in T: # tuple assignme
print a, b

1 2

3 4

5 6

Now, let's look at something a bit more sophisticated. The next example illustrates
both the loop =1 se ina for and statement nesting. Given a list of objects (i tems)
and a list of keys (- ests), this code searches for each key in the objects list, and
reports on the search's success:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

>>> jitems = ["aaa", 111, (4, 5), 2.01] # a set of objec
>>> tests = [(4, 5), 3.14] # keys to search
>>>
>>> for key in tests: # for all keys
for item in items: # for all items
if item == key: # check for matc
print key, "was found"
break
else:

print key, "not found!"

(4, 5) was found
3.14 not found!

Since the nested i © runs a bre=ak when a match is found, the loop =1 s« can assume
that the search has failed. Notice the nesting here: when this code runs, there are two
loops going at the same time. The outer loop scans the keys list, and the inner loop
scans the items list for each key. The nesting of the loop <1 se is critical; it's indented
at the same level as the header line of the inner o+ loop, so it's associated with the
inner loop (not the i © or outer for). By the way, this example is easier to code if you
employ the in operator from Chapter 2, to test membership for us; since i n
implicitly scans a list looking for a match, it replaces the inner loop:

>>> for key in tests: # for all keys
if key in items: # let Python check for
print key, "was found"
else:

print key, "not found!"

(4, 5) was found
3.14 not found!

In general, it's a good idea to let Python do the work like this. The next example
performs a typical data-structure task with a o r—collecting common items in two
sequences (strings). It's roughly a simple set intersection routine; after the loop runs,
res refers to a list that contains all the items found in both scg1 and seq2:6l

(6] This isn't exactly what some folks would call set intersection (an item can appear more than once in the result if it
appears more than once in s=q1), but this isn't exactly a text on set theory either. To avoid duplicates, say i = in

and x not in r |nS|de the loop instead. Incidentally, this is a great example of how lists get built up
dynamlcally (by program code) rather than being written out as a constant. As we mentioned before, most data
structures are built, rather than written.

>>> seql = "spam"

>>> seqg2 = "scam"

>>>

>>> res = [] start empty

scan first sequence
common item?
add to result end

>>> for x in seql:
if x in seqg2:
res.append (x)

H o o e

>>> res
['s', 'a', 'm']


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Unfortunately, this code is equipped to work only on two specific variables: s 1 and
seq2. It would be nice if this loop could be somehow generalized into a tool we could
use more than once. As we'll see, that simple idea leads us to functions, the topic of
our next chapter.

Why You Will Care: File Scanner Loops

In general, loops come in handy any place you need to repeat or process something m
once. Since files contain multiple characters and lines, they are one of the more typical
loops. For example it's common to see file scanning loops coded witha while and br:
instead of end-of-file tests at the top:

file = open("name", "r")
while 1:
line = file.readline () # fetch next line, if any
if not line: break # exit loop on end-of-file (empty

Process line here

The for loop comes in handy for scanning files too; the rc2d1 ines file method introd
Chapter 2 hands you a lines list to step through:

file = open("name", r")
for line in file.readlines /() : # read into a lines list

Process line here

In other cases, you might scan byte-by-byte (using whilecand file.read (1)), orloa
allatonce (e.g., for char in file.read()). We'lllearn more about file processin
the book.

3.6.3 range and Counter Loops

The for loop subsumes most counter-style loops, so it's the first tool you should
reach for whenever you need to step though a sequence. But there are also situations
where you need to iterate in a more specialized way. You can always code unique
iterations with a whi 1 e loop, but Python also provides a way to specialize indexing in
a for; the built-in r2nge function returns a list of successively higher integers, which
can be used as indexes ina for.l7

(7] Python also provides a built-in called = r=nge that generates indexes one at a time instead of storing all of them in
a list at once. There's no speed advantage to < range, but it's useful if you have to generate a huge number of values.

3.6.3.1 Examples

A few examples will make this more concrete. The rznge function is really
independent of <o loops; although it's used most often to generate indexes ina for,
you can use it anywhere you need a list of integers:

>>> range(5), range(2, 5), range(0, 10, 2)


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

With one argument, r=nge generates a list with integers from zero, up to but not
including the argument's value. If you pass in two arguments, the first is taken as the
lower bound. An optional third argument can give a step; if used, Python adds the
step to each successive node in the result (steps default to one). Now, the easiest
way to step through a sequence is with a simple o r; Python handles most of the
details for you:

>>> X = 'spam'
>>> for item in X: print item, # simple iteration
S p anm

Internally, the ©or initializes an index, detects the end of the sequence, indexes the
sequence to fetch the current item, and increments the index on each iteration. If you
really need to take over the indexing logic explicitly, you can do it with a whi 1< loop;
this form is as close to a C or loop as you can come in Python:

>>> i =0
>>> while i < len(X): # while iteration
print X[i],; i1 = i+l

S p anm

And finally, you can still do manual indexing with a for, if you use range to generate
a list of indexes to iterate through:

>>> for i in range(len(X)): print X[i], # manual indexing

S p anm

But unless you have a special indexing requirement, you're always better off using the
simple for loop form in Python. One situation where range does come in handy is

for repeating an action a specific number of times; for example, to print three lines,
use a range to generate the appropriate number of integers:

>>> for i in range(3): print i, 'Pythons'
0 Pythons

1 Pythons
2 Pythons


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
3.7 Common Coding Gotchas

Before we turn you lose on some programming exercises, we'd like to point out some
of the most common mistakes beginners seem to make when coding Python
statements and programs. You'll learn to avoid these once you've gained a bit of
Python coding experience (in fact, Mark commonly gets into trouble because he uses
Python syntax in C++ code!); but a few words might help you avoid falling into some
of these traps initially.

Don't forget the colons

Don't forget to type a : at the end of compound statement headers (the first line
ofan if,while, for, etc.). You probably will at first anyhow (we did too), but
you can take some comfort in the fact that it will soon become an unconscious
habit.

Start in column 1

We mentioned this in Chapter 1, but as a reminder: be sure to start top-level
(unnested) code in column 1. That includes unnested code typed into module
files, as well as unnested code typed at the interactive prompt.

Blank lines matter at the interactive prompt

Blank lines in compound statements are always ignored in module files, but,
when typing code, end the statement at the interactive prompt. In other words,
blank lines tell the interactive command line that you've finished a compound
statement; if you want to continue, don't hit the Return key at the ... prompt until
you're really done.

Indent consistently

Avoid mixing tabs and spaces in indentation, unless you're sure what your
editor does with tabs. Otherwise, what you see in your editor may not be what
Python sees when it counts tabs as a number of spaces.

Don't code C in Python

A note to C/C++ programmers: you don't need to type parentheses around tests
inifandwhile headers(e.g.,, if (x==1): print X), butyou can if you
like; any expression can be enclosed in parentheses. And remember, you can't
use { } around blocks; indent nested code blocks instead.

Don't always expect a result

Another reminder: in-place change operations like the 1 i st .append () and
list.sort () methods in Chapter 2 don't return a value (really, they return
None ); call them without assigning the result. It's common for beginners to say
something like 1ist=11ist.append (x) totry to get the result of an append;
instead, this assigns 11 st to None, rather than the modified list (in fact, you'll


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

lose a reference to the list altogether).
Use calls and imports properly

Two final reminders: you must add parentheses after a function name to call it,
whether it takes arguments or not (e.g., function (), not function), and you
shouldn't include the file suffix in import statements (e.g., import mod, not
import mod.py). In Chapter 4, we'll see that functions are simply objects that
have a special operation—a call you trigger with the parentheses. And in
Chapter 5, we'll see that modules may have other suffixes besides .py (a .pyc,
for instance); hard-coding a particular suffix is not only illegal syntax, it doesn't
make sense.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

| l@ve RuBoard

3.8 Summary

[«ervvions Dot v

In this chapter, we explored Python's basic procedural statements:

¢ Assignments store references to objects.

» Expressions call functions and methods.

e print sends text to the standard output stream.

e if/elif/else selects between one or more actions.

e while/else loops repeat an action until a test proves false.

e for/else loops step through the items in a sequence object.

e break and continue jump around loops.

e pass is an empty placeholder.

We also studied Python's syntax rules along the way, looked at Boolean operators
and truth tests, and talked a little about some general programming concepts in

Python.

By combining basic statements, we are able to code the basic logic needed to
process objects. In Chapter 4, we move on to look at a set of additional statements
used to write functions, which package statements for reuse. In later chapters, we'll
see more statements that deal with bigger program units, as well as exceptions.
Table 3.5 summarizes the statement sets we'll be studying in the remaining chapters

of this part of the book.

Table 3.5. Preview: Other Statement Sets

Unit

Role

Functions

Procedural units

Modules

Code/data packages

Classes

New objects

Exceptions

Errors and special cases

I l@ve RuBoard

[«erevens Pt v


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

3.9 Exercises

Now that you know how to code basic program logic, this session asks you to
implement some simple tasks with statements. Most of the work is in Exercise 4,
which lets you explore coding alternatives. There are always many ways to arrange
statements and part of learning Python is learning which arrangements work better
than others.

1.

2.

Coding basic loops.

a. Write a for loop that prints the ASCII code of each character in a string
named s. Use the built-in function ord (character) to convert each
character to an ASCII integer (test it interactively to see how it works).

b. Next, change your loop to compute the sum of the ASCII codes of all
characters in a string.

c. Finally, modify your code again to return a new list that contains the ASCII
codes of each character in the string. Does this expression have a similar

effect—map (ord, 5)? (Hint: see Chapter 4.)

Backslash characters. What happens on your machine when you type the
following code interactively?

for 1 in range (50) :
print 'hello %d\n\a' % i

Warning: this example beeps at you, so you may not want to run it in a crowded
lab (unless you happen to enjoy getting lots of attention). Hint: see the
backslash escape characters in Table 2.6.

Sorting dictionaries. In Chapter 2, we saw that dictionaries are unordered
collections. Write a 7o r loop that prints a dictionary's items in sorted
(ascending) order. Hint: use the dictionary ke v s and list sor - methods.

Program logic alternatives. Consider the following code, which uses a while
loop and found flag to search a list of powers-of-2, for the value of 2 raised to
the power 5 (32). It's stored in a module file called power.py.

L =11, 2, 4, 8, 16, 32, 64]
X =5
found = 1 = 0
while not found and i < len (L) :
if 2 ** X == L[1]:
found =1
else:
i = 1i+1
if found:

print 'at index', 1


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

else:

print X, 'not found'

C:\book\tests> python power.py
at index 5

As is, the example doesn't follow normal Python coding techniques. Follow the
steps below to improve it; for all the transformations, you may type your code
interactively or store it in a script file run from the system command line (though
using a file makes this exercise much easier).

a.

| l@ve RuBoard

First, rewrite this code with a whi 1< loop 1 se, to eliminate the found
flag and final i © statement.

Next, rewrite the example to use a o r loop with an <1 se, to eliminate the
explicit list indexing logic. Hint: to get the index of an item, use the list
index method (.. i ndex (%) returns the offset of the first < in list 1.).

Now, remove the loop completely by rewriting the examples with a simple
in operator membership expression (see Chapter 2 for more details, or
typethis: 2 in [1,2,3]).

Finally, use a for loop and the list append method to generate the
powers-of-2 list (1.), instead of hard-coding a list constant.

Deeper thoughts: (1) Do you think it would improve performance to move
the 2 » = expression outside the loops? How would you code that? (2) As
we saw in Exercise 1, Python also includes a map (function, list)
tool that can generate the powers-of-2 list too, as follows: map (1ambda
x: 2**x, range (7)). Try typing this code interactively; we'll meet

1ambda more formally in Chapter 4.
[ ranvisun]fivuxt +]


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
Chapter 4. Functions

In the last chapter, we looked at basic procedural statements in Python. Here, we'll
move on to explore a set of additional statements that create functions of our own. In
simple terms, functions are a device that groups a bunch of statements, so they can
be run more than once in a program. Functions also let us specify parameters, which
may differ each time a function's code is run. Table 4.1 summarizes the function-
related statements we'll study in this chapter.

Table 4.1. Function-Related Statements

Statement Examples
Calls myfunc ("spam, ham, toast\n")
def, return def adder(a, b, c=1, *d): return atb+c+d[0]
global def function(): global x, y; x = 'new'



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
4.1 Why Use Functions?

Before we get into the details, let's get a clear picture of what functions are about.
Functions are a nearly universal program-structuring device. Most of you have
probably come across them before in other languages, but as a brief introduction,
functions serve two primary development roles:

Code reuse

As in most programming languages, Python functions are the simplest way to
package logic you may wish to use in more than one place and more than one
time. Up to now, all the code we've been writing runs immediately; functions
allow us to group and parametize chunks of code to be used arbitrarily many
times later.

Procedural decomposition

Functions also provide a tool for splitting systems into pieces that have a well-
defined role. For instance, to make a pizza from scratch, you would start by
mixing the dough, rolling it out, adding toppings, baking, and so on. If you were
programming a pizza-making robot, functions would help you divide the overall
"make pizza" task into chunks—one function for each subtask in the process.
It's easier to implement the smaller tasks in isolation than it is to implement the
entire process at once. In general, functions are about procedure—how to do
something, rather than what you're doing it to. We'll see why this distinction

matters in Chapter 6.

Here, we talk about function basics, scope rules and argument passing, and a handful
of related concepts. As we'll see, functions don't imply much new syntax, but they do
lead us to some bigger programming ideas.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
4.2 Function Basics

Although we haven't gotten very formal about it, we've already been using functions in
earlier chapters. For instance, to make a file object, we call the built-in cpen function.
Similarly, we use the 1 en built-in function to ask for the number of items in a
collection object.

In this chapter, we will learn how to write new functions in Python. Functions we write
ourselves behave the same way as the built-ins we've already seen—they are called
in expressions, are passed values, and return results. But writing functions requires a
few new ideas; here's an introduction to the main concepts:

def creates a function object and assigns it to a name

Python functions are written with a new statement, the de . Unlike functions in
compiled languages such as C, de £ is an executable statement—when run, it
generates a new function object and assigns it to the function's name. As with
all assignments, the function name becomes a reference to the function object.

return sends a result object back to the caller

When a function is called, the caller stops until the function finishes its work and
returns control to the caller. Functions that compute a value send it back to the
caller with a return statement.

global declares module-level variables that are to be assigned

By default, all names assigned in a function are local to that function and exist
only while the function runs. To assign a name in the enclosing module,
functions need to listitina g1 oba 1 statement.

Arguments are passed by assignment (object reference)

In Python, arguments are passed to functions by assignment (i.e., by object
reference). As we'll see, this isn't quite like C's passing rules or C++'s reference
parameters—the caller and function share objects by references, but there is no
name aliasing (changing an argument name doesn't also change a name in the
caller).

Arguments, return types, and variables are not declared

As with everything in Python, there are no type constraints on functions. In fact,
nothing about a function needs to be declared ahead of time; we can pass in
arguments of any type, return any sort of object, and so on. As one
consequence, a single function can often be applied to a variety of object types.

Let's expand on these ideas and look at a few first examples.

4.2.1 General Form


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The de £ statement creates a function object and assigns it a function name. As with
all compound Python statements, it consists of a header line, followed by a block of
indented statements. The indented statements become the function's body—the code
Python executes each time the function is called. The header specifies a function
name (which is assigned the function object), along with a list of arguments
(sometimes called parameters ), which are assigned to the objects passed in
parentheses at the point of call:

def <name> (argl, arg2,... argN):
<statements>
return <value>

The Python return statement can show up in function bodies; it ends the function
call and sends a result back to the caller. It consists of an object expression that gives
the function's result. The r=turn is optional; if it's not present, a function exits when
control flow falls off the end of the function body. Technically, a function without a
return returns the None object automatically (more on this later in this chapter).

4.2.2 Definitions and Calls

Let's jump into a simple example. There are really two sides to the function picture: a
definition (the de ¢ that creates a function) and a call (an expression that tells Python
to run the function). A definition follows the general format above; here's one that
defines a function called t i me s, which returns the product of its two arguments:

>>> def times(x, y): # create and assign function
return x * y # body executed when called

When Python runs this de 7, it creates a new function object that packages the
function's code and assigns it the name t i mes. After the de £ has run, the program
can run (call) the function by adding parentheses after the function name; the
parenthesis may optionally contain one or more object arguments, to be passed
(assigned) to the names in the function's header:

>>> times (2, 4) # arguments in parentheses
8

>>> times('Ni', 4) # functions are 'typeless'
"NiNiNiNi'

In the first line, we pass two arguments to ¢ i mes: the name = in the function header
is assigned the value 2, v is assigned 4, and the function's body is run. In this case,
the body is just a ret urn statement, which sends back the result ¢ as the value of
the call expression.

In the second call, we pass in a string and an integer to < and v instead. Recall that *
works on both numbers and sequences; because there are no type declarations in
functions, you can use t i mes to multiply numbers or repeat sequences. Python is
known as a dynamically typed language: types are associated with objects at runtime,

rather than declared in the program itself. In fact, a given name can be assigned to
ohiects of differant tvnes at different times 11


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

TR TNT M L L M VAL M L Moo

[1] If you've used compiled languages such as C or C++, you'll probably find that Python's dynamic typing makes for
an incredibly flexible programming language. It also means that some errors a compiler roots out aren't caught by
Python until a program runs (adding a string to an integer, for instance). Luckily, errors are easy to find and repair in
Python.

4.2.3 Example: Intersecting Sequences

Here's a more realistic example that illustrates function basics. Near the end of
Chapter 3, we saw a for loop that collected items in common in two strings. We
noted there that the code wasn't as useful as it could be because it was set up to work
only on specific variables and could not be rerun later. Of course, you could cut and
paste the code to each place it needs to be run, but this isn't a general solution; you'd
still have to edit each copy to support different sequence names, and changing the
algorithm requires changing multiple copies.

4.2.3.1 Definition

By now, you can probably guess that the solution to this dilemma is to package the
for loop inside a function. By putting the code in a function, it becomes a tool that
can be run as many times as you like. And by allowing callers to pass in arbitrary
arguments to be processed, you make it general enough to work on any two
sequences you wish to intersect. In effect, wrapping the code in a function makes it a
general intersection utility:

def intersect (seqgl, seqg2):
res = []
for x in seqgl:
if x in seq2:
res.append (x)
return res

start empty
scan seqgl
common item?
add to end

S

The transformation from simple code to this function is straightforward; you've just
nested the original logic under a d= header and made the objects on which it
operates parameters. Since this function computes a result, you've also added a
return statement to send it back to the caller.

4.2.3.2 Calls

>>> sl = "SPAM"

>>> g2 = "SCAM"

>>> intersect(sl, s2) # strings
['S', 'A', IMIJ

>>> intersect([1, 2, 3], (1, 4)) # mixed types
(1]

Again, we pass in different types of objects to our function—first two strings and then
a list and a tuple (mixed types). Since you don't have to specify the types of
arguments ahead of time, the intersect function happily iterates though any kind of
sequence objects you send it.i2!


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

(2] Technically, any object that responds to indexing. The o+ loop and in tests work by repeatedly indexing an
object; when we study classes in Chapter 6, you'll see how to implement indexing for user-defined objects too, and
hence iteration and membership.

| l@ve RuBoard m Tt B


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
4.3 Scope Rules in Functions

Now that we've stepped up to writing our own functions, we need to get a bit more
formal about what names mean in Python. When you use a name in a program,
Python creates, changes, or looks up the name in what is known as a namespace—a
place where names live. As we've seen, names in Python spring into existence when
they are assigned a value. Because names aren't declared ahead of time, Python
uses the assignment of a name to associate it with a particular namespace. Besides
packaging code, functions add an extra namespace layer to your programs—by
default, names assigned inside a function are associated with that function's
namespace, and no other.

Here's how this works. Before you started writing functions, all code was written at the
top-level of a module, so the names either lived in the module itself, or were built-ins
that Python predefines (e.g., open)..3 Functions provide a nested namespace
(sometimes called a scope), which localizes the names they use, such that names
inside the function won't clash with those outside (in a module or other function). We
usually say that functions define a local scope, and modules define a global scope.
The two scopes are related as follows:

[3] Remember, code typed at the interactive command line is really entered into a built-in module called __main__, so
interactively created names live in a module too. There's more about modules in Chapter 5.

The enclosing module is a global scope

Each module is a global scope—a namespace where variables created
(assigned) at the top level of a module file live.

Each call to a function is a new local scope

Every time you call a function, you create a new local scope—a namespace
where names created inside the function usually live.

Assigned names are local, unless declared global

By default, all the names assigned inside a function definition are put in the local
scope (the namespace associated with the function call). If you need to assign a
name that lives at the top-level of the module enclosing the function, you can do
so by declaring itin a g 1 oba 1 statement inside the function.

All other names are global or built-in
Names not assigned a value in the function definition are assumed to be globals

(in the enclosing module's namespace) or built-in (in the predefined names
module Python provides).

4.3.1 Name Resolution: The LGB Rule

If the prior section sounds confusing, it really boils down to three simple rules:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

* Name references search at most three scopes: local, then global, then built-in.
* Name assignments create or change local names by default.
* "Global" declarations map assigned names to an enclosing module's scope.

In other words, all names assigned inside a function de t statement are locals by
default; functions can use globals, but they must declare globals to change them.
Python's name resolution is sometimes called the LGB rule, after the scope names:

* When you use an unqualified name inside a function, Python searches three
scopes—the local (L), then the global (G), and then the built-in (B)—and stops
at the first place the name is found.

¢ When you assign a name in a function (instead of just referring to it in an
expression), Python always creates or changes the name in the local scope,
unless it's declared to be global in that function.

* When outside a function (i.e., at the top-level of a module or at the interactive
prompt), the local scope is the same as the global—a module's namespace.

Figure 4.1 illustrates Python's three scopes. As a preview, we'd also like you to
know that these rules only apply to simple names (such as spam). In the next two
chapters, we'll see that the rules for qualified names (such as object . spam, called
attributes) live in a particular object and so work differently.

Figure 4.1. The LGB scope lookup rule

4.3.2 Example

Let's look at an example that demonstrates scope ideas. Suppose we write the
following code in a module file:

# global scope
X = 99 # X and func assigned in module: global


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

def func (YY) : # Y and Z assigned in function: locals
# local scope
Z = X + Y # X is not assigned, so it's a global

return 7%
func (1) # func in module: result=100

This module, and the function it contains, use a number of names to do their
business. Using Python's scope rules, we can classify the names as follows:

Global names: X, func

% is a global because it's assigned at the top level of the module file; it can be
referenced inside the function without being declared global. unc is global for
the same reason; the de £ statement assigns a function object to the name
func at the top level of the module.

Local names: Y , Z

v and 7 are local to the function (and exist only while the function runs),
because they are both assigned a value in the function definition; 7 by virtue of
the = statement, and v because arguments are always passed by assignment
(more on this in a minute).

