
I l@ve RuBoard

Copyright
Table of Contents
Index
Full Description
About the Author
Reviews
Colophon
Examples
Reader reviews
Errata

Learning Python

Mark Lutz
David Ascher
Publisher: O'Reilly

First Edition April 1999
ISBN: 1-56592-464-9, 384 pages

Learning Python is an introduction to the increasingly popular Python programming language—an
interpreted, interactive, object-oriented, and portable scripting language. This book thoroughly introduces
the elements of Python: types, operators, statements, classes, functions, modules, and exceptions. It also
demonstrates how to perform common programming tasks and write real applications.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

Preface
 About This Book
 Font Conventions
 About the Programs in This Book
 How to Contact Us
 Acknowledgments

I: The Core Language

1. Getting Started
 1.1 Why Python?
 1.2 How to Run Python Programs
 1.3 A First Look at Module Files
 1.4 Python Configuration Details
 1.5 Summary
 1.6 Exercises

2. Types and Operators
 2.1 Python Program Structure
 2.2 Why Use Built-in Types?
 2.3 Numbers
 2.4 Strings
 2.5 Lists
 2.6 Dictionaries
 2.7 Tuples
 2.8 Files
 2.9 General Object Properties
 2.10 Built-in Type Gotchas
 2.11 Summary
 2.12 Exercises

3. Basic Statements
 3.1 Assignment
 3.2 Expressions
 3.3 Print
 3.4 if Tests
 3.5 while Loops
 3.6 for Loops
 3.7 Common Coding Gotchas
 3.8 Summary
 3.9 Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. Functions
 4.1 Why Use Functions?
 4.2 Function Basics
 4.3 Scope Rules in Functions
 4.4 Argument Passing
 4.5 Odds and Ends
 4.6 Function Gotchas
 4.7 Summary
 4.8 Exercises

5. Modules
 5.1 Why Use Modules?
 5.2 Module Basics
 5.3 Module Files Are Namespaces
 5.4 Import Model
 5.5 Reloading Modules
 5.6 Odds and Ends
 5.7 Module Gotchas
 5.8 Summary
 5.9 Exercises

6. Classes
 6.1 Why Use Classes?
 6.2 Class Basics
 6.3 Using the Class Statement
 6.4 Using Class Methods
 6.5 Inheritance Searches Namespace Trees
 6.6 Operator Overloading in Classes
 6.7 Namespace Rules: The Whole Story
 6.8 Designing with Classes
 6.9 Odds and Ends
 6.10 Class Gotchas
 6.11 Summary
 6.12 Exercises

7. Exceptions
 7.1 Why Use Exceptions?
 7.2 Exception Basics
 7.3 Exception Idioms
 7.4 Exception Catching Modes
 7.5 Odds and Ends
 7.6 Exception Gotchas
 7.7 Summary
 7.8 Exercises

II: The Outer Layers

8. Built-in Tools
 8.1 Aside: The sys Module
 8.2 Built-in Functions
 8.3 Library Modules
 8.4 Exercises

9. Common Tasks in Python
 9.1 Data Structure Manipulations
 9.2 Manipulating Files
 9.3 Manipulating Programs
 9.4 Internet-Related Activities
 9.5 Bigger Examples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 9.6 Exercises

10. Frameworks and Applications
 10.1 An Automated Complaint System
 10.2 Interfacing with COM: Cheap Public Relations
 10.3 A Tkinter-Based GUI Editor for Managing Form Data
 10.4 Design Considerations
 10.5 JPython: The Felicitous Union of Python and Java
 10.6 Other Frameworks and Applications
 10.7 Exercises

III: Appendixes

A. Python Resources
 A.1 The Python Language Web Site
 A.2 Python Software
 A.3 Python Documentation and Books
 A.4 Newsgroups, Discussion Groups, and Email Help
 A.5 Conferences
 A.6 Support Companies, Consultants, Training
 A.7 Tim Peters

B. Platform-Specific Topics
 B.1 Unix
 B.2 Windows-Specific Information
 B.3 Macintosh-Specific Information
 B.4 Java
 B.5 Other Platforms

C. Solutions to Exercises
 C.1 Chapter 1
 C.2 Chapter 2
 C.3 Chapter 3
 C.4 Chapter 4
 C.5 Chapter 5
 C.6 Chapter 6
 C.7 Chapter 7
 C.8 Chapter 8
 C.9 Chapter 9
 C.10 Chapter 10

Colophon

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol,
CA 95472.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial
caps. The use of the wood rat image in association with learning Python is
a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Preface

About This Book

Font Conventions

About the Programs in This Book

How to Contact Us

Acknowledgments

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

About This Book

This book provides a quick introduction to the Python programming language. Python
is a popular object-oriented language used for both standalone programs and
scripting applications in a variety of domains. It's free, portable, powerful, and
remarkably easy to use. Whether you're new to programming or a professional
developer, this book's goal is to bring you up to speed on the core Python language in
a hurry. Before we jump into details, we'd like to use this preface to say a few words
about the book's design.

This Book's Scope

Although this text covers the essentials of the Python language, we've kept its scope
narrow in the interest of speed and size. Put another way, the presentation is focused
on core concepts and is sometimes deliberately simplistic. Because of that, this book
is probably best described as both an introduction and a stepping stone to more
advanced and complete texts.

For example, we won't say anything about Python/C integration—a big, complicated
topic, with lots of big, complicated examples, which is nevertheless central to many
Python-based systems. We also won't talk much about the Python community,
Python's history, or some of the philosophies underlying Python development. And
popular Python applications such as GUIs, system tools, network scripting, and
numeric programming get only a short survey at the end (if they are mentioned at all).
Naturally, this misses some of the big picture.

By and large, Python is about raising the quality bar a few notches in the scripting
world. Some of its ideas require more context than can be provided here, and we'd be
remiss if we didn't recommend further study after you finish this text. We hope that
most readers of this book will eventually go on to gain a deeper and more complete
understanding, from texts such as O'Reilly's Programming Python. The rest of the
Python story requires studying examples that are more realistic than there is space
for here.[1]

[1] See http://www.ora.com and http://www.python.org for details on supplemental Python texts. Programming
Python was written by one of this book's authors. As its title implies, it discusses practical programming issues in
detail.

But despite its limited scope (and perhaps because of it), we think you'll find this to be
a great first book on Python. You'll learn everything you need to get started writing
useful standalone Python programs and scripts. By the time you've finished this book,
you will have learned not only the language itself, but also how to apply it to day-to-
day tasks. And you'll be equipped to tackle more advanced topics as they come your
way.

This Book's Style

Much of this book is based on training materials developed for a three-day hands-on
Python course. You'll find exercises at the end of most chapters, with solutions in
Appendix C. The exercises are designed to get you coding right away, and are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. The exercises are designed to get you coding right away, and are
usually one of the highlights of the course. We strongly recommend working through
the exercises along the way, not only to gain Python programming experience, but
also because some exercises raise issues not covered elsewhere in the text. The
solutions at the end should help if you get stuck (we encourage you to cheat as much
and as often as you like). Naturally, you'll need to install Python to run the exercises;
more on this in a moment.

Because this text is designed to introduce language basics quickly, we've organized
the presentation by major language features, not examples. We'll take a bottom-up
approach here: from built-in object types, to statements, to program units, and so on
(in fact, if you've seen Appendix E in Programming Python, parts of this book may stir
up feelings of déjà vu). Each chapter is fairly self-contained, but later chapters use
ideas introduced in earlier ones (e.g., by the time we get to classes, we'll assume you
know how to write functions), so a linear reading probably makes the most sense.
From a broader perspective, this book is divided into three sections:

Part I

This part of the book presents the Python language, in a bottom-up fashion. It's
organized with one chapter per major language feature—types, functions, and so
forth—and most of the examples are small and self-contained (some might also call
the examples in this section artificial, but they illustrate the points we're out to make).
This section represents the bulk of the text, which tells you something about the focus
of the book.

Chapter 1

We begin with a quick introduction to Python and then look at how to run Python
programs so you can get started coding examples and exercises immediately.

Chapter 2

Next, we explore Python's major built-in object types: numbers, lists,
dictionaries, and so on. You can get a lot done in Python with these tools alone.

Chapter 3

The next chapter moves on to introduce Python's statements—the code you
type to create and process objects in Python.

Chapter 4

This chapter begins our look at Python's higher-level program structure tools.
Functions turn out to be a simple way to package code for reuse.

Chapter 5

Python modules let you organize statements and functions into larger
components, and this chapter illustrates how to create, use, and reload modules
on the fly.

Chapter 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6

Here we explore Python's object-oriented programming (OOP) tool, the class.
As you'll see, OOP in Python is mostly about looking up names in linked
objects.

Chapter 7

We wrap up the section with a look at Python's exception handling model and
statements. This comes last, because exceptions can be classes if you want
them to be.

Part II

In this section, we sample Python's built-in tools, and put them to use in a more or
less random collection of small example programs.

Chapter 8Built-in Tools

This chapter presents a selection of the modules and functions that are included
in the default Python installation. By definition, they comprise the minimum set
of modules you can reasonably expect any Python user to have access to.
Knowing the contents of this standard toolset will likely save you weeks of work.

Chapter 9Common Tasks in Python

This chapter presents a few nontrivial programs. By building on the language
core explained in Part I and the built-in tools described in Chapter 8, we
present many small but useful programs that show how to put it all together. We
cover three areas that are of interest to most Python users: basic tasks, text
processing, and system interfaces.

Chapter 10Frameworks and Applications

This final chapter shows how real applications can be built, leveraging on more
specialized libraries that are either part of the standard Python distribution or
freely available from third parties. The programs in this chapter are the most
complex, but also the most satisfying to work through. We close with a brief
discussion of JPython, the Java port of Python, and a substantial JPython
program.

Part III

The book ends with three appendixes that list Python resources on the Net
(Appendix A), give platform-specific tips for using Python on Unix, Windows, and
Macintosh-based machines (Appendix B), and provide solutions to exercises that
appear at the end of chapters (Appendix C). Note: the index can be used to hunt for
details, but there are no reference appendixes in this book per se. The Python Pocket
Reference from O'Reilly (http://www.ora.com), as well as the free Python
reference manuals maintained at http://www.python.org, will fill in the details.

Prerequisites

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are none to speak of, really. This is an introductory-level book. It may not be an
ideal text for someone who has never touched a computer before (for instance, we're
not going to spend a lot of time explaining what a computer is), but we haven't made
many assumptions about your programming background or education. On the other
hand, we won't insult readers by assuming they are "dummies" either (whatever that
means); it's easy to do useful things in Python, and we hope to show you how. The
text occasionally contrasts Python with languages such as C, C++, and Pascal, but
you can safely ignore these comparisons if you haven't used such languages in the
past.

One thing we should probably mention up front: Python's creator, Guido van Rossum,
named it after the BBC comedy series Monty Python's Flying Circus. Because of this
legacy, many of the examples in this book use references to that show. For instance,
the traditional "foo" and "bar" become "spam" and "eggs" in the Python world. You
don't need to be familiar with the series to make sense of the examples (symbols are
symbols), but it can't hurt.

Book Updates

Improvements happen (and so do mis^H^H^H typos). Updates, supplements, and
corrections for this book will be maintained (or referenced) on the Web, at one of the
following sites:

http://www.oreilly.com (O'Reilly's site)

http://rmi.net/~lutz (Mark's site)

http://starship.skyport.net/~da (David's site)

http://www.python.org (Python's main site)

If we could be more clairvoyant, we would, but the Web tends to change faster than
books.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Font Conventions

This book uses the following typographical conventions:

Italic

For email addresses, filenames, URLs, for emphasizing new terms when first
introduced, and for some comments within code sections.

Constant width

To show the contents of files or the output from commands and to designate
modules, methods, statements, and commands.

Constant width bold
In code sections to show commands or text that would be typed.

Constant width italic

To mark replaceables in code sections.

This icon designates a note, which is an important aside to the
nearby text.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

About the Programs in This Book

This book, and all the program examples in it, are based on Python Version 1.5. But
since we'll stick to the core language here, you can be fairly sure that most of what we
have to say won't change very much in later releases of Python.[2] Most of this book
applies to earlier Python versions too, except when it doesn't; naturally, if you try
using extensions added after the release you've got, all bets are off. As a rule of
thumb, the latest Python is the best Python. Because this book focuses on the core
language, most of it also applies to JPython, the new Java-based Python
implementation.

[2] Well, probably. Judging from how Programming Python has stayed current over the last few years, the language
itself changes very little over time, and when it does, it's still usually backward compatible with earlier releases (Guido
adds things, but rarely changes things that are already there). Peripheral tools such as the Python/C API and the
Tkinter GUI interface seem to be more prone to change, but we'll mostly ignore them here. Still, you should always
check the release notes of later versions to see what's new.

Source code for the book's examples, as well as exercise solutions, can be fetched
from O'Reilly's web site http://www.oreilly.com/catalog/lpython/.

So how do you run the examples? We'll get into start-up details in a few pages, but
the first step is installing Python itself, unless it's already available on your machine.
You can always fetch the latest and greatest Python release from
http://www.python.org, Python's official web site. There, you'll find both prebuilt
Python executables (which you just unpack and run) and the full source-code
distribution (which you compile on your machine). You can also find Python on CD-
ROMs, such as those sold by Walnut Creek, supplied with Linux distributions, or
shipped with bigger Python books. Installation steps for both executable and source
forms are well documented, so we won't say much more about this beyond a cursory
overview in Chapter 1 (see Programming Python for install details).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in United States or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or
request a catalog, send email to nuts@oreilly.com.

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Acknowledgments

We'd like to express our gratitude to all the people who played a part in developing
this book, but this is too short a book to list them all. But we'd like to give a special
thanks to our editor, Frank Willison, and O'Reilly in general, for supporting another
Python book. Thanks also to everyone who took part in the early review of this book
—Eric Raymond, Guido van Rossum, Just van Rossum, Andrew Kuchling, Dennis
Allison, Greg Ward, and Jennifer Tanksley. And for creating such an enjoyable and
useful language, we owe an especially large debt to Guido, and the rest of the Python
community; like most freeware systems, Python is the product of many heroic efforts.

Mark Also Says:

Since writing Programming Python, I've had the opportunity to travel around the
country teaching Python to beginners. Besides racking up frequent flyer miles, these
courses helped me refine the core language material you'll see in the first part of this
book. I'd like to thank the early students of my course, at Badger, Lawrence
Livermore, and Fermi Labs, in particular. Your feedback played a big role in shaping
my contributions to this text. I also want to give a special thanks to Softronex, for the
chance to teach Python in Puerto Rico this summer (a better perk would be hard to
imagine).

Finally, a few personal notes of thanks. To coauthor David Ascher, for his hard work
and patience on this project. To the people I worked with at Lockheed Martin while
writing this book, including my teammate Linda Cordova, to whom I've lost a bet or
two. To the late Carl Sagan, for inspiration. To Lao Tzu, for deep thoughts. To the
Denver Broncos, for winning the big one. And most of all, to my wife Lisa, and my kids
—a set which now consists of Michael, Samantha, and Roxanne—for tolerating yet
another book project. I owe the latter bunch a trip to Wally World.

November 1998

Longmont, Colorado

David Also Says:

In addition to the thanks listed above, I'd like to extend special thanks to several
people.

First, thanks to Mark Lutz for inviting me to work with him on this book and for
supporting my efforts as a Python trainer. Belated thank yous go to the Python folks
who encouraged me in my early days with the language and its tools, especially
Guido, Tim Peters, Don Beaudry, and Andrew Mullhaupt.

Like Mark, I've developed a course in which I teach Python and JPython. The
students in these courses have helped me identify the parts of Python that are the
trickiest to learn (luckily, they are rare), as well as remind me of the aspects of the
language that make it so pleasant to use. I thank them for their feedback. I would also
like to thank those who have given me the chance to develop these courses: Jim

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

like to thank those who have given me the chance to develop these courses: Jim
Anderson (Brown University), Cliff Dutton (then at Distributed Data Systems),
Geoffrey Philbrick (Hibbitt, Karlsson & Sorensen, Inc.), Paul Dubois (Lawrence
Livermore National Labs), and Ken Swisz (KLA-Tencor).

Thanks to my scientific advisors, Jim Anderson, Leslie Welch, and Norberto
Grzywacz, who have all kindly supported my efforts with Python in general and this
book in particular, not necessarily understanding why I was doing it but trusting me
nonetheless.

The first victims of my Python evangelization efforts deserve gold stars for tolerating
my most enthusiastic (some might say fanatical) early days: Thanassi Protopapas,
Gary Strangman, and Steven Finney. Thanassi also gave his typically useful
feedback on an early draft of the book.

Finally, thanks to my family: my parents JacSue and Philippe for always encouraging
me to do what I want to do; my brother Ivan for reminding me of some of my early
encounters with programming; my wife Emily for her constant support and utter faith
that writing a book was something I could do. I thank our son Hugo for letting me use
the keyboard at least some of the time, and only learning how to turn the computer off
in the last phase of this project. He was three days old when I received the first email
from Mark about this book. He's eighteen months old now. It's been a great year and
a half.

To the reader of this book, I hope you enjoy the book and through it, the Python
language. Through Python, I've learned more than I ever thought I'd want to about
many aspects of computing that once seemed foreboding. My aim in helping write this
book was to allow others the same experience. If your aim in learning Python is to
work on a specific problem, I hope that Python becomes so transparent that it
becomes invisible, letting you focus your efforts on the issues you're dealing with. I
suspect, however, that at least a few readers will have the same reaction that I had
when discovering Python, which was to find in Python itself a world worth learning
more about. If that's the case for you, be aware that exploring Python is not
necessarily a short-term project. After countless hours, I'm still poking around, and
still having fun.

November 1998

San Francisco, California

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Part I: The Core Language
In this first section, we study the Python language itself. We call this part
"The Core Language," because our focus will be on the essentials of
Python programming: its built-in types, statements, and tools for
packaging program components. By the time you finish reading this
section and working through its exercises, you'll be ready to write scripts
of your own.

We also use the word "Core" in the title on purpose, because this section
isn't an exhaustive treatment of every minute detail of the language. While
we may finesse an obscurity or two along the way, the basics you'll see
here should help you make sense of the exceptions when they pop up.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 1. Getting Started
This chapter starts with a nontechnical introduction to Python and then takes a quick
look at ways to run Python programs. Its main goal is to get you set up to run Python
code on your own machine, so you can work along with the examples and exercises
in the later chapters. Along the way, we'll study the bare essentials of Python
configuration—just enough to get started. You don't have to work along with the book
on your own, but we strongly encourage it if possible. Even if you can't, this chapter
will be useful when you do start coding on your own.

We'll also take a quick first look at Python module files here. Most of the examples
you see early in the book are typed at Python's interactive interpreter command-line.
Code entered this way goes away as soon as you leave Python. If you want to save
your code in a file, you need to know a bit about Python modules, so module
fundamentals are introduced here. We'll save most module details for a later chapter.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.1 Why Python?

If you've bought this book, chances are you already know what Python is, and why it's
an important tool to learn. If not, you probably won't be sold on Python until you've
learned the language by reading the rest of this book. But before jumping into details,
we'd like to use a few pages to briefly introduce some of the main reasons behind
Python's popularity. (Even if you don't care for nontechnical overviews, your manager
might.)

1.1.1 An Executive Summary

Python is perhaps best described as an object-oriented scripting language: its design
mixes software engineering features of traditional languages with the usability of
scripting languages. But some of Python's best assets tell a more complete story.

1.1.1.1 It's object-oriented

Python is an object-oriented language, from the ground up. Its class model supports
advanced notions such as polymorphism, operator overloading, and multiple
inheritance; yet in the context of Python's dynamic typing, object-oriented
programming (OOP) is remarkably easy to apply. In fact, if you don't understand
these terms, you'll find they are much easier to learn with Python than with just about
any other OOP language available.

Besides serving as a powerful code structuring and reuse device, Python's OOP
nature makes it ideal as a scripting tool for object-oriented systems languages such
as C++ and Java. For example, with the appropriate glue code, Python programs can
subclass (specialize) classes implemented in C++ or Java. Of equal significance,
OOP is an option in Python; you can go far without having to become an object guru
all at once.

1.1.1.2 It's free

Python is freeware—something which has lately been come to be called open source
software. As with Tcl and Perl, you can get the entire system for free over the
Internet. There are no restrictions on copying it, embedding it in your systems, or
shipping it with your products. In fact, you can even sell Python, if you're so inclined.

But don't get the wrong idea: "free" doesn't mean "unsupported." On the contrary, the
Python online community responds to user queries with a speed that most
commercial software vendors would do well to notice. Moreover, because Python
comes with complete source code, it empowers developers and creates a large team
of implementation experts. Although studying or changing a programming language's
implementation isn't everyone's idea of fun, it's comforting to know that it's available
as a final resort and ultimate documentation source.

1.1.1.3 It's portable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Python is written in portable ANSI C, and compiles and runs on virtually every major
platform in use today. For example, it runs on Unix systems, Linux, MS-DOS, MS-
Windows (95, 98, NT), Macintosh, Amiga, Be-OS, OS/2, VMS, QNX, and more.
Further, Python programs are automatically compiled to portable bytecode, which
runs the same on any platform with a compatible version of Python installed (more on
this in Section 1.1.1.6).

What that means is that Python programs that use the core language run the same
on Unix, MS-Windows, and any other system with a Python interpreter. Most Python
ports also contain platform-specific extensions (e.g., COM support on MS-Windows),
but the core Python language and libraries work the same everywhere.

Python also includes a standard interface to the Tk GUI system called Tkinter, which
is portable to the X Window System, MS Windows, and the Macintosh, and now
provides a native look-and-feel on each platform. By using Python's Tkinter API,
Python programs can implement full-featured graphical user interfaces that run on all
major GUI platforms without program changes.

1.1.1.4 It's powerful

From a features perspective, Python is something of a hybrid. Its tool set places it
between traditional scripting languages (such as Tcl, Scheme, and Perl), and systems
languages (such as C, C++, and Java). Python provides all the simplicity and ease of
use of a scripting language, along with more advanced programming tools typically
found in systems development languages. Unlike some scripting languages, this
combination makes Python useful for substantial development projects. Some of the
things we'll find in Python's high-level toolbox:

Dynamic typing

Python keeps track of the kinds of objects your program uses when it runs; it
doesn't require complicated type and size declarations in your code.

Built-in object types

Python provides commonly used data structures such as lists, dictionaries, and
strings, as an intrinsic part of the language; as we'll see, they're both flexible
and easy to use.

Built-in tools

To process all those object types, Python comes with powerful and standard
operations, including concatenation (joining collections), slicing (extracting
sections), sorting, mapping, and more.

Library utilities

For more specific tasks, Python also comes with a large collection of pre-coded
library tools that support everything from regular-expression matching to
networking to object persistence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Third-party utilities

Because Python is freeware, it encourages developers to contribute precoded
tools that support tasks beyond Python's built-ins; you'll find free support for
COM, imaging, CORBA ORBs, XML, and much more.

Automatic memory management

Python automatically allocates and reclaims ("garbage collects") objects when
no longer used, and most grow and shrink on demand; Python, not you, keeps
track of low-level memory details.

Programming-in-the-large support

Finally, for building larger systems, Python includes tools such as modules,
classes, and exceptions; they allow you to organize systems into components,
do OOP, and handle events gracefully.

Despite the array of tools in Python, it retains a remarkably simple syntax and design.
As we'll see, the result is a powerful programming tool, which retains the usability of a
scripting language.

1.1.1.5 It's mixable

Python programs can be easily "glued" to components written in other languages. In
technical terms, by employing the Python/C integration APIs, Python programs can
be both extended by (called to) components written in C or C++, and embedded in
(called by) C or C++ programs. That means you can add functionality to the Python
system as needed and use Python programs within other environments or systems.

Although we won't talk much about Python/C integration, it's a major feature of the
language and one reason Python is usually called a scripting language. By mixing
Python with components written in a compiled language such as C or C++, it
becomes an easy-to-use frontend language and customization tool. It also makes
Python good at rapid prototyping: systems may be implemented in Python first to
leverage its speed of development, and later moved to C for delivery, one piece at a
time, according to performance requirements.

Speaking of glue, the PythonWin port of Python for MS-Windows platforms also lets
Python programs talk to other components written for the COM API, allowing Python
to be used as a more powerful alternative to Visual Basic. And a new alternative
implementation of Python, called JPython, lets Python programs communicate with
Java programs, making Python an ideal tool for scripting Java-based web
applications.

1.1.1.6 It's easy to use

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For many, Python's combination of rapid turnaround and language simplicity make
programming more fun than work. To run a Python program, you simply type it and
run it. There are no intermediate compile and link steps (as when using languages
such as C or C++). As with other interpreted languages, Python executes programs
immediately, which makes for both an interactive programming experience and rapid
turnaround after program changes.

Strictly speaking, Python programs are compiled (translated) to an intermediate form
called bytecode , which is then run by the interpreter. But because the compile step is
automatic and hidden to programmers, Python achieves the development speed of an
interpreter without the performance loss inherent in purely interpreted languages.

Of course, development cycle turnaround is only one aspect of Python's ease of use.
It also provides a deliberately simple syntax and powerful high-level built-in tools.
Python has been called "executable pseudocode": because it eliminates much of the
complexity in other tools, you'll find that Python programs are often a fraction of the
size of equivalent programs in languages such as C, C++, and Java.

1.1.1.7 It's easy to learn

This brings us to the topic of this book: compared to other programming languages,
the core Python language is amazingly easy to learn. In fact, you can expect to be
coding significant Python programs in a matter of days (and perhaps in just hours, if
you're already an experienced programmer). That's good news both for professional
developers seeking to learn the language to use on the job, as well as for end users
of systems that expose a Python layer for customization or control.[1]

[1] So, you might ask, how in the world do Python trainers get any business? For one thing, there are still challenges
in Python beyond the core language that will keep you busy beyond those first few days. As we'll see, Python's
collection of libraries, as well as its peripheral tools (e.g., the Tkinter GUI and Python/C integration APIs) are a big part
of real Python programming.

1.1.2 Python on the Job

Besides being a well-designed programming language, Python is also useful for
accomplishing real-world tasks—the sorts of things developers do day in and day out.
It's commonly used in a variety of domains, as a tool for scripting other components
and implementing standalone programs. Some of Python's major roles help define
what it is.

1.1.2.1 System utilities

Python's built-in interfaces to operating-system services make it ideal for writing
portable, maintainable system-administration tools (sometimes called shell scripts).
Python comes with POSIX bindings and support for the usual OS tools: environment
variables, files, sockets, pipes, processes, threads, regular expressions, and so on.

1.1.2.2 GUIs

Python's simplicity and rapid turnaround also make it a good match for GUI

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Python's simplicity and rapid turnaround also make it a good match for GUI
programming. As previously mentioned, it comes with a standard object-oriented
interface to the Tk GUI API called Tkinter, which allows Python programs to
implement portable GUIs with native look and feel. If portability isn't a priority, you can
also use MFC classes to build GUIs with the PythonWin port for MS Windows, X
Window System interfaces on Unix, Mac toolbox bindings on the Macintosh, and KDE
and GNOME interfaces for Linux. For applications that run in web browsers, JPython
provides another GUI option.

1.1.2.3 Component integration

Python's ability to be extended by and embedded in C and C++ systems makes it
useful as a glue language, for scripting the behavior of other systems and
components. For instance, by integrating a C library into Python, Python can test and
launch its components. And by embedding Python in a product, it can code on-site
customizations without having to recompile the entire product (or ship its source code
to your customers). Python's COM support on MS-Windows and the JPython system
provide alternative ways to script applications.

1.1.2.4 Rapid prototyping

To Python programs, components written in Python and C look the same. Because of
this, it's possible to prototype systems in Python initially and then move components
to a compiled language such as C or C++ for delivery. Unlike some prototyping tools,
Python doesn't require a complete rewrite once the prototype has solidified; parts of
the system that don't require the efficiency of a language such as C++ can remain
coded in Python for ease of maintenance and use.

1.1.2.5 Internet scripting

Python comes with standard Internet utility modules that allow Python programs to
communicate over sockets, extract form information sent to a server-side CGI script,
parse HTML, transfer files by FTP, process XML files, and much more. There are also
a number of peripheral tools for doing Internet programming in Python. For instance,
the HTMLGen and pythondoc systems generate HTML files from Python class-based
descriptions, and the JPython system mentioned above provides for seamless
Python/Java integration.[2]

[2] We say more about JPython and other systems in Chapter 10. Among other things, JPython can compile Python
programs to Java virtual machine code (so they may run as client-side applets in any Java-aware browser) and allows
Python programs to talk to Java libraries (for instance, to create AWT GUIs on a client).

1.1.2.6 Numeric programming

The NumPy numeric programming extension for Python includes such advanced
tools as an array object, interfaces to standard mathematical libraries, and much
more. By integrating Python with numeric routines coded in a compiled language for
speed, NumPy turns Python into a sophisticated yet easy-to-use numeric
programming tool.

1.1.2.7 Database programming

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Python's standard pickle module provides a simple object-persistence system: it
allows programs to easily save and restore entire Python objects to files. For more
traditional database demands, there are Python interfaces to Sybase, Oracle,
Informix, ODBC, and more. There is even a portable SQL database API for Python
that runs the same on a variety of underlying database systems, and a system named
gadfly that implements an SQL database for Python programs.

1.1.2.8 And more: Image processing, AI, distributed objects, etc.

Python is commonly applied in more domains than can be mentioned here. But in
general, many are just instances of Python's component integration role in action. By
adding Python as a frontend to libraries of components written in a compiled
language such as C, Python becomes useful for scripting in a variety of domains.

For instance, image processing for Python is implemented as a set of library
components implemented in a compiled language such as C, along with a Python
frontend layer on top used to configure and launch the compiled components. The
easy-to-use Python layer complements the efficiency of the underlying compiled-
language components. Since the majority of the "programming" in such a system is
done in the Python layer, most users need never deal with the complexity of the
optimized components (and can get by with the core language covered in this text).

1.1.3 Python in Commercial Products

From a more concrete perspective, Python is also being applied in real revenue-
generating products, by real companies. For instance, here is a partial list of current
Python users:

Red Hat uses Python in its Linux install tools.

Microsoft has shipped a product partially written in Python.

Infoseek uses Python as an implementation and end-user customization
language in web search products.

Yahoo! uses Python in a variety of its Internet services.

NASA uses Python for mission-control-system implementation.

Lawrence Livermore Labs uses Python for a variety of numeric programming
tasks.

Industrial Light and Magic and others use Python to produce commercial-grade
animation.

There are even more exciting applications of Python we'd like to mention here, but
alas, some companies prefer not to make their use of Python known because they
consider it to be a competitive advantage. See Python's web site
(http://www.python.org) for a more comprehensive and up-to-date list of
companies using Python.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1.4 Python Versus Similar Tools

Finally, in terms of what you may already know, people sometimes compare Python
to languages such as Perl, Tcl, and Java. While these are also useful tools to know
and use, we think Python:

Is more powerful than Tcl, which makes it applicable to larger systems
development

Has a cleaner syntax and simpler design than Perl, which makes it more
readable and maintainable

Doesn't compete head-on with Java; Python is a scripting language, Java is a
systems language such as C++

Especially for programs that do more than scan text files, and that might have to be
read in the future by others (or by you!), we think Python fits the bill better than any
other scripting language available today. Of course, both of your authors are card-
carrying Python evangelists, so take these comments as you may.

And that concludes the hype portion of this book. The best way to judge a language is
to see it in action, so now we turn to a strictly technical introduction to the language.
In the remainder of this chapter, we explore ways to run Python programs, peek at
some useful configuration and install details, and introduce you to the notion of
module files for making code permanent. Again, our goal here is to give you just
enough information to run the examples and exercises in the rest of the book; we
won't really start programming until Chapter 2, but make sure you have a handle on
the start-up details shown here before moving on.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.2 How to Run Python Programs

So far, we've mostly talked about Python as a programming language. But it's also a
software package called an interpreter . An interpreter is a kind of program that
executes other programs. When you write Python programs, the Python interpreter
reads your program, and carries out the instructions it contains.[3] In this section we
explore ways to tell the Python interpreter which programs to run.

[3] Technically, Python programs are first compiled (i.e., translated) to an intermediate form—byte-code— which is
then scanned by the Python interpreter. This byte-code compilation step is hidden and automatic, and makes Python
faster than a pure interpreter.

When the Python package is installed on your machine, it generates a number of
components. Depending on how you use it, the Python interpreter may take the form
of an executable program, or a set of libraries linked into another program. In general,
there are at least five ways to run programs through the Python interpreter:

Interactively

As Python module files

As Unix-style script files

Embedded in another system

Platform-specific launching methods

Let's look at each of these strategies in turn.

Other Ways to Launch Python Programs
Caveat: to keep things simple, the description of using the interpreter in this
chapter is fairly generic and stresses lowest-common-denominator ways to
run Python programs (i.e., the command line, which works the same
everywhere Python runs). For information on other ways to run Python on
specific platforms, flip ahead to Appendix B. For instance, Python ports for
MS-Windows and the Macintosh include graphical interfaces for editing and
running code, which may be more to your taste.

Depending on your platform and background, you may also be interested in
seeing a description of the new IDLE Integrated Development Environment
for Python—a graphical interface for editing, running, and debugging Python
code that runs on any platform where Python's Tk support is installed (IDLE
is a Python program that uses the Tkinter extension we'll meet in Part
II).You can find this description in Appendix A. Emacs users can also find
support at Python's web site for launching Python code in the Emacs
environment; again, see Appendix A for details.

1.2.1 The Interactive Command Line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perhaps the simplest way to run Python programs is to type them at Python's
interactive command line. Assuming the interpreter is installed as an executable
program on your system, typing python at your operating system's prompt without
any arguments starts the interactive interpreter. For example:

% python
>>> print 'Hello world!'
Hello world!
>>> lumberjack = "okay"
>>> # Ctrl-D to exit (Ctrl-Z on some platforms)
Here python is typed at a Unix (or MS-DOS) prompt to begin an interactive Python
session. Python prompts for input with >>> when it's waiting for you to type a new
Python statement. When working interactively, the results of statements are displayed
after the >>> lines. On most Unix machines, the two-key combination Ctrl-D (press
the Ctrl key, then press D while Ctrl is held down) exits the interactive command-line
and returns you to your operating system's command line; on MS-DOS and Windows
systems, you may need to type Ctrl-Z to exit.

Now, we're not doing much in the previous example: we type Python print and
assignment statements, which we'll study in detail later. But notice that the code we
entered is executed immediately by the interpreter. For instance, after typing a print
statement at the >>> prompt, the output (a Python string) is echoed back right away.
There's no need to run the code through a compiler and linker first, as you'd normally
do when using a language such as C or C++.

Because code is executed immediately, the interactive prompt turns out to be a handy
place to experiment with the language, and we'll use it often in this part of the book to
demonstrate small examples. In fact, this is the first rule of thumb: if you're ever in
doubt about how a piece of Python code works, fire up the interactive command line
and try it out. That's what it's there for.

The interactive prompt is also commonly used as a place to test the components of
larger systems. As we'll see, the interactive command line lets us import components
interactively and test their interfaces rapidly. Partly because of this interactive nature,
Python supports an experimental and exploratory programming style you'll find
convenient when starting out.

A word on prompts: we won't meet compound (multiple-line)
statements until Chapter 3, but as a preview, you should know
that when typing lines two and beyond of a compound statement
interactively, the prompt changes to ... instead of >>>. At the
... prompt, a blank line (hitting the Enter key) tells Python that
you're done typing the statement. This is different from
compound statements typed into files, where blank lines are
simply ignored. You'll see why this matters in Chapter 3. These
two prompts can also be changed (in Part II, we'll see that they
are attributes in the built-in sys module), but we'll assume they
haven't been in our examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2.2 Running Module Files

Although the interactive prompt is great for experimenting and testing, it has one big
disadvantage: programs you type there go away as soon as the Python interpreter
executes them. The code you type interactively is never stored in a file, so you can't
run it again without retyping it from scratch. Cut-and-paste and command recall can
help some here, but not much, especially when you start writing larger programs.

To save programs permanently, you need Python module files . Module files are
simply text files containing Python statements. You can ask the Python interpreter to
execute such a file by listing its name in a python command. As an example,
suppose we start our favorite text editor and type two Python statements into a text
file named spam.py:

import sys
print sys.argv # more on this later

Again, we're ignoring the syntax of the statements in this file for now, so don't sweat
the details; the point to notice is that we've typed code into a file, rather than at the
interactive prompt. Once we've saved our text file, we can ask Python to run it by
listing the filename as an argument on a python command in the operating system
shell:

% python spam.py -i eggs -o bacon
['spam.py', '-i', 'eggs', '-o', 'bacon']

Notice that we called the module file spam.py; we could also call it simply spam, but
for reasons we'll explain later, files of code we want to import into a client have to end
with a .py suffix. We also listed four command-line arguments to be used by the
Python program (the items after python spam.py); these are passed to the Python
program, and are available through the name sys.argv, which works like the C
argv array. By the way, if you're working on a Windows or MS-DOS platform, this
example works the same, but the system prompt is normally different:

C:\book\tests> python spam.py -i eggs -o bacon
['spam.py', '-i', 'eggs', '-o', 'bacon']

1.2.3 Running Unix-Style Scripts

So far, we've seen how to type code interactively and run files of code created with a
text editor (modules). If you're going to use Python on a Unix, Linux, or Unix-like
system, you can also turn files of Python code into executable programs, much as
you would for programs coded in a shell language such as csh or ksh. Such files are
usually called scripts; in simple terms, Unix-style scripts are just text files containing
Python statements, but with two special properties:

Their first line is special

Scripts usually start with a first line that begins with the characters #!, followed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scripts usually start with a first line that begins with the characters #!, followed
by the path to the Python interpreter on your machine.

They usually have executable privileges

Script files are usually marked as executable, to tell the operating system that
they may be run as top-level programs. On Unix systems, a command such as
chmod +x file.py usually does the trick.

Let's look at an example. Suppose we use our favorite text editor again, to create a
file of Python code called brian:

#!/usr/local/bin/python
print 'The Bright Side of Life...' # another comment here

We put the special line at the top of the file to tell the system where the Python
interpreter lives. Technically, the first line is a Python comment. All comments in
Python programs start with a # and span to the end of the line; they are a place to
insert extra information for human readers of your code. But when a comment such
as the first line in this file appears, it's special, since the operating system uses it to
find an interpreter for running the program code in the rest of the file.

We also called this file simply brian, without the .py suffix we used for the module file
earlier. Adding a .py to the name wouldn't hurt (and might help us remember that this
is a Python program file); but since we don't plan on letting other modules import the
code in this file, the name of the file is irrelevant. If we give our file executable
privileges with a chmod +x brian shell command, we can run it from the operating
system shell as though it were a binary program:

% brian
The Bright Side of Life...

A note for Windows and MS-DOS users: the method described here is a Unix trick,
and may not work on your platform. Not to worry: just use the module file technique
from the previous section. List the file's name on an explicit python command line:

C:\book\tests> python brian
The Bright Side of Life...

In this case, you don't need the special #! comment at the top (though Python just
ignores it if it's present), and the file doesn't need to be given executable privileges. In
fact, if you want to run files portably between Unix and MS-Windows, your life will
probably be simpler if you always use the module file approach, not Unix-style scripts,
to launch programs.

On some systems, you can avoid hardcoding the path to the
Python interpreter by writing the special first-line comment like
this: #!/usr/bin/env python. When coded this way, the env
program locates the python interpreter according to your
system search-path settings (i.e., in most Unix shells, by looking
in all directories listed in the PATH environment variable). This
env-based scheme can be more portable, since you don't need

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

env-based scheme can be more portable, since you don't need
to hardcode a Python install path in the first line of all your
scripts; provided you have access to env everywhere, your
scripts will run no matter where python lives on your system.

1.2.4 Embedded Code and Objects

We've seen how to run code interactively, and how to launch module files and Unix-
style scripts. That covers most of the cases we'll see in this book. But in some
specialized domains, Python code may also be run by an enclosing system. In such
cases, we say that Python programs are embedded in (i.e., run by) another program.
The Python code itself may be entered into a text file, stored in a database, fetched
from an HTML page, and so on. But from an operational perspective, another system
—not you—may tell Python to run the code you've created.

For example, it's possible to create and run strings of Python code from a C program
by calling functions in the Python runtime API (a set of services exported by the
libraries created when Python is compiled on your machine):

#include <Python.h>
. . .
Py_Initialize();
PyRun_SimpleString("x = brave + sir + robin");

In this code snippet, a program coded in the C language (somefile.c) embeds the
Python interpreter by linking in its libraries and passes it a Python assignment
statement string to run. C programs may also gain access to Python objects, and
process or execute them using other Python API tools.

This book isn't about Python/C integration, so we won't go into the details of what's
really happening here.[4] But you should be aware that, depending on how your
organization plans to use Python, you may or may not be the one who actually starts
the Python programs you create. Regardless, you can still use the interactive and file-
based launching techniques described here, to test code in isolation from those
enclosing systems that may eventually use it.

[4] See Programming Python for more details on embedding Python in C/C++.

1.2.5 Platform-Specific Startup Methods

Finally, depending on which type of computer you are using, there may be more
specific ways to start Python programs than the general techniques we outlined
above. For instance, on some Windows ports of Python, you may either run code
from a Unix-like command-line interface, or by double-clicking on Python program
icons. And on Macintosh ports, you may be able to drag Python program icons to the
interpreter's icon, to make program files execute. We'll have more to say about
platform-specific details like this in an appendix to this book.

1.2.6 What You Type and Where You Type It

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With all these options and commands, it's easy for beginners to be confused about
which command is entered at which prompt. Here's a quick summary:

Starting interactive Python

The Python interpreter is usually started from the system's command line:

% python
Entering code interactively

Programs may be typed at Python's interactive interpreter command line:

>>> print X
Entering code in files for later use

Programs may also be typed into text files, using your favorite text editor:

print X
Starting script files

Unix-style script files are started from the system shell:

% brian
Starting program (module) files

Module files are run from the system shell:

% python spam.py
Running embedded code

When Python is embedded, Python code may be entered in arbitrary ways.

When typing Python programs (either interactively or into a text
file), be sure to start all your unnested statements in column 1. If
you don't, Python prints a "SyntaxError" message. Until the
middle of Chapter 3, all our statements will be unnested, so this
includes everything for now. We'll explain why later—it has to do
with Python's indentation rules—but this seems to be a recurring
confusion in introductory Python classes.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.3 A First Look at Module Files

Earlier in this chapter, we saw how to run module files (i.e., text files containing
Python statements) from the operating-system shell's command line. It turns out that
we can also run module files from Python's interactive command line by importing or
reloading them, as we'd normally do from other system components. The details of
this process are covered in Chapter 5, but since this turns out to be a convenient
way to save and run examples, we'll give a quick introduction to the process.

The basic idea behind importing modules is that importers may gain access to names
assigned at the top level of a module file. The names are usually assigned to services
exported by the modules. For instance, suppose we use our favorite text editor to
create the one-line Python module file myfile.py, shown in the following code snippet.
This may be one of the world's simplest Python modules, but it's enough to illustrate
basic module use:

title = "The Meaning of Life"

Notice that the filename has a .py suffix: this naming convention is required for files
imported from other components. Now we can access this module's variable title
in other components two different ways, either by importing the module as a whole
with an import statement and qualifying the module by the variable name we want to
access:

% python Start Python
>>> import myfile Run file, load module as a whole
>>> print myfile.title Use its names: '.' qualification
The Meaning of Life

or by fetching (really, copying) names out of a module with from statements:

% python Start Python
>>> from myfile import title Run file, load its names
>>> print title Use name directly: no need to qualify
The Meaning of Life

As we'll see later, from is much like an import, with an extra assignment to names
in the importing component. Notice that both statements list the name of the module
file as simply myfile, without its .py suffix; when Python looks for the actual file, it
knows to include the suffix.

Whether we use import or from, the statements in the module file myfile.py are
executed, and the importing component (here, the interactive prompt) gains access to
names assigned at the top level of the file. There's only one such name in this simple
example—the variable title, assigned to a string—but the concept will be more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example—the variable title, assigned to a string—but the concept will be more
useful when we start defining objects such as functions and classes. Such objects
become services accessed by name from one or more client modules.

When a module file is imported the first time in a session, Python executes all the
code inside it, from the top to the bottom of the file. Because of this, importing a
module interactively is another way to execute its code all at once (instead of, for
instance, running it from the system shell with a command such as python
myfile.py). But there's one catch to this process: Python executes a module file's
code only the first time it's imported. If you import it again during the same interactive
session, Python won't reexecute the file's code, even if you've changed it with your
editor. To really rerun a file's code without stopping and restarting the interactive
interpreter, you can use the Python reload function, as follows:

% python Start Python
>>> import myfile Run/load module
>>> print myfile.title Qualify to fetch name
The Meaning of Life

 Change myfile.py in your text editor

>>> import myfile Will NOT rerun the file's code
>>> reload(myfile) WILL rerun the file's (current) code
While this scheme works, reload has a few complications, and we suggest you
avoid it for now (just exit and reenter the interpreter between file changes). On the
other hand, this has proven to be a popular testing technique in Python classes, so
you be the judge.

1.3.1 A First Look at Namespace Inspection

Another trick that has proven popular is using the dir built-in function to keep track of
defined names while programming interactively. We'll have more to say about it later,
but before we turn you loose to work on some exercises, here is a brief introduction. If
you call the dir function without arguments, you get back a Python list (described in
Chapter 2) containing all the names defined in the interactive namespace:

>>> x = 1
>>> y = "shrubbery"
>>> dir()
['__builtins__', '__doc__', '__name__', 'x', 'y']

Here, the expression dir() is a function call; it asks Python to run the function
named dir. We'll meet functions in Chapter 4; but for now, keep in mind that you
need to add parenthesis after a function name to call it (whether it takes any
arguments or not).

When dir is called, some of the names it returns are names you get "for free": they
are built-in names that are always predefined by Python. For instance, _ _name__ is
the module's filename, and _ _builtins__ is a module containing all the built-in
names in Python (including dir). Other names are variables that you've assigned

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

names in Python (including dir). Other names are variables that you've assigned
values to (here, x and y). If you call dir with a module as an argument, you get back
the names defined inside that module:[5]

[5] Technically, in the module's namespace—a term we'll soon use so often that you'll probably get tired of hearing it.
Since we're being technical anyhow, the interactive command line is really a module too, called __main__; code you
enter there works as if it were put in a module file, except that expression results are printed back to you. Notice that
the result of a dir call is a list, which could be processed by a Python program. For now, hold that thought:
namespaces can be fetched in other ways too.

% cat threenames.py
a = 'dead'
b = 'parrot'
c = 'sketch'
% python
>>> import threenames
>>> dir(threenames)
['__builtins__', '__doc__', '__file__', '__name__', 'a', 'b', 'c']
>>> dir(__builtins __)
 All the names Python predefines for you

Later, we'll see that some objects have additional ways of telling clients which names
they expose (e.g., special attributes such as __methods__ and _ _members__). But
for now, the dir function lets you do as much poking around as you'll probably care
to do.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.4 Python Configuration Details

So far, we've seen how to make the Python interpreter execute programs we've
typed. But besides the interpreter, a Python installation also comes with a collection
of utility programs, stored in the Python source library. Moreover, the Python
interpreter recognizes settings in the system shell's environment, which let us tailor
the interpreter's behavior (where it finds the source-code files, for example). This
section talks about the environment settings commonly used by Python programmers,
peeks at Python installation details, and presents an example script that illustrates
most of the configuration steps you'll probably need to know about. If you have
access to a ready-to-run Python, you can probably skip much of this section, or
postpone it for a later time.

1.4.1 Environment Variables

The Python interpreter recognizes a handful of environment variable settings, but only
a few are used often enough to warrant explanation here. Table 1.1 summarizes the
main Python variable settings.

Table 1.1. Important Environment Variables
Role Variable

System shell search path (for finding "python") PATH (or path)
Python module search path (for imports) PYTHONPATH
Path to Python interactive startup file PYTHONSTARTUP
GUI extension variables (Tkinter) TCL_LIBRARY, TK_LIBRARY

These variables are straightforward to use, but here are a few pointers:

The PATH setting lists a set of directories that the operating system searches for
executable programs. It should normally include the directory where your
Python interpreter lives (the python program on Unix, or the python.exe file on
Windows). You don't need to set this on the Macintosh (the install handles path
details).

The PYTHONPATH setting serves a role similar to PATH: the Python interpreter
consults the PYTHONPATH variable to locate module files when you import them
in a program. This variable is set to a list of directories that Python searches to
find an imported module at runtime. You'll usually want to include your own
source-code directories and the Python source library's directory (unless it's
been preset in your Python installation).

If PYTHONSTARTUP is set to the pathname of a file of Python code, Python
executes the file's code automatically whenever you start the interactive
interpreter, as though you had typed it at the interactive command line. This is a
handy way to make sure you always load utilities whenever you're working
interactively.

Provided you wish to use the Tkinter GUI extension (see Chapter 10), the two
GUI variables in Table 1.1 should be set to the name of the source library

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GUI variables in Table 1.1 should be set to the name of the source library
directories of the Tcl and Tk systems (much like PYTHONPATH).

Unfortunately, the way to set these variables and what to set them to depends on
your system's configuration. For instance, on Unix systems the way to set variables
depends on the shell; under the csh shell, you might set this to the Python module
search path:

setenv PYTHONPATH .:/usr/local/lib/python:/usr/local/lib/python/tkinter

which tells Python to look for imported modules in three directories: the current
directory (.), the directory where the Python source library is installed on your
machine (here, /usr/local/lib/python), and the tkinter source library subdirectory,
where the Python GUI extension support code resides. But if you're using the ksh
shell, the setting might instead look like this:

export PYTHONPATH=".:/usr/local/lib/python:/usr/local/lib/python/tkinter"

And if you're using MS-DOS, an environment configuration could be something very
different still:

set PYTHONPATH=.;c:\python\lib;c:\python\lib\tkinter

Since this isn't a book on operating system shells, we're going to defer to other
sources for more details. Consult your system shell's manpages or other
documentation for details. And if you have trouble figuring out what your settings must
be, ask your system administrator (or other local guru) for help.

1.4.2 An Example Startup Script

The code below, call it runpy, pulls some of these details together in a simple Python
startup script. It sets the necessary environment variables to reasonable values (on
Mark's machine, at least) and starts the Python interactive interpreter. To use it, type
runpy at your system shell's prompt.

#!/bin/csh
Give this file executable privileges (chmod +x runpy).
Put this info in your .cshrc file to make it permanent.

1) Add path to command-line interpreter
set path = (/usr/local/bin $path)

2) Set python library search paths (unless predefined)
add your module file directories to the list as desired
setenv PYTHONPATH \
 .:/usr/local/lib/python:/usr/local/lib/python/tkinter

3) Set tk library search paths for GUIs (unless predefined)
setenv TCL_LIBRARY /usr/local/lib/tcl8.0
setenv TK_LIBRARY /usr/local/lib/tk8.0

4) Start up the interactive command-line
python

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

python

runpy illustrates a typical Python configuration, but it has a few drawbacks:

It's written to only work under the csh shell, a command-line processor common
on Unix and Linux platforms; you'll need to interpolate if you're not a csh user.

The settings it illustrates are usually made once in your shell's startup file
(~/.cshrc for csh users), instead of each time you run Python.

Depending on how your Python was built, you may not need to list the paths to
standard source libraries, since they might be hardwired into your installation.

A note for MS-Windows users: a similar configuration can be created in a MS-DOS
batch file, which might look something like this, depending on which Windows port of
Python you've installed:

PATH c:\python;%PATH%
set PYTHONPATH=.;c:\python\lib;c:\python\lib\tkinter
set TCL_LIBRARY=c:\Program Files\Tcl\lib\tcl8.0
set TK_LIBRARY=c:\Program Files\Tcl\lib\tk8.0
python

1.4.3 A GUI Test Session

If you or your administrator have installed Python with the Tkinter GUI extension, the
following interactive session shows one way to test your Python/GUI configuration.
(You can skip this section if you won't be using Tkinter.)

% runpy
 Version/copyright information...

>>> from Tkinter import *
>>> w = Button(text="Hello", command='exit')
>>> w.pack()
>>> w.mainloop()
Type runpy at the system shell and then all the Python code shown after the Python
>>> prompts. Ignore the details in the example's code for now; we study Tkinter in
Chapter 10. If everything is set up properly, you should get a window on your screen
that looks something like Figure 1.1 (shown running on a MS-Windows machine; it
looks slightly different on the X Window System or a Macintosh, since Tkinter
provides for native look and feel).

Figure 1.1. Tkinter GUI test screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If this test doesn't work, start checking your environment variable path settings, and/or
the Python install. Tkinter is an optional extension that must be explicitly enabled, so
make sure it's in your version of Python. Also make sure you have access to the
Tcl/Tk source libraries; they're required by the current Python Tkinter implementation.
See the README files in the Python source distribution and the Python web site for
more details.

1.4.4 Installation Overview

In the interest of completeness, this section provides a few pointers on the Python
installation process. When you're just getting started with Python, you normally
shouldn't need to care about Python installation procedures. Hopefully, someone else
—perhaps your system administrator—has already installed Python on your platform,
and you can skip most of the information here.

But this isn't always the case, and even if Python is already installed on your
machine, installation details may become more important as your knowledge of
Python grows. In some scenarios, it's important to know how to build Python from its
source code, so you can bind in extensions of your own statically. But again, this isn't
a book on Python/C integration, so if Python has already been installed for you, you
may want to file this section away for future reference.

Python comes in binary or C source-code forms

You can get Python as either a prebuilt binary executable (which runs "out of
the box") or in its C source-code form (which you must compile on your machine
before it can run). Both forms can be found in a variety of media—the Python
web/FTP sites (see Appendix A), CDs accompanying Python books,
independent CD distributors, Linux distributions, and so on. Naturally, if you go
for the binary format, you must get one that's compatible with your machine; if
you use the C source-code distribution, you'll need a C compiler/build system
on your machine. Both forms are usually distributed as compressed archive
files, which means you usually need utilities such as gzip and tar to unpack
the file on your computer (though some Windows ports install themselves).

C source code configures/builds automatically

Although getting Python in binary form means you don't need to compile it
yourself, it also means you have little control over what extensions are enabled;
you'll get the extensions that the person who built the binary happened to think
were important. Moreover, besides the Python binary itself, you need to get and
install the Python source library, which may or may not be included in a Python
binary package. For more control, fetch the full Python C source-code
distribution and compile it on your machine. We won't list the compile
commands here, but the source-code build procedure is largely automatic;
Python configures its own makefiles according to your platform, and Python
compiles without a glitch on just about any platform you might mention.

Don't build from source unless you've used a C compiler before

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Having said that, we should note that even automated C compiles of a large
system like Python are not to be taken lightly. If you've never used a C compiler
before, we suggest you try to obtain a Python binary package for your platform
first, before falling back on building Python from its source-code on your
machine. And as usual, you can always ask a local C guru for assistance with
the build or install.

Prebuilt Python binaries exist for most platforms now, including MS-Windows, the
Macintosh, and most flavors of Unix; see Python's web site for links. We should also
note that the full C source-code distribution contains the entire Python system, and is
true freeware; there are no copyright constraints preventing you from using it in your
products. Although hacking an interpreter's source code isn't everybody's cup of tea,
it's comforting to know that you have control over all the source code in your Python
system.

For more details on installing and building Python, see the README files in the C
source-code distribution, the Python web site, and other Python texts such as
Programming Python. And for pointers to various Python distributions, see the URLs
listed in Appendix A.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.5 Summary

In this chapter, we've explored ways to launch Python programs, the basics of Python
module files and namespace inspection, and Python configuration and installation
details. Hopefully, you should now have enough information to start interacting with
the Python interpreter. In Chapter 2, we explore basic object types in Python, before
looking at statements and larger program components.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

1.6 Exercises

Okay: time to start doing a little coding on your own. This session is fairly simple, but
a few of these questions hint at topics to come in later chapters. Remember, check
Appendix C, for the answers; they sometimes contain supplemental information not
discussed in the chapters. In other words, you should peek, even if you can manage
to get all the answers on your own.

1. Interaction. Start the Python command line, and type the expression: "Hello
World!" (including the quotes). The string should be echoed back to you. The
purpose of this exercise is to get your environment configured to run Python.
You may need to add the path to the python executable to your PATH
environment variable. Set it in your .cshrc or .kshrc file to make Python
permanently available on Unix systems; use a setup.bat or autoexec.bat file on
Windows.