The whole point behind this name segregation scheme is that local variables serve as
temporary names you need only while a function is running. For instance, the
argument v and the addition result 7 exist only inside the function; they don't interfere
with the enclosing module's namespace (or any other function, for that matter). The
local/global distinction also makes a function easier to understand; most of the names
it uses appear in the function itself, not at some arbitrary place in a module.!

(4] The careful reader might notice that, because of the LGB rule, names in the local scope may override variables of
the same name in the global and built-in scopes, and global names may override built-ins. A function can, for instance,
create a local variable called open, but it will hide the built-in function called cpen that lives in the built-in (outer)
scope.

4.3.3 The global Statement

The g1obal statement is the only thing that's anything like a declaration in Python. It
tells Python that a function plans to change global names—names that live in the
enclosing module's scope (namespace). We've talked about o1 obz 1 in passing
already; as a summary:

* global means "a name at the top-level of a module file."
¢ Global names must be declared only if they are assigned in a function.
¢ Global names may be referenced in a function without being declared.

The g1obal statement is just the keyword g1 obz 1, followed by one or more names
separated by commas. All the listed names will be mapped to the enclosing module's
scope when assigned or referenced within the function body. For instance:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

y, z =1, 2 # global variables in module

def all global():
global x # declare globals assigned
X =y + z # no need to declare y,z: 3-scope rule

Here, =, v, and = are all globals inside function =11 global.y and z are global
because they aren't assigned in the function; = is global because we said so: we
listeditina g1lobal statement to map it to the module's scope explicitly. Without the
global here, x would be considered local by virtue of the assignment. Notice that
and =z are not declared global; Python's LGB lookup rule finds them in the module
automatically. Also notice that « might not exist in the enclosing module before the
function runs; if not, the assignment in the function creates = in the module.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
4.4 Argument Passing

Let's expand on the notion of argument passing in Python. Earlier, we noted that
arguments are passed by assignment ; this has a few ramifications that aren't always
obvious to beginners:

Arguments are passed by assigning objects to local names

Function arguments should be familiar territory by now: they're just another
instance of Python assignment at work. Function arguments are references to
(possibly) shared objects referenced by the caller.

Assigning to argument names inside a function doesn't affect the caller

Argument names in the function header become new, local names when the
function runs, in the scope of the function. There is no aliasing between function
argument names and names in the caller.

Changing a mutable object argument in a function may impact the caller

On the other hand, since arguments are simply assigned to objects, functions
can change passed-in mutable objects, and the result may affect the caller.

Here's an example that illustrates some of these properties at work:

>>> def changer (x, y):

x = 2 # changes local name's value only
y[0] = 'spam' # changes shared object in place
>>> X =1
>>> L = [1, 2]
>>> changer (X, L) # pass immutable and mutable
>>> X, L # X unchanged, L is different
(1, ['spam', 2])

In this code, the changer function assigns to argument name = and a component in
the object referenced by argument . Since = is a local name in the function's scope,
the first assignment has no effect on the caller; it doesn't change the binding of name
% in the caller. Argument v is a local name too, but it's passed a mutable object (the
list called 1. in the caller); the result of the assignment to [ 0] in the function impacts
the value of 1, after the function returns. Figure 4.2 illustrates the name/object
bindings that exist immediately after the function is called.

Figure 4.2. References: arguments share objects with the caller


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you recall some of the discussion about shared mutable objects in Chapter 2,
you'll recognize that this is the exact same phenomenon at work: changing a mutable
object in place can impact other references to the object. Here, its effect is to make
one of the arguments an output of the function. (To avoid this, type v = v [ : | to make

a copy.)

Python's pass-by-assignment scheme isn't the same as C++'s reference parameters,
but it turns out to be very similar to C's in practice:

Immutable arguments act like C's "by value" mode

Objects such as integers and strings are passed by object reference
(assignment), but since you can't change immutable objects in place anyhow,
the effect is much like making a copy.

Mutable arguments act like C's "by pointer" mode

Objects such as lists and dictionaries are passed by object reference too, which
is similar to the way C passes arrays as pointers—mutable objects can be
changed in place in the function, much like C arrays.

Of course, if you've never used C, Python's argument-passing mode will be simpler
still; it's just an assignment of objects to names, which works the same whether the
objects are mutable or not.

4.4.1 More on return

We've already discussed the return statement, and used it in a few examples. But
here's a trick we haven't shown yet: because r=turn sends back any sort of object, it
can return multiple values, by packaging them in a tuple. In fact, although Python
doesn't have call by reference, we can simulate it by returning tuples and assigning
back to the original argument names in the caller:

>>> def multiple(x, y):
Xx =2 # changes local names only


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

y = [3, 4]

return x, y # return new values in a tuple
>>> X =1
>>> L = [1, 2]
>>> X, L = multiple(X, L) # assign results to caller's na
>>> X, L
(2, [3, 4])

It looks like we're returning two values here, but it's just one—a two-item tuple, with
the surrounding parentheses omitted. If you've forgotten why, flip back to the

discussion of tuples in Chapter 2.

4.4.2 Special Argument-Matching Modes

Although arguments are always passed by assignment, Python provides additional
tools that alter the way the argument objects in the call are paired with argument
names in the header. By default, they are matched by position, from left to right, and
you must pass exactly as many arguments as there are argument names in the
function header. But you can also specify a match by name, default values, and
collectors for extra arguments.

Some of this section gets complicated, and before we get into syntactic details, we'd
like to stress that these special modes are optional and only have to do with matching
objects to names; the underlying passing mechanism is still assignment, after the
matching takes place. But as an introduction, here's a synopsis of the available
matching modes:

Positionals: matched left to right
The normal case which we've used so far is to match arguments by position.
Keywords: matched by argument name

Callers can specify which argument in the function is to receive a value by using
the argument's name in the call.

varargs: catch unmatched positional or keyword arguments

Functions can use special arguments to collect arbitrarily many extra arguments
(much as the varargs feature in C, which supports variable-length argument
lists).

Defaults: specify values for arguments that aren't passed

Functions may also specify default values for arguments to receive if the call
passes too few values

Table 4.2 summarizes the syntax that specify the special matching modes.

Table 4.2. Function Argument-Matching Forms
| Syntax | Location | Interpretation



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

func (value) Caller Normal argument: matched by position

func (name=value) Caller Keyword argument: matched by name

def func (name) Function |Normal argument: matches any by position or name
def func (n value) Function |Default argument value, if not passed in the call
def func (*name) Function |Matches remaining positional args (in a tuple)

def func (**name) Function |dictionary)

In the caller (the first two rows of the table), simple names are matched by position,
but using the name=value form tells Python to match by name instead; these are
called keyword arguments.

In the function header, a simple name is matched by position or name (depending on
how the caller passes it), but the name=value form specifies a default value, the
*name collects any extra positional arguments in a tuple, and the * *name form
collects extra keyword arguments in a dictionary.

As a result, special matching modes let you be fairly liberal about how many
arguments must be passed to a function. If a function specifies defaults, they are
used if you pass too few arguments. If a function uses the vz rargs forms, you can
pass too many arguments; the vz rargs names collect the extra arguments in a data
structure.

4.4.2.1 A first example

Let's look at an example that demonstrates keywords and defaults in action. In the
following, the caller must always pass at least two arguments (to match spam and
eggs), but the other two are optional; if omitted, Python assigns toast and ham to
the defaults specified in the header:

def func(spam, eggs, toast=0, ham=0) : # first 2 required

print (spam, eggs, toast, ham)

func (1, 2) # output: (1, 2, 0, 0)
func (1, ham=1, eggs=0) # output: (1, 0, 0, 1)
func(spam 1, eggs=0) # output: (1, 0, 0, 0)
func (toast=1, eggs=2, spam=3) # output: (3, 2, 1, 0)
func (1, 2, 3, 4) # output: (1, 2, 3, 4)

Notice that when keyword arguments are used in the call, the order in which
arguments are listed doesn't matter; Python matches by name, not position. The
caller must supply values for spam and =ggs, but they can be matched by position or
name. Also notice that the form name=vz1ue means different things in the call and
de f: a keyword in the call, and a default in the header.

4.4.2.2 A second example: Arbitrary-argument set functions

Here's a more useful example of special argument-matching modes at work. Earlier in
the chapter, we wrote a function that returned the intersection of two sequences (it
picked out items that appeared in both). Here is a version that intersects an arbitrary
number of sequences (1 or more), by using the vz rzrgs matching form args to


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

collect all arguments passed. Because the arguments come in as a tuple, we can
process them in a simple 7o r loop. Just for fun, we've also coded an arbitrary-
number-arguments union function too; it collects items which appear in any of the
operands:

def intersect (*args):
res = []

for x in args|[0]: # scan first sequence
for other in args[l:]: # for all other args
if x not in other: break # item in each one?
else: # no: Dbreak out of loop
res.append (x) # yes: add items to end
return res
def union (*args) :
res = []
for seqg in args: # for all args
for x in seq: # for all nodes
if not x in res:
res.append (x) # add new items to result

return res

Since these are tools worth reusing (and are way too big to retype interactively),
we've stored our functions in a module file called inter2.py here (more on modules in
Chapter 5). In both functions, the arguments passed in at the call come in as the
args tuple. As in the original intersect, both work on any kind of sequence. Here
they are processing strings, mixed types, and more than two sequences:

% python

>>> from inter2 import intersect, union

>>> sl, s2, s3 = "SPAM", "SCAM", "SLAM"

>>> intersect(sl, s2), union(sl, s2) # 2 operands

(['S', 'A', 'M'J, ['Sl, 'P', 'A', 'M', 'C'J)

>>> intersect([1,2,3], (1,4)) # mixed types
(1]

>>> intersect(sl, s2, s3) # 3 operands
[ISI, IAI, IMIJ

>>> union(sl, s2, s3)
[ISI, IPI, IAI, IMI, ICI, ILIJ

4.4.2.3 The gritty details

If you choose to use and combine the special matching modes, Python has two
ordering rules:

« In the call, keyword arguments must appear after all nonkeyword arguments.

¢ In a function header, the *nzme must be after normal arguments and defaults,
and * *name must be last.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Moreover, Python internally carries out the following steps to match arguments before
assignment:

1. Assign nonkeyword arguments by position

2. Assign keyword arguments by matching names

3. Assign extra nonkeyword arguments to *name tuple

4. Assign extra keyword arguments to * *name dictionary

5. Assign default values to unassigned arguments in header
This is as complicated as it looks, but tracing Python's matching algorithm helps to
understand some cases, especially when modes are mixed. We'll postpone additional

examples of these special matching modes until we do the exercises at the end of
this chapter.

As you can see, advanced argument matching modes can be complex. They are also
entirely optional; you can get by with just simple positional matching, and it's probably
a good idea to do so if you're just starting out. However, some Python tools make us
e of them, so they're important to know.

Why You Will Care: Keyword Arguments

Keyword arguments play an important role in Tkinter, the de facto standard
GUI API for Python. We meet Tkinter in Chapter 10, but as a preview,
keyword arguments set configuration options when GUI components are
built. For instance, a call of the form:

from Tkinter import *
widget = Button (text="Press me", command=someFunction)

creates a new button and specifies its text and callback function, using the
text and command keyword arguments. Since the number of configuration
options for a widget can be large, keyword arguments let you pick and
choose. Without them, you might have to either list all possible options by
position or hope for a judicious positional argument defaults protocol that
handles every possible option arrangement.



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
4.5 Odds and Ends

So far, we've seen what it takes to write our own functions in Python. There are a
handful of additional function-related ideas we'd like to introduce in this section:

e lambda creates anonymous functions.

e 2pply calls functions with argument tuples.

e map runs a function over a sequence and collects results.

¢ Functions return none if they don't use a return statement.
e Functions present design choices.

e Functions are objects, just like numbers and strings.
4.5.1 lambda Expressions

Besides the de r statement, Python also provides an expression form that generates
function objects. Because of its similarity to a tool in the LISP language, it's called
lambda. Its general form is the keyword 1 ambda, followed by one or more
arguments, followed by an expression after a colon:

lambda argumentl, argument?,... argumentN
Expression using arguments

Function objects returned by 1 ambda expressions are exactly the same as those
created and assigned by de . But the 1 ambda has a few differences that make it
useful in specialized roles:

lambda is an expression, not a statement

Because of this, a 1 2mbda can appear in places a de £ can't—inside a list
constant, for example. As an expression, the 1 ambda returns a value (a new
function), which can be assigned a name optionally; the de © statement always
assigns the new function to the name in the header, instead of returning it as a
result.

lambda bodies are a single expression, not a block of statements

The 1ambda's body is similar to what you'd putin a def body's return
statement; simply type the result as a naked expression, instead of explicitly
returning it. Because it's limited to an expression, 1 ambda is less general than a
de f; you can only squeeze so much logic into a 1 ambda body without using
statements such as i f.

Apart from those distinctions, the de© and 1ambda do the same sort of work. For


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

instance, we've seen how to make functions with de £ statements:
>>> def func(x, y, z): return x + y + z

>>> func (2, 3, 4)
°

But you can achieve the same effect with a 1 ambda expression, by explicitly
assigning its result to a name:

>>> £ = lambda x, y, z: x +y + 2
>>> £(2, 3, 4)
9

Here, 1 is assigned the function object the 1 ambda expression creates (this is how
de £ works, but the assignment is automatic). Defaults work on 1 ambda arguments
too, just like the de £

>>> x = (lambda a="fee", b="fie", c="foe": a + b + ¢)
>>> x(llweell)
'weefiefoe'

1ambdas come in handy as a shorthand for functions. For instance, we'll see later
that callback handlers are frequently coded as 1 ambda expressions embedded
directly in a registration call, instead of being defined elsewhere in a file and
referenced by name.

Why You Will Care: lambdas

The 1ambda expression is most handy as a shorthand for de £, when you need to stuff
pieces of executable code in places where statements are illegal syntactically. For exal
you can build up a list of functions by embedding 1 2mbdz expressions in a list constan

L = [lambda x: x**2, lambda x: x**3, lambda x: x**4]

for £ in L:
print f£(2) # prints 4, 8, 16

print L[O0] (3) # prints 9

Without 1 =mbda, you'd need to instead code three de ¢ statements outside the list in w
the functions that they define are to be used. 1 2mbdas also come in handy in function
argument lists; one very common application of this is to define in-line callback functior

the Tkinter GUI API (more on Tkinter in Chapter 10). The following creates a button tt
prints a message on the console when pressed:

import sys
widget = Button (text ="Press me",
command = lambda: sys.stdout.write ("Hello world\

4.5.2 The apply Built-in


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Some programs need to call arbitrary functions in a generic fashion, without knowing
their names or arguments ahead of time. We'll see examples of where this can be
useful later, but by way of introduction, the =pp 1 v built-in function does the job. For
instance, after running the code in the prior section, you can call the generated
functions by passing them as arguments to 2pp 1 v, along with a tuple of arguments:

>>> apply (func, (2, 3, 4))
9

>>> apply (£, (2, 3, 4))

9

apply simply calls the passed-in function, matching the passed-in arguments list with
the function's expected arguments. Since the arguments list is passed in as a tuple (a
data structure), it can be computed at runtime by a program. The real power of 2=pp 1y
is that it doesn't need to know how many arguments a function is being called with; for
example, you can use i © logic to select from a set of functions and argument lists,
and use =pp 1y to call any:

if <test>:

action, args = funcl, (1,)
else:

action, args = func2, (1, 2, 3)

épél?(action, args)
4.5.3 The map Built-in

One of the more common things programs do with lists is to apply an operation to
each node and collect the results. For instance, updating all the counters in a list can
be done easily with a £ o loop:

>>> counters = [1, 2, 3, 4]
>>>
>>> updated = []
>>> for x in counters:
updated.append(x + 10) # add 10 to each ite

>>> updated
[11, 12, 13, 14]
Because this is such a common operation, Python provides a built-in that does most

of the work for you: the map function applies a passed-in function to each item in a
sequence object and returns a list containing all the function call results. For example:

>>> def inc(x): return x + 10 # function to be run

>>> map (inc, counters) # collect results
(11, 12, 13, 14]

Since mzp expects a function, it also happens to be one of the places where 12mbdas
commonly appear:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

>>> map((lambda x: x + 3), counters) # function expressio
(4, 5, 6, 7]

map is the simplest representative of a class of Python built-ins used for functional
programming (which mostly just means tools that apply functions to sequences). Its
relatives filter out items based on a test (i 1 t=r) and apply operations to pairs of

items (reduce). We say more about these built-in tools in Chapter 8.
4.5.4 Python "Procedures"

In Python functions, return statements are optional. When a function doesn't return
a value explicitly, the function exits when control falls off the end. Technically, all
functions return a value; if you don't provide a r<t urn, your function returns the
None object automatically:

>>> def proc(x):
print x # no return is a None return

>>> x = proc('testing 123...")
testing 123...

>>> print x

None

Functions such as this without a re turn are Python's equivalent of what are called
procedures in some languages (such as Pascal). They're usually called as a
statement (and the none result is ignored), since they do their business without
computing a useful result. This is worth knowing, because Python won't tell you if you
try to use the result of a function that doesn't return one. For instance, assigning the
result of a list z=ppend method won't raise an error, but you'll really get back none, not
the modified list:

>>> list = [1, 2, 3]

>>> list = list.append(4) # append is a 'procedure'

>>> print list # append changes list in-place
None

4.5.5 Function Design Concepts

When you start using functions, you're faced with choices about how to glue
components together—for instance, how to decompose a task into functions, how
functions should communicate, and so on. Some of this falls into the category of
structured analysis and design, which is too broad a topic to discuss in this book. But
here are a few general hints for Python beginners:

Use arguments for inputs and return for outputs

Generally speaking, you should strive to make a function independent of things
outside of it. Arguments and r<turn statements are often the best way to
isolate dependencies.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Use global variables only when absolutely necessary

Global variables (i.e., names in the enclosing module) are usually a poor way to
communicate with a function. They can create dependencies that make
programs difficult to change.

Don't change mutable arguments unless the caller expects it

Functions can also change parts of mutable objects passed in. But as with
global variables, this implies lots of coupling between the caller and callee,
which can make a function too specific and brittle.

Table 4.3 summarizes the ways functions can talk to the outside world; inputs may
come from items in the left column, and results may be sent out in any of the forms on
the right. Politically correct function designers usually only use arguments for inputs
and return statements for outputs. But there are plenty of exceptions, including
Python's OOP support—as we'll see in Chapter 6, Python classes depend on
changing a passed-in mutable object. Class functions set attributes of an
automatically passed-in s< 1 £ object, to change per-object state information (e.g.,
self.name = "bob'); side effects aren't dangerous if they're expected.

Table 4.3. Common Function Inputs and Outputs

Function Inputs Function Outputs
Arguments Return statement
Global (module) variables Mutable arguments
Files, streams Global (module) variables

4.5.6 Functions Are Objects: Indirect Calls

Because Python functions are objects at runtime, you can write programs that
process them generically. Function objects can be assigned, passed to other
functions, stored in data structures, and so on, as if they were simple numbers or
strings. Function objects happen to export a special operation; they can be called by
listing arguments in parentheses after a function expression. But functions belong to
the same general category as other objects.

For instance, as we've seen, there's really nothing special about the name we use in
a de © statement: it's just a variable assigned in the current scope, as if it had
appeared on the left of an = sign. After a d=f runs, the function name is a reference
to an object; you can reassign that object to other names and call it through any
reference—not just the original name:

>>> def echo (message) : # echo assigned to a function o
print message

>>> x = echo # now x references it too
>>> x('Hello world!') # call the object by adding ()
Hello world!


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Since arguments are passed by assigning objects, it's just as easy to pass functions
to other functions, as arguments; the callee may then call the passed-in function just
by adding arguments in parentheses:

>>> def indirect(func, arg):
func (arqg) # call object by addin

>>> indirect(echo, 'Hello jello!') # pass function to a f
Hello jello!

You can even stuff function objects into data structures, as though they were integers
or strings. Since Python compound types can contain any sort of object, there's no
special case here either:

>>> schedule = [ (echo, 'Spam!'), (echo, 'Ham!') ]
>>> for (func, arg) in schedule:

apply (func, (arg,))
Spam!
Ham!
This code simply steps through the schedule list, calling the echo function with one
argument each time through. As we hope you're starting to notice by now, Python's
lack of type declarations makes for an incredibly flexible programming language.
Notice the use of =pp 1y to run functions generically, the single-item tuple in the

second argument to app 1 v, and the tuple unpacking assignment in the for loop
header (all ideas introduced earlier).


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
4.6 Function Gotchas

Here are some of the more jagged edges of functions you might not expect. They're
all obscure, but most have been known to trip up a new user.

4.6.1 Local Names Are Detected Statically

As we've seen, Python classifies names assigned in a function as locals by default;
they live in the function's scope and exist only while the function is running. What we
didn't tell you is that Python detects locals statically, when it compiles the code, rather
than by noticing assignments as they happen at runtime. Usually, we don't care, but
this leads to one of the most common oddities posted on the Python newsgroup by
beginners.

Normally, a name that isn't assigned in a function is looked up in the enclosing
module:

>>> X = 99
>>> def selector(): # X used but not assigned
print X # X found in global scope

>>> selector ()
99

Here, the x in the function resolves to the x in the module outside. But watch what
happens if you add an assignment to x after the reference:

>>> def selector():

print X # does not yet exist!
X = 88 # X classified as a local name (eve
# can also happen if "import X", "d

>>> selector()
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, 1in selector
NameError: X

You get an undefined name error, but the reason is subtle. Python reads and
compiles this code when it's typed interactively or imported from a module. While
compiling, Python sees the assignment to x and decides that x will be a local name
everywhere in the function. But later, when the function is actually run, the
assignment hasn't yet happened when the o int executes, so Python says you're
using an undefined name. According to its name rules, it should; local x is used
before being assigned.ts!

[51n fact, any assignment in a function body makes a name local: inport, =, nested de s, nested c1asses, and so
on.

4.6.1.1 Solution


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The problem occurs because assigned names are treated as locals everywhere in a
function, not just after statements where they are assigned. Really, the code above is
ambiguous at best: did you mean to print the global = and then create a local x, or is
this a genuine programming error? Since Python treats i as a local everywhere, it is
an error; but if you really mean to print global ¢, you need to declare itina g1obal
statement:

>>> def selector():
global X # force X to be global (everywhere)
print X
X = 88

>>> selector()
99

Remember, though, that this means the assignment also changes the global ¢, not a
local . Within a function, you can't use both local and global versions of the same
simple name. If you really meant to print the global and then set a local of the same
name, import the enclosing module and qualify to get to the global version:

>>> X = 99
>>> def selector():

import main # import enclosing module

print main .X # qualify to get to global version
X = 88 # unqualified X classified as local
print X # prints local version of name

>>> selector ()
99
88

Qualification (the . x part) fetches a value from a namespace object. The interactive
namespace isamodule called _ _main__ ,s0___main_ _.X reaches the global
version of x. If that isn't clear, check out Chapter 5.

4.6.2 Nested Functions Aren't Nested Scopes

As we've seen, the Python de 7 is an executable statement: when it runs, it assigns a
new function object to a name. Because it's a statement, it can appear anywhere a
statement can—even nested in other statements. For instance, it's completely legal to
nest a function de 1 inside an i © statement, to select between alternative definitions:

if test:

def func(): # define func this way
else:

def func(): # or else this way instead

func ()


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

One way to understand this code is to realize that the de © is much like an =
statement: it assigns a name at runtime. Unlike C, Python functions don't need to be
fully defined before the program runs. Since de © is an executable statement, it can
also show up nested inside another de £. But unlike languages such as Pascal,
nested de £ s don't imply nested scopes in Python. For instance, consider this
example that defines a function (outer), which in turn defines and calls another
function (i nner) that calls itself recursively:te!

[6] By "recursively," we mean that the function is called again, before a prior call exits. In this example, the function
calls itself, but it could also call another function that calls it, and so on. Recursion could be replaced with a simple
shile or for loop here (all we're doing is counting down to zero), but we're trying to make a point about self-recursive
function names and nesting. Recursion tends to be more useful for processing data structures whose shape can't be
predicted when you're writing a program.

>>> def outer (x):

def inner (i) : # assign in outer's local
print 1, # 1 is in inner's local
if i: inner(i-1) # not in my local or global!

inner (x)

>>> outer (3)

3

Traceback (innermost last):
File "<stdin>", line 1, in ?
File "<stdin>", line 5, in outer
File "<stdin>", line 4, in inner

NameError: inner

This won't work. A nested de  really only assigns a new function object to a name in
the enclosing function's scope (namespace). Within the nested function, the LGB
three-scope rule still applies for all names. The nested function has access only to its
own local scope, the global scope in the enclosing module, and the built-in names
scope. It does not have access to names in the enclosing function's scope; no matter
how deeply functions nest, each sees only three scopes.

For instance, in the example above, the nested de © creates the name inner in the
outer function's local scope (like any other assignment in cut e+ would). But inside
the inner function, the name inner isn't visible; it doesn't live in inner's local
scope, doesn't live in the enclosing module's scope, and certainly isn't a built-in.
Because inner has no access to names in outer's scope, the call to i nner from
inner fails and raises an exception.

4.6.2.1 Solution

Don't expect scopes to nest in Python. This is really more a matter of understanding
than anomaly: the de  statement is just an object constructor, not a scope nester.
However, if you really need access to the nested function name from inside the
nested function, simply force the nested function's name out to the enclosing
module's scope with a g1 obal declaration in the outer function. Since the nested
function shares the global scope with the enclosing function, it finds it there according
to the LGB rule:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

>>> def outer (x):
global inner

def inner(i): # assign in enclosing module
print i,
if i: inner(i-1) # found in my global scope now
inner (x)

>>> outer (3)
3210

4.6.3 Using Defaults to Save References

Really, nested functions have no access to any names in an enclosing function, so
this is actually a more general gotcha than the example above implies. To get access
to names assigned prior to the nested function's de ¢ statement, you can also assign
their values to the nested function's arguments as defaults. Because default
arguments save their values when the de © runs (not when the function is actually
called), they can squirrel away objects from the enclosing function's scope:

>>> def outer(x, y):
def inner (a=x, b=y): # save outer's x,y bindings/ob]
return a**b # can't use x and y directly he

return inner

>>> x = outer (2, 4)
>>> x ()
16

Here, a call to outer returns the new function created by the nested e . When the
nested de t statement runs, inner's arguments = and b are assigned the values of =
and v from the ocuter function's local scope. In effect, inner's 2 and b remembers
the values of cuter's x and yv. When = and b are used later in i nner's body, they
still refer to the values = and v had when cuter ran (even though cuter has
already returned to its caller).? This scheme works in 1 ambdas too, since 1ambdas
are really just shorthand for de rs:

[7] In computer-science lingo, this sort of behavior is usually called a closure—an object that remembers values in
enclosing scopes, even though those scopes may not be around any more. In Python, you need to explicitly list which
values are to be remembered, using argument defaults (or class object attributes, as we'll see in Chapter 6).

>>> def outer(x, y):
return lambda a=x, b=y: a**b

>>> y = outer (2, 5)

>>> y()
32

Note that defaults won't quite do the trick in the last section's example, because the
name inner isn't assigned until the inner de ¢ has completed. Global declarations
may be the best workaround for nested functions that call themselves:

>>> def outer (x):


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

def inner (i, self=inner): # name not defined yet
print i,
if i: self(i-1)

inner (x)

>>> outer (3)
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, in outer
NameError: inner

But if you're interested in exploring the Twilight Zone of Python hackerage, you can
instead save a mutable object as a default and plug in a reference to i nner after the
fact, in the enclosing function's body:

>>> def outer (x):
£fillin = [None]

def inner (i, self=fillin): # save mutable
print i,
if i: self[0] (i-1) # assume it's set
£fillin[O] = inner # plug value now
inner (x)

>>> outer (3)
3210

Although this code illustrates Python properties (and just might amaze your friends,
coworkers, and grandmother), we don't recommend it. In this example, it makes much
more sense to avoid function nesting altogether:

>>> def inner(i): # define module level name
print i,
if i: inner(i-1) # no worries: it's a global

>>> def outer (x):
inner (x)

>>> outer (3)
3210

As a rule of thumb, the easy way out is usually the right way out.
4.6.4 Defaults and Mutable Objects

D efault argument values are evaluated and saved when the de ¢ statement is run,
not when the resulting function is called. That's what you want, since it lets you save
values from the enclosing scope, as we've just seen. But since defaults retain an
object between calls, you have to be careful about changing mutable defaults. For
instance, the following function uses an empty list as a default value and then
changes it in place each time the function is called:

>>> def saver (x=[]): # saves away a list object


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

x.append (1) # changes same object each time!
print x

>>> saver([2]) # default not used

[2, 1]

>>> saver () # default used

[1]

>>> saver () # grows on each call

[1, 1]

>>> saver ()

(1, 1, 1]

The problem is that there's just one list object here—the one created when the de
was executed. You don't get a new list every time the function is called, so the list
grows with each new 2ppend.

4.6.4.1 Solution

If that's not the behavior you wish, simply move the default value into the function
body; as long as the value resides in code that's actually executed each time the
function runs, you'll get a new object each time through:

>>> def saver (x=None) :

if x is None: # no argument passed?

x = [] # run code to make a new list
x.append (1) # changes new list object
print x

>>> saver([2])

(2, 1]

>>> saver () # doesn't grow here
[1]

>>> saver ()

[1]

By the way, the i © statement above could almost be replaced by the assignment x -
< or [, which takes advantage of the fact that Python's o r returns one of its
operand obijects: if no argument was passed, = defaults to none, so the or returns
the new empty list on the right. This isn't exactly the same, though: when an empty list
is passed in, the function extends and returns a newly created list, rather than
extending and returning the passed-in list like the previous version (the expression
becomes [ ] or [ ], which evaluates to the new empty list on the right; see the
discussion of truth tests in Chapter 3 if you don't recall why). Since real program
requirements may call for either behavior, we won't pick a winner here.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
4.7 Summary

In this chapter, you've learned how to write and call functions of your own. We've
explored scope and namespace issues, talked about argument passing, saw a
number of functional tools such as 12mbda and map, and studied new function-
related statements—de, return, and global. We've also talked a little about how
to go about gluing functions together, and looked at common function cases that can
trip up new users. In Chapter 5 we'll learn about modules, which, among other
things, lets you group functions into packages of related tools.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

4.8 Exercises

We're going to start coding more sophisticated programs in this session. Be sure to
check Appendix C if you get stuck, and be sure to start writing your code in module
files. You won't want to retype some of these exercises from scratch if you make a
mistake.

1.

Basics. At the Python interactive prompt, write a function that prints its single
argument to the screen and call it interactively, passing a variety of object types:
string, integer, list, dictionary. Then try calling it without passing any argument:
what happens? What happens when you pass two arguments?

Arguments. Write a function called zdder in a Python module file. adder
should accept two arguments and return the sum (or concatenation) of its two
arguments. Then add code at the bottom of the file to call the function with a
variety of object types (two strings, two lists, two floating points), and run this file
as a script from the system command line. Do you have to print the call
statement results to see results on the screen?

varargs. Generalize the = dde r function you wrote in the last exercise to
compute the sum of an arbitrary number of arguments, and change the calls to
pass more or less than two. What type is the return value sum? (Hints: a slice
such as s [ : 0] returns an empty sequence of the same type as s, and the
type built-in function can test types.) What happens if you pass in arguments of
different types? What about passing in dictionaries?

Keywords. Change the adder function from Exercise 2 to accept and add three
arguments: def adder (good, bad, ugly). Now, provide default values for
each argument and experiment with calling the function interactively. Try
passing one, two, three, and four arguments. Then, try passing keyword
arguments. Does the call 2dder (ugly=1, good=2) work? Why? Finally,
generalize the new adde r to accept and add an arbitrary number of keyword
arguments, much like Exercise 3, but you'll need to iterate over a dictionary, not
atuple. (Hint: the dictionary.keys () method returns a list you can step
through witha for orwhile.)

Write a function called copybDict (dict) that copies its dictionary argument. It
should return a new dictionary with all the items in its argument. Use the
dictionary k< s method to iterate. Copying sequences is easy (¥ [ : | makes a
top-level copy); does this work for dictionaries too?

Write a function called addbict (dict1l, dict2) that computes the union of
two dictionaries. It should return a new dictionary, with all the items in both its
arguments (assumed to be dictionaries). If the same key appears in both
arguments, feel free to pick a value from either. Test your function by writing it in
a file and running the file as a script. What happens if you pass lists instead of
dictionaries? How could you generalize your function to handle this case too?
(Hint: see the « ype built-in function used earlier.) Does the order of arguments
passed matter?


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

7. More argument matching examples. First, define the following six functions
(either interactively, or in an importable module file):

def fl(a, b): print a, b # normal args

def f2(a, *b): print a, b # positional varargs
def f3(a, **b): print a, Db # keyword varargs
def f4(a, *b, **c): print a, b, c # mixed modes

def f5(a, b=2, c¢=3): print a, b, c # defaults
def fo6(a, b=2, *c): print a, b, c # defaults + positional

Now, test the following calls interactively and try to explain each result; in some
cases, you'll probably need to fall back on the matching algorithm shown earlier
in this chapter. Do you think mixing matching modes is a good idea in general?
Can you think of cases where it would be useful anyhow?

>>> f1(1, 2)
>>> £1(b=2, a=1)

>>> £2(1, 2, 3)
>>> £3(1, x=2, y=3)
>>> £4(1, 2, 3, x=2, y=3)

>>> £5(1)
>>> £5(1, 4)

>>> £6(1)
>>> f6(1l, 3, 4)


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m m
Chapter 5. Modules

This chapter presents the Python module—the highest-level program organization
unit, which packages program code and data for reuse. In concrete terms, modules
take the form of Python program files (and C extensions); clients import modules to
use the names they define. Modules are processed with two new statements and one
important built-in function we explore here:

import
Lets a client fetch a module as a whole
from
Allows clients to fetch particular names from a module
reload
Provides a way to reload a module's code without stopping Python

We introduced module basics in Chapter 1, and you may have been using module
files in the exercises, so some of this chapter may be a review. But we also flesh out
module details we've omitted so far: reloads, module compilation semantics, and so
on. Because modules and classes are really just glorified namespaces, we explore
namespace basics here as well, so be sure to read most of this chapter before
tackling the next.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

| I@ve RuBoard m m
5.1 Why Use Modules?

Let's start with the obvious first question: why should we care about modules? The
short answer is that they provide an easy way to organize components into a system.
But from an abstract perspective, modules have at least three roles:

Code reuse

As we saw in Chapter 1, modules let us save code in files permanently.(t
Unlike code you type at the Python interactive prompt (which goes away when
you exit Python), code in module files is persistent—it can be reloaded and
rerun as many times as needed. More to the point, modules are a place to
define names (called attributes) that may be referenced by external clients.

[1] Until you delete the module file, at least.

System namespace partitioning

Modules are also the highest-level program organization unit in Python. As we'll
see, everything "lives" in a module; code you execute and some objects you
create are always implicitly enclosed by a module. Because of that, modules are
a natural tool for grouping system components.

Implementing shared services or data

From a functional perspective, modules also come in handy for implementing
components shared across a system, and hence only require a single copy. For
instance, if you need to provide a global data structure that's used by more than
one function, you can code it in a module that's imported by many clients.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
5.2 Module Basics

Python modules are easy to create; they're just files of Python program code, created
with your favorite text editor. You don't need to write special syntax to tell Python
you're making a module; almost any text file will do. Because Python handles all the
details of finding and loading modules, modules are also easy to use; clients simply
import a module or specific names a module defines and use the objects they
reference. Here's an overview of the basics:

Creating modules: Python files, C extensions

Modules can actually be coded as either Python files or C extensions. We won't
be studying C extensions in this book, but we'll use a few along the way. Many
of Python's built-in tools are really imported C extension modules; to their
clients, they look identical to Python file modules.

Using modules: import, from, reload()

As we'll see in a moment, clients can load modules with either import or from
statements. By calling the r< 1 0ad built-in function, they may also reload a
module's code without stopping programs that use it. Module files can also be
run as top-level programs from the system prompt, as we saw in Chapter 1.

Module search path: PYTHONPATH

As we also saw in Chapter 1, Python searches for imported module files by
inspecting all directories listed on the Py THONPATH environment variable. You
can store modules anywhere, so long as you add all your source directories to
this variable.

5.2.1 Definition

Let's look at a simple example of module basics in action. To define a module, use
your text editor to type Python code into a text file. Names assigned at the top level of
the module become its attributes (names associated with the module object), and are
exported for clients to use. For instance, if we type the det below into a file called
module1.py, we create a module with one attribute—the name printer, which
happens to be a reference to a function object:

def printer (x): # module attribute
print x

A word on filenames: you can call modules just about anything you like, but module
filenames should end in a .py suffix if you plan to import them. Since their names
become variables inside a Python program without the .py, they should also follow the
variable naming rules in Chapter 3. For instance, a module named if.py won't work,
because ifis a reserved word (you'll get a syntax error). When modules are imported,
Python maps the internal module name to an external filename, by adding directory
paths in the pyTHONPATH variable to the front and a .py at the end: a module name 1
mans tn the extarnal file <direarctorv-nath>/M nv which storas niir eode 121


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e e A e L M vNr g oNatir SaVII[O g YRR TAw T v oo

[2] It can also map to <directory-path>/M.pyc if there's already a compiled version of the module lying around; more on
this later. Dynamically loaded C extension modules are found on pyTHONPATH too, but that's outside this book's
scope.

5.2.2 Usage

Clients can use the module file we just wrote by running import or £ rom statements.
Both load the module file's code; the chief difference is that import fetches the
module as a whole (so you must qualify to fetch its names out), but  rom fetches
specific names out of the module. Here are three clients of the module at work:

% python

>>> import modulel # get module

>>> modulel.printer ('Hello world!') qualify to get names (mo
Hello world!

=

>>> from modulel import printer # get an export
>>> printer ('Hello world!') # no need to qualify name
Hello world!

>>> from modulel import * # get all exports
>>> printer ('Hello world!')
Hello world!

The last example uses a special form of © rom : when we use a *, we get copies of all
the names assigned at the top-level of the referenced module. In each of the three
cases, we wind up calling the printer function defined in the external module file.
And that's it; modules really are simple to use. But to give you a better understanding
of what really happens when you define and use modules, let's look at some of their
properties in more detail.

1@ve Rugoard [«ermvious Pt


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
5.3 Module Files Are Namespaces

Modules are probably best understood as places to define names you want visible to
the rest of a system. In Python-speak, modules are a namespace—a place where
names are created. And names that live in a module are called its attributes.
Technically, modules correspond to files, and Python creates a module object to
contain all the names defined in the file; but in simple terms, modules are just
namespaces.

So how do files become namespaces? Every name that is assigned a value at the top
level of a module file (i.e., not in a function body) becomes an attribute of that module.
For instance, given an assignment statement such as X=1 at the top level of a
module file M.py, the name X becomes an attribute of M, which we can refer to from
outside the module as M.X. The name X also becomes a global variable to other code
inside M.py, but we need to explain the notion of module loading and scopes a bit
more formally to understand why:

Module statements run on the first import

The first time a module is imported anywhere in a system, Python creates an
empty module object and executes the statements in the module file one after
another, from the top of the file to the bottom.

Top-level assignments create module attributes

During an import, statements at the top-level of the file that assign names (e.g.,
=, de f) create attributes of the module object; assigned names are stored in the
module's namespace.

Module namespace: attribute _ _dict__, or dir()

Module namespaces created by imports are dictionaries; they may be accessed
through the built-in __ dict _ attribute associated with module objects and

may be inspected with the di r function we met in Chapter 1.
Modules are a single scope (local is global)

As we saw in Chapter 4, names at the top level of a module follow the same
reference/assignment rules as names in a function, but the local and global
scopes are the same (or, if you prefer, the LGB rule, without the G). But in
modules, the local scope becomes an attribute dictionary of a module object,
after the module has been loaded. Unlike functions (where the local namespace
exists only while the function runs), a module file's scope becomes a module
object's attribute namespace and may be used after the import.

Let's look at an example of these ideas. Suppose we create the following module file
with our favorite text editor and call it module2.py :


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print 'starting to load...'

import sys
name = 42

def func(): pass
class klass: pass
print 'done loading.'

The first time this module is imported (or run as a program), Python executes its
statements from top to bottom. Some statements create names in the module's
namespace as a side effect, but others may do actual work while the import is going
on. For instance, the two print statements in this file execute at import time:

>>> import module2
starting to load...
done loading.

But once the module is loaded, its scope becomes an attribute namespace in the
module object we get back from import; we access attributes in the namespace by
qualifying them with the name of the enclosing module:

>>> module2. sys

<module 'sys'>

>>> module2.name

42

>>> module2. func, module2.klass

(<function func at 765f20>, <class klass at 76dfo60>)

Here, sys, name, func,and k1ass were all assigned while the module's statements
were being run, so they're attributes after the import. We'll talk about classes in
Chapter 6, but notice the =y s attribute; import statements really assign module
objects to names (more on this later). Internally, module namespaces are stored as
dictionary objects. In fact, we can access the namespace dictionary through the
module's __dict__ attribute; it's just a normal dictionary object, with the usual
methods:

>>> module2. dict .keys()
[' file ', 'mame', ' name ', 'sys', ' doc ', ' builtins

The names we assigned in the module file become dictionary keys internally. As you
can see, some of the names in the module's namespace are things Python adds for
us; forinstance, _ i 1e__ gives the name of the file the module was loaded from,
and __name__ gives its name as known to importers (without the .py extension and
directory path).

5.3.1 Name Qualification

Now that you're becoming familiar with modules, we should clarify the notion of name


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

qualification. In Python, you can access attributes in any object that has attributes,
using the qualification syntax object.attribute. Qualification is really an
expression that returns the value assigned to an attribute name associated with an
object. For example, the expression module? . sys in the next-to-last example
fetches the value assigned to sy s in module2. Similarly, if we have a built-in list
object 1, 1.. 2ppend returns the method associated with the list.

So what does qualification do to the scope rules we saw in Chapter 4? Nothing,
really: it's an independent concept. When you use qualification to access names, you
give Python an explicit object to fetch from. The LGB rule applies only to bare,
unqualified names. Here are the rules:
Simple variables

"x" means search for name x in the current scopes (LGB rule)
Qualification

"x.Y" means search for attribute v in the object x (not in scopes)
Qualification paths

"x.v.z" means look up name v in object , then look up 7 in object x . v
Generality

Qualification works on all objects with attributes: modules, classes, C types, etc.
In Chapter 6, we'll see that qualification means a bit more for classes (it's also the

place where inheritance happens), but in general, the rules here apply to all names in
Python.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m
5.4 Import Model

As we've seen, qualification is needed only when you use import to fetch a module
as a whole. When you use the f rom statement, you copy names from the module to
the importer, so the imported names are used without qualifying. Here are a few more
details on the import process.

5.4.1 Imports Happen Only Once

One of the most common questions beginners seem to ask when using modules is:
why won't my imports keep working? The first import works fine, but later imports
during an interactive session (or in a program) seem to have no effect. They're not
supposed to, and here's why:

¢ Modules are loaded and run on the first import or from.
* Running a module's code creates its top-level names.
e Later import and £ rom operations fetch an already loaded module.

Python loads, compiles, and runs code in a module file only on the first import, on
purpose; since this is an expensive operation, Python does it just once per process by
default. Moreover, since code in a module is usually executed once, you can use it to
initialize variables. For example:

% cat simple.py
print 'hello'

spam = 1 # initialize wvariable

% python

>>> import simple # first import: loads and runs file's
hello

>>> simple.spam # assignment makes an attribute

1

>>> simple.spam = 2 # change attribute in module

>>>

>>> import simple # just fetches already-loaded module

>>> simple.spam # code wasn't rerun: attribute unchan
2

In this example, the print and = statements run only the first time the module is
imported. The second import doesn't rerun the module's code, but just fetches the
already created module object in Python's internal modules table. Of course,
sometimes you really want a module's code to be rerun; we'll see how to do it with
reload in a moment.

5.4.2 import and from Are Assignments

Just like def, import and £ rom are executable statements, not compile-time


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

declarations. They can be nested in i © tests, appear in function der s, and so on.
Imported modules and names aren't available until importing statements run.
Moreover, import and £ rom are also implicit assignments, just like the de *:

e import assigns an entire module object to a name.

e from assigns one or more names to objects of the same name in another
module.

All the things we've already said about assignment apply to module access too. For
instance, names copied with a £ rom become references to possibly shared objects;
like function arguments, reassigning a fetched name has no effect on the module it
was copied from, but changing a fetched mutable object can change it in the module
it was imported from:(3!

(3] In fact, for a graphical picture of what  rom does, flip back to Figure 4.2 (function argument passing). Just replace
caller and function with imported and importer, to see what £ rom assignments do with references; it's the exact same
effect, except that here we're dealing with names in modules, not functions.

 cat small.py

x =1

y = [1, 2]

$ python

>>> from small import x, y # copy two names out

>>> x = 42 # changes local x only

>>> y[0] = 42 # changes shared mutable in-plac
>>>

>>> import small # get module name (from doesn't)
>>> small.x # small's x is not my x

1

>>> small.y # but we share a changed mutable
(42, 2]

Here, we change a shared mutable object we got with the ©rom assignment: name v
in the importer and importee reference the same list object, so changing it from one
place changes it in the other. Incidentally, notice that we have to execute an import
statement after the £ ~om , in order to gain access to the module name to qualify it;
from copies names only in the module and doesn't assign the module name itself. At
least symbolically, f rom is equivalent to this sequence:

import module # fetch the module object
namel = module.namel # copy names out by assignment
name2 = module.name?

del module # get rid of the module name


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
5.5 Reloading Modules

At the start of the last section, we noted that a module's code is run only once per

process by default. To force a module's code to be reloaded and rerun, you need to
ask Python explicitly to do so, by calling the r<1czd built-in function. In this section,
we'll explore how to use re10ad to make your systems more dynamic. In a nutshell:

¢ Imports load and run a module's code only the first time.
e Later imports use the already loaded module object without rerunning code.

e The re1o0ad function forces an already loaded module's code to be reloaded
and rerun.