2. Programs. With the text editor of your choice, write a simple module file—a file
containing the single statement: print 'Hello module world!'. Store this
statement in a file named module1.py. Now, run this file by passing it to the
Python interpreter program on the system shell's command line.

3. Modules. Next, start the Python command line and import the module you wrote
in the prior exercise. Does your PYTHONPATH setting include the directory
where the file is stored? Try moving the file to a different directory and importing
it again; what happens? (Hint: is there still a file named module1.pyc in the
original directory?)

4. Scripts. If your platform supports it, add the #! line to the top of your
module1.py module, give the file executable privileges, and run it directly as an
executable. What does the first line need to contain?

5. Errors. Experiment with typing mathematical expressions and assignments at
the Python command line. First type the expression: 1 / 0; what happens?
Next, type a variable name you haven't assigned a value to yet; what happens
this time? You may not know it yet, but you're doing exception processing, a
topic we'll explore in depth in Chapter 7. We'll also see Python's source
debugger, pdb, in Chapter 8; if you can't wait that long, either flip to that
chapter, or see other Python documentation sources. Python's default error
messages will probably be as much error handling as you need when first
starting out.

6. Breaks. At the Python command line, type:

L = [1, 2]
L.append(L)
L

What happens? If you're using a Python version older than 1.5.1, a Ctrl-C key
combination will probably help on most platforms. Why do you think this occurs?
What does Python report when you type the Ctrl-C key combination? Warning: if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What does Python report when you type the Ctrl-C key combination? Warning: if
you have a Python older than release 1.5.1, make sure your machine can stop a
program with a break-key combination of some sort before running this test, or
you may be waiting a long time.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 2. Types and Operators
This chapter begins our tour of the Python language. From an abstract perspective, in
Python we write programs that do things with stuff.[1] Programs take the form of
statements, which we'll meet later. Here, we're interested in the stuff our programs do
things to. And in Python, stuff always takes the form of objects. They may be built-in
kinds of objects Python provides for us, or objects we create using Python or C tools.
Either way, we're always doing things to objects in Python.

[1] Pardon our formality: we're computer scientists.

Naturally, there's more to Python development than doing things to stuff. But since
the subjects of Python programs are the most fundamental notion in Python
programming, we start with a survey of Python's built-in object types.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.1 Python Program Structure

By way of introduction, let's first get a clear picture of how what we study in this
chapter fits into the overall Python picture. From a more concrete perspective, Python
programs can be decomposed into modules, statements, and objects, as follows:

1. Programs are composed of modules.

2. Modules contain statements.

3. Statements create and process objects.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.2 Why Use Built-in Types?

If you've used lower-level languages such as C or C++, you know that much of your
work centers on implementing objects—what some folks call data structures—to
represent the components in your application's domain. You need to lay out memory
structures, manage memory allocation, implement search and access routines, and
so on. These chores are about as tedious (and error prone) as they sound, and
usually distract from your programs' real goals.

In typical Python programs, most of this grunt work goes away. Because Python
provides powerful object types as an intrinsic part of the language, there's no need to
code object implementations before you start solving problems. In fact, unless you
have a need for special processing that built-in types don't provide, you're almost
always better off using a built-in object instead of implementing your own. Here are
some reasons why:

Built-in objects make simple programs easy to write

For simple tasks, built-in types are often all you need to represent the structure
of problem domains. Because we get things such as collections (lists) and
search tables (dictionaries) for free, you can use them immediately. You can get
a lot of work done with just Python's built-in object types alone.

Python provides objects and supports extensions

In some ways, Python borrows both from languages that rely on built-in tools
(e.g., LISP), and languages that rely on the programmer to provide tool
implementations or frameworks of their own (e.g., C++). Although you can
implement unique object types in Python, you don't need to do so just to get
started. Moreover, because Python's built-ins are standard, they're always the
same; frameworks tend to differ from site to site.

Built-in objects are components of extensions

For more complex tasks you still may need to provide your own objects, using
Python statements and C language interfaces. But as we'll see in later chapters,
objects implemented manually are often built on top of built-in types such as
lists and dictionaries. For instance, a stack data structure may be implemented
as a class that manages a built-in list.

Built-in objects are often more efficient than custom data structures

Python's built-in types employ already optimized data structure algorithms that
are implemented in C for speed. Although you can write similar object types on
your own, you'll usually be hard-pressed to get the level of performance built-in
object types provide.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In other words, not only do built-in object types make programming easier, they're
also more powerful and efficient than most of what can be created from scratch.
Regardless of whether you implement new object types or not, built-in objects form
the core of every Python program.

Table 2.1 previews the built-in object types in this chapter. Some will probably seem
familiar if you've used other languages (e.g., numbers, strings, and files), but others
are more general and powerful than what you may be accustomed to. For instance,
you'll find that lists and dictionaries obviate most of the work you do to support
collections and searching in lower-level languages.

Table 2.1. Built-in Objects Preview
Object Type Example Constants/Usage

Numbers 3.1415, 1234, 999L, 3+4j
Strings 'spam', "guido's"
Lists [1, [2, 'three'], 4]
Dictionaries {'food':'spam', 'taste':'yum'}
Tuples (1,'spam', 4, 'U')
Files text = open('eggs', 'r').read()

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.3 Numbers

On to the nitty-gritty. The first object type on our tour is Python numbers. In general,
Python's number types are fairly typical and will seem familiar if you've used just
about any other programming language in the past. Python supports the usual
numeric types (integer and floating point), constants, and expressions. In addition,
Python provides more advanced numeric programming support, including a complex
number type, an unlimited precision integer, and a variety of numeric tool libraries.
The next few sections give an overview of the numeric support in Python.

2.3.1 Standard Numeric Types

Among its basic types, Python supports the usual suspects: both integer and floating-
point numbers, and all their associated syntax and operations. Like C, Python also
allows you to write integers using hexadecimal and octal constants. Unlike C, Python
also has a complex number type (introduced in Python 1.4), as well as a long integer
type with unlimited precision (it can grow to have as many digits as your memory
space allows). Table 2.2 shows what Python's numeric types look like when written
out in a program (i.e., as constants).

Table 2.2. Numeric Constants
Constant Interpretation

1234, -24, 0 Normal integers (C longs)
999999999999L Long integers (unlimited size)
1.23, 3.14e-10, 4E210, 4.0e+210 Floating-point (C doubles)
0177, 0x9ff Octal and hex constants
3+4j, 3.0+4.0j, 3J Complex number constants

By and large, Python's numeric types are straightforward, but a few are worth
highlighting here:

Integer and floating-point constants

Integers are written as a string of decimal digits. Floating-point numbers have
an embedded decimal point, and/or an optional signed exponent introduced by
an e or E. If you write a number with a decimal point or exponent, Python makes
it a floating-point object and uses floating-point (not integer) math when it's used
in an expression. The rules for writing floating-point numbers are the same as
with C.

Numeric precision

Plain Python integers (row 1) are implemented as C longs internally (i.e., at
least 32 bits), and Python floating-point numbers are implemented as C
doubles; Python numbers get as much precision as the C compiler used to
build the Python interpreter gives to longs and doubles. On the other hand, if
an integer constant ends with an l or L, it becomes a Python long integer (not
to be confused with a C long) and can grow as large as needed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to be confused with a C long) and can grow as large as needed.

H exadecimal and octal constants

The rules for writing hexadecimal (base 16) and octal (base 8) integers are the
same as in C: octal constants start with a leading zero (0), and hexadecimals
start with a leading 0x or 0X. Notice that this means you can't write normal
base-ten integers with a leading zero (e.g., 01); Python interprets them as octal
constants, which usually don't work as you'd expect!

Complex numbers

Python complex constants are written as real-part + imaginary-part, and
terminated with a j or J. Internally, they are implemented as a pair of floating-
point numbers, but all numeric operations perform complex math when applied
to complex numbers.

2.3.2 Built-in Tools and Extensions

Besides the built-in number types shown in Table 2.2, Python provides a set of tools
for processing number objects:

Expression operators

+, *, >>, **, etc.

Built-in mathematical functions

pow, abs, etc.

Utility modules

rand, math, etc.

We'll meet all of these as we go along. Finally, if you need to do serious number-
crunching, an optional extension for Python called Numeric Python provides
advanced numeric programming tools, such as a matrix data type and sophisticated
computation libraries. Because it's so advanced, we won't say more about Numeric
Python in this chapter; see the examples later in the book and Appendix A. Also
note that, as of this writing, Numeric Python is an optional extension; it doesn't come
with Python and must be installed separately.

2.3.3 Python Expression Operators

Perhaps the most fundamental tool that processes numbers is the expression : a
combination of numbers (or other objects) and operators that computes a value when
executed by Python. In Python, expressions are written using the usual mathematical
notation and operator symbols. For instance, to add two numbers X and Y, we say X +
Y, which tells Python to apply the + operator to the values named by X and Y. The
result of the expression is the sum of X and Y, another number object.

Table 2.3 lists all the operator expressions available in Python. Many are self-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2.3 lists all the operator expressions available in Python. Many are self-
explanatory; for instance, the usual mathematical operators are supported: +, -, *, /,
and so on. A few will be familiar if you've used C in the past: % computes a division
remainder, << performs a bitwise left-shift, & computes a bitwise and result, etc.
Others are more Python-specific, and not all are numeric in nature: the is operator
tests object identity (i.e., address) equality, lambda creates unnamed functions, and
so on.

Table 2.3. Python Expression Operators and Precedence
Operators Description

x or y,

lambda args: expression
Logical or (y is evaluated only if x is false), anonymous function

x and y Logical and (y is evaluated only if x is true)
not x Logical negation
in, not in sequence membership
x | y Bitwise or
x ^ y Bitwise exclusive or
x & y Bitwise and
x << y, x >> y Shift x left or right by y bits
x + y, x - y Addition/concatenation, subtraction
x * y, x / y, x % y Multiplication/repetition, division, remainder/format
-x, +x, ~x Unary negation, identity, bitwise complement
x[i], x[i:j], x.y, x(...) Indexing, slicing, qualification, function calls
(...), [...], {...}, `...` Tuple, list, dictionary, conversion to string

Table 2.3 is mostly included for reference; since we'll see its operators in action
later, we won't describe every entry here. But there are a few basic points we'd like to
make about expressions before moving on.

2.3.3.1 Mixed operators: Operators bind tighter lower in the table

As in most languages, more complex expressions are coded by stringing together
operator expressions in the table. For instance, the sum of two multiplications might
be written as: A * B + C * D. So how does Python know which operator to perform
first? When you write an expression with more than one operator, Python groups its
parts according to what are called precedence rules, and this grouping determines
the order in which expression parts are computed. In the table, operators lower in the
table have higher precedence and so bind more tightly in mixed expressions. For
example, if you write X + Y * Z, Python evaluates the multiplication first (Y * Z), then
adds that result to X, because * has higher precedence (is lower in the table) than +.

2.3.3.2 Parentheses group subexpressions

If the prior paragraph sounded confusing, relax: you can forget about precedence
completely if you're careful to group parts of expressions with parentheses. When you
parenthesize subexpressions, you override Python precedence rules; Python always
evaluates parenthesized expressions first, before using their results in enclosing
expressions. For instance, instead of X + Y * Z, write (X + Y) * Z, or for that matter X
+ (Y * Z) to force Python to evaluate the expression in the desired order. In the
former case, + is applied to X and Y first; in the latter, the * is performed first (as if

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

former case, + is applied to X and Y first; in the latter, the * is performed first (as if
there were no parentheses at all). Generally speaking, adding parentheses in big
expressions is a great idea; it not only forces the evaluation order you want, but it also
aids readability.

2.3.3.3 Mixed types: Converted up just as in C

Besides mixing operators in expressions, you can also mix numeric types. For
instance, you can add an integer to a floating-point number, but this leads to another
dilemma: what type is the result—integer or floating-point? The answer is simple,
especially if you've used almost any other language before: in mixed type
expressions, Python first converts operands up to the type of the most complex
operand, and then performs the math on same-type operands. Python ranks the
complexity of numeric types like so: integers are simpler than long integers, which are
simpler than floating-point numbers, which are simpler than complex numbers. So,
when an integer is mixed with a floating-point, the integer is converted up to a
floating-point value first, and then floating-point math yields the floating-point result.
Similarly, any mixed-type expression where one operand is a complex number results
in the other operand being converted up to a complex, and yields a complex result.

2.3.3.4 Preview: operator overloading

Although we're focusing on built-in numbers right now, keep in mind that all Python
operators may be overloaded by Python classes and C extension types, to work on
objects you implement. For instance, you'll see later that objects coded with classes
may be added with + expressions, indexed with [i] expressions, and so on.
Furthermore, some operators are already overloaded by Python itself: they perform
different actions depending on the type of built-in objects being processed. For
example, the + operator performs addition when applied to numbers, but (as we'll see
in a moment) performs concatenation when applied to sequence objects such as
strings and lists.[2]

[2] This is usually called polymorphism—the meaning of an operation depends on the type of objects being operated
on. But we're not quite ready for object-oriented ideas like this yet, so hold that thought for now.

2.3.4 Numbers in Action

Perhaps the best way to understand numeric objects and expressions is to see them
in action. Let's fire up the interactive command line and type some basic, but
illustrative operations.

2.3.4.1 Basic operations

First of all, let's exercise some basic math: addition and division. In the following
interaction, we first assign two variables (a and b) to integers, so we can use them
later in a larger expression. We'll say more about this later, but in Python, variables
are created when first assigned; there is no need to predeclare the names a and b
before using them. In other words, the assignments cause these variables to spring
into existence automatically.

% python
>>> a = 3 # name created

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> a = 3 # name created
>>> b = 4
We've also used a comment here. These were introduced in Chapter 1, but as a
refresher: in Python code, text after a # mark and continuing to the end of the line is
considered to be a comment, and is ignored by Python (it's a place for you to write
human-readable documentation for your code; since code you type interactively is
temporary, you won't normally write comments there, but we've added them to our
examples to help explain the code). Now, let's use our integer objects in expressions;
as usual, expression results are echoed back to us at the interactive prompt:

>>> b / 2 + a # same as ((4 / 2) + 3)
5
>>> b / (2.0 + a) # same as (4 / (2.0 + 3))
0.8

In the first expression, there are no parentheses, so Python automatically groups the
components according to its precedence rules; since / is lower in Table 2.3 than +,
it binds more tightly, and so is evaluated first. The result is as if we had parenthesized
the expression as shown in the comment to the right of the code. Also notice that all
the numbers are integers in the first expression; because of that, Python performs
integer division and addition.

In the second expression, we add parentheses around the + part to force Python to
evaluate it first (i.e., before the /). We also made one of the operands floating point
by adding a decimal point: 2.0. Because of the mixed types, Python converts the
integer referenced by a up to a floating-point value (3.0) before performing the +. It
also converts b up to a floating-point value (4.0) and performs a floating-point
division: (4.0 / 5.0) yields a floating-point result of 0.8. If this were integer division
instead, the result would be a truncated integer zero.

2.3.4.2 B itwise operations

Besides the normal numeric operations (addition, subtraction, and so on), Python
supports most of the numeric expressions available in the C language. For instance,
here it's at work performing bitwise shift and Boolean operations:

>>> x = 1 # 0001
>>> x << 2 # shift left 2 bits: 0100
4
>>> x | 2 # bitwise OR: 0011
3
>>> x & 1 # bitwise AND: 0001
1

In the first expression, a binary 1 (in base 2, 0001) is shifted left two slots to create a
binary 4 (0100). The last two operations perform a binary or (0001 | 0010 =
0011), and a binary and (0001 & 0001 = 0001). We won't go into much more detail
on bit-twiddling here. It's supported if you need it, but be aware that it's often not as
important in a high-level language such as Python as it is in a low-level language
such as C. As a rule of thumb, if you find yourself wanting to flip bits in Python, you
should think long and hard about which language you're really using. In general, there
are often better ways to encode information in Python than bit strings.[3]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[3] Usually. As for every rule there are exceptions. For instance, if you interface with C libraries that expect bit strings
to be passed in, our preaching doesn't apply.

2.3.4.3 L ong integers

Now for something more exotic: here's a look at long integers in action. When an
integer constant ends with an L (or lowercase l), Python creates a long integer,
which can be arbitrarily big:

>>> 9999999999999999999999999999 + 1
OverflowError: integer literal too large
>>> 9999999999999999999999999999L + 1
10000000000000000000000000000L

Here, the first expression fails and raises an error, because normal integers can't
accommodate such a large number. On the other hand, the second works fine,
because we tell Python to generate a long integer object instead.

Long integers are a convenient tool. In fact, you can use them to
count the national debt in pennies, if you are so inclined. But
because Python must do extra work to support their extended
precision, long integer math is usually much slower than normal
integer math. If you need the precision, it's built in for you to use.
But as usual, there's no such thing as a free lunch.

2.3.4.4 Complex numbers

C omplex numbers are a recent addition to Python. If you know what they are, you
know why they are useful; if not, consider this section optional reading.[4] Complex
numbers are represented as two floating-point numbers—the real and imaginary parts
—and are coded by adding a j or J suffix to the imaginary part. We can also write
complex numbers with a nonzero real part by adding the two parts with a +. For
example, the complex number with a real part of 2 and an imaginary part of -3 is
written: 2 + -3j. Some examples of complex math at work:

[4] One of your authors is quick to point out that he has never had a need for complex numbers in some 15 years of
development work. The other author isn't so lucky.

>>> 1j * 1J
(-1+0j)
>>> 2 + 1j * 3
(2+3j)
>>> (2+1j)*3
(6+3j)

Complex numbers also allow us to extract their parts as attributes, but since complex
math is an advanced tool, check Python's language reference manual for additional
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3.4.5 Other numeric tools

As mentioned above, Python also provides both built-in functions and built-in modules
for numeric processing. Here are the built-in math module and a few built-in functions
at work; we'll meet more built-ins in Chapter 8.

>>> import math
>>> math.pi
3.14159265359
>>>
>>> abs(-42), 2**4, pow(2, 4)
(42, 16, 16)

Notice that built-in modules such as math must be imported and qualified, but built-in
functions such as abs are always available without imports. Really, modules are
external components, but built-in functions live in an implied namespace, which
Python searches to find names used in your program. This namespace corresponds
to the module called _ _builtin__. We talk about name resolution in Chapter 4;
for now, when we say "module", think "import."

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.4 Strings

The next major built-in type is the Python string —an ordered collection of characters,
used to store and represent text-based information. From a functional perspective,
strings can be used to represent just about anything that can be encoded as text:
symbols and words (e.g., your name), contents of text files loaded into memory, and
so on.

You've probably used strings in other languages too; Python's strings serve the same
role as character arrays in languages such as C, but Python's strings are a higher
level tool. Unlike C, there is no char type in Python, only one-character strings. And
strictly speaking, Python strings are categorized as immutable sequences— big
words that just mean that they respond to common sequence operations but can't be
changed in place. In fact, strings are representative of the larger class of objects
called sequences; we'll have more to say about what this means in a moment, but
pay attention to the operations introduced here, because they'll work the same on
types we'll see later.

Table 2.4 introduces common string constants and operations. Strings support
expression operations such as concatenation (combining strings), slicing (extracting
sections), indexing (fetching by offset), and so on. Python also provides a set of utility
modules for processing strings you import. For instance, the string module exports
most of the standard C library's string handling tools, and the regex and re modules
add regular expression matching for strings (all of which are discussed in Chapter
8).

Table 2.4. Common String Constants and Operations
Operation Interpretation

s1 = '' Empty string
s2 = "spam's" Double quotes
block = """...""" Triple-quoted blocks

s1 + s2,
s2 * 3

Concatenate,

repeat

s2[i],
s2[i:j],
len(s2)

Index,

slice,

length
"a %s parrot" % 'dead' String formatting

for x in s2,
'm' in s2

Iteration,

membership

Empty strings are written as two quotes with nothing in between. Notice that string
constants can be written enclosed in either single or double quotes; the two forms
work the same, but having both allows a quote character to appear inside a string
without escaping it with a backslash (more on backslashes later). The third line in the
table also mentions a triple-quoted form; when strings are enclosed in three quotes,
they may span any number of lines. Python collects all the triple-quoted text into a
multiline string with embedded newline characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4.1 Strings in Action

Rather than getting into too many details right away, let's interact with the Python
interpreter again to illustrate the operations in Table 2.4.

2.4.1.1 Basic operations

Strings can be concatenated using the + operator, and repeated using the * operator.
Formally, adding two string objects creates a new string object with the contents of its
operands joined; repetition is much like adding a string to itself a number of times. In
both cases, Python lets you create arbitrarily sized strings; there's no need to
predeclare anything in Python, including the sizes of data structures.[5] Python also
provides a len built-in function that returns the length of strings (and other objects
with a length):

[5] Unlike C character arrays, you don't need to allocate or manage storage arrays when using Python strings. Simply
create string objects as needed, and let Python manage the underlying memory space. Internally, Python reclaims
unused objects' memory space automatically, using a reference-count garbage collection strategy. Each object keeps
track of the number of names, data-structures, etc. that reference it; when the count reaches zero, Python frees the
object's space. This scheme means Python doesn't have to stop and scan all of memory to find unused space to free;
it also means that objects that reference themselves might not be collected automatically.

% python
>>> len('abc') # length: number items
3
>>> 'abc' + 'def' # concatenation: a new string
'abcdef'
>>> 'Ni!' * 4 # like "Ni!" + "Ni!" + ...
'Ni!Ni!Ni!Ni!'

Notice that operator overloading is at work here already: we're using the same
operators that were called addition and multiplication when we looked at numbers.
Python is smart enough to do the correct operation, because it knows the types of
objects being added and multiplied. But be careful; Python doesn't allow you to mix
numbers and strings in + and * expressions: 'abc' + 9 raises an error, instead of
automatically converting 9 to a string. As shown in the last line in Table 2.4, you can
also iterate over strings in loops using for statements and test membership with the
in expression operator:

>>> myjob = "hacker"
>>> for c in myjob: print c, # step though items
...
h a c k e r
>>> "k" in myjob # 1 means true
1

But since you need to know something about statements and the meaning of truth in
Python to really understand for and in, let's defer details on these examples until
later.

2.4.1.2 Indexing and slicing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because strings are defined as an ordered collection of characters, we can access
their components by position. In Python, characters in a string are fetched by indexing
—providing the numeric offset of the desired component in square brackets after the
string. As in C, Python offsets start at zero and end at one less than the length of the
string. Unlike C, Python also lets you fetch items from sequences such as strings
using negative offsets. Technically, negative offsets are added to the length of a
string to derive a positive offset. But you can also think of negative offsets as counting
backwards from the end (or right, if you prefer).

>>> S = 'spam'
>>> S[0], S[-2] # indexing from front or end
('s', 'a')
>>> S[1:3], S[1:], S[:-1] # slicing: extract section
('pa', 'pam', 'spa')

In the first line, we define a four-character string and assign it the name S. We then
index it two ways: S[0] fetches the item at offset from the left (the one-character
string 's'), and S[-2] gets the item at offset 2 from the end (or equivalently, at
offset (4 + -2) from the front). Offsets and slices map to cells as shown in Figure 2.1.

Figure 2.1. Using offsets and slices

The last line in the example above is our first look at slicing. When we index a
sequence object such as a string on a pair of offsets, Python returns a new object
containing the contiguous section identified by the offsets pair. The left offset is taken
to be the lower bound, and the right is the upper bound; Python fetches all items from
the lower bound, up to but not including the upper bound, and returns a new object
containing the fetched items.

For instance, S[1:3] extracts items at offsets 1 and 2, S[1:] gets all items past the
first (the upper bound defaults to the length of the string), and S[:-1] gets all but the
last item (the lower bound defaults to zero). This may sound confusing on first glance,
but indexing and slicing are simple and powerful to use, once you get the knack.
Here's a summary of the details for reference; remember, if you're unsure about what
a slice means, try it out interactively.

Indexing (S[i]):

Fetches components at offsets (the first item is at offset zero)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Negative indexes mean to count from the end (added to the positive length)

S[0] fetches the first item

S[-2] fetches the second from the end (it's the same as S[len(S) - 2])

Slicing (S[i:j]):

Extracts contiguous sections of a sequence

Slice boundaries default to zero and the sequence length, if omitted

S[1:3] fetches from offsets 1 up to, but not including, 3

S[1:] fetches from offsets 1 through the end (length)

S[:-1] fetches from offsets up to, but not including, the last item

Later in this chapter, we'll see that the syntax used to index by offset (the square
brackets) is also used to index dictionaries by key; the operations look the same, but
have different interpretations.

Why You Will Care: Slices
Throughout this part of the book, we include sidebars such as this to give
you a peek at how some of the language features being introduced are
typically used in real programs. Since we can't show much of real use until
you've seen most of the Python picture, these sidebars necessarily contain
many references to topics we haven't introduced yet; at most, you should
consider them previews of ways you may find these abstract language
concepts useful for common programming tasks.

For instance, you'll see later that the argument words listed on a command
line used to launch a Python program are made available in the argv
attribute of the built-in sys module:

% cat echo.py
import sys
print sys.argv

% python echo.py -a -b -c
['echo.py', '-a', '-b', '-c']

Usually, we're only interested in inspecting the arguments past the program
name. This leads to a very typical application of slices: a single slice
expression can strip off all but the first item of the list. Here, sys.argv[1:]
returns the desired list, ['-a', '-b', '-c']. You can then process
without having to accommodate the program name at the front.

Slices are also often used to clean up lines read from input files; if you know
that a line will have an end-of-line character at the end (a '\n' newline

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that a line will have an end-of-line character at the end (a '\n' newline
marker), you can get rid of it with a single expression such as line[:-1],
which extracts all but the last character in the line (the lower limit defaults to
0). In both cases, slices do the job of logic that must be explicit in a lower-
level language.

2.4.1.3 C hanging and formatting

Remember those big words—immutable sequence? The immutable part means that
you can't change a string in-place (e.g., by assigning to an index). So how do we
modify text information in Python? To change a string, we just need to build and
assign a new one using tools such as concatenation and slicing:

>>> S = 'spam'
>>> S[0] = "x"
 Raises an error!

>>> S = S + 'Spam!' # to change a string, make a new one
>>> S
'spamSpam!'
>>> S = S[:4] + 'Burger' + S[-1]
>>> S
'spamBurger!'
>>> 'That is %d %s bird!' % (1, 'dead') # like C sprintf
That is 1 dead bird!

Python also overloads the % operator to work on strings (it means remainder-of-
division for numbers). When applied to strings, it serves the same role as C's
sprintf function: it provides a simple way to format strings. To make it go, simply
provide a format string on the left (with embedded conversion targets—e.g., %d),
along with an object (or objects) on the right that you want Python to insert into the
string on the left, at the conversion targets. For instance, in the last line above, the
integer 1 is plugged into the string where the %d appears, and the string 'dead' is
inserted at the %s. String formatting is important enough to warrant a few more
examples:

>>> exclamation = "Ni"
>>> "The knights who say %s!" % exclamation
'The knights who say Ni!'
>>> "%d %s %d you" % (1, 'spam', 4)
'1 spam 4 you'
>>> "%s -- %s -- %s" % (42, 3.14159, [1, 2, 3])
'42 -- 3.14159 -- [1, 2, 3]'

In the first example, plug the string "Ni" into the target on the left, replacing the %s
marker. In the second, insert three values into the target string; when there is more
than one value being inserted, you need to group the values on the right in
parentheses (which really means they are put in a tuple, as we'll see shortly).

Python's string % operator always returns a new string as its result, which you can
print or not. It also supports all the usual C printf format codes. Table 2.5 lists the
more common string-format target codes. One special case worth noting is that %s
converts any object to its string representation, so it's often the only conversion code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

converts any object to its string representation, so it's often the only conversion code
you need to remember. For example, the last line in the previous example converts
integer, floating point, and list objects to strings using %s (lists are up next).
Formatting also allows for a dictionary of values on the right, but since we haven't told
you what dictionaries are yet, we'll finesse this extension here.

Table 2.5. String Formatting Codes
% String (or any object's print format) %X Hex integer (uppercase)
%c Character %e Floating-point format 1[6]

%d Decimal (int) %E Floating-point format 2
%i Integer %f Floating-point format 3
%u Unsigned (int) %g Floating-point format 4
%o Octal integer %G Floating-point format 5
%x Hex integer %% Literal %

[6] The floating-point codes produce alternative representations for floating-point numbers. See printf
documentation for details; better yet, try these formats out in the Python interactive interpreter to see how the
alternative floating-point formats look (e.g., "%e %f %g" % (1.1, 2.2, 3.3)).

2.4.1.4 Common string tools

As previously mentioned, Python provides utility modules for processing strings. The
string module is perhaps the most common and useful. It includes tools for
converting case, searching strings for substrings, converting strings to numbers, and
much more (the Python library reference manual has an exhaustive list of string
tools).

>>> import string # standard utilities module
>>> S = "spammify"
>>> string.upper(S) # convert to uppercase
'SPAMMIFY'
>>> string.find(S, "mm") # return index of substring
3
>>> string.atoi("42"), `42` # convert from/to string
(42, '42')
>>> string.join(string.split(S, "mm"), "XX")
'spaXXify'

The last example is more complex, and we'll defer a better description until later in the
book. But the short story is that the split function chops up a string into a list of
substrings around a passed-in delimiter or whitespace; join puts them back
together, with a passed-in delimiter or space between each. This may seem like a
roundabout way to replace "mm" with "XX", but it's one way to perform arbitrary
global substring replacements. We study these, and more advanced text processing
tools, later in the book.

Incidentally, notice the second-to-last line in the previous example: the atoi function
converts a string to a number, and backquotes around any object convert that object
to its string representation (here, `42` converts a number to a string). Remember
that you can't mix strings and numbers types around operators such as +, but you can
manually convert before that operation if needed:

>>> "spam" + 42

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> "spam" + 42
 Raises an error

>>> "spam" + `42`
'spam42'
>>> string.atoi("42") + 1
43

Later, we'll also meet a built-in function called eval that converts a string to any kind
of object; string.atoi and its relatives convert only to numbers, but this restriction
means they are usually faster.

2.4.1.5 String constant variations

Finally, we'd like to show you a few of the different ways to write string constants; all
produce the same kind of object (a string), so the special syntax here is just for our
convenience. Earlier, we mentioned that strings can be enclosed in single or double
quotes, which allows embedded quotes of the opposite flavor. Here's an example:

>>> mixed = "Guido's" # single in double
>>> mixed
"Guido's"
>>> mixed = 'Guido"s' # double in single
>>> mixed
'Guido"s'
>>> mixed = 'Guido\'s' # backslash escape
>>> mixed
"Guido's"

Notice the last two lines: you can also escape a quote (to tell Python it's not really the
end of the string) by preceding it with a backslash. In fact, you can escape all kinds of
special characters inside strings, as listed in Table 2.6; Python replaces the escape
code characters with the special character they represent. In general, the rules for
escape codes in Python strings are just like those in C strings.[7] Also like C, Python
concatenates adjacent string constants for us:

[7] But note that you normally don't need to terminate Python strings with a \0 null character as you would in C. Since
Python keeps track of a string's length internally, there's usually no need to manage terminators in your programs. In
fact, Python strings can contain the null byte \0, unlike typical usage in C. For instance, we'll see in a moment that file
data is represented as strings in Python programs; binary data read from or written to files can contain nulls because
strings can too.

>>> split = "This" "is" "concatenated"
>>> split
'Thisisconcatenated'

And last but not least, here's Python's triple-quoted string constant form in action:
Python collects all the lines in such a quoted block and concatenates them in a single
multiline string, putting an end-of-line character between each line. The end-of-line
prints as a "\012" here (remember, this is an octal integer); you can also call it "\n"
as in C. For instance, a line of text with an embedded tab and a line-feed at the end
might be written in a program as python\tstuff\n (see Table 2.6).

>>> big = """This is
... a multi-line block

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

... a multi-line block

... of text; Python puts

... an end-of-line marker

... after each line."""
>>>
>>> big
'This is\012a multi-line block\012of text; Python puts\012an end-of-line
marker\012after each line.'

Python also has a special string constant form called raw strings, which don't treat
backslashes as potential escape codes (see Table 2.6). For instance, strings
r'a\b\c' and R"a\b\c" retain their backslashes as real (literal) backslash
characters. Since raw strings are mostly used for writing regular expressions, we'll
defer further details until we explore regular expressions in Chapter 8.

Table 2.6. String Backslash Characters
\newline Ignored (a continuation) \n Newline (linefeed)
\\ Backslash (keeps one \) \v Vertical tab
\' Single quote (keeps ') \t Horizontal tab
\" Double quote (keeps ") \r Carriage return
\a Bell \f Formfeed
\b Backspace \0XX Octal value XX
\e Escape (usually) \xXX Hex value XX
\000 Null (doesn't end string) \other Any other char (retained)

2.4.2 Generic Type Concepts

Now that we've seen our first composite data type, let's pause a minute to define a
few general type concepts that apply to most of our types from here on. One of the
nice things about Python is that a few general ideas usually apply to lots of situations.
In regard to built-in types, it turns out that operations work the same for all types in a
category, so we only need to define most ideas once. We've only seen numbers and
strings so far, but they are representative of two of the three major type categories in
Python, so you already know more about other types than you think.

2.4.2.1 Types share operation sets by categories

When we introduced strings, we mentioned that they are immutable sequences: they
can't be changed in place (the immutable part), and are ordered collections accessed
by offsets (the sequence bit). Now, it so happens that all the sequences seen in this
chapter respond to the same sequence operations we previously saw at work on
strings—concatenation, indexing, iteration, and so on. In fact, there are three type
(and operation) categories in Python:

Numbers support addition, multiplication, etc.

Sequences support indexing, slicing, concatenation, etc.

Mappings support indexing by key, etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We haven't seen mappings yet (we'll get to dictionaries in a few pages), but other
types are going to be mostly more of the same. For example, for any sequence
objects X and Y:

X + Y makes a new sequence object with the contents of both operands.

X * N makes a new sequence object with N copies of the sequence operand
X.

In other words, these operations work the same on any kind of sequence. The only
difference is that you get back a new result object that is the same type as the
operands X and Y (if you concatenate strings, you get back a new string, not a list).
Indexing, slicing, and other sequence operations work the same on all sequences too;
the type of the objects being processed tells Python which flavor to perform.

2.4.2.2 Mutable types can be changed in place

The immutable classification might sound abstract, but it's an important constraint to
know and tends to trip up new users. If we say an object type is immutable, you
shouldn't change it without making a copy; Python raises an error if you do. In
general, immutable types give us some degree of integrity, by guaranteeing that an
object won't be changed by another part of a program. We'll see why this matters
when we study shared object references later in this chapter.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.5 Lists

Our next stop on the built-in object tour is the Python list. Lists are Python's most
flexible ordered collection object type. Unlike strings, lists can contain any sort of
object: numbers, strings, even other lists. Python lists do the work of most of the
collection data structures you might have to implement manually in lower-level
languages such as C. In terms of some of their main properties, Python lists are:

Ordered collections of arbitrary objects

From a functional view, lists are just a place to collect other objects, so you can
treat them as a group. Lists also define a left-to-right positional ordering of the
items in the list.

Accessed by offset

Just as with strings, you can fetch a component object out of a list by indexing
the list on the object's offset. Since lists are ordered, you can also do such tasks
as slicing and concatenation.

Variable length, heterogeneous, arbitrarily nestable

Unlike strings, lists can grow and shrink in place (they're variable length), and
may contain any sort of object, not just one-character strings (they're
heterogeneous). Because lists can contain other complex objects, lists also
support arbitrary nesting; you can create lists of lists of lists, and so on.

Of the category mutable sequence

In terms of our type category qualifiers, lists can be both changed in place
(they're mutable) and respond to all the sequence operations we saw in action
on strings in the last section. In fact, sequence operations work the same on
lists, so we won't have much to say about them here. On the other hand,
because lists are mutable, they also support other operations strings don't, such
as deletion, index assignment, and methods.

Arrays of object references

Technically, Python lists contain zero or more references to other objects. If
you've used a language such as C, lists might remind you of arrays of pointers.
Fetching an item from a Python list is about as fast as indexing a C array; in
fact, lists really are C arrays inside the Python interpreter. Moreover, references
are something like pointers (addresses) in a language such as C, except that
you never process a reference by itself; Python always follows a reference to an
object whenever the reference is used, so your program only deals with objects.
Whenever you stuff an object into a data structure or variable name, Python
always stores a reference to the object, not a copy of it (unless you request a
copy explicitly).

Table 2.7 summarizes common list object operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2.7. Common List Constants and Operations
Operation Interpretation

L1 = [] An empty list
L2 = [0, 1, 2, 3] Four items: indexes 0.3
L3 = ['abc', ['def', 'ghi']] Nested sublists

L2[i], L3[i][j]
L2[i:j],
len(L2)

Index,

slice,

length

L1 + L2,
L2 * 3

Concatenate,

repeat

for x in L2,
3 in L2

Iteration,

membership

L2.append(4),
L2.sort(),
L2.index(1),
L2.reverse()

Methods: grow,

sort,

search,

reverse, etc.
del L2[k],
L2[i:j] = [] Shrinking

L2[i] = 1,
L2[i:j] = [4,5,6]

Index assignment,

slice assignment
range(4), xrange(0, 4) Make lists/tuples of integers

Lists are written as a series of objects (really, expressions that return objects) in
square brackets, separated by commas. Nested lists are coded as a nested square-
bracketed series, and the empty list is just a square-bracket set with nothing inside.[8]

[8] But we should note that in practice, you won't see many lists written out like this in list-processing programs. It's
more common to see code that processes lists constructed dynamically (at runtime). In fact, although constant syntax
is important to master, most data structures in Python are built by running program code at runtime.

Most of the operations in Table 2.7 should look familiar, since they are the same
sequence operations we put to work on strings earlier—indexing, concatenation,
iteration, and so on. The last few table entries are new; lists also respond to method
calls (which provide utilities such as sorting, reversing, adding items on the end, etc.),
as well as in-place change operations (deleting items, assignment to indexes and
slices, and so forth). Remember, lists get these last two operation sets because they
are a mutable object type.

2.5.1 Lists in Action

Perhaps the best way to understand lists is to see them at work. Let's once again turn
to some simple interpreter interactions to illustrate the operations in Table 2.7.

2.5.1.1 Basic operations

Lists respond to the + and * operators as with strings; they mean concatenation and
repetition here too, except that the result is a new list, not a string. And as Forrest

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

repetition here too, except that the result is a new list, not a string. And as Forrest
Gump was quick to say, "that's all we have to say about that"; grouping types into
categories is intellectually frugal (and makes life easy for authors like us).

% python
>>> len([1, 2, 3]) # length
3
>>> [1, 2, 3] + [4, 5, 6] # concatenation
[1, 2, 3, 4, 5, 6]
>>> ['Ni!'] * 4 # repetition
['Ni!', 'Ni!', 'Ni!', 'Ni!']
>>> for x in [1, 2, 3]: print x, # iteration
...
1 2 3

We talk about iteration (as well as range built-ins) in Chapter 3. One exception
worth noting here: + expects the same sort of sequence on both sides, otherwise you
get a type error when the code runs. For instance, you can't concatenate a list and a
string, unless you first convert the list to a string using backquotes or % formatting (we
met these in the last section). You could also convert the string to a list; the list
built-in function does the trick:

>>> `[1, 2]` + "34" # same as "[1, 2]" + "34"
'[1, 2]34'
>>> [1, 2] + list("34") # same as [1, 2] + ["3", "4"]
[1, 2, '3', '4']

2.5.1.2 In dexing and slicing

Because lists are sequences, indexing and slicing work the same here too, but the
result of indexing a list is whatever type of object lives at the offset you specify, and
slicing a list always returns a new list:

>>> L = ['spam', 'Spam', 'SPAM!']
>>> L[2] # offsets start at zero
'SPAM!'
>>> L[-2] # negative: count from the right
'Spam'
>>> L[1:] # slicing fetches sections
['Spam', 'SPAM!']

2.5.1.3 Changing lists in place

Finally something new: because lists are mutable, they support operations that
change a list object in-place; that is, the operations in this section all modify the list
object directly, without forcing you to make a new copy as you had to for strings. But
since Python only deals in object references, the distinction between in-place
changes and new objects can matter; if you change an object in place, you might
impact more than one reference to it at once. More on that later in this chapter.

When using a list, you can change its contents by assigning to a particular item
(offset), or an entire section (slice):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> L = ['spam', 'Spam', 'SPAM!']
>>> L[1] = 'eggs' # index assignment
>>> L
['spam', 'eggs', 'SPAM!']
>>> L[0:2] = ['eat', 'more'] # slice assignment: delete+insert
>>> L # replaces items 0,1
['eat', 'more', 'SPAM!']

Index assignment works much as it does in C: Python replaces the object reference at
the designated slot with a new one. Slice assignment is best thought of as two steps:
Python first deletes the slice you specify on the left of the =, and then inserts (splices)
the new items into the list at the place where the old slice was deleted. In fact, the
number of items inserted doesn't have to match the number of items deleted; for
instance, given a list L that has the value [1, 2, 3], the assignment L[1:2] =
[4, 5] sets L to the list [1, 4, 5, 3]. Python first deletes the 2 (a one-item
slice), then inserts items 4 and 5 where 2 used to be. Python list objects also support
method calls:

>>> L.append('please') # append method call
>>> L
['eat', 'more', 'SPAM!', 'please']
>>> L.sort() # sort list items ('S' < 'e')
>>> L
['SPAM!', 'eat', 'more', 'please']

Methods are like functions, except that they are associated with a particular object.
The syntax used to call methods is similar too (they're followed by arguments in
parentheses), but you qualify the method name with the list object to get to it.
Qualification is coded as a period followed by the name of the method you want; it
tells Python to look up the name in the object's namespace—set of qualifiable names.
Technically, names such as append and sort are called attributes—names
associated with objects. We'll see lots of objects that export attributes later in the
book.

The list append method simply tacks a single item (object reference) to the end of the
list. Unlike concatenation, append expects us to pass in a single object, not a list.
The effect of L.append(X) is similar to L+[X], but the former changes L in place,
and the latter makes a new list.[9] The sort method orders a list in-place; by default,
it uses Python standard comparison tests (here, string comparisons; you can also
pass in a comparison function of your own, but we'll ignore this option here).

[9] Also unlike + concatenation, append doesn't have to generate new objects, and so is usually much faster. On the
other hand, you can mimic append with clever slice assignments: L[len(L):]=[X] is like L.append(X), and
L[:0]=[X] is like appending at the front of a list. Both delete an empty slice and insert X, changing L in place quickly
like append. C programmers might be interested to know that Python lists are implemented as single heap blocks
(rather than a linked list), and append is really a call to realloc behind the scenes. Provided your heap manager is
smart enough to avoid copying and re-mallocing, append can be very fast. Concatenation, on the other hand, must
always create new list objects and copy the items in both operands.

Here's another thing that seems to trip up new users: append
and sort change the associated list object in-place, but don't
return the list as a result (technically, they both return a value
called None , which we'll meet in a moment). If you say

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

called None , which we'll meet in a moment). If you say
something like L = L.append(X), you won't get the modified
value of L (in fact, you'll lose the reference to the list altogether);
when you use attributes such as append and sort, objects are
changed as a side effect, so there's no reason to reassign.

Finally, because lists are mutable, you can also use the del statement to delete an
item or section. Since slice assignment is a deletion plus an insert, you can also
delete sections of lists by assigning an empty list to a slice (L[i:j] = []); Python
deletes the slice named on the left and then inserts nothing. Assigning an empty list
to an index, on the other hand, just stores a reference to the empty list in the specified
slot: L[0] = [] sets the first item of L to the object [], rather than deleting it (L
winds up looking like [[],...]):

>>> L
['SPAM!', 'eat', 'more', 'please']
>>> del L[0] # delete one item
>>> L
['eat', 'more', 'please']
>>> del L[1:] # delete an entire section
>>> L # same as L[1:] = []
['eat']

Here are a few pointers before moving on. Although all the operations above are
typical, there are additional list methods and operations we won't illustrate here
(including methods for reversing and searching). You should always consult Python's
manuals or the Python Pocket Reference for a comprehensive and up-to-date list of
type tools. Even if this book was complete, it probably couldn't be up to date (new
tools may be added any time). We'd also like to remind you one more time that all the
in-place change operations above work only for mutable objects: they won't work on
strings (or tuples, discussed ahead), no matter how hard you try.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.6 Dictionaries

Besides lists, dictionaries are perhaps the most flexible built-in data type in Python. If
you think of lists as ordered collections of objects, dictionaries are unordered
collections; their chief distinction is that items are stored and fetched in dictionaries by
key, instead of offset. As we'll see, built-in dictionaries can replace many of the
searching algorithms and data-structures you might have to implement manually in
lower-level languages. Dictionaries also sometimes do the work of records and
symbol tables used in other languages. In terms of their main properties, dictionaries
are:

Accessed by key, not offset

Dictionaries are sometimes called associative arrays or hashes. They associate
a set of values with keys, so that you can fetch an item out of a dictionary using
the key that stores it. You use the same indexing operation to get components
in a dictionary, but the index takes the form of a key, not a relative offset.

Unordered collections of arbitrary objects

Unlike lists, items stored in a dictionary aren't kept in any particular order; in
fact, Python randomizes their order in order to provide quick lookup. Keys
provide the symbolic (not physical) location of items in a dictionary.

Variable length, heterogeneous, arbitrarily nestable

Like lists, dictionaries can grow and shrink in place (without making a copy),
they can contain objects of any type, and support nesting to any depth (they can
contain lists, other dictionaries, and so on).

Of the category mutable mapping

They can be changed in place by assigning to indexes, but don't support the
sequence operations we've seen work on strings and lists. In fact, they can't:
because dictionaries are unordered collections, operations that depend on a
fixed order (e.g., concatenation, slicing) don't make sense. Instead, dictionaries
are the only built-in representative of the mapping type category—objects that
map keys to values.

Tables of object references (hash tables)

If lists are arrays of object references, dictionaries are unordered tables of
object references. Internally, dictionaries are implemented as hash tables (data
structures that support very fast retrieval), which start small and grow on
demand. Moreover, Python employs optimized hashing algorithms to find keys,
so retrieval is very fast. But at the bottom, dictionaries store object references
(not copies), just like lists.

Table 2.8 summarizes some of the most common dictionary operations (see the
library manual for a complete list). Dictionaries are written as a series of key:value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

library manual for a complete list). Dictionaries are written as a series of key:value
pairs, separated by commas, and enclosed in curly braces.[10] An empty dictionary is
an empty set of braces, and dictionaries can be nested by writing one as a value in
another dictionary, or an item in a list (or tuple).

[10] The same note about the relative rarity of constants applies here: we often build up dictionaries by assigning to
new keys at runtime, rather than writing constants. But see the following section on changing dictionaries; lists and
dictionaries are grown in different ways. Assignment to new keys works for dictionaries, but fails for lists (lists are
grown with append).

Table 2.8. Common Dictionary Constants and Operations
Operation Interpretation

d1 = {} Empty dictionary
d2 = {'spam': 2, 'eggs': 3} Two-item dictionary
d3 = {'food': {'ham': 1, 'egg': 2}} Nesting
d2['eggs'], d3['food']['ham'] Indexing by key

d2.has_key('eggs'),
d2.keys(),
d2.values()

Methods: membership test,

keys list,

values list, etc.
len(d1) Length (number stored entries)

d2[key] = new,
del d2[key]

Adding/changing,

deleting

As Table 2.8 illustrates, dictionaries are indexed by key; in this case, the key is a
string object ('eggs'), and nested dictionary entries are referenced by a series of
indexes (keys in square brackets). When Python creates a dictionary, it stores its
items in any order it chooses; to fetch a value back, supply the key that stores it.

2.6.1 Dictionaries in Action

Let's go back to the interpreter to get a feel for some of the dictionary operations in
Table 2.8.

2.6.1.1 Basic operations

Generally, you create dictionaries and access items by key. The built-in len function
works on dictionaries too; it returns the number of items stored away in the dictionary,
or equivalently, the length of its keys list. Speaking of keys lists, the dictionary keys
method returns all the keys in the dictionary, collected in a list. This can be useful for
processing dictionaries sequentially, but you shouldn't depend on the order of the
keys list (remember, dictionaries are randomized).

% python
>>> d2 = {'spam': 2, 'ham': 1, 'eggs': 3}
>>> d2['spam'] # fetch value for key
2
>>> len(d2) # number of entries in dictionary
3
>>> d2.has_key('ham') # key membership test (1 means true)
1
>>> d2.keys() # list of my keys
['eggs', 'spam', 'ham']

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

['eggs', 'spam', 'ham']

2.6.1.2 Changing dictionaries

Dictionaries are mutable, so you can change, expand, and shrink them in place
without making new dictionaries, just as for lists. Simply assign a value to a key to
change or create the entry. The del statement works here too; it deletes the entry
associated with the key specified as an index. Notice that we're nesting a list inside a
dictionary in this example (the value of key "ham"):

>>> d2['ham'] = ['grill', 'bake', 'fry'] # change entry
>>> d2
{'eggs': 3, 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> del d2['eggs'] # delete entry
>>> d2
{'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> d2['brunch'] = 'Bacon' # add new entry
>>> d2
{'brunch': 'Bacon', 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

As with lists, assigning to an existing index in a dictionary changes its associated
value. Unlike lists, whenever you assign a new dictionary key (i.e., one that hasn't
been assigned before), you create a new entry in the dictionary, as done previously
for 'brunch'. This doesn't work for lists, because Python considers an offset out of
bounds if it's beyond the end of a list. To expand a list, you need to use such tools as
the append method or slice assignment instead.

2.6.1.3 A marginally more real example

Here is a more realistic dictionary example. The following example creates a table
that maps programming language names (the keys) to their creators (the values). You
fetch a creator name by indexing on language name:

>>> table = {'Python': 'Guido van Rossum',
... 'Perl': 'Larry Wall',
... 'Tcl': 'John Ousterhout' }
...
>>> language = 'Python'
>>> creator = table[language]
>>> creator
'Guido van Rossum'
>>> for lang in table.keys(): print lang, '\t', table[lang]
...
Tcl John Ousterhout
Python Guido van Rossum
Perl Larry Wall

Notice the last command. Because dictionaries aren't sequences, you can't iterate
over them directly with a for statement, as for strings and lists. But if you need to
step through the items in a dictionary it's easy: calling the dictionary keys method
returns a list of all stored keys you can iterate through with a for. If needed, you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returns a list of all stored keys you can iterate through with a for. If needed, you can
index from key to value inside the for loop as done previously. We'll talk about the
print and for statements in more detail in Chapter 3.

2.6.2 Dictionary Usage Notes

Before we move on to more types, here are a few additional details you should be
aware of when using dictionaries:

Sequence operations don't work

We're being redundant on purpose here, because this is another common
question from new users. Dictionaries are mappings, not sequences; because
there's no notion of ordering among their items, things like concatenation (an
ordered joining) and slicing (extracting contiguous section) simply don't apply. In
fact, Python raises an error when your code runs, if you try.

Assigning to new indexes adds entries

Keys can be created either when you write a dictionary constant (in which case
they are embedded in the constant itself), or when you assign values to new
keys of an existing dictionary object. The end result is the same.

Keys need not always be strings

We've been using strings as keys here, but other immutable objects (not lists)
work just as well. In fact, you could use integers as keys, which makes a
dictionary look much like a list (albeit, without the ordering). Tuples (up next) are
sometimes used as dictionary keys too, allowing for compound key values. And
class instance objects (discussed in Chapter 6) can be used as keys, as long
as they have the proper protocol methods; they need to tell Python that their
values won't change, or else they would be useless as fixed keys.

Why You Will Care: Dictionary Interfaces
Besides being a convenient way to store information by key in your programs, some
Python extensions also present interfaces that look and work the same as dictionaries.
For instance, Python's interface to dbm access-by-key files looks much like a dictionary
that must be opened; strings are stored and fetched using key indexes:

import anydbm
file = anydbm.open("filename") # link to external file
file['key'] = 'data' # store data by key
data = file['key'] # fetch data by key

Later, we'll see that we can store entire Python objects this way too, if we replace
"anydbm" in the above with "shelve" (shelves are access-by-key databases of persistent
Python objects). For Internet work, Python's CGI script support also presents a dictionary-
like interface; a call to cgi.FieldStorage yields a dictionary-like object, with one entry per
input field on the client's web page:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import cgi
form = cgi.FieldStorage() # parse form data (stdin, environ)
if form.has_key('name'):
 showReply('Hello, ' + form['name'].value)

All of these (and dictionaries) are instances of mappings. More on CGI scripts in Chapter
9.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.7 Tuples

The last collection type in our survey is the Python tuple. Tuples construct simple
groups of objects. They work exactly like lists, except that tuples can't be changed in
place (they're immutable) and are usually written as a series of items in parentheses,
not square brackets. Tuples share most of their properties with lists. They are:

Ordered collections of arbitrary objects

Like strings and lists, tuples are an ordered collection of objects; like lists, they
can embed any kind of object.

Accessed by offset

Like strings and lists, items in a tuple are accessed by offset (not key); they
support all the offset-base access operations we've already seen, such as
indexing and slicing.

Of the category immutable sequence

Like strings, tuples are immutable; they don't support any of the in-place change
operations we saw applied to lists. Like strings and lists, tuples are sequences;
they support many of the same operations.

Fixed length, heterogeneous, arbitrarily nestable

Because tuples are immutable, they can't grow or shrink without making a new
tuple; on the other hand, tuples can hold other compound objects (e.g., lists,
dictionaries, other tuples) and so support nesting.

Arrays of object references

Like lists, tuples are best thought of as object reference arrays; tuples store
access points to other objects (references), and indexing a tuple is relatively
quick.

Table 2.9 highlights common tuple operations. Tuples are written as a series of
objects (really, expressions), separated by commas, and enclosed in parentheses. An
empty tuple is just a parentheses pair with nothing inside.

Table 2.9. Common Tuple Constants and Operations
Operation Interpretation

() An empty tuple
t1 = (0,) A one-item tuple (not an expression)
t2 = (0, 1, 2, 3) A four-item tuple
t2 = 0, 1, 2, 3 Another four-item tuple (same as prior line)
t3 = ('abc', ('def', 'ghi')) Nested tuples
t1[i], t3[i][j]

t1[i:j],

len(t1)

Index,

slice,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

len(t1) length
t1 + t2

t2 * 3

Concatenate,

repeat
for x in t2,

3 in t2

Iteration,

membership

The second and fourth entries in Table 2.9 merit a bit more explanation. Because
parentheses can also enclose expressions (see Section 2.3), you need to do
something special to tell Python when a single object in parentheses is a tuple object
and not a simple expression. If you really want a single-item tuple, simply add a
trailing comma after the single item and before the closing parenthesis.

As a special case, Python also allows us to omit the opening and closing parentheses
for a tuple, in contexts where it isn't syntactically ambiguous to do so. For instance, in
the fourth line of the table, we simply listed four items, separated by commas; in the
context of an assignment statement, Python recognizes this as a tuple, even though
we didn't add parentheses. For beginners, the best advice here is that it's probably
easier to use parentheses than it is to figure out when they're optional.

Apart from constant syntax differences, tuple operations (the last three rows in the
table) are identical to strings and lists, so we won't show examples here. The only
differences worth noting are that the +, *, and slicing operations return new tuples
when applied to tuples, and tuples don't provide the methods we saw for lists and
dictionaries; generally speaking, only mutable objects export callable methods in
Python.

2.7.1 Why Lists and Tuples?

This seems to be the first question that always comes up when teaching beginners
about tuples: why do we need tuples if we have lists? Some of it may be historic. But
the best answer seems to be that the immutability of tuples provides some integrity;
you can be sure a tuple won't be changed through another reference elsewhere in a
program. There's no such guarantee for lists, as we'll discover in a moment. Some
built-in operations also require tuples, not lists; for instance, argument lists are
constructed as tuples, when calling functions dynamically with built-ins such as
apply (of course, we haven't met apply yet, so you'll have to take our word for it for
now). As a rule of thumb, lists are the tool of choice for ordered collections you expect
to change; tuples handle the other cases.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.8 Files

Hopefully, most readers are familiar with the notion of files—named storage
compartments on your computer that are managed by your operating system. Our
last built-in object type provides a way to access those files inside Python programs.
The built-in open function creates a Python file object, which serves as a link to a file
residing on your machine. After calling open, you can read and write the associated
external file, by calling file object methods.