Why all the fuss about reloading modules? The r=10ad function allows parts of
programs to be changed without stopping the whole program. With re10ad, the
effects of changes in components can be observed immediately. Reloading doesn't
help in every situation, but where it does, it makes for a much shorter development
cycle. For instance, imagine a database program that must connect to a server on
startup; since program changes can be tested immediately after reloads, you need to
connect only once while debugging.!

[4] We should note that because Python is interpreted (more or less), it already gets rid of the compile/link steps you
need to go through to get a C program to run: modules are loaded dynamically, when imported by a running program.
Reloading adds to this, by allowing you to also change parts of running programs without stopping. We should also
note that r=10ad currently only works on modules written in Python; C extension modules can be dynamically loaded
at runtime too, but they can't be reloaded. We should finally note that since this book isn't about C modules, we've
probably already noted too much.

5.5.1 General Form

Unlike import and from
e reload is a built-in function in Python, not a statement.
e reload is passed an existing module object, not a name.

Because re10ad expects an object, a module must have been previously imported
successfully before you can reload it. (In fact, if the import was unsuccessful due to a
syntax or other error, you may need to repeat an import before you can reload).
Reloading looks like this:

import module # initial import
Use module.attributes
# now, go change the module file

reload (module) # get updated exports
Use module.attributes

You typically import a module, then change its source code in a text editor and reload.
When you call r=10zd, Python rereads the module file's source code and reruns its
top-level statements. But perhaps the most important thing to know about re10ad is


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

that it changes a module object in-place; because of that, every reference to a
module object is automatically effected by a r=102d. The details:

reload runs a module file's new code in the module's current namespace

Rerunning a module file's code overwrites its existing namespace, rather than
deleting and recreating it.

Top-level assignments in the file replace names with new values

For instance, rerunning a de r statement replaces the prior version of the
function in the module's namespace.

Reloads impact all clients that use import to fetch modules

Because clients that use i mport qualify to fetch attributes, they'll find new
values in the module aftera re1oad.

Reloads impacts future from clients only

Clients that use © rom to fetch attributes in the past won't be effected by a
reload; they'll still have references to the old objects fetched before the
reload (we'll say more about this later).

5.5.2 Example

Here's a more concrete example of re10ad in action. In the following session, we
change and reload a module file without stopping the interactive Python session.
Reloads are used in many other scenarios too (see the next sidebar), but we'll keep
things simple for illustration here. First, let's write a module file with the text editor of
our choice:

% cat changer.py
message = "First version"

def printer () :
print message

This module creates and exports two names—one bound to a string, and another to a
function. Now, start the Python interpreter, import the module, and call the function it
exports; as you should know by now, the function prints the value of the global
variable message:

% python

>>> import changer
>>> changer.printer ()
First version

>>>

Next, let's keep the interpreter active and edit the module file in another window; here,
we change the global message variable, as well as the printer function body:

Modify changer.py without stopping Python


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

o

s vi changer.py
% cat changer.py
message = "After editing"

def printer():
print 'reloaded:', message

Finally, we come back to the Python window and reload the module to fetch the new
code we just changed. Notice that importing the module again has no effect; we get
the original message even though the file's been changed. We have to call re1o0ad in
order to get the new version:

Back to the Python interpreter/program

>>> import changer
>>> changer.printer () # no effect: uses loaded module
First version

>>> reload (changer) # forces new code to load/run
<module 'changer'>
>>> changer.printer () # runs the new version now

reloaded: After editing

Notice that r= 1 0ad actually returns the module object for us; its result is usually
ignored, but since expression results are printed at the interactive prompt, Python
shows us a default <module name> representation.

Why You Will Care: Module Reloads

Besides allowing you to reload (and hence rerun) modules at the interactive
prompt, module reloads are also useful in larger systems, especially when
the cost of restarting the entire application is prohibitive. For instance,
systems that must connect to servers over a network on startup are prime
candidates for dynamic reloads.

They're also useful in GUI work (a widget's callback action can be changed
while the GUI remains active) and when Python is used as an embedded
language in a C or C++ program (the enclosing program can request a
reload of the Python code it runs, without having to stop). See Programming
Python for more on reloading GUI callbacks and embedded Python code.

1@ve Rugoard [«ermvious Pt


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
5.6 Odds and Ends

In this section, we introduce a few module-related ideas that seem important enough
to stand on their own (or obscure enough to defy our organizational skills).

5.6.1 Module Compilation Model

As currently implemented, the Python system is often called an interpreter, but it's
really somewhere between a classic interpreter and compiler. As in Java, Python
programs are compiled to an intermediate form called bytecode, which is then
executed on something called a virtual machine. Since the Python virtual machine
interprets the bytecode form, we can get away with saying that Python is interpreted,
but it still goes through a compile phase first.

Luckily, the compile step is completely automated and hidden in Python. Python
programmers simply import modules and use the names they define; Python takes
care to automatically compile modules to bytecode when they are first imported.
Moreover, Python tries to save a module's bytecode in a file, so it can avoid
recompiling in the future if the source code hasn't been changed. In effect, Python
comes with an automatic make system to manage recompiles.’=’

[5] For readers who have never used C or C++, a make system is a way to automate compiling and linking programs.
make systems typically use file modification dates to know when a file must be recompiled (just like Python).

Here's how this works. You may have noticed .pyc files in your module directories
after running programs; these are the files Python generates to save a module's
bytecode (provided you have write access to source directories). When a module M is
imported, Python loads a M.pyc bytecode file instead of the corresponding M.py
source file, as long as the M.py file hasn't been changed since the M.pyc bytecode
was saved. If you change the source code file (or delete the .pyc), Python is smart
enough to recompile the module when imported; if not, the saved bytecode files make
your program start quicker by avoiding recompiles at runtime.

Why You Will Care: Shipping Options

Incidentally, compiled .pyc bytecode files also happen to be one way to ship
a system without source code. Python happily loads a .pyc file if it can't find
a .py source file for a module on its module search path, so all you really
need to ship to customers are the .pyc files. Moreover, since Python
bytecode is portable, you can usually run a .pyc file on multiple platforms.
To force pre-compilation into .pyc files, simply import your modules (also
see the compileall utility module).

It's also possible to "freeze" Python programs into a C executable; the
standard  reeze tool packages your program's compiled byte code, any
Python utilities it uses, and as much of the C code of the Python interpreter
as needed to run your program. It produces a C program, which you compile
with a generated makefile to produce a standalone executable program. The



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

executable works the same as the Python files of your program. Frozen
executables don't require a Python interpreter to be installed on the target
machine and may start up faster; on the other hand, since the bulk of the
interpreter is included, they aren't small. A similar tool, squeeze, packages
Python bytecode in a Python program; search Python's web site for details.

5.6.2 Data Hiding Is a Convention

As we've seen, Python modules export all names assigned at the top level of their file.
There is no notion of declaring which names should and shouldn't be visible outside
the module. In fact, there's no way to prevent a client from changing names inside a
module if they want to.

In Python, data hiding in modules is a convention, not a syntactical constraint. If you
want to break a module by trashing its names, you can (though we have yet to meet a
programmer who would want to). Some purists object to this liberal attitude towards
data hiding and claim that it means Python can't implement encapsulation. We
disagree (and doubt we could convince purists of anything in any event).
Encapsulation in Python is more about packaging, than restricting.te!

[6] purists would probably also be horrified by the rogue C++ programmer who types #define pi e publicto
break C++'s hiding mechanism in a single blow. But then those are rogue programmers for you.

As a special case, prefixing names with an underscore (e.g., x) prevents them from
being copied out when a client imports with a £ rom* statement. This really is
intended only to minimize namespace pollution;since © rom* copies out all names,
you may get more than you bargained for (including names which overwrite names in
the importer). But underscores aren't "private" declarations: you can still see and

change such names with other import forms.
5.6.3 Mixed Modes: __name__ and __main__

Here's a special module-related trick that lets you both import a module from clients
and run it as a standalone program. Each module has a built-in attribute called
__name__, which Python sets as follows:

o If the file is being run as a program, _ name _ _issettothestring  main
___when it starts

o If the file is being imported, _ name___is set to the module's name as known by
its clients

The upshot is that a module can testits own _ _name__ to determine whether it's
being run or imported. For example, suppose we create the module file below, to
export a single function called tcster:

def tester():
print "It's Christmas in Heaven...

if name == "' main ': # only when run

tester () # not when imported


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This module defines a function for clients to import and use as usual:

% python

>>> import runme

>>> runme. tester ()

It's Christmas in Heaven...

But the module also includes code at the bottom that is set up to call the function
when this file is run as a program:

% python runme.py
It's Christmas in Heaven...

Perhaps the most common place you'll see the _ _mzin__ test applied is for self-test
code: you can package code that tests a module's exports in the module itself by
wrappingitina ___ main __ test at the bottom. This way, you can use the file in
clients and test its logic by running it from the system shell.

5.6.4 Changing the Module Search Path

We've mentioned that the module search path is a list of directories in environment
variable pyTHONPATH. What we haven't told you is that a Python program can
actually change the search path, by assigning to a built-in list called svs.path (the
path attribute in the built-in svs module). svs . path isinitialized from pyTHONPATH
(plus compiled-in defaults) on startup, but thereafter, you can delete, append, and
reset its components however you like:

>>> import sys
>>> sys.path

['.', 'c:\\python\\1lib', 'c:\\python\\lib\\tkinter']
>>> sys.path = ['.'] # change module
>>> sys.path.append('c:\\book\\examples"') # escape backlas

>>> sys.path
['.', 'c:\\book\\examples']

>>> import string
Traceback (innermost last):

File "<stdin>", line 1, in ?
ImportError: No module named string

You can use this to dynamically configure a search path inside a Python program. Be
careful, though; if you delete a critical directory from the path, you may lose access to
critical utilities. In the last command above, for example, we no longer have access to
the st ring module, since we deleted the Python source library's directory from the
path.

5.6.5 Module Packages (New in 1.5)


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Packages are an advanced tool, and we debated whether to cover them in this book.
But since you may run across them in other people's code, here's a quick overview of
their machinery.

In short, Python packages allow you to import modules using directory paths;
qualified names in import statements reflect the directory structure on your
machine. For instance, if some module c lives in a directory &, which is in turn a
subdirectory of directory 2, you can say import 2A.B.C toload the module. Only
directory ~ needs to be found in a directory listed in the Py THONPATH variable, since
the path from 2 to C is given by qualification.

Packages come in handy when integrating systems written by independent
developers; by storing each system's set of modules in its own subdirectory, we can
reduce the risk of name clashes. For instance, if each developer writes a module
called spam.py, there's no telling which will be found on pyTHONPATH first if package
qualifier paths aren't used. If another subsystem's directory appears on pyTHONPATH
first, a subsystem may see the wrong one.

Again, if you're new to Python, make sure that you've mastered simple modules
before stepping up to packages. Packages are more complex than we've described
here; for instance, each directory used as a package mustincludea _ init _ .py
module to identify itself as such. See Python's reference manuals for the whole story.

Why You Will Care: Module Packages

Now that packages are a standard part of Python, you're likely to start
seeing third-party extensions shipped as a set of package directories, rather
than a flat list of modules. The PythonWin port of Python for MS-Windows
was one of the first to jump on the package bandwagon. Many of its utility
modules reside in packages, which you import with qualification paths; for
instance, to load client-side COM tools, we say:

from win32com.client import constants, Dispatch

which fetches names from the 1 ient module of the PythonWin win32com
package (an install directory). We'll see more about COM in Chapter 10.

5.6.6 Module Design Concepts

Like functions, modules present design tradeoffs: deciding which functions go in
which module, module communication mechanisms, and so on. Here too, it's a bigger
topic than this book allows, so we'll just touch on a few general ideas that will become
clearer when you start writing bigger Python systems:

You're always in a module in Python

There's no way to write code that doesn't live in some module. In fact, code
typed at the interactive prompt really goes in a built-in module called __ main

Minimize module coupling: global variables


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Like functions, modules work best if they're written to be closed boxes. As a rule
of thumb, they should be as independent of global names in other modules as
possible.

Maximize module cohesion: unified purpose

You can minimize a module's couplings by maximizing its cohesion; if all the
components of a module share its general purpose, you're less likely to depend
on external names.

Modules should rarely change other modules' variables

It's perfectly okay to use globals defined in another module (that's how clients
import services, after all), but changing globals in another module is usually a
symptom of a design problem. There are exceptions of course, but you should
try to communicate results through devices such as function return values, not
cross-module changes.

5.6.7 Modules Are Objects: Metaprograms

Finally, because modules expose most of their interesting properties as built-in
attributes, it's easy to write programs that manage other programs. We usually call
such manager programs metaprograms , because they work on top of other systems.
This is also referred to as introspection, because programs can see and process
object internals.

For instance, to get to an attribute called n=me in a module called 1, we can either
use qualification, or index the module's attribute dictionary exposed in the built-in _
_dict__ attribute. Further, Python also exports the list of all loaded modules as the
sys.modules dictionary (that is, the modu1es attribute of the s s module), and
provides a built-in called get =t t r that lets us fetch attributes from their string names.
Because of that, all the following expressions reach the same attribute and object:

M.name # qualify object

M. dict ['name'] # index namespace dictionary manu
sys.modules['M'] .name # index loaded-modules table man
getattr (M, 'name') # call built-in fetch function

By exposing module internals like this, Python helps you build programs about
programs.iz! For example, here is a module that puts these ideas to work, to
implement a customized version of the built-in i » function. It defines and exports a
function called 1 i st ing, which takes a module object as an argument and prints a
formatted listing of the module's namespace:

[7] Notice that because a function can access its enclosing module by going through the =vs.modules table Ilke this,

it's possible to emulate the effect of the g1 0b= 1 statement we met in CJJapjer_AL For mstance the effect of g1obal
%=0 can be simulated by saying, |n5|deafunct|on import mo e name__1;

glob.x=0 (albeit with much more typing). Remember, each module getsa name attnbute for free; it's visible as

a global name inside functions within a module. This trick provides a way to change both local and global variables of

the same name, inside a function.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

# a module that lists the namespaces of other modules
verbose = 1
def listing(module) :
if verbose:
print "-"*30
print "name:", module. = name , "file:", module. file
print "-"*30
count = 0
for attr in module. dict .keys(): # scan namespace
print "%02d) %s" % (count, attr),
if attr[0:2] == "_":
print "<built-in name>" # skip file , et
else:
print getattr (module, attr) # same as . dict
count = count+l
if verbose:
print "-"*30
print module. name , "has %d names" % count
print "-"*30
if name == " main ":

importimydir
listing (mydir) # self-test code: list myself

We've also provided self-test logic at the bottom of this module, which narcissistically
imports and lists itself. Here's the sort of output produced:

C:\python> python mydir.py

mydir file: mydir.py

_file  <built-in name>
__name_  <built-in name>

listing <function listing at 885450>
~doc  <built-in name>

_ _builtins  <built-in name>

verbose 1

We'll meet et attr and its relatives again. The point to notice here is that mydir is
a program that lets you browse other programs. Because Python exposes its
internals, you can process objects generically.s!

(8l By the way, tools such as mydir.1isting can be preloaded into the interactive namespace, by importing them in
the file referenced by the pyTHONSTARTUP environment variable. Since code in the startup file runs in the interactive
namespace (module _ _main__), imports of common tools in the startup file can save you some typing. See Chapter

1 for more details.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
5.7 Module Gotchas

Finally, here is the usual collection of boundary cases, which make life interesting for
beginners. Some are so obscure it was hard to come up with examples, but most
illustrate something important about Python.

5.7.1 Importing Modules by Name String

As we've seen, the module name in an import or £from statement is a hardcoded
variable name; you can't use these statements directly to load a module given its
name as a Python string. For instance:

>>> import "string"
File "<stdin>", line 1
import "string"

A

SyntaxError: invalid syntax
5.7.1.1 Solution

You need to use special tools to load modules dynamically, from a string that exists at
runtime. The most general approach is to construct an import statement as a string
of Python code and pass it to the =< c statement to run:

>>> modname = "string"
>>> exec "import " + modname # run a string of code
>>> string # imported in this namespace

<module 'string'>

The =xcc statement (and its cousin, the =vz 1 function) compiles a string of code,
and passes it to the Python interpreter to be executed. In Python, the bytecode
compiler is available at runtime, so you can write programs that construct and run
other programs like this. By default, < << c runs the code in the current scope, but you
can get more specific by passing in optional namespace dictionaries. We'll say more
about these tools later in this book.

The only real drawback to «xec is that it must compile the i mport statement each
time it runs; if it runs many times, you might be better off using the built-in __ import
__function to load from a name string instead. The effect is similar, but _ import
___returns the module object, so we assign it to a name here:

>>> modname = "string"

>>> string = import (modname)
>>> string

<module 'string'>

5.7.2 from Copies Names but Doesn't Link

Earlier, we mentioned that the - om statement is really an assignment to names in


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the importer's scope—a name-copy operation, not a name aliasing. The implications
of this are the same as for all assignments in Python, but subtle, especially given that
the code that shares objects lives in different files. For instance, suppose we define a
module nestedl as follows:

X = 99
def printer(): print X

Now, if we import its two names using © rom in another module, we get copies of
those names, not links to them. Changing a name in the importer resets only the
binding of the local version of that name, not the name in nestedi:

from nestedl import X, printer # copy names out
X = 88 # changes my "X" only!
printer () # nestedl's X 1is still 99

% python nested2.py
99

5.7.2.1 Solution

On the other hand, if you use import to get the whole module and assign to a
qualified name, you change the name in nestedi. Qualification directs Python to a
name in the module object, rather than a name in the importer:

import nestedl # get module as a whole
nestedl.X = 88 # okay: change nestedl's X
nestedl.printer ()

% python nested3.py
88

5.7.3 Statement Order Matters in Top-Level Code

As we also saw earlier, when a module is first imported (or reloaded), Python
executes its statements one by one, from the top of file to the bottom. This has a few
subtle implications regarding forward references that are worth underscoring here:

e Code at the top level of a module file (not nested in a function) runs as soon as
Python reaches it during an import; because of that, it can't reference names
assigned lower in the file.

» Code inside a function body doesn't run until the function is called; because
names in a function aren't resolved until the function actually runs, they can
usually reference names anywhere in the file.

In general, forward references are only a concern in top-level module code that
executes immediately; functions can reference names arbitrarily. Here's an example
that illustrates forward reference dos and don'ts:

funcl () # error: "funcl" not yet assigned


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

def funcl () :

print func?2 () # okay: "func2" looked up later
funcl () # error: "func2" not yet assigned
def func2 () :

return "Hello"
funcl () # okay: "funcl" and "func2" assigned

When this file is imported (or run as a standalone program), Python executes its
statements from top to bottom. The first call to func1 fails because the funci1 dert
hasn't run yet. The call to func? inside func1 works as long as func?2's def has
been reached by the time func1 is called (it hasn't when the second top-level func1
call is run). The last call to func1 at the bottom of the file works, because func1
and func2 have both been assigned.

5.7.3.1 Solution

Don't do that. Mixing de © s with top-level code is not only hard to read, it's dependent
on statement ordering. As a rule of thumb, if you need to mix immediate code with
defs, put your de f s at the top of the file and top-level code at the bottom. That way,
your functions are defined and assigned by the time code that uses them runs.

5.7.4 Recursive "from" Imports May Not Work

Because imports execute a file's statements from top to bottom, we sometimes need
to be careful when using modules that import each other (something called recursive
imports ). Since the statements in a module have not all been run when it imports
another module, some of its names may not yet exist. If you use import to fetch a
module as a whole, this may or may not matter; the module's names won't be
accessed until you later use qualification to fetch their values. But if you use rom to
fetch specific names, you only have access to names already assigned.

For instance, take the following modules recur1 and recur?. recurl assigns a
name ¥, and then imports recur 2, before assigning name v. At this point, recur?
can fetch recur1 as a whole with an import (it already exists in Python's internal
modules table), but it can see only name x if it uses  rom; the name v below the
importin recurl doesn't yet exist, so you get an error:

module recur1.py

X =1
import recur? # run recur?2 now if doesn't exist
Y = 2

module recur2.py


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

from recurl import X # okay: "X" already assigned
from recurl import Y # error: "Y" not yet assigned

>>> import recurl
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "recurl.py", line 2, in ?
import recur?
File "recur2.py", line 2, in ?
from recurl import Y # error: "Y" not yet assigned
ImportError: cannot import name Y

Python is smart enough to avoid rerunning recur1's statements when they are
imported recursively from recur2 (or else the imports would send the script into an
infinite loop), but recur1's namespace is incomplete when imported by recur2.

5.7.4.1 Solutions

Don't do that....really! Python won't get stuck in a cycle, but your programs will once
again be dependent on the order of statements in modules. There are two ways out of
this gotcha:

¢ You can usually eliminate import cycles like this by careful design; maximizing
cohesion and minimizing coupling are good first steps.

e If you can't break the cycles completely, postpone module name access by
using import and qualification (instead of £ rom), or running your from s
inside functions (instead of at the top level of the module).

5.7.5 reload May Not Impact from Imports

The 1 rom statement is the source of all sorts of gotchas in Python. Here's another:
because 1 rom copies (assigns) names when run, there's no link back to the module
where the names came from. Names imported with ©rom simply become references
to objects, which happen to have been referenced by the same names in the
importee when the ©rom ran. Because of this behavior, reloading the importee has no
effect on clients that use rrom; the client's names still reference the objects fetched
with £ rom, even though names in the original module have been reset:

from module import X # X may not reflect any module reload
reload (module) # changes module, not my names
X # still references old object

5.7.5.1 Solution

Don't do it that way. To make reloads more effective, use import and name
qualification, instead of  rom. Because qualifications always go back to the module,
they will find the new bindings of module names after calling re1o0ad:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

import module # get module, not names
reload (module) # changes module in-place
module.X # get current X: reflects module relo

5.7.6 reload Isn't Applied Transitively

When you reload a module, Python only reloads that particular module's file; it doesn't
automatically reload modules that the file being reloaded happens to import. For
example, if we reload some module A, and A imports modules B and C, the reload
only applies to A, not B and C. The statements inside A that import B and C are rerun
during the reload, but they'll just fetch the already loaded B and C module objects
(assuming they've been imported before):

5 cat A.py

import B # not reloaded when A is

import C # jJust an import of an already loaded
% python

>>>

>>> reload (A)
5.7.6.1 Solution

Don't depend on that. Use multiple =1 0ad calls to update subcomponents
independently. If desired, you can design your systems to reload their
subcomponents automatically by adding r< 1 0ad calls in parent modules like 2 .re!