Compared to types we've seen so far, file objects are somewhat unusual. They're not
numbers, sequences, or mappings; instead, they export methods only for common file
processing tasks. Technically, files are a prebuilt C extension type that provides a thin
wrapper over the underlying C stdio filesystem; in fact, file object methods have an
almost 1-to-1 correspondence to file functions in the standard C library.

Table 2.10 summarizes common file operations. To open a file, a program calls the
open function, with the external name first, followed by a processing mode ('r'
means open for input, 'w' means create and open for output, 'a' means open for
appending to the end, and others we'll ignore here). Both arguments must be Python
strings.

Table 2.10. Common File Operations
Operation Interpretation

output = open('/tmp/spam', 'w') Create output file ('w' means write)
input = open('data', 'r') Create input file ('r' means read)
S = input.read() Read entire file into a single string
S = input.read(N) Read N bytes (1 or more)
S = input.readline() Read next line (through end-line marker)
L = input.readlines() Read entire file into list of line strings
output.write(S) Write string S onto file
output.writelines(L) Write all line strings in list L onto file
output.close() Manual close (or it's done for you when collected)

Once you have a file object, call its methods to read from or write to the external file.
In all cases, file text takes the form of strings in Python programs; reading a file
returns its text in strings, and text is passed to the write methods as strings.
Reading and writing both come in multiple flavors; Table 2.10 gives the most
common.

Calling the file close method terminates your connection to the external file. We
talked about garbage collection in a footnote earlier; in Python, an object's memory
space is automatically reclaimed as soon as the object is no longer referenced
anywhere in the program. When file objects are reclaimed, Python automatically
closes the file if needed. Because of that, you don't need to always manually close
your files, especially in simple scripts that don't run long. On the other hand, manual
close calls can't hurt and are usually a good idea in larger systems.

2.8.1 Files in Action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is a simple example that demonstrates file-processing basics. We first open a
new file for output, write a string (terminated with an end-of-line marker, '\n'), and
close the file. Later, we open the same file again in input mode, and read the line
back. Notice that the second readline call returns an empty string; this is how
Python file methods tell us we've reached the end of the file (empty lines are strings
with just an end-of-line character, not empty strings).

>>> myfile = open('myfile', 'w') # open for output (creates)
>>> myfile.write('hello text file\n') # write a line of text
>>> myfile.close()
>>> myfile = open('myfile', 'r') # open for input
>>> myfile.readline() # read the line back
'hello text file\012'
>>> myfile.readline() # empty string: end of file
''

There are additional, more advanced file methods not shown in Table 2.10; for
instance, seek resets your current position in a file, flush forces buffered output to
be written, and so on. See the Python library manual or other Python books for a
complete list of file methods. Since we're going to see file examples in Chapter 9, we
won't present more examples here.

2.8.2 Related Python Tools

File objects returned by the open function handle basic file-interface chores. In
Chapter 8, you'll see a handful of related but more advanced Python tools. Here's a
quick preview of all the file-like tools available:

File descriptor-based files

The os module provides interfaces for using low-level descriptor-based files.

DBM keyed files

The anydbm module provides an interface to access-by-key files.

Persistent objects

The shelve and pickle modules support saving entire objects (beyond
simple strings).

Pipes

The os module also provides POSIX interfaces for processing pipes.

Other

There are also optional interfaces to database systems, B-Tree based files, and
more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.9 General Object Properties

Now that we've seen all of Python's built-in types, let's take a quick look at some of
the properties they share. Some of this section is a review of ideas we've already
seen at work.

2.9.1 Type Categories Revisited

Table 2.11 classifies all the types we've seen, according to the type categories we
introduced earlier. As we've seen, objects share operations according to their
category—for instance, strings, lists, and tuples all share sequence operations. As
we've also seen, only mutable objects may be changed in place. You can change lists
and dictionaries in place, but not numbers, strings, or tuples.[11] Files only export
methods, so mutability doesn't really apply (they may be changed when written, but
this isn't the same as Python type constraints).

[11] You might think that number immutability goes without saying, but that's not the case in every programming
language. For instance, some early versions of FORTRAN allowed users to change the value of an integer constant by
assigning to it. This won't work in Python, because numbers are immutable; you can rest assured that 2 will always be
2.

Table 2.11. Object Classifications
Object type Category Mutable?

Numbers Numeric No
Strings Sequence No
Lists Sequence Yes
Dictionaries Mapping Yes
Tuples Sequence No
Files Extension N/A

Why You Will Care: Operator Overloading
Later, we'll see that objects we implement ourselves with classes can pick
and choose from these categories arbitrarily. For instance, if you want to
provide a new kind of specialized sequence object that is consistent with
built-in sequences, code a class that overloads things like indexing, slicing,
and concatenation:

class MySequence:
 def __getitem__(self, index):
 # called on self[index], for x in self, x in self
 def __getslice__(self, low, high):
 # called on self[low:high]
 def __add__(self, other):
 # called on self + other

and so on. You can also make the new object mutable or not, by selectively
implementing methods called for in-place change operations (e.g.,
__setitem__ is called on self[index]=value assignments). Although

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__setitem__ is called on self[index]=value assignments). Although
this book isn't about C integration, it's also possible to implement new objects
in C, as C extension types. For these, you fill in C function pointer slots to
choose between number, sequence, and mapping operation sets. Python
built-in types are really precoded C extension types; like Guido, you need to
be aware of type categories when coding your own.

2.9.2 Generality

We've seen a number of compound object types (collections with components). In
general:

Lists, dictionaries, and tuples can hold any kind of object.

Lists, dictionaries, and tuples can be arbitrarily nested.

Lists and dictionaries can dynamically grow and shrink.

Because they support arbitrary structures, Python's compound object types are good
at representing complex information in a program. For instance, the following
interaction defines a tree of nested compound sequence objects; to access its
components, we string as many index operations as required. Python evaluates the
indexes from left to right, and fetches a reference to a more deeply nested object at
each step. (This may be a pathologically complicated data structure, but it illustrates
the syntax used to access nested objects in general.)

>>> L = ['abc', [(1, 2), ([3], 4)], 5]
>>> L[1]
[(1, 2), ([3], 4)]
>>> L[1][1]
([3], 4)
>>> L[1][1][0]
[3]
>>> L[1][1][0][0]
3

2.9.3 Shared References

We mentioned earlier that assignments always store references to objects, not
copies. In practice, this is usually what you want. But because assignments can
generate multiple references to the same object, you sometimes need to be aware
that changing a mutable object in place may affect other references to the same
object in your program. For instance, in the following, we create a list assigned to X
and another assigned to L that embeds a reference back to list X. We also create a
dictionary D that contains another reference back to list X:

>>> X = [1, 2, 3]
>>> L = ['a', X, 'b']
>>> D = {'x':X, 'y':2}
At this point, there are three references to the list we created first: from name X, from
the list assigned to L, and from the dictionary assigned to D. The situation is sketched

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the list assigned to L, and from the dictionary assigned to D. The situation is sketched
in Figure 2.2.

Figure 2.2. Shared object references

Since lists are mutable, changing the shared list object from any of the three
references changes what the other two reference:

>>> X[1] = 'surprise' # changes all three references!
>>> L
['a', [1, 'surprise', 3], 'b']
>>> D
{'x': [1, 'surprise', 3], 'y': 2}

One way to understand this is to realize that references are a higher-level analog of
pointers in languages such as C. Although you can't grab hold of the reference itself,
it's possible to store the same reference in more than one place

2.9.4 Comparisons, Equality, and Truth

All Python objects also respond to the comparisons: test for equality, relative
magnitude, and so on. Unlike languages like C, Python comparisons always inspect
all parts of compound objects, until a result can be determined. In fact, when nested
objects are present, Python automatically traverses data structures and applies
comparisons recursively. For instance, a comparison of list objects compares all their
components automatically:

>>> L1 = [1, ('a', 3)] # same value, unique objects
>>> L2 = [1, ('a', 3)]
>>> L1 == L2, L1 is L2 # equivalent?, same object?
(1, 0)

Here, L1 and L2 are assigned lists that are equivalent, but distinct objects. Because
of the nature of Python references, there are two ways to test for equality:

The == operator tests value equivalence

Python performs an equivalence test, comparing all nested objects recursively

The is operator tests object identity

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Python tests whether the two are really the same object (i.e., live at the same
address).

In our example, L1 and L2 pass the == test (they have equivalent values because all
their components are equivalent), but fail the is check (they are two different
objects). As a rule of thumb, the == operator is used in almost all equality checks, but
we'll see cases of both operators put to use later in the book. Relative magnitude
comparisons are applied recursively to nested data structures too:

>>> L1 = [1, ('a', 3)]
>>> L2 = [1, ('a', 2)]
>>> L1 < L2, L1 == L2, L1 > L2 # less, equal, greater: a tuple of results
(0, 0, 1)

Here, L1 is greater than L2 because the nested 3 is greater than 2. Notice that the
result of the last line above is really a tuple of three objects—the results of the three
expressions we typed (an example of a tuple without its enclosing parentheses). The
three values represent true and false values; in Python as in C, an integer represents
false and an integer 1 represents true. Unlike C, Python also recognizes any empty
data structure as false and any nonempty data structure as true. Table 2.12 gives
examples of true and false objects in Python.

Table 2.12. Example Object Truth Values
Object Value

"spam" True
"" False
[] False
{} False
1 True
0.0 False
None False

Python also provides a special object called None (the last item in Table 2.12),
which is always considered to be false. None is the only value of a special data type
in Python; it typically serves as an empty placeholder, much like a NULL pointer in C.
In general, Python compares the types we've seen in this chapter, as follows:

Numbers are compared by relative magnitude.

Strings are compared lexicographically, character-by-character ("abc" < "ac").

Lists and tuples are compared by comparing each component, from left to right.

Dictionaries are compared as though comparing sorted (key, value) lists.

In later chapters, we'll see other object types that can change the way they get
compared. For instance, class instances are compared by address by default, unless
they possess special comparison protocol methods.

2.9.5 Python's Type Hierarchies

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, Figure 2.3 summarizes all the built-in object types available in Python and
their relationships. In this chapter, we've looked at the most prominent of these; other
kinds of objects in Figure 2.3 either correspond to program units (e.g., functions and
modules), or exposed interpreter internals (e.g., stack frames and compiled code).

Figure 2.3. Built-in type hierarchies

The main point we'd like you to notice here is that everything is an object type in a
Python system and may be processed by your Python programs. For instance, you
can pass a stack frame to a function, assign it to a variable, stuff it into a list or
dictionary, and so on. Even types are an object type in Python: a call to the built-in
function type(X) returns the type object of object X. Besides making for an amazing
tongue-twister, type objects can be used for manual type comparisons in Python.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.10 Built-in Type Gotchas

In this and most of the next few chapters, we'll include a discussion of common
problems that seem to bite new users (and the occasional expert), along with their
solutions. We call these gotchas—a degenerate form of "got you"—because some
may catch you by surprise, especially when you're just getting started with Python.
Others represent esoteric Python behavior, which comes up rarely (if ever!) in real
programming, but tends to get an inordinate amount of attention from language
aficionados on the Internet (like us).[12] Either way, all have something to teach us
about Python; if you can understand the exceptions, the rest is easy.

[12] We should also note that Guido could make some of the gotchas we describe go away in future Python releases,
but most reflect fundamental properties of the language that are unlikely to change (but don't quote us on that).

2.10.1 Assignment Creates References, Not Copies

We've talked about this earlier, but we want to mention it again here, to underscore
that it can be a gotcha if you don't understand what's going on with shared references
in your program. For instance, in the following, the list object assigned to name L is
referenced both from L and from inside the list assigned to name M. Changing L in
place changes what M references too:

>>> L = [1, 2, 3]
>>> M = ['X', L, 'Y'] # embed a reference to L
>>> M
['X', [1, 2, 3], 'Y']

>>> L[1] = 0 # changes M too
>>> M
['X', [1, 0, 3], 'Y']

2.10.1.1 Solutions

This effect usually becomes important only in larger programs, and sometimes shared
references are exactly what you want. If they're not, you can avoid sharing objects by
copying them explicitly; for lists, you can always make a top-level copy by using an
empty-limits slice:

>>> L = [1, 2, 3]
>>> M = ['X', L[:], 'Y'] # embed a copy of L
>>> L[1] = 0 # only changes L, not M
>>> L
[1, 0, 3]
>>> M
['X', [1, 2, 3], 'Y']

Remember, slice limits default to and the length of the sequence being sliced; if both
are omitted, the slice extracts every item in the sequence, and so makes a top-level
copy (a new, unshared object).[13]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[13] Empty-limit slices still only make a top-level copy; if you need a complete copy of a deeply nested data structure,
you can also use the standard copy module that traverses objects recursively. See the library manual for details.

2.10.2 Repetition Adds One-Level Deep

When we introduced sequence repetition, we said it's like adding a sequence to itself
a number of times. That's true, but when mutable sequences are nested, the effect
might not always be what you expect. For instance, in the following, X is assigned to L
repeated four times, whereas Y is assigned to a list containing L repeated four
times:

>>> L = [4, 5, 6]
>>> X = L * 4 # like [4, 5, 6] + [4, 5, 6] + ...
>>> Y = [L] * 4 # [L] + [L] + ... = [L, L,...]
>>> X
[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]
>>> Y
[[4, 5, 6], [4, 5, 6], [4, 5, 6], [4, 5, 6]]

Because L was nested in the second repetition, Y winds up embedding references
back to the original list assigned to L, and is open to the same sorts of side effects we
noted in the last section:

>>> L[1] = 0 # impacts Y but not X
>>> X
[4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6]
>>> Y
[[4, 0, 6], [4, 0, 6], [4, 0, 6], [4, 0, 6]]

2.10.2.1 Solutions

This is really another way to trigger the shared mutable object reference issue, so the
same solutions above apply here. And if you remember that repetition, concatenation,
and slicing copy only the top level of their operand objects, these sorts of cases make
much more sense.

2.10.3 Cyclic Data Structures Can't Be Printed

We actually encountered this gotcha in a prior exercise: if a compound object
contains a reference to itself, it's called a cyclic object. In Python versions before
Release 1.5.1, printing such objects failed, because the Python printer wasn't smart
enough to notice the cycle (you'll keep seeing the same text printed over and over,
until you break execution). This case is now detected, but it's worth knowing; cyclic
structures may also cause code of your own to fall into unexpected loops if you're not
careful. See the solutions to Chapter 1 exercises for more details.

>>> L = ['hi.']; L.append(L) # append reference to same object
>>> L # before 1.5.1: a loop! (cntl-C breaks)

2.10.3.1 Solutions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Don't do that. There are good reasons to create cycles, but unless you have code that
knows how to handle them, you probably won't want to make your objects reference
themselves very often in practice (except as a parlor trick).

2.10.4 Immutable Types Can't Be Changed in Place

Finally, as we've mentioned plenty of times by now: you can't change an immutable
object in place:

T = (1, 2, 3)
T[2] = 4 # error!
T = T[:2] + (4,) # okay: (1, 2, 4)

2.10.4.1 Solutions

Construct a new object with slicing, concatenation, and so on, and assign it back to
the original reference if needed. That might seem like extra coding work, but the
upside is that the previous gotchas can't happen when using immutable objects such
as tuples and strings; because they can't be changed in place, they are not open to
the sorts of side effects that lists are.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.11 Summary

In this chapter, we've met Python's built-in object types—numbers, strings, lists,
dictionaries, tuples, and files—along with the operations Python provides for
processing them. We've also noticed some of the themes underlying objects in
Python along the way; in particular, the notions of operation overloading and type
categories help to simplify types in Python. Finally, we've seen a few common pitfalls
of built-in types.

Almost all the examples in this chapter were deliberately artificial to illustrate the
basics. In the next chapter, we'll start studying statements that create and process
objects and let us build up programs that do more realistic work.

Other Types in Python
Besides the core objects we've studied in this chapter, a typical Python
installation has dozens of other object types available as linked-in C
extensions or Python classes. We'll see examples of a few later in the book
—regular expression objects, DBM files, GUI widgets, and so on. The main
difference between these extra tools and the built-in types we've just seen is
that the built-ins provide special language creation syntax for their objects
(e.g., 4 for an integer, [1,2] for a list, the open function for files). Other
tools are generally exported in a built-in module that you must first import to
use. See Python's library reference for a comprehensive guide to all the
tools available to Python programs.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

2.12 Exercises

This session asks you to get your feet wet with built-in object fundamentals. As
before, a few new ideas may pop up along the way, so be sure to flip to Appendix C
when you're done (and even when you're not).

1. The basics. Experiment interactively with the common type operations found in
this chapter's tables. To get you started, bring up the Python interactive
interpreter, type the expressions below, and try to explain what's happening in
each case:

2 ** 16
2 / 5, 2 / 5.0

"spam" + "eggs"
S = "ham"
"eggs " + S
S * 5
S[:0]
"green %s and %s" % ("eggs", S)

('x',)[0]
('x', 'y')[1]

L = [1,2,3] + [4,5,6]
L, L[:], L[:0], L[-2], L[-2:]
([1,2,3] + [4,5,6])[2:4]
[L[2], L[3]]
L.reverse(); L
L.sort(); L
L.index(4)

{'a':1, 'b':2}['b']
D = {'x':1, 'y':2, 'z':3}
D['w'] = 0
D['x'] + D['w']
D[(1,2,3)] = 4
D.keys(), D.values(), D.has_key((1,2,3))

[[]], ["",[],(),{},None]

2. Indexing and slicing. At the interactive prompt, define a list named L that
contains four strings or numbers (e.g., L=[0,1,2,3]). Now, let's experiment
with some boundary cases.

a. What happens when you try to index out of bounds (e.g., L[4])?

b. What about slicing out of bounds (e.g., L[-1000:100])?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What about slicing out of bounds (e.g., L[-1000:100])?

c. Finally, how does Python handle it if you try to extract a sequence in
reverse—with the lower bound greater than the higher bound (e.g.,
L[3:1])? Hint: try assigning to this slice (L[3:1] = ['?']) and see
where the value is put. Do you think this may be the same phenomenon
you saw when slicing out of bounds?

3. Indexing, slicing, and del. Define another list L with four items again, and assign
an empty list to one of its offsets (e.g., L[2] = []): what happens? Then try
assigning an empty list to a slice (L[2:3] = []): what happens now? Recall
that slice assignment deletes the slice and inserts the new value where it used
to be. The del statement deletes offsets, keys, attributes, and names: try using
it on your list to delete an item (e.g., del L[0]). What happens if you del an
entire slice (del L[1:])? What happens when you assign a nonsequence to a
slice (L[1:2] = 1)?

4. Tuple assignment. What do you think is happening to X and Y when you type
this sequence? We'll return to this construct in Chapter 3, but it has something
to do with the tuples we've seen here.

>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X

5. Dictionary keys. Consider the following code fragments:

>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
We learned that dictionaries aren't accessed by offsets; what's going on here?
Does the following shed any light on the subject? (Hint: strings, integers, and
tuples share which type category?)

>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

6. Dictionary indexing. Create a dictionary named D with three entries, for keys a,
b, and c. What happens if you try to index a nonexistent key d (D['d'])? What
does Python do if you try to assign to a nonexistent key d (e.g., D['d'] =
'spam')? How does this compare to out-of-bounds assignments and
references for lists? Does this sound like the rule for variable names?

7. Generic operations. Run interactive tests to answer the following questions.

a. What happens when you try to use the + operator on different/mixed types
(e.g., string + list, list + tuple)?

b. Does + work when one of the operands is a dictionary?

c. Does the append method work for both lists and strings? How about the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Does the append method work for both lists and strings? How about the
using the keys method on lists? (Hint: What does append assume about
its subject object?)

d. Finally, what type of object do you get back when you slice or concatenate
two lists or two strings?

8. String indexing. Define a string S of four characters: S = "spam". Then type the
following expression: S[0][0][0][0][0]. Any clues as to what's happening
this time? (Hint: recall that a string is a collection of characters, but Python
characters are one-character strings.) Does this indexing expression still work if
you apply it to a list such as: ['s', 'p', 'a', 'm']? Why?

9. Immutable types. Define a string S of 4 characters again: S = "spam". Write
an assignment that changes the string to "slam", using only slicing and
concatenation. Could you perform the same operation using just indexing and
concatenation? How about index assignment?

10. Nesting. Write a data-structure that represents your personal information: name
(first, middle, last), age, job, address, email ID, and phone number. You may
build the data structure with any combination of built-in object types you like:
lists, tuples, dictionaries, strings, numbers. Then access the individual
components of your data structures by indexing. Do some structures make
more sense than others for this object?

11. Files. Write a script that creates a new output file called myfile.txt and writes the
string "Hello file world!" in it. Then write another script that opens
myfile.txt, and reads and prints its contents. Run your two scripts from the
system command line. Does the new file show up in the directory where you ran
your scripts? What if you add a different directory path to the filename passed to
open?

12. The dir function revisited. Try typing the following expressions at the interactive
prompt. Starting with Version 1.5, the dir function we met in Chapter 1 has
been generalized to list all attributes of any Python object you're likely to be
interested in. If you're using an earlier version than 1.5, the __methods__
scheme has the same effect.

[].__methods__ # 1.4 or 1.5
dir([]) # 1.5 and later
dir({})

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 3. Basic Statements
Now that we've seen Python's fundamental built-in object types, we're going to move
on in this chapter to explore its basic statement types. In simple terms, statements are
the things you write to tell Python what your programs should do. If programs do
things with stuff, statements are the way you specify what sort of things a program
does. By and large, Python is a procedural, statement-based language; by combining
statements, you specify a procedure Python performs to satisfy a program's goals.

Another way to understand the role of statements is to revisit the concept hierarchy
we introduced in Chapter 2. In that chapter we talked about built-in objects; now we
climb the hierarchy to the next level:

1. Programs are composed of modules.

2. Modules contain statements.

3. Statements create and process objects.

Statements process the objects we've already seen. Moreover, statements are where
objects spring into existence (e.g., in assignment statement expressions), and some
statements create entirely new kinds of objects (functions, classes, and so on). And
although we won't discuss this in detail until Chapter 5, statements always exist in
modules, which themselves are managed with statements.

Table 3.1 summarizes Python's statement set. We've introduced a few of these
already; for instance, in Chapter 2, we saw that the del statement deletes data
structure components, the assignment statement creates references to objects, and
so on. In this chapter, we fill in details that were skipped and introduce the rest of
Python's basic procedural statements. We stop short when statements that have to
do with larger program units—functions, classes, modules, and exceptions—are
reached. Since these statements lead to more sophisticated programming ideas, we'll
give them each a chapter of their own. More exotic statements like exec (which
compiles and executes code we create as strings) and assert are covered later in
the book.

Table 3.1. Python Statements
Statement Role Examples

Assignment references curly, moe, larry = 'good', 'bad', 'ugly'
Calls functions stdout.write("spam, ham, toast\n")
Print Printing objects print 'The Killer', joke
If/elif/else Selecting actions if "python" in text: print text
For/else iteration for x in mylist: print x
While/else General loops while 1: print 'hello'
Pass placeholder while 1: pass

Continue Loop jumps while 1:
 if not line: break

Try/except/finally exceptions try: action()
except: print 'action error'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Raise exception raise endSearch, location
Import, From Module access import sys; from sys import stdin
Def, Return functions def f(a, b, c=1, *d): return a+b+c+d[0]
Class Building objects class subclass: staticData = []
Global Namespaces def function(): global x, y; x = 'new'
Del Deleting things del data[k]; del data[i:j]; del obj.attr
Exec Running code strings exec "import " + modName in gdict, ldict
Assert Debugging checks assert X > Y

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.1 Assignment

We've been using the Python assignment statement already, to assign objects to
names. In its basic form, you write a target of an assignment on the left of an equals
sign and an object to be assigned on the right. The target on the left may be a name
or object component, and the object on the right can be an arbitrary expression that
computes an object. For the most part, assignment is straightforward to use, but here
are a few properties to keep in mind:

Assignments create object references

As we've already seen, Python assignment stores references to objects in
names or data structure slots. It always creates references to objects, instead of
copying objects. Because of that, Python variables are much more like pointers
than data storage areas as in C.

Names are created when first assigned

As we've also seen, Python creates variable names the first time you assign
them a value (an object reference). There's no need to predeclare names ahead
of time. Some (but not all) data structure slots are created when assigned too
(e.g., dictionary entries, some object attributes). Once assigned, a name is
replaced by the value it references when it appears in an expression.

Names must be assigned before being referenced

Conversely, it's an error to use a name you haven't assigned a value to yet.
Python raises an exception if you try, rather than returning some sort of
ambiguous (and hard to notice) default value.

Implicit assignments: import, from, def, class, for, function arguments, etc.

In this section, we're concerned with the = statement, but assignment occurs in
many contexts in Python. For instance, we'll see later that module imports,
function and class definitions, for loop variables, and function arguments are
all implicit assignments. Since assignment works the same everywhere it pops
up, all these contexts simply bind names to object references at runtime.

Table 3.2 illustrates the different flavors of the assignment statement in Python.

Table 3.2. Assignment Statement Forms
Operation Interpretation

spam = 'Spam' Basic form
spam, ham = 'yum', 'YUM' Tuple assignment (positional)
[spam, ham] = ['yum', 'YUM'] List assignment (positional)
spam = ham = 'lunch' Multiple-target

The first line is by far the most common: binding a single object to a name (or data-
structure slot). The other table entries represent special forms:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tuple and list unpacking assignments

The second and third lines are related. When you use tuples or lists on the left
side of the =, Python pairs objects on the right side with targets on the left and
assigns them from left to right. For example, in the second line of the table,
name spam is assigned the string 'yum', and name ham is bound to string
'YUM'. Internally, Python makes a tuple of the items on the right first, so this is
often called tuple (and list) unpacking assignment.

Multiple-target assignments

The last line shows the multiple-target form of assignment. In this form, Python
assigns a reference to the same object (the object farthest to the right) to all the
targets on the left. In the table, names spam and ham would both be assigned a
reference to the string 'lunch', and so share the same object. The effect is
the same as if you had coded ham='lunch', followed by spam=ham, since
ham evaluates to the original string object.

Here's a simple example of unpacking assignment in action. We introduced the effect
of the last line in a solution to the exercise from Chapter 2: since Python creates a
temporary tuple that saves the items on the right, unpacking assignments are also a
way to swap two variables' values without creating a temporary of our own.

>>> nudge = 1
>>> wink = 2
>>> A, B = nudge, wink # tuples
>>> A, B
(1, 2)
>>> [C, D] = [nudge, wink] # lists
>>> C, D
(1, 2)
>>> nudge, wink = wink, nudge # tuples: swaps values
>>> nudge, wink # same as T=nudge; nudge=wink; wink=T
(2, 1)

3.1.1 Variable Name Rules

Now that we've told you the whole story of assignment statements, we should also get
a bit more formal in our use of variable names. In Python, names come into existence
when you assign values to them, but there are a few rules to follow when picking
names for things in our program. Python's variable name rules are similar to C's:

Syntax: (underscore or letter) + (any number of letters, digits, or underscores)

Variable names must start with an underscore or letter, and be followed by any
number of letters, digits, or underscores. _spam, spam, and Spam_1 are legal
names, but 1_Spam, spam$, and @#! are not.

Case matters: SPAM is not the same as spam

Python always pays attention to case in programs, both in names you create
and in reserved words. For instance, names X and x refer to two different

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and in reserved words. For instance, names X and x refer to two different
variables.

Reserved words are off limits

Names we define cannot be the same as words that mean special things in the
Python language. For instance, if we try to use a variable name like class,
Python will raise a syntax error, but klass and Class work fine. The list below
displays the reserved words (and hence off limits to us) in Python.

and assert break class continue
def del elif else except
exec finally for from global
if import in is lambda
not or pass print raise
return try while

Before moving on, we'd like to remind you that it's crucial to keep Python's distinction
between names and objects clear. As we saw in Chapter 2, objects have a type
(e.g., integer, list), and may be mutable or not. Names, on the other hand, are just
references to objects. They have no notion of mutability and have no associated type
information apart from the type of the object they happen to be bound to at a given
point in time. In fact, it's perfectly okay to assign the same name to different kinds of
objects at different times:

>>> x = 0 # x bound to an integer object
>>> x = "Hello" # now it's a string
>>> x = [1, 2, 3] # and now it's a list
In later examples, we'll see that this generic nature of names can be a decided
advantage in Python programming.[1]

[1] If you've used C++ in the past, you may be interested to know that there is no notion of C++'s const declaration in
Python; certain objects may be immutable, but names can always be assigned. Or usually; as we'll see in later
chapters, Python also has ways to hide names in classes and modules, but they're not the same as C++'s
declarations.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.2 Expressions

In Python, you can use expressions as statements too. But since the result of the
expression won't be saved, it makes sense to do so only if the expression does
something useful as a side effect. Expressions are commonly used as statements in
two situations:

For calls to functions and methods

Some functions and methods do lots of work without returning a value. Since
you're not interested in retaining the value they return, you can call such
functions with an expression statement. Such functions are sometimes called
procedures in other languages; in Python, they take the form of functions that
don't return a value.

For printing values at the interactive prompt

As we've already seen, Python echoes back the results of expressions typed at
the interactive command line. Technically, these are expression statements too;
they serve as a shorthand for typing print statements.

Table 3.3 lists some common expression statement forms in Python; we've seen
most before. Calls to functions and methods are coded with a list of objects (really,
expressions that evaluate to objects) in parentheses after the function or method.

Table 3.3. Common Python Expression Statements
Operation Interpretation

spam(eggs, ham) Function calls
spam.ham(eggs) Method calls
spam Interactive print
spam < ham and ham != eggs Compound expressions
spam < ham < eggs Range tests

The last line in the table is a special form: Python lets us string together magnitude
comparison tests, in order to code chained comparisons such as range tests. For
instance, the expression (A < B < C) tests whether B is between A and C; it's
equivalent to the Boolean test (A < B and B < C) but is easier on the eyes (and
keyboard). Compound expressions aren't normally written as statements, but it's
syntactically legal to do so and can even be useful at the interactive prompt if you're
not sure of an expression's result.

Although expressions can appear as statements in Python,
statements can't be used as expressions. For instance, unlike C,
Python doesn't allow us to embed assignment statements (=) in
other expressions. The rationale for this is that it avoids common
coding mistakes; you can't accidentally change a variable by
typing = when you really mean to use the == equality test.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.3 Print

The print statement simply prints objects. Technically, it writes the textual
representation of objects to the standard output stream. The standard output stream
happens to be the same as the C stdout stream and usually maps to the window
where you started your Python program (unless you've redirected it to a file in your
system's shell).

In Chapter 2, we also saw file methods that write text. The print statement is
similar, but more focused: print writes objects to the stdout stream (with some
default formatting), but file write methods write strings to files. Since the standard
output stream is available in Python as the stdout object in the built-in sys module
(aka sys.stdout), it's possible to emulate print with file writes (see below), but
print is easier to use.

Table 3.4 lists the print statement's forms.

Table 3.4. Print Statement Forms
Operation Interpretation

print spam, ham Print objects to sys.stdout, add a space between
print spam, ham, Same, but don't add newline at end

By default, print adds a space between items separated by commas and adds a
linefeed at the end of the current output line. To suppress the linefeed (so you can
add more text on the same line later), end your print statement with a comma, as
shown in the second line of the table. To suppress the space between items, you can
instead build up an output string using the string concatenation and formatting tools in
Chapter 2:

>>> print "a", "b"
a b
>>> print "a" + "b"
ab
>>> print "%s...%s" % ("a", "b")
a...b

3.3.1 The Python "Hello World" Program

And now, without further delay, here's the script you've all been waiting for (drum roll
please)—the hello world program in Python. Alas, it's more than a little anticlimactic.
To print a hello world message in Python, you simply print it:

>>> print 'hello world' # print a string object
hello world

>>> 'hello world' # interactive prints
'hello world'

>>> import sys # printing the hard way

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> import sys # printing the hard way
>>> sys.stdout.write('hello world\n')
hello world

Printing is as simple as it should be in Python; although you can achieve the same
effect by calling the write method of the sys.stdout file object, the print
statement is provided as a simpler tool for simple printing jobs. Since expression
results are echoed in the interactive command line, you often don't even need to use
a print statement there; simply type expressions you'd like to have printed.

Why You Will Care: print and stdout
The equivalence between the print statement and writing to sys.stdout is important to
notice. It's possible to reassign sys.stdout to a user-defined object that provides the same
methods as files (e.g., write). Since the print statement just sends text to the
sys.stdout.write method, you can capture printed text in your programs by assigning
sys.stdout to an object whose write method saves the text. For instance, you can send
printed text to a GUI window by defining an object with a write method that does the routing.
We'll see an example of this trick later in the book, but abstractly, it looks like this:

class FileFaker:
 def write(self, string):
 # do something with the string

import sys
sys.stdout = FileFaker()
print someObjects # sends to the write method of the class

Python's built-in raw_input() function reads from the sys.stdin file, so you can
intercept read requests in a similar way (using classes that implement file-like read methods).
Notice that since print text goes to the stdout stream, it's the way to print HTML in CGI
scripts (see Chapter 9). It also means you can redirect Python script input and output at the
operating system's command line, as usual:

python script.py < inputfile > outputfile
python script.py | filter

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.4 if Tests

The Python if statement selects actions to perform. It's the primary selection tool in
Python and represents much of the logic a Python program possesses. It's also our
first compound statement; like all compound Python statements, the if may contain
other statements, including other ifs. In fact, Python lets you combine statements in
a program both sequentially (so that they execute one after another), and arbitrarily
nested (so that they execute only under certain conditions).

3.4.1 General Format

The Python if statement is typical of most procedural languages. It takes the form of
an if test, followed by one or more optional elif tests (meaning "else if"), and ends
with an optional else block. Each test and the else have an associated block of
nested statements indented under a header line. When the statement runs, Python
executes the block of code associated with the first test that evaluates to true, or the
else block if all tests prove false. The general form of an if looks like this:

if <test1>: # if test
 <statements1> # associated block
elif <test2>: # optional elif's
 <statements2>
else: # optional else
 <statements3>

3.4.2 Examples

Here are two simple examples of the if statement. All parts are optional except the
initial if test and its associated statements. Here's the first:

>>> if 1:
... print 'true'
...
true
>>> if not 1:
... print 'true'
... else:
... print 'false'
...
false

Now, here's an example of the most complex kind of if statement—with all its
optional parts present. The statement extends from the if line, through the else's
block. Python executes the statements nested under the first test that is true, or else
the else part. In practice, both the elif and else parts may be omitted, and there
may be more than one statement nested in each section:

>>> x = 'killer rabbit'
>>> if x == 'roger':

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> if x == 'roger':
... print "how's jessica?"
... elif x == 'bugs':
... print "what's up doc?"
... else:
... print 'Run away! Run away!'
...
Run away! Run away!

If you've used languages like C or Pascal, you might be interested to know that there
is no switch (or case) statement in Python. Instead, multiway branching is coded as
a series of if/elif tests as done above, or by indexing dictionaries or searching
lists. Since dictionaries and lists can be built at runtime, they're sometimes more
flexible than hardcoded logic:

>>> choice = 'ham'
>>> print {'spam': 1.25, # a dictionary-based 'switch'
... 'ham': 1.99, # use has_key() test for default case
... 'eggs': 0.99,
... 'bacon': 1.10}[choice]
1.99

An almost equivalent if statement might look like the following:

>>> if choice == 'spam':
... print 1.25
... elif choice == 'ham':
... print 1.99
... elif choice == 'eggs':
... print 0.99
... elif choice == 'bacon':
... print 1.10
... else:
... print 'Bad choice'
...
1.99

Dictionaries are good at associating values with keys, but what about more
complicated actions you can code in if statements? We can't get into many details
yet, but in Chapter 4, we'll see that dictionaries can also contain functions to
represent more complex actions.

3.4.3 Python Syntax Rules

Since the if statement is our first compound statement, we need to say a few words
about Python's syntax rules now. In general, Python has a simple, statement-based
syntax. But there are a few properties you need to know:

Statements execute one after another, until you say otherwise

Python normally runs statements in a file or nested block from first to last, but
statements like the if (and, as we'll see in a moment, loops) cause the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statements like the if (and, as we'll see in a moment, loops) cause the
interpreter to jump around in your code. Because Python's path through a
program is called the control flow, things like the if that affect it are called
control-flow statements.

Block and statement boundaries are detected automatically

There are no braces or begin/end delimiters around blocks of code; instead,
Python uses the indentation of statements under a header to group the
statements in a nested block. Similarly, Python statements are not normally
terminated with a semicolon as in C; rather, the end of a line marks the end of
most statements.

Compound statements = header, `:', indented statements

All compound statements in Python follow the same pattern: a header line
terminated with a colon, followed by one or more nested statements indented
under the header. The indented statements are called a block (or sometimes, a
suite). In the if statement, the elif and else clauses are part of the if, but
are header lines in their own right.

S paces and comments are usually ignored

Spaces inside statements and expressions are almost always ignored (except in
string constants and indentation). So are comments: they start with a #
character (not inside a string constant) and extend to the end of the current line.
Python also has support for something called documentation strings associated
with objects, but we'll ignore these for the time being.

As we've seen, there are no variable type declarations in Python; this fact alone
makes for a much simpler language syntax than what you may be used to. But for
most new users, the lack of braces and semicolons to mark blocks and statements
seems to be the most novel syntactic feature of Python, so let's explore what this
means in more detail here.[2]

[2] It's probably more novel if you're a C or Pascal programmer. Python's indentation-based syntax is actually based
on the results of a usability study of nonprogrammers, conducted for the ABC language. Python's syntax is often called
the "what you see is what you get" of languages; it enforces a consistent appearance that tends to aid readability and
avoid common C and C++ errors.

3.4.3.1 B lock delimiters

As mentioned, block boundaries are detected by line indentation: all statements
indented the same distance to the right belong to the same block of code, until that
block is ended by a line less indented. Indentation can consist of any combination of
spaces and tabs; tabs count for enough spaces to move the current column number
up to a multiple of 8 (but it's usually not a good idea to mix tabs and spaces). Blocks
of code can be nested by indenting them further than the enclosing block. For
instance, Figure 3.1 sketches the block structure of this example:

Figure 3.1. Nested code blocks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

x = 1
if x:
 y = 2
 if y:
 print 'block2'
 print 'block1'
print 'block0'

Notice that code in the outermost block must start in column 1, since it's unnested;
nested blocks can start in any column, but multiples of 4 are a common indentation
style. If this all sounds complicated, just code blocks as you would in C or Pascal, and
omit the delimiters; consistently-indented code always satisfies Python's rules.

3.4.3.2 S tatement delimiters

As also mentioned, statements normally end at the end of the line they appear on, but
when statements are too long to fit on a single line, a few special rules may be used:

Statements may span lines if you're continuing an open syntactic pair

For statements that are too long to fit on one line, Python lets you continue
typing the statement on the next line, if you're coding something enclosed in (),
{}, or [] pairs. For instance, parenthesized expressions and dictionary and list
constants can span any number of lines. Continuation lines can start at any
indentation level.

Statements may span lines if they end in a backslash

This is a somewhat outdated feature, but if a statement needs to span multiple
lines, you can also add a backslash (\) at the end of the prior line to indicate
you're continuing on the next line (much like C #define macros). But since you
can also continue by adding parentheses around long constructs, backslashes
are almost never needed.

Other rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Very long string constants can span lines arbitrarily. In fact, the triple-quoted
string blocks in Chapter 2 are designed to do so. You can also terminate
statements with a semicolon if you like (this is more useful when more than one
statement appears on a line, as we'll see in a moment). Finally, comments can
appear anywhere.

3.4.3.3 A few special cases

Here's what a continuation line looks like, using the open pairs rule; we can span
delimited constructs across any number of lines:

L = ["Good",
 "Bad",
 "Ugly"] # open pairs may span lines

This works for anything in parentheses too: expressions, function arguments,
functions headers (see Chapter 4), and so on. If you like using backslashes to
continue you can, but it's more work, and not required:

if a == b and c == d and \
 d == e and f == g:
 print 'olde' # backslashes allow continuations

if (a == b and c == d and
 d == e and e == f):
 print 'new' # but parentheses usually do too

As a special case, Python allows you to write more than one simple statement (one
without nested statements in it) on the same line, separated by semicolons. Some
coders use this form to save program file real estate:

x = 1; y = 2; print x # more than 1 simple statement

And finally, Python also lets you move a compound statement's body up to the
header line, provided the body is just a simple statement. You'll usually see this most
often used for simple if statements with a single test and action:

if 1: print 'hello' # simple statement on header line

You can combine some of these special cases to write code that is difficult to read,
but we don't recommend it; as a rule of thumb, try to keep each statement on a line of
its own. Six months down the road, you'll be happy you did.

3.4.4 Truth Tests Revisited

We introduced the notions of comparison, equality, and truth values in Chapter 2.
Since if statements are the first statement that actually uses test results, we'll
expand on some of these ideas here. In particular, Python's Boolean operators are a
bit different from their counterparts in languages like C. In Python:

True means any nonzero number or nonempty object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

False means not true: a zero number, empty object, or None.

Comparisons and equality tests return 1 or 0 (true or false).

Boolean and and or operators return a true or false operand object.

The last item here is new; in short, Boolean operators are used to combine the results
of other tests. There are three Boolean expression operators in Python:

X and Y

Is true if both X and Y are true

X or Y

Is true if either X or Y are true

not X

Is true if X is false (the expression returns 1 or 0)

Here, X and Y may be any truth value or an expression that returns a truth value (e.g.,
an equality test, range comparison, and so on). Unlike C, Boolean operators are
typed out as words in Python (instead of C's &&, ||, and !). Also unlike C, Boolean
and and or operators return a true or false object in Python, not an integer 1 or 0.
Let's look at a few examples to see how this works:

>>> 2 < 3, 3 < 2 # less-than: return 1 or 0
(1, 0)

Magnitude comparisons like these return an integer 1 or as their truth value result.
But and and or operators always return an object instead. For or tests, Python
evaluates the operand objects from left to right, and returns the first one that is true.
Moreover, Python stops at the first true operand it finds; this is usually called short-
circuit evaluation, since determining a result short-circuits (terminates) the rest of the
expression:

>>> 2 or 3, 3 or 2 # return left operand if true
(2, 3) # else return right operand (whether true or false)
>>> [] or 3
3
>>> [] or {}
{}

In the first line above, both operands are true (2, 3), so Python always stops and
returns the one on the left. In the other two tests, the left operand is false, so Python
evaluates and returns the object on the right (that may have a true or false value).
and operations also stop as soon as the result is known; in this case, Python
evaluates operands from left to right and stops at the first false object:

>>> 2 and 3, 3 and 2 # return left operand if false

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> 2 and 3, 3 and 2 # return left operand if false
(3, 2) # else return right operand (whether true or false)
>>> [] and {}
[]
>>> 3 and []
[]

Both operands are true in the first line, so Python evaluates both sides and returns
the object on the right. In the second test, the left operand is false ([]), so Python
stops and returns it as the test result. In the last test, the left side is true (3), so
Python evaluates and returns the object on the right (that happens to be false). The
end result is the same as in C (true or false), but it's based on objects, not integer
flags.[3]

[3] One common way to use Python Boolean operators is to select from one or more objects with an or; a statement
such as X = A or B or C sets X to the first nonempty (true) object among A, B, and C. Short-circuit evaluation is
important to understand, because expressions on the right of a Boolean operator might call functions that do much
work or have side effects that won't happen if the short-circuit rule takes effect.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.5 while Loops

Python's while statement is its most general iteration construct. In simple terms, it
repeatedly executes a block of indented statements, as long as a test at the top
keeps evaluating to a true value. When the test becomes false, control continues after
all the statements in the while, and the body never runs if the test is false to begin
with.

The while statement is one of two looping statements (along with the for, which
we'll meet next). We call it a loop, because control keeps looping back to the start of
the statement, until the test becomes false. The net effect is that the loop's body is
executed repeatedly while the test at the top is true. Python also provides a handful of
tools that implicitly loop (iterate), such as the map, reduce, and filter functions,
and the in membership test; we explore some of these later in this book.

3.5.1 General Format

In its most complex form, the while statement consists of a header line with a test
expression, a body of one or more indented statements, and an optional else part
that is executed if control exits the loop without running into a break statement (more
on these last few words later). Python keeps evaluating the test at the top, and
executing the statements nested in the while part, until the test returns a false value:

while <test>: # loop test
 <statements1> # loop body
else: # optional else
 <statements2> # run if didn't exit loop with break

3.5.2 Examples

To illustrate, here are a handful of simple while loops in action. The first just prints a
message forever, by nesting a print statement in a while loop. Recall that an
integer 1 means true; since the test is always true, Python keeps executing the body
forever or until you stop its execution. This sort of behavior is usually called an infinite
loop (and tends to be much less welcome when you don't expect it):

>>> while 1:
... print 'Type Ctrl-C to stop me!'
The next example keeps slicing off the first character of a string, until the string is
empty. Later in this chapter, we'll see other ways to step more directly through the
items in a string.

>>> x = 'spam'
>>> while x:
... print x,
... x = x[1:] # strip first character off x
...
spam pam am m

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spam pam am m

Finally, the code below counts from the value of a, up to but not including b. It works
much like a C for loop; we'll see an easier way to do this with a Python for and
range in a moment.

>>> a=0; b=10
>>> while a < b: # one way to code counter loops
... print a,
... a = a+1
...
0 1 2 3 4 5 6 7 8 9

3.5.3 break, continue, pass, and the Loop else

Now that we've seen our first Python loop, we should introduce two simple statements
that have a purpose only when nested inside loops—the break and continue
statements. If you've used C, you can skip most of this section, since they work the
same in Python. Since break and loop else clauses are intertwined, we'll say more
about else here too. And while we're at it, let's also look at Python's empty statement
—the pass, which works just like C's empty statement (a bare semicolon). In Python:

break

Jumps out of the closest enclosing loop (past the entire loop statement).

continue

Jumps to the top of the closest enclosing loop (to the loop's header line).

pass

Does nothing at all: it's an empty statement placeholder.

loop else block

Run if and only if the loop is exited normally—i.e., without hitting a break.

3.5.3.1 General loop format

When we factor in break and continue statements, the general format of the
while loop looks like this:

while <test>:
 <statements>
 if <test>: break # exit loop now, skip else
 if <test>: continue # go to top of loop now
else:
 <statements> # if we didn't hit a 'break'

break and continue statements can appear anywhere inside the while loop's
body, but they are usually coded further nested in an if test as we've shown, to take
action in response to some sort of condition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5.3.2 Examples

Let's turn to a few simple examples to see how these statements come together in
practice. The pass statement is often used to code an empty body for a compound
statement. For instance, if you want to code an infinite loop that does nothing each
time through, do it with a pass:

while 1: pass # type Ctrl-C to stop me!

Since the body is just an empty statement, Python gets stuck in this loop, silently
chewing up CPU cycles.[4] pass is to statements as None is to objects—an explicit
nothing. Notice that the while loop's body is on the same line as the header above;
as in the if, this only works if the body isn't a compound statement.

[4] This probably isn't the most useful Python program ever written, but frankly, we couldn't think of a better pass
example. We'll see other places where it makes sense later in the book (for instance, to define empty classes).

The continue statement sometimes lets you avoid statement nesting; here's an
example that uses it to skip odd numbers. It prints all even numbers less than 10 and
greater than or equal to 0. Remember, means false, and % is the remainder-of-
division operator, so this loop counts down to zero, skipping numbers that aren't
multiples of two (it prints 8 6 4 2 0):

x = 10
while x:
 x = x-1
 if x % 2 != 0: continue # odd?--skip print
 print x,

Because continue jumps to the top of the loop, you don't need to nest the print
statement inside an if test; the print is only reached if the continue isn't run. If
this sounds similar to a goto in other languages it should; Python has no goto per
se, but because continue lets you jump around a program, all the warnings about
readability you may have heard about goto apply. It should probably be used
sparingly, especially when you're first getting started with Python.

The break statement can often eliminate the search status flags used in other
languages. For instance, the following piece of code determines if a number y is
prime, by searching for factors greater than one:

x = y / 2
while x > 1:
 if y % x == 0: # remainder
 print y, 'has factor', x
 break # skip else
 x = x-1
else: # normal exit
 print y, 'is prime'

Rather than setting a flag to be tested when the loop is exited, insert a break where
a factor is found. This way, the loop else can assume that it will be executed only if
no factor was found; if you don't hit the break, the number is prime. Notice that a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

no factor was found; if you don't hit the break, the number is prime. Notice that a
loop else is also run if the body of the loop is never executed, since you don't run a
break in that event either; in a while loop, this happens if the test in the header is
false to begin with. In the example above, you still get the is prime message if x is
initially less than or equal to 1 (e.g., if y is 2).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.6 for Loops

The for loop is a generic sequence iterator in Python: it can step through the items in
any object that responds to the sequence indexing operation. The for works on
strings, lists, tuples, and new objects we'll create later with classes. We've already
seen the for in action, when we mentioned the iteration operation for sequence
types in Chapter 2. Here, we'll fill in the details we skipped earlier.

3.6.1 General Format

The Python for loop begins with a header line that specifies an assignment target (or
targets), along with an object you want to step through. The header is followed by a
block of indented statements, which you want to repeat:

for <target> in <object>: # assign object items to target
 <statements> # repeated loop body: use target
else:
 <statements> # if we didn't hit a 'break'

When Python runs a for loop, it assigns items in the sequence object to the target,
one by one, and executes the loop body for each.[5] The loop body typically uses the
assignment target to refer to the current item in the sequence, as though it were a
cursor stepping through the sequence. Technically, the for works by repeatedly
indexing the sequence object on successively higher indexes (starting at zero), until
an index out-of-bounds exception is raised. Because for loops automatically
manage sequence indexing behind the scenes, they replace most of the counter style
loops you may be used to coding in languages like C.

[5] The name used as the assignment target in a for header line is simply a (possibly new) variable in the namespace
(scope) where the for statement is coded. There's not much special about it; it can even be changed inside the for
loop's body, but it's automatically set to the next item in the sequence when control returns to the top of the loop again.

The for also supports an optional else block, which works exactly as it does in
while loops; it's executed if the loop exits without running into a break statement
(i.e., if all items in the sequence were visited). The break and continue statements
we introduced above work the same in the for loop as they do in the while too; we
won't repeat their descriptions here, but the for loop's complete format can be
described this way:

for <target> in <object>: # assign object items to target
 <statements>
 if <test>: break # exit loop now, skip else
 if <test>: continue # go to top of loop now
else:
 <statements> # if we didn't hit a 'break'

3.6.2 Examples

Let's type a few for loops interactively. In the first example below, the name x is
assigned to each of the three items in the list in turn, from left to right, and the print

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assigned to each of the three items in the list in turn, from left to right, and the print
statement is executed for each. Inside the print statement (the loop body), the
name x refers to the current item in the list:

>>> for x in ["spam", "eggs", "ham"]:
... print x,
...
spam eggs ham

The next two examples compute the sum and product of all the items in a list. In
Chapter 8, we'll see built-ins that apply operations like + and * to items in a list, but
it's usually just as easy to use a for:

>>> sum = 0
>>> for x in [1, 2, 3, 4]:
... sum = sum + x
...
>>> sum
10
>>> prod = 1
>>> for item in [1, 2, 3, 4]: prod = prod * item
...
>>> prod
24

As mentioned, for loops work on strings and tuples too. One thing we haven't
mentioned is that, if you're iterating through a sequence of tuples, the loop target can
actually be a tuple of targets. This is just another case of tuple unpacking assignment
at work; remember, the for assigns items in the sequence to the target, and
assignment works the same everywhere:

>>> S, T = "lumberjack", ("and", "I'm", "okay")
>>> for x in S: print x,
...
l u m b e r j a c k

>>> for x in T: print x,
...
and I'm okay

>>> T = [(1, 2), (3, 4), (5, 6)]
>>> for (a, b) in T: # tuple assignment at work
... print a, b
...
1 2
3 4
5 6

Now, let's look at something a bit more sophisticated. The next example illustrates
both the loop else in a for and statement nesting. Given a list of objects (items)
and a list of keys (tests), this code searches for each key in the objects list, and
reports on the search's success:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> items = ["aaa", 111, (4, 5), 2.01] # a set of objects
>>> tests = [(4, 5), 3.14] # keys to search for
>>>
>>> for key in tests: # for all keys
... for item in items: # for all items
... if item == key: # check for match
... print key, "was found"
... break
... else:
... print key, "not found!"
...
(4, 5) was found
3.14 not found!

Since the nested if runs a break when a match is found, the loop else can assume
that the search has failed. Notice the nesting here: when this code runs, there are two
loops going at the same time. The outer loop scans the keys list, and the inner loop
scans the items list for each key. The nesting of the loop else is critical; it's indented
at the same level as the header line of the inner for loop, so it's associated with the
inner loop (not the if or outer for). By the way, this example is easier to code if you
employ the in operator from Chapter 2, to test membership for us; since in
implicitly scans a list looking for a match, it replaces the inner loop:

>>> for key in tests: # for all keys
... if key in items: # let Python check for a match
... print key, "was found"
... else:
... print key, "not found!"
...
(4, 5) was found
3.14 not found!

In general, it's a good idea to let Python do the work like this. The next example
performs a typical data-structure task with a for—collecting common items in two
sequences (strings). It's roughly a simple set intersection routine; after the loop runs,
res refers to a list that contains all the items found in both seq1 and seq2:[6]

[6] This isn't exactly what some folks would call set intersection (an item can appear more than once in the result if it
appears more than once in seq1), but this isn't exactly a text on set theory either. To avoid duplicates, say if x in
seq2 and x not in res inside the loop instead. Incidentally, this is a great example of how lists get built up
dynamically (by program code), rather than being written out as a constant. As we mentioned before, most data
structures are built, rather than written.

>>> seq1 = "spam"
>>> seq2 = "scam"
>>>
>>> res = [] # start empty
>>> for x in seq1: # scan first sequence
... if x in seq2: # common item?
... res.append(x) # add to result end
...
>>> res
['s', 'a', 'm']

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

['s', 'a', 'm']

Unfortunately, this code is equipped to work only on two specific variables: seq1 and
seq2. It would be nice if this loop could be somehow generalized into a tool we could
use more than once. As we'll see, that simple idea leads us to functions, the topic of
our next chapter.

Why You Will Care: File Scanner Loops
In general, loops come in handy any place you need to repeat or process something more than
once. Since files contain multiple characters and lines, they are one of the more typical uses for
loops. For example it's common to see file scanning loops coded with a while and breaks
instead of end-of-file tests at the top:

file = open("name", "r")
while 1:
 line = file.readline() # fetch next line, if any
 if not line: break # exit loop on end-of-file (empty string)

 Process line here

The for loop comes in handy for scanning files too; the readlines file method introduced in
Chapter 2 hands you a lines list to step through:

file = open("name", "r")
for line in file.readlines(): # read into a lines list

 Process line here

In other cases, you might scan byte-by-byte (using while and file.read(1)), or load the file
all at once (e.g., for char in file.read()). We'll learn more about file processing later in
the book.

3.6.3 range and Counter Loops

The for loop subsumes most counter-style loops, so it's the first tool you should
reach for whenever you need to step though a sequence. But there are also situations
where you need to iterate in a more specialized way. You can always code unique
iterations with a while loop, but Python also provides a way to specialize indexing in
a for; the built-in range function returns a list of successively higher integers, which
can be used as indexes in a for.[7]

[7] Python also provides a built-in called xrange that generates indexes one at a time instead of storing all of them in
a list at once. There's no speed advantage to xrange, but it's useful if you have to generate a huge number of values.

3.6.3.1 Examples

A few examples will make this more concrete. The range function is really
independent of for loops; although it's used most often to generate indexes in a for,
you can use it anywhere you need a list of integers:

>>> range(5), range(2, 5), range(0, 10, 2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> range(5), range(2, 5), range(0, 10, 2)
([0, 1, 2, 3, 4], [2, 3, 4], [0, 2, 4, 6, 8])

With one argument, range generates a list with integers from zero, up to but not
including the argument's value. If you pass in two arguments, the first is taken as the
lower bound. An optional third argument can give a step; if used, Python adds the
step to each successive node in the result (steps default to one). Now, the easiest
way to step through a sequence is with a simple for; Python handles most of the
details for you:

>>> X = 'spam'
>>> for item in X: print item, # simple iteration
...
s p a m

Internally, the for initializes an index, detects the end of the sequence, indexes the
sequence to fetch the current item, and increments the index on each iteration. If you
really need to take over the indexing logic explicitly, you can do it with a while loop;
this form is as close to a C for loop as you can come in Python:

>>> i = 0
>>> while i < len(X): # while iteration
... print X[i],; i = i+1
...
s p a m

And finally, you can still do manual indexing with a for, if you use range to generate
a list of indexes to iterate through:

>>> for i in range(len(X)): print X[i], # manual indexing
...
s p a m

But unless you have a special indexing requirement, you're always better off using the
simple for loop form in Python. One situation where range does come in handy is
for repeating an action a specific number of times; for example, to print three lines,
use a range to generate the appropriate number of integers:

>>> for i in range(3): print i, 'Pythons'
...
0 Pythons
1 Pythons
2 Pythons

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.7 Common Coding Gotchas

Before we turn you lose on some programming exercises, we'd like to point out some
of the most common mistakes beginners seem to make when coding Python
statements and programs. You'll learn to avoid these once you've gained a bit of
Python coding experience (in fact, Mark commonly gets into trouble because he uses
Python syntax in C++ code!); but a few words might help you avoid falling into some
of these traps initially.

Don't forget the colons

Don't forget to type a : at the end of compound statement headers (the first line
of an if, while, for, etc.). You probably will at first anyhow (we did too), but
you can take some comfort in the fact that it will soon become an unconscious
habit.

Start in column 1

We mentioned this in Chapter 1, but as a reminder: be sure to start top-level
(unnested) code in column 1. That includes unnested code typed into module
files, as well as unnested code typed at the interactive prompt.

Blank lines matter at the interactive prompt

Blank lines in compound statements are always ignored in module files, but,
when typing code, end the statement at the interactive prompt. In other words,
blank lines tell the interactive command line that you've finished a compound
statement; if you want to continue, don't hit the Return key at the ... prompt until
you're really done.

Indent consistently

Avoid mixing tabs and spaces in indentation, unless you're sure what your
editor does with tabs. Otherwise, what you see in your editor may not be what
Python sees when it counts tabs as a number of spaces.

Don't code C in Python

A note to C/C++ programmers: you don't need to type parentheses around tests
in if and while headers (e.g., if (X==1): print X), but you can if you
like; any expression can be enclosed in parentheses. And remember, you can't
use { } around blocks; indent nested code blocks instead.

Don't always expect a result

Another reminder: in-place change operations like the list.append() and
list.sort() methods in Chapter 2 don't return a value (really, they return
None); call them without assigning the result. It's common for beginners to say
something like list=list.append(X) to try to get the result of an append;
instead, this assigns list to None, rather than the modified list (in fact, you'll

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instead, this assigns list to None, rather than the modified list (in fact, you'll
lose a reference to the list altogether).

Use calls and imports properly

Two final reminders: you must add parentheses after a function name to call it,
whether it takes arguments or not (e.g., function(), not function), and you
shouldn't include the file suffix in import statements (e.g., import mod, not
import mod.py). In Chapter 4, we'll see that functions are simply objects that
have a special operation—a call you trigger with the parentheses. And in
Chapter 5, we'll see that modules may have other suffixes besides .py (a .pyc,
for instance); hard-coding a particular suffix is not only illegal syntax, it doesn't
make sense.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.8 Summary

In this chapter, we explored Python's basic procedural statements:

Assignments store references to objects.

Expressions call functions and methods.

print sends text to the standard output stream.

if/elif/else selects between one or more actions.

while/else loops repeat an action until a test proves false.

for/else loops step through the items in a sequence object.

break and continue jump around loops.

pass is an empty placeholder.

We also studied Python's syntax rules along the way, looked at Boolean operators
and truth tests, and talked a little about some general programming concepts in
Python.

By combining basic statements, we are able to code the basic logic needed to
process objects. In Chapter 4, we move on to look at a set of additional statements
used to write functions, which package statements for reuse. In later chapters, we'll
see more statements that deal with bigger program units, as well as exceptions.
Table 3.5 summarizes the statement sets we'll be studying in the remaining chapters
of this part of the book.

Table 3.5. Preview: Other Statement Sets
Unit Role

Functions Procedural units
Modules Code/data packages
Classes New objects
Exceptions Errors and special cases

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

3.9 Exercises

Now that you know how to code basic program logic, this session asks you to
implement some simple tasks with statements. Most of the work is in Exercise 4,
which lets you explore coding alternatives. There are always many ways to arrange
statements and part of learning Python is learning which arrangements work better
than others.

1. Coding basic loops.

a. Write a for loop that prints the ASCII code of each character in a string
named S. Use the built-in function ord(character) to convert each
character to an ASCII integer (test it interactively to see how it works).

b. Next, change your loop to compute the sum of the ASCII codes of all
characters in a string.

c. Finally, modify your code again to return a new list that contains the ASCII
codes of each character in the string. Does this expression have a similar
effect—map(ord, S)? (Hint: see Chapter 4.)

2. Backslash characters. What happens on your machine when you type the
following code interactively?

for i in range(50):
 print 'hello %d\n\a' % i

Warning: this example beeps at you, so you may not want to run it in a crowded
lab (unless you happen to enjoy getting lots of attention). Hint: see the
backslash escape characters in Table 2.6.

3. Sorting dictionaries. In Chapter 2, we saw that dictionaries are unordered
collections. Write a for loop that prints a dictionary's items in sorted
(ascending) order. Hint: use the dictionary keys and list sort methods.

4. Program logic alternatives. Consider the following code, which uses a while
loop and found flag to search a list of powers-of-2, for the value of 2 raised to
the power 5 (32). It's stored in a module file called power.py.

L = [1, 2, 4, 8, 16, 32, 64]
X = 5

found = i = 0
while not found and i < len(L):
 if 2 ** X == L[i]:
 found = 1
 else:
 i = i+1

if found:
 print 'at index', i

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print 'at index', i
else:
 print X, 'not found'

C:\book\tests> python power.py
at index 5

As is, the example doesn't follow normal Python coding techniques. Follow the
steps below to improve it; for all the transformations, you may type your code
interactively or store it in a script file run from the system command line (though
using a file makes this exercise much easier).

a. First, rewrite this code with a while loop else, to eliminate the found
flag and final if statement.

b. Next, rewrite the example to use a for loop with an else, to eliminate the
explicit list indexing logic. Hint: to get the index of an item, use the list
index method (L.index(X) returns the offset of the first X in list L).

c. Now, remove the loop completely by rewriting the examples with a simple
in operator membership expression (see Chapter 2 for more details, or
type this: 2 in [1,2,3]).

d. Finally, use a for loop and the list append method to generate the
powers-of-2 list (L), instead of hard-coding a list constant.

e. Deeper thoughts: (1) Do you think it would improve performance to move
the 2**X expression outside the loops? How would you code that? (2) As
we saw in Exercise 1, Python also includes a map(function, list)
tool that can generate the powers-of-2 list too, as follows: map(lambda
x: 2**x, range(7)). Try typing this code interactively; we'll meet
lambda more formally in Chapter 4.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 4. Functions
In the last chapter, we looked at basic procedural statements in Python. Here, we'll
move on to explore a set of additional statements that create functions of our own. In
simple terms, functions are a device that groups a bunch of statements, so they can
be run more than once in a program. Functions also let us specify parameters, which
may differ each time a function's code is run. Table 4.1 summarizes the function-
related statements we'll study in this chapter.

Table 4.1. Function-Related Statements
Statement Examples

Calls myfunc("spam, ham, toast\n")
def, return def adder(a, b, c=1, *d): return a+b+c+d[0]
global def function(): global x, y; x = 'new'

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.1 Why Use Functions?

Before we get into the details, let's get a clear picture of what functions are about.
Functions are a nearly universal program-structuring device. Most of you have
probably come across them before in other languages, but as a brief introduction,
functions serve two primary development roles:

Code reuse

As in most programming languages, Python functions are the simplest way to
package logic you may wish to use in more than one place and more than one
time. Up to now, all the code we've been writing runs immediately; functions
allow us to group and parametize chunks of code to be used arbitrarily many
times later.

Procedural decomposition

Functions also provide a tool for splitting systems into pieces that have a well-
defined role. For instance, to make a pizza from scratch, you would start by
mixing the dough, rolling it out, adding toppings, baking, and so on. If you were
programming a pizza-making robot, functions would help you divide the overall
"make pizza" task into chunks—one function for each subtask in the process.
It's easier to implement the smaller tasks in isolation than it is to implement the
entire process at once. In general, functions are about procedure—how to do
something, rather than what you're doing it to. We'll see why this distinction
matters in Chapter 6.

Here, we talk about function basics, scope rules and argument passing, and a handful
of related concepts. As we'll see, functions don't imply much new syntax, but they do
lead us to some bigger programming ideas.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.2 Function Basics

Although we haven't gotten very formal about it, we've already been using functions in
earlier chapters. For instance, to make a file object, we call the built-in open function.
Similarly, we use the len built-in function to ask for the number of items in a
collection object.

In this chapter, we will learn how to write new functions in Python. Functions we write
ourselves behave the same way as the built-ins we've already seen—they are called
in expressions, are passed values, and return results. But writing functions requires a
few new ideas; here's an introduction to the main concepts:

def creates a function object and assigns it to a name

Python functions are written with a new statement, the def. Unlike functions in
compiled languages such as C, def is an executable statement—when run, it
generates a new function object and assigns it to the function's name. As with
all assignments, the function name becomes a reference to the function object.

return sends a result object back to the caller

When a function is called, the caller stops until the function finishes its work and
returns control to the caller. Functions that compute a value send it back to the
caller with a return statement.

global declares module-level variables that are to be assigned

By default, all names assigned in a function are local to that function and exist
only while the function runs. To assign a name in the enclosing module,
functions need to list it in a global statement.

Arguments are passed by assignment (object reference)

In Python, arguments are passed to functions by assignment (i.e., by object
reference). As we'll see, this isn't quite like C's passing rules or C++'s reference
parameters—the caller and function share objects by references, but there is no
name aliasing (changing an argument name doesn't also change a name in the
caller).

Arguments, return types, and variables are not declared

As with everything in Python, there are no type constraints on functions. In fact,
nothing about a function needs to be declared ahead of time; we can pass in
arguments of any type, return any sort of object, and so on. As one
consequence, a single function can often be applied to a variety of object types.

Let's expand on these ideas and look at a few first examples.

4.2.1 General Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The def statement creates a function object and assigns it a function name. As with
all compound Python statements, it consists of a header line, followed by a block of
indented statements. The indented statements become the function's body—the code
Python executes each time the function is called. The header specifies a function
name (which is assigned the function object), along with a list of arguments
(sometimes called parameters), which are assigned to the objects passed in
parentheses at the point of call:

def <name>(arg1, arg2,... argN):
 <statements>
 return <value>

The Python return statement can show up in function bodies; it ends the function
call and sends a result back to the caller. It consists of an object expression that gives
the function's result. The return is optional; if it's not present, a function exits when
control flow falls off the end of the function body. Technically, a function without a
return returns the None object automatically (more on this later in this chapter).

4.2.2 Definitions and Calls

Let's jump into a simple example. There are really two sides to the function picture: a
definition (the def that creates a function) and a call (an expression that tells Python
to run the function). A definition follows the general format above; here's one that
defines a function called times, which returns the product of its two arguments:

>>> def times(x, y): # create and assign function
... return x * y # body executed when called
...

When Python runs this def, it creates a new function object that packages the
function's code and assigns it the name times. After the def has run, the program
can run (call) the function by adding parentheses after the function name; the
parenthesis may optionally contain one or more object arguments, to be passed
(assigned) to the names in the function's header:

>>> times(2, 4) # arguments in parentheses
8
>>> times('Ni', 4) # functions are 'typeless'
'NiNiNiNi'

In the first line, we pass two arguments to times: the name x in the function header
is assigned the value 2, y is assigned 4, and the function's body is run. In this case,
the body is just a return statement, which sends back the result 8 as the value of
the call expression.

In the second call, we pass in a string and an integer to x and y instead. Recall that *
works on both numbers and sequences; because there are no type declarations in
functions, you can use times to multiply numbers or repeat sequences. Python is
known as a dynamically typed language: types are associated with objects at runtime,
rather than declared in the program itself. In fact, a given name can be assigned to
objects of different types at different times.[1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

objects of different types at different times.[1]

[1] If you've used compiled languages such as C or C++, you'll probably find that Python's dynamic typing makes for
an incredibly flexible programming language. It also means that some errors a compiler roots out aren't caught by
Python until a program runs (adding a string to an integer, for instance). Luckily, errors are easy to find and repair in
Python.

4.2.3 Example: Intersecting Sequences

Here's a more realistic example that illustrates function basics. Near the end of
Chapter 3, we saw a for loop that collected items in common in two strings. We
noted there that the code wasn't as useful as it could be because it was set up to work
only on specific variables and could not be rerun later. Of course, you could cut and
paste the code to each place it needs to be run, but this isn't a general solution; you'd
still have to edit each copy to support different sequence names, and changing the
algorithm requires changing multiple copies.

4.2.3.1 Definition

By now, you can probably guess that the solution to this dilemma is to package the
for loop inside a function. By putting the code in a function, it becomes a tool that
can be run as many times as you like. And by allowing callers to pass in arbitrary
arguments to be processed, you make it general enough to work on any two
sequences you wish to intersect. In effect, wrapping the code in a function makes it a
general intersection utility:

def intersect(seq1, seq2):
 res = [] # start empty
 for x in seq1: # scan seq1
 if x in seq2: # common item?
 res.append(x) # add to end
 return res

The transformation from simple code to this function is straightforward; you've just
nested the original logic under a def header and made the objects on which it
operates parameters. Since this function computes a result, you've also added a
return statement to send it back to the caller.

4.2.3.2 Calls

>>> s1 = "SPAM"
>>> s2 = "SCAM"
>>> intersect(s1, s2) # strings
['S', 'A', 'M']

>>> intersect([1, 2, 3], (1, 4)) # mixed types
[1]

Again, we pass in different types of objects to our function—first two strings and then
a list and a tuple (mixed types). Since you don't have to specify the types of
arguments ahead of time, the intersect function happily iterates though any kind of
sequence objects you send it.[2]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[2] Technically, any object that responds to indexing. The for loop and in tests work by repeatedly indexing an
object; when we study classes in Chapter 6, you'll see how to implement indexing for user-defined objects too, and
hence iteration and membership.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.3 Scope Rules in Functions

Now that we've stepped up to writing our own functions, we need to get a bit more
formal about what names mean in Python. When you use a name in a program,
Python creates, changes, or looks up the name in what is known as a namespace—a
place where names live. As we've seen, names in Python spring into existence when
they are assigned a value. Because names aren't declared ahead of time, Python
uses the assignment of a name to associate it with a particular namespace. Besides
packaging code, functions add an extra namespace layer to your programs—by
default, names assigned inside a function are associated with that function's
namespace, and no other.

Here's how this works. Before you started writing functions, all code was written at the
top-level of a module, so the names either lived in the module itself, or were built-ins
that Python predefines (e.g., open).[3] Functions provide a nested namespace
(sometimes called a scope), which localizes the names they use, such that names
inside the function won't clash with those outside (in a module or other function). We
usually say that functions define a local scope, and modules define a global scope.
The two scopes are related as follows:

[3] Remember, code typed at the interactive command line is really entered into a built-in module called __main__, so
interactively created names live in a module too. There's more about modules in Chapter 5.

The enclosing module is a global scope

Each module is a global scope—a namespace where variables created
(assigned) at the top level of a module file live.

Each call to a function is a new local scope

Every time you call a function, you create a new local scope—a namespace
where names created inside the function usually live.

Assigned names are local, unless declared global

By default, all the names assigned inside a function definition are put in the local
scope (the namespace associated with the function call). If you need to assign a
name that lives at the top-level of the module enclosing the function, you can do
so by declaring it in a global statement inside the function.

All other names are global or built-in

Names not assigned a value in the function definition are assumed to be globals
(in the enclosing module's namespace) or built-in (in the predefined names
module Python provides).

4.3.1 Name Resolution: The LGB Rule

If the prior section sounds confusing, it really boils down to three simple rules:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Name references search at most three scopes: local, then global, then built-in.

Name assignments create or change local names by default.

"Global" declarations map assigned names to an enclosing module's scope.

In other words, all names assigned inside a function def statement are locals by
default; functions can use globals, but they must declare globals to change them.
Python's name resolution is sometimes called the LGB rule, after the scope names:

When you use an unqualified name inside a function, Python searches three
scopes—the local (L), then the global (G), and then the built-in (B)—and stops
at the first place the name is found.

When you assign a name in a function (instead of just referring to it in an
expression), Python always creates or changes the name in the local scope,
unless it's declared to be global in that function.

When outside a function (i.e., at the top-level of a module or at the interactive
prompt), the local scope is the same as the global—a module's namespace.

Figure 4.1 illustrates Python's three scopes. As a preview, we'd also like you to
know that these rules only apply to simple names (such as spam). In the next two
chapters, we'll see that the rules for qualified names (such as object.spam, called
attributes) live in a particular object and so work differently.

Figure 4.1. The LGB scope lookup rule

4.3.2 Example

Let's look at an example that demonstrates scope ideas. Suppose we write the
following code in a module file:

global scope
X = 99 # X and func assigned in module: global

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

def func(Y): # Y and Z assigned in function: locals
 # local scope
 Z = X + Y # X is not assigned, so it's a global
 return Z

func(1) # func in module: result=100

This module, and the function it contains, use a number of names to do their
business. Using Python's scope rules, we can classify the names as follows:

Global names: X , func

X is a global because it's assigned at the top level of the module file; it can be
referenced inside the function without being declared global. func is global for
the same reason; the def statement assigns a function object to the name
func at the top level of the module.

Local names: Y , Z

Y and Z are local to the function (and exist only while the function runs),
because they are both assigned a value in the function definition; Z by virtue of
the = statement, and Y because arguments are always passed by assignment
(more on this in a minute).

The whole point behind this name segregation scheme is that local variables serve as
temporary names you need only while a function is running. For instance, the
argument Y and the addition result Z exist only inside the function; they don't interfere
with the enclosing module's namespace (or any other function, for that matter). The
local/global distinction also makes a function easier to understand; most of the names
it uses appear in the function itself, not at some arbitrary place in a module.[4]

[4] The careful reader might notice that, because of the LGB rule, names in the local scope may override variables of
the same name in the global and built-in scopes, and global names may override built-ins. A function can, for instance,
create a local variable called open, but it will hide the built-in function called open that lives in the built-in (outer)
scope.

4.3.3 The global Statement

The global statement is the only thing that's anything like a declaration in Python. It
tells Python that a function plans to change global names—names that live in the
enclosing module's scope (namespace). We've talked about global in passing
already; as a summary:

global means "a name at the top-level of a module file."

Global names must be declared only if they are assigned in a function.

Global names may be referenced in a function without being declared.

The global statement is just the keyword global, followed by one or more names
separated by commas. All the listed names will be mapped to the enclosing module's
scope when assigned or referenced within the function body. For instance:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

y, z = 1, 2 # global variables in module

def all_global():
 global x # declare globals assigned
 x = y + z # no need to declare y,z: 3-scope rule

Here, x, y, and z are all globals inside function all_global. y and z are global
because they aren't assigned in the function; x is global because we said so: we
listed it in a global statement to map it to the module's scope explicitly. Without the
global here, x would be considered local by virtue of the assignment. Notice that y
and z are not declared global; Python's LGB lookup rule finds them in the module
automatically. Also notice that x might not exist in the enclosing module before the
function runs; if not, the assignment in the function creates x in the module.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.4 Argument Passing

Let's expand on the notion of argument passing in Python. Earlier, we noted that
arguments are passed by assignment ; this has a few ramifications that aren't always
obvious to beginners:

Arguments are passed by assigning objects to local names

Function arguments should be familiar territory by now: they're just another
instance of Python assignment at work. Function arguments are references to
(possibly) shared objects referenced by the caller.

Assigning to argument names inside a function doesn't affect the caller

Argument names in the function header become new, local names when the
function runs, in the scope of the function. There is no aliasing between function
argument names and names in the caller.

Changing a mutable object argument in a function may impact the caller

On the other hand, since arguments are simply assigned to objects, functions
can change passed-in mutable objects, and the result may affect the caller.

Here's an example that illustrates some of these properties at work:

>>> def changer(x, y):
... x = 2 # changes local name's value only
... y[0] = 'spam' # changes shared object in place
...
>>> X = 1
>>> L = [1, 2]
>>> changer(X, L) # pass immutable and mutable
>>> X, L # X unchanged, L is different
(1, ['spam', 2])

In this code, the changer function assigns to argument name x and a component in
the object referenced by argument y. Since x is a local name in the function's scope,
the first assignment has no effect on the caller; it doesn't change the binding of name
X in the caller. Argument y is a local name too, but it's passed a mutable object (the
list called L in the caller); the result of the assignment to y[0] in the function impacts
the value of L after the function returns. Figure 4.2 illustrates the name/object
bindings that exist immediately after the function is called.

Figure 4.2. References: arguments share objects with the caller

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you recall some of the discussion about shared mutable objects in Chapter 2,
you'll recognize that this is the exact same phenomenon at work: changing a mutable
object in place can impact other references to the object. Here, its effect is to make
one of the arguments an output of the function. (To avoid this, type y = y[:] to make
a copy.)

Python's pass-by-assignment scheme isn't the same as C++'s reference parameters,
but it turns out to be very similar to C's in practice:

Immutable arguments act like C's "by value" mode

Objects such as integers and strings are passed by object reference
(assignment), but since you can't change immutable objects in place anyhow,
the effect is much like making a copy.

Mutable arguments act like C's "by pointer" mode

Objects such as lists and dictionaries are passed by object reference too, which
is similar to the way C passes arrays as pointers—mutable objects can be
changed in place in the function, much like C arrays.

Of course, if you've never used C, Python's argument-passing mode will be simpler
still; it's just an assignment of objects to names, which works the same whether the
objects are mutable or not.

4.4.1 More on return

We've already discussed the return statement, and used it in a few examples. But
here's a trick we haven't shown yet: because return sends back any sort of object, it
can return multiple values, by packaging them in a tuple. In fact, although Python
doesn't have call by reference, we can simulate it by returning tuples and assigning
back to the original argument names in the caller:

>>> def multiple(x, y):
... x = 2 # changes local names only

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

... x = 2 # changes local names only

... y = [3, 4]

... return x, y # return new values in a tuple

...
>>> X = 1
>>> L = [1, 2]
>>> X, L = multiple(X, L) # assign results to caller's names
>>> X, L
(2, [3, 4])

It looks like we're returning two values here, but it's just one—a two-item tuple, with
the surrounding parentheses omitted. If you've forgotten why, flip back to the
discussion of tuples in Chapter 2.

4.4.2 Special Argument-Matching Modes

Although arguments are always passed by assignment, Python provides additional
tools that alter the way the argument objects in the call are paired with argument
names in the header. By default, they are matched by position, from left to right, and
you must pass exactly as many arguments as there are argument names in the
function header. But you can also specify a match by name, default values, and
collectors for extra arguments.

Some of this section gets complicated, and before we get into syntactic details, we'd
like to stress that these special modes are optional and only have to do with matching
objects to names; the underlying passing mechanism is still assignment, after the
matching takes place. But as an introduction, here's a synopsis of the available
matching modes:

Positionals: matched left to right

The normal case which we've used so far is to match arguments by position.

Keywords: matched by argument name

Callers can specify which argument in the function is to receive a value by using
the argument's name in the call.

varargs: catch unmatched positional or keyword arguments

Functions can use special arguments to collect arbitrarily many extra arguments
(much as the varargs feature in C, which supports variable-length argument
lists).

Defaults: specify values for arguments that aren't passed

Functions may also specify default values for arguments to receive if the call
passes too few values

Table 4.2 summarizes the syntax that specify the special matching modes.

Table 4.2. Function Argument-Matching Forms
Syntax Location Interpretation

Caller Normal argument: matched by position

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

func(value) Caller Normal argument: matched by position
func(name=value) Caller Keyword argument: matched by name
def func(name) Function Normal argument: matches any by position or name
def func(name=value) Function Default argument value, if not passed in the call
def func(*name) Function Matches remaining positional args (in a tuple)
def func(**name) Function dictionary)

In the caller (the first two rows of the table), simple names are matched by position,
but using the name=value form tells Python to match by name instead; these are
called keyword arguments.

In the function header, a simple name is matched by position or name (depending on
how the caller passes it), but the name=value form specifies a default value, the
*name collects any extra positional arguments in a tuple, and the **name form
collects extra keyword arguments in a dictionary.

As a result, special matching modes let you be fairly liberal about how many
arguments must be passed to a function. If a function specifies defaults, they are
used if you pass too few arguments. If a function uses the varargs forms, you can
pass too many arguments; the varargs names collect the extra arguments in a data
structure.

4.4.2.1 A first example

Let's look at an example that demonstrates keywords and defaults in action. In the
following, the caller must always pass at least two arguments (to match spam and
eggs), but the other two are optional; if omitted, Python assigns toast and ham to
the defaults specified in the header:

def func(spam, eggs, toast=0, ham=0): # first 2 required
 print (spam, eggs, toast, ham)

func(1, 2) # output: (1, 2, 0, 0)
func(1, ham=1, eggs=0) # output: (1, 0, 0, 1)
func(spam=1, eggs=0) # output: (1, 0, 0, 0)
func(toast=1, eggs=2, spam=3) # output: (3, 2, 1, 0)
func(1, 2, 3, 4) # output: (1, 2, 3, 4)

Notice that when keyword arguments are used in the call, the order in which
arguments are listed doesn't matter; Python matches by name, not position. The
caller must supply values for spam and eggs, but they can be matched by position or
name. Also notice that the form name=value means different things in the call and
def: a keyword in the call, and a default in the header.

4.4.2.2 A second example: Arbitrary-argument set functions

Here's a more useful example of special argument-matching modes at work. Earlier in
the chapter, we wrote a function that returned the intersection of two sequences (it
picked out items that appeared in both). Here is a version that intersects an arbitrary
number of sequences (1 or more), by using the varargs matching form *args to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

number of sequences (1 or more), by using the varargs matching form *args to
collect all arguments passed. Because the arguments come in as a tuple, we can
process them in a simple for loop. Just for fun, we've also coded an arbitrary-
number-arguments union function too; it collects items which appear in any of the
operands:

def intersect(*args):
 res = []
 for x in args[0]: # scan first sequence
 for other in args[1:]: # for all other args
 if x not in other: break # item in each one?
 else: # no: break out of loop
 res.append(x) # yes: add items to end
 return res

def union(*args):
 res = []
 for seq in args: # for all args
 for x in seq: # for all nodes
 if not x in res:
 res.append(x) # add new items to result
 return res

Since these are tools worth reusing (and are way too big to retype interactively),
we've stored our functions in a module file called inter2.py here (more on modules in
Chapter 5). In both functions, the arguments passed in at the call come in as the
args tuple. As in the original intersect, both work on any kind of sequence. Here
they are processing strings, mixed types, and more than two sequences:

% python
>>> from inter2 import intersect, union
>>> s1, s2, s3 = "SPAM", "SCAM", "SLAM"
>>> intersect(s1, s2), union(s1, s2) # 2 operands
(['S', 'A', 'M'], ['S', 'P', 'A', 'M', 'C'])

>>> intersect([1,2,3], (1,4)) # mixed types
[1]

>>> intersect(s1, s2, s3) # 3 operands
['S', 'A', 'M']

>>> union(s1, s2, s3)
['S', 'P', 'A', 'M', 'C', 'L']

4.4.2.3 The gritty details

If you choose to use and combine the special matching modes, Python has two
ordering rules:

In the call, keyword arguments must appear after all nonkeyword arguments.

In a function header, the *name must be after normal arguments and defaults,
and **name must be last.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and **name must be last.

Moreover, Python internally carries out the following steps to match arguments before
assignment:

1. Assign nonkeyword arguments by position

2. Assign keyword arguments by matching names

3. Assign extra nonkeyword arguments to *name tuple

4. Assign extra keyword arguments to **name dictionary

5. Assign default values to unassigned arguments in header

This is as complicated as it looks, but tracing Python's matching algorithm helps to
understand some cases, especially when modes are mixed. We'll postpone additional
examples of these special matching modes until we do the exercises at the end of
this chapter.

As you can see, advanced argument matching modes can be complex. They are also
entirely optional; you can get by with just simple positional matching, and it's probably
a good idea to do so if you're just starting out. However, some Python tools make us
e of them, so they're important to know.

Why You Will Care: Keyword Arguments
Keyword arguments play an important role in Tkinter, the de facto standard
GUI API for Python. We meet Tkinter in Chapter 10, but as a preview,
keyword arguments set configuration options when GUI components are
built. For instance, a call of the form:

from Tkinter import *
widget = Button(text="Press me", command=someFunction)

creates a new button and specifies its text and callback function, using the
text and command keyword arguments. Since the number of configuration
options for a widget can be large, keyword arguments let you pick and
choose. Without them, you might have to either list all possible options by
position or hope for a judicious positional argument defaults protocol that
handles every possible option arrangement.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.5 Odds and Ends

So far, we've seen what it takes to write our own functions in Python. There are a
handful of additional function-related ideas we'd like to introduce in this section:

lambda creates anonymous functions.

apply calls functions with argument tuples.

map runs a function over a sequence and collects results.

Functions return None if they don't use a return statement.

Functions present design choices.

Functions are objects, just like numbers and strings.

4.5.1 lambda Expressions

Besides the def statement, Python also provides an expression form that generates
function objects. Because of its similarity to a tool in the LISP language, it's called
lambda. Its general form is the keyword lambda, followed by one or more
arguments, followed by an expression after a colon:

lambda argument1, argument2,... argumentN :

Expression using arguments

Function objects returned by lambda expressions are exactly the same as those
created and assigned by def. But the lambda has a few differences that make it
useful in specialized roles:

lambda is an expression, not a statement

Because of this, a lambda can appear in places a def can't—inside a list
constant, for example. As an expression, the lambda returns a value (a new
function), which can be assigned a name optionally; the def statement always
assigns the new function to the name in the header, instead of returning it as a
result.

lambda bodies are a single expression, not a block of statements

The lambda's body is similar to what you'd put in a def body's return
statement; simply type the result as a naked expression, instead of explicitly
returning it. Because it's limited to an expression, lambda is less general than a
def; you can only squeeze so much logic into a lambda body without using
statements such as if.

Apart from those distinctions, the def and lambda do the same sort of work. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Apart from those distinctions, the def and lambda do the same sort of work. For
instance, we've seen how to make functions with def statements:

>>> def func(x, y, z): return x + y + z
...
>>> func(2, 3, 4)
9

But you can achieve the same effect with a lambda expression, by explicitly
assigning its result to a name:

>>> f = lambda x, y, z: x + y + z
>>> f(2, 3, 4)
9

Here, f is assigned the function object the lambda expression creates (this is how
def works, but the assignment is automatic). Defaults work on lambda arguments
too, just like the def:

>>> x = (lambda a="fee", b="fie", c="foe": a + b + c)
>>> x("wee")
'weefiefoe'

lambdas come in handy as a shorthand for functions. For instance, we'll see later
that callback handlers are frequently coded as lambda expressions embedded
directly in a registration call, instead of being defined elsewhere in a file and
referenced by name.

Why You Will Care: lambdas
The lambda expression is most handy as a shorthand for def, when you need to stuff small
pieces of executable code in places where statements are illegal syntactically. For example,
you can build up a list of functions by embedding lambda expressions in a list constant:

L = [lambda x: x**2, lambda x: x**3, lambda x: x**4]

for f in L:
 print f(2) # prints 4, 8, 16

print L[0](3) # prints 9

Without lambda, you'd need to instead code three def statements outside the list in which
the functions that they define are to be used. lambdas also come in handy in function
argument lists; one very common application of this is to define in-line callback functions for
the Tkinter GUI API (more on Tkinter in Chapter 10). The following creates a button that
prints a message on the console when pressed:

import sys
widget = Button(text ="Press me",
 command = lambda: sys.stdout.write("Hello world\n"))

4.5.2 The apply Built-in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some programs need to call arbitrary functions in a generic fashion, without knowing
their names or arguments ahead of time. We'll see examples of where this can be
useful later, but by way of introduction, the apply built-in function does the job. For
instance, after running the code in the prior section, you can call the generated
functions by passing them as arguments to apply, along with a tuple of arguments:

>>> apply(func, (2, 3, 4))
9
>>> apply(f, (2, 3, 4))
9

apply simply calls the passed-in function, matching the passed-in arguments list with
the function's expected arguments. Since the arguments list is passed in as a tuple (a
data structure), it can be computed at runtime by a program. The real power of apply
is that it doesn't need to know how many arguments a function is being called with; for
example, you can use if logic to select from a set of functions and argument lists,
and use apply to call any:

if <test>:
 action, args = func1, (1,)
else:
 action, args = func2, (1, 2, 3)
. . .
apply(action, args)

4.5.3 The map Built-in

One of the more common things programs do with lists is to apply an operation to
each node and collect the results. For instance, updating all the counters in a list can
be done easily with a for loop:

>>> counters = [1, 2, 3, 4]
>>>
>>> updated = []
>>> for x in counters:
... updated.append(x + 10) # add 10 to each item
...
>>> updated
[11, 12, 13, 14]

Because this is such a common operation, Python provides a built-in that does most
of the work for you: the map function applies a passed-in function to each item in a
sequence object and returns a list containing all the function call results. For example:

>>> def inc(x): return x + 10 # function to be run
...
>>> map(inc, counters) # collect results
[11, 12, 13, 14]

Since map expects a function, it also happens to be one of the places where lambdas
commonly appear:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> map((lambda x: x + 3), counters) # function expression
[4, 5, 6, 7]

map is the simplest representative of a class of Python built-ins used for functional
programming (which mostly just means tools that apply functions to sequences). Its
relatives filter out items based on a test (filter) and apply operations to pairs of
items (reduce). We say more about these built-in tools in Chapter 8.

4.5.4 Python "Procedures"

In Python functions, return statements are optional. When a function doesn't return
a value explicitly, the function exits when control falls off the end. Technically, all
functions return a value; if you don't provide a return, your function returns the
None object automatically:

>>> def proc(x):
... print x # no return is a None return
...
>>> x = proc('testing 123...')
testing 123...
>>> print x
None

Functions such as this without a return are Python's equivalent of what are called
procedures in some languages (such as Pascal). They're usually called as a
statement (and the None result is ignored), since they do their business without
computing a useful result. This is worth knowing, because Python won't tell you if you
try to use the result of a function that doesn't return one. For instance, assigning the
result of a list append method won't raise an error, but you'll really get back None, not
the modified list:

>>> list = [1, 2, 3]
>>> list = list.append(4) # append is a 'procedure'
>>> print list # append changes list in-place
None

4.5.5 Function Design Concepts

When you start using functions, you're faced with choices about how to glue
components together—for instance, how to decompose a task into functions, how
functions should communicate, and so on. Some of this falls into the category of
structured analysis and design, which is too broad a topic to discuss in this book. But
here are a few general hints for Python beginners:

Use arguments for inputs and return for outputs

Generally speaking, you should strive to make a function independent of things
outside of it. Arguments and return statements are often the best way to
isolate dependencies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use global variables only when absolutely necessary

Global variables (i.e., names in the enclosing module) are usually a poor way to
communicate with a function. They can create dependencies that make
programs difficult to change.

Don't change mutable arguments unless the caller expects it

Functions can also change parts of mutable objects passed in. But as with
global variables, this implies lots of coupling between the caller and callee,
which can make a function too specific and brittle.

Table 4.3 summarizes the ways functions can talk to the outside world; inputs may
come from items in the left column, and results may be sent out in any of the forms on
the right. Politically correct function designers usually only use arguments for inputs
and return statements for outputs. But there are plenty of exceptions, including
Python's OOP support—as we'll see in Chapter 6, Python classes depend on
changing a passed-in mutable object. Class functions set attributes of an
automatically passed-in self object, to change per-object state information (e.g.,
self.name = 'bob'); side effects aren't dangerous if they're expected.

Table 4.3. Common Function Inputs and Outputs
Function Inputs Function Outputs

Arguments Return statement
Global (module) variables Mutable arguments
Files, streams Global (module) variables

4.5.6 Functions Are Objects: Indirect Calls

Because Python functions are objects at runtime, you can write programs that
process them generically. Function objects can be assigned, passed to other
functions, stored in data structures, and so on, as if they were simple numbers or
strings. Function objects happen to export a special operation; they can be called by
listing arguments in parentheses after a function expression. But functions belong to
the same general category as other objects.

For instance, as we've seen, there's really nothing special about the name we use in
a def statement: it's just a variable assigned in the current scope, as if it had
appeared on the left of an = sign. After a def runs, the function name is a reference
to an object; you can reassign that object to other names and call it through any
reference—not just the original name:

>>> def echo(message): # echo assigned to a function object
... print message
...
>>> x = echo # now x references it too
>>> x('Hello world!') # call the object by adding ()
Hello world!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hello world!

Since arguments are passed by assigning objects, it's just as easy to pass functions
to other functions, as arguments; the callee may then call the passed-in function just
by adding arguments in parentheses:

>>> def indirect(func, arg):
... func(arg) # call object by adding ()
...
>>> indirect(echo, 'Hello jello!') # pass function to a function
Hello jello!

You can even stuff function objects into data structures, as though they were integers
or strings. Since Python compound types can contain any sort of object, there's no
special case here either:

>>> schedule = [(echo, 'Spam!'), (echo, 'Ham!')]
>>> for (func, arg) in schedule:
... apply(func, (arg,))
...
Spam!
Ham!

This code simply steps through the schedule list, calling the echo function with one
argument each time through. As we hope you're starting to notice by now, Python's
lack of type declarations makes for an incredibly flexible programming language.
Notice the use of apply to run functions generically, the single-item tuple in the
second argument to apply, and the tuple unpacking assignment in the for loop
header (all ideas introduced earlier).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.6 Function Gotchas

Here are some of the more jagged edges of functions you might not expect. They're
all obscure, but most have been known to trip up a new user.

4.6.1 Local Names Are Detected Statically

As we've seen, Python classifies names assigned in a function as locals by default;
they live in the function's scope and exist only while the function is running. What we
didn't tell you is that Python detects locals statically, when it compiles the code, rather
than by noticing assignments as they happen at runtime. Usually, we don't care, but
this leads to one of the most common oddities posted on the Python newsgroup by
beginners.

Normally, a name that isn't assigned in a function is looked up in the enclosing
module:

>>> X = 99
>>> def selector(): # X used but not assigned
... print X # X found in global scope
...
>>> selector()
99

Here, the X in the function resolves to the X in the module outside. But watch what
happens if you add an assignment to X after the reference:

>>> def selector():
... print X # does not yet exist!
... X = 88 # X classified as a local name (everywhere)
... # can also happen if "import X", "def X",...
>>> selector()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in selector
NameError: X

You get an undefined name error, but the reason is subtle. Python reads and
compiles this code when it's typed interactively or imported from a module. While
compiling, Python sees the assignment to X and decides that X will be a local name
everywhere in the function. But later, when the function is actually run, the
assignment hasn't yet happened when the print executes, so Python says you're
using an undefined name. According to its name rules, it should; local X is used
before being assigned.[5]

[5] In fact, any assignment in a function body makes a name local: import, =, nested defs, nested classes, and so
on.

4.6.1.1 Solution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The problem occurs because assigned names are treated as locals everywhere in a
function, not just after statements where they are assigned. Really, the code above is
ambiguous at best: did you mean to print the global X and then create a local X, or is
this a genuine programming error? Since Python treats X as a local everywhere, it is
an error; but if you really mean to print global X, you need to declare it in a global
statement:

>>> def selector():
... global X # force X to be global (everywhere)
... print X
... X = 88
...
>>> selector()
99

Remember, though, that this means the assignment also changes the global X, not a
local X. Within a function, you can't use both local and global versions of the same
simple name. If you really meant to print the global and then set a local of the same
name, import the enclosing module and qualify to get to the global version:

>>> X = 99
>>> def selector():
... import __main__ # import enclosing module
... print __main__.X # qualify to get to global version of name
... X = 88 # unqualified X classified as local
... print X # prints local version of name
...
>>> selector()
99
88

Qualification (the .X part) fetches a value from a namespace object. The interactive
namespace is a module called _ _main__, so __main_ _.X reaches the global
version of X. If that isn't clear, check out Chapter 5.

4.6.2 Nested Functions Aren't Nested Scopes

As we've seen, the Python def is an executable statement: when it runs, it assigns a
new function object to a name. Because it's a statement, it can appear anywhere a
statement can—even nested in other statements. For instance, it's completely legal to
nest a function def inside an if statement, to select between alternative definitions:

if test:
 def func(): # define func this way
 ...
else:
 def func(): # or else this way instead
 ...
...
func()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

func()

One way to understand this code is to realize that the def is much like an =
statement: it assigns a name at runtime. Unlike C, Python functions don't need to be
fully defined before the program runs. Since def is an executable statement, it can
also show up nested inside another def. But unlike languages such as Pascal,
nested defs don't imply nested scopes in Python. For instance, consider this
example that defines a function (outer), which in turn defines and calls another
function (inner) that calls itself recursively:[6]

[6] By "recursively," we mean that the function is called again, before a prior call exits. In this example, the function
calls itself, but it could also call another function that calls it, and so on. Recursion could be replaced with a simple
while or for loop here (all we're doing is counting down to zero), but we're trying to make a point about self-recursive
function names and nesting. Recursion tends to be more useful for processing data structures whose shape can't be
predicted when you're writing a program.

>>> def outer(x):
... def inner(i): # assign in outer's local
... print i, # i is in inner's local
... if i: inner(i-1) # not in my local or global!
... inner(x)
...
>>> outer(3)
3
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 5, in outer
 File "<stdin>", line 4, in inner
NameError: inner

This won't work. A nested def really only assigns a new function object to a name in
the enclosing function's scope (namespace). Within the nested function, the LGB
three-scope rule still applies for all names. The nested function has access only to its
own local scope, the global scope in the enclosing module, and the built-in names
scope. It does not have access to names in the enclosing function's scope; no matter
how deeply functions nest, each sees only three scopes.

For instance, in the example above, the nested def creates the name inner in the
outer function's local scope (like any other assignment in outer would). But inside
the inner function, the name inner isn't visible; it doesn't live in inner's local
scope, doesn't live in the enclosing module's scope, and certainly isn't a built-in.
Because inner has no access to names in outer's scope, the call to inner from
inner fails and raises an exception.

4.6.2.1 Solution

Don't expect scopes to nest in Python. This is really more a matter of understanding
than anomaly: the def statement is just an object constructor, not a scope nester.
However, if you really need access to the nested function name from inside the
nested function, simply force the nested function's name out to the enclosing
module's scope with a global declaration in the outer function. Since the nested
function shares the global scope with the enclosing function, it finds it there according
to the LGB rule:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> def outer(x):
... global inner
... def inner(i): # assign in enclosing module
... print i,
... if i: inner(i-1) # found in my global scope now
... inner(x)
...
>>> outer(3)
3 2 1 0

4.6.3 Using Defaults to Save References

Really, nested functions have no access to any names in an enclosing function, so
this is actually a more general gotcha than the example above implies. To get access
to names assigned prior to the nested function's def statement, you can also assign
their values to the nested function's arguments as defaults. Because default
arguments save their values when the def runs (not when the function is actually
called), they can squirrel away objects from the enclosing function's scope:

>>> def outer(x, y):
... def inner(a=x, b=y): # save outer's x,y bindings/objects
... return a**b # can't use x and y directly here
... return inner
...
>>> x = outer(2, 4)
>>> x()
16

Here, a call to outer returns the new function created by the nested def. When the
nested def statement runs, inner's arguments a and b are assigned the values of x
and y from the outer function's local scope. In effect, inner's a and b remembers
the values of outer's x and y. When a and b are used later in inner's body, they
still refer to the values x and y had when outer ran (even though outer has
already returned to its caller).[7] This scheme works in lambdas too, since lambdas
are really just shorthand for defs:

[7] In computer-science lingo, this sort of behavior is usually called a closure—an object that remembers values in
enclosing scopes, even though those scopes may not be around any more. In Python, you need to explicitly list which
values are to be remembered, using argument defaults (or class object attributes, as we'll see in Chapter 6).

>>> def outer(x, y):
... return lambda a=x, b=y: a**b
...
>>> y = outer(2, 5)
>>> y()
32

Note that defaults won't quite do the trick in the last section's example, because the
name inner isn't assigned until the inner def has completed. Global declarations
may be the best workaround for nested functions that call themselves:

>>> def outer(x):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> def outer(x):
... def inner(i, self=inner): # name not defined yet
... print i,
... if i: self(i-1)
... inner(x)
...
>>> outer(3)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in outer
NameError: inner

But if you're interested in exploring the Twilight Zone of Python hackerage, you can
instead save a mutable object as a default and plug in a reference to inner after the
fact, in the enclosing function's body:

>>> def outer(x):
... fillin = [None]
... def inner(i, self=fillin): # save mutable
... print i,
... if i: self[0](i-1) # assume it's set
... fillin[0] = inner # plug value now
... inner(x)
...
>>> outer(3)
3 2 1 0

Although this code illustrates Python properties (and just might amaze your friends,
coworkers, and grandmother), we don't recommend it. In this example, it makes much
more sense to avoid function nesting altogether:

>>> def inner(i): # define module level name
... print i,
... if i: inner(i-1) # no worries: it's a global
...
>>> def outer(x):
... inner(x)
...
>>> outer(3)
3 2 1 0

As a rule of thumb, the easy way out is usually the right way out.

4.6.4 Defaults and Mutable Objects

D efault argument values are evaluated and saved when the def statement is run,
not when the resulting function is called. That's what you want, since it lets you save
values from the enclosing scope, as we've just seen. But since defaults retain an
object between calls, you have to be careful about changing mutable defaults. For
instance, the following function uses an empty list as a default value and then
changes it in place each time the function is called:

>>> def saver(x=[]): # saves away a list object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> def saver(x=[]): # saves away a list object
... x.append(1) # changes same object each time!
... print x
...
>>> saver([2]) # default not used
[2, 1]
>>> saver() # default used
[1]
>>> saver() # grows on each call
[1, 1]
>>> saver()
[1, 1, 1]

The problem is that there's just one list object here—the one created when the def
was executed. You don't get a new list every time the function is called, so the list
grows with each new append.

4.6.4.1 Solution

If that's not the behavior you wish, simply move the default value into the function
body; as long as the value resides in code that's actually executed each time the
function runs, you'll get a new object each time through:

>>> def saver(x=None):
... if x is None: # no argument passed?
... x = [] # run code to make a new list
... x.append(1) # changes new list object
... print x
...
>>> saver([2])
[2, 1]
>>> saver() # doesn't grow here
[1]
>>> saver()
[1]

By the way, the if statement above could almost be replaced by the assignment x =
x or [], which takes advantage of the fact that Python's or returns one of its
operand objects: if no argument was passed, x defaults to None, so the or returns
the new empty list on the right. This isn't exactly the same, though: when an empty list
is passed in, the function extends and returns a newly created list, rather than
extending and returning the passed-in list like the previous version (the expression
becomes [] or [], which evaluates to the new empty list on the right; see the
discussion of truth tests in Chapter 3 if you don't recall why). Since real program
requirements may call for either behavior, we won't pick a winner here.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.7 Summary

In this chapter, you've learned how to write and call functions of your own. We've
explored scope and namespace issues, talked about argument passing, saw a
number of functional tools such as lambda and map, and studied new function-
related statements—def, return, and global. We've also talked a little about how
to go about gluing functions together, and looked at common function cases that can
trip up new users. In Chapter 5 we'll learn about modules, which, among other
things, lets you group functions into packages of related tools.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

4.8 Exercises

We're going to start coding more sophisticated programs in this session. Be sure to
check Appendix C if you get stuck, and be sure to start writing your code in module
files. You won't want to retype some of these exercises from scratch if you make a
mistake.

1. Basics. At the Python interactive prompt, write a function that prints its single
argument to the screen and call it interactively, passing a variety of object types:
string, integer, list, dictionary. Then try calling it without passing any argument:
what happens? What happens when you pass two arguments?

2. Arguments. Write a function called adder in a Python module file. adder
should accept two arguments and return the sum (or concatenation) of its two
arguments. Then add code at the bottom of the file to call the function with a
variety of object types (two strings, two lists, two floating points), and run this file
as a script from the system command line. Do you have to print the call
statement results to see results on the screen?

3. varargs. Generalize the adder function you wrote in the last exercise to
compute the sum of an arbitrary number of arguments, and change the calls to
pass more or less than two. What type is the return value sum? (Hints: a slice
such as S[:0] returns an empty sequence of the same type as S, and the
type built-in function can test types.) What happens if you pass in arguments of
different types? What about passing in dictionaries?

4. Keywords. Change the adder function from Exercise 2 to accept and add three
arguments: def adder(good, bad, ugly). Now, provide default values for
each argument and experiment with calling the function interactively. Try
passing one, two, three, and four arguments. Then, try passing keyword
arguments. Does the call adder(ugly=1, good=2) work? Why? Finally,
generalize the new adder to accept and add an arbitrary number of keyword
arguments, much like Exercise 3, but you'll need to iterate over a dictionary, not
a tuple. (Hint: the dictionary.keys() method returns a list you can step
through with a for or while.)

5. Write a function called copyDict(dict) that copies its dictionary argument. It
should return a new dictionary with all the items in its argument. Use the
dictionary keys method to iterate. Copying sequences is easy (X[:] makes a
top-level copy); does this work for dictionaries too?

6. Write a function called addDict(dict1, dict2) that computes the union of
two dictionaries. It should return a new dictionary, with all the items in both its
arguments (assumed to be dictionaries). If the same key appears in both
arguments, feel free to pick a value from either. Test your function by writing it in
a file and running the file as a script. What happens if you pass lists instead of
dictionaries? How could you generalize your function to handle this case too?
(Hint: see the type built-in function used earlier.) Does the order of arguments
passed matter?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. More argument matching examples. First, define the following six functions
(either interactively, or in an importable module file):

def f1(a, b): print a, b # normal args

def f2(a, *b): print a, b # positional varargs

def f3(a, **b): print a, b # keyword varargs

def f4(a, *b, **c): print a, b, c # mixed modes

def f5(a, b=2, c=3): print a, b, c # defaults

def f6(a, b=2, *c): print a, b, c # defaults + positional varargs

Now, test the following calls interactively and try to explain each result; in some
cases, you'll probably need to fall back on the matching algorithm shown earlier
in this chapter. Do you think mixing matching modes is a good idea in general?
Can you think of cases where it would be useful anyhow?

>>> f1(1, 2)
>>> f1(b=2, a=1)
>>> f2(1, 2, 3)
>>> f3(1, x=2, y=3)
>>> f4(1, 2, 3, x=2, y=3)
>>> f5(1)
>>> f5(1, 4)
>>> f6(1)
>>> f6(1, 3, 4)

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 5. Modules
This chapter presents the Python module—the highest-level program organization
unit, which packages program code and data for reuse. In concrete terms, modules
take the form of Python program files (and C extensions); clients import modules to
use the names they define. Modules are processed with two new statements and one
important built-in function we explore here:

import

Lets a client fetch a module as a whole

from

Allows clients to fetch particular names from a module

reload

Provides a way to reload a module's code without stopping Python

We introduced module basics in Chapter 1, and you may have been using module
files in the exercises, so some of this chapter may be a review. But we also flesh out
module details we've omitted so far: reloads, module compilation semantics, and so
on. Because modules and classes are really just glorified namespaces, we explore
namespace basics here as well, so be sure to read most of this chapter before
tackling the next.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.1 Why Use Modules?

Let's start with the obvious first question: why should we care about modules? The
short answer is that they provide an easy way to organize components into a system.
But from an abstract perspective, modules have at least three roles:

Code reuse

As we saw in Chapter 1, modules let us save code in files permanently.[1]

Unlike code you type at the Python interactive prompt (which goes away when
you exit Python), code in module files is persistent—it can be reloaded and
rerun as many times as needed. More to the point, modules are a place to
define names (called attributes) that may be referenced by external clients.

[1] Until you delete the module file, at least.

System namespace partitioning

Modules are also the highest-level program organization unit in Python. As we'll
see, everything "lives" in a module; code you execute and some objects you
create are always implicitly enclosed by a module. Because of that, modules are
a natural tool for grouping system components.

Implementing shared services or data

From a functional perspective, modules also come in handy for implementing
components shared across a system, and hence only require a single copy. For
instance, if you need to provide a global data structure that's used by more than
one function, you can code it in a module that's imported by many clients.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.2 Module Basics

Python modules are easy to create; they're just files of Python program code, created
with your favorite text editor. You don't need to write special syntax to tell Python
you're making a module; almost any text file will do. Because Python handles all the
details of finding and loading modules, modules are also easy to use; clients simply
import a module or specific names a module defines and use the objects they
reference. Here's an overview of the basics:

Creating modules: Python files, C extensions

Modules can actually be coded as either Python files or C extensions. We won't
be studying C extensions in this book, but we'll use a few along the way. Many
of Python's built-in tools are really imported C extension modules; to their
clients, they look identical to Python file modules.

Using modules: import, from, reload()

As we'll see in a moment, clients can load modules with either import or from
statements. By calling the reload built-in function, they may also reload a
module's code without stopping programs that use it. Module files can also be
run as top-level programs from the system prompt, as we saw in Chapter 1.

Module search path: PYTHONPATH

As we also saw in Chapter 1, Python searches for imported module files by
inspecting all directories listed on the PYTHONPATH environment variable. You
can store modules anywhere, so long as you add all your source directories to
this variable.

5.2.1 Definition

Let's look at a simple example of module basics in action. To define a module, use
your text editor to type Python code into a text file. Names assigned at the top level of
the module become its attributes (names associated with the module object), and are
exported for clients to use. For instance, if we type the def below into a file called
module1.py, we create a module with one attribute—the name printer, which
happens to be a reference to a function object:

def printer(x): # module attribute
 print x

A word on filenames: you can call modules just about anything you like, but module
filenames should end in a .py suffix if you plan to import them. Since their names
become variables inside a Python program without the .py, they should also follow the
variable naming rules in Chapter 3. For instance, a module named if.py won't work,
because if is a reserved word (you'll get a syntax error). When modules are imported,
Python maps the internal module name to an external filename, by adding directory
paths in the PYTHONPATH variable to the front and a .py at the end: a module name M
maps to the external file <directory-path>/M.py which stores our code.[2]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

maps to the external file <directory-path>/M.py which stores our code.[2]

[2] It can also map to <directory-path>/M.pyc if there's already a compiled version of the module lying around; more on
this later. Dynamically loaded C extension modules are found on PYTHONPATH too, but that's outside this book's
scope.

5.2.2 Usage

Clients can use the module file we just wrote by running import or from statements.
Both load the module file's code; the chief difference is that import fetches the
module as a whole (so you must qualify to fetch its names out), but from fetches
specific names out of the module. Here are three clients of the module at work:

% python
>>> import module1 # get module
>>> module1.printer('Hello world!') # qualify to get names (module.name)
Hello world!

>>> from module1 import printer # get an export
>>> printer('Hello world!') # no need to qualify name
Hello world!

>>> from module1 import * # get all exports
>>> printer('Hello world!')
Hello world!

The last example uses a special form of from : when we use a *, we get copies of all
the names assigned at the top-level of the referenced module. In each of the three
cases, we wind up calling the printer function defined in the external module file.
And that's it; modules really are simple to use. But to give you a better understanding
of what really happens when you define and use modules, let's look at some of their
properties in more detail.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.3 Module Files Are Namespaces

Modules are probably best understood as places to define names you want visible to
the rest of a system. In Python-speak, modules are a namespace—a place where
names are created. And names that live in a module are called its attributes.
Technically, modules correspond to files, and Python creates a module object to
contain all the names defined in the file; but in simple terms, modules are just
namespaces.

So how do files become namespaces? Every name that is assigned a value at the top
level of a module file (i.e., not in a function body) becomes an attribute of that module.
For instance, given an assignment statement such as X=1 at the top level of a
module file M.py, the name X becomes an attribute of M, which we can refer to from
outside the module as M.X. The name X also becomes a global variable to other code
inside M.py, but we need to explain the notion of module loading and scopes a bit
more formally to understand why:

Module statements run on the first import

The first time a module is imported anywhere in a system, Python creates an
empty module object and executes the statements in the module file one after
another, from the top of the file to the bottom.