[91 You could also write a general tool to do transitive reloads automatically, by scanning module __ dict __s(see
the section Section 5.6.7), and checking each item's - yoe () to find nested modules to reload recursively. This is an
advanced exercise for the ambitious.

1@ve Rugoard [«ermvious Pt


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m
5.8 Summary

We've learned all about modules in this chapter—how to write them and how to use
them. Along the way we explored namespaces and qualification, saw how to reload
modules to change running programs, peeked at a few module design issues, and
studied the module-related statements and functions listed in Table 5.1. In the next
chapter, we're going to move on to study Python classes. As we'll see, classes are
cousins to modules; they define namespaces too, but add support for making multiple
copies, specialization by inheritance, and more.

Table 5.1. Module Operations

Operation Interpretation
import mod Fetch a module as a whole
from mod import name Fetch a specific name from a module
from mod import* Fetch all top-level names from a module
reload (mod) Force a reload of a loaded module's code



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

5.9 Exercises

1.

Basics, import. With your favorite text editor, write a Python module called
mymod.py, which exports three top-level names:

oA countlLines (name) function that reads an input file and counts the
number of lines in it (hint: file.readlines () does most of the work for

you)

oA countChars (name) function that reads an input file and counts the
number of characters in it (hint: ©i1e.read () returns a single string)

oA test (name) function that calls both counting functions with a given
input filename

A filename string should be passed into all three mymod functions. Now, test
your module interactively, using i mport and name qualification to fetch your
exports. Does your pyTHONPATH include the directory where you created
mymod.py ? Try running your module on itself: e.g., test ("mymod.py"). Note
that t=st opens the file twice; if you're feeling ambitious, you might be able to
improve this by passing an open file object into the two count functions.

from/from. Test your mymod module from Exercise 1 interactively, by using
from to load the exports directly, first by name, then using the © rom* variant to
fetch everything.

__main__. Now, add a line in your mymod module that calls the et function
automatically only when the module is run as a script. Try running your module
from the system command line; then import the module and test its functions
interactively. Does it still work in both modes?

Nested imports. Finally, write a second module, myclient.py, which imports
mymod and tests its functions; run myclient from the system command line. If
myclient uses © rom to fetch from mymod, will mymod's functions be accessible
from the top level of myclient? What if it imports with i mport instead? Try
coding both variations in myclient and test interactively, by importing myclient
and inspectingits __ dict__.

Reload. Experiment with module reloads: perform the tests in the changer.py
example, changing the called function's message and/or behavior repeatedly,
without stopping the Python interpreter. Depending on your system, you might
be able to edit changer in another window, or suspend the Python interpreter
and edit in the same window (on Unix, a Ctrl-Z key combination usually
suspends the current process, and a g command later resumes it).

Circular imports (and other acts of cruelty).i:21 In the section on recursive import
gotchas, importing recur1 raised an error. But if we restart Python and import
recur? interactively, the error doesn't occur: test and see this for yourself. Why
do you think it works to import recur2, but not recur1? (Hint: Python stores


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

new modules in the built-in s s .modules table (a dictionary) before running
their code; later imports fetch the module from this table first, whether the
module is "complete" yet or not.) Now try running recur1 as a script: © python
recurl.py. Do you get the same error that occurs when recur1 is imported
interactively? Why? (Hint: when modules are run as programs they aren't
imported, so this case has the same effect as importing r=cur2 interactively;
recur? is the first module imported.) What happens when you run recur? as
a script?

[10] we should note that circular imports are extremely rare in practice. In fact, we have never coded or
come across a circular import in six years of Python coding—except on the Internet (where such things
receive an inordinate amount of attention), and when writing books like this. On the other hand, if you can
understand why it's a potential problem, you know a lot about Python's import semantics.

l1@ve RuBoard [ raivisis]fiwmxt ]


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m m
Chapter 6. Classes

This chapter explores the Python class—a device used to implement new kinds of
objects in Python. Classes are Python's main object-oriented programming (OOP)
tool, so we'll also look at OOP basics along the way in this chapter. In Python, classes
are created with a new statement we'll meet here too: the ¢ 1ass statement. As we'll
see, objects defined with classes can look a lot like the built-in types we saw earlier in
the book.

One note up front: Python OOP is entirely optional, and you don't need to use classes
just to get started. In fact, you can get plenty of work done with simpler constructs
such as functions. But classes turn out to be one of the most useful tools Python
provides, and we hope to show you why here. They're also employed in popular
Python tools like the Tkinter GUI API, so most Python programmers will usually find at
least a working knowledge of class basics helpful.

| 1@ve RuBoard [eraivisvs]fiwmxt ]


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.1 Why Use Classes?

Remember when we told you that programs do things with stuff? In simple terms,
classes are just a way to define new sorts of stuff, which reflect real objects in your
program's domain. For instance, suppose we've decided to implement that
hypothetical pizza-making robot we used as an example in Chapter 4. If we
implement it using classes, we can model more of its real-world structure and
relationships:

Inheritance

Pizza-making robots are a kind of robot, and so posses the usual robot-y
properties. In OOP terms, we say they inherit properties from the general
category of all robots. These common properties need be implemented only
once for the general case and reused by all types of robots we may build in the
future.

Composition

Pizza-making robots are really collections of components that work together as
a team. For instance, for our robot to be successful, it might need arms to roll
dough, motors to maneuver to the oven, and so on. In OOP parlance, our robot
is an example of composition; it contains other objects it activates to do its
bidding. Each component might be coded as a class, which defines its own
behavior and relationships.

Of course, most of us aren't getting paid to build pizza-making robots yet, but general
OOP ideas like inheritance and composition apply to any application that can be
decomposed into a set of objects. For example, in typical GUI systems, interfaces are
written as collections of widgets (buttons, labels, and so on), which are all drawn
when their container is (composition). Moreover, we may be able to write our own
custom widgets, which are specialized versions of more general interface devices
(inheritance).

From a more concrete programming perspective, classes are a Python program unit,
just like functions and modules. They are another compartment for packaging logic
and data. In fact, classes also define a new namespace much like modules. But
compared to other program units we've already seen, classes have three critical
distinctions that make them more useful when it comes to building new objects:

Multiple instances

Classes are roughly templates for generating one or more objects. Every time
we call a class, we generate a new object, with a distinct namespace. As we'll
see, each object generated from a class has access to the class's attributes and
gets a namespace of its own for data that varies per object.

Customization via inheritance


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Classes also support the OOP notion of inheritance; they are extended by
overriding their attributes outside the class itself. More generally, classes can
build up namespace hierarchies, which define names to be used by objects
created from classes in the hierarchy.

Operator overloading

By providing special protocol methods, classes can define objects that respond
to the sorts of operations we saw work on built-in types. For instance, objects
made with classes can be sliced, concatenated, indexed, and so on. As we'll
see, Python provides hooks classes can use to intercept any built-in type
operation.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.2 Class Basics

If you've never been exposed to OOP in the past, classes can be somewhat
complicated if taken in a single dose. To make classes easier to absorb, let's start off
by taking a quick first look at classes in action here, to illustrate the three distinctions
described previously. We'll expand on the details in a moment; but in their basic form,
Python classes are easy to understand.

6.2.1 Classes Generate Multiple Instance Objects

As we mentioned at the end of Chapter 5, classes are mostly just a namespace,
much like modules. But unlike modules, classes also have support for multiple
copies, namespace inheritance, and operator overloading. Let's look at the first of
these extensions here.

To understand how the multiple copies idea works, you have to first understand that
there are two kinds of objects in Python's OOP model—class objects and instance
objects. Class objects provide default behavior and serve as generators for instance
objects. Instance objects are the real objects your programs process; each is a
namespace in its own right, but inherits (i.e., has access to) names in the class it was
created from. Class objects come from statements and instances from calls; each
time you call a class, you get a new instance. Now, pay attention, because we're
about to summarize the bare essentials of Python OOP.

6.2.1.1 Class objects provide default behavior

The class statement creates a class object and assigns it a name

Like de f, the Python ¢ 12ss statement is an executable statement; when run, it
generates a new class object and assigns it the name in the c12ss header.

Assignments inside class statements make class attributes

Like modules, assignments in a ¢ 12 ss statement generate attributes in a class
object; class attributes are accessed by name qualification (cbject . name).

Class afttributes export object state and behavior

Attributes of a class object record state information and behavior, to be shared
by all instances created from the class; function de r statements inside a c1ass
generate methods, which process instances.

6.2.1.2 Instance objects are generated from classes

Calling a class object like a function makes a new instance object
Each time a class is called, it generates and returns a new instance object.

Each instance object inherits class attributes and gets its own namespace


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Instance objects generated from classes are new namespaces; they start out
empty, but inherit attributes that live in the class object they were generated
from.

Assignments to self in methods make per-instance attributes

Inside class method functions, the first argument (called s=1 t by convention)
references the instance object being processed; assignments to attributes of
sel f create or change data in the instance, not the class.

6.2.1.3 An example

Apart from a few details, that's all there is to OOP in Python. Let's turn to a real
example to show how these ideas work in practice. First, let's define a class called
FirstClass, using the Python c12ss statement:

>>> class FirstClass: # define a class object
def setdata(self, wvalue): # define class methods
self.data = value # self is the instance
def display(self):
print self.data # self.data: per instance

Like all compound statements, c1 2= s starts with a header line that lists the class
name, followed by a body of one or more nested and indented statements. Here, the
nested statements are de 1 s; they define functions that implement the behavior the
class means to export. As we've seen, de 1 is an assignment; here, it assigns to
names in the ¢ 1 2ss statement's scope and so generates attributes of the class.
Functions inside a class are usually called method functions; they're normal de 7 s,
but the first argument automatically receives an implied instance object when called.
We need a couple of instances to see how:

>>> X
>>> y

= FirstClass|() # make two instances

= FirstClass|() # each is a new namespace
By calling the class as we do, we generate instance objects, which are just
namespaces that get the class's attributes for free. Properly speaking, at this point we
have three objects—two instances and a class; but really, we have three linked
namespaces, as sketched in Figure 6.1. In OOP terms, we say that x is a
FirstClass, asis y. The instances start empty, but have links back to the class; if
we qualify an instance with the name of an attribute in the class object, Python
fetches the name from the class (unless it also lives in the instance):

>>> x.setdata ("King Arthur") # call methods: self is x o
>>> y.setdata (3.14159) # runs: FirstClass.setdata(

Neither =< nor v has a setdata of its own; instead, Python follows the link from
instance to class if an attribute doesn't exist in an instance. And that's about all there
is to inheritance in Python: it happens at attribute qualification time, and just involves
looking up names in linked objects (by following the i s-a links in Figure 6.1).

Inthe setdata functionin rirstClass, the value passed in is assigned to


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

self.data; within a method, s<1 ¢ automatically refers to the instance being
processed (= or v), so the assignments store values in the instances' namespaces,
not the class (that's how the d=t= names in Figure 6.1 get created). Since classes
generate multiple instances, methods must go through the s=1 ¢ argument to get to
the instance to be processed. When we call the class's disp1ay method to print
self.data, we see that it's different in each instance; on the other hand, displavy
is the same in < and v, since it comes (is inherited) from the class:

>>> x.display() # self.data differs in each
King Arthur

>>> y.display()

3.14159

Notice that we stored different object types in the d= 2 member (a string and a float).
Like everything else in Python, there are no declarations for instance attributes
(sometimes called members); they spring into existence the first time they are
assigned a value, just like simple variables. In fact, we can change instance attributes
either in the class itself by assigning to == 1 £ in methods, or outside the class by
assigning to an explicit instance object:

>>> x.data = "New value" # can get/set attributes
>>> x.display() # outside the class too
New value

Figure 6.1. Classes and instances are linked namespace objects

6.2.2 Classes Are Specialized by | nheritance

Unlike modules, classes also allow us to make changes by introducing new
components (subclasses ), instead of changing existing components in place. We've
already seen that instance objects generated from a class inherit its attributes. Python
also allows classes to inherit from other classes, and this opens the door to what are
usually called frameworks —hierarchies of classes that specialize behavior by
overriding attributes lower in the hierarchy. The key ideas behind this machinery are:

S uperclasses are listed in parentheses in a class header

To inherit attributes from another class, just list the class in parentheses in a
class statement's header. The class that inherits is called a subclass, and the
class that is inherited from is its superclass.

Classes inherit attributes from their superclasses


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Just like instances, a class gets all the names defined in its superclasses for
free; they're found by Python automatically when qualified, if they don't exist in
the subclass.

Instances inherit attributes from all accessible classes

Instances get names from the class they are generated from, as well as all of
the class's superclasses; when looking for a name, Python checks the instance,
then its class, then all superclasses above.

Logic changes are made by subclassing, not by changing superclasses

By redefining superclass names in subclasses, subclasses override inherited
behavior.

6.2.2.1 An example

Our next example builds on the one before. Let's define a new class, secondClass,
which inherits all of i rstC1ass's names and provides one of its own:

>>> class SecondClass (FirstClass) : # inherits setdata
def display(self): # changes display
print 'Current value = "%s"' % self.data

SecondClass redefines the display method to print with a different format. But
because secondClass defines an attribute of the same name, it replaces the
display attribute in Fi rstCclass. Inheritance works by searching up from
instances, to subclasses, to superclasses, and stops at the first appearance of an
attribute name it finds. Since it finds the display namein secondclass before the
oneinrFirstClass,wesaythat secondClass overrides FirstClass'sdisplay.
In other words, secondClass specializes i rstClass, by changing the behavior of
the display method. On the other hand, secondc1ass (and instances created from
it) still inherits the setdatz method in 7irstClass verbatim. Figure 6.2 sketches
the namespaces involved; let's make an instance to demonstrate:

>>> z = SecondClass ()

>>> z.setdata (42) # setdata found in FirstClass

>>> z.display () # finds overridden method in SecondC
Current value = "42"

As before, we make a secondClass instance object by calling it. The setdata call
still runs the version in i rstClass, but this time the disp1ay attribute comes from
SecondClass and prints a different message. Now here's a very important thing to
notice about OOP: the specialization introduced in scecondclass is completely
externalto rirstClass; it doesn't effect existing or future 71 rstC1ass objects, like
= from the prior example:

>>> x.display () # x is still a FirstClass instance (
New value


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Naturally, this is an artificial example, but as a rule, because changes can be made in
external components (subclasses), classes often support extension and reuse better
than functions or modules do.

Figure 6.2. Specialization by overriding inherited names

6.2.3 Classes Can Intercept Python Operators

Finally, let's take a quick look at the third major property of classes: operator
overloading in action. In simple terms, operator overloading lets objects we implement
with classes respond to operations we've already seen work on built-in types:
addition, slicing, printing, qualification, and so on. Although we could implement all
our objects' behavior as method functions, operator overloading lets our objects be
more tightly integrated with Python's object model. Moreover, because operator
overloading makes our own objects act like built-ins, it tends to foster object
interfaces that are more consistent and easy to learn. The main ideas are:

Methods with names such as X ___ are special hooks

Python operator overloading is implemented by providing specially named
methods to intercept operations.

Such methods are called automatically when Python evaluates operators

For instance, if an object inheritsan _ _ add __ method, it is called when the
object appears in a + expression.

Classes may override most built-in type operations

There are dozens of special operator method names for catching nearly every
built-in type operation.

Operators allow classes to integrate with Python's object model

By overloading type operations, user-defined objects implemented with classes
act just like built-ins.

6.2.3.1 An example


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

On to another example. This time, we define a subclass of SccondC1ass, which
implements three special attributes: __ init _ _ is called when a new instance
object is being constructed (sc1 ¢ isthe new Thirdclass object),and __ add
and __ mul __ arecalledwhena ThirdClass instance appearsin + and *
expressions, respectively:

>>> class ThirdClass (SecondClass) : # is-a SecondC

def init (self, value): # on "ThirdCla
self.data = value

def add (self, other): # on "self + o

return ThirdClass (self.data + other)
def mul (self, other):

self.data = self.data * other # on "self * o
>>> a = ThirdClass ("abc") # new init  called
>>> a.display () # inherited method
Current value = "abc"
>>> b = a + 'xyz' # new add called: makes a new
>>> b.display()
Current value = "abcxyz"
>>> a * 3 # new mul  called: changes inst
>>> a.display()
Current value = "abcabcabc"

ThirdClassisa SecondClass, soits instances inherit display from
SecondClass. But ThirdC1lass generation calls pass an argument now ("zbc™);
it's passed to the value argumentinthe  init _ constructor and assigned to
self.data there. Further, ThirdClass objects can show upin + and *
expressions; Python passes the instance object on the left to the s=1 £ argument and

the value on the rightto other, as illustrated in Figure 6.3.

Figure 6.3. Operators map to special methods

Special methods suchas __ init _ and _ 2dd __ are inherited by subclasses
and instances, just like any other name assigned in a class statement. Notice that the
___add __ method makes a new object (by calling Thirdc1zss with the result
value), but __ mul __ changes the current instance object in place (by reassigning
a se 1 f attribute). The » operator makes a new object when applied to built-in types
such as numbers and lists, but you can interpret it any way you like in class objects.!


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1] But you probably shouldn't (one reviewer went so far as to call this example "evill"). Common practice dictates that
overloaded operators should work the same way built-in operator implementations do. In this case, that means our
__mul__method should return a new object as its result, rather than changing the instance (s=1¢) in place; a mu1
method may be better style than a * overload here (e.g., 2.mul (3) instead of = * 3). On the other hand, one
person's common practice may be another person's arbitrary constraint.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.3 Using the Class Statement

Did all of the above make sense? If not, don't worry; now that we've had a quick tour,
we're going to dig a bit deeper and study the concepts we've introduced in more
detail. We met the c 12 ss statement in our first examples, but let's formalize some of
the ideas we introduced. As in C++, the ¢ 1 ass statement is Python's main OOP tool.
Unlike in C++, c1ass isn't really a declaration; like de t, c1ass is an object builder,
and an implicit assignment—when run, it generates a class object, and stores a
reference to it in the name used in the header.

6.3.1 General Form

As we saw on our quick tour, ¢ 12ss is a compound statement with a body of
indented statements under it. In the header, superclasses are listed in parentheses
after the class name, separated by commas. Listing more than one superclass leads
to multiple inheritance (which we'll say more about later in this chapter):

class <name> (superclass,...): # assign to name
data = wvalue # shared class data
def method(self,...): # methods
self.member = value # per-instance data

Within the class statement, specially-named methods overload operators; for
instance, a functioncalled _~ init s called at instance object construction time,
if defined.

6.3.2 Example

At the start of this chapter, we mentioned that classes are mostly just namespaces—
a tool for defining names (called attributes) that export data and logic to clients. So
how do you get from the statement to a namespace?

Here's how. Just as with modules, the statements nested in a ¢ 1 2= s statement body
create its attributes. When Python executes a ¢ 1ass statement (not a call to a class),
it runs all the statements in its body from top to bottom. Assignments that happen
during this process create names in the class's local scope, which become attributes
in the associated class object. Because of this, classes resemble both modules and
functions:

e Like functions, ¢ 1 2 s s statements are a local scope where names created by
nested assignments live.

e Like modules, names assigned in a ¢ 1 2 s s statement become attributes in a
class object.

The main distinction for classes is that their namespaces are also the basis of
inheritance in Python; attributes are fetched from other classes if not found in a class
or instance object. Because ¢ 1a=s is a compound statement, any sort of statement
can be nested inside its body—for instance, print, =, i £, and de . As we've seen,


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

nested de s make class methods, but other assignments make attributes too. For
example, suppose we run the following class:

class Subclass (aSuperclass): # define subclass
data = 'spam' # assign class attr
def init (self, wvalue): # assign class attr
self.data = value # assign instance att
def display(self):
print self.data, Subclass.data # instance, class

This class contains two de s, which bind class attributes to method functions. It also
contains a - assignment statement; since the name data is assigned inside the
class, itlives in the class's local scope and becomes an attribute of the class object.
Like all class attributes, d=t = is inherited and shared by all instances of the class:(2

[2] If you've used C++, you may recognize this as similar to the notion of C++'s stz i c class data—members that are
stored in the class, independent of instances. In Python, it's nothing special: all class attributes are just names
assigned in the c12== statement, whether they happen to reference functions (C++'s methods) or something else
(C++'s members).

>>> x = Subclass (1) # make two instance objects

>>> y = Subclass(2) # each has its own "data"

>>> x.display(); y.display() # "self.data" differs, "Subclass
1 spam

2 spam

When we run this code, the name data lives in two places—in instance objects
(createdinthe __ init __ constructor) and in the class they inherit names from
(created by the = assignment). The class's disp1ay method prints both versions, by
first qualifying the self instance, and then the class itself. Since classes are objects
with attributes, we can get to their names by qualifying, even if there's no instance
involved.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.4 Using Class Methods

Since you already know about functions, you already know class methods. Methods
are just function objects created by de © statements nested in a ¢ 1 2= statement's
body. From an abstract perspective, methods provide behavior for instance objects to
inherit. From a programming perspective, methods work in exactly the same way as
simple functions, with one crucial exception: their first argument always receives the
instance object that is the implied subject of a method call. In other words, Python
automatically maps instance method calls to class method functions like so:

instance.method(args...)
=> becomes =>

class.method (instance, args...)

where the class is determined by Python's inheritance search procedure. The special
first argument in a class method is usually called =<1 £ by convention; it's similar to
C++'s this pointer, but Python methods must always explicitly qualify <1 £ to fetch
or change attributes of the instance being processed by the current method call.

6.4.1 Example

Let's turn to an example; suppose we define the following class:

class NextClass: # define class
def printer(self, text): # define method
print text

The name printer references a function object; because it's assigned inthe c1z2ss
statement's scope, it becomes a class attribute and is inherited by every instance
made from the class. The printer function may be called in one of two ways—
through an instance, or through the class itself:

>>> x = NextClass|() # make instance
>>> x.printer ('Hello world!') # call its method
Hello world!

When called by qualifying an instance like this, printer's se1f argumentis
automatically assigned the instance object (x), and text gets the string passed at
the call ("tiel11o world!").Inside printer, self can access or set per-instance
data, since it refers to the instance currently being processed. We can also call
printer by going through the class, provided we pass an instance to the se 1 ¢
argument explicitly:

>>> NextClass.printer (x, 'Hello world!') # class method
Hello world!


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Calls routed through the instance and class have the exact same effect, provided we
pass the same instance object in the class form. In a moment, we'll see that calls
through a class are the basis of extending (instead of replacing) inherited behavior.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.5 Inheritance Searches Namespace Trees

The whole point of a namespace tool like the c12ss statement is to support name
inheritance. In Python, inheritance happens when an object is qualified, and involves
searching an attribute definition tree (one or more namespaces). Every time you use
an expression of the form object . a2t t r where object is an instance or class object,
Python searches the namespace tree at and above object, for the first 2= ¢ r it can
find. Because lower definitions in the tree override higher ones, inheritance forms the
basis of specialization.

6.5.1 Attribute Tree Construction

Figure 6.4 sketches the way namespace trees are constructed. In general:

e Instance attributes are generated by assignments to s 1 © attributes in
methods.

 Class attributes are created by statements (assignments) in ¢ 1 2 s s statements.

e Superclass links are made by listing classes in parenthesesina cl1ass
statement header.

The net result is a tree of attribute namespaces, which grows from an instance, to the
class it was generated from, to all the superclasses listed in the class headers.
Python searches upward in this tree from instances to superclasses, each time you
use qualification to fetch an attribute name from an instance object.t3!

[3] This description isn't 100% complete, because instance and class attributes can also be created by assigning to

objects outside ¢ 1=zs= statements. But that's less common and sometimes more error prone (changes aren't isolated
to c1ass statements). In Python all attributes are always accessible by default; we talk about privacy later in this
chapter.

Figure 6.4. Namespaces tree construction and inheritance


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

6.5.2 Specializing Inherited Methods

The tree-searching model of inheritance we just described turns out to be a great way
to specialize systems. Because inheritance finds names in subclasses before it
checks superclasses, subclasses can replace default behavior by redefining the
superclass's attributes. In fact, you can build entire systems as hierarchies of classes,
which are extended by adding new external subclasses rather than changing existing
logic in place.

The idea of overloading inherited names leads to a variety of specialization
techniques. For instance, subclasses may replace inherited names completely,
provide names a superclass expects to find, and extend superclass methods by
calling back to the superclass from an overridden method. We've already seen
replacement in action; here's an example that shows how extension works:

>>> class Super:
def method(self):
print 'in Super.method'

>>> class Sub (Super) :

def method(self): # override metho
print 'starting Sub.method' # add actions he
Super .method (self) # run default ac

print 'ending Sub.method'

Direct superclass method calls are the crux of the matter here. The sub class
replaces super's method function with its own specialized version. But within the
replacement, sub calls back to the version exported by super to carry out the default
behavior. In other words, sub.method just extends super.method's behavior,
rather than replace it completely:

>>> x = Super () # make a Super instance
>>> x.method () # runs Super.method
in Super.method

>>> x = Sub() # make a Sub instance

>>> x.method () # runs Sub.method, which calls Super.
starting Sub.method

in Super.method

ending Sub.method

Extension is commonly used with constructors; since the specially named __ init
___ method is an inherited name, only one is found and run when an instance is

created. To run superclass constructors, subclass __ init __ methods should call
superclass __ init __ methods, by qualifying classes (e.g., Class. _ init
(self, ...)).

Extension is only one way to interface with a superclass; the following shows
subclasses that illustrate these common schemes:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e Super defines amethod function and a delcgate that expects an actionin
a subclass.

e Inheritor doesn't provide any new names, so it gets everything defined in
Super.

e Replacer overrides Super's method with a version of its own.

e xtender customizes super's method by overriding and calling back to run
the default.

e Provider implements the 2t ion method expected by super's delegate
method.

class Super:
def method(self) :

print 'in Super.method'’ # default
def delegate(self):
self.action () # expected

class Inheritor (Super) :
pass

class Replacer (Super) :
def method(self) :
print 'in Replacer.method’

class Extender (Super) :
def method(self) :
print 'starting Extender.method’
Super.method (self)
print 'ending Extender.method’

class Provider (Super) :
def action(self) :
print 'in Provider.action'

if name == ' main ':
for klass in (Inheritor, Replacer, Extender):
print '\n' + klass. name + '...'

klass () .method ()
print '\nProvider...
Provider () .delegate ()

A few things are worth pointing out here: the self-test code at the end of this example
creates instances of three different classes; because classes are objects, you can put
them in a tuple and create instances generically (more on this idea later). Classes
also have the special __ name _ _ attribute as modules; it's just preset to a string
containing the name in the class header. When you call the de1egate method
though a Provider instance, Python finds the =ct i on method in Provider by the
usual tree search: inside the super delegate method, se 1 references a
Provider instance.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

% python specialize.py

Inheritor...
in Super.method

Replacer...
in Replacer.method

Extender...

starting Extender.method
in Super.method

ending Extender.method

Provider. ..
in Provider.action

| l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m
6.6 Operator Overloading in Classes

We introduced operator overloading at the start of this chapter; let's fill in a few blanks
here and look at a handful of commonly used overloading methods. Here's a review
of the key ideas behind overloading:

» Operator overloading lets classes intercept normal Python operations.

» Classes can overload all Python expression operators.

¢ Classes can also overload object operations: printing, calls, qualification, etc.
¢ Overloading makes class instances act more like built-in types.

» Overloading is implemented by providing specially named class methods.

Here's a simple example of overloading at work. When we provide specially named
methods in a class, Python automatically calls them when instances of the class
appear in the associated operation. For instance, the numbe r class below provides a
method to intercept instance construction ( _ init ), as well as one for
catching subtraction expressions ( __ sub __ ). Special methods are the hook that
lets you tie into built-in operations:

class Number:
def init (self, start): # on Number (start)
self.data = start

def sub

_(self, other):
return Number (self.data - other) # result 1is a new in

>>> from number import Number

# on instance - othe

# fetch class from m

>>> X = Number (5) # calls Number. ini
>> ¥ =X - 2 # calls Number. sub
>>> Y.data

3

6.6.1 Common Operator Overloading Methods

Just about everything you can do to built-in objects such as integers and lists has a
corresponding specially named method for overloading in classes. Table 6.1 lists a
handful of the most common; there are many more than we have time to cover in this
book. See other Python books or the Python Library Reference Manual for an
exhaustive list of special method names available. All overload methods have names
that start and end with two underscores, to keep them distinct from other names you
define in your classes.

Table 6.1. A Sampling of Operator Overloading Methods

Method Overloads Called for
| init_ Constructor Object creation: c1ass ()
| del__ Destructor Object reclamation
| _add__ Operator '+ X + Y



http://www.colorpilot.com/chm2pdf.html

This document is created with a trial
http://www.colorpilot.com

version of CHM2PDF Pilot

_or_ Operator ' | ' (bitwise or) X | Y

_repr___ Printing, conversions printx, ~x°

_call Function calls X ()

| getattr__ Qualification X.undefined

| _getitem__ Indexing ¥ [key], for loops, in tests
| setitem__ Index assignment X[key] = value
_getslice__ Slicing X[low:high]

| len___ Length len (X), truth tests
| cmp___ Comparison X ==Y, X <Y
_radd__ Right-side operator ' +' Noninstance + x

6.6.2 Examples

Let's illustrate a few of the methods in Table 6.1 by example.

6.6.2.1 __getitem___intercepts all index references

The _ getitem __ method intercepts instance indexing operations: When an
instance x appears in an indexing expression like x [ i |, Python calls a getitem

method inherited by the instance (if any), passmg X to the first argument and the
index in brackets to the second argument. For instance, the following class returns
the square of index values:

>>> class indexer:
def getitem (self,
return index ** 2

index) :

>>> X = indexer ()
>>> for i in range(5):

print XJ[i], # X[1i] calls  getitem (X, 1)
O 1 4 9 16

Now, here's a special trick that isn't always obvious to beginners, but turns out to be
incredibly useful: when we introduced the o r statement back in Chapter 3, we
mentioned that it works by repeatedly indexing a sequence from zero to higher
indexes, until an out-of-bounds exception is detected. Because of that,  getitem
___also turns out to be the way to overload iteration and membership tests in Python.
It's a case of "buy one, get two free": any built-in or user-defined object that responds
to indexing also responds to iteration and membership automatically:

>>> class stepper:
def getitem (self, i):
return self.data[i]

>>> X = stepper()

>>> X.data = "Spam"

>>>

>>> for item in X:
print item,

# X is a stepper object

# for loops call  getitem
# for indexes items 0..N


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

S p anm
>>>

>>> 'p' in X # 'in' operator calls  getitem
1

6.6.2.2 __ getattr__ catches undefined attribute references

The __getattr__ method intercepts attribute qualifications. More specifically, it's
called with the attribute name as a string, whenever you try to qualify an instance on
an undefined (nonexistent) attribute name. It's not called if Python can find the
attribute using its inheritance tree-search procedure. Because of this behavior, _
_getattr__ is useful as a hook for responding to attribute requests in a generic
fashion. For example:

>>> class empty:
def getattr (self, attrname):
if attrname == "age":
return 36
else:
raise AttributeError, attrname

>>> X = empty ()
>>> X.age
36
>>> X .name
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "<stdin>", line 6, in  getattr
AttributeError: name

Here, the empt v class and its instance  have no real attributes of their own, so the
accessto x.age getsroutedtothe _ getattr _ method; se1 1 is assigned the
instance (), and ot t rname is assigned the undefined attribute name string ("z2ge ™).
Our class makes =g« look like a real attribute by returning a real value as the result
of the x . age qualification expression (36).

For other attributes the class doesn't know how to handle, it raises the built-in
AttributeError exception, to tell Python that this is a bona fide undefined name;
asking for x . name triggers the error. We'llsee  getattr __ again when we
show delegation at work, and we will say more about exceptions in Chapter 7.

6.6.2.3 _ _repr__ returns a string representation

Here's an example that exercisesthe __ init __ constructorandthe __ add __
+ overload methods we've already seen, but also definesa __ repr _ that returns
a string representation of instances. Backquotes are used to convert the managed
self.data objectto astring. Ifdefined,  repr _ is called automatically when
class objects are printed or converted to strings.

>>> class adder:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

def init (self, value=0):

self.data = value # initialize data
def add (self, other):
self.data = self.data + other # add other in-plac
def repr (self):
return “self.data’ # convert to string
>>> X = adder (1) # init
>>> X + 2; X + 2 # add
>>> X # repr

5

That's as many overloading examples as we have space for here. Most work similarly
to ones we've already seen, and all are just hooks for intercepting built-in type
operations we've already studied; but some overload methods have unique argument
lists or return values. We'll see a few others in action later in the text, but for a
complete coverage, we'll defer to other documentation sources.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.7 Namespace Rules: The Whole Story

Now that we've seen class and instance objects, the Python namespace story is
complete; for reference, let's quickly summarize all the rules used to resolve names.
The first things you need to remember are that qualified and unqualified names are
treated differently, and that some scopes serve to initialize object namespaces:

¢ Unqualified names () deal with scopes.
¢ Qualified names (object . ) use object namespaces.

» Scopes initialize object namespaces (in modules and classes).
6.7.1 Unqualified Names: Global Unless Assigned

Unqualified names follow the LGB rules we outlined for functions in Chapter 4.
Assignment: X = value

Makes names local: creates or changes name < in the current local scope,
unless declared g1 obal

Reference: X

Looks for name x in the current local scope, then the current global scope, then
the built-in scope

6.7.2 Qualified Names: Object Namespaces

Q ualified names refer to attributes of specific objects and obey the rules we met
when discussing modules. For instance and class objects, the reference rules are
augmented to include the inheritance search procedure:

Assignment: object.X = value

Creates or alters the attribute name < in the namespace of the object being
qualified

Reference: object.X

Searches for the attribute name x in the object, then in all accessible classes
above it (but not for modules)

6.7.3 N amespace Dictionaries

Finally, in Chapter 5, we saw that module namespaces were actually implemented
as dictionaries and exposed with the built-in __ dict _ _ attribute. The same holds
for class and instance objects: qualification is really a dictionary indexing internally,
and attribute inheritance is just a matter of searching linked dictionaries.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The following example traces the way namespace dictionaries grow when classes are
involved. The main thing to notice is this: whenever an attribute of s 1 r is assigned
in one of the two classes, it creates (or changes) an attribute in the instance's
namespace dictionary, not the class's. Instance object namespaces record data that
can vary from instance to instance; they also have links to class namespaces that are
followed by inheritance lookups. For example, x . he 110 is ultimately found in the
super class's namespace dictionary.

>>> class super:
def hello(self):
self.datal = "spam"

>>> class sub (super) :
def howdy (self) :
self.data2 = "eggs"

>>> X = sub() # make a new namespace (dictionary)
>>> X. dict
{}

>>> X.hello() # changes instance namespace
>>> X. dict

{'datal': 'spam'}

>>> X.howdy () # changes instance namespace
>>> X. dict_

{'data2': 'eggs', 'datal': 'spam'}

>>> super. dict
{'hello': <function hello at 88dSb0>, ' doc ': None}

>>> sub. dict

{' doc ': None, 'howdy': <function howdy at 88ea20>}
>>> X.data3 = "toast"

>>> X. dict

{'data3': 'toast', 'data2': 'eggs', 'datal': 'spam'}

Note that the ¢ i - function we met in Chapter 1 and Chapter 2 works on class and
instance objects too. In fact, it works on anything with attributes. dir (cbject)
returns the samelistasaobject.  dict  .keys () call


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

| I@ve RuBoard m m
6.8 Designing with Classes

So far, we've concentrated on the OOP tool in Python—the class. But OOP is also
about design issues—how to use classes to model useful objects. In this section,
we're going to touch on a few OOP core ideas and look at some examples that are
more realistic than the ones we've seen so far. Most of the design terms we throw out
here require more explanation than we can provide; if this section sparks your
curiosity, we suggest exploring a text on OOP design or design patterns as a next
step.

6.8.1 Python and OOP

Python's implementation of OOP can be summarized by three ideas:
Inheritance

Is based on attribute lookup in Python (in . name expressions).
Polymorphism

In X .method, the meaning of me t hod depends on the type (class) of x.
Encapsulation

Methods and operators implement behavior; data hiding is a convention by
default.

By now, you should have a good feel for what inheritance is all about in Python.
Python's flavor of polymorphism flows from its lack of type declarations. Because
attributes are always resolved at runtime, objects that implement the same interfaces
are interchangeable; clients don't need to know what sort of object is implementing a
method they call.;4! Encapsulation means packaging in Python, not privacy; privacy is
an option, as we'll see later in this chapter.

[4] Some OOP languages also define polymorphism to mean overloading functions based on the type signatures of
their arguments. Since there is no type declaration in Python the concept doesn't really apply but type -base
selections can be always be coded using i  tests and « ype (%) built-in functions (e.g., ype s type (0) :

6.8.2 OOP and Inheritance: "is-a"

We've talked about the mechanics of inheritance in depth already, but we'd like to
show you an example of how it can be used to model real-world relationships. From a
programmer's point of view, inheritance is kicked off by attribute qualifications and
searches for a name in an instance, its class, and then its superclasses. From a
designer's point of view, inheritance is a way to specify set membership. A class
defines a set of properties that may be inherited by more specific sets (i.e.,
subclasses).


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To illustrate, let's put that pizza-making robot we talked about at the start of the
chapter to work. Suppose we've decided to explore alternative career paths and open
a pizza restaurant. One of the first things we'll need to do is hire employees to service
customers, make the pizza, and so on. Being engineers at heart, we've also decided
to build a robot to make the pizzas; but being politically and cybernetically correct,
we've also decided to make our robot a full-fledged employee, with a salary.

Our pizza shop team can be defined by the following classes in the example file
employees.py. It defines four classes and some self-test code. The most general
class, rmployee, provides common behavior such as bumping up salaries
(giveraise)andprinting( __ repr __ ). There are two kinds of employees, and
so two subclasses of Employee--Chef and Server. Both override the inherited
wor k method to print more specific messages. Finally, our pizza robot is modeled by
an even more specific class: Pizzarobot is a kind of che £, which is a kind of
Employee. In OOP terms, we call these relationships "is-a" links: a robot is a chef,
which is a(n) employee.

class Employee:

def init (self, name, salary=0):

self.name = name

self.salary = salary
def giveRaise(self, percent):

self.salary = self.salary + (self.salary * percent)
def work(self):

print self.name, "does stuff"

def  repr (self) :

return "<Employee: name=%s, salary=%s>"

o
o

(self.name, se

class Chef (Employee) :
def init (self, name):
Employee. 1init (self, name, 50000)
def work(self) :

print self.name, "makes food"

class Server (Employee) :
def init (self, name):
Employee. 1init (self, name, 40000)
def work(self):

print self.name, "interfaces with customer”

class PizzaRobot (Chef) :

def init (self, name):
Chef. 1init (self, name)
def work(self):
print self.name, "makes pizza"
if name == " main ":
bob = PizzaRobot ('bob') # make a robot named bob
print bob # runs inherited  repr
bob.giveRaise (0.20) # give bob a 20% raise

print bob; print


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

for klass in Employee, Chef, Server, PizzaRobot:
obj = klass(klass. name )
obj.work ()

When we run this module's self-test code, we create a pizza-making robot named
bob, which inherits names from three classes: PizzakRobot, Chef,and Employee.
For instance, printing bob runs the Employee. _ repr _ method, and giving
bob araise invokes Employee.giveRaise, because that's where inheritance finds
it.

C:\python\examples> python employees.py
<Employee: name=bob, salary=50000>
<Employee: name=bob, salary=60000.0>

Fmployee does stuff

Chef makes food

Server interfaces with customer
PizzaRobot makes pizza

In a class hierarchy like this, you can usually make instances of any of the classes,
not just the ones at the bottom. For instance, the o+ loop in this module's self-test
code creates instances of all four classes; each responds differently when asked to
work, because the work method is different in each. Really, these classes just
simulate real world objects; wo r k prints a message for the time being, but could be
expanded to really work later.

6.8.3 OOP and Composition: "has-a"

We introduced the notion of composition at the start of this chapter. From a
programmer's point of view, composition involves embedding other objects in a
container object and activating them to implement container methods. To a designer,
composition is another way to represent relationships in a problem domain. But rather
than set membership, composition has to do with components—parts of a whole.
Composition also reflects the relationships between parts; it's usually called a "has-a"
relationship, when OOP people speak of such things.

Now that we've implemented our employees, let's throw them in the pizza shop and
let them get busy. Our pizza shop is a composite object; it has an oven, and
employees like servers and chefs. When a customer enters and places an order, the
components of the shop spring into action—the server takes an order, the chef makes
the pizza, and so on. The following example simulates all the objects and
relationships in this scenario:

from employees import PizzaRobot, Server

class Customer:
def init (self, name):
self.name = name
def order (self, server):
print self.name, "orders from", server
def pay(self, server):
print self.name, "pays for item to", server


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

class Oven:
def bake(self):
print "oven bakes"

class PizzaShop:
def init (self):

self.server = Server ('Pat') # embed other object
self.chef = PizzaRobot ('Bob') # a robot named bob
self.oven = Oven ()

def order(self, name):
customer = Customer (name) # activate other obj
customer.order (self.server) # customer orders fr
self.chef.work()
self.oven.bake ()
customer.pay(self.server)

if name == " main ":
scene = PizzaShop () # make the composite
scene.order ('Homer"') # simulate Homer's o
print '...'
scene.order ('Shaggy') # simulate Shaggy's

The rizzasShop class is a container and controller; its constructor makes and
embeds instances of the employee classes we wrote in the last section, as well as an
oven class defined here. When this module's self-test code calls the rizzashop
order method, the embedded objects are asked to carry out their actions in turn.
Notice that we make a new customer object for each order, and pass on the
embedded server objectto Customer methods; customers come and go, but the
server is part of the pizza shop composite. Also notice that employees are still
involved in an inheritance relationship; composition and inheritance are
complementary tools:

C:\python\examples> python pizzashop.py

Homer orders from <Employee: name=Pat, salary=40000>

Bob makes pizza

oven bakes

Homer pays for item to <Employee: name=Pat, salary=40000>

Shaggy orders from <Employee: name=Pat, salary=40000>

Bob makes pizza

oven bakes

Shaggy pays for item to <Employee: name=Pat, salary=40000>

When we run this module, our pizza shop handles two orders—one from Homer, and
then one from Shaggy. Again, this is mostly just a toy simulation; a real pizza shop
would have more parts, and there's no real pizza to be had here. But the objects and
interactions are representative of composites at work. As a rule of thumb, classes can
represent just about any objects and relationships you can express in a sentence; just
replace nouns with classes and verbs with methods, and you have a first cut at a
design.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Why You Will Care: Classes and Persistence

Besides allowing us to simulate real-world interactions, the pizza shop classes
could also be used as the basis of a persistent restaurant database. As we'll
see in Chapter 10, instances of classes can be stored away on disk in a single
step using Python's pickie or shelve modules. The object pickling interface
is remarkably easy to use:

import pickle

object = someClass ()

file = open(filename, 'w') # create external file
pickle.dump (object, file) # save object in file
file = open(filename, 'r')

object = pickle.load(file) # fetch it back later

Shelves are similar, but they automatically pickle objects to an access-by-key
database:

import shelve

object = someClass/()

dbase = shelve.open('filename')

dbase['key'] = object # save under key
object = dbase['key'] # fetch it back later

(Pickling converts objects to serialized byte streams, which may be stored in
files, sent across a network, and so on.) In our example, using classes to model
employees means we can get a simple database of employees and shops for
free: pickling such instance objects to a file makes them persistent across
Python program executions. See Chapter 10 for more details on pickling.

6.8.4 OOP and Delegation

Object-oriented programmers often talk about something called delegation too, which
usually implies controller objects that embed other objects, to which they pass off
operation requests. The controllers can take care of administrative activities such as
keeping track of accesses and so on. In Python, delegation is often implemented with
the  getattr __ method hook; because it intercepts accesses to nonexistent
attributes, a wrapper class canuse __ getattr __ toroute arbitrary accesses to a
wrapped object. For instance:

class wrapper:
def init (self, object):

self.wrapped = object # save obje
def  getattr (self, attrname):

print 'Trace:', attrname # trace fet

return getattr(self.wrapped, attrname) # delegate

You can use this module's wrapper class to control any object with attributes—Ilists,
dictionaries, and even classes and instances. Here, the class simply prints a trace
message on each attribute access:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

>>> from trace import wrapper

>>> x = wrapper([1,2,3]) # wrap a list

>>> x.append (4) # delegate to list method
Trace: append

>>> x.wrapped # print my member

[1, 2, 3, 4]

>>> x = wrapper({"a": 1, "b": 2}) # wrap a dictionary

>>> x.keys () # delegate to dictionary m
Trace: keys

[('a', '"b']

6.8.5 Extending Built-in Object Types

Classes are also commonly used to extend the functionality of Python's built-in types,
to support more exotic data structures. For instance, to add queue insert and delete
methods to lists, you can code classes that wrap (embed) a list object, and export
insert and delete methods that process the list.