Top-level assignments create module attributes

During an import, statements at the top-level of the file that assign names (e.g.,
=, def) create attributes of the module object; assigned names are stored in the
module's namespace.

Module namespace: attribute _ _dict__, or dir()

Module namespaces created by imports are dictionaries; they may be accessed
through the built-in __ dict __ attribute associated with module objects and
may be inspected with the dir function we met in Chapter 1.

Modules are a single scope (local is global)

As we saw in Chapter 4, names at the top level of a module follow the same
reference/assignment rules as names in a function, but the local and global
scopes are the same (or, if you prefer, the LGB rule, without the G). But in
modules, the local scope becomes an attribute dictionary of a module object,
after the module has been loaded. Unlike functions (where the local namespace
exists only while the function runs), a module file's scope becomes a module
object's attribute namespace and may be used after the import.

Let's look at an example of these ideas. Suppose we create the following module file
with our favorite text editor and call it module2.py :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

print 'starting to load...'

import sys
name = 42

def func(): pass

class klass: pass

print 'done loading.'

The first time this module is imported (or run as a program), Python executes its
statements from top to bottom. Some statements create names in the module's
namespace as a side effect, but others may do actual work while the import is going
on. For instance, the two print statements in this file execute at import time:

>>> import module2
starting to load...
done loading.

But once the module is loaded, its scope becomes an attribute namespace in the
module object we get back from import; we access attributes in the namespace by
qualifying them with the name of the enclosing module:

>>> module2.sys
<module 'sys'>
>>> module2.name
42
>>> module2.func, module2.klass
(<function func at 765f20>, <class klass at 76df60>)

Here, sys, name, func, and klass were all assigned while the module's statements
were being run, so they're attributes after the import. We'll talk about classes in
Chapter 6, but notice the sys attribute; import statements really assign module
objects to names (more on this later). Internally, module namespaces are stored as
dictionary objects. In fact, we can access the namespace dictionary through the
module's __dict__ attribute; it's just a normal dictionary object, with the usual
methods:

>>> module2.__dict__.keys()
['__file__', 'name', '__name__', 'sys', '__doc__', '__builtins__', 'klass', 'func']

The names we assigned in the module file become dictionary keys internally. As you
can see, some of the names in the module's namespace are things Python adds for
us; for instance, _ _file__ gives the name of the file the module was loaded from,
and __name__ gives its name as known to importers (without the .py extension and
directory path).

5.3.1 Name Qualification

Now that you're becoming familiar with modules, we should clarify the notion of name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that you're becoming familiar with modules, we should clarify the notion of name
qualification. In Python, you can access attributes in any object that has attributes,
using the qualification syntax object.attribute. Qualification is really an
expression that returns the value assigned to an attribute name associated with an
object. For example, the expression module2.sys in the next-to-last example
fetches the value assigned to sys in module2. Similarly, if we have a built-in list
object L, L.append returns the method associated with the list.

So what does qualification do to the scope rules we saw in Chapter 4? Nothing,
really: it's an independent concept. When you use qualification to access names, you
give Python an explicit object to fetch from. The LGB rule applies only to bare,
unqualified names. Here are the rules:

Simple variables

"X" means search for name X in the current scopes (LGB rule)

Qualification

"X.Y" means search for attribute Y in the object X (not in scopes)

Qualification paths

"X.Y.Z" means look up name Y in object X, then look up Z in object X.Y

Generality

Qualification works on all objects with attributes: modules, classes, C types, etc.

In Chapter 6, we'll see that qualification means a bit more for classes (it's also the
place where inheritance happens), but in general, the rules here apply to all names in
Python.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.4 Import Model

As we've seen, qualification is needed only when you use import to fetch a module
as a whole. When you use the from statement, you copy names from the module to
the importer, so the imported names are used without qualifying. Here are a few more
details on the import process.

5.4.1 Imports Happen Only Once

One of the most common questions beginners seem to ask when using modules is:
why won't my imports keep working? The first import works fine, but later imports
during an interactive session (or in a program) seem to have no effect. They're not
supposed to, and here's why:

Modules are loaded and run on the first import or from.

Running a module's code creates its top-level names.

Later import and from operations fetch an already loaded module.

Python loads, compiles, and runs code in a module file only on the first import, on
purpose; since this is an expensive operation, Python does it just once per process by
default. Moreover, since code in a module is usually executed once, you can use it to
initialize variables. For example:

% cat simple.py
print 'hello'
spam = 1 # initialize variable

% python
>>> import simple # first import: loads and runs file's code
hello
>>> simple.spam # assignment makes an attribute
1
>>> simple.spam = 2 # change attribute in module
>>>
>>> import simple # just fetches already-loaded module
>>> simple.spam # code wasn't rerun: attribute unchanged
2

In this example, the print and = statements run only the first time the module is
imported. The second import doesn't rerun the module's code, but just fetches the
already created module object in Python's internal modules table. Of course,
sometimes you really want a module's code to be rerun; we'll see how to do it with
reload in a moment.

5.4.2 import and from Are Assignments

Just like def, import and from are executable statements, not compile-time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Just like def, import and from are executable statements, not compile-time
declarations. They can be nested in if tests, appear in function defs, and so on.
Imported modules and names aren't available until importing statements run.
Moreover, import and from are also implicit assignments, just like the def:

import assigns an entire module object to a name.

from assigns one or more names to objects of the same name in another
module.

All the things we've already said about assignment apply to module access too. For
instance, names copied with a from become references to possibly shared objects;
like function arguments, reassigning a fetched name has no effect on the module it
was copied from, but changing a fetched mutable object can change it in the module
it was imported from:[3]

[3] In fact, for a graphical picture of what from does, flip back to Figure 4.2 (function argument passing). Just replace
caller and function with imported and importer, to see what from assignments do with references; it's the exact same
effect, except that here we're dealing with names in modules, not functions.

% cat small.py
x = 1
y = [1, 2]

% python
>>> from small import x, y # copy two names out
>>> x = 42 # changes local x only
>>> y[0] = 42 # changes shared mutable in-place
>>>
>>> import small # get module name (from doesn't)
>>> small.x # small's x is not my x
1
>>> small.y # but we share a changed mutable
[42, 2]

Here, we change a shared mutable object we got with the from assignment: name y
in the importer and importee reference the same list object, so changing it from one
place changes it in the other. Incidentally, notice that we have to execute an import
statement after the from , in order to gain access to the module name to qualify it;
from copies names only in the module and doesn't assign the module name itself. At
least symbolically, from is equivalent to this sequence:

import module # fetch the module object
name1 = module.name1 # copy names out by assignment
name2 = module.name2
...
del module # get rid of the module name

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.5 Reloading Modules

At the start of the last section, we noted that a module's code is run only once per
process by default. To force a module's code to be reloaded and rerun, you need to
ask Python explicitly to do so, by calling the reload built-in function. In this section,
we'll explore how to use reload to make your systems more dynamic. In a nutshell:

Imports load and run a module's code only the first time.

Later imports use the already loaded module object without rerunning code.

The reload function forces an already loaded module's code to be reloaded
and rerun.

Why all the fuss about reloading modules? The reload function allows parts of
programs to be changed without stopping the whole program. With reload, the
effects of changes in components can be observed immediately. Reloading doesn't
help in every situation, but where it does, it makes for a much shorter development
cycle. For instance, imagine a database program that must connect to a server on
startup; since program changes can be tested immediately after reloads, you need to
connect only once while debugging.[4]

[4] We should note that because Python is interpreted (more or less), it already gets rid of the compile/link steps you
need to go through to get a C program to run: modules are loaded dynamically, when imported by a running program.
Reloading adds to this, by allowing you to also change parts of running programs without stopping. We should also
note that reload currently only works on modules written in Python; C extension modules can be dynamically loaded
at runtime too, but they can't be reloaded. We should finally note that since this book isn't about C modules, we've
probably already noted too much.

5.5.1 General Form

Unlike import and from :

reload is a built-in function in Python, not a statement.

reload is passed an existing module object, not a name.

Because reload expects an object, a module must have been previously imported
successfully before you can reload it. (In fact, if the import was unsuccessful due to a
syntax or other error, you may need to repeat an import before you can reload).
Reloading looks like this:

import module # initial import
 Use module.attributes
... # now, go change the module file
...
reload(module) # get updated exports
 Use module.attributes

You typically import a module, then change its source code in a text editor and reload.
When you call reload, Python rereads the module file's source code and reruns its
top-level statements. But perhaps the most important thing to know about reload is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

top-level statements. But perhaps the most important thing to know about reload is
that it changes a module object in-place; because of that, every reference to a
module object is automatically effected by a reload. The details:

reload runs a module file's new code in the module's current namespace

Rerunning a module file's code overwrites its existing namespace, rather than
deleting and recreating it.

Top-level assignments in the file replace names with new values

For instance, rerunning a def statement replaces the prior version of the
function in the module's namespace.

Reloads impact all clients that use import to fetch modules

Because clients that use import qualify to fetch attributes, they'll find new
values in the module after a reload .

Reloads impacts future from clients only

Clients that use from to fetch attributes in the past won't be effected by a
reload; they'll still have references to the old objects fetched before the
reload (we'll say more about this later).

5.5.2 Example

Here's a more concrete example of reload in action. In the following session, we
change and reload a module file without stopping the interactive Python session.
Reloads are used in many other scenarios too (see the next sidebar), but we'll keep
things simple for illustration here. First, let's write a module file with the text editor of
our choice:

% cat changer.py
message = "First version"

def printer():
 print message

This module creates and exports two names—one bound to a string, and another to a
function. Now, start the Python interpreter, import the module, and call the function it
exports; as you should know by now, the function prints the value of the global
variable message:

% python
>>> import changer
>>> changer.printer()
First version
>>>

Next, let's keep the interpreter active and edit the module file in another window; here,
we change the global message variable, as well as the printer function body:

Modify changer.py without stopping Python

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modify changer.py without stopping Python

% vi changer.py
% cat changer.py
message = "After editing"

def printer():
 print 'reloaded:', message

Finally, we come back to the Python window and reload the module to fetch the new
code we just changed. Notice that importing the module again has no effect; we get
the original message even though the file's been changed. We have to call reload in
order to get the new version:

Back to the Python interpreter/program

>>> import changer
>>> changer.printer() # no effect: uses loaded module
First version

>>> reload(changer) # forces new code to load/run
<module 'changer'>
>>> changer.printer() # runs the new version now
reloaded: After editing

Notice that reload actually returns the module object for us; its result is usually
ignored, but since expression results are printed at the interactive prompt, Python
shows us a default <module name> representation.

Why You Will Care: Module Reloads
Besides allowing you to reload (and hence rerun) modules at the interactive
prompt, module reloads are also useful in larger systems, especially when
the cost of restarting the entire application is prohibitive. For instance,
systems that must connect to servers over a network on startup are prime
candidates for dynamic reloads.

They're also useful in GUI work (a widget's callback action can be changed
while the GUI remains active) and when Python is used as an embedded
language in a C or C++ program (the enclosing program can request a
reload of the Python code it runs, without having to stop). See Programming
Python for more on reloading GUI callbacks and embedded Python code.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.6 Odds and Ends

In this section, we introduce a few module-related ideas that seem important enough
to stand on their own (or obscure enough to defy our organizational skills).

5.6.1 Module Compilation Model

As currently implemented, the Python system is often called an interpreter, but it's
really somewhere between a classic interpreter and compiler. As in Java, Python
programs are compiled to an intermediate form called bytecode, which is then
executed on something called a virtual machine. Since the Python virtual machine
interprets the bytecode form, we can get away with saying that Python is interpreted,
but it still goes through a compile phase first.

Luckily, the compile step is completely automated and hidden in Python. Python
programmers simply import modules and use the names they define; Python takes
care to automatically compile modules to bytecode when they are first imported.
Moreover, Python tries to save a module's bytecode in a file, so it can avoid
recompiling in the future if the source code hasn't been changed. In effect, Python
comes with an automatic make system to manage recompiles.[5]

[5] For readers who have never used C or C++, a make system is a way to automate compiling and linking programs.
make systems typically use file modification dates to know when a file must be recompiled (just like Python).

Here's how this works. You may have noticed .pyc files in your module directories
after running programs; these are the files Python generates to save a module's
bytecode (provided you have write access to source directories). When a module M is
imported, Python loads a M.pyc bytecode file instead of the corresponding M.py
source file, as long as the M.py file hasn't been changed since the M.pyc bytecode
was saved. If you change the source code file (or delete the .pyc), Python is smart
enough to recompile the module when imported; if not, the saved bytecode files make
your program start quicker by avoiding recompiles at runtime.

Why You Will Care: Shipping Options
Incidentally, compiled .pyc bytecode files also happen to be one way to ship
a system without source code. Python happily loads a .pyc file if it can't find
a .py source file for a module on its module search path, so all you really
need to ship to customers are the .pyc files. Moreover, since Python
bytecode is portable, you can usually run a .pyc file on multiple platforms.
To force pre-compilation into .pyc files, simply import your modules (also
see the compileall utility module).

It's also possible to "freeze" Python programs into a C executable; the
standard freeze tool packages your program's compiled byte code, any
Python utilities it uses, and as much of the C code of the Python interpreter
as needed to run your program. It produces a C program, which you compile
with a generated makefile to produce a standalone executable program. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with a generated makefile to produce a standalone executable program. The
executable works the same as the Python files of your program. Frozen
executables don't require a Python interpreter to be installed on the target
machine and may start up faster; on the other hand, since the bulk of the
interpreter is included, they aren't small. A similar tool, squeeze, packages
Python bytecode in a Python program; search Python's web site for details.

5.6.2 Data Hiding Is a Convention

As we've seen, Python modules export all names assigned at the top level of their file.
There is no notion of declaring which names should and shouldn't be visible outside
the module. In fact, there's no way to prevent a client from changing names inside a
module if they want to.

In Python, data hiding in modules is a convention, not a syntactical constraint. If you
want to break a module by trashing its names, you can (though we have yet to meet a
programmer who would want to). Some purists object to this liberal attitude towards
data hiding and claim that it means Python can't implement encapsulation. We
disagree (and doubt we could convince purists of anything in any event).
Encapsulation in Python is more about packaging, than restricting.[6]

[6] Purists would probably also be horrified by the rogue C++ programmer who types #define private public to
break C++'s hiding mechanism in a single blow. But then those are rogue programmers for you.

As a special case, prefixing names with an underscore (e.g., _X) prevents them from
being copied out when a client imports with a from* statement. This really is
intended only to minimize namespace pollution;since from* copies out all names,
you may get more than you bargained for (including names which overwrite names in
the importer). But underscores aren't "private" declarations: you can still see and
change such names with other import forms.

5.6.3 Mixed Modes: __name__ and __main__

Here's a special module-related trick that lets you both import a module from clients
and run it as a standalone program. Each module has a built-in attribute called
__name__, which Python sets as follows:

If the file is being run as a program, __ name _ _ is set to the string __ main
__ when it starts

If the file is being imported, __name__ is set to the module's name as known by
its clients

The upshot is that a module can test its own _ _name__ to determine whether it's
being run or imported. For example, suppose we create the module file below, to
export a single function called tester:

def tester():
 print "It's Christmas in Heaven..."

if __name__ == '__main__': # only when run
 tester() # not when imported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tester() # not when imported

This module defines a function for clients to import and use as usual:

% python
>>> import runme
>>> runme.tester()
It's Christmas in Heaven...

But the module also includes code at the bottom that is set up to call the function
when this file is run as a program:

% python runme.py
It's Christmas in Heaven...

Perhaps the most common place you'll see the _ _main__ test applied is for self-test
code: you can package code that tests a module's exports in the module itself by
wrapping it in a __ main __ test at the bottom. This way, you can use the file in
clients and test its logic by running it from the system shell.

5.6.4 Changing the Module Search Path

We've mentioned that the module search path is a list of directories in environment
variable PYTHONPATH. What we haven't told you is that a Python program can
actually change the search path, by assigning to a built-in list called sys.path (the
path attribute in the built-in sys module). sys.path is initialized from PYTHONPATH
(plus compiled-in defaults) on startup, but thereafter, you can delete, append, and
reset its components however you like:

>>> import sys
>>> sys.path
['.', 'c:\\python\\lib', 'c:\\python\\lib\\tkinter']

>>> sys.path = ['.'] # change module search path
>>> sys.path.append('c:\\book\\examples') # escape backlashes as "\\"
>>> sys.path
['.', 'c:\\book\\examples']

>>> import string
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named string

You can use this to dynamically configure a search path inside a Python program. Be
careful, though; if you delete a critical directory from the path, you may lose access to
critical utilities. In the last command above, for example, we no longer have access to
the string module, since we deleted the Python source library's directory from the
path.

5.6.5 Module Packages (New in 1.5)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Packages are an advanced tool, and we debated whether to cover them in this book.
But since you may run across them in other people's code, here's a quick overview of
their machinery.

In short, Python packages allow you to import modules using directory paths;
qualified names in import statements reflect the directory structure on your
machine. For instance, if some module C lives in a directory B, which is in turn a
subdirectory of directory A, you can say import A.B.C to load the module. Only
directory A needs to be found in a directory listed in the PYTHONPATH variable, since
the path from A to C is given by qualification.

Packages come in handy when integrating systems written by independent
developers; by storing each system's set of modules in its own subdirectory, we can
reduce the risk of name clashes. For instance, if each developer writes a module
called spam.py, there's no telling which will be found on PYTHONPATH first if package
qualifier paths aren't used. If another subsystem's directory appears on PYTHONPATH
first, a subsystem may see the wrong one.

Again, if you're new to Python, make sure that you've mastered simple modules
before stepping up to packages. Packages are more complex than we've described
here; for instance, each directory used as a package must include a __ init __.py
module to identify itself as such. See Python's reference manuals for the whole story.

Why You Will Care: Module Packages
Now that packages are a standard part of Python, you're likely to start
seeing third-party extensions shipped as a set of package directories, rather
than a flat list of modules. The PythonWin port of Python for MS-Windows
was one of the first to jump on the package bandwagon. Many of its utility
modules reside in packages, which you import with qualification paths; for
instance, to load client-side COM tools, we say:

from win32com.client import constants, Dispatch

which fetches names from the client module of the PythonWin win32com
package (an install directory). We'll see more about COM in Chapter 10.

5.6.6 Module Design Concepts

Like functions, modules present design tradeoffs: deciding which functions go in
which module, module communication mechanisms, and so on. Here too, it's a bigger
topic than this book allows, so we'll just touch on a few general ideas that will become
clearer when you start writing bigger Python systems:

You're always in a module in Python

There's no way to write code that doesn't live in some module. In fact, code
typed at the interactive prompt really goes in a built-in module called __main
__.

Minimize module coupling: global variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like functions, modules work best if they're written to be closed boxes. As a rule
of thumb, they should be as independent of global names in other modules as
possible.

Maximize module cohesion: unified purpose

You can minimize a module's couplings by maximizing its cohesion; if all the
components of a module share its general purpose, you're less likely to depend
on external names.

Modules should rarely change other modules' variables

It's perfectly okay to use globals defined in another module (that's how clients
import services, after all), but changing globals in another module is usually a
symptom of a design problem. There are exceptions of course, but you should
try to communicate results through devices such as function return values, not
cross-module changes.

5.6.7 Modules Are Objects: Metaprograms

Finally, because modules expose most of their interesting properties as built-in
attributes, it's easy to write programs that manage other programs. We usually call
such manager programs metaprograms , because they work on top of other systems.
This is also referred to as introspection, because programs can see and process
object internals.

For instance, to get to an attribute called name in a module called M, we can either
use qualification, or index the module's attribute dictionary exposed in the built-in _
_dict__ attribute. Further, Python also exports the list of all loaded modules as the
sys.modules dictionary (that is, the modules attribute of the sys module), and
provides a built-in called getattr that lets us fetch attributes from their string names.
Because of that, all the following expressions reach the same attribute and object:

M.name # qualify object
M.__dict__['name'] # index namespace dictionary manually
sys.modules['M'].name # index loaded-modules table manually
getattr(M, 'name') # call built-in fetch function

By exposing module internals like this, Python helps you build programs about
programs.[7] For example, here is a module that puts these ideas to work, to
implement a customized version of the built-in dir function. It defines and exports a
function called listing, which takes a module object as an argument and prints a
formatted listing of the module's namespace:

[7] Notice that because a function can access its enclosing module by going through the sys.modules table like this,
it's possible to emulate the effect of the global statement we met in Chapter 4. For instance, the effect of global
X; X=0 can be simulated by saying, inside a function: import sys; glob=sys.modules[_ _name__];
glob.X=0 (albeit with much more typing). Remember, each module gets a __ name__ attribute for free; it's visible as
a global name inside functions within a module. This trick provides a way to change both local and global variables of
the same name, inside a function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a module that lists the namespaces of other modules

verbose = 1

def listing(module):
 if verbose:
 print "-"*30
 print "name:", module.__ _name__, "file:", module.__file__
 print "-"*30

 count = 0
 for attr in module.__dict__.keys(): # scan namespace
 print "%02d) %s" % (count, attr),
 if attr[0:2] == "__":
 print "<built-in name>" # skip __file__, etc.
 else:
 print getattr(module, attr) # same as .__dict__[attr]
 count = count+1

 if verbose:
 print "-"*30
 print module.__name__, "has %d names" % count
 print "-"*30

if __name__ == "__main__":
 import mydir
 listing(mydir) # self-test code: list myself

We've also provided self-test logic at the bottom of this module, which narcissistically
imports and lists itself. Here's the sort of output produced:

C:\python> python mydir.py

name: mydir file: mydir.py

00) __file__ <built-in name>
01) __name__ <built-in name>
02) listing <function listing at 885450>
03) __doc__ <built-in name>
04) __builtins__ <built-in name>
05) verbose 1

mydir has 6 names

We'll meet getattr and its relatives again. The point to notice here is that mydir is
a program that lets you browse other programs. Because Python exposes its
internals, you can process objects generically.[8]

[8] By the way, tools such as mydir.listing can be preloaded into the interactive namespace, by importing them in
the file referenced by the PYTHONSTARTUP environment variable. Since code in the startup file runs in the interactive
namespace (module _ _main__), imports of common tools in the startup file can save you some typing. See Chapter
1 for more details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.7 Module Gotchas

Finally, here is the usual collection of boundary cases, which make life interesting for
beginners. Some are so obscure it was hard to come up with examples, but most
illustrate something important about Python.

5.7.1 Importing Modules by Name String

As we've seen, the module name in an import or from statement is a hardcoded
variable name; you can't use these statements directly to load a module given its
name as a Python string. For instance:

>>> import "string"
 File "<stdin>", line 1
 import "string"
 ^
SyntaxError: invalid syntax

5.7.1.1 Solution

You need to use special tools to load modules dynamically, from a string that exists at
runtime. The most general approach is to construct an import statement as a string
of Python code and pass it to the exec statement to run:

>>> modname = "string"
>>> exec "import " + modname # run a string of code
>>> string # imported in this namespace
<module 'string'>

The exec statement (and its cousin, the eval function) compiles a string of code,
and passes it to the Python interpreter to be executed. In Python, the bytecode
compiler is available at runtime, so you can write programs that construct and run
other programs like this. By default, exec runs the code in the current scope, but you
can get more specific by passing in optional namespace dictionaries. We'll say more
about these tools later in this book.

The only real drawback to exec is that it must compile the import statement each
time it runs; if it runs many times, you might be better off using the built-in __ import
__ function to load from a name string instead. The effect is similar, but __ import
__ returns the module object, so we assign it to a name here:

>>> modname = "string"
>>> string = __import__(modname)
>>> string
<module 'string'>

5.7.2 from Copies Names but Doesn't Link

Earlier, we mentioned that the from statement is really an assignment to names in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Earlier, we mentioned that the from statement is really an assignment to names in
the importer's scope—a name-copy operation, not a name aliasing. The implications
of this are the same as for all assignments in Python, but subtle, especially given that
the code that shares objects lives in different files. For instance, suppose we define a
module nested1 as follows:

X = 99
def printer(): print X

Now, if we import its two names using from in another module, we get copies of
those names, not links to them. Changing a name in the importer resets only the
binding of the local version of that name, not the name in nested1:

from nested1 import X, printer # copy names out
X = 88 # changes my "X" only!
printer() # nested1's X is still 99

% python nested2.py
99

5.7.2.1 Solution

On the other hand, if you use import to get the whole module and assign to a
qualified name, you change the name in nested1. Qualification directs Python to a
name in the module object, rather than a name in the importer:

import nested1 # get module as a whole
nested1.X = 88 # okay: change nested1's X
nested1.printer()

% python nested3.py
88

5.7.3 Statement Order Matters in Top-Level Code

As we also saw earlier, when a module is first imported (or reloaded), Python
executes its statements one by one, from the top of file to the bottom. This has a few
subtle implications regarding forward references that are worth underscoring here:

Code at the top level of a module file (not nested in a function) runs as soon as
Python reaches it during an import; because of that, it can't reference names
assigned lower in the file.

Code inside a function body doesn't run until the function is called; because
names in a function aren't resolved until the function actually runs, they can
usually reference names anywhere in the file.

In general, forward references are only a concern in top-level module code that
executes immediately; functions can reference names arbitrarily. Here's an example
that illustrates forward reference dos and don'ts:

func1() # error: "func1" not yet assigned

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

func1() # error: "func1" not yet assigned

def func1():
 print func2() # okay: "func2" looked up later

func1() # error: "func2" not yet assigned

def func2():
 return "Hello"

func1() # okay: "func1" and "func2" assigned

When this file is imported (or run as a standalone program), Python executes its
statements from top to bottom. The first call to func1 fails because the func1 def
hasn't run yet. The call to func2 inside func1 works as long as func2's def has
been reached by the time func1 is called (it hasn't when the second top-level func1
call is run). The last call to func1 at the bottom of the file works, because func1
and func2 have both been assigned.

5.7.3.1 Solution

Don't do that. Mixing defs with top-level code is not only hard to read, it's dependent
on statement ordering. As a rule of thumb, if you need to mix immediate code with
defs, put your defs at the top of the file and top-level code at the bottom. That way,
your functions are defined and assigned by the time code that uses them runs.

5.7.4 Recursive "from" Imports May Not Work

Because imports execute a file's statements from top to bottom, we sometimes need
to be careful when using modules that import each other (something called recursive
imports). Since the statements in a module have not all been run when it imports
another module, some of its names may not yet exist. If you use import to fetch a
module as a whole, this may or may not matter; the module's names won't be
accessed until you later use qualification to fetch their values. But if you use from to
fetch specific names, you only have access to names already assigned.

For instance, take the following modules recur1 and recur2. recur1 assigns a
name X, and then imports recur2, before assigning name Y. At this point, recur2
can fetch recur1 as a whole with an import (it already exists in Python's internal
modules table), but it can see only name X if it uses from; the name Y below the
import in recur1 doesn't yet exist, so you get an error:

module recur1.py

X = 1
import recur2 # run recur2 now if doesn't exist
Y = 2

module recur2.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from recur1 import X # okay: "X" already assigned
from recur1 import Y # error: "Y" not yet assigned

>>> import recur1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "recur1.py", line 2, in ?
 import recur2
 File "recur2.py", line 2, in ?
 from recur1 import Y # error: "Y" not yet assigned
ImportError: cannot import name Y

Python is smart enough to avoid rerunning recur1's statements when they are
imported recursively from recur2 (or else the imports would send the script into an
infinite loop), but recur1's namespace is incomplete when imported by recur2.

5.7.4.1 Solutions

Don't do that....really! Python won't get stuck in a cycle, but your programs will once
again be dependent on the order of statements in modules. There are two ways out of
this gotcha:

You can usually eliminate import cycles like this by careful design; maximizing
cohesion and minimizing coupling are good first steps.

If you can't break the cycles completely, postpone module name access by
using import and qualification (instead of from), or running your from s
inside functions (instead of at the top level of the module).

5.7.5 reload May Not Impact from Imports

The from statement is the source of all sorts of gotchas in Python. Here's another:
because from copies (assigns) names when run, there's no link back to the module
where the names came from. Names imported with from simply become references
to objects, which happen to have been referenced by the same names in the
importee when the from ran. Because of this behavior, reloading the importee has no
effect on clients that use from; the client's names still reference the objects fetched
with from, even though names in the original module have been reset:

from module import X # X may not reflect any module reloads!
. . .
reload(module) # changes module, not my names
X # still references old object

5.7.5.1 Solution

Don't do it that way. To make reloads more effective, use import and name
qualification, instead of from. Because qualifications always go back to the module,
they will find the new bindings of module names after calling reload:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

they will find the new bindings of module names after calling reload:

import module # get module, not names
. . .
reload(module) # changes module in-place
module.X # get current X: reflects module reloads

5.7.6 reload Isn't Applied Transitively

When you reload a module, Python only reloads that particular module's file; it doesn't
automatically reload modules that the file being reloaded happens to import. For
example, if we reload some module A, and A imports modules B and C, the reload
only applies to A, not B and C. The statements inside A that import B and C are rerun
during the reload, but they'll just fetch the already loaded B and C module objects
(assuming they've been imported before):

% cat A.py
import B # not reloaded when A is
import C # just an import of an already loaded module

% python
>>> . . .
>>> reload(A)

5.7.6.1 Solution

Don't depend on that. Use multiple reload calls to update subcomponents
independently. If desired, you can design your systems to reload their
subcomponents automatically by adding reload calls in parent modules like A .[9]

[9] You could also write a general tool to do transitive reloads automatically, by scanning module __ dict __s (see
the section Section 5.6.7), and checking each item's type() to find nested modules to reload recursively. This is an
advanced exercise for the ambitious.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.8 Summary

We've learned all about modules in this chapter—how to write them and how to use
them. Along the way we explored namespaces and qualification, saw how to reload
modules to change running programs, peeked at a few module design issues, and
studied the module-related statements and functions listed in Table 5.1. In the next
chapter, we're going to move on to study Python classes. As we'll see, classes are
cousins to modules; they define namespaces too, but add support for making multiple
copies, specialization by inheritance, and more.

Table 5.1. Module Operations
Operation Interpretation

import mod Fetch a module as a whole
from mod import name Fetch a specific name from a module
from mod import* Fetch all top-level names from a module
reload(mod) Force a reload of a loaded module's code

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

5.9 Exercises

1. Basics, import. With your favorite text editor, write a Python module called
mymod.py, which exports three top-level names:

A countLines(name) function that reads an input file and counts the
number of lines in it (hint: file.readlines() does most of the work for
you)

A countChars(name) function that reads an input file and counts the
number of characters in it (hint: file.read() returns a single string)

A test(name) function that calls both counting functions with a given
input filename

A filename string should be passed into all three mymod functions. Now, test
your module interactively, using import and name qualification to fetch your
exports. Does your PYTHONPATH include the directory where you created
mymod.py ? Try running your module on itself: e.g., test("mymod.py"). Note
that test opens the file twice; if you're feeling ambitious, you might be able to
improve this by passing an open file object into the two count functions.

2. from/from. Test your mymod module from Exercise 1 interactively, by using
from to load the exports directly, first by name, then using the from* variant to
fetch everything.

3. __main__. Now, add a line in your mymod module that calls the test function
automatically only when the module is run as a script. Try running your module
from the system command line; then import the module and test its functions
interactively. Does it still work in both modes?

4. Nested imports. Finally, write a second module, myclient.py, which imports
mymod and tests its functions; run myclient from the system command line. If
myclient uses from to fetch from mymod, will mymod's functions be accessible
from the top level of myclient? What if it imports with import instead? Try
coding both variations in myclient and test interactively, by importing myclient
and inspecting its __ dict__.

5. Reload. Experiment with module reloads: perform the tests in the changer.py
example, changing the called function's message and/or behavior repeatedly,
without stopping the Python interpreter. Depending on your system, you might
be able to edit changer in another window, or suspend the Python interpreter
and edit in the same window (on Unix, a Ctrl-Z key combination usually
suspends the current process, and a fg command later resumes it).

6. Circular imports (and other acts of cruelty).[10] In the section on recursive import
gotchas, importing recur1 raised an error. But if we restart Python and import
recur2 interactively, the error doesn't occur: test and see this for yourself. Why
do you think it works to import recur2, but not recur1? (Hint: Python stores

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

do you think it works to import recur2, but not recur1? (Hint: Python stores
new modules in the built-in sys.modules table (a dictionary) before running
their code; later imports fetch the module from this table first, whether the
module is "complete" yet or not.) Now try running recur1 as a script: % python
recur1.py. Do you get the same error that occurs when recur1 is imported
interactively? Why? (Hint: when modules are run as programs they aren't
imported, so this case has the same effect as importing recur2 interactively;
recur2 is the first module imported.) What happens when you run recur2 as
a script?

[10] We should note that circular imports are extremely rare in practice. In fact, we have never coded or
come across a circular import in six years of Python coding—except on the Internet (where such things
receive an inordinate amount of attention), and when writing books like this. On the other hand, if you can
understand why it's a potential problem, you know a lot about Python's import semantics.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 6. Classes
This chapter explores the Python class—a device used to implement new kinds of
objects in Python. Classes are Python's main object-oriented programming (OOP)
tool, so we'll also look at OOP basics along the way in this chapter. In Python, classes
are created with a new statement we'll meet here too: the class statement. As we'll
see, objects defined with classes can look a lot like the built-in types we saw earlier in
the book.

One note up front: Python OOP is entirely optional, and you don't need to use classes
just to get started. In fact, you can get plenty of work done with simpler constructs
such as functions. But classes turn out to be one of the most useful tools Python
provides, and we hope to show you why here. They're also employed in popular
Python tools like the Tkinter GUI API, so most Python programmers will usually find at
least a working knowledge of class basics helpful.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.1 Why Use Classes?

Remember when we told you that programs do things with stuff? In simple terms,
classes are just a way to define new sorts of stuff, which reflect real objects in your
program's domain. For instance, suppose we've decided to implement that
hypothetical pizza-making robot we used as an example in Chapter 4. If we
implement it using classes, we can model more of its real-world structure and
relationships:

Inheritance

Pizza-making robots are a kind of robot, and so posses the usual robot-y
properties. In OOP terms, we say they inherit properties from the general
category of all robots. These common properties need be implemented only
once for the general case and reused by all types of robots we may build in the
future.

Composition

Pizza-making robots are really collections of components that work together as
a team. For instance, for our robot to be successful, it might need arms to roll
dough, motors to maneuver to the oven, and so on. In OOP parlance, our robot
is an example of composition; it contains other objects it activates to do its
bidding. Each component might be coded as a class, which defines its own
behavior and relationships.

Of course, most of us aren't getting paid to build pizza-making robots yet, but general
OOP ideas like inheritance and composition apply to any application that can be
decomposed into a set of objects. For example, in typical GUI systems, interfaces are
written as collections of widgets (buttons, labels, and so on), which are all drawn
when their container is (composition). Moreover, we may be able to write our own
custom widgets, which are specialized versions of more general interface devices
(inheritance).

From a more concrete programming perspective, classes are a Python program unit,
just like functions and modules. They are another compartment for packaging logic
and data. In fact, classes also define a new namespace much like modules. But
compared to other program units we've already seen, classes have three critical
distinctions that make them more useful when it comes to building new objects:

Multiple instances

Classes are roughly templates for generating one or more objects. Every time
we call a class, we generate a new object, with a distinct namespace. As we'll
see, each object generated from a class has access to the class's attributes and
gets a namespace of its own for data that varies per object.

Customization via inheritance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Classes also support the OOP notion of inheritance; they are extended by
overriding their attributes outside the class itself. More generally, classes can
build up namespace hierarchies, which define names to be used by objects
created from classes in the hierarchy.

Operator overloading

By providing special protocol methods, classes can define objects that respond
to the sorts of operations we saw work on built-in types. For instance, objects
made with classes can be sliced, concatenated, indexed, and so on. As we'll
see, Python provides hooks classes can use to intercept any built-in type
operation.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.2 Class Basics

If you've never been exposed to OOP in the past, classes can be somewhat
complicated if taken in a single dose. To make classes easier to absorb, let's start off
by taking a quick first look at classes in action here, to illustrate the three distinctions
described previously. We'll expand on the details in a moment; but in their basic form,
Python classes are easy to understand.

6.2.1 Classes Generate Multiple Instance Objects

As we mentioned at the end of Chapter 5, classes are mostly just a namespace,
much like modules. But unlike modules, classes also have support for multiple
copies, namespace inheritance, and operator overloading. Let's look at the first of
these extensions here.

To understand how the multiple copies idea works, you have to first understand that
there are two kinds of objects in Python's OOP model—class objects and instance
objects. Class objects provide default behavior and serve as generators for instance
objects. Instance objects are the real objects your programs process; each is a
namespace in its own right, but inherits (i.e., has access to) names in the class it was
created from. Class objects come from statements and instances from calls; each
time you call a class, you get a new instance. Now, pay attention, because we're
about to summarize the bare essentials of Python OOP.

6.2.1.1 Class objects provide default behavior

The class statement creates a class object and assigns it a name

Like def, the Python class statement is an executable statement; when run, it
generates a new class object and assigns it the name in the class header.

Assignments inside class statements make class attributes

Like modules, assignments in a class statement generate attributes in a class
object; class attributes are accessed by name qualification (object.name).

Class attributes export object state and behavior

Attributes of a class object record state information and behavior, to be shared
by all instances created from the class; function def statements inside a class
generate methods, which process instances.

6.2.1.2 Instance objects are generated from classes

Calling a class object like a function makes a new instance object

Each time a class is called, it generates and returns a new instance object.

Each instance object inherits class attributes and gets its own namespace

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Instance objects generated from classes are new namespaces; they start out
empty, but inherit attributes that live in the class object they were generated
from.

Assignments to self in methods make per-instance attributes

Inside class method functions, the first argument (called self by convention)
references the instance object being processed; assignments to attributes of
self create or change data in the instance, not the class.

6.2.1.3 An example

Apart from a few details, that's all there is to OOP in Python. Let's turn to a real
example to show how these ideas work in practice. First, let's define a class called
FirstClass, using the Python class statement:

>>> class FirstClass: # define a class object
... def setdata(self, value): # define class methods
... self.data = value # self is the instance
... def display(self):
... print self.data # self.data: per instance
Like all compound statements, class starts with a header line that lists the class
name, followed by a body of one or more nested and indented statements. Here, the
nested statements are defs; they define functions that implement the behavior the
class means to export. As we've seen, def is an assignment; here, it assigns to
names in the class statement's scope and so generates attributes of the class.
Functions inside a class are usually called method functions; they're normal defs,
but the first argument automatically receives an implied instance object when called.
We need a couple of instances to see how:

>>> x = FirstClass() # make two instances
>>> y = FirstClass() # each is a new namespace
By calling the class as we do, we generate instance objects, which are just
namespaces that get the class's attributes for free. Properly speaking, at this point we
have three objects—two instances and a class; but really, we have three linked
namespaces, as sketched in Figure 6.1. In OOP terms, we say that x is a
FirstClass, as is y. The instances start empty, but have links back to the class; if
we qualify an instance with the name of an attribute in the class object, Python
fetches the name from the class (unless it also lives in the instance):

>>> x.setdata("King Arthur") # call methods: self is x or y
>>> y.setdata(3.14159) # runs: FirstClass.setdata(y, 3.14159)
Neither x nor y has a setdata of its own; instead, Python follows the link from
instance to class if an attribute doesn't exist in an instance. And that's about all there
is to inheritance in Python: it happens at attribute qualification time, and just involves
looking up names in linked objects (by following the is-a links in Figure 6.1).

In the setdata function in FirstClass, the value passed in is assigned to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the setdata function in FirstClass, the value passed in is assigned to
self.data; within a method, self automatically refers to the instance being
processed (x or y), so the assignments store values in the instances' namespaces,
not the class (that's how the data names in Figure 6.1 get created). Since classes
generate multiple instances, methods must go through the self argument to get to
the instance to be processed. When we call the class's display method to print
self.data, we see that it's different in each instance; on the other hand, display
is the same in x and y, since it comes (is inherited) from the class:

>>> x.display() # self.data differs in each
King Arthur
>>> y.display()
3.14159

Notice that we stored different object types in the data member (a string and a float).
Like everything else in Python, there are no declarations for instance attributes
(sometimes called members); they spring into existence the first time they are
assigned a value, just like simple variables. In fact, we can change instance attributes
either in the class itself by assigning to self in methods, or outside the class by
assigning to an explicit instance object:

>>> x.data = "New value" # can get/set attributes
>>> x.display() # outside the class too
New value

Figure 6.1. Classes and instances are linked namespace objects

6.2.2 Classes Are Specialized by I nheritance

Unlike modules, classes also allow us to make changes by introducing new
components (subclasses), instead of changing existing components in place. We've
already seen that instance objects generated from a class inherit its attributes. Python
also allows classes to inherit from other classes, and this opens the door to what are
usually called frameworks —hierarchies of classes that specialize behavior by
overriding attributes lower in the hierarchy. The key ideas behind this machinery are:

S uperclasses are listed in parentheses in a class header

To inherit attributes from another class, just list the class in parentheses in a
class statement's header. The class that inherits is called a subclass, and the
class that is inherited from is its superclass.

Classes inherit attributes from their superclasses

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Just like instances, a class gets all the names defined in its superclasses for
free; they're found by Python automatically when qualified, if they don't exist in
the subclass.

Instances inherit attributes from all accessible classes

Instances get names from the class they are generated from, as well as all of
the class's superclasses; when looking for a name, Python checks the instance,
then its class, then all superclasses above.

Logic changes are made by subclassing, not by changing superclasses

By redefining superclass names in subclasses, subclasses override inherited
behavior.

6.2.2.1 An example

Our next example builds on the one before. Let's define a new class, SecondClass,
which inherits all of FirstClass's names and provides one of its own:

>>> class SecondClass(FirstClass): # inherits setdata
... def display(self): # changes display
... print 'Current value = "%s"' % self.data
SecondClass redefines the display method to print with a different format. But
because SecondClass defines an attribute of the same name, it replaces the
display attribute in FirstClass. Inheritance works by searching up from
instances, to subclasses, to superclasses, and stops at the first appearance of an
attribute name it finds. Since it finds the display name in SecondClass before the
one in FirstClass, we say that SecondClass overrides FirstClass's display.
In other words, SecondClass specializes FirstClass, by changing the behavior of
the display method. On the other hand, SecondClass (and instances created from
it) still inherits the setdata method in FirstClass verbatim. Figure 6.2 sketches
the namespaces involved; let's make an instance to demonstrate:

>>> z = SecondClass()
>>> z.setdata(42) # setdata found in FirstClass
>>> z.display() # finds overridden method in SecondClass
Current value = "42"

As before, we make a SecondClass instance object by calling it. The setdata call
still runs the version in FirstClass, but this time the display attribute comes from
SecondClass and prints a different message. Now here's a very important thing to
notice about OOP: the specialization introduced in SecondClass is completely
external to FirstClass; it doesn't effect existing or future FirstClass objects, like
x from the prior example:

>>> x.display() # x is still a FirstClass instance (old message)
New value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New value

Naturally, this is an artificial example, but as a rule, because changes can be made in
external components (subclasses), classes often support extension and reuse better
than functions or modules do.

Figure 6.2. Specialization by overriding inherited names

6.2.3 Classes Can Intercept Python Operators

Finally, let's take a quick look at the third major property of classes: operator
overloading in action. In simple terms, operator overloading lets objects we implement
with classes respond to operations we've already seen work on built-in types:
addition, slicing, printing, qualification, and so on. Although we could implement all
our objects' behavior as method functions, operator overloading lets our objects be
more tightly integrated with Python's object model. Moreover, because operator
overloading makes our own objects act like built-ins, it tends to foster object
interfaces that are more consistent and easy to learn. The main ideas are:

Methods with names such as __ X __ are special hooks

Python operator overloading is implemented by providing specially named
methods to intercept operations.

Such methods are called automatically when Python evaluates operators

For instance, if an object inherits an _ _ add __ method, it is called when the
object appears in a + expression.

Classes may override most built-in type operations

There are dozens of special operator method names for catching nearly every
built-in type operation.

Operators allow classes to integrate with Python's object model

By overloading type operations, user-defined objects implemented with classes
act just like built-ins.

6.2.3.1 An example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On to another example. This time, we define a subclass of SecondClass, which
implements three special attributes: __ init _ _ is called when a new instance
object is being constructed (self is the new ThirdClass object), and _ _ add __
and __ mul __ are called when a ThirdClass instance appears in + and *
expressions, respectively:

>>> class ThirdClass(SecondClass): # is-a SecondClass
... def __init__(self, value): # on "ThirdClass(value)"
... self.data = value
... def __add__(self, other): # on "self + other"
... return ThirdClass(self.data + other)
... def __mul__(self, other):
... self.data = self.data * other # on "self * other"
>>> a = ThirdClass("abc") # new __init__ called
>>> a.display() # inherited method
Current value = "abc"

>>> b = a + 'xyz' # new __add__ called: makes a new instance
>>> b.display()
Current value = "abcxyz"

>>> a * 3 # new __mul__ called: changes instance in-place
>>> a.display()
Current value = "abcabcabc"

ThirdClass is a SecondClass, so its instances inherit display from
SecondClass. But ThirdClass generation calls pass an argument now ("abc");
it's passed to the value argument in the __ init __ constructor and assigned to
self.data there. Further, ThirdClass objects can show up in + and *
expressions; Python passes the instance object on the left to the self argument and
the value on the right to other, as illustrated in Figure 6.3.

Figure 6.3. Operators map to special methods

Special methods such as __ init __ and __ add __ are inherited by subclasses
and instances, just like any other name assigned in a class statement. Notice that the
_ _ add __ method makes a new object (by calling ThirdClass with the result
value), but __ mul __ changes the current instance object in place (by reassigning
a self attribute). The * operator makes a new object when applied to built-in types
such as numbers and lists, but you can interpret it any way you like in class objects.[1]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1] But you probably shouldn't (one reviewer went so far as to call this example "evil!"). Common practice dictates that
overloaded operators should work the same way built-in operator implementations do. In this case, that means our
__mul__ method should return a new object as its result, rather than changing the instance (self) in place; a mul
method may be better style than a * overload here (e.g., a.mul(3) instead of a * 3). On the other hand, one
person's common practice may be another person's arbitrary constraint.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.3 Using the Class Statement

Did all of the above make sense? If not, don't worry; now that we've had a quick tour,
we're going to dig a bit deeper and study the concepts we've introduced in more
detail. We met the class statement in our first examples, but let's formalize some of
the ideas we introduced. As in C++, the class statement is Python's main OOP tool.
Unlike in C++, class isn't really a declaration; like def, class is an object builder,
and an implicit assignment—when run, it generates a class object, and stores a
reference to it in the name used in the header.

6.3.1 General Form

As we saw on our quick tour, class is a compound statement with a body of
indented statements under it. In the header, superclasses are listed in parentheses
after the class name, separated by commas. Listing more than one superclass leads
to multiple inheritance (which we'll say more about later in this chapter):

class <name>(superclass,...): # assign to name
 data = value # shared class data
 def method(self,...): # methods
 self.member = value # per-instance data

Within the class statement, specially-named methods overload operators; for
instance, a function called _ _ init __ is called at instance object construction time,
if defined.

6.3.2 Example

At the start of this chapter, we mentioned that classes are mostly just namespaces—
a tool for defining names (called attributes) that export data and logic to clients. So
how do you get from the statement to a namespace?

Here's how. Just as with modules, the statements nested in a class statement body
create its attributes. When Python executes a class statement (not a call to a class),
it runs all the statements in its body from top to bottom. Assignments that happen
during this process create names in the class's local scope, which become attributes
in the associated class object. Because of this, classes resemble both modules and
functions:

Like functions, class statements are a local scope where names created by
nested assignments live.

Like modules, names assigned in a class statement become attributes in a
class object.

The main distinction for classes is that their namespaces are also the basis of
inheritance in Python; attributes are fetched from other classes if not found in a class
or instance object. Because class is a compound statement, any sort of statement
can be nested inside its body—for instance, print, =, if, and def. As we've seen,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can be nested inside its body—for instance, print, =, if, and def. As we've seen,
nested defs make class methods, but other assignments make attributes too. For
example, suppose we run the following class:

class Subclass(aSuperclass): # define subclass
 data = 'spam' # assign class attr
 def __init__(self, value): # assign class attr
 self.data = value # assign instance attr
 def display(self):
 print self.data, Subclass.data # instance, class

This class contains two defs, which bind class attributes to method functions. It also
contains a = assignment statement; since the name data is assigned inside the
class, it lives in the class's local scope and becomes an attribute of the class object.
Like all class attributes, data is inherited and shared by all instances of the class:[2]

[2] If you've used C++, you may recognize this as similar to the notion of C++'s static class data—members that are
stored in the class, independent of instances. In Python, it's nothing special: all class attributes are just names
assigned in the class statement, whether they happen to reference functions (C++'s methods) or something else
(C++'s members).

>>> x = Subclass(1) # make two instance objects
>>> y = Subclass(2) # each has its own "data"
>>> x.display(); y.display() # "self.data" differs, "Subclass.data" same
1 spam
2 spam

When we run this code, the name data lives in two places—in instance objects
(created in the __ init __ constructor) and in the class they inherit names from
(created by the = assignment). The class's display method prints both versions, by
first qualifying the self instance, and then the class itself. Since classes are objects
with attributes, we can get to their names by qualifying, even if there's no instance
involved.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.4 Using Class Methods

Since you already know about functions, you already know class methods. Methods
are just function objects created by def statements nested in a class statement's
body. From an abstract perspective, methods provide behavior for instance objects to
inherit. From a programming perspective, methods work in exactly the same way as
simple functions, with one crucial exception: their first argument always receives the
instance object that is the implied subject of a method call. In other words, Python
automatically maps instance method calls to class method functions like so:

instance.method(args...)

 => becomes =>

 class.method(instance, args...)

where the class is determined by Python's inheritance search procedure. The special
first argument in a class method is usually called self by convention; it's similar to
C++'s this pointer, but Python methods must always explicitly qualify self to fetch
or change attributes of the instance being processed by the current method call.

6.4.1 Example

Let's turn to an example; suppose we define the following class:

class NextClass: # define class
 def printer(self, text): # define method
 print text

The name printer references a function object; because it's assigned in the class
statement's scope, it becomes a class attribute and is inherited by every instance
made from the class. The printer function may be called in one of two ways—
through an instance, or through the class itself:

>>> x = NextClass() # make instance
>>> x.printer('Hello world!') # call its method
Hello world!

When called by qualifying an instance like this, printer's self argument is
automatically assigned the instance object (x), and text gets the string passed at
the call ("Hello world!"). Inside printer, self can access or set per-instance
data, since it refers to the instance currently being processed. We can also call
printer by going through the class, provided we pass an instance to the self
argument explicitly:

>>> NextClass.printer(x, 'Hello world!') # class method
Hello world!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hello world!

Calls routed through the instance and class have the exact same effect, provided we
pass the same instance object in the class form. In a moment, we'll see that calls
through a class are the basis of extending (instead of replacing) inherited behavior.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.5 Inheritance Searches Namespace Trees

The whole point of a namespace tool like the class statement is to support name
inheritance. In Python, inheritance happens when an object is qualified, and involves
searching an attribute definition tree (one or more namespaces). Every time you use
an expression of the form object.attr where object is an instance or class object,
Python searches the namespace tree at and above object, for the first attr it can
find. Because lower definitions in the tree override higher ones, inheritance forms the
basis of specialization.

6.5.1 Attribute Tree Construction

Figure 6.4 sketches the way namespace trees are constructed. In general:

Instance attributes are generated by assignments to self attributes in
methods.

Class attributes are created by statements (assignments) in class statements.

Superclass links are made by listing classes in parentheses in a class
statement header.

The net result is a tree of attribute namespaces, which grows from an instance, to the
class it was generated from, to all the superclasses listed in the class headers.
Python searches upward in this tree from instances to superclasses, each time you
use qualification to fetch an attribute name from an instance object.[3]

[3] This description isn't 100% complete, because instance and class attributes can also be created by assigning to
objects outside class statements. But that's less common and sometimes more error prone (changes aren't isolated
to class statements). In Python all attributes are always accessible by default; we talk about privacy later in this
chapter.

Figure 6.4. Namespaces tree construction and inheritance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5.2 Specializing Inherited Methods

The tree-searching model of inheritance we just described turns out to be a great way
to specialize systems. Because inheritance finds names in subclasses before it
checks superclasses, subclasses can replace default behavior by redefining the
superclass's attributes. In fact, you can build entire systems as hierarchies of classes,
which are extended by adding new external subclasses rather than changing existing
logic in place.

The idea of overloading inherited names leads to a variety of specialization
techniques. For instance, subclasses may replace inherited names completely,
provide names a superclass expects to find, and extend superclass methods by
calling back to the superclass from an overridden method. We've already seen
replacement in action; here's an example that shows how extension works:

>>> class Super:
... def method(self):
... print 'in Super.method'
...
>>> class Sub(Super):
... def method(self): # override method
... print 'starting Sub.method' # add actions here
... Super.method(self) # run default action
... print 'ending Sub.method'
...
Direct superclass method calls are the crux of the matter here. The Sub class
replaces Super's method function with its own specialized version. But within the
replacement, Sub calls back to the version exported by Super to carry out the default
behavior. In other words, Sub.method just extends Super.method's behavior,
rather than replace it completely:

>>> x = Super() # make a Super instance
>>> x.method() # runs Super.method
in Super.method

>>> x = Sub() # make a Sub instance
>>> x.method() # runs Sub.method, which calls Super.method
starting Sub.method
in Super.method
ending Sub.method

Extension is commonly used with constructors; since the specially named __ init
__ method is an inherited name, only one is found and run when an instance is
created. To run superclass constructors, subclass __ init __ methods should call
superclass __ init __ methods, by qualifying classes (e.g., Class. __ init __
(self, ...)).

Extension is only one way to interface with a superclass; the following shows
subclasses that illustrate these common schemes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Super defines a method function and a delegate that expects an action in
a subclass.

Inheritor doesn't provide any new names, so it gets everything defined in
Super.

Replacer overrides Super's method with a version of its own.

Extender customizes Super's method by overriding and calling back to run
the default.

Provider implements the action method expected by Super's delegate
method.

class Super:
 def method(self):
 print 'in Super.method' # default
 def delegate(self):
 self.action() # expected

class Inheritor(Super):
 pass

class Replacer(Super):
 def method(self):
 print 'in Replacer.method'

class Extender(Super):
 def method(self):
 print 'starting Extender.method'
 Super.method(self)
 print 'ending Extender.method'

class Provider(Super):
 def action(self):
 print 'in Provider.action'

if __name__ == '__main__':
 for klass in (Inheritor, Replacer, Extender):
 print '\n' + klass.__name__ + '...'
 klass().method()
 print '\nProvider...'
 Provider().delegate()

A few things are worth pointing out here: the self-test code at the end of this example
creates instances of three different classes; because classes are objects, you can put
them in a tuple and create instances generically (more on this idea later). Classes
also have the special __ name _ _ attribute as modules; it's just preset to a string
containing the name in the class header. When you call the delegate method
though a Provider instance, Python finds the action method in Provider by the
usual tree search: inside the Super delegate method, self references a
Provider instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Provider instance.

% python specialize.py
Inheritor...
in Super.method

Replacer...
in Replacer.method

Extender...
starting Extender.method
in Super.method
ending Extender.method

Provider...
in Provider.action

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.6 Operator Overloading in Classes

We introduced operator overloading at the start of this chapter; let's fill in a few blanks
here and look at a handful of commonly used overloading methods. Here's a review
of the key ideas behind overloading:

Operator overloading lets classes intercept normal Python operations.

Classes can overload all Python expression operators.

Classes can also overload object operations: printing, calls, qualification, etc.

Overloading makes class instances act more like built-in types.

Overloading is implemented by providing specially named class methods.

Here's a simple example of overloading at work. When we provide specially named
methods in a class, Python automatically calls them when instances of the class
appear in the associated operation. For instance, the Number class below provides a
method to intercept instance construction (__ init __), as well as one for
catching subtraction expressions (__ sub __). Special methods are the hook that
lets you tie into built-in operations:

class Number:
 def __init__(self, start): # on Number(start)
 self.data = start
 def __sub__(self, other): # on instance - other
 return Number(self.data - other) # result is a new instance

>>> from number import Number # fetch class from module
>>> X = Number(5) # calls Number.__init__(X, 5)
>>> Y = X - 2 # calls Number.__sub__(X, 2)
>>> Y.data
3

6.6.1 Common Operator Overloading Methods

Just about everything you can do to built-in objects such as integers and lists has a
corresponding specially named method for overloading in classes. Table 6.1 lists a
handful of the most common; there are many more than we have time to cover in this
book. See other Python books or the Python Library Reference Manual for an
exhaustive list of special method names available. All overload methods have names
that start and end with two underscores, to keep them distinct from other names you
define in your classes.