Remember those set functions we wrote in Chapter 4? Here's what they look like
brought back to life as a Python class. The following example implements a new set
object type, by moving some of the set functions we saw earlier in the book to
methods, and adding some basic operator overloading. For the most part, this class
just wraps a Python list with extra set operations, but because it's a class, it also
supports multiple instances and customization by inheritance in subclasses.

class Set:

def init (self, value = []): # constructor
self.data = [] # manages a list
self.concat (value)

def intersect(self, other): # other is any sequence
res = [] # self is the subject
for x in self.data:

if x in other: # pick common items
res.append (x)

return Set (res) # return a new Set

def union(self, other): # other is any sequence
res = self.datal:] # copy of my list

for x in other: # add items in other
if not x in res:
res.append (x)
return Set (res)

=

def concat(self, wvalue): value: 1list, Set...
for x in value: # removes duplicates
if not x in self.data:
self.data.append (x)

def len (self): return len(self.data) # on

def getitem (self, key): return self.datalkey] # on


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

def and (self, other): return self.intersect (other) # on
def or (self, other): return self.union (other) # on
def  repr (self): return 'Set:' 4+ “self.data’ # on

By overloading indexing, our set class can often masquerade as a real list. Since
we're going to ask you to interact with and extend this class in an exercise at the end
of this chapter, we won't say much more about this code until Appendix C.

6.8.6 Multiple Inheritance

When we discussed details of the ¢ 1ass statement, we mentioned that more than
one superclass can be listed in parentheses in the header line. When you do this, you
use something called multiple inheritance, the class and its instances inherit names
from all listed superclasses. When searching for an attribute, Python searches
superclasses in the class header from left to right until a match is found. Technically,
the search proceeds depth-first, and then left to right, since any of the superclasses
may have superclasses of its own.

In theory, multiple inheritance is good for modeling objects which belong to more than
one set. For instance, a person may be an engineer, a writer, a musician, and so on,
and inherit properties from all such sets. In practice, though, multiple inheritance is an
advanced tool and can become complicated if used too much; we'll revisit this as a
gotcha at the end of the chapter. But like everything else in programming, it's a useful
tool when applied well.

One of the most common ways multiple inheritance is used is to "mix in" general-
purpose methods from superclasses. Such superclasses are usually called mixin
classes; they provide methods you add to application classes by inheritance. For
instance, Python's default way to print a class instance object isn't incredibly useful:

>>> class Spam:
def init (self): # no  repr
self.datal = "food"

>>> X = Spam()
>>> print X # default format: clas
<Spam instance at 87f1b0>

As seen in the previous section on operator overloading, you can providea __ repr
__ method to implement a custom string representation of your own. But rather than
codea__ repr __ ineach and every class you wish to print, why not code it once
in a general-purpose tool class, and inherit it in all classes?

That's what mixins are for. The following code defines a mixin class called 1.ister
that overloadsthe _ _ repr _ method for each class that includes 1.ister inits
header line. It simply scans the instance's attribute dictionary (remember, it's exported
in___ dict __ )tobuild up a string showing the names and values of all instance
attributes. Since classes are objects, 1.1 st r's formatting logic can be used for
instances of any subclass; it's a generic tool.

Lister uses two special tricks to extract the instance's classname and address.
Instances have a built-in __ c1z2ss _  attribute that references the class the


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

instance was created from, and classes havea __ name __ thatis the name in the
header,so sc1f. _ class __ . _ name __ fetchesthe name of an
instance's class. You get the instance's memory address by calling the built-in i d
function, which returns any object's address:

Lister can be mixed-in to any class, to
provide a formatted print of instances
via inheritance of  repr  coded here;
self is the instance of the lowest class;

S o o

class Lister:
def  repr (self):

return ("<Instance of %s, address %$s:\n%s>" %
(self. class . name , # my cla
id(self), # my add
self.attrnames ()) ) # name=v
def attrnames (self) :
result = "'
for attr in self. dict .keys(): # scan instance na
if attrf[:2] == "' ':
result = result + "\tname %s=<built-in>\n" % attr
else:
result = result + "\tname %$s=%s\n" % (attr, self.

return result

Now, the 1.1 st er class is useful for any class you write—even classes that already
have a superclass. This is where multiple inheritance comes in handy: by adding
Lister to the list of superclasses in a class header, you getits _ repr _ for
free, while still inheriting from the existing superclass:

from mytools import Lister # get tool class

class Super:

def  init (self): # superclass _ init
self.datal = "spam"
class Sub(Super, Lister): # mix-in a  repr
def init (self): # Lister has access to sel
Super. 1init (self)
self.dataz2 = "eggs" # more instance attrs
self.data3 = 42
if name == " main ":
X = Sub ()
print X # mixed-in repr

Here, sub inherits names from both super and 1Lister; it's a composite of its own
names and names in both its superclasses. When you make a sub instance and print
it, you get the custom representation mixed in from .ister:

C:\python\examples> python testmixin.py


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<Instance of Sub, address 7833392:
name data3=42
name dataZ2=eggs
name datal=spam

>

Lister works in any class it's mixed into, because =<1 refers to an instance of the
subclass that pulls 1.1 st e+ in, whatever that may be. If you later decide to extend
Lister's __ repr __ toalso print class attributes an instance inherits, you're safe;
because it's an inherited method, changing .ister's _ repr _ updates each
subclass that mixes it in.is! In some sense, mixin classes are the class equivalent of
modules. Here is 1.1 st e+ working in single-inheritance mode, on a different class's
instances; like we said, OOP is about code reuse:

[5] For the curious reader, classes also have a built-in attribute called __bzse=__, which is a tuple of the class's
superclass objects. A general-purpose class hierarchy lister or browser can traverse from an instance's _ c1ass__ to
its class, and then from the class's _ bases__ to all superclasses recursively. We'll revisit this idea in an exercise, but
see other books or Python's manuals for more details on special object attributes.

>>> from mytools import Lister
>>> class x(Lister):

pass
>>> t = x()
>> t.a=1; t.b=2; t.c =3
>>> t
<Instance of x, address 7797696:
name b=2
name a=1
name c=3
>

6.8.7 Classes Are Objects: Generic Object Factories

Because classes are objects, it's easy to pass them around a program, store them in
data structures, and so on. You can also pass classes to functions that generate
arbitrary kinds of objects; such functions are sometimes called factories in OOP
design circles. They are a major undertaking in a strongly typed language such as
C++, but almost trivial in Python: the 2=pp 1y function we met in Chapter 4 can call
any class with any argument in one step, to generate any sort of instance:t!

) Actually, 2pp1v can call any callable object; that includes functions, classes, and methods. The factory function
here can run any callable, not just a class (despite the argument name).

def factory(aClass, *args): # varargs tuple
return apply(aClass, args) # call aClass

class Spam:
def doit(self, message):

print message

class Person:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

def init (self, name, job):
self.name = name
self.job = job
objectl = factory(Spam) # make a Spam
object2 = factory(Person, "Guido", "guru") # make a Person

In this code, we define an object generator function, called factory. It expects to be
passed a class object (any class will do), along with one or more arguments for the
class's constructor. The function uses zpp 1 v to call the function and return an
instance. The rest of the example simply defines two classes and generates
instances of both by passing them to the factory function. And that's the only
factory function you ever need write in Python; it works for any class and any
constructor arguments. The only possible improvement worth noting: to support
keyword arguments in constructor calls, the factory can collect them witha **args
argument and pass them as a third argumentto app 1 y:

def factory(aClass, *args, **kwargs): # +kwargs dict
return apply(aClass, args, kwargs) # call aClass

By now, you should know that everything is an "object" in Python; even things like
classes, which are just compiler input in languages like C++. However, only objects
derived from classes are OOP objects in Python; you can't do inheritance with
nonclass-based objects such as lists and numbers, unless you wrap them in classes.

6.8.8 Methods Are Objects: Bound or Unbound

Speaking of objects, it turns out that methods are a kind of object too, much like
functions. Because class methods can be accessed from either an instance or a
class, they actually come in two flavors in Python:

Unbound class methods: no self

Accessing a class's function attribute by qualifying a class returns an unbound
method object. To call it, you must provide an instance object explicitly as its
first argument.

Bound instance methods: self + function pairs

Accessing a class's function attribute by qualifying an instance returns a bound
method object. Python automatically packages the instance with the function in
the bound method object, so we don't need to pass an instance to call the
method.

Both kinds of methods are full-fledged objects; they can be passed around, stored in
lists, and so on. Both also require an instance in their first argument when run (i.e., a
value for se 1 1), but Python provides one for you automatically when calling a bound
method through an instance. For example, suppose we define the following class:

class Spam:
def doit (self, message):
print message


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now, we can make an instance, and fetch a bound method without actually calling it.
An object .name qualification is an object expression; here, it returns a bound
method object that packages the instance (object 1) with the method function
(spam.doit). We can assign the bound method to another name and call it as
though it were a simple function:

objectl = Spam{()
x = objectl.doit # bound method object
x('hello world") # instance is implied

On the other hand, if we qualify the class to get to do i, we get back an unbound
method object, which is simply a reference to the function object. To call this type of
method, pass in an instance in the leftmost argument:

t = Spam.doit # unbound method object
t (objectl, 'howdy') # pass in instance

Most of the time, you call methods immediately after fetching them with qualification
(e.g.,self.attr (args)), soyou don't always notice the method object along the
way. But if you start writing code that calls objects generically, you need to be careful
to treat unbound methods specially; they require an explicit object.

| 1@ve RuBoard [ raavisvs]fivmxt ¥


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.9 Odds and Ends

6.9.1 Private Attributes (New in 1.5)

In the last chapter, we noted that every name assigned at the top level of a file is
exported by a module. By default, the same holds for classes; data hiding is a
convention, and clients may fetch or change any class or instance attribute they like.
In fact, attributes are all pub1ic and virtual in C++ terms; they're all accessible
everywhere and all looked up dynamically at runtime.

At least until Python 1.5. In 1.5, Guido introduced the notion of name mangling to
localize some names in classes. Private names are an advanced feature, entirely
optional, and probably won't be very useful until you start writing large class
hierarchies. But here's an overview for the curious.

In Python 1.5, names inside a ¢ 1 = s s statement that start with two underscores (and
don't end with two underscores) are automatically changed to include the name of the
enclosing class. For instance, a name like __ xinaclass c1ass is changed to
~Class __ x automatically. Because the modified name includes the name of the
enclosing class, it's somewhat unusual; it won't clash with similar names in other
classes in a hierarchy.

Python mangles names wherever they appear in the class. For example, an instance
attribute called sc1 7. _ xistransformedto se1f. Class _ _ ¥, thereby
mangling an attribute name for instance objects too. Since more than one class may
add attributes to an instance, name mangling helps avoid clashes automatically.

Name mangling happens only in ¢ 1 2 s s statements and only for names you write with
two leading underscores. Because of that, it can make code somewhat unreadable. It
also isn't quite the same as pr i vate declarations in C++ (if you know the name of
the enclosing class, you can still get to mangled attributes!), but it can avoid
accidental name clashes when an attribute name is used by more than one class of a
hierarchy.

6.9.2 Documentation Strings

Now that we know about classes, we can tell what those ~ doc _  attributes we've
seen are all about. So far we've been using comments that start with a # to describe
our code. Comments are useful for humans reading our programs, but they aren't
available when the program runs. Python also lets us associate strings of
documentation with program-unit objects and provides a special syntax for it. If a
module file, de f statement, or ¢ 12 ss statement begins with a string constant instead
of a statement, Python stuffs the string intothe _ doc __ attribute of the generated
object. For instance, the following program defines documentation strings for multiple
objects:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

"

"I am: docstr. doc
class spam:
"I am: spam. doc or docstr.spam. doc

def method(self, arqg):
"I am: spam.method. doc  or self.method. doc
pass

def func(args):
"I am: docstr.func. doc
pass

The main advantage of documentation strings is that they stick around at runtime; if
it's been coded as a documentation string, you can qualify an object to fetch its
documentation.

>>> import docstr
>>> docstr. doc

'I am: docstr. doc '

>>> docstr.spam. doc

'I am: spam. doc_  or docstr.spam. doc '

>>> docstr.spam.method. doc

'T am: spam.method. doc  or self.method. doc '
>>> docstr.func. doc

'IT am: docstr.func. doc '

This can be especially useful during development. For instance, you can look up
components' documentation at the interactive command line as done above, without
having to go to the source file to see # comments. Similarly, a Python object browser
can take advantage of documentation strings to display descriptions along with
objects.

On the other hand, documentation strings are not universally used by Python
programmers. To get the most benefit from them, programmers need to follow some
sort of conventions in their documentation styles, and it's our experience that these
sorts of conventions are rarely implemented or followed in practice. Further,
documentation strings are available at runtime, but they are also less flexible than #
comments (which can appear anywhere in a program). Both forms are useful tools,
and any program documentation is a good thing, as long as it's accurate.

6.9.3 C lasses Versus Modules

Finally, let's step back for a moment and compare the topics of the last two chapters
—modules and classes. Since they're both about namespaces, the distinction can
sometimes be confusing. In short:

Modules
 Are data/logic packages

¢ Are created by writing Python files or C extensions


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

¢ Are used by being imported
Classes

¢ Implement new objects

e Are created by class statements

¢ Are used by being called

e Always live in a module

Classes also support extra features modules don't, such as operator overloading,
multiple instances, and inheritance. Although both are namespaces, we hope you can
tell by now that they're very different animals.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.10 Class Gotchas

Most class issues can usually be boiled down to namespace issues (which makes
sense, given that classes are just namespaces with a few extra tricks up their
sleeves).

6.10.1 Changing Class Attributes Can Have Side Effects

Theoretically speaking, classes (and class instances) are all mutable objects. Just as
with built-in lists and dictionaries, they can be changed in place, by assigning to their
attributes. As with lists and dictionaries, this also means that changing a class or
instance object may impact multiple references to it.

That's usually what we want (and is how objects change their state in general), but
this becomes especially critical to know when changing class attributes. Because all
instances generated from a class share the class's namespace, any changes at the
class level are reflected in all instances, unless they have their own versions of
changed class attributes.

Since classes, modules, and instances are all just objects with attribute namespaces,
you can normally change their attributes at runtime by assignments. Consider the
following class; inside the class body, the assignment to name = generates an
attribute x . 2, which lives in the class object at runtime and will be inherited by all of
¥'s instances:

>>> class X:
a=1 # class attribute
>>> I = X()
>>> I.a # inherited by instance
1

>>> X.a
1

So far so good. But notice what happens when we change the class attribute
dynamically: it also changes it in every object which inherits from the class. Moreover,
new instances created from the class get the dynamically set value, regardless of
what the class's source code says:

>>> X.a = 2 # may change more than X

>>> I.a # I changes too

2

>>> J = X() # J inherits from X's runtime values

>>> J.a # (but assigning to J.a changes a in J, not
2

6.10.1.1 Solution


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Useful feature or dangerous trap? You be the judge, but you can actually get work
done by changing class attributes, without ever making a single instance. In fact, this
technique can simulate "records" or "structs" in other languages. For example,
consider the following unusual but legal Python program:

class X: pass # make a few attribute na
class Y: pass

X.a =1 # use class attributes as
X.b = 2 # no instances anywhere t
X.c = 3

Y.a = X.a + X.b + X.c

for X.i in range(Y.a): print X.i # prints 0..5

Here, classes x and v work like file-less modules—namespaces for storing variables
we don't want to clash. This is a perfectly legal Python programming trick, but is less
appropriate when applied to classes written by others; you can't always be sure that
class attributes you change aren't critical to the class's internal behavior. If you're out
to simulate a C struct, you may be better off changing instances than classes, since
only one object is affected:

>>> class Record: pass

>>> X = Record()
>>> X.name = 'bob'
>>> X.job = 'Pizza maker'

6.10.2 Multiple Inheritance: Order Matters

This may be obvious, but is worth underscoring: if you use multiple inheritance, the
order in which superclasses are listed in a ¢ 1 2= s statement header can be critical.
For instance, in the example we saw earlier, suppose that the super implemented a
__ repr __ method too; would we then want to inherit .ister'sor super's? We
would get it from whichever class is listed first in sub's class header, since
inheritance searches left to right. But now suppose super and 1.i ster have their
own versions of other names too; if we want one name from super and one from
Lister, we have to override inheritance by manually assigning to the attribute name
in the sub class:

def  repr (self):
def other(self):

def repr (self) :

def other(self):

class Sub(Super, Lister): # pick up Super's repr , by listin
other = Lister.other # but explicitly pick up Lister's ver
def init (self):


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

6.10.2.1 Solution

Multiple inheritance is an advanced tool; even if you understood the last paragraph,
it's still a good idea to use it sparingly and carefully. Otherwise, the meaning of a
name may depend on the order in which classes are mixed in an arbitrarily far
removed subclass.

6.10.3 Class Function Attributes Are Special

This one is simple if you understand Python's underlying object model, but it tends to
trip up new users with backgrounds in other OOP languages (especially Smalltalk). In
Python, class method functions can never be called without an instance. Earlier in the
chapter, we talked about unbound methods: when we fetch a method function by
qualifying a class (instead of an instance), we get an unbound method. Even though
they are defined with a d= t statement, unbound method objects are not simple
functions; they cannot be called without an instance.

For example, suppose we want to use class attributes to count how many instances
are generated from a class. Remember, class attributes are shared by all instances,
so we can store the counter in the class object itself:

class Spam:

numInstances = 0
def init (self):
Spam.numInstances = Spam.numlnstances + 1
def printNumInstances{() :
print "Number of instances created: ", Spam.numlInstances

This won't work: the printNumInstances method still expects an instance to be
passed in when called, because the function is associated with a class (even though
there are no arguments in the de ¢ header):

>>> from spam import *
>>> a = Spam()
>>> b = Spam()
>>> ¢ = Spam()
>>> Spam.printNumInstances ()
Traceback (innermost last):
File "<stdin>", line 1, in ?
TypeError: unbound method must be called with class instance 1st

6.10.3.1 Solution

Don't expect this: unbound methods aren't exactly the same as simple functions. This
is really a knowledge issue, but if you want to call functions that access class
members without an instance, just make them simple functions, not class methods.
This way, an instance isn't expected in the call:


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

def printNumInstances|() :
print "Number of instances created: ", Spam.numlInstances

class Spam:
numInstances = 0
def init (self):
Spam.numInstances = Spam.numInstances + 1

>>> import spam

>>> a = spam.Spam/()

>>> b spam. Spam ()

>>> ¢ = spam.Spam()

>>> spam.printNumInstances ()
Number of instances created: 3

We can also make this work by calling through an instance, as usual:

class Spam:

numInstances = 0
def init (self):
Spam.numInstances = Spam.numlnstances + 1
def printNumInstances (self):
print "Number of instances created: ", Spam.numlInstances

>>> from spam import Spam
>>> a, b, ¢ = Spam(), Spam(), Spam()
>>> a.printNumInstances()

Number of instances created: 3
>>> b.printNumInstances ()
Number of instances created: 3
>>> Spam() .printNumInstances ()
Number of instances created: 4

Some language theorists claim that this means Python doesn't have class methods,
only instance methods. We suspect they really mean Python classes don't work the
same as in some other language. Python really has bound and unbound method
objects, with well-defined semantics; qualifying a class gets you an unbound method,
which is a special kind of function. Python really does have class attributes, but
functions in classes expect an instance argument.

Moreover, since Python already provides modules as a namespace partitioning tool,
there's usually no need to package functions in classes unless they implement object
behavior. Simple functions in modules usually do most of what instance-less class
methods could. For example, in the first example in this section,
printNumIinstances is already associated with the class, because it lives in the
same module.

6.10.4 Methods, Classes, and Nested Scopes

Classes introduce a local scope just as functions do, so the same sorts of scope
gotchas can happen in a ¢ 1z ss statement body. Moreover, methods are further


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

nested functions, so the same issues apply. Confusion seems to be especially
common when classes are nested. For instance, in the following example, the
generate function is supposed to return an instance of the nested spam class.
Within its code, the class name spam is assigned in the generate function's local
scope. But within the class's me t hod function, the class name Spam is not visible;
method has access only to its own local scope, the module surrounding generate,
and built-in names:

def generate() :
class Spam:

count = 1
def method(self) : # name Spam not visible:
print Spam.count # not local (def), global (modu

return Spam/()
generate () .method ()

C:\python\examples> python nester.py
Traceback (innermost last):

File "nester.py", line 8, 1in ?
generate () .method ()
File "nester.py", line 5, in method
print Spam.count # not local (def), global (modu

NameError: Spam
6.10.4.1 Solution

The most general piece of advice we can pass along here is to remember the LGB
rule; it works in classes and method functions just as it does in simple functions. For
instance, inside a method function, code has unqualified access only to local names
(in the method de 1), global names (in the enclosing module), and built-ins. Notably
missing is the enclosing c 1z ss statement; to get to class attributes, methods need to
qualify se1 7, the instance. To call one method from another, the caller must route the
call through se 11 (e.g., self.method()).

There are a variety of ways to get the example above to work. One of the simplest is
to move the name spam out to the enclosing module's scope with global declarations;
since method sees hames in the enclosing module by the LGB rule, spam references
work:

def generate() :

global Spam # force Spam to module scope
class Spam:
count = 1
def method(self) :
print Spam.count # works: in global (enclosing mo

return Spam/()
generate () .method () # prints 1

Perhaps better, we can also restructure the example such that class spam is defined
at the top level of the module by virtue of its nesting level, rather than g1 oba 1


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

declarations. Both the nested method function and the top-level gencrate find spam
in their global scopes:

def generate() :
return Spam/()

class Spam: # define at module top-level
count =1
def method(self) :
print Spam.count # works: in global (enclosing mod
generate () .method ()

We can also get rid of the spam reference in me - hod altogether, by using the special
___ class __ attribute, which, as we've seen, returns an instance's class object:

def generate():
class Spam:

count = 1
def method(self) :
print self. class .count # works: qualify to

return Spam{()

generate () .method ()

Finally, we could use the mutable default argument trick we saw in Chapter 4 to
make this work, but it's so complicated we're almost embarrassed to show you; the
prior solutions usually make more sense:

def generate() :
class Spam:

count = 1
fillin = [None]
def method(self, klass=fillin): # save from enclosin
print klass[0].count # works: default plu
Spam.fillin[0] = Spam

return Spam/()
generate () .method ()

Notice that we can't say k1 ass=Spaminmethod's det header, because the name
Spam isn't visible in spam's body either; it's not local (in the class body), global (the
enclosing module), or built-in. Spam only exists in the generate function's local
scope, which neither the nested class nor its method can see. The LGB rule works
the same for both.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
6.11 Summary

This chapter has been about two special objects in Python—classes and instances—
and the language tools that create and process them. Class objects are created with
class statements, provide default behavior, and serve as generators for multiple
instance objects. Together, these two objects support full-blown object-oriented
development and code reuse. In short, classes allow us to implement new objects,
which export both data and behavior.

In terms of their main distinctions, classes support multiple copies, specialization by
inheritance, and operator overloading, and we explored each of these features in this
chapter. Since classes are all about namespaces, we also studied the ways they
extend module and function namespace notions. And finally, we explored a few
object-oriented design ideas such as composition and delegation, by seeing how to
implement them in Python.