Table 6.1. A Sampling of Operator Overloading Methods
Method Overloads Called for

__init__ Constructor Object creation: Class()
__del__ Destructor Object reclamation
_ _add__ Operator '+' X + Y

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__or__ Operator '|' (bitwise or) X | Y
__repr__ Printing, conversions print X, `X`
__call__ Function calls X()
__getattr__ Qualification X.undefined
__getitem__ Indexing X[key], for loops, in tests
__setitem__ Index assignment X[key] = value
__getslice__ Slicing X[low:high]
__len__ Length len(X), truth tests
__cmp__ Comparison X == Y, X < Y
__radd__ Right-side operator '+' Noninstance + X

6.6.2 Examples

Let's illustrate a few of the methods in Table 6.1 by example.

6.6.2.1 __getitem__ intercepts all index references

The __ getitem __ method intercepts instance indexing operations: When an
instance X appears in an indexing expression like X[i], Python calls a __ getitem
__ method inherited by the instance (if any), passing X to the first argument and the
index in brackets to the second argument. For instance, the following class returns
the square of index values:

>>> class indexer:
... def __getitem__(self, index):
... return index ** 2
...
>>> X = indexer()
>>> for i in range(5):
... print X[i], # X[i] calls __getitem__(X, i)
...
0 1 4 9 16

Now, here's a special trick that isn't always obvious to beginners, but turns out to be
incredibly useful: when we introduced the for statement back in Chapter 3, we
mentioned that it works by repeatedly indexing a sequence from zero to higher
indexes, until an out-of-bounds exception is detected. Because of that, __ getitem
__ also turns out to be the way to overload iteration and membership tests in Python.
It's a case of "buy one, get two free": any built-in or user-defined object that responds
to indexing also responds to iteration and membership automatically:

>>> class stepper:
... def __getitem__(self, i):
... return self.data[i]
...
>>> X = stepper() # X is a stepper object
>>> X.data = "Spam"
>>>
>>> for item in X: # for loops call __getitem__
... print item, # for indexes items 0..N

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

... print item, # for indexes items 0..N

...
S p a m
>>>
>>> 'p' in X # 'in' operator calls __getitem__ too
1

6.6.2.2 __getattr__ catches undefined attribute references

The __getattr__ method intercepts attribute qualifications. More specifically, it's
called with the attribute name as a string, whenever you try to qualify an instance on
an undefined (nonexistent) attribute name. It's not called if Python can find the
attribute using its inheritance tree-search procedure. Because of this behavior, _
_getattr__ is useful as a hook for responding to attribute requests in a generic
fashion. For example:

>>> class empty:
... def __getattr__(self, attrname):
... if attrname == "age":
... return 36
... else:
... raise AttributeError, attrname
...
>>> X = empty()
>>> X.age
36
>>> X.name
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 6, in __getattr__
AttributeError: name

Here, the empty class and its instance X have no real attributes of their own, so the
access to X.age gets routed to the __ getattr __ method; self is assigned the
instance (X), and attrname is assigned the undefined attribute name string ("age").
Our class makes age look like a real attribute by returning a real value as the result
of the X.age qualification expression (36).

For other attributes the class doesn't know how to handle, it raises the built-in
AttributeError exception, to tell Python that this is a bona fide undefined name;
asking for X.name triggers the error. We'll see __ getattr __ again when we
show delegation at work, and we will say more about exceptions in Chapter 7.

6.6.2.3 _ _repr__ returns a string representation

Here's an example that exercises the _ _ init __ constructor and the __ add __
+ overload methods we've already seen, but also defines a __ repr __ that returns
a string representation of instances. Backquotes are used to convert the managed
self.data object to a string. If defined, __ repr __ is called automatically when
class objects are printed or converted to strings.

>>> class adder:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> class adder:
... def __init__(self, value=0):
... self.data = value # initialize data
... def __add__(self, other):
... self.data = self.data + other # add other in-place
... def __repr__(self):
... return `self.data` # convert to string
...
>>> X = adder(1) # __init__
>>> X + 2; X + 2 # __add__
>>> X # __repr__
5

That's as many overloading examples as we have space for here. Most work similarly
to ones we've already seen, and all are just hooks for intercepting built-in type
operations we've already studied; but some overload methods have unique argument
lists or return values. We'll see a few others in action later in the text, but for a
complete coverage, we'll defer to other documentation sources.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.7 Namespace Rules: The Whole Story

Now that we've seen class and instance objects, the Python namespace story is
complete; for reference, let's quickly summarize all the rules used to resolve names.
The first things you need to remember are that qualified and unqualified names are
treated differently, and that some scopes serve to initialize object namespaces:

Unqualified names (X) deal with scopes.

Qualified names (object.X) use object namespaces.

Scopes initialize object namespaces (in modules and classes).

6.7.1 Unqualified Names: Global Unless Assigned

Unqualified names follow the LGB rules we outlined for functions in Chapter 4.

Assignment: X = value

Makes names local: creates or changes name X in the current local scope,
unless declared global

Reference: X

Looks for name X in the current local scope, then the current global scope, then
the built-in scope

6.7.2 Qualified Names: Object Namespaces

Q ualified names refer to attributes of specific objects and obey the rules we met
when discussing modules. For instance and class objects, the reference rules are
augmented to include the inheritance search procedure:

Assignment: object.X = value

Creates or alters the attribute name X in the namespace of the object being
qualified

Reference: object.X

Searches for the attribute name X in the object, then in all accessible classes
above it (but not for modules)

6.7.3 N amespace Dictionaries

Finally, in Chapter 5, we saw that module namespaces were actually implemented
as dictionaries and exposed with the built-in __ dict _ _ attribute. The same holds
for class and instance objects: qualification is really a dictionary indexing internally,
and attribute inheritance is just a matter of searching linked dictionaries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example traces the way namespace dictionaries grow when classes are
involved. The main thing to notice is this: whenever an attribute of self is assigned
in one of the two classes, it creates (or changes) an attribute in the instance's
namespace dictionary, not the class's. Instance object namespaces record data that
can vary from instance to instance; they also have links to class namespaces that are
followed by inheritance lookups. For example, X.hello is ultimately found in the
super class's namespace dictionary.

>>> class super:
... def hello(self):
... self.data1 = "spam"
...
>>> class sub(super):
... def howdy(self):
... self.data2 = "eggs"
...
>>> X = sub() # make a new namespace (dictionary)
>>> X.__dict__
{}
>>> X.hello() # changes instance namespace
>>> X.__dict__
{'data1': 'spam'}

>>> X.howdy() # changes instance namespace
>>> X.__dict__
{'data2': 'eggs', 'data1': 'spam'}

>>> super.__dict__
{'hello': <function hello at 88d9b0>, '__doc__': None}

>>> sub.__dict__
{'__doc__': None, 'howdy': <function howdy at 88ea20>}

>>> X.data3 = "toast"
>>> X.__dict__
{'data3': 'toast', 'data2': 'eggs', 'data1': 'spam'}

Note that the dir function we met in Chapter 1 and Chapter 2 works on class and
instance objects too. In fact, it works on anything with attributes. dir(object)
returns the same list as a object. __ dict __ .keys() call.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.8 Designing with Classes

So far, we've concentrated on the OOP tool in Python—the class. But OOP is also
about design issues—how to use classes to model useful objects. In this section,
we're going to touch on a few OOP core ideas and look at some examples that are
more realistic than the ones we've seen so far. Most of the design terms we throw out
here require more explanation than we can provide; if this section sparks your
curiosity, we suggest exploring a text on OOP design or design patterns as a next
step.

6.8.1 Python and OOP

Python's implementation of OOP can be summarized by three ideas:

Inheritance

Is based on attribute lookup in Python (in X.name expressions).

Polymorphism

In X.method, the meaning of method depends on the type (class) of X.

Encapsulation

Methods and operators implement behavior; data hiding is a convention by
default.

By now, you should have a good feel for what inheritance is all about in Python.
Python's flavor of polymorphism flows from its lack of type declarations. Because
attributes are always resolved at runtime, objects that implement the same interfaces
are interchangeable; clients don't need to know what sort of object is implementing a
method they call.[4] Encapsulation means packaging in Python, not privacy; privacy is
an option, as we'll see later in this chapter.

[4] Some OOP languages also define polymorphism to mean overloading functions based on the type signatures of
their arguments. Since there is no type declaration in Python, the concept doesn't really apply, but type-base
selections can be always be coded using if tests and type(X) built-in functions (e.g., if type(X) is type(0):
doIntegerCase()).

6.8.2 OOP and Inheritance: "is-a"

We've talked about the mechanics of inheritance in depth already, but we'd like to
show you an example of how it can be used to model real-world relationships. From a
programmer's point of view, inheritance is kicked off by attribute qualifications and
searches for a name in an instance, its class, and then its superclasses. From a
designer's point of view, inheritance is a way to specify set membership. A class
defines a set of properties that may be inherited by more specific sets (i.e.,
subclasses).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To illustrate, let's put that pizza-making robot we talked about at the start of the
chapter to work. Suppose we've decided to explore alternative career paths and open
a pizza restaurant. One of the first things we'll need to do is hire employees to service
customers, make the pizza, and so on. Being engineers at heart, we've also decided
to build a robot to make the pizzas; but being politically and cybernetically correct,
we've also decided to make our robot a full-fledged employee, with a salary.

Our pizza shop team can be defined by the following classes in the example file
employees.py. It defines four classes and some self-test code. The most general
class, Employee, provides common behavior such as bumping up salaries
(giveRaise) and printing (__ repr __). There are two kinds of employees, and
so two subclasses of Employee--Chef and Server. Both override the inherited
work method to print more specific messages. Finally, our pizza robot is modeled by
an even more specific class: PizzaRobot is a kind of Chef, which is a kind of
Employee. In OOP terms, we call these relationships "is-a" links: a robot is a chef,
which is a(n) employee.

class Employee:
 def __init__(self, name, salary=0):
 self.name = name
 self.salary = salary
 def giveRaise(self, percent):
 self.salary = self.salary + (self.salary * percent)
 def work(self):
 print self.name, "does stuff"
 def __repr__(self):
 return "<Employee: name=%s, salary=%s>" % (self.name, self.salary)

class Chef(Employee):
 def __init__(self, name):
 Employee.__init__(self, name, 50000)
 def work(self):
 print self.name, "makes food"

class Server(Employee):
 def __init__(self, name):
 Employee.__init__(self, name, 40000)
 def work(self):
 print self.name, "interfaces with customer"

class PizzaRobot(Chef):
 def __init__(self, name):
 Chef.__init__(self, name)
 def work(self):
 print self.name, "makes pizza"

if __name__ == "__main__":
 bob = PizzaRobot('bob') # make a robot named bob
 print bob # runs inherited __repr__
 bob.giveRaise(0.20) # give bob a 20% raise
 print bob; print

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for klass in Employee, Chef, Server, PizzaRobot:
 obj = klass(klass.__name__)
 obj.work()

When we run this module's self-test code, we create a pizza-making robot named
bob, which inherits names from three classes: PizzaRobot, Chef, and Employee.
For instance, printing bob runs the Employee. __ repr __ method, and giving
bob a raise invokes Employee.giveRaise, because that's where inheritance finds
it.

C:\python\examples> python employees.py
<Employee: name=bob, salary=50000>
<Employee: name=bob, salary=60000.0>

Employee does stuff
Chef makes food
Server interfaces with customer
PizzaRobot makes pizza

In a class hierarchy like this, you can usually make instances of any of the classes,
not just the ones at the bottom. For instance, the for loop in this module's self-test
code creates instances of all four classes; each responds differently when asked to
work, because the work method is different in each. Really, these classes just
simulate real world objects; work prints a message for the time being, but could be
expanded to really work later.

6.8.3 OOP and Composition: "has-a"

We introduced the notion of composition at the start of this chapter. From a
programmer's point of view, composition involves embedding other objects in a
container object and activating them to implement container methods. To a designer,
composition is another way to represent relationships in a problem domain. But rather
than set membership, composition has to do with components—parts of a whole.
Composition also reflects the relationships between parts; it's usually called a "has-a"
relationship, when OOP people speak of such things.

Now that we've implemented our employees, let's throw them in the pizza shop and
let them get busy. Our pizza shop is a composite object; it has an oven, and
employees like servers and chefs. When a customer enters and places an order, the
components of the shop spring into action—the server takes an order, the chef makes
the pizza, and so on. The following example simulates all the objects and
relationships in this scenario:

from employees import PizzaRobot, Server

class Customer:
 def __init__(self, name):
 self.name = name
 def order(self, server):
 print self.name, "orders from", server
 def pay(self, server):
 print self.name, "pays for item to", server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print self.name, "pays for item to", server

class Oven:
 def bake(self):
 print "oven bakes"

class PizzaShop:
 def __init__(self):
 self.server = Server('Pat') # embed other objects
 self.chef = PizzaRobot('Bob') # a robot named bob
 self.oven = Oven()

 def order(self, name):
 customer = Customer(name) # activate other objects
 customer.order(self.server) # customer orders from server
 self.chef.work()
 self.oven.bake()
 customer.pay(self.server)

if __name__ == "__main__":
 scene = PizzaShop() # make the composite
 scene.order('Homer') # simulate Homer's order
 print '...'
 scene.order('Shaggy') # simulate Shaggy's order

The PizzaShop class is a container and controller; its constructor makes and
embeds instances of the employee classes we wrote in the last section, as well as an
Oven class defined here. When this module's self-test code calls the PizzaShop
order method, the embedded objects are asked to carry out their actions in turn.
Notice that we make a new Customer object for each order, and pass on the
embedded Server object to Customer methods; customers come and go, but the
server is part of the pizza shop composite. Also notice that employees are still
involved in an inheritance relationship; composition and inheritance are
complementary tools:

C:\python\examples> python pizzashop.py
Homer orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
Homer pays for item to <Employee: name=Pat, salary=40000>
...
Shaggy orders from <Employee: name=Pat, salary=40000>
Bob makes pizza
oven bakes
Shaggy pays for item to <Employee: name=Pat, salary=40000>

When we run this module, our pizza shop handles two orders—one from Homer, and
then one from Shaggy. Again, this is mostly just a toy simulation; a real pizza shop
would have more parts, and there's no real pizza to be had here. But the objects and
interactions are representative of composites at work. As a rule of thumb, classes can
represent just about any objects and relationships you can express in a sentence; just
replace nouns with classes and verbs with methods, and you have a first cut at a
design.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Why You Will Care: Classes and Persistence
Besides allowing us to simulate real-world interactions, the pizza shop classes
could also be used as the basis of a persistent restaurant database. As we'll
see in Chapter 10, instances of classes can be stored away on disk in a single
step using Python's pickle or shelve modules. The object pickling interface
is remarkably easy to use:

import pickle
object = someClass()
file = open(filename, 'w') # create external file
pickle.dump(object, file) # save object in file

file = open(filename, 'r')
object = pickle.load(file) # fetch it back later

Shelves are similar, but they automatically pickle objects to an access-by-key
database:

import shelve
object = someClass()
dbase = shelve.open('filename')
dbase['key'] = object # save under key
object = dbase['key'] # fetch it back later

(Pickling converts objects to serialized byte streams, which may be stored in
files, sent across a network, and so on.) In our example, using classes to model
employees means we can get a simple database of employees and shops for
free: pickling such instance objects to a file makes them persistent across
Python program executions. See Chapter 10 for more details on pickling.

6.8.4 OOP and Delegation

Object-oriented programmers often talk about something called delegation too, which
usually implies controller objects that embed other objects, to which they pass off
operation requests. The controllers can take care of administrative activities such as
keeping track of accesses and so on. In Python, delegation is often implemented with
the __ getattr __ method hook; because it intercepts accesses to nonexistent
attributes, a wrapper class can use __ getattr __ to route arbitrary accesses to a
wrapped object. For instance:

class wrapper:
 def __init__(self, object):
 self.wrapped = object # save object
 def __getattr__(self, attrname):
 print 'Trace:', attrname # trace fetch
 return getattr(self.wrapped, attrname) # delegate fetch

You can use this module's wrapper class to control any object with attributes—lists,
dictionaries, and even classes and instances. Here, the class simply prints a trace
message on each attribute access:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> from trace import wrapper
>>> x = wrapper([1,2,3]) # wrap a list
>>> x.append(4) # delegate to list method
Trace: append
>>> x.wrapped # print my member
[1, 2, 3, 4]

>>> x = wrapper({"a": 1, "b": 2}) # wrap a dictionary
>>> x.keys() # delegate to dictionary method
Trace: keys
['a', 'b']

6.8.5 Extending Built-in Object Types

Classes are also commonly used to extend the functionality of Python's built-in types,
to support more exotic data structures. For instance, to add queue insert and delete
methods to lists, you can code classes that wrap (embed) a list object, and export
insert and delete methods that process the list.

Remember those set functions we wrote in Chapter 4? Here's what they look like
brought back to life as a Python class. The following example implements a new set
object type, by moving some of the set functions we saw earlier in the book to
methods, and adding some basic operator overloading. For the most part, this class
just wraps a Python list with extra set operations, but because it's a class, it also
supports multiple instances and customization by inheritance in subclasses.

class Set:
 def __init__(self, value = []): # constructor
 self.data = [] # manages a list
 self.concat(value)

 def intersect(self, other): # other is any sequence
 res = [] # self is the subject
 for x in self.data:
 if x in other: # pick common items
 res.append(x)
 return Set(res) # return a new Set

 def union(self, other): # other is any sequence
 res = self.data[:] # copy of my list
 for x in other: # add items in other
 if not x in res:
 res.append(x)
 return Set(res)

 def concat(self, value): # value: list, Set...
 for x in value: # removes duplicates
 if not x in self.data:
 self.data.append(x)

 def __len__(self): return len(self.data) # on len(self)
 def __getitem__(self, key): return self.data[key] # on self[i]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 def __getitem__(self, key): return self.data[key] # on self[i]
 def __and__(self, other): return self.intersect(other) # on self
 def __or__(self, other): return self.union(other) # on self |
 def __repr__(self): return 'Set:' + `self.data` # on print

By overloading indexing, our set class can often masquerade as a real list. Since
we're going to ask you to interact with and extend this class in an exercise at the end
of this chapter, we won't say much more about this code until Appendix C.

6.8.6 Multiple Inheritance

When we discussed details of the class statement, we mentioned that more than
one superclass can be listed in parentheses in the header line. When you do this, you
use something called multiple inheritance; the class and its instances inherit names
from all listed superclasses. When searching for an attribute, Python searches
superclasses in the class header from left to right until a match is found. Technically,
the search proceeds depth-first, and then left to right, since any of the superclasses
may have superclasses of its own.

In theory, multiple inheritance is good for modeling objects which belong to more than
one set. For instance, a person may be an engineer, a writer, a musician, and so on,
and inherit properties from all such sets. In practice, though, multiple inheritance is an
advanced tool and can become complicated if used too much; we'll revisit this as a
gotcha at the end of the chapter. But like everything else in programming, it's a useful
tool when applied well.

One of the most common ways multiple inheritance is used is to "mix in" general-
purpose methods from superclasses. Such superclasses are usually called mixin
classes; they provide methods you add to application classes by inheritance. For
instance, Python's default way to print a class instance object isn't incredibly useful:

>>> class Spam:
... def __init__(self): # no __repr__
... self.data1 = "food"
...
>>> X = Spam()
>>> print X # default format: class, address
<Spam instance at 87f1b0>

As seen in the previous section on operator overloading, you can provide a __ repr
_ _ method to implement a custom string representation of your own. But rather than
code a __ repr __ in each and every class you wish to print, why not code it once
in a general-purpose tool class, and inherit it in all classes?

That's what mixins are for. The following code defines a mixin class called Lister
that overloads the _ _ repr __ method for each class that includes Lister in its
header line. It simply scans the instance's attribute dictionary (remember, it's exported
in __ dict __) to build up a string showing the names and values of all instance
attributes. Since classes are objects, Lister's formatting logic can be used for
instances of any subclass; it's a generic tool.

Lister uses two special tricks to extract the instance's classname and address.
Instances have a built-in __ class __ attribute that references the class the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Instances have a built-in __ class __ attribute that references the class the
instance was created from, and classes have a __ name __ that is the name in the
header, so self. __ class _ _ . __ name __ fetches the name of an
instance's class. You get the instance's memory address by calling the built-in id
function, which returns any object's address:

Lister can be mixed-in to any class, to
provide a formatted print of instances
via inheritance of __repr__ coded here;
self is the instance of the lowest class;

class Lister:
 def __repr__(self):
 return ("<Instance of %s, address %s:\n%s>" %
 (self.__class__.__name__, # my class's name
 id(self), # my address
 self.attrnames())) # name=value list
 def attrnames(self):
 result = ''
 for attr in self.__dict__.keys(): # scan instance namespace dict
 if attr[:2] == '__':
 result = result + "\tname %s=<built-in>\n" % attr
 else:
 result = result + "\tname %s=%s\n" % (attr, self.__dict__[attr])
 return result

Now, the Lister class is useful for any class you write—even classes that already
have a superclass. This is where multiple inheritance comes in handy: by adding
Lister to the list of superclasses in a class header, you get its __ repr _ _ for
free, while still inheriting from the existing superclass:

from mytools import Lister # get tool class

class Super:
 def __init__(self): # superclass __init__
 self.data1 = "spam"

class Sub(Super, Lister): # mix-in a __repr__
 def __init__(self): # Lister has access to self
 Super.__init__(self)
 self.data2 = "eggs" # more instance attrs
 self.data3 = 42

if __name__ == "__main__":
 X = Sub()
 print X # mixed-in repr

Here, Sub inherits names from both Super and Lister; it's a composite of its own
names and names in both its superclasses. When you make a Sub instance and print
it, you get the custom representation mixed in from Lister:

C:\python\examples> python testmixin.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C:\python\examples> python testmixin.py
<Instance of Sub, address 7833392:
 name data3=42
 name data2=eggs
 name data1=spam
>

Lister works in any class it's mixed into, because self refers to an instance of the
subclass that pulls Lister in, whatever that may be. If you later decide to extend
Lister's __ repr __ to also print class attributes an instance inherits, you're safe;
because it's an inherited method, changing Lister's __ repr __ updates each
subclass that mixes it in.[5] In some sense, mixin classes are the class equivalent of
modules. Here is Lister working in single-inheritance mode, on a different class's
instances; like we said, OOP is about code reuse:

[5] For the curious reader, classes also have a built-in attribute called __bases__ , which is a tuple of the class's
superclass objects. A general-purpose class hierarchy lister or browser can traverse from an instance's __class__ to
its class, and then from the class's __bases__ to all superclasses recursively. We'll revisit this idea in an exercise, but
see other books or Python's manuals for more details on special object attributes.

>>> from mytools import Lister
>>> class x(Lister):
... pass
...
>>> t = x()
>>> t.a = 1; t.b = 2; t.c = 3
>>> t
<Instance of x, address 7797696:
 name b=2
 name a=1
 name c=3

>

6.8.7 Classes Are Objects: Generic Object Factories

Because classes are objects, it's easy to pass them around a program, store them in
data structures, and so on. You can also pass classes to functions that generate
arbitrary kinds of objects; such functions are sometimes called factories in OOP
design circles. They are a major undertaking in a strongly typed language such as
C++, but almost trivial in Python: the apply function we met in Chapter 4 can call
any class with any argument in one step, to generate any sort of instance:[6]

[6] Actually, apply can call any callable object; that includes functions, classes, and methods. The factory function
here can run any callable, not just a class (despite the argument name).

def factory(aClass, *args): # varargs tuple
 return apply(aClass, args) # call aClass

class Spam:
 def doit(self, message):
 print message

class Person:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Person:
 def __init__(self, name, job):
 self.name = name
 self.job = job

object1 = factory(Spam) # make a Spam
object2 = factory(Person, "Guido", "guru") # make a Person

In this code, we define an object generator function, called factory. It expects to be
passed a class object (any class will do), along with one or more arguments for the
class's constructor. The function uses apply to call the function and return an
instance. The rest of the example simply defines two classes and generates
instances of both by passing them to the factory function. And that's the only
factory function you ever need write in Python; it works for any class and any
constructor arguments. The only possible improvement worth noting: to support
keyword arguments in constructor calls, the factory can collect them with a **args
argument and pass them as a third argument to apply:

def factory(aClass, *args, **kwargs): # +kwargs dict
 return apply(aClass, args, kwargs) # call aClass

By now, you should know that everything is an "object" in Python; even things like
classes, which are just compiler input in languages like C++. However, only objects
derived from classes are OOP objects in Python; you can't do inheritance with
nonclass-based objects such as lists and numbers, unless you wrap them in classes.

6.8.8 Methods Are Objects: Bound or Unbound

Speaking of objects, it turns out that methods are a kind of object too, much like
functions. Because class methods can be accessed from either an instance or a
class, they actually come in two flavors in Python:

Unbound class methods: no self

Accessing a class's function attribute by qualifying a class returns an unbound
method object. To call it, you must provide an instance object explicitly as its
first argument.

Bound instance methods: self + function pairs

Accessing a class's function attribute by qualifying an instance returns a bound
method object. Python automatically packages the instance with the function in
the bound method object, so we don't need to pass an instance to call the
method.

Both kinds of methods are full-fledged objects; they can be passed around, stored in
lists, and so on. Both also require an instance in their first argument when run (i.e., a
value for self), but Python provides one for you automatically when calling a bound
method through an instance. For example, suppose we define the following class:

class Spam:
 def doit(self, message):
 print message

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print message

Now, we can make an instance, and fetch a bound method without actually calling it.
An object.name qualification is an object expression; here, it returns a bound
method object that packages the instance (object1) with the method function
(Spam.doit). We can assign the bound method to another name and call it as
though it were a simple function:

object1 = Spam()
x = object1.doit # bound method object
x('hello world') # instance is implied

On the other hand, if we qualify the class to get to doit, we get back an unbound
method object, which is simply a reference to the function object. To call this type of
method, pass in an instance in the leftmost argument:

t = Spam.doit # unbound method object
t(object1, 'howdy') # pass in instance

Most of the time, you call methods immediately after fetching them with qualification
(e.g., self.attr(args)), so you don't always notice the method object along the
way. But if you start writing code that calls objects generically, you need to be careful
to treat unbound methods specially; they require an explicit object.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.9 Odds and Ends

6.9.1 Private Attributes (New in 1.5)

In the last chapter, we noted that every name assigned at the top level of a file is
exported by a module. By default, the same holds for classes; data hiding is a
convention, and clients may fetch or change any class or instance attribute they like.
In fact, attributes are all public and virtual in C++ terms; they're all accessible
everywhere and all looked up dynamically at runtime.

At least until Python 1.5. In 1.5, Guido introduced the notion of name mangling to
localize some names in classes. Private names are an advanced feature, entirely
optional, and probably won't be very useful until you start writing large class
hierarchies. But here's an overview for the curious.

In Python 1.5, names inside a class statement that start with two underscores (and
don't end with two underscores) are automatically changed to include the name of the
enclosing class. For instance, a name like __ X in a class Class is changed to
_Class __ X automatically. Because the modified name includes the name of the
enclosing class, it's somewhat unusual; it won't clash with similar names in other
classes in a hierarchy.

Python mangles names wherever they appear in the class. For example, an instance
attribute called self. __ X is transformed to self._Class _ _ X, thereby
mangling an attribute name for instance objects too. Since more than one class may
add attributes to an instance, name mangling helps avoid clashes automatically.

Name mangling happens only in class statements and only for names you write with
two leading underscores. Because of that, it can make code somewhat unreadable. It
also isn't quite the same as private declarations in C++ (if you know the name of
the enclosing class, you can still get to mangled attributes!), but it can avoid
accidental name clashes when an attribute name is used by more than one class of a
hierarchy.

6.9.2 Documentation Strings

Now that we know about classes, we can tell what those __ doc __ attributes we've
seen are all about. So far we've been using comments that start with a # to describe
our code. Comments are useful for humans reading our programs, but they aren't
available when the program runs. Python also lets us associate strings of
documentation with program-unit objects and provides a special syntax for it. If a
module file, def statement, or class statement begins with a string constant instead
of a statement, Python stuffs the string into the __ doc __ attribute of the generated
object. For instance, the following program defines documentation strings for multiple
objects:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"I am: docstr.__doc__"

class spam:
 "I am: spam.__doc__ or docstr.spam.__doc__"

 def method(self, arg):
 "I am: spam.method.__doc__ or self.method.__doc__"
 pass

def func(args):
 "I am: docstr.func.__doc__"
 pass

The main advantage of documentation strings is that they stick around at runtime; if
it's been coded as a documentation string, you can qualify an object to fetch its
documentation.

>>> import docstr
>>> docstr.__doc__
'I am: docstr.__doc__'
>>> docstr.spam.__doc__
'I am: spam.__doc__ or docstr.spam.__doc__'
>>> docstr.spam.method.__doc__
'I am: spam.method.__doc__ or self.method.__doc__'
>>> docstr.func.__doc__
'I am: docstr.func.__doc__'

This can be especially useful during development. For instance, you can look up
components' documentation at the interactive command line as done above, without
having to go to the source file to see # comments. Similarly, a Python object browser
can take advantage of documentation strings to display descriptions along with
objects.

On the other hand, documentation strings are not universally used by Python
programmers. To get the most benefit from them, programmers need to follow some
sort of conventions in their documentation styles, and it's our experience that these
sorts of conventions are rarely implemented or followed in practice. Further,
documentation strings are available at runtime, but they are also less flexible than #
comments (which can appear anywhere in a program). Both forms are useful tools,
and any program documentation is a good thing, as long as it's accurate.

6.9.3 C lasses Versus Modules

Finally, let's step back for a moment and compare the topics of the last two chapters
—modules and classes. Since they're both about namespaces, the distinction can
sometimes be confusing. In short:

Modules

Are data/logic packages

Are created by writing Python files or C extensions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Are used by being imported

Classes

Implement new objects

Are created by class statements

Are used by being called

Always live in a module

Classes also support extra features modules don't, such as operator overloading,
multiple instances, and inheritance. Although both are namespaces, we hope you can
tell by now that they're very different animals.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.10 Class Gotchas

Most class issues can usually be boiled down to namespace issues (which makes
sense, given that classes are just namespaces with a few extra tricks up their
sleeves).

6.10.1 Changing Class Attributes Can Have Side Effects

Theoretically speaking, classes (and class instances) are all mutable objects. Just as
with built-in lists and dictionaries, they can be changed in place, by assigning to their
attributes. As with lists and dictionaries, this also means that changing a class or
instance object may impact multiple references to it.

That's usually what we want (and is how objects change their state in general), but
this becomes especially critical to know when changing class attributes. Because all
instances generated from a class share the class's namespace, any changes at the
class level are reflected in all instances, unless they have their own versions of
changed class attributes.

Since classes, modules, and instances are all just objects with attribute namespaces,
you can normally change their attributes at runtime by assignments. Consider the
following class; inside the class body, the assignment to name a generates an
attribute X.a, which lives in the class object at runtime and will be inherited by all of
X's instances:

>>> class X:
... a = 1 # class attribute
...
>>> I = X()
>>> I.a # inherited by instance
1
>>> X.a
1

So far so good. But notice what happens when we change the class attribute
dynamically: it also changes it in every object which inherits from the class. Moreover,
new instances created from the class get the dynamically set value, regardless of
what the class's source code says:

>>> X.a = 2 # may change more than X
>>> I.a # I changes too
2
>>> J = X() # J inherits from X's runtime values
>>> J.a # (but assigning to J.a changes a in J, not X or I)
2

6.10.1.1 Solution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Useful feature or dangerous trap? You be the judge, but you can actually get work
done by changing class attributes, without ever making a single instance. In fact, this
technique can simulate "records" or "structs" in other languages. For example,
consider the following unusual but legal Python program:

class X: pass # make a few attribute namespaces
class Y: pass

X.a = 1 # use class attributes as variables
X.b = 2 # no instances anywhere to be found
X.c = 3
Y.a = X.a + X.b + X.c

for X.i in range(Y.a): print X.i # prints 0..5

Here, classes X and Y work like file-less modules—namespaces for storing variables
we don't want to clash. This is a perfectly legal Python programming trick, but is less
appropriate when applied to classes written by others; you can't always be sure that
class attributes you change aren't critical to the class's internal behavior. If you're out
to simulate a C struct, you may be better off changing instances than classes, since
only one object is affected:

>>> class Record: pass
...
>>> X = Record()
>>> X.name = 'bob'
>>> X.job = 'Pizza maker'

6.10.2 Multiple Inheritance: Order Matters

This may be obvious, but is worth underscoring: if you use multiple inheritance, the
order in which superclasses are listed in a class statement header can be critical.
For instance, in the example we saw earlier, suppose that the Super implemented a
_ _ repr __ method too; would we then want to inherit Lister's or Super's? We
would get it from whichever class is listed first in Sub's class header, since
inheritance searches left to right. But now suppose Super and Lister have their
own versions of other names too; if we want one name from Super and one from
Lister, we have to override inheritance by manually assigning to the attribute name
in the Sub class:

def __repr__(self): ...
 def other(self): ...

 def __repr__(self): ...
 def other(self): ...

class Sub(Super, Lister): # pick up Super's __repr__, by listing
 other = Lister.other # but explicitly pick up Lister's version of other
 def __init__(self):
 ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ...

6.10.2.1 Solution

Multiple inheritance is an advanced tool; even if you understood the last paragraph,
it's still a good idea to use it sparingly and carefully. Otherwise, the meaning of a
name may depend on the order in which classes are mixed in an arbitrarily far
removed subclass.

6.10.3 Class Function Attributes Are Special

This one is simple if you understand Python's underlying object model, but it tends to
trip up new users with backgrounds in other OOP languages (especially Smalltalk). In
Python, class method functions can never be called without an instance. Earlier in the
chapter, we talked about unbound methods: when we fetch a method function by
qualifying a class (instead of an instance), we get an unbound method. Even though
they are defined with a def statement, unbound method objects are not simple
functions; they cannot be called without an instance.

For example, suppose we want to use class attributes to count how many instances
are generated from a class. Remember, class attributes are shared by all instances,
so we can store the counter in the class object itself:

class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1
 def printNumInstances():
 print "Number of instances created: ", Spam.numInstances

This won't work: the printNumInstances method still expects an instance to be
passed in when called, because the function is associated with a class (even though
there are no arguments in the def header):

>>> from spam import *
>>> a = Spam()
>>> b = Spam()
>>> c = Spam()
>>> Spam.printNumInstances()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: unbound method must be called with class instance 1st argument

6.10.3.1 Solution

Don't expect this: unbound methods aren't exactly the same as simple functions. This
is really a knowledge issue, but if you want to call functions that access class
members without an instance, just make them simple functions, not class methods.
This way, an instance isn't expected in the call:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

def printNumInstances():
 print "Number of instances created: ", Spam.numInstances

class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1

>>> import spam
>>> a = spam.Spam()
>>> b = spam.Spam()
>>> c = spam.Spam()
>>> spam.printNumInstances()
Number of instances created: 3

We can also make this work by calling through an instance, as usual:

class Spam:
 numInstances = 0
 def __init__(self):
 Spam.numInstances = Spam.numInstances + 1
 def printNumInstances(self):
 print "Number of instances created: ", Spam.numInstances

>>> from spam import Spam
>>> a, b, c = Spam(), Spam(), Spam()
>>> a.printNumInstances()
Number of instances created: 3
>>> b.printNumInstances()
Number of instances created: 3
>>> Spam().printNumInstances()
Number of instances created: 4

Some language theorists claim that this means Python doesn't have class methods,
only instance methods. We suspect they really mean Python classes don't work the
same as in some other language. Python really has bound and unbound method
objects, with well-defined semantics; qualifying a class gets you an unbound method,
which is a special kind of function. Python really does have class attributes, but
functions in classes expect an instance argument.

Moreover, since Python already provides modules as a namespace partitioning tool,
there's usually no need to package functions in classes unless they implement object
behavior. Simple functions in modules usually do most of what instance-less class
methods could. For example, in the first example in this section,
printNumInstances is already associated with the class, because it lives in the
same module.

6.10.4 Methods, Classes, and Nested Scopes

Classes introduce a local scope just as functions do, so the same sorts of scope
gotchas can happen in a class statement body. Moreover, methods are further

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

gotchas can happen in a class statement body. Moreover, methods are further
nested functions, so the same issues apply. Confusion seems to be especially
common when classes are nested. For instance, in the following example, the
generate function is supposed to return an instance of the nested Spam class.
Within its code, the class name Spam is assigned in the generate function's local
scope. But within the class's method function, the class name Spam is not visible;
method has access only to its own local scope, the module surrounding generate,
and built-in names:

def generate():
 class Spam:
 count = 1
 def method(self): # name Spam not visible:
 print Spam.count # not local (def), global (module), built-in
 return Spam()

generate().method()

C:\python\examples> python nester.py
Traceback (innermost last):
 File "nester.py", line 8, in ?
 generate().method()
 File "nester.py", line 5, in method
 print Spam.count # not local (def), global (module), built-in
NameError: Spam

6.10.4.1 Solution

The most general piece of advice we can pass along here is to remember the LGB
rule; it works in classes and method functions just as it does in simple functions. For
instance, inside a method function, code has unqualified access only to local names
(in the method def), global names (in the enclosing module), and built-ins. Notably
missing is the enclosing class statement; to get to class attributes, methods need to
qualify self, the instance. To call one method from another, the caller must route the
call through self (e.g., self.method()).

There are a variety of ways to get the example above to work. One of the simplest is
to move the name Spam out to the enclosing module's scope with global declarations;
since method sees names in the enclosing module by the LGB rule, Spam references
work:

def generate():
 global Spam # force Spam to module scope
 class Spam:
 count = 1
 def method(self):
 print Spam.count # works: in global (enclosing module)
 return Spam()

generate().method() # prints 1

Perhaps better, we can also restructure the example such that class Spam is defined
at the top level of the module by virtue of its nesting level, rather than global

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at the top level of the module by virtue of its nesting level, rather than global
declarations. Both the nested method function and the top-level generate find Spam
in their global scopes:

def generate():
 return Spam()

class Spam: # define at module top-level
 count = 1
 def method(self):
 print Spam.count # works: in global (enclosing module)

generate().method()

We can also get rid of the Spam reference in method altogether, by using the special
__ class __ attribute, which, as we've seen, returns an instance's class object:

def generate():
 class Spam:
 count = 1
 def method(self):
 print self.__class__.count # works: qualify to get class
 return Spam()

generate().method()

Finally, we could use the mutable default argument trick we saw in Chapter 4 to
make this work, but it's so complicated we're almost embarrassed to show you; the
prior solutions usually make more sense:

def generate():
 class Spam:
 count = 1
 fillin = [None]
 def method(self, klass=fillin): # save from enclosing scope
 print klass[0].count # works: default plugged-in
 Spam.fillin[0] = Spam
 return Spam()

generate().method()

Notice that we can't say klass=Spam in method's def header, because the name
Spam isn't visible in Spam's body either; it's not local (in the class body), global (the
enclosing module), or built-in. Spam only exists in the generate function's local
scope, which neither the nested class nor its method can see. The LGB rule works
the same for both.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.11 Summary

This chapter has been about two special objects in Python—classes and instances—
and the language tools that create and process them. Class objects are created with
class statements, provide default behavior, and serve as generators for multiple
instance objects. Together, these two objects support full-blown object-oriented
development and code reuse. In short, classes allow us to implement new objects,
which export both data and behavior.

In terms of their main distinctions, classes support multiple copies, specialization by
inheritance, and operator overloading, and we explored each of these features in this
chapter. Since classes are all about namespaces, we also studied the ways they
extend module and function namespace notions. And finally, we explored a few
object-oriented design ideas such as composition and delegation, by seeing how to
implement them in Python.

The next chapter concludes our core language tour, with a quick look at exception
handling—a simple tool used to process events, rather than build program
components. As a summary and reference of what we learned in this chapter, here's
a synopsis of the terms we've used to talk about classes in Python:

Class

An object (and statement) that defines inherited attributes

Instance

Objects created from a class, which inherit its attributes, and get their own
namespace

Method

An attribute of a class object that's bound to a function object

self

By convention, the name given to the implied instance object in methods

Inheritance

When an instance or class accesses a class's attributes by qualification

Superclass

A class another class inherits attributes from

Subclass

A class that inherits attribute names from another class

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

6.12 Exercises

This laboratory session asks you to write a few classes and experiment with some
existing code. Of course, the problem with existing code is that it must be existing. To
work with the set class in Exercise 5, either pull down the class source code off the
Internet (see the Preface) or type it up by hand (it's fairly small). These programs are
starting to get more sophisticated, so be sure to check the solutions at the end of the
book for pointers. If you're pressed for time, we suspect that the last exercise dealing
with composition will probably be the most fun of the bunch (of course, we already
know the answers).

1. The basics. Write a class called Adder that exports a method add(self, x,
y) that prints a "Not Implemented" message. Then define two subclasses of
Adder that implement the add method:

ListAdder, with an add method that returns the concatenation of its two
list arguments

DictAdder, with an add method that returns a new dictionary with the
items in both its two dictionary arguments (any definition of addition will
do)

Experiment by making instances of all three of your classes interactively and
calling their add methods. Finally, extend your classes to save an object in a
constructor (a list or a dictionary) and overload the + operator to replace the
add method. Where is the best place to put the constructors and operator
overload methods (i.e., in which classes)? What sorts of objects can you add to
your class instances?

2. Operator overloading. Write a class called Mylist that "wraps" a Python list: it
should overload most list operators and operations—+, indexing, iteration,
slicing, and list methods such as append and sort. See the Python reference
manual for a list of all possible methods to overload. Also provide a constructor
for your class that takes an existing list (or a Mylist instance) and copies its
components into an instance member. Experiment with your class interactively.
Things to explore:

Why is copying the initial value important here?

Can you use an empty slice (e.g., start[:]) to copy the initial value if it's
a Mylist instance?

Is there a general way to route list method calls to the wrapped list?

Can you add a Mylist and a regular list? How about a list and a Mylist
instance?

What type of object should operations like + and slicing return; how about
indexing?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Subclassing. Now, make a subclass of Mylist from Exercise 2 called
MylistSub, which extends Mylist to print a message to stdout before each
overloaded operation is called and counts the number of calls. MylistSub
should inherit basic method behavior from Mylist. For instance, adding a
sequence to a MylistSub should print a message, increment the counter for +
calls, and perform the superclass's method. Also introduce a new method that
displays the operation counters to stdout and experiment with your class
interactively. Do your counters count calls per instance, or per class (for all
instances of the class)? How would you program both of these? (Hint: it
depends on which object the count members are assigned to: class members
are shared by instances, self members are per-instance data.)

4. Metaclass methods. Write a class called Meta with methods that intercept every
attribute qualification (both fetches and assignments) and prints a message with
their arguments to stdout. Create a Meta instance and experiment with
qualifying it interactively. What happens when you try to use the instance in
expressions? Try adding, indexing, and slicing the instance of your class.

5. Set objects. Experiment with the set class described in this chapter (from
Section 6.8.5). Run commands to do the following sorts of operations:

a. Create two sets of integers, and compute their intersection and union by
using & and | operator expressions.

b. Create a set from a string, and experiment with indexing your set; which
methods in the class are called?

c. Try iterating through the items in your string set using a for loop; which
methods run this time?

d. Try computing the intersection and union of your string set and a simple
Python string; does it work?

e. Now, extend your set by subclassing to handle arbitrarily many operands
using a *args argument form (hint: see the function versions of these
algorithms in Chapter 4). Compute intersections and unions of multiple
operands with your set subclass. How can you intersect three or more
sets, given that & has only two sides?

f. How would you go about emulating other list operations in the set class?
(Hints: __ add _ _ can catch concatenation, and __ getattr __ can
pass most list method calls off to the wrapped list.)

6. Class tree links. In a footnote in the section on multiple inheritance, we
mentioned that classes have a _ _ bases __ attribute that returns a tuple of
the class's superclass objects (the ones in parentheses in the class header).
Use _ _ bases __ to extend the Lister mixin class, so that it prints the
names of the immediate superclasses of the instance's class too. When you're
done, the first line of the string representation should look like this:

<Instance of Sub(Super, Lister), address 7841200:.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<Instance of Sub(Super, Lister), address 7841200:.

How would you go about listing class attributes too?

7. Composition. Simulate a fast-food ordering scenario by defining four classes:

Lunch: a container and controller class

Customer: the actor that buys food

Employee: the actor that a customer orders from

Food: what the customer buys

To get you started, here are the classes and methods you'll be defining:

class Lunch:
 def __init__(self) # make/embed Customer and Employee
 def order(self, foodName) # start a Customer order simulation
 def result(self) # ask the Customer what kind of Food it has

class Customer:
 def __init__(self) # initialize my food
 def placeOrder(self, foodName, employee) # place order with an Employee
 def printFood(self) # print the name of my food

class Employee:
 def takeOrder(self, foodName) # return a Food, with requested name

class Food:
 def __init__(self, name) # store food name

The order simulation works as follows:

The Lunch class's constructor should make and embed an instance of
Customer and Employee, and export a method called order. When
called, this order method should ask the Customer to place an order, by
calling its placeOrder method. The Customer's placeOrder method
should in turn ask the Employee object for a new Food object, by calling
the Employee's takeOrder method.

Food objects should store a food name string (e.g., "burritos"),
passed down from Lunch.order to Customer.placeOrder, to
Employee.takeOrder, and finally to Food's constructor. The top-level
Lunch class should also export a method called result, which asks the
customer to print the name of the food it received from the Employee (this
can be used to test your simulation).

Note that Lunch needs to either pass the Employee to the Customer, or
pass itself to the Customer, in order to allow the Customer to call
Employee methods.

8. Experiment with your classes interactively by importing the Lunch class, calling
its order method to run an interaction, and then calling its result method to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

its order method to run an interaction, and then calling its result method to
verify that the Customer got what he or she ordered. In this simulation, the
Customer is the active agent; how would your classes change if Employee
were the object that initiated customer/employee interaction instead?

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 7. Exceptions
Our last chapter in this part of the book has to do with exceptions—events that can
modify the flow of control through a program. In Python, exceptions can be both
intercepted and triggered by our programs. They are processed by two new
statements we'll study in this chapter:

try

Catches exceptions raised by Python or a program

raise

Triggers an exception manually

With a few exceptions (pun intended), we'll find that exception handling is simple in
Python, because it's integrated into the language itself as another high-level tool.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.1 Why Use Exceptions?

In a nutshell, exceptions let us jump around arbitrarily large chunks of a program.
Remember that pizza-making robot we talked about in the last chapter? Suppose we
took the idea seriously and actually built such a machine (there are worse hobbies,
after all). To make a pizza, our culinary automaton would need to execute a plan,
which we implement as a Python program. It would take an order, prepare the dough,
add toppings, bake the pie, and so on.

Now, suppose that something goes very wrong during the "bake the pie" step.
Perhaps the oven is broken. Or perhaps our robot miscalculates its reach and
spontaneously bursts into flames. Clearly, we want to be able to jump to code that
handles such states quickly (especially if our robot is melting all over the kitchen
floor!). Since we have no hope of finishing the pizza task in such unusual cases, we
might as well abandon the entire plan.

That's exactly what exceptions let you do; you can jump to an exception handler in a
single step, past all suspended function calls. They're a sort of "super-goto."[1] An
exception handler (try statement) leaves a marker and executes some code.
Somewhere further ahead in the program, an exception is raised that makes Python
jump back to the marker immediately, without resuming any active functions that were
called since the marker was left. Code in the exception handler can respond to the
raised exception as appropriate (calling the fire department, for instance). Moreover,
because Python jumps to the handler statement immediately, there is usually no need
to check status codes after every call to a function that could possibly fail.

[1] In fact, if you've used C, you may be interested to know that Python exceptions are roughly equivalent to C's
setjmp/longjmp standard function pair. The try statement acts much like a setjmp, and raise works like a
longjmp. But in Python, exceptions are based on objects and are a standard part of the execution model.

In typical Python programs, exceptions may be used for a variety of things:

Error handling

Python raises exceptions when it detects errors in programs at runtime; you can
either catch and respond to the errors internally in your programs or ignore the
exception. If ignored, Python's default exception-handling behavior kicks in; it
kills the program and prints an error message showing where the error
occurred.

Event notification

Exceptions can also signal a valid condition, without having to pass result flags
around a program or test them explicitly. For instance, a search routine might
raise an exception on success, rather than return an integer 1.

Special-case handling

Sometimes a condition may happen so rarely that it's hard to justify convoluting
code to handle it. You can often eliminate special-case code by handling
unusual cases in exception handlers instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unusual control-flows

And finally, because exceptions are a type of high-level goto, you can use them
as the basis for implementing exotic control flows. For instance, although
backtracking is not part of the language itself, it can be implemented in Python
with exceptions and a bit of support logic to unwind assignments.[2]

[2] Backtracking isn't part of the Python language, so we won't say more about it here. See a book on artificial
intelligence or the Prolog or icon programming languages if you're curious.

We'll see some of these typical uses in action later in this chapter. First, let's get
started with a closer look at Python's exception-processing tools.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.2 Exception Basics

Python exceptions are a high-level control flow device. They may be raised either by
Python or by our programs; in both cases, they may be caught by try statements.
Python try statements come in two flavors—one that handles exceptions and one
that executes finalization code whether exceptions occur or not.

7.2.1 try/except/else

The try is another compound statement; its most complete form is sketched below. It
starts with a try header line followed by a block of indented statements, then one or
more optional except clauses that name exceptions to be caught, and an optional
else clause at the end:

try:
 <statements> # run/call actions
except <name>:
 <statements> # if 'name' raised during try block
except <name>, <data>:
 <statements> # if 'name' raised; get extra data
else:
 <statements> # if no exception was raised

Here's how try statements work. When a try statement is started, Python marks the
current program context, so it can come back if an exception occurs. The statements
nested under the try header are run first; what happens next depends on whether
exceptions are raised while the try block's statements are running or not:

If an exception occurs while the try block's statements are running, Python
jumps back to the try and runs the statements under the first except clause
that matches the raised exception. Control continues past the entire try
statement after the except block runs (unless the except block raises another
exception).

If an exception happens in the try block and no except clause matches, the
exception is propagated up to a try that was entered earlier in the program, or
to the top level of the process (which makes Python kill the program and print a
default error message).

If no exception occurs while the statements under the try header run, Python
runs the statements under the else line (if present), and control then resumes
past the entire try statement.

In other words, except clauses catch exceptions that happen while the try block is
running, and the else clause is run only if no exceptions happen while the try block
runs. The except clauses are very focused exception handlers; they catch
exceptions that occur only within the statements in the associated try block.
However, since the try block's statements can call functions elsewhere in a
program, the source of an exception may be outside the try.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

program, the source of an exception may be outside the try.

7.2.2 try/finally

The other flavor of the try statement is a specialization and has to do with
finalization actions. If a finally clause is used in a try, its block of statements are
always run by Python "on the way out," whether an exception occurred while the try
block was running or not:

If no exception occurs, Python runs the try block, then the finally block, and
then continues execution past the entire try statement.

If an exception does occur during the try block's run, Python comes back and
runs the finally block, but then propagates the exception to a higher try (or
the top level); control doesn't continue past the try statement.

The try/finally form is useful when you want to be completely sure that an action
happens after some code runs, regardless of the exception behavior of the program;
we'll see an example in a moment. The finally clause can't be used in the same
try statement as except and else, so they are best thought of as two different
statements:

try:
 <statements>
finally:
 <statements> # always run "on the way out"

7.2.3 raise

To trigger exceptions, you need to code raise statements. Their general form is
simple: the word raise followed by the name of the exception to be raised. You can
also pass an extra data item (an object) along with the exception, by listing it after the
exception name. If extra data is passed, it can be caught in a try by listing an
assignment target to receive it: except name, data:

raise <name> # manually trigger an exception
raise <name>, <data> # pass extra data to catcher too

So what's an exception name? It might be the name of a built-in exception from the
built-in scope (e.g., IndexError), or the name of an arbitrary string object you've
assigned in your program. It can also reference a class or class instance; this form
generalizes raise statements, but we'll postpone this topic till later in this chapter.
Exceptions are identified by objects, and at most one is active at any given time.
Once caught by an except clause, an exception dies (won't propagate to another
try), unless reraised by a raise or error.

7.2.4 First Examples

Exceptions are simpler than they seem. Since control flow through a program is
easier to capture in Python than in English, let's look at some simple examples that
illustrate exception basics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2.4.1 Default behavior: Error messages

As mentioned, exceptions not caught by try statements reach the top level of a
Python process and run Python's default exception-handling logic. By default, Python
terminates the running program and prints an error message describing the
exception, showing where the program was when the exception occurred. For
example, running the following module generates a divide-by-zero exception; since
the program ignores it, Python kills the program and prints:

% cat bad.py
def gobad(x, y):
 return x / y

def gosouth(x):
 print gobad(x, 0)

gosouth(1)

% python bad.py
Traceback (innermost last):
 File "bad.py", line 7, in ?
 gosouth(1)
 File "bad.py", line 5, in gosouth
 print gobad(x, 0)
 File "bad.py", line 2, in gobad
 return x / y
ZeroDivisionError: integer division or modulo

When an uncaught exception occurs, Python ends the program, and prints a stack
trace and the name and extra data of the exception that was raised. The stack trace
shows the filename, line number, and source code, for each function active when the
exception occurred, from oldest to newest. For example, you can see that the bad
divide happens at the lowest entry in the trace—line 2 of file bad.py, a return
statement.

Because Python reports almost all errors at runtime by raising exceptions, exceptions
are intimately bound up with the idea of error handling in general. For instance, if
you've worked through the examples, you've almost certainly seen an exception or
two along the way (even typos usually generate a SyntaxError exception). By
default, you get a useful error display like the one above, which helps track down the
problem. For more heavy-duty debugging jobs, you can catch exceptions with try
statements.[3]

[3] You can also use Python's standard debugger, pdb, to isolate problems. Like C debuggers such as dbx and gdb,
pdb lets you step through Python programs line by line, inspect variable values, set breakpoints, and so on. pdb is
shipped with Python as a standard module and is written in Python. See Python's library manual or other Python texts
for information on pdb usage.

7.2.4.2 Catching built-in exceptions

If you don't want your program terminated when an exception is raised by Python,
simply catch it by wrapping program logic in a try. For example, the following code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

simply catch it by wrapping program logic in a try. For example, the following code
catches the IndexError Python raises when the list is indexed out of bounds
(remember that list indexes are zero-based offsets; 3 is past the end):

def kaboom(list, n):
 print list[n] # trigger IndexError

try:
 kaboom([0, 1, 2], 3)
except IndexError: # catch exception here
 print 'Hello world!'

When the exception occurs in function kaboom, control jumps to the try statement's
except clause, which prints a message. Since an exception is "dead" after it's been
caught, the program continues past the whole try, rather than being terminated by
Python. In effect, you process and ignore the error.

7.2.4.3 Raising and catching user-defined exceptions

Python programs can raise exceptions of their own too, using the raise statement.
In their simplest form, user-defined exceptions are usually string objects, like the one
MyError is assigned to in the following:

MyError = "my error"

def stuff(file):
 raise MyError

file = open('data', 'r') # open an existing file
try:
 stuff(file) # raises exception
finally:
 file.close() # always close file

User-defined exceptions are caught with try statements just like built-in exceptions.
Here, we've wrapped a call to a file-processing function in a try with a finally
clause, to make sure that the file is always closed, whether the function triggers an
exception or not. This particular function isn't all that useful (it just raises an
exception!), but wrapping calls in try/finally statements is a good way to ensure
that your closing-time activities always run.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.3 Exception Idioms

We've seen the mechanics behind exceptions; now, let's take look at some of the
ways they're typically used.

7.3.1 Exceptions Aren't Always a Bad Thing

Python raises exceptions on errors, but not all exceptions are errors. For instance, we
saw in Chapter 2, that file object read methods return empty strings at the end of a
file. Python also provides a built-in function called raw_input for reading from the
standard input stream; unlike file methods, raw_input raises the built-in EOFError
at end of file, instead of returning an empty string (an empty string means an empty
line when raw_input is used). Because of that, raw_input often appears wrapped
in a try handler and nested in a loop, as in the following code

while 1:
 try:
 line = raw_input() # read line from stdin
 except EOFError:
 break # exit loop at end of file
 else:

 Process next 'line' here

7.3.2 Searches Sometimes Signal Success by raise

User-defined exceptions can signal nonerror conditions also. For instance, a search
routine can be coded to raise an exception when a match is found, instead of
returning a status flag that must be interpreted by the caller. In the following, the
try/except/else exception handler does the work of an if/else return value
tester:

Found = "Item found"

def searcher():

 raise Found or return

try:
 searcher()
except Found: # exception if item was found

 Success

else: # else returned: not found

 Failure

7.3.3 Outer try Statements Can Debug Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also make use of exception handlers to replace Python's default top-level
exception-handling behavior seen previously. By wrapping an entire program (or a
call to it) in an outer try, you can catch any exception that may occur while your
program runs, thereby subverting the default program termination. In the following,
the empty except clause catches any uncaught exception raised while the program
runs. To get hold of the actual exception that occurred, fetch the exc_type and
exc_value attributes from the built-in sys module; they're automatically set to the
current exception's name and extra data:[4]

[4] By the way, the built-in traceback module allows the current exception to be processed in a generic fashion, and
as of Python 1.5.1, a new sys.exc_info() function returns a tuple containing the current exception's type, data, and
traceback. sys.exc_type and sys.exc_value still work, but manage a single, global exception; exc_info()
keeps track of each thread's exception information and so is thread-specific. This distinction matters only when using
multiple threads in Python programs (a subject beyond this book's scope). See the Python library manual for more
details.

try:

 Run program

except: # all uncaught exceptions come here
 import sys
 print 'uncaught!', sys.exc_type, sys.exc_value

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.4 Exception Catching Modes

Now that we've taken a first look, let's fill in a few details behind Python's exception
model.

7.4.1 try Statement Clauses

When you write try statements, a variety of clauses can appear after the try
statement block; Table 7.1 summarizes all the possible forms. We've already seen
most of these in the previous examples—empty except clauses catch any
exception, finally runs on the way out, and so on. There may be any number of
excepts, but finally must appear by itself (without an else or except), and
there should be only one else in a try.

Table 7.1. try Statement Clause Forms
Clause Form Interpretation

except: Catch all (other) exception types
except name: Catch a specific exception only
except name, value: Catch exception and its extra data
except (name1, name2): Catch any of the listed exceptions
else: Run block if no exceptions raised
finally: Always perform block

7.4.2 Catching 1-of-N Exceptions

The fourth entry in Table 7.1 is new. except clauses can also provide a set of
exceptions to be caught, in parentheses; Python runs such a clause's statement block
if any of the listed exceptions occur. Since Python looks for a match within a given
try by inspecting except clauses from top to bottom, the parenthesized version is
like listing each exception in its own except clause, except that the statement body
needs to be coded only once.

Here's an example of multiple except clauses at work. In the following, when an
exception is raised while the call to the action function is running, Python returns to
the try and searches for the first except that catches the exception raised. It
inspects expect clauses from top to bottom and left to right, and runs the statements
under the first that matches. If none match, the exception is propagated past this try;
the else runs only when no exception occurred. If you really want a catch-all clause,
an empty except does the trick:

try:
 action()
except NameError:
 ...
except IndexError

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

except IndexError
 ...
except KeyError:
 ...
except (AttributeError, TypeError, SyntaxError):
 ...
else:
 ...

7.4.3 Exceptions Nest at Runtime

So far, our examples have used only a single try to catch exceptions, but what
happens if one try is physically nested inside another? For that matter, what does it
mean if a try calls a function that runs another try? Both these cases can be
understood if you realize that Python stacks try statements at runtime. When an
exception is raised, Python returns to the most recently entered try statement with a
matching except clause. Since each try statement leaves a marker, Python can
jump back to earlier trys by inspecting the markers stack.

An example will help make this clear. The following module defines two functions;
action2 is coded to trigger an exception (you can't add numbers and sequences),
and action1 wraps a call to action2 in a try handler, to catch the exception.
However, the top-level module code at the bottom wraps a call to action1 in a try
handler too. When action2 triggers the TypeError exception, there will be two
active try statements—the one in action1, and the one at the top level of the
module. Python picks the most recent (youngest) with a matching except, which in
this case is the try inside action1. In general, the place where an exception winds
up jumping to depends on the control flow through a program at runtime:

def action2():
 print 1 + [] # generate TypeError

def action1():
 try:
 action2()
 except TypeError: # most recent matching try
 print 'inner try'

try:
 action1()
except TypeError: # here only if action1 reraises
 print 'outer try'

% python nestexc.py
inner try

7.4.4 finally Clauses Run "On the Way Out"

We've already talked about the finally clause, but here's a more sophisticated
example. As we've seen, the finally clause doesn't really catch specific
exceptions; rather, it taps into the exception propagation process. When used, a
finally block is always executed on the way out of a try statement, whether the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

finally block is always executed on the way out of a try statement, whether the
exit is caused by an exception or normal completion of the statements in the try
block. This makes finally blocks a good place to code clean-up actions (like
closing files, as in the previous example).

The next code snippet shows finally in action with and without exceptions. It
defines two functions: divide, which may or may not trigger a divide-by-zero error,
and tester, which wraps a call to divide in a try/finally statement:

def divide(x, y):
 return x / y # divide-by-zero error?

def tester(y):
 try:
 print divide(8, y)
 finally:
 print 'on the way out...'

print '\nTest 1:'; tester(2)
print '\nTest 2:'; tester(0) # trigger error

% python finally.py
Test 1:
4
on the way out...

Test 2:
on the way out...
Traceback (innermost last):
 File "finally.py", line 11, in ?
 print 'Test 2:'; tester(0)
 File "finally.py", line 6, in tester
 print divide(8, y)
 File "finally.py", line 2, in divide
 return x / y # divide-by-zero error?
ZeroDivisionError: integer division or modulo

Now, the module's top-level code at the bottom calls tester twice:

The first call doesn't generate an exception (8/2 works fine), and the result (4) is
printed. But the finally clause's block is run anyhow, so you get the on the
way out message.

The second call does generate an exception (8/0 is a very bad thing to say).
Control immediately jumps from the divide function to the finally block, and
the message prints again. However, Python continues propagating the
exception, which reaches the top level and runs the default exception action (a
stack trace).

Why You Will Care: Lazy Programs
One way to see why exceptions are useful is to compare coding styles in Python and languages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One way to see why exceptions are useful is to compare coding styles in Python and languages
without exceptions. For instance, if you want to write robust programs in the C language, you
have to test return values or status codes after every operation that could possibly go astray:

doStuff()
{ // C program:
 if (doFirstThing() == ERROR) // must detect errors everywhere
 return ERROR; // even if not processed here
 if (doNextThing() == ERROR)
 return ERROR;
 ...
 return doLastThing();
}

main()
{
 if (doStuff() == ERROR)
 badEnding();
 else
 goodEnding();
}

In fact, realistic C programs have as much code devoted to error detection as to doing actual
work. But, in Python, you don't have to be so methodical; instead you can wrap arbitrarily vast
pieces of a program in exception handlers and write the parts that do the actual work to assume
all is well:

def doStuff():
 doFirstThing() # we don't care about exceptions here
 doNextThing() # so we don't need to detect them here
 ...
 doLastThing()

if__name__ == '__main__':
 try:
 doStuff() # this is where we care about the result
 except: # so it's the only place we need to check
 badEnding()
 else:
 goodEnding()

Because control jumps immediately and automatically to a handler when an exception occurs,
there's no need to instrument all your code to guard for errors. The upshot is that exceptions let
you largely ignore the unusual cases and avoid much error-checking code.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.5 Odds and Ends

7.5.1 Passing Optional Data

As we've seen, raise statements can pass an extra data item along with the
exception for use in a handler. In general, the extra data allows you to send context
information to a handler. In fact, every exception has the extra data; much like
function results, it's the special None object if nothing was passed explicitly. The
following code illustrates:

myException = 'Error' # string object

def raiser1():
 raise myException, "hello" # raise, pass data

def raiser2():
 raise myException # raise, None implied

def tryer(func):
 try:
 func()
 except myException, extraInfo: # run func, catch exception + data
 print 'got this:', extraInfo

% python
>>> from helloexc import *
>>> tryer(raiser1) # gets explicitly passed extra data
got this: hello
>>> tryer(raiser2) # gets None by default
got this: None

7.5.2 The assert Statement

As a special case, Python 1.5 introduced an assert statement, which is mostly
syntactic shorthand for a raise. A statement of the form:

assert <test>, <data> # the <data> part is optional

works like the following code:

if __debug__:
 if not <test>:
 raise AssertionError, <data>

but assert statements may be removed from the compiled program's byte code if
the -O command-line flag is used, thereby optimizing the program. Assertion-
Error is a built-in exception, and the _ _debug__ flag is a built-in name which is
automatically set to 1 unless the -O flag is used. Assertions are typically used to
verify program conditions during development; when displayed, their message text
includes source-code line information automatically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5.3 Class Exceptions

Recently, Python generalized the notion of exceptions. They may now also be
identified by classes and class instances. Like module packages and private class
attributes, class exceptions are an advanced topic you can choose to use or not. If
you're just getting started, you may want to mark this section as optional reading.

So far we've used strings to identify our own exceptions; when raised, Python
matches the exception to except clauses based on object identity (i.e., using the is
test we saw in Chapter 2). But when a class exception is raised, an except clause
matches the current exception if it names the raised class or a superclass of it. The
upshot is that class exceptions support the construction of exception hierarchies: by
naming a general exception superclass, an except clause can catch an entire
category of exceptions; any more specific subclass will match.

In general, user-defined exceptions may be identified by string or class objects.
Beginning with Python 1.5, all built-in exceptions Python may raise are predefined
class objects, instead of strings. You normally won't need to care, unless you assume
some built-in exception is a string and try to concatenate it without converting (e.g.,
KeyError + "spam", versus str(KeyError) + "spam").

7.5.3.1 General raise forms

With the addition of class-based exceptions, the raise statement can take the
following five forms: the first two raise string exceptions, the next two raise class
exceptions, and the last is an addition in Python Version 1.5, which simply reraises
the current exception (it's useful if you need to propagate an arbitrary exception
you've caught in a except block). Raising an instance really raises the instance's
class; the instance is passed along with the class as the extra data item (it's a good
place to store information for the handler).

raise string # matches except with same string object
raise string, data # optional extra data (default=None)

raise class, instance # matches except with this class, or a superclass of it
raise instance # same as: raise instance.__class__, instance

raise # re-raise the current exception (new in 1.5)

For backward compatibility with Python versions in which built-in exceptions were
strings, you can also use these forms of the raise statement:

raise class # same as: raise class()
raise class, arg # all are really: raise instance
raise class, (arg, arg,...)

These are all the same as saying raise class(arg...), and therefore the same
as the raise instance form above (Python calls the class to create and raise an
instance of it). For example, you may raise an instance of the built-in KeyError
exception by saying simply raise KeyError, even though KeyError is now a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exception by saying simply raise KeyError, even though KeyError is now a
class.

If that sounds confusing, just remember that exceptions may be identified by string,
class, or class instance objects, and you may pass extra data with the exception or
not. If the extra data you pass with a class isn't an instance object, Python makes an
instance for you.

7.5.3.2 Example

Let's look at an example to see how class exceptions work. In the following, we define
a superclass General and one subclass of it called Specific. We're trying to
illustrate the notion of exception categories here; handlers that catch General will
also catch a subclass of it like Specific. We then create functions that raise
instances of both classes as exceptions and a top-level try that catches General;
the same try catches General and Specific exceptions, because Specific is a
subclass of General:

class General: pass
class Specific(General): pass

def raiser1():
 X = General() # raise listed class instance
 raise X

def raiser2():
 X = Specific() # raise instance of subclass
 raise X

for func in (raiser1, raiser2):
 try:
 func()
 except General: # match General or any subclass of it
 import sys
 print 'caught:', sys.exc_type

% python classexc.py
caught: <class General at 881ee0>
caught: <class Specific at 881100>

Since there are only two possible exceptions here, this doesn't really do justice to the
utility of class exceptions; we can achieve the same effects by coding a list of string
exception names in the except (e.g., except (a, b, c):), and passing along an
instance object as the extra data item. But for large or high exception hierarchies, it
may be easier to catch categories using classes than to list every member of a
category in a single except clause. Moreover, exception hierarchies can be
extended by adding new subclasses, without breaking existing code.

For example, the built-in exception ArithmeticError is a superclass to more
specific exceptions such as OverflowError and ZeroDivisionError, but
catching just ArithmeticError in a try, you catch any more specific kind of
numeric error subclass raised. Furthermore, if you add new kinds of numeric error
subclasses in the future, existing code that catches the ArithmeticError

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subclasses in the future, existing code that catches the ArithmeticError
superclass (category) also catches the new specific subclasses without modification;
there's no need to explicitly extend a list of exception names.

Besides supporting hierarchies, class exceptions also provide storage for extra state
information (as instance attributes), but this isn't much more convenient than passing
compound objects as extra data with string exceptions (e.g., raise string,
object). As usual in Python, the choice to use OOP or not is mostly yours to make.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.6 Exception Gotchas

There isn't much to trip over here, but here are a few general pointers on exception
use.

7.6.1 Exceptions Match by Identity, Not Equality

As we've seen, when an exception is raised (by you or by Python itself), Python
searches for the most recently entered try statement with a matching except
clause, where matching means the same string object, the same class object, or a
superclass of the raised class object. It's important to notice that matching is
performed by identity, not equality. For instance, suppose we define two string objects
we want to raise as exceptions:

>>> ex1 = "spam"
>>> ex2 = "spam"
>>>
>>> ex1 == ex2, ex1 is ex2
(1, 0)

Applying the == test returns true (1) because they have equal values, but is returns
false (0) since they are two distinct string objects in memory. Now, an except clause
that names the same string object will always match:

>>> try:
... raise ex1
... except ex1:
... print 'got it'
...
got it

But one that lists an equal but not identical object will fail:

>>> try:
... raise ex1
... except ex2:
... print 'Got it'
...
Traceback (innermost last):
 File "<stdin>", line 2, in ?
spam

Here, the exception isn't caught, so Python climbs to the top level of the process and
prints a stack trace and the exception automatically (the string "spam"). For class
exceptions, the behavior is similar, but Python generalizes the notion of exception
matching to include superclass relationships.

7.6.2 Catching Too Much?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because Python lets you pick and choose which exceptions to catch, you sometimes
have to be careful to not be too inclusive. For example, you've seen that an empty
except clause catches every exception that might be raised while the code in the
try block runs. Sometimes that's wanted, but you may also wind up intercepting an
error that's expected by a try handler higher up in a system. An exception handler
such as the following catches and stops every exception that reaches it, whether or
not another handler is waiting for it:

try:
 ...
except:
 ... # everything comes here!

The problem here is that you might not expect all the kinds of exceptions that could
occur during an operation:

try:
 x = myditctionary[spam] # oops: misspelled
except:
 x = None # assume we got KeyError or IndexError

7.6.2.1 Solution

In this case, you're assuming the only sort of error that can happen when indexing a
dictionary is an indexing error. But because the name myditctionary is misspelled
(you meant to say mydictionary), Python raises a NameError instead (since it's
an undefined name reference), which will be silently caught and ignored by your
handler. You should say: except (KeyError, IndexError): to make your
intentions explicit.

7.6.3 Catching Too Little?

Conversely, you sometimes need to not be so exclusive. When listing specific
exceptions in a try, you catch only what you actually list. This isn't necessarily a bad
thing either, but if a system evolves to raise other exceptions in the future, you may
need to go back and add them to exception lists elsewhere in the code. For instance,
the following handler is written to treat myerror1 and myerror2 as normal cases
and treat everything else as an error. If a myerror3 is added in the future, it is
processed as an error unless you update the exception list:

try:
 ...
except (myerror1, myerror2): # what if I add a myerror3?
 ... # nonerrors
else:
 ... # assumed to be an error

7.6.3.1 Solution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Careful use of class exceptions can make this gotcha go away completely. As we saw
earlier in this chapter, if you catch a general superclass, you can add and raise more
specific subclasses in the future without having to extend except clause lists
manually.

Whether you use classes here or not, a little design goes a long way. The moral of
the story is that you have to be careful not to be too general or too specific in
exception handlers. Especially in larger systems, exception policies should be a part
of the overall design.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.7 Summary

In this chapter, we've learned about exceptions—both how to catch them with try
statements and how to trigger them with raise statements. Exceptions are identified
by string objects or class objects; built-in exceptions are predefined class objects in
Python 1.5, but user-defined exceptions may be strings or classes. Either way,
exceptions let us jump around programs arbitrarily, and provide a coherent way of
dealing with errors and other unusual events. Along the way, we studied common
exception idioms, touched on error handling in general, and saw a variety of ways to
catch and match raised exceptions.

This chapter concludes our look at the core Python programming language. If you've
gotten this far, you can consider yourself an official Python programmer; you've
already seen just about everything there is to see in regards to the language itself. In
this part of the book, we studied built-in types, statements, and exceptions, as well as
tools used to build-up larger program units—functions, modules, and classes. In
general, Python provides a hierarchy of tool sets:

Built-ins

Built-in types like strings, lists, and dictionaries make it easy to write simple
programs fast.

Python extensions

For more demanding tasks, we can extend Python in Python, by writing our own
functions, modules, and classes.

C extensions

Although we don't cover them in this book, Python can also be extended with
modules written in C or C++.

Because Python layers its tool sets, we can decide how complicated we need to get
for a given task. We've covered the first two of the categories above in this book
already, and that's plenty to do substantial programming in Python.

The next part of this book takes you on a tour of standard modules and common
tasks in Python. Table 7.2 summarizes some of the sources of built-in or existing
functionality available to Python programmers, and topics we'll explore in the
remainder of this book. Up until now, most of our examples have been very small and
self-contained. We wrote them that way on purpose, to help you master the basics.
But now that you know all about the core language, it's time to start learning how to
use Python's built-in interfaces to do real work. We'll find that with a simple language
like Python, common tasks are often much easier than you might expect.

Table 7.2. Python's Built-in Toolbox
Category Examples

Object types lists, dictionaries, files, strings
Functions len, range, apply, open

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modules string, os, Tkinter, pickle
Exceptions IndexError, KeyError
Attributes __dict__, __name__
Peripheral tools NumPy, SWIG, JPython, PythonWin

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

7.8 Exercises

Since we're at the end of Part I, we'll just work on a few short exception exercises to
give you a chance to play with the basics. Exceptions really are a simple tool, so if
you get these, you've got exceptions mastered.

1. try/except. Write a function called oops that explicitly raises a IndexError
exception when called. Then write another function that calls oops inside a
try/except statement to catch the error. What happens if you change oops
to raise KeyError instead of IndexError? Where do the names KeyError
and IndexError come from? (Hint: recall that all unqualified names come from
one of three scopes, by the LGB rule.)

2. Exception lists. Change the oops function you just wrote to raise an exception
you define yourself, called MyError, and pass an extra data item along with the
exception. Then, extend the try statement in the catcher function to catch this
exception and its data in addition to IndexError, and print the extra data item.

3. Error handling. Write a function called safe(func, *args) that runs any
function using apply, catches any exception raised while the function runs, and
prints the exception using the exc_type and exc_value attributes in the sys
module. Then, use your safe function to run the oops function you wrote in
Exercises 1 and/or 2. Put safe in a module file called tools.py, and pass it the
oops function interactively. What sort of error messages do you get? Finally,
expand safe to also print a Python stack trace when an error occurs by calling
the built-in print_exc() function in the standard traceback module (see the
Python library reference manual or other Python books for details).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Part II: The Outer Layers
In Part I we covered the core of the Python language. With this
knowledge, you should be able to read almost all Python code written, with
few language-related surprises. However, as anyone who's ever looked at
existing programs knows, understanding the syntax of a language doesn't
guarantee a clear and easy understanding of a program, even if it is well
written. Indeed, knowing which tools are being used, be they simple
functions, coherent packages, or even complex frameworks, is the
important step between a theoretical understanding of a language and a
practical, effective mastery of a system.

How can you make this transition? No amount of reading of woodworking
magazines is going to turn a novice into a master woodworker. For that to
happen, you have to have talent, of course, but also spend years
examining furniture, taking furniture apart, building new pieces, learning
from your mistakes and others' successes. The same is true in
programming. The role of textbooks is to give a bird's eye view of the
kinds of problems and appropriate solutions, to show some of the basic
tricks of the trade, and, finally, to motivate the frustrated beginner by
showing some of the nicer pieces of work others have built. This section
presents a different view of the Python landscape in each chapter and
each gives plentiful pointers to other sources of information.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 8. Built-in Tools
This chapter presents a selection of the essential tools that make up the Python
standard library—built-in functions, library modules, and their most useful functions
and classes. These are the sine qua non; while you most likely won't use all of these
in any one program, no useful program we've ever seen avoids all of these. Just as
Python provides a list data structure object type because sequence manipulations
occur in all programming contexts, the library provides a set of modules that will come
in handy over and over again. Before designing and writing any piece of generally
useful code, check to see if a similar module already exists. If it's part of the standard
Python library, you can be assured that it's been heavily tested; even better, others
are committed to fixing any remaining bugs—for free.

Note that this chapter gives only a brief look at the best of the standard library. As of
current writing, the Python Library Reference is over 200 pages long. More details on
the reference are available in Appendix A, but you should know that it's the ideal
companion to this book; it provides the completeness we don't have the room for,
and, being available online, is the most up-to-date description of the standard Python
toolset. Also, O'Reilly's Python Pocket Reference, written by coauthor Mark Lutz,
covers the most important modules in the standard library, along with the syntax and
built-in functions.

This chapter includes descriptions of two kinds of tools—built-in functions and
standard modules. Before we get to those sections, however, we'll say a brief word
about built-in objects. When introducing lists, for example, we've presented their
behavior as well as their most important methods (append, insert, sort,
reverse, index, etc.). We have not been exhaustive in this coverage in order to
focus on the most important aspects of the objects. If you're curious about what we've
left out, you can look it up in the Library Reference, or you can poke around in the
Python interactive interpreter. Starting with Python 1.5, the dir built-in function
returns a list of all of the important attributes of objects, and, along with the type
built-in, provides a great way to learn about the objects you're manipulating. For
example:

>>> dir([]) # what are the attributes of lists?
['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort']
>>> dir(()) # what are the attributes of tuples?
[] # tuples have no attributes!
>>> dir(sys.stdin) # what are the attributes of files?
['close', 'closed', 'fileno', 'flush', 'isatty', 'mode', 'name', 'read',
'readinto', 'readline', 'readlines', 'seek', 'softspace', 'tell', 'truncate',
'write', 'writelines']
>>> dir(sys) # modules are objects too
['__doc__', '__name__', 'argv', 'builtin_module_names', 'copyright',
'dllhandle' 'exc_info', 'exc_type', 'exec_prefix', 'executable', 'exit',
'getrefcount','maxint', 'modules', 'path', 'platform', 'prefix', 'ps1',
'ps2','setcheckinterval', 'setprofile', 'settrace', 'stderr', 'stdin',
'stdout','version', 'winver']
>>> type(sys.version) # what kind of thing is 'version'?

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> type(sys.version) # what kind of thing is 'version'?
<type 'string'>
>>> print sys.version # what is the value of this string?
1.5 (#0, Dec 30 1997, 23:24:20) [MSC 32 bit (Intel)]

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.1 Aside: The sys Module

The sys module contains several functions and attributes internal to Python; sys in
this case means Python system, not operating system. Some of the most useful
attributes are:

sys.path

A list containing the directories Python looks into when doing imports.

sys.modules

A dictionary of the modules that have been loaded in the current session.

sys.platform

A string referring to the current platform. Its possible values include 'win32',
'mac', 'osf1', 'linux-i386', 'sunos4', etc. It's sometimes useful to check
the value of sys.platform when doing platform-specific things (such as
starting a window manager).

sys.ps1 and sys.ps2

Two printable objects, used by Python in the interactive interpreter as the
primary and secondary prompts. Their default values are ... and >>> . You
can set them to strings or to instances of classes that define a __repr_ _
method.

One of the most frequently used attributes of the sys module is sys.argv, a list of
the words input on the command line, excluding the reference to Python itself if it
exists. In other words, if you type at the shell:

csh> python run.py a x=3 foo

then when run.py starts, the value of the sys.argv attribute is ['run.py', 'a',
'x=3', 'foo']. The sys.argv attribute is mutable (after all, it's just a list).
Common usage involves iterating over the arguments of the Python program, that is,
sys.argv[1:]; slicing from index 1 till the end gives all of the arguments to the
program itself, but doesn't include the name of the program (module) stored in
sys.argv[0].

Finally, there are three file attributes in the sys module: sys.stdin, sys.stdout,
and sys.stderr. They are references to the standard input, output, and error
streams respectively. Standard input is generally associated by the operating system
with the user's keyboard; standard output and standard error are usually associated
with the console. The print statement in Python outputs to standard output
(sys.stdout), while error messages such as exceptions are output on the standard
error stream (sys.stderr). Finally, as we'll see in an example, these are mutable
attributes: you can redirect output of a Python program to a file simply by assigning to
sys.stdout:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sys.stdout:

sys.stdout = open('log.out', 'w')

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.2 Built-in Functions

The dir function is a built-in function: it lives in the built-in namespace. Applying the
LGB rule means that the function is always available, and that no import statement
is needed to access it.[1] You've already encountered many of the built-in functions,
such as len, open, type, list, map, range, reload. You can find them listed
with the standard exceptions in the _ _builtins__ namespace:

[1] It also means that if you define a local or module-global reference with the same name, subsequent uses of dir
will use your new variable instead of the built-in version. This feature is the source of some subtle bugs; one of us
recently wrote a program that used a variable called o and a list of such variables called os (as in the plural of o).
Surprise surprise, the (supposedly unrelated) previously bugfree code that used os.system now complained of
AttributeErrors! Another frequent bug of the same kind is doing type = type(myObject), which works only the first
time around, since it results in assigning to a new local variable (called type) a reference to the type of whatever
myObject was. This local variable is what Python tries (and fails) to call the second time around.

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'EOFError',
'Ellipsis','Exception', 'FloatingPointError', 'IOError', 'ImportError',
'IndexError','KeyError', 'KeyboardInterrupt', 'LookupError', 'MemoryError',
'NameError','None', 'OverflowError', 'RuntimeError', 'StandardError',
'SyntaxError','SystemError', 'SystemExit', 'TypeError', 'ValueError',
'ZeroDivisionError','__debug__', '__doc__', '__import__', '__name__', 'abs',
'apply', 'callable','chr', 'cmp', 'coerce', 'compile', 'complex', 'delattr',
'dir', 'divmod', 'eval','execfile', 'filter', 'float', 'getattr', 'globals',
'hasattr', 'hash', 'hex','id', 'input', 'int', 'intern', 'isinstance',
'issubclass', 'len', 'list','locals', 'long', 'map', 'max', 'min', 'oct',
'open', 'ord', 'pow', 'range', 'raw_input', 'reduce', 'reload', 'repr',
'round', 'setattr', 'slice', 'str','tuple', 'type', 'vars', 'xrange']

8.2.1 Conversions, Numbers, and Comparisons

A few functions are used for converting between object types. We've already seen
str, which takes anything and returns a string representation of it, and list and
tuple, which take sequences and return list and tuple versions of them, respectively.
int, complex, float, and long take numbers and convert them to their respective
types. hex and oct take integers (int or long) as arguments and return string
representations of them in hexadecimal or octal format, respectively.

int , long , and float have additional features that can be confusing. First, int
and long truncate their numeric arguments if necessary to perform the operation,
thereby losing information and performing a conversion that may not be what you
want (the round built-in rounds numbers the standard way and returns a float).
Second, int, long, and float convert strings to their respective types, provided
the strings are valid integer (or long, or float) literals:[2]

[2] Literals are the text strings that are converted to numbers early in the Python compilation process. So, the string
"1244" in your Python program file (which is necessarily a string) is a valid integer literal, but "def foo():" isn't.

>>> int(1.0), int(1.4), int(1.9), round(1.9), int(round(1.9))
(1, 1, 1, 2.0, 2)
>>> int("1")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> int("1")
1
>>> int("1.2") # this doesn't work
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int(): 1.2
>>> int("1.0") #neither does this
Traceback (innermost last): # since 1.0 is also not a valid
 File "<stdin>", line 1, in ? # integer literal
ValueError: invalid literal for int(): 1.0
>>> hex(1000), oct(1000), complex(1000), long(1000)
('0x3e8', '01750', (1000+0j), 1000L)

Given the behavior of int, it may make sense in some cases to use a custom variant
that does only conversion, refusing to truncate:

>>> def safeint(candidate):
... import math
... truncated = math.floor(float(candidate))
... rounded = round(float(candidate))
... if truncated == rounded:
... return int(truncated)
... else:
... raise ValueError, "argument would lose precision when
...
>>> safeint(3.0)
3
>>> safeint("3.0")
3
>>> safeint(3.1)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 6, in safeint
ValueError: argument would lose precision when cast to integer

The abs built-in returns the absolute value of scalars (integers, longs, floats) and the
magnitude of complex numbers (the square root of the sum of the squared real and
imaginary parts):

>>> abs(-1), abs(-1.2), abs(-3+4j)
(1, 1.2, 5.0) # 5 is sqrt(3*3 + 4*4)

The ord and chr functions return the ASCII value of single characters and vice
versa, respectively:

>>> map(ord, "test") # remember that strings are sequences
[116, 101, 115, 116] # of characters, so map can be used
>>> chr(64)
'@'
>>> ord('@')
64
map returns a list of single characters, so it
needs to be 'join'ed into a str
>>> map(chr, (83, 112, 97, 109, 33))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> map(chr, (83, 112, 97, 109, 33))
['S', 'p', 'a', 'm', '! ']
>>> import string
>>> string.join(map(chr, (83, 112, 97, 109, 33)), '')
'Spam!'

The cmp built-in returns a negative integer, 0, or a positive integer, depending on
whether its first argument is greater than, equal to, or less than its second one. It's
worth emphasizing that cmp works with more than just numbers; it compares
characters using their ASCII values, and sequences are compared by comparing their
elements. Comparisons can raise exceptions, so the comparison function is not
guaranteed to work on all objects, but all reasonable comparisons will work. The
comparison process used by cmp is the same as that used by the sort method of
lists. It's also used by the built-ins min and max, which return the smallest and largest
elements of the objects they are called with, dealing reasonably with sequences:

>>> min("pif", "paf", "pof") # when called with multiple
'paf' arguments # return appropriate one
>>> min("ZELDA!"), max("ZELDA!") # when called with a sequence,
'!', 'Z' # return the min/max element of it

Table 8.1 summarizes the built-in functions dealing with type conversions.

Table 8.1. Type Conversion Built-in Functions
Function Name Behavior

str(string)
Returns the string representation of any object:

>>> str(dir())
 "['__builtins__', '__doc__', '__name__']"

list(seq)

Returns the list version of a sequence:

>>> list("tomato")
 ['t', 'o', 'm', 'a', 't', 'o']
 >>> list((1,2,3))
 [1, 2, 3]

tuple(seq)

Returns the tuple version of a sequence:

>>> tuple("tomato")
 ('t', 'o', 'm', 'a', 't', 'o')
 >>> tuple([0])
 (0,)

int(x)
Converts a string or number to a plain integer; truncates floating point values:

>>> int("3")
 3

long(x)
Converts a string or number to a long integer; truncates floating point values:

>>> long("3")
 3L

float(x)
Converts a string or a number to floating point:

>>> float("3")
 3.0

complex(real,imag)
Creates a complex number with the value real + imag*j:

>>> complex(3,5)
 (3+5j)
Converts an integer number (of any size) to a hexadecimal string:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hex(i) >>> hex(10000)
 '0x2710'

oct(i)
Converts an integer number (of any size) to an octal string:

>>> oct(10000)
 '023420'

ord(c)
Returns the ASCII value of a string of one character:

>>> ord('A')
 65

chr(i)
Returns a string of one character whose ASCII code is the integer i:

>>> chr(65)
 'A'

min(i [, i]*)

Returns the smallest item of a nonempty sequence:

>>> min([5,1,2,3,4])
 1
 >>> min(5,1,2,3,4)
 1

max(i [, i]*)

Returns the largest item of a nonempty sequence:

>>> max([5,1,2,3,4])
 5
 >>> max(5,1,2,3,4)
 5

8.2.2 Attribute Manipulation

The four built-in functions hasattr , getattr, setattr, and delattr test attribute
existence, get, set, and delete attributes of namespaces, respectively, given the
attribute's name as the second argument. They are useful when manipulating objects
and attributes whose names aren't available beforehand. They can be used with
modules, classes, and instances, and are summarized in Table 8.2.

Table 8.2. Built-ins that Manipulate Attributes of Objects
Function Name Behavior

hasattr(object, attributename) Returns 1 if object has an attribute
attributename, otherwise

getattr(object, attributename [, default])
Returns the attribute attributename of
object; if it doesn't exist, returns default if
it's specified or raises an AttributeError if
not

delattr(object, attributename)
Deletes the attribute attributename of
object or raises an AttributeError
exception if it doesn't exist

We saw these built-ins put to good use in the examples in Chapter 6, but for now,
consider a toy example that creates a specified attribute in a given namespace (in this
case, a class object), or increments it if it's already there:

>>> def increment_attribute(object, attrname):
... if not hasattr(object, attrname):
... setattr(object, attrname, 1)
... else:
... setattr(object, attrname, getattr(object, attrname) + 1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

... setattr(object, attrname, getattr(object, attrname) + 1)

...
>>> class Test: pass
...
>>> aname = 'foo'
>>> increment_attribute(Test, aname) # create Test.foo and set it to 1
>>> increment_attribute(Test, aname) # increment Test.foo
>>> Test.foo
2

In Python 1.5.2, an optional third argument to getattr has been added that
specifies what value to use if the object doesn't have the specified argument. Thus
the code above can now be simplified:

setattr(object, attrname, getattr(object, attrname, 0) + 1)

8.2.3 Executing Programs

The last set of built-in functions in this section have to do with creating, manipulating,
and calling Python code. See Table 8.3 for a summary.

Table 8.3. Ways to Execute Python Code
Name Behavior

import Executes the code in a module as part of the importing and returns the
module object

exec code [in
globaldict [,
localdict]]

Executes the specified code (string, file, or compiled code object) in the
optionally specified global and local namespaces

compile(stringfilename,
kind) Compiles the string into a code object (see following Note)

execfile([, globaldict[,
localdict]])

Executes the program in the specified filename, using the optionally
specified global and local namespaces

eval(code[, [,
localdict]])

Evaluates the specified expression (string or compiled code object) in the
optionally specified global and local namespaces

It's a simple matter to write programs that run other programs. Shortly, we'll talk about
ways to call any program from within a Python program. And we've seen the import
statement that executes code existing in files on the Python path. There are several
mechanisms that let you execute arbitrary Python code. The first uses exec, which is
a statement, not a function. Here is the exec syntax:

exec code [in globaldict [, localdict]]

As you can see, exec takes between one and three arguments. The first argument
must contain Python code—either in a string, as in the following example; in an open
file object; or in a compiled code object (more on this later). For example:

>>> code = "x = 'Something'"
>>> x = "Nothing" # sets the value of x
>>> exec code # modifies the value of x!
>>> print x
'Something'

exec can take optional arguments. If a single dictionary argument is provided (after

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exec can take optional arguments. If a single dictionary argument is provided (after
the then-mandatory in word), it's used as both the local and global namespaces for
the execution of the specified code. If two dictionary arguments are provided, they are
used as the global and local namespaces, respectively. If both arguments are
omitted, as in the previous example, the current global and local namespaces are
used.

When exec is called, Python needs to parse the code that is
being executed. This can be a computationally expensive
process, especially if a large piece of code needs to be executed
thousands of times. If this is the case, it's worth compiling the
code first (once), and executing it as many times as needed. The
compile function takes a string containing the Python code and
returns a compiled code object, which can then be processed
efficiently by the exec statement.

compile takes three arguments. The first is the code string. The
second is the filename corresponding to the Python source file
(or '<string>' if it wasn't read from a file); it's used in the
traceback in case an exception is generated when executing the
code. The third argument is one of 'single', 'exec', or
'eval', depending on whether the code is a single statement
whose result would be printed (just as in the interactive
interpreter), a set of statements, or an expression (creating a
compiled code object for use by the eval function).

A related function to the exec statement is the execfile built-in function, which
works similarly to exec, but its first argument must be the filename of a Python script
instead of a file object or string (remember that file objects are the things the open
built-in returns when it's passed a filename). Thus, if you want your Python script to
start by running its arguments as Python scripts, you can do something like:

import sys
for argument in sys.argv[1:]: # we'll skip ourselves, or it'll loop!
 execfile(argument) # do whatever

Two more functions can execute Python code. The first is the eval function, which
takes a code string (and the by now usual optional pair of dictionaries) or a compiled
code object and returns the evaluation of that expression. For example:

>>> z = eval("'xo'*10")
>>> print z
'xoxoxoxoxoxoxoxoxoxo'

The eval function can't work with statements, as shown in the following example,
because expressions and statements are different syntactic beasts:

>>> z = eval("x = 3")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> z = eval("x = 3")
Traceback (innermost last):
 File "<stdin>", line 1, in ?
 File "<string>", line 1
 x = 3
 ^
SyntaxError: invalid syntax

The last function that executes code is apply. It's called with a callable object, an
optional tuple of the positional arguments, and an optional dictionary of the keywords
arguments. A callable object is any function (standard functions, methods, etc.), any
class object (that creates an instance when called), or any instance of a class that
defines a _ _call__ method. If you're not sure what's callable (e.g., if it's an
argument to a function), test it using the callable built-in, which returns true if the
object it's called with is callable.[3]

[3] You can find many things about callable objects, such as how many arguments they expect and what the names
and default values of their arguments are by checking the Language Reference for details, especially Section 3.2,
which describes all attributes for each type.

>>> callable(sys.exit), type(sys.exit)
(1, <type 'builtin_function_or_method'>)
>>> callable(sys.version), type(sys.version)
(0, <type 'string'>)

There are other built-in functions we haven't covered; if you're curious, check a
reference source such as the Library Reference (Section 2.3).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.3 Library Modules

Currently, there are more than 200 modules in the standard distribution, covering
topics such as string and text processing, networking and web tools, system
interfaces, database interfaces, serialization, data structures and algorithms, user
interfaces, numerical computing, and others. We touch on only the most widely used
here and mention some of the more powerful and specialized ones in Chapter 9,
and Chapter 10.

8.3.1 Basic String Operations: The string Module

The string module is somewhat of a historical anomaly. If Python were being
designed today, chances are many functions currently in the string module would
be implemented instead as methods of string objects.[4] The string module
operates on strings. Table 8.4 lists the most useful functions defined in the string
module, along with brief descriptions, just to give you an idea as to the module's
purpose. The descriptions given here are not complete; for an exhaustive listing,
check the Library Reference or the Python Pocket Reference. Except when otherwise
noted, each function returns a string.

[4] For a more detailed discussion of this and of many other commonly asked questions about Python, check out the
FAQ list at http://www.python.org/doc/FAQ.html. For the question of string methods versus string functions, see
Question 6.4 in that document.

Table 8.4. String Module Functions
Function Name Behavior

atof(string)

Converts a string to a floating point number (see the float
built-in):

>>> string.atof("1.4")
 1.4

atoi(string [, base])

Converts a string to an integer, using the base specified (base
10 by default (see the int built-in):

>>> string.atoi("365")
 365

atol(string [, base])

Same as atoi, except converts to a long integer (see the long
built-in):

>>> string.atol("987654321")
 987654321L

capitalize(word)
Capitalizes the first letter of word:

>>> string.capitalize("tomato")
 'Tomato'

capwords(string)
Capitalizes each word in the string:

>>> string.capwords("now is the time")
 'Now Is The Time'

expandtabs(string, tabsize) Expands the tab characters in string, using the specified tab
size (no default)

find(s, sub [, start [, end]])

Returns the index of the string s corresponding to the first
occurrence of the substring sub in s, or -1 if sub isn't in s:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

find(s, sub [, start [, end]])
>>> string.find("now is the time", 'is')
 4

rfind(s, sub [, start [, end]]) Same as find, but gives the index of the last occurrence of
sub in s

index(s, sub [, start [, end]]) Same as find, but raises a ValueError exception if sub
isn't found in s

rindex(s, sub[, start [, end]]) Same as rfind, but raises a ValueError exception if sub
not found in s

count(s, sub[, start [, end]])
Returns the number of occurrences of sub in s:

>>> string.count("now is the time", 'i')
 2

replace(str, old, new[, maxsplit])

Returns a string like str except that all (or some) occurrences
of old have been replaced with new:

>>> string.replace("now is the time", ' ', '_')
 'now_is_the_time'

lower(string), upper(string) Returns a lowercase (or uppercase) version of string

split(s [, sep[, maxsplit]])

Splits the string s at the specified separator string sep
(whitespace by default), and returns a list of the "split"
substrings:

>>> string.split("now is the time")
 ['now', 'is', 'the', 'time']

join(wordlist[, sep[, maxsplit]])

Joins a sequence of strings, inserting copies of sep between
each (a single space by default):

>>> string.join(["now","is","the","time", '*'])
 'now*is*the*time'
 >>> string.join("now is the time", '*')
 'n*o*w* *i*s* *t*h*e* *t*i*m*e'

Remember that a string is itself a sequence of one-character
strings!

lstrip(s), rstrip(s), strip(s)
Strips whitespace occurring at the left, right, or both ends of

>>> string.strip(" before and after ")
 'before and after'

swapcase(s) Returns a version of s with the lowercase letters replaced with
their uppercase equivalent and vice versa

ljust(s, width), rjust(s, width),
center(s, width)

Left-pads, right-pads, or centers the string s with spaces so that
the returned string has width characters

The string module also defines a few useful constants, as shown in Table 8.5.

Table 8.5. String Module Constants
Constant Name Value

digits '0123456789'
octdigits '01234567'
hexdigits '0123456789abcdefABCDEF'
lowercase 'abcdefghijklmnopqrstuvwxyz' [5]

uppercase 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
letters lowercase + uppercase
whitespace ' \t\n\r\v' (all whitespace characters)

[5] On most systems, the string.lowercase, string.uppercase, and string.letters have the values listed
above. If one uses the locale module to specify a different cultural locale, they are updated. Thus for example, after
doing locale.setlocale(locale.LC_ALL, 'fr'), the string.letters attribute will also include accented
letters and other valid French letters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The constants in Table 8.5Table 8.5 generally test whether specific characters fit a
criterion—for example, x in string.whitespace returns true only if x is one of
the whitespace characters.

A typical use of the string module is to clean up user input. The following line
removes all "extra" whitespace, meaning it replaces sequences of whitespace with
single space characters, and it deletes leading and trailing spaces:

thestring = string.strip(string.join(string.split(thestring)))

8.3.2 Advanced String Operations: The re Module

The string module defines basic operations on strings. It shows up in almost all
programs that interact with files or users. Because Python strings can contain null
bytes, they can also process binary data—more on this when we get to the struct
module.

In addition, Python provides a specialized string-processing tool to use with regular
expressions. For a long time, Python's regular expressions (available in the regex
and regsub modules), while adequate for some tasks, were not up to par with those
offered by competing languages, such as Perl. As of Python 1.5, a new module called
re provides a completely overhauled regular expression package, which significantly
enhances Python's string-processing abilities.

8.3.2.1 Regular expressions

Regular expressions are strings that let you define complicated pattern matching and
replacement rules for strings. These strings are made up of symbols that emphasize
compact notation over mnemonic value. For example, the single character . means
"match any single character." The character + means "one or more of what just
preceded me." Table 8.6 lists some of the most commonly used regular expression
symbols and their meanings in English.

Table 8.6. Common Elements of Regular Expression Syntax
Special Character Meaning

. Matches any character except newline by default
^ Matches the start of the string
$ Matches the end of the string
* "Any number of occurrences of what just preceded me"
+ "One or more occurrences of what just preceded me"
| "Either the thing before me or the thing after me"
\w Matches any alphanumeric character
\d Matches any decimal digit
tomato Matches the string tomato

8.3.2.2 A real regular expression problem

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose you need to write a program to replace the strings "green pepper" and "red
pepper" with "bell pepper" if and only if they occur together in a paragraph before the
word "salad" and not if they are followed (with no space) by the string "corn." These
kinds of requirements are surprisingly common in computing. Assume that the file you
need to process is called pepper.txt. Here's a silly example of such a file:

This is a paragraph that mentions bell peppers multiple times. For
one, here is a red pepper and dried tomato salad recipe. I don't like
to use green peppers in my salads as much because they have a harsher
flavor.

This second paragraph mentions red peppers and green peppers but not
the "s" word (s-a-l-a-d), so no bells should show up.

This third paragraph mentions red peppercorns and green peppercorns,
which aren't vegetables but spices (by the way, bell peppers really
aren't peppers, they're chilies, but would you rather have a good cook
or a good botanist prepare your salad?).

The first task is to open it and read in the text:

file = open('pepper.txt')
text = file.read()

We read the entire text at once and avoid splitting it into lines, since we will assume
that paragraphs are defined by two consecutive newline characters. This is easy to do
using the split function of the string module:

import string
paragraphs = string.split(text, '\n\n')

At this point we've split the text into a list of paragraph strings, and all there is left is to
do is perform the actual replacement operation. Here's where regular expressions
come in:

import re

matchstr = re.compile(

 r"""\b(red|green) # 'red' or 'green' starting new words
 (\s+ # followed by whitespace
 pepper # the word 'pepper'
 (?!corn) # if not followed immediately by 'corn'
 (?=.*salad))""", # and if followed at some point by 'salad'',
 re.IGNORECASE | # allow pepper, Pepper, PEPPER, etc.
 re.DOTALL | # allow to match newlines as well
 re.VERBOSE) # this allows the comments and the newlines above
for paragraph in paragraphs:
 fixed_paragraph = matchstr.sub(r'bell\2', paragraph)
 print fixed_paragraph+'\n'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print fixed_paragraph+'\n'

The bold line is the hardest one; it creates a compiled regular expression pattern,
which is like a program. Such a pattern specifies two things: which parts of the strings
we're interested in and how they should be grouped. Let's go over these in turn.

Defining which parts of the string we're interested in is done by specifying a pattern of
characters that defines a match. This is done by concatenating smaller patterns, each
of which specifies a simple matching criterion (e.g., "match the string 'pepper',"
"match one or more whitespace characters," "don't match 'corn'," etc.). As
mentioned, we're looking for the words red or green, if they're followed by the word
pepper, that is itself followed by the word salad, as long as pepper isn't followed
immediately by 'corn'. Let's take each line of the re.compile(...) expression in
turn.

The first thing to notice about the string in the re.compile() is that it's a "raw"
string (the quotation marks are preceded by an r). Prepending such an r to a string
(single- or triple-quoted) turns off the interpretation of the backslash characters within
the string.[6] We could have used a regular string instead and used \\b instead of \b
and \\s instead of \s. In this case, it makes little difference; for complicated regular
expressions, raw strings allow much more clear syntax than escaped backslashes.

[6] Raw strings can't end with an odd number of backslash characters. That's unlikely to be a problem when using raw
strings for regular expressions, however, since regular expressions can't end with backslashes.

The first line in the pattern is \b(red|green). \b stands for "the empty string, but
only at the beginning or end of a word"; using it here prevents matches that have red
or green as the final part of a word (as in "tired pepper"). The (red|green) pattern
specifies an alternation: either 'red' or 'green'. Ignore the left parenthesis that
follows for now. \s is a special symbol that means "any whitespace character," and +
means "one or more occurrence of whatever comes before me," so, put together, \s+
means "one or more whitespace characters." Then, pepper just means the string
'pepper'. (?!corn) prevents matches of "patterns that have 'corn' at this point,"
so we prevent the match on 'peppercorn'. Finally, (?=.*salad) says that for the
pattern to match, it must be followed by any number of characters (that's what .*
means), followed by the word salad. The ?= bit specifies that while the pattern
should determine whether the match occurs, it shouldn't be "used up" by the match
process; it's a subtle point, which we'll ignore for now. At this point we've defined the
pattern corresponding to the substring.

Now, note that there are two parentheses we haven't explained yet—the one before
\s+ and the last one. What these two do is define a "group," which starts after the red
or green and go to the end of the pattern. We'll use that group in the next operation,
the actual replacement. First, we need to mention the three flags that are joined by
the logical operation "or". These specify kinds of pattern matches. The first,
re.IGNORECASE, says that the text comparisons should ignore whether the text and
the match have similar or different cases. The second, re.DOTALL, specifies that the
. character should match any character, including the newline character (that's not
the default behavior). Finally, the third, re.VERBOSE, allows us to insert extra
newlines and # comments in the regular expression, making it easier to read and
understand. We could have written the statement more compactly as:

matchstr = re.compile(r"\b(red|green)(\s+pepper(?!corn)(?=.*salad))", re.I | re.S)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

matchstr = re.compile(r"\b(red|green)(\s+pepper(?!corn)(?=.*salad))", re.I | re.S)

The actual replacement operation is done with the line:

fixed_paragraph = matchstr.sub(r'bell\2', paragraph)

First, it should be fairly clear that we're calling the sub method of the matchstr
object. That object is a compiled regular expression object, meaning that some of the
processing of the expression has already been done (in this case, outside the loop),
thus speeding up the total program execution. We use a raw string again to write the
first argument to the method. The \2 is a reference to group 2 in the regular
expression—the second group of parentheses in the regular expression—in our case,
everything starting with pepper and up to and including the word 'salad'. This line
therefore means, "Replace the matched string with the string that is 'bell' followed
by whatever starts with 'pepper' and goes up to the end of the matched string, in
the paragraph string."

So, does it work? The pepper.txt file we saw earlier had three paragraphs: the first
satisfied the requirements of the match twice, the second didn't because it didn't
mention the word "salad," and the third didn't because the red and green words are
before peppercorn, not pepper. As it was supposed to, our program (saved in a file
called pepper.py) modifies only the first paragraph:

/home/David/book$ python pepper.py
This is a paragraph that mentions bell peppers multiple times. For
one, here is a bell pepper and dried tomato salad recipe. I don't like
to use bell peppers in my salads as much because they have a harsher
flavor.

This second paragraph mentions red peppers and green peppers but not
the "s" word (s-a-l-a-d), so no bells should show up.

This third paragraph mentions red peppercorns and green peppercorns,
which aren't vegetables but spices (by the way, bell peppers really
aren't peppers, they're chilies, but would you rather have a good cook
or a good botanist prepare your salad?).

This example, while artificial, shows how regular expressions can compactly express
complicated matching rules. If this kind of problem occurs often in your line of work,
mastering regular expressions is a worthwhile investment of time and effort.

A thorough coverage of regular expressions is beyond the scope of this book. Jeffrey
Friedl gives an excellent coverage of regular expressions in his book Mastering
Regular Expressions (O'Reilly & Associates). His description of Python regular
expressions (at least in the First Edition) uses the old-style syntax, which is no longer
the recommended one, so those specifics should mostly be ignored; the regular
expressions currently used in Python are much more similar to those of Perl. Still, his
book is a must-have for anyone doing serious text processing. For the casual user
(such as these authors), the descriptions in the Library Reference do the job most of
the time. Use the re module, not the regexp, regex, and regsub modules, which
are deprecated.

8.3.3 Generic Operating-System Interfaces: The os Module

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The operating-system interface defines the mechanism by which programs are
expected to manipulate things like files, processes, users, and threads.

8.3.3.1 The os and os.path modules

The os module provides a generic interface to the operating system's most basic set
of tools. The specific set of calls it defines depend on which platform you use. (For
example, the permission-related calls are available only on platforms that support
them, such as Unix and Windows.) Nevertheless, it's recommended that you always
use the os module, instead of the platform-specific versions of the module (called
posix, nt, and mac). Table 8.7 lists some of the most often-used functions in the
os module. When referring to files in the context of the os module, one is referring to
filenames, not file objects.

Table 8.7. Most Frequently Used Functions From the os Module
Function Name Behavior

getcwd()
Returns a string referring to the current working directory (cwd):

>>> print os.getcwd()
 h:\David\book

listdir(path)
Returns a list of all of the files in the specified directory:

>>> os.listdir(os.getcwd())
 ['preface.doc', 'part1.doc', 'part2.doc']

chown(pathuid,
gid) Changes the owner ID and group ID of specified file

chmod(path,
mode)

Changes the permissions of specified file with numeric mode mode (e.g., 0644
means read/write for owner, read for everyone else)

rename(src,
dest) Renames file named src with name dest

remove(path) or
unlink(path) Deletes specified file (see rmdir to remove directories)

mkdir([, mode])
Creates a directory named path with numeric mode mode(see os.chmod):

>>> os.mkdir('newdir')
rmdir(path) Removes directory named path

system(command) Executes the shell command in a subshell; the return value is the return code of
the command

symlink(src,
dest) Creates soft link from file src to file dst

link(src, dest) Creates hard link from file src to file dst

There are many other functions in the os module; in fact, any function that's part of
the POSIX standard and widely available on most Unix platforms is supported by
Python on Unix. The interfaces to these routines follow the POSIX conventions. You
can retrieve and set UIDs, PIDs, and process groups; control nice levels; create
pipes; manipulate file descriptors; fork processes; wait for child processes; send
signals to processes; use the execv variants; etc.

The os module also defines some important attributes that aren't functions:

The os.name attribute defines the current version of the platform-specific
operating-system interface. Registered values for os.name are 'posix',

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operating-system interface. Registered values for os.name are 'posix',
'nt', 'dos', and 'mac'. It's different from sys.platform, which we
discussed earlier in this chapter.

os.error defines a class used when calls in the os module raise errors. When
this exception is raised, the value of the exception contains two variables. The
first is the number corresponding to the error (known as errno), and the
second is a string message explaining it (known as strerror):

>>> os.rmdir('nonexistent_directory') # how it usually shows up
Traceback (innermost last):
 File "<stdin>", line 1, in ?
os.error: (2, 'No such file or directory')
>>> try: # we can catch the error and take
... os.rmdir('nonexistent directory') # it apart
... except os.error, value:
... print value[0], value[1]
...
2 No such file or directory

The os.environ dictionary contains key/value pairs corresponding to the
environment variables of the shell from which Python was started. Because this
environment is inherited by the commands that are invoked using the
os.system call, modifying the os.environ dictionary modifies the
environment:

>>> print os.environ['SHELL']
/bin/sh
>>> os.environ['STARTDIR'] = 'MyStartDir'
>>> os.system('echo $STARTDIR') # 'echo %STARTDIR%' on DOS/Win
MyStartDir # printed by the shell
0 # return code from echo

The os module also includes a set of strings that define portable ways to refer to
directory-related operations, as shown in Table 8.8.

Table 8.8. String Attributes of the os Module
Attribute

Name Meaning and Value

curdir
A string that denotes the current directory:

'.' on Unix, DOS, and Windows; ':' on the Mac

pardir
A string that denotes the parent directory:

'..' on Unix, DOS, and Windows; '::' on the Mac

sep
The character that separates pathname components:

'/' on Unix; '\' on DOS, Windows; ':' on the Mac

altsep An alternate character to sep when available; set to Nonesystems except DOS and
Windows, where it's '/'

pathsep
The character that separates path components:

':' on Unix; ';' on DOS and Windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These strings are especially useful when combined with the functionality in the
os.path module, which provides many functions that manipulate file paths (see
Table 8.9). Note that the os.path module is an attribute of the os module; it's
imported automatically when the os module is loaded, so you don't need to import it
explicitly. The outputs of the examples in Table 8.9 correspond to code run on a
Windows or DOS machine. On another platform, the appropriate path separators
would be used instead.