The next chapter concludes our core language tour, with a quick look at exception
handling—a simple tool used to process events, rather than build program
components. As a summary and reference of what we learned in this chapter, here's
a synopsis of the terms we've used to talk about classes in Python:

Class
An object (and statement) that defines inherited attributes
Instance

Objects created from a class, which inherit its attributes, and get their own
namespace

Method

An attribute of a class object that's bound to a function object

self

By convention, the name given to the implied instance object in methods
Inheritance

When an instance or class accesses a class's attributes by qualification
Superclass

A class another class inherits attributes from
Subclass

A class that inherits attribute names from another class


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

6.12 Exercises

This laboratory session asks you to write a few classes and experiment with some
existing code. Of course, the problem with existing code is that it must be existing. To
work with the set class in Exercise 5, either pull down the class source code off the
Internet (see the Preface) or type it up by hand (it's fairly small). These programs are
starting to get more sophisticated, so be sure to check the solutions at the end of the
book for pointers. If you're pressed for time, we suspect that the last exercise dealing
with composition will probably be the most fun of the bunch (of course, we already
know the answers).

1.

The basics. Write a class called ~dde r that exports a method add (sel1t, x,
v) that prints a "Not Implemented" message. Then define two subclasses of
Adder that implement the = dd method:

o ListAdder, with an 2dd method that returns the concatenation of its two
list arguments

o DictAdder, with an add method that returns a new dictionary with the
items in both its two dictionary arguments (any definition of addition will
do)

Experiment by making instances of all three of your classes interactively and
calling their 2=dd methods. Finally, extend your classes to save an object in a
constructor (a list or a dictionary) and overload the + operator to replace the
=2dd method. Where is the best place to put the constructors and operator
overload methods (i.e., in which classes)? What sorts of objects can you add to
your class instances?

Operator overloading. Write a class called vy 1 i st that "wraps" a Python list: it
should overload most list operators and operations—+, indexing, iteration,
slicing, and list methods such as append and sor . See the Python reference
manual for a list of all possible methods to overload. Also provide a constructor
for your class that takes an existing list (ora vy 1 i st instance) and copies its
components into an instance member. Experiment with your class interactively.
Things to explore:

o Why is copying the initial value important here?

o Can you use an empty slice (e.g., start [ :]) to copy the initial value if it's
aMylist instance?

o Is there a general way to route list method calls to the wrapped list?

o Canyouaddawmylist and a regular list? How aboutalistand a vy 1ist
instance?

o What type of object should operations like + and slicing return; how about
indexing?


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

3.

6.

Subclassing. Now, make a subclass of My 1 i st from Exercise 2 called
Mylistsub, which extends My 1ist to print a message to stdout before each
overloaded operation is called and counts the number of calls. vy 1istsub
should inherit basic method behavior from 1y 11 st. For instance, adding a
sequence to a My 1 istSub should print a message, increment the counter for +
calls, and perform the superclass's method. Also introduce a new method that
displays the operation counters to st dout and experiment with your class
interactively. Do your counters count calls per instance, or per class (for all
instances of the class)? How would you program both of these? (Hint: it
depends on which object the count members are assigned to: class members
are shared by instances, =<1 ¢ members are per-instance data.)

Metaclass methods. Write a class called Vet a with methods that intercept every
attribute qualification (both fetches and assignments) and prints a message with
their arguments to s dout. Create a Met 2 instance and experiment with
qualifying it interactively. What happens when you try to use the instance in
expressions? Try adding, indexing, and slicing the instance of your class.

Set objects. Experiment with the set class described in this chapter (from
Section 6.8.5). Run commands to do the following sorts of operations:

a. Create two sets of integers, and compute their intersection and union by
using « and | operator expressions.

b. Create a set from a string, and experiment with indexing your set; which
methods in the class are called?

c. Try iterating through the items in your string set using a £ or loop; which
methods run this time?

d. Try computing the intersection and union of your string set and a simple
Python string; does it work?

e. Now, extend your set by subclassing to handle arbitrarily many operands
using a *args argument form (hint: see the function versions of these
algorithms in Chapter 4). Compute intersections and unions of multiple
operands with your set subclass. How can you intersect three or more
sets, given that « has only two sides?

f. How would you go about emulating other list operations in the set class?
(Hints: __ =2dd _ _ can catch concatenation,and __ getattr _ can
pass most list method calls off to the wrapped list.)

Class tree links. In a footnote in the section on multiple inheritance, we
mentioned that classes havea = bases _  attribute that returns a tuple of
the class's superclass objects (the ones in parentheses in the class header).
Use _ bases __ toextendthe 1.ister mixin class, so that it prints the
names of the immediate superclasses of the instance's class too. When you're
done, the first line of the string representation should look like this:

<Instance of Sub (Super, Lister), address 7841200:.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

How would you go about listing class attributes too?
7. Composition. Simulate a fast-food ordering scenario by defining four classes:
o Lunch: a container and controller class
o Customer: the actor that buys food
o Emplovyee: the actor that a customer orders from
o Food: what the customer buys

To get you started, here are the classes and methods you'll be defining:

class Lunch:
def init (self) make/embed Customer and Emp
def order(self, foodName) # start a Customer order simu

def result (self) # ask the Customer what kind

=

class Customer:

def init (self) # initialize m

def placeOrder (self, foodName, employee) # place order

def printFood(self) # print the na
class Employee:

def takeOrder (self, foodName) # return a Food, with r
class Food:

def init (self, name) # store food name

The order simulation works as follows:

o The Lunch class's constructor should make and embed an instance of
Customer and Employee, and export a method called o rder. When
called, this o rde r method should ask the customer to place an order, by
callingits placeorder method. The Customer's placeOrder method
should in turn ask the =mp1ovee object for a new rood object, by calling
the Employee's takeOrder method.

o Food objects should store a food name string (e.g., "burritos™),
passed down from L.unch.order to Customer.placeOrder, to
Employee.takeOrder, and finally to Food's constructor. The top-level
Lunch class should also export a method called re=sult, which asks the
customer to print the name of the food it received from the rmp1ovee (this
can be used to test your simulation).

o Note that 1.unch needs to either pass the Employee tothe Customer, or
pass itself to the cCustomer, in order to allow the customer to call
Employee methods.

8. Experiment with your classes interactively by importing the L.unch class, calling
its o rder method to run an interaction, and then calling its resu 1t method to


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

verify that the customer got what he or she ordered. In this simulation, the
Customer is the active agent; how would your classes change if cmployee
were the object that initiated customer/employee interaction instead?

| l@ve RuBoard m TrhET B


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Chapter 7. Exceptions

Our last chapter in this part of the book has to do with exceptions—events that can
modify the flow of control through a program. In Python, exceptions can be both
intercepted and triggered by our programs. They are processed by two new
statements we'll study in this chapter:

try

Catches exceptions raised by Python or a program
raise

Triggers an exception manually

With a few exceptions (pun intended), we'll find that exception handling is simple in
Python, because it's integrated into the language itself as another high-level tool.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
7.1 Why Use Exceptions?

In a nutshell, exceptions let us jump around arbitrarily large chunks of a program.
Remember that pizza-making robot we talked about in the last chapter? Suppose we
took the idea seriously and actually built such a machine (there are worse hobbies,
after all). To make a pizza, our culinary automaton would need to execute a plan,
which we implement as a Python program. It would take an order, prepare the dough,
add toppings, bake the pie, and so on.

Now, suppose that something goes very wrong during the "bake the pie" step.
Perhaps the oven is broken. Or perhaps our robot miscalculates its reach and
spontaneously bursts into flames. Clearly, we want to be able to jump to code that
handles such states quickly (especially if our robot is melting all over the kitchen
floor!). Since we have no hope of finishing the pizza task in such unusual cases, we
might as well abandon the entire plan.

That's exactly what exceptions let you do; you can jump to an exception handler in a
single step, past all suspended function calls. They're a sort of "super-goto."iJ An
exception handler (- r v statement) leaves a marker and executes some code.
Somewhere further ahead in the program, an exception is raised that makes Python
jump back to the marker immediately, without resuming any active functions that were
called since the marker was left. Code in the exception handler can respond to the
raised exception as appropriate (calling the fire department, for instance). Moreover,
because Python jumps to the handler statement immediately, there is usually no need
to check status codes after every call to a function that could possibly fail.

(1] In fact, if you've used C, you may be interested to know that Python exceptions are roughly equivalent to C's
timpllongjmp standard function pair. The « -y statement acts much like a se+jmp, and r=ise works like a
longijmp. Butin Python, exceptions are based on objects and are a standard part of the execution model.

In typical Python programs, exceptions may be used for a variety of things:
Error handling

Python raises exceptions when it detects errors in programs at runtime; you can
either catch and respond to the errors internally in your programs or ignore the
exception. If ignored, Python's default exception-handling behavior kicks in; it
kills the program and prints an error message showing where the error
occurred.

Event notification

Exceptions can also signal a valid condition, without having to pass result flags
around a program or test them explicitly. For instance, a search routine might
raise an exception on success, rather than return an integer 1.

Special-case handling

Sometimes a condition may happen so rarely that it's hard to justify convoluting
code to handle it. You can often eliminate special-case code by handling
unusual cases in exception handlers instead.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Unusual control-flows

And finally, because exceptions are a type of high-level goto, you can use them
as the basis for implementing exotic control flows. For instance, although
backtracking is not part of the language itself, it can be implemented in Python
with exceptions and a bit of support logic to unwind assignments.(2!

(2] Backtracking isn't part of the Python language, so we won't say more about it here. See a book on artificial
intelligence or the Prolog or icon programming languages if you're curious.

We'll see some of these typical uses in action later in this chapter. First, let's get
started with a closer look at Python's exception-processing tools.

I |l@ve RuBoard


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| I@ve RuBoard m m
7.2 Exception Basics

Python exceptions are a high-level control flow device. They may be raised either by
Python or by our programs; in both cases, they may be caught by ¢ ry statements.
Python ¢ ry statements come in two flavors—one that handles exceptions and one
that executes finalization code whether exceptions occur or not.

7.2.1 trylexcept/else

The t rv is another compound statement; its most complete form is sketched below. It
starts with a t - v header line followed by a block of indented statements, then one or
more optional except clauses that name exceptions to be caught, and an optional
else clause at the end:

try:
<statements> # run/call actions
except <name>:
<statements> # if 'name' raised during try block
except <name>, <data>:
<statements> # 1f '"name' raised; get extra data
else:
<statements> # 1f no exception was raised

Here's how t r v statements work. When a t r y statement is started, Python marks the
current program context, so it can come back if an exception occurs. The statements
nested under the t ry header are run first; what happens next depends on whether
exceptions are raised while the t r block's statements are running or not:

« If an exception occurs while the « ry block's statements are running, Python
jumps back to the t r and runs the statements under the first cxcept clause
that matches the raised exception. Control continues past the entire « r v
statement after the = xcept block runs (unless the =< cept block raises another
exception).

« If an exception happens in the t rv block and no except clause matches, the
exception is propagated up to a t r v that was entered earlier in the program, or
to the top level of the process (which makes Python kill the program and print a
default error message).

¢ If no exception occurs while the statements under the ¢ v header run, Python
runs the statements under the =1 s< line (if present), and control then resumes
past the entire « ry statement.

In other words, =xcept clauses catch exceptions that happen while the « v block is
running, and the < 1 se clause is run only if no exceptions happen while the t -~ block
runs. The except clauses are very focused exception handlers; they catch
exceptions that occur only within the statements in the associated t - block.
However, since the t r block's statements can call functions elsewhere in a
program, the source of an exception may be outside the « r .


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

7.2.2 tryffinally

The other flavor of the © r statement is a specialization and has to do with
finalization actions. Ifa finz11y clause is used in a t r v, its block of statements are
always run by Python "on the way out," whether an exception occurred while the ¢ rv
block was running or not:

¢ If no exception occurs, Python runs the t r v block, then the £ in=11y block, and
then continues execution past the entire © -y statement.

« If an exception does occur during the « v block's run, Python comes back and
runs the ©inal 1y block, but then propagates the exception to a higher « vy (or
the top level); control doesn't continue past the « - statement.

The try/finally form is useful when you want to be completely sure that an action
happens after some code runs, regardless of the exception behavior of the program;
we'll see an example in a moment. The finz11y clause can't be used in the same
try statementas except and 1 se, so they are best thought of as two different
statements:

try:
<statements>
finally:
<statements> # always run "on the way out"

7.2.3 raise

To trigger exceptions, you need to code r=ise statements. Their general form is
simple: the word r= i se followed by the name of the exception to be raised. You can
also pass an extra data item (an object) along with the exception, by listing it after the
exception name. If extra data is passed, it can be caughtin a t v by listing an
assignment target to receive it: except name, data:

raise <name> # manually trigger an exception
raise <name>, <data> # pass extra data to catcher too

So what's an exception name? It might be the name of a built-in exception from the
built-in scope (e.g., Indexkrror), or the name of an arbitrary string object you've
assigned in your program. It can also reference a class or class instance; this form
generalizes ra i se statements, but we'll postpone this topic till later in this chapter.
Exceptions are identified by objects, and at most one is active at any given time.
Once caught by an except clause, an exception dies (won't propagate to another
try), unless reraised by a r= i se or error.

7.2.4 First Examples

Exceptions are simpler than they seem. Since control flow through a program is
easier to capture in Python than in English, let's look at some simple examples that
illustrate exception basics.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

7.2.4.1 Default behavior: Error messages

As mentioned, exceptions not caught by « r v statements reach the top level of a
Python process and run Python's default exception-handling logic. By default, Python
terminates the running program and prints an error message describing the
exception, showing where the program was when the exception occurred. For
example, running the following module generates a divide-by-zero exception; since
the program ignores it, Python kills the program and prints:

cat bad.py
def gobad(x, v):
return x / y

def gosouth (x) :
print gobad(x, 0)

gosouth (1)

% python bad.py
Traceback (innermost last):
File "bad.py", line 7, in ?
gosouth (1)
File "bad.py", line 5, in gosouth
print gobad(x, 0)
File "bad.py", line 2, in gobad
return x / y
ZeroDivisionError: integer division or modulo

When an uncaught exception occurs, Python ends the program, and prints a stack
trace and the name and extra data of the exception that was raised. The stack trace
shows the filename, line number, and source code, for each function active when the
exception occurred, from oldest to newest. For example, you can see that the bad
divide happens at the lowest entry in the trace—line 2 of file bad.py,a return
statement.

Because Python reports almost all errors at runtime by raising exceptions, exceptions
are intimately bound up with the idea of error handling in general. For instance, if
you've worked through the examples, you've almost certainly seen an exception or
two along the way (even typos usually generate a syntaxtrror exception). By
default, you get a useful error display like the one above, which helps track down the
problem. For more heavy-duty debugging jobs, you can catch exceptions with try
statements.z!

[3]1 You can also use Python's standard debugger, odb, to isolate problems. Like C debuggers such as dbx and odb,
pdb lets you step through Python programs line by line, inspect variable values, set breakpoints, and so on. pdb is
shipped with Python as a standard module and is written in Python. See Python's library manual or other Python texts
for information on pdb usage.

7.2.4.2 Catching built-in exceptions

If you don't want your program terminated when an exception is raised by Python,
simply catch it by wrapping program logic in a t ry. For example, the following code


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

catches the Tndexrrror Python raises when the list is indexed out of bounds
(remember that list indexes are zero-based offsets; 3 is past the end):

def kaboom(list, n):

print list[n] # trigger IndexError
try:

kaboom ([0, 1, 21, 3)
except IndexError: # catch exception here

print 'Hello world!'’

When the exception occurs in function kzboom, control jumps to the « - statement's
except clause, which prints a message. Since an exception is "dead" after it's been
caught, the program continues past the whole « r v, rather than being terminated by
Python. In effect, you process and ignore the error.

7.2.4.3 Raising and catching user-defined exceptions

Python programs can raise exceptions of their own too, using the r= i s« statement.
In their simplest form, user-defined exceptions are usually string objects, like the one
MyError is assigned to in the following:

MyError = "my error

def stuff(file) :
raise MyError

file = open('data', 'r') # open an existing file
try:

stuff(file) # raises exception
finally:

file.close () # always close file

User-defined exceptions are caught with © r statements just like built-in exceptions.
Here, we've wrapped a call to a file-processing functionina try witha finally
clause, to make sure that the file is always closed, whether the function triggers an
exception or not. This particular function isn't all that useful (it just raises an
exception!), but wrapping callsin t v/ fina1 1y statements is a good way to ensure
that your closing-time activities always run.


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m Tt B
7.3 Exception Idioms

We've seen the mechanics behind exceptions; now, let's take look at some of the
ways they're typically used.

7.3.1 Exceptions Aren't Always a Bad Thing

Python raises exceptions on errors, but not all exceptions are errors. For instance, we
saw in Chapter 2, that file object r==d methods return empty strings at the end of a
file. Python also provides a built-in function called r2w input for reading from the
standard input stream; unlike file methods, raw input raises the built-in EOFError
at end of file, instead of returning an empty string (an empty string means an empty
line when raw input is used). Because of that, raw input often appears wrapped
in a - rv handler and nested in a loop, as in the following code

while 1:
try:
line = raw input () # read line from stdin
except EOFError:
break # exit loop at end of file
else:

Process next 'line' here
7.3.2 Searches Sometimes Signal Success by raise

User-defined exceptions can signal nonerror conditions also. For instance, a search
routine can be coded to raise an exception when a match is found, instead of
returning a status flag that must be interpreted by the caller. In the following, the
try/except/else exception handler does the work of an i /e1se return value
tester:

Found = "Item found"
def searcher () :

raise Found or return

try:
searcher ()

except Found: # exception if item was found
Success

else: # else returned: not found
Failure

7.3.3 Outer try Statements Can Debug Code


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can also make use of exception handlers to replace Python's default top-level
exception-handling behavior seen previously. By wrapping an entire program (or a
call to it) in an outer t r v, you can catch any exception that may occur while your
program runs, thereby subverting the default program termination. In the following,
the empty except clause catches any uncaught exception raised while the program
runs. To get hold of the actual exception that occurred, fetch the exc type and
exc value attributes from the built-in s vs module; they're automatically set to the
current exception's name and extra data:(4!

[4] By the way, the built-in t ~2ceback module allows the current exception to be processed in a generic fashion, and
as of Python 1.5.1, anew =vs.exc info () function returns a tuple containing the current exception's type, data, and
traceback. sys.exc type and sys.exc value still work, but manage a single, global exception; cxc info ()

keeps track of each thread's exception information and so is thread-specific. This distinction matters only when using
multiple threads in Python programs (a subject beyond this book's scope). See the Python library manual for more
details.

try:
Run program
except: # all uncaught exceptions come here

import sys
print 'uncaught!', sys.exc type, sys.exc value


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| l@ve RuBoard m
7.4 Exception Catching Modes

Now that we've taken a first 0ok, let's fill in a few details behind Python's exception
model.

7.4.1 try Statement Clauses

When you write © r v statements, a variety of clauses can appear after the ¢ r v
statement block; Table 7.1 summarizes all the possible forms. We've already seen
most of these in the previous examples—empty «xcept clauses catch any
exception, £ ina1 1y runs on the way out, and so on. There may be any number of
excepts, but finally mustappear by itself (withoutan c1se or except), and
there should be onlyone e 1scina try.

Table 7.1. try Statement Clause Forms

Clause Form Interpretation
except: Catch all (other) exception types
except name: Catch a specific exception only
except name, value: Catch exception and its extra data
except (namel, name2): Catch any of the listed exceptions
else: Run block if no exceptions raised
finally: Always perform block

7.4.2 Catching 1-of-N Exceptions

The fourth entry in Table 7.1 is new. except clauses can also provide a set of
exceptions to be caught, in parentheses; Python runs such a clause's statement block
if any of the listed exceptions occur. Since Python looks for a match within a given
try by inspecting except clauses from top to bottom, the parenthesized version is
like listing each exception in its own cxcept clause, except that the statement body
needs to be coded only once.

Here's an example of multiple = xcept clauses at work. In the following, when an
exception is raised while the call to the =t i on function is running, Python returns to
the = ry and searches for the first = xcept that catches the exception raised. It
inspects expect clauses from top to bottom and left to right, and runs the statements
under the first that matches. If none match, the exception is propagated past this t rv;
the =1 se runs only when no exception occurred. If you really want a catch-all clause,
an empty except does the trick:

try:
action ()

except NameError:

except IndexError


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

except KeyError:
except (AttributeError, TypeError, SyntaxError):

else:

7.4.3 Exceptions Nest at Runtime

So far, our examples have used only a single « -y to catch exceptions, but what
happens if one t ry is physically nested inside another? For that matter, what does it
mean if a © ry calls a function that runs another « r v? Both these cases can be
understood if you realize that Python stacks « r v statements at runtime. When an
exception is raised, Python returns to the most recently entered ¢ - statement with a
matching except clause. Since each t ry statement leaves a marker, Python can
jump back to earlier t r ys by inspecting the markers stack.

An example will help make this clear. The following module defines two functions;
action? is coded to trigger an exception (you can't add numbers and sequences),
and actionl wrapsacallto action2ina try handler, to catch the exception.
However, the top-level module code at the bottom wraps a callto actionl ina try
handler too. When action? triggers the TypeError exception, there will be two
active « ry statements—the one in 2t ion1, and the one at the top level of the
module. Python picks the most recent (youngest) with a matching e xcept, which in
this case is the t ry inside actionl. In general, the place where an exception winds
up jumping to depends on the control flow through a program at runtime:

def action2 () :
print 1 + [] # generate TypeError

def actionl () :
try:
action?2 ()
except TypeError: # most recent matching try
print 'inner try'

try:
actionl ()

except TypeError: # here only if actionl reraises
print 'outer try'

$ python nestexc.py
inner try

7.4.4 finally Clauses Run "On the Way Out"

We've already talked about the ina11y clause, but here's a more sophisticated
example. As we've seen, the ©inz 11y clause doesn't really catch specific
exceptions; rather, it taps into the exception propagation process. When used, a
finally block is always executed on the way out of a t -y statement, whether the


http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

exit is caused by an exception or normal completion of the statements in the -
block. This makes ina1 1y blocks a good place to code clean-up actions (like
closing files, as in the previous example).

The next code snippet shows inally in action with and without exceptions. It
defines two functions: div i de, which may or may not trigger a divide-by-zero error,
and tester,whichwrapsacalltodivideinatry/finally statement:

def divide(x, vy):
return x / vy # divide-by-zero error?

def tester(y):
try:
print divide (8, vV)
finally:
print 'on the way out...

print '\nTest 1:'; tester(2)
print '\nTest 2:'; tester (0) # trigger error

$ python finally.py

Test 1:
4
on the way out...

Test 2:
on the way out...
Traceback (innermost last):
File "finally.py", line 11, in ?
print 'Test 2:'; tester (0)
File "finally.py", line 6, in tester
print divide (8, vy)
File "finally.py", line 2, in divide
return x / y # divide-by-zero error?
ZeroDivisionError: integer division or modulo

Now, the module's top-level code at the bottom calls tester twice:

¢ The first call doesn't generate an exception (8/2 works fine), and the result (4) is
printed. 