Table 8.9. Most Frequently Used Functions from the os.path Module
Function Name Behavior

split(pathis equivalent to the
tuple:
(dirname(pathbasename(path))

Splits the given path into a pair consisting of a head and a tail; the
head is the path up to the directory, and the tail is the filename:

>>> os.path.split("h:/David/book/part2.doc"
 ('h:/David/book', 'part2.doc')

join(path, ...)
Joins path components intelligently:

>>> ... os.pardir, 'backup', 'part2.doc')
 h:\David\book\..\backup\part2.doc

exists(path) Returns true if path corresponds to an existing path

expanduser(path)

Expands the argument with an initial argument of ~ followed
optionally by a username:

>>> print os.path.expanduser('~/mydir')
 h:\David\mydir

expandvars(path)

Expands the path argument with the variables specified in the
environment:

>>> print os.path.expandvars('$TMP')
 C:\TEMP

isfile(path), isdir(path),

islink(path), ismount(path)
Returns true if the specified path is a file, directory, link, or mount
point, respectively

normpath(path)

Normalizes the given path, collapsing redundant separators and
uplevel references:

>>> print os.path.normpath("/foo/bar\\../tmp")
 \foo\tmp

samefile(p, q) Returns true if both arguments refer to the same file

walk(p, visit, arg)

Calls the function visit with arguments (arg, dirname, names)
for each directory in the directory tree rooted at p(including pitself,
if it's a directory); the argument dirname specifies the visited
directory; the argument names lists the files in the directory:

>>> def test_walk(arg, dirname, names):
 ... print arg, dirname, names
 ...
 >>> os.path.walk('..', test_walk, 'show')
 show ..\logs ['errors.log', 'access.log']
 show ..\cgi-bin ['test.cgi']
 ...

8.3.4 Copying Files and Directories: The shutil Module

The keen-eyed reader might have noticed that the os module, while it provides lots of
file-related functions, doesn't include a copy function. On DOS, copying a file is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file-related functions, doesn't include a copy function. On DOS, copying a file is
basically the same thing as opening one file in read/binary modes, reading all its data,
opening a second file in write/binary mode, and writing the data to the second file. On
Unix and Windows, making that kind of copy fails to copy the so-called stat bits
(permissions, modification times, etc.) associated with the file. On the Mac, that
operation won't copy the resource fork, which contains data such as icons and dialog
boxes. In other words, copying is just not so simple. Nevertheless, often you can get
away with a fairly simple function that works on Windows, DOS, Unix, and Macs as
long as you're manipulating just data files with no resource forks. That function, called
copyfile, lives in the shutil module. It includes a few generally useful functions,
shown in Table 8.10.

Table 8.10. Functions of the shutil Module
Function Name Behavior

copyfile(src, dest) Makes a copy of the file src and calls it dest (straight binary copy).
copymode(src, dest) Copies mode information (permissions) from src to dest.
copystat(src, dest) Copies all stat information (mode, utime) from src to dest.

copy(src, dest) Copies data and mode information from src to dest (doesn't include
the resource fork on Macs).

copy2(src, dest) Copies data and stat information from src to dest (doesn't include the
resource fork on Macs).

copytree(src, dest,
symlinks=0)

Copies a directory recursively using copy2. The symlinks flag
specifies whether symbolic links in the source tree must result in
symbolic links in the destination tree, or whether the files being linked to
must be copied. The destination directory must not already exist.

rmtree(ignore_errors=0,
onerror=None)

Recursively deletes the directory indicated by path. If ignore_error
is set to (the default behavior), errors are ignored. Otherwise, if
onerror is set, it's called to handle the error; if not, an exception is
raised on error.

8.3.5 Internet-Related Modules

8.3.5.1 The Common Gateway Interface: The cgi module

Python programs often process forms from web pages. To make this task easy, the
standard Python distribution includes a module called cgi. Chapter 10 includes an
example of a Python script that uses the CGI.

8.3.5.2 Manipulating URLs: the urllib and urlparse modules

Universal resource locators are strings such as http://www.python.org/ that are now
ubiquitous.[7] Two modules, urllib and urlparse, provide tools for processing
URLs.

[7] The syntax for URLs was designed in the early days of the Web with the expectation that users would rarely see
them and would instead click on hyperlinks tagged with the URLs, which would then be processed by computer
programs. Had their future in advertising been predicted, a syntax making them more easily pronounced would
probably have been chosen!

urllib defines a few functions for writing programs that must be active users of the
Web (robots, agents, etc.). These are listed in Table 8.11.

Table 8.11. Functions of the urllib Module
Function Name Behavior

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

urlopen (url[, data])

Opens a network object denoted by a URL for reading; it can also
open local files:

>>> page = urlopen('http://www.python.org'
 >>> page.readline()
 '<HTML>\012'
 >>> page.readline()
 DO NOT EDIT. -->\012'

urlretrieve (url[, filename][, hook])

Copies a network object denoted by a URL to a local file (uses a
cache):

>>> urllib.urlretrieve('http://www.python.org/',
 'wwwpython.html')

urlcleanup() Cleans up the cache used by urlretrieve

quote(string[, safe])

Replaces special characters in string using the %xx escape; the
optional safe parameter specifies additional characters that shouldn't
be quoted: its default value is:

>>> quote('this & that @ home')
 'this%20%26%20that%20%40%20home'

quote_plus (string[, safe]) Like quote(), but also replaces spaces by plus signs

unquote (string)
Replaces %xx escapes by their single-character equivalent:

>>> unquote('this%20%26%20that%20%40%20home')
 'this & that @ home'

urlencode (dict)

Converts a dictionary to a URL-encoded string, suitable to pass to
urlopen() as the optional data argument:

>>> locals()
 {'urllib': <module 'urllib'>, '__doc__': None, 'x':
 '__builtin__'>}
 >>> urllib.urlencode(locals())
 __builtin__%27%3e'

urlparse defines a few functions that simplify taking URLs apart and putting new
URLs together. These are listed in Table 8.12.

Table 8.12. Functions of the urlparse Module
Function Name

urlparse(urlstring[, [, default_scheme[,allow fragments]])

Parses a URL into six components, returning a six tuple: (addressing
scheme, network location, path, parameters, query, fragment identifier):

>>> urlparse('http://www.python.org/FAQ.html')
 ('http', 'www.python.org', '/FAQ.html', '', '', '')

urlunparse(tuple) Constructs a URL string from a tuple as returned by

urljoin(base[,allow fragments])

Constructs a full (absolute) URL by combining a base URL (
a relative URL (url):

>>> urljoin('http://www.python.org', 'doc/lib')
 'http://www.python.org/doc/lib'

8.3.5.3 Specific Internet protocols

The most commonly used protocols built on top of TCP/IP are supported with
modules named after them. These are the httplib module (for processing web
pages with the HTTP protocol); the ftplib module (for transferring files using the
FTP protocol); the gopherlib module (for browsing Gopher servers); the poplib
and imaplib modules for reading mail files on POP3 and IMAP servers,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and imaplib modules for reading mail files on POP3 and IMAP servers,
respectively; the nntplib module for reading Usenet news from NNTP servers; the
smtplib protocol for communicating with standard mail servers. We'll use some of
these in Chapter 9. There are also modules that can build Internet servers,
specifically a generic socket-based IP server (socketserver), a simple web server
(SimpleHTTPServer), and a CGI-compliant HTTP server (CGIHTTPSserver).

8.3.5.4 Processing Internet data

Once you use an Internet protocol to obtain files from the Internet (or before you
serve them to the Internet), you must process these files. They come in many
different formats. Table 8.13 lists each module in the standard library that processes
a specific kind of Internet-related file format (there are others for sound and image
format processing: see the Library Reference).

Table 8.13. Modules Dedicated to Internet File Processing
Module Name File Format

sgmllib A simple parser for SGML files
htmllib A parser for HTML documents
xmllib A parser for XML documents
formatter Generic output formatter and device interface
rfc822 Parse RFC-822 mail headers (i.e., "Subject: hi there!")
mimetools Tools for parsing MIME-style message bodies (a.k.a. file attachments)
multifile Support for reading files that contain distinct parts
binhex Encode and decode files in binhex4 format
uu Encode and decode files in uuencode format
binascii Convert between binary and various ASCII-encoded representations
xdrlib Encode and decode XDR data
mailcap Mailcap file handling
mimetypes Mapping of filename extensions to MIME types
base64 Encode and decode MIME base64 encoding
quopri Encode and decode MIME quoted-printable encoding
mailbox Read various mailbox formats
mimify Convert mail messages to and from MIME format

8.3.6 Dealing with Binary Data: The struct Module

A frequent question about file manipulation is "How do I process binary files in
Python?" The answer to that question usually involves the struct module. It has a
simple interface, since it exports just three functions: pack, unpack, and calcsize.

Let's start with the task of decoding a binary file. Imagine a binary file bindat.dat that
contains data in a specific format: first there's a float corresponding to a version
number, then a long integer corresponding to the size of the data, and then the
number of unsigned bytes corresponding to the actual data. The key to using the
struct module is to define a "format" string, which corresponds to the format of the
data you wish to read, and find out which subset of the file corresponds to that data.
For our example, we could use:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import struct

data = open('bindat.dat').read()
start, stop = 0, struct.calcsize('fl')
version_number, num_bytes = struct.unpack('fl', data[start:stop])
start, stop = stop, start + struct.calcsize('B'*num_bytes)
bytes = struct.unpack('B'*num_bytes, data[start:stop])

'f' is a format string for a single floating point number (a C float, to be precise), 'l'
is for a long integer, and 'B' is a format string for an unsigned char. The available
unpack format strings are listed in Table 8.14. Consult the Library Reference for
usage details.

Table 8.14. Format Codes Used by the struct Module
Format C Type Python

x pad byte No value
c char String of length 1
b signed char Integer
B unsigned char Integer
h short Integer
H unsigned short Integer
i int Integer
I unsigned int Integer
l long Integer
L unsigned long Integer
f float Float
d double Float
s char[] String
p char[] String
P void * Integer

At this point, bytes is a tuple of num_bytes Python integers. If we know that the data
is in fact storing characters, we could either use chars = map(chr, bytes). To
be more efficient, we could change the last unpack to use 'c' instead of 'B', which
would do the conversion for us and return a tuple of num_bytes single-character
strings. More efficiently still, we could use a format string that specifies a string of
characters of a specified length, such as:

chars = struct.unpack(str(num_bytes)+'s', data[start:stop])

The packing operation is the exact converse; instead of taking a format string and a
data string, and returning a tuple of unpacked values, it takes a format string and a
variable number of arguments and packs those arguments using that format string
into a new "packed" string.

Note that the struct module can process data that's encoded with either kind of
byte-ordering,[8] thus allowing you to write platform-independent binary file
manipulation code. For large files, consider using the array module.

[8] The order with which computers list multibyte words depends on the chip used (so much for standards). Intel and
DEC systems use so-called little-endian ordering, while Motorola and Sun-based systems use big-endian ordering.
Network transmissions also use big-endian ordering, so the struct module comes in handy when doing network I/O

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Network transmissions also use big-endian ordering, so the struct module comes in handy when doing network I/O
on PCs.

8.3.7 Debugging, Timing, Profiling

These last few modules will help debug, time, and optimize your Python programs.

The first task is, not surprisingly, debugging. Python's standard distribution includes a
debugger called pdb. Using pdb is fairly straightforward. You import the pdb module
and call its run method with the Python code the debugger should execute. For
example, if you're debugging the program in spam.py from Chapter 6, do this:

>>> import spam # import the module we wish to debug
>>> import pdb # import pdb
>>> pdb.run('instance = spam.Spam()') # start pdb with a statement to run
> <string>(0)?()
(Pdb) break spam.Spam.__init__ # we can set break points
(Pdb) next
> <string>(1)?()
(Pdb) n # 'n' is short for 'next'
> spam.py(3)__init__()
-> def __init__(self):
(Pdb) n
> spam.py(4)__init__()
-> Spam.numInstances = Spam.numInstances + 1
(Pdb) list # show the source code listing
 1 class Spam:
 2 numInstances = 0
 3 B def __init__(self): # note the B for Breakpoint
 4 -> Spam.numInstances = Spam.numInstances + 1 # where we are
 5 def printNumInstances(self):
 6 print "Number of instances created: ", Spam.numInstances
 7
[EOF]
(Pdb) where # show the calling stack
 <string>(1)?()
> spam.py(4)__init__()
-> Spam.numInstances = Spam.numInstances + 1
(Pdb) Spam.numInstances = 10 # note that we can modify variables
(Pdb) print Spam.numInstances # while the program is being debugged
10
(Pdb) continue # this continues until the next break-
--Return-- # point, but there is none, so we're
> <string>(1)?()->None # done
(Pdb) c # this ends up quitting Pdb
<spam.Spam instance at 80ee60> # this is the returned instance
>>> instance.numInstances # note that the change to numInstance
11 # was *before* the increment op

As the session above shows, with pdb you can list the current code being debugged
(with an arrow pointing to the line about to be executed), examine variables, modify
variables, and set breakpoints. The Library Reference's Chapter 9 covers the
debugger in detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even when a program is working, it can sometimes be too slow. If you know what the
bottleneck in your program is, and you know of alternative ways to code the same
algorithm, then you might time the various alternative methods to find out which is
fastest. The time module, which is part of the standard distribution, provides many
time-manipulation routines. We'll use just one, which returns the time since a fixed
"epoch" with the highest precision available on your machine. As we'll use just relative
times to compare algorithms, the precision isn't all that important. Here's two different
ways to create a list of 10,000 zeros:

def lots_of_appends():
 zeros = []
 for i in range(10000):
 zeros.append(0)

def one_multiply():
 zeros = [0] * 10000

How can we time these two solutions? Here's a simple way:

import time, makezeros

def do_timing(num_times, *funcs):
 totals = {}
 for func in funcs: totals[func] = 0.0
 for x in range(num_times):
 for func in funcs:
 starttime = time.time() # record starting time
 apply(func)
 stoptime = time.time() # record ending time
 elapsed = stoptime--starttime # difference yields time elapsed
 totals[func] = totals[func] + elapsed
 for func in funcs:
 print "Running %s %d times took %.3f seconds" % (func.__name__,
 num_times
 totals[func])
do_timing(100, (makezeros.lots_of_appends, makezeros.one_multiply))

And running this program yields:

csh> python timings.py
Running lots_of_appends 100 times took 7.891 seconds
Running one_multiply 100 times took 0.120 seconds

As you might have suspected, a single list multiplication is much faster than lots of
appends. Note that in timings, it's always a good idea to compare lots of runs of
functions instead of just one. Otherwise the timings are likely to be heavily influenced
by things that have nothing to do with the algorithm, such as network traffic on the
computer or GUI events.

What if you've written a complex program, and it's running slower than you'd like, but
you're not sure what the problem spot is? In those cases, what you need to do is
profile the program: determine which parts of the program are the time-sinks and see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

profile the program: determine which parts of the program are the time-sinks and see
if they can be optimized, or if the program structure can be modified to even out the
bottlenecks. The Python distribution includes just the right tool for that, the profile
module, documented in the Library Reference. Assuming that you want to profile a
given function in the current namespace, do this:

>>> from timings import *
>>> from makezeros import *
>>> profile.run('do_timing(100, (lots_of_appends, one_multiply))')
Running lots_of_appends 100 times took 8.773 seconds
Running one_multiply 100 times took 0.090 seconds
 203 function calls in 8.823 CPU seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 100 8.574 0.086 8.574 0.086 makezeros.py:1(lots_of_appends)
 100 0.101 0.001 0.101 0.001 makezeros.py:6(one_multiply)
 1 0.001 0.001 8.823 8.823 profile:0(do_timing(100,
 (lots_of_appends, one_multiply)))
 0 0.000 0.000 profile:0(profiler)
 1 0.000 0.000 8.821 8.821 python:0(194.C.2)
 1 0.147 0.147 8.821 8.821 timings.py:2(do_timing)

As you can see, this gives a fairly complicated listing, which includes such things as
per-call time spent in each function and the number of calls made to each function. In
complex programs, the profiler can help find surprising inefficiencies. Optimizing
Python programs is beyond the scope of this book; if you're interested, however,
check the Python newsgroup: periodically, a user asks for help speeding up a
program and a spontaneous contest starts up, with interesting advice from expert
users.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

8.4 Exercises

1. Describing a directory. Write a function that takes a directory name and
describes the contents of the directory, recursively (in other words, for each file,
print the name and size, and proceed down any eventual directories).

2. Modifying the prompt. Modify your interpreter so that the prompt is, instead of
the >>> string, a string describing the current directory and the count of the
number of lines entered in the current Python session.

3. Avoiding regular expressions. Write a program that obeys the same
requirements as pepper.py but doesn't use regular expressions to do the job.
This is somewhat difficult, but a useful exercise in building program logic.

4. Wrapping a text file with a class. Write a class that takes a filename and reads
the data in the corresponding file as text. Make it so that this class has three
methods: paragraph, line, word, each of which take an integer argument, so
that if mywrapper is an instance of this class, printing
mywrapper.paragraph[0] prints the first paragraph of the file,
mywrapper.line[-2] prints the next-to-last line in the file, and
mywrapper.word[3] prints the fourth word in the file.

5. Common tasks. These exercises don't have solutions in Appendix C, but
instead are selected from the examples shown in Chapter 9. Try them now
before you read Chapter 9 if you wish to be challenged!

How would you make a copy of a list object? How about a dictionary?

How would you sort a list? How about randomizing the order of its
elements?

If you've heard of a stack data structure before, how would you code it?

Write a program to count the number of lines in a file.

Write a program that prints all the lines in a file starting with a # character.

Write a program that prints the fourth word in each line of a file.

Write a program that counts the number of times a given word exists in a
file.

Write a program that looks for every occurrence of a string in all the files in
a directory.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 9. Common Tasks in Python
At this point, we have covered the syntax of Python, its basic data types, and many of
our favorite functions in the Python library. This chapter assumes that all the basic
components of the language are at least understood and presents some ways in
which Python is, in addition to being elegant and "cool," just plain useful. We present
a variety of tasks common to Python programmers. These tasks are grouped by
categories—data structure manipulations, file manipulations, etc.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.1 Data Structure Manipulations

One of Python's greatest features is that it provides the list, tuple, and dictionary built-
in types. They are so flexible and easy to use that once you've grown used to them,
you'll find yourself reaching for them automatically.

9.1.1 Making Copies Inline

Due to Python's reference management scheme, the statement a = b doesn't make
a copy of the object referenced by b ; instead, it makes a new reference to that object.
Sometimes a new copy of an object, not just a shared reference, is needed. How to
do this depends on the type of the object in question. The simplest way to make
copies of lists and tuples is somewhat odd. If myList is a list, then to make a copy of
it, you can do:

newList = myList[:]

which you can read as "slice from beginning to end," since you'll remember from
Chapter 2, that the default index for the start of a slice is the beginning of the
sequence (0), and the default index for the end of a slice is the end of sequence.
Since tuples support the same slicing operation as lists, this same technique can also
copy tuples. Dictionaries, on the other hand, don't support slicing. To make a copy of
a dictionary myDict, you can use:

newDict = {}
for key in myDict.keys():
 newDict[key] = myDict[key]

This is such a common task that a new method was added to the dictionary object in
Python 1.5, the copy() method, which performs this task. So the preceding code
can be replaced with the single statement:

newDict = myDict.copy()

Another common dictionary operation is also now a standard dictionary feature. If you
have a dictionary oneDict, and want to update it with the contents of a different
dictionary otherDict, simply type oneDict.update(otherDict). This is the
equivalent of:

for key in otherDict.keys():
 oneDict[key] = otherDict[key]

If oneDict shared some keys with otherDict before the update() operation, the
old values associated with the keys in oneDict are obliterated by the update. This
may be what you want to do (it usually is, which is why this behavior was chosen and
why it was called "update"). If it isn't, the right thing to do might be to complain (raise
an exception), as in:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

def mergeWithoutOverlap(oneDict, otherDict):
 newDict = oneDict.copy()
 for key in otherDict.keys():
 if key in oneDict.keys():
 raise ValueError, "the two dictionaries are sharing keys!"
 newDict[key] = otherDict[key]
 return newDict

or, alternatively, combine the values of the two dictionaries, with a tuple, for example:

def mergeWithOverlap(oneDict, otherDict):
 newDict = oneDict.copy()
 for key in otherDict.keys():
 if key in oneDict.keys():
 newDict[key] = oneDict[key], otherDict[key]
 else:
 newDict[key] = otherDict[key]
 return newDict

To illustrate the differences between the preceding three algorithms, consider the
following two dictionaries:

phoneBook1 = {'michael': '555-1212', 'mark': '554-1121', 'emily': '556-0091'}
phoneBook2 = {'latoya': '555-1255', 'emily': '667-1234'}

If phoneBook1 is possibly out of date, and phoneBook2 is more up to date but less
complete, the right usage is probably phoneBook1.update(phoneBook2). If the
two phoneBooks are supposed to have nonoverlapping sets of keys, using newBook
= mergeWithoutOverlap(phoneBook1, phoneBook2) lets you know if that
assumption is wrong. Finally, if one is a set of home phone numbers and the other a
set of office phone numbers, chances are newBook =
mergeWithOverlap(phoneBook1, phoneBook2)is what you want, as long as
the subsequent code that uses newBook can deal with the fact that
newBook['emily'] is the tuple ('556-0091', '667-1234').

9.1.2 Making Copies: The copy Module

Back to making copies: the [:] and .copy()tricks will get you copies in 90% of the
cases. If you are writing functions that, in true Python spirit, can deal with arguments
of any type, it's sometimes necessary to make copies of X, regardless of what X is. In
comes the copy module. It provides two functions, copy and deepcopy. The first is
just like the [:] sequence slice operation or the copy method of dictionaries. The
second is more subtle and has to do with deeply nested structures (hence the term
deepcopy). Take the example of copying a list listOne by slicing it from beginning
to end using the [:] construct. This technique makes a new list that contains
references to the same objects contained in the original list. If the contents of that
original list are immutable objects, such as numbers or strings, the copy is as good as
a "true" copy. However, suppose that the first element in listOne is itself a
dictionary (or any other mutable object). The first element of the copy of listOne is a
new reference to the same dictionary. So if you then modify that dictionary, the
modification is evident in both listOne and the copy of listOne. An example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modification is evident in both listOne and the copy of listOne. An example
makes it much clearer:

>>> import copy
>>> listOne = [{"name": "Willie", "city": "Providence, RI"}, 1, "tomato", 3.0]
>>> listTwo = listOne[:] # or listTwo=copy.copy(listOne)
>>> listThree = copy.deepcopy(listOne)
>>> listOne.append("kid")
>>> listOne[0]["city"] = "San Francisco, CA"
>>> print listOne, listTwo, listThree
[{'name': 'Willie', 'city': 'San Francisco, CA'}, 1, 'tomato', 3.0, 'kid']
[{'name': 'Willie', 'city': 'San Francisco, CA'}, 1, 'tomato', 3.0]
[{'name': 'Willie', 'city': 'Providence, RI'}, 1, 'tomato', 3.0]

As you can see, modifying listOne directly modified only listOne. Modifying the
first entry of the list referenced by listOne led to changes in listTwo, but not in
listThree; that's the difference between a shallow copy ([:]) and a deepcopy. The
copy module functions know how to copy all the built-in types that are reasonably
copyable,[1] including classes and instances.

[1] Some objects don't qualify as "reasonably copyable," such as modules, file objects, and sockets. Remember that
file objects are different from files on disk.

9.1.3 Sorting and Randomizing

In Chapter 2, you saw that lists have a sort method that does an in-place sort.
Sometimes you want to iterate over the sorted contents of a list, without disturbing the
contents of this list. Or you may want to list the sorted contents of a tuple. Because
tuples are immutable, an operation such as sort, which modifies it in place, is not
allowed. The only solution is to make a list copy of the elements, sort the list copy,
and work with the sorted copy, as in:

listCopy = list(myTuple)
listCopy.sort()
for item in listCopy:
 print item # or whatever needs doing

This solution is also the way to deal with data structures that have no inherent order,
such as dictionaries. One of the reasons that dictionaries are so fast is that the
implementation reserves the right to change the order of the keys in the dictionary. It's
really not a problem, however, given that you can iterate over the keys of a dictionary
using an intermediate copy of the keys of the dictionary:

keys = myDict.keys() # returns an unsorted list of
 # the keys in the dict
keys.sort()
for key in keys: # print key, value pairs
 print key, myDict[key] # sorted by key

The sort method on lists uses the standard Python comparison scheme.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The sort method on lists uses the standard Python comparison scheme.
Sometimes, however, that scheme isn't what's needed, and you need to sort
according to some other procedure. For example, when sorting a list of words, case
(lower versus UPPER) may not be significant. The standard comparison of text
strings, however, says that all uppercase letters "come before" all lowercase letters,
so 'Baby' is "less than" 'apple' but 'baby' is "greater than" 'apple'. In order to do
a case-independent sort, you need to define a comparison function that takes two
arguments, and returns -1, 0, or 1 depending on whether the first argument is smaller
than, equal to, or greater than the second argument. So, for our case-independent
sorting, you can use:

>>> def caseIndependentSort(something, other):
... something, other = string.lower(something), string.lower(other)
... return cmp(something, other)
...
>>> testList = ['this', 'is', 'A', 'sorted', 'List']
>>> testList.sort()
>>> print testList
['A', 'List', 'is', 'sorted', 'this']
>>> testList.sort(caseIndependentSort)
>>> print testList
['A', 'is', 'List', 'sorted', 'this']

We're using the built-in function cmp, which does the hard part of figuring out that 'a'
comes before 'b', 'b' before 'c', etc. Our sort function simply lowercases both
items and sorts the lowercased versions, which is one way of making the comparison
case-independent. Also note that the lowercasing conversion is local to the
comparison function, so the elements in the list aren't modified by the sort.

9.1.4 Randomizing: The random Module

What about randomizing a sequence, such as a list of lines? The easiest way to
randomize a sequence is to repeatedly use the choice function in the random
module, which returns a random element from the sequence it receives as an
argument.[2] In order to avoid getting the same line multiple times, remember to
remove the chosen item. When manipulating a list object, use the remove method:

[2] The random module provides many other useful functions, such as the random function, which returns a random
floating-point number between and 1. Check a reference source for details.

while myList: # will stop looping when myList is empty
 element = random.choice(myList)
 myList.remove(element)
 print element,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print element,

If you need to randomize a nonlist object, it's usually easiest to convert that object to
a list and randomize the list version of the same data, rather than come up with a new
strategy for each data type. This might seem a wasteful strategy, given that it involves
building intermediate lists that might be quite large. In general, however, what seems
large to you probably won't seem so to the computer, thanks to the reference system.
Also, consider the time saved by not having to come up with a different strategy for
each data type! Python is designed to save time; if that means running a slightly
slower or bigger program, so be it. If you're handling enormous amounts of data, it
may be worthwhile to optimize. But never optimize until the need for optimization is
clear; that would be a waste of time.

9.1.5 Making New Data Structures

The last point about not reinventing the wheel is especially true when it comes to data
structures. For example, Python lists and dictionaries might not be the lists and
dictionaries or mappings you're used to, but you should avoid designing your own
data structure if these structures will suffice. The algorithms they use have been
tested under wide ranges of conditions, and they're fast and stable. Sometimes,
however, the interface to these algorithms isn't convenient for a particular task.

For example, computer-science textbooks often describe algorithms in terms of other
data structures such as queues and stacks. To use these algorithms, it may make
sense to come up with a data structure that has the same methods as these data
structures (such as pop and push for stacks or enqueue/dequeue for queues).
However, it also makes sense to reuse the built-in list type in the implementation of a
stack. In other words, you need something that acts like a stack but is based on a list.
The easiest solution is to use a class wrapper around a list. For a minimal stack
implementation, you can do this:

class Stack:
 def __init__(self, data):
 self._data = list(data)
 def push(self, item):
 self._data.append(item)
 def pop(self):
 item = self._data[-1]
 del self._data[-1]
 return item

The following is simple to write, to understand, to read, and to use:

>>> thingsToDo = Stack(['write to mom', 'invite friend over', 'wash the kid'])
>>> thingsToDo.push('do the dishes')
>>> print thingsToDo.pop()
do the dishes
>>> print thingsToDo.pop()
wash the kid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wash the kid

Two standard Python naming conventions are used in the Stack class above. The
first is that class names start with an uppercase letter, to distinguish them from
functions. The other is that the _data attribute starts with an underscore. This is a
half-way point between public attributes (which don't start with an underscore), private
attributes (which start with two underscores; see Chapter 6), and Python-reserved
identifiers (which both start and end with two underscores). What it means is that
_data is an attribute of the class that shouldn't be needed by clients of the class. The
class designer expects such "pseudo-private" attributes to be used only by the class
methods and by the methods of any eventual subclass.

9.1.6 Making New Lists and Dictionaries: The UserList and UserDict Modules

The Stack class presented earlier does its minimal job just fine. It assumes a fairly
minimal definition of what a stack is, specifically, something that supports just two
operations, a push and a pop. Quickly, however, you find that some of the features of
lists are really nice, such as the ability to iterate over all the elements using the
for...in... construct. This can be done by reusing existing code. In this case, you
should use the UserList class defined in the UserList module as a class from
which the Stack can be derived. The library also includes a UserDict module that
is a class wrapper around a dictionary. In general, they are there to be specialized by
subclassing. In our case:

import the UserList class from the UserList module
from UserList import UserList

subclass the UserList class
class Stack(UserList):
 push = UserList.append
 def pop(self):
 item = self[-1] # uses __getitem__
 del self[-1]
 return item

This Stack is a subclass of the UserList class. The UserList class implements
the behavior of the [] brackets by defining the special __getitem__ and
__delitem_ _ methods among others, which is why the code in pop works. You
don't need to define your own __init__ method because UserList defines a
perfectly good default. Finally, the push method is defined just by saying that it's the
same as UserList's append method. Now we can do list-like things as well as
stack-like things:

>>> thingsToDo = Stack(['write to mom', 'invite friend over', 'wash the kid'])
>>> print thingsToDo # inherited from UserList
['write to mom', 'invite friend over', 'wash the kid']
>>> thingsToDo.pop()
'wash the kid'
>>> thingsToDo.push('change the oil')
>>> for chore in thingsToDo: # we can also iterate over the
... print chore # as "for .. in .." uses __getitem__

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

... print chore # as "for .. in .." uses __getitem__

...
write to mom
invite friend over
change the oil

As this book was being written, Guido van Rossum announced
that in Python 1.5.2 (and subsequent versions), list objects now
have an additional method called pop, which behaves just like
the one here. It also has an optional argument that specifies
what index to use to do the pop (with the default being the last
element in the list).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.2 Manipulating Files

Scripting languages were designed in part in order to help people do repetitive tasks
quickly and simply. One of the common things webmasters, system administrators,
and programmers need to do is to take a set of files, select a subset of those files, do
some sort of manipulation on this subset, and write the output to one or a set of
output files. (For example, in each file in a directory, find the last word of every other
line that starts with something other than the # character, and print it along with the
name of the file.) This is a task for which special-purpose tools have been developed,
such as sed and awk. We find that Python does the job just fine using very simple
tools.

9.2.1 Doing Something to Each Line in a File

The sys module is most helpful when it comes to dealing with an input file, parsing
the text it contains and processing it. Among its attributes are three file objects, called
sys.stdin , sys.stdout , and sys.stderr . The names come from the notion of
the three streams, called standard in, standard out, and standard error, which are
used to connect command line tools. Standard output (stdout) is used by every
print statement. It's a file object with all the output methods of file objects opened in
write mode, such as write and writelines. The other often-used stream is
standard in (stdin), which is also a file object, but with the input methods, such as
read, readline, and readlines. For example, the following script counts all the
lines in the file that is "piped in":

import sys
data = sys.stdin.readlines()
print "Counted", len(data), "lines."

On Unix, you could test it by doing something like:

% cat countlines.py | python countlines.py
Counted 3 lines.

On Windows or DOS, you'd do:

C:\> type countlines.py | python countlines.py
Counted 3 lines.

The readlines function is useful when implementing simple filter operations. Here
are a few examples of such filter operations:

Finding all lines that start with a #

import sys
for line in sys.stdin.readlines():
 if line[0] == '#':
 print line,

Note that a final comma is needed after the print statement because the line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that a final comma is needed after the print statement because the line
string already includes a newline character as its last character.

Extracting the fourth column of a file (where columns are defined by whitespace)

import sys, string
for line in sys.stdin.readlines():
 words = string.split(line)
 if len(words) >= 4:
 print words[3]

We look at the length of the words list to find if there are indeed at least four
words. The last two lines could also be replaced by the try/except idiom, which
is quite common in Python:

try:
 print words[3]
 except IndexError: # there aren't enough words
 pass

Extracting the fourth column of a file, where columns are separated by colons, and
lowercasing it

import sys, string
for line in sys.stdin.readlines():
 words = string.split(line, ':')
 if len(words) >= 4:
 print string.lower(words[3])

Printing the first 10 lines, the last 10 lines, and every other line

import sys, string
lines = sys.stdin.readlines()
sys.stdout.writelines(lines[:10]) # first ten lines
sys.stdout.writelines(lines[-10:]) # last ten lines
for lineIndex in range(0, len(lines), 2): # get 0, 2, 4, ...
 sys.stdout.write(lines[lineIndex]) # get the indexed line

Counting the number of times the word "Python" occurs in a file

import string
text = open(fname).read()
print string.count(text, 'Python')

Changing a list of columns into a list of rows

In this more complicated example, the task is to "transpose" a file; imagine you
have a file that looks like:

Name: Willie Mark Guido Mary Rachel Ahmed
Level: 5 4 3 1 6 4
Tag#: 1234 4451 5515 5124 1881 5132

And you really want it to look like the following instead:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Name: Level: Tag#:
Willie 5 1234
Mark 4 4451
...

You could use code like the following:

import sys, string
lines = sys.stdin.readlines()
wordlists = []
for line in lines:
 words = string.split(line)
 wordlists.append(words)
for row in range(len(wordlists[0])):
 for col in range(len(wordlists)):
 print wordlists[col][row] + '\t',
 print

Of course, you should really use much more defensive programming techniques
to deal with the possibility that not all lines have the same number of words in
them, that there may be missing data, etc. Those techniques are task-specific
and are left as an exercise to the reader.

9.2.1.1 Choosing chunk sizes

All the preceding examples assume you can read the entire file at once (that's what
the readlines call expects). In some cases, however, that's not possible, for
example when processing really huge files on computers with little memory, or when
dealing with files that are constantly being appended to (such as log files). In such
cases, you can use a while/readline combination, where some of the file is read a
bit at a time, until the end of file is reached. In dealing with files that aren't line-
oriented, you must read the file a character at a time:

read character by character
while 1:
 next = sys.stdin.read(1) # read a one-character string
 if not next: # or an empty string at EOF
 break

 Process character 'next'

Notice that the read() method on file objects returns an empty string at end of file,
which breaks out of the while loop. Most often, however, the files you'll deal with
consist of line-based data and are processed a line at a time:

read line by line
while 1:
 next = sys.stdin.readline() # read a one-line string
 if not next: # or an empty string at EOF
 break

 Process line 'next'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Process line 'next'

9.2.2 Doing Something to a Set of Files Specified on the Command Line

Being able to read stdin is a great feature; it's the foundation of the Unix toolset.
However, one input is not always enough: many tasks need to be performed on sets
of files. This is usually done by having the Python program parse the list of arguments
sent to the script as command-line options. For example, if you type:

% python myScript.py input1.txt input2.txt input3.txt output.txt
you might think that myScript.py wants to do something with the first three input files
and write a new file, called output.txt. Let's see what the beginning of such a program
could look like:

import sys

inputfilenames, outputfilename = sys.argv[1:-1], sys.argv[-1]

for inputfilename in inputfilenames:
 inputfile = open(inputfilename, "r")
 do_something_with_input(inputfile)
outputfile = open(outputfilename, "w")
write_results(outputfile)

The second line extracts parts of the argv attribute of the sys module. Recall that it's
a list of the words on the command line that called the current program. It starts with
the name of the script. So, in the example above, the value of sys.argv is:

['myScript.py', 'input1.txt', 'input2.txt', 'input3.txt', 'output.txt'].

The script assumes that the command line consists of one or more input files and one
output file. So the slicing of the input file names starts at 1 (to skip the name of the
script, which isn't an input to the script in most cases), and stops before the last word
on the command line, which is the name of the output file. The rest of the script
should be pretty easy to understand (but won't work until you provide the
do_something_with_input() and write_results() functions).

Note that the preceding script doesn't actually read in the data from the files, but
passes the file object down to a function to do the real work. Such a function often
uses the readlines() method on file objects, which returns a list of the lines in that
file. A generic version of do_something_with_input() is:

def do_something_with_input(inputfile):
 for line in inputfile.readlines()
 process(line)

9.2.3 The f ileinput Module

The combination of this idiom with the preceding one regarding opening each file in
the sys.argv[1:] list is so common that Python 1.5 introduced a new module that's

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the sys.argv[1:] list is so common that Python 1.5 introduced a new module that's
designed to help do just this task. It's called fileinput and works like this:

import fileinput
for line in fileinput.input():
 process(line)

The fileinput.input() call parses the arguments on the command line, and if
there are no arguments to the script, uses sys.stdin instead. It also provides a
bunch of useful functions that let you know which file and line number you're currently
manipulating:

import fileinput, sys, string
take the first argument out of sys.argv and assign it to searchterm
searchterm, sys.argv[1:] = sys.argv[1], sys.argv[2:]
for line in fileinput.input():
 num_matches = string.count(line, searchterm)
 if num_matches: # a nonzero count means there was a match
 print "found '%s' %d times in %s on line %d." % (searchterm, num_matches,
 fileinput.filename(), fileinput.filelineno())

If this script were called mygrep.py, it could be used as follows:

% python mygrep.py in *.py
found 'in' 2 times in countlines.py on line 2.
found 'in' 2 times in countlines.py on line 3.
found 'in' 2 times in mygrep.py on line 1.
found 'in' 4 times in mygrep.py on line 4.
found 'in' 2 times in mygrep.py on line 5.
found 'in' 2 times in mygrep.py on line 7.
found 'in' 3 times in mygrep.py on line 8.
found 'in' 3 times in mygrep.py on line 12.

9.2.4 Filenames and Directories

We have now covered reading existing files, and if you remember the discussion on
the open built-in function in Chapter 2, you know how to create new files. There are
a lot of tasks, however, that need different kinds of file manipulations, such as
directory and path management and removing files. Your two best friends in such
cases are the os and os.path modules described in Chapter 8.

Let's take a typical example: you have lots of files, all of which have a space in their
name, and you'd like to replace the spaces with underscores. All you really need is
the os.curdir attribute (which returns an operating-system specific string that
corresponds to the current directory), the os.listdir function (which returns the list
of filenames in a specified directory), and the os.rename function:

import os, string
if len(sys.argv) == 1: # if no filenames are specified,
 filenames = os.listdir(os.curdir) # use current dir
else: # otherwise, use files specified

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

else: # otherwise, use files specified
 filenames = sys.argv[1:] # on the command line
for filename in filenames:
 if ' ' in filename:
 newfilename = string.replace(filename, ' ', '_')
 print "Renaming", filename, "to", newfilename, "..."
 os.rename(filename, newfilename)

This program works fine, but it reveals a certain Unix-centrism. That is, if you call it
with wildcards, such as:

python despacify.py *.txt

you find that on Unix machines, it renames all the files with names with spaces in
them and that end with .txt. In a DOS-style shell, however, this won't work because
the shell normally used in DOS and Windows doesn't convert from *.txt to the list of
filenames; it expects the program to do it. This is called globbing, because the * is
said to match a glob of characters.

9.2.5 Matching Sets of Files: The glob Module

The glob module exports a single function, also called glob, which takes a filename
pattern and returns a list of all the filenames that match that pattern (in the current
working directory):

import sys, glob, operator
print sys.argv[1:]
sys.argv = reduce(operator.add, map(glob.glob, sys.argv))
print sys.argv[1:]

Running this on Unix and DOS shows that on Unix, the Python glob didn't do
anything because the globbing was done by the Unix shell before Python was
invoked, and on DOS, Python's globbing came up with the same answer:

/usr/python/book$ python showglob.py *.py
['countlines.py', 'mygrep.py', 'retest.py', 'showglob.py', 'testglob.py']
['countlines.py', 'mygrep.py', 'retest.py', 'showglob.py', 'testglob.py']

C:\python\book> python showglob.py *.py
['*.py']
['countlines.py', 'mygrep.py', 'retest.py', 'showglob.py', 'testglob.py']

This script isn't trivial, though, because it uses two conceptually difficult operations; a
map followed by a reduce. map was mentioned in Chapter 4, but reduce is new to
you at this point (unless you have background in LISP-type languages). map is a
function that takes a callable object (usually a function) and a sequence, calls the
callable object with each element of the sequence in turn, and returns a list containing
the values returned by the function. For an graphical representation of what map
does, see Figure 9.1.[3]

[3] It turns out that map can do more; for example, if None is the first argument, map converts the sequence that is its
second argument to a list. It can also operate on more than one sequence at a time. Check a reference source for
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9.1. Graphical representation of the behavior of the map built-in

map is needed here (or something equivalent) because you don't know how many
arguments were entered on the command line (e.g., it could have been *.py *.txt
*.doc). So the glob.glob function is called with each argument in turn. Each
glob.glob call returns a list of filenames that match the pattern. The map operation
then returns a list of lists, which you need to convert to a single list—the combination
of all the lists in this list of lists. That means doing list1 + list2 + ... + listN.
That's exactly the kind of situation where the reduce function comes in handy.

Just as with map, reduce takes a function as its first argument and applies it to the
first two elements of the sequence it receives as its second argument. It then takes
the result of that call and calls the function again with that result and the next element
in the sequence, etc. (See Figure 9.2 for an illustration of reduce.) But wait: you
need + applied to a set of things, and + doesn't look like a function (it isn't). So a
function is needed that works the same as +. Here's one:

define myAdd(something, other):
 return something + other

You would then use reduce(myAdd, map(...)). This works fine, but better yet,
you can use the add function defined in the operator module, which does the same
thing. The operator module defines functions for every syntactic operation in
Python (including attribute-getting and slicing), and you should use those instead of
homemade ones for two reasons. First, they've been coded, debugged, and tested by
Guido, who has a pretty good track record at writing bugfree code. Second, they're
actually C functions, and applying reduce (or map, or filter) to C functions results
in much faster performance than applying it to Python functions. This clearly doesn't
matter when all you're doing is going through a few hundred files once. If you do
thousands of globs all the time, however, speed can become an issue, and now you
know how to do it quickly.

Figure 9.2. Graphical representation of the behavior of the reduce built-in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The filter built-in function, like map and reduce, takes a function and a sequence
as arguments. It returns the subset of the elements in the sequence for which the
specified function returns something that's true. To find all of the even numbers in a
set, type this:

>>> numbers = range(30)
>>> def even(x):
... return x % 2 == 0
...
>>> print numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29]
>>> print filter(even, numbers)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Or, if you wanted to find all the words in a file that are at least 10 characters long, you
could use:

import string
words = string.split(open('myfile.txt').read()) # get all the words

def at_least_ten(word):
 return len(word) >= 10

longwords = filter(at_least_ten, words)

For a graphical representation of what filter does, see Figure 9.3. One nice
special feature of filter is that if one passes None as the first argument, it filters
out all false entries in the sequence. So, to find all the nonempty lines in a file called
myfile.txt, do this:

lines = open('myfile.txt').readlines()
lines = filter(None, lines) # remember, the empty string is false

map, filter, and reduce are three powerful constructs, and they're worth knowing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

map, filter, and reduce are three powerful constructs, and they're worth knowing
about; however, they are never necessary. It's fairly simple to write a Python function
that does the same thing as any of them. The built-in versions are prob-ably faster,
especially when operating on built-in functions written in C, such as the functions in
the operator module.

Figure 9.3. Graphical representation of the behavior of the filter built-in

9.2.6 Using Temporary Files

If you've ever written a shell script and needed to use intermediary files for storing the
results of some intermediate stages of processing, you probably suffered from
directory litter. You started out with 20 files called log_001.txt, log_002.txt etc., and all
you wanted was one summary file called log_sum.txt. In addition, you had a whole
bunch of log_001.tmp, log_001.tm2, etc. files that, while they were labeled temporary,
stuck around. At least that's what we've seen happen in our own lives. To put order
back into your directories, use temporary files in specific directories and clean them
up afterwards.

To help in this temporary file-management problem, Python provides a nice little
module called tempfile that publishes two functions: mktemp() and
TemporaryFile(). The former returns the name of a file not currently in use in a
directory on your computer reserved for temporary files (such as /tmp on Unix or
C:\TMP on Windows). The latter returns a new file object directly. For example:

read input file
inputFile = open('input.txt', 'r')

import tempfile
create temporary file
tempFile = tempfile.TemporaryFile() # we don't even need to
first_process(input = inputFile, output = tempFile) # know the filename...

create final output file
outputFile = open('output.txt', 'w')
second_process(input = tempFile, output = outputFile)

Using tempfile.TemporaryFile() works well in cases where the intermediate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using tempfile.TemporaryFile() works well in cases where the intermediate
steps manipulate file objects. One of its nice features is that when it's deleted, it
automatically deletes the file it created on disk, thus cleaning up after itself. One
important use of temporary files, however, is in conjunction with the os.system call,
which means using a shell, hence using filenames, not file objects. For example, let's
look at a program that creates form letters and mails them to a list of email addresses
(on Unix only):

formletter = """Dear %s,\nI'm writing to you to suggest that ..."""
myDatabase = [('Bill Clinton', 'bill@whitehouse.gov.us'),
 ('Bill Gates', 'bill@microsoft.com'),
 ('Bob', 'bob@subgenius.org')]
for name, email in myDatabase:
 specificLetter = formletter % name
 tempfilename = tempfile.mktemp()
 tempfile = open(tempfilename, 'w')
 tempfile.write(specificLetter)
 tempfile.close()
 os.system('/usr/bin/mail %(email)s -s "Urgent!" < %(tempfilename)s' % vars())
 os.remove(tempfilename)

The first line in the for loop returns a customized version of the form letter based on
the name it's given. That text is then written to a temporary file that's emailed to the
appropriate email address using the os.system call (which we'll cover later in this
chapter). Finally, to clean up, the temporary file is removed. If you forgot how the %
bit works, go back to Chapter 2 and review it; it's worth knowing. The vars()
function is a built-in function that returns a dictionary corresponding to the variables
defined in the current local namespace. The keys of the dictionary are the variable
names, and the values of the dictionary are the variable values. vars() comes in
quite handy for exploring namespaces. It can also be called with an object as an
argument (such as a module, a class, or an instance), and it will return the
namespace of that object. Two other built-ins, locals() and globals(), return the
local and global namespaces, respectively. In all three cases, modifying the returned
dictionaries doesn't guarantee any effect on the namespace in question, so view
these as read-only and you won't be surprised. You can see that the vars() call
creates a dictionary that is used by the string interpolation mechanism; it's thus
important that the names inside the %(...)s bits in the string match the variable
names in the program.

9.2.7 More on Scanning Text Files

Suppose you've run a program that stores its output in a text file, which you need to
load. The program creates a file that's composed of a series of lines that each contain
a value and a key separated by whitespace:

value key
value key
value key

and so on...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and so on...

A key can appear on more than one line in the file, and you'd probably like to collect
all the values that appear for each given key as you scan the file. Here's one way to
solve this problem:

#!/usr/bin/env python
import sys, string

entries = {}
for line in open(sys.argv[1], 'r').readlines():
 left, right = string.split(line)
 try:
 entries[right].append(left) # extend list
 except KeyError:
 entries[right] = [left] # first time seen

for (right, lefts) in entries.items():
 print "%04d '%s'\titems => %s" % (len(lefts), right, lefts)

This script uses the readlines method to scan the text file line by line, and calls the
built-in string.split function to chop the line into a list of substrings—a list
containing the value and key strings separated by blanks or tabs in the file. To store
all occurrences of a key, the script uses a dictionary called entries. The try
statement in the loop tries to add new values to an existing entry for a key; if no entry
exists for the key, it creates one. Notice that the try could be replaced with an if
here:

if entries.has_key(right): # is it already in the dictionary?
 entries[right].append(left) # add to the list of current values for key
else:
 entries[right] = [left] # initialize key's values list

Testing whether a dictionary contains a key is sometimes faster than catching an
exception with the try technique; it depends on how many times the test is true.
Here's an example of this script in action. The input filename is passed in as a
command-line argument (sys.argv[1]):

% cat data.txt
1 one
2 one
3 two
7 three
8 two
10 one
14 three
19 three
20 three
30 three

% python collector1.py data.txt
0003 'one' items => ['1', '2', '10']
0005 'three' items => ['7', '14', '19', '20', '30']
0002 'two' items => ['3', '8']

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

0002 'two' items => ['3', '8']

You can make this code more useful by packaging the scanner logic in a function that
returns the entries dictionary as a result and wrapping the printing loop logic at the
bottom in an if test:

#!/usr/bin/env python
import sys, string

def collect(file):
 entries = {}
 for line in file.readlines():
 left, right = string.split(line)
 try:
 entries[right].append(left) # extend list
 except KeyError:
 entries[right] = [left] # first time seen
 return entries

if __name__ == "__main__": # when run as a
 if len(sys.argv) == 1:
 result = collect(sys.stdin) # read from stdin stream
 else:
 result = collect(open(sys.argv[1], 'r')) # read from passed filename
 for (right, lefts) in result.items():
 print "%04d '%s'\titems => %s" % (len(lefts), right, lefts)

This way, the program becomes a bit more flexible. By using the if __name__ ==
"__main_ _" trick, you can still run it as a top-level script (and get a display of the
results), or import the function it defines and process the resulting dictionary
explicitly:

run as a script file
% collector2.py < data.txt
result displayed here...

use in some other component (or interactively)
from collector2 import collect
result = collect(open("spam.txt", "r"))
process result here...

Since the collect function accepts an open file object, it also works on any object
that provides the methods (i.e., interface) built-in files do. For example, if you want to
read text from a simple string, wrap it in a class that implements the required interface
and pass an instance of the class to the collect function:

>>> from collector2 import collect
>>> from StringIO import StringIO
>>>
>>> str = StringIO("1 one\n2 one\n3 two")
>>> result = collect(str) # scans the wrapped string
>>> print result # {'one':['1','2'],'two':['3'
This code uses the StringIO class in the standard Python library to wrap the string

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code uses the StringIO class in the standard Python library to wrap the string
into an instance that has all the methods file objects have; see the Library Reference
for more details on StringIO. You could also write a different class or subclass from
StringIO if you need to modify its behavior. Regardless, the collect function
happily reads text from the StringIO object str, which happens to be an in-memory
object, not a file.

The main reason all this works is that the collect function was designed to avoid
making assumptions about the type of object its file parameter references. As long
as the object exports a readlines method that returns a list of strings, collect
doesn't care what type of object it processes. The interface is all that matters. This
runtime binding[4] is an important feature of Python's object system, and allows you to
easily write component programs that communicate with other components. For
instance, consider a program that reads and writes satellite telemetry data using the
standard file interface. By plugging in an object with the right sort of interface, you can
redirect its streams to live sockets, GUI boxes, web interfaces, or databases without
changing the program i tself or even recompiling it.

[4] Runtime binding means that Python doesn't know which sort of object implements an interface until the program is
running. This behavior stems from the lack of type declarations in Python and leads to the notion of polymorphism; in
Python, the meaning of a object operation (such as indexing, slicing, etc.) depends on the object being operated on.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.3 Manipulating Programs

9.3.1 Calling Other Programs

Python can be used like a shell scripting language, to steer other tools by calling them
with arguments the Python program determines at runtime. So, if you have to run a
specific program (call it analyzeData) with various data files and various
parameters specified on the command line, you can use the os.system() call,
which takes a string specifying a command to run in a subshell. Specifically:

for datafname in ['data.001', 'data.002', 'data.003']:
 for parameter1 in range(1, 10):
 os.system("analyzeData -in %(datafname)s -param1 %(paramter1)d" % vars())

If analyzeData is a Python program, you're better off doing it without invoking a
subshell; simply use the import statement up front and a function call in the loop.
Not every useful program out there is a Python program, though.

In the preceding example, the output of analyzeData is most likely either a file or
standard out. If it's standard out, it would be nice to be able to capture its output. The
popen() function call is an almost standard way to do this. We'll show it off in a real-
world task.

When we were writing this book, we were asked to avoid using tabs in source-code
listings and use spaces instead. Tabs can wreak havoc with typesetting, and since
indentation matters in Python, incorrect typesetting has the potential to break
examples. But since old habits die hard (at least one of us uses tabs to indent his own
Python code), we wanted a tool to find any tabs that may have crept into our code
before it was shipped off for publication. The following script, findtabs.py, does the
trick:

#!/usr/bin/env python
find files, search for tabs

import string, os
cmd = 'find . -name "*.py" -print' # find is a standard Unix tool

for file in os.popen(cmd).readlines(): # run find command
 num = 1
 name = file[:-1] # strip '\n'
 for line in open(name).readlines(): # scan the file
 pos = string.find(line, "\t")
 if pos >= 0:
 print name, num, pos # report tab found
 print '....', line[:-1] # [:-1] strips final \n
 print '....', ' '*pos + '*', '\n'
 num = num+1

This script uses two nested for loops. The outer loop uses os.popen to run a find

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This script uses two nested for loops. The outer loop uses os.popen to run a find
shell command, which returns a list of all the Python source filenames accessible in
the current directory and its subdirectories. The inner loop reads each line in the
current file, using string.find to look for tabs. But the real magic in this script is in
the built-in tools it employs:

os.popen

Takes a shell command passed in as a string (called cmd in the example) and
returns a file-like object connected to the command's standard input or output
streams. Output is the default if you don't pass an explicit "r" or "w" mode
argument. By reading the file-like object, you can intercept the command's
output as we did here—the result of the find. It turns out that there's a module
in the standard library called find.py that provides a function that does a very
similar thing to our use of popen with the find Unix command. As an exercise,
you could rewrite findtabs.py to use it instead.

string.find

Returns the index of the first occurrence of one string in another, searching from
left to right. In the script, we use it to look for a tab, passed in as an (escaped)
one-character string ('\t').

When a tab is found, the script prints the matching line, along with a pointer to where
the tab occurs. Notice the use of string repetition: the expression ' '*pos moves the
print cursor to the right, up to the index of the first tab. Use double quotes inside a
single-quoted string without backslash escapes in cmd. Here is the script at work,
catching illegal tabs in the unfortunately named file happyfingers.py :

C:\python\book-examples> python findtabs.py
./happyfingers.py 2 0
.... for i in range(10):
.... *

./happyfingers.py 3 0

.... print "oops..."

.... *

./happyfingers.py 5 5

.... print "bad style"

.... *

A note on portability: the find shell command used in the findtabs script is a Unix
command, which may or may not be available on other platforms (it ran under
Windows in the listing above because a find utility program was installed).
os.popen functionality is available as win32pipe.popen in the win32 extensions
to Python for Windows.[5] If you want to write code that catches shell command output
portably, use something like the following code early in your script:

[5] Two important compatibility comments: the win32pipe module also has a popen2 call, which is like the popen2
call on Unix, except that it returns the read and write pipes in swapped order (see the documentation for popen2 in the
posix module for details on its interface). There is no equivalent of popen on Macs, since pipes don't exist on that
operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

import sys
if sys.platform == "win32": # on a Windows port
 try:
 import win32pipe
 popen = win32pipe.popen
 except ImportError:
 raise ImportError, "The win32pipe module could not be found"
else: # else on POSIX box
 import os
 popen = os.popen

...And use popen in blissful platform ignorance

The sys.platform attribute is always preset to a string that identifies the underlying
platform (and hence the Python port you're using). Although the Python language isn't
platform-dependent, some of its libraries may be; checking sys.platform is the
standard way to handle cases where they are. Notice the nested import statements
here; as we've seen, import is just an executable statement that assigns a variable
name.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.4 Internet-Related Activities

The Internet is a treasure trove of information, but its exponential growth can make it
hard to manage. Furthermore, most tools currently available for "surfing the Web" are
not programmable. Many web-related tasks can be automated quite simply with the
tools in the standard Python distribution.

9.4.1 Downloading a Web Page Programmatically

If you're interested in finding out what the weather in a given location is over a period
of months, it's much easier to set up an automated program to get the information and
collect it in a file than to have to remember to do it by hand.

Here is a program that finds the weather in a couple of cities and states using the
pages of the weather.com web site:

import urllib, urlparse, string, time

def get_temperature(country, state, city):
 url = urlparse.urljoin('http://www.weather.com/weather/cities/',
 string.lower(country)+'_' + \
 string.lower(state) + '_' + \
 string.replace(string.lower(city), ' ',
 '_') + '.html')
 data = urllib.urlopen(url).read()
 start = string.index(data, 'current temp: ') + len('current temp: ')
 stop = string.index(data, '°F', start-1)
 temp = int(data[start:stop])
 localtime = time.asctime(time.localtime(time.time()))
 print ("On %(localtime)s, the temperature in %(city)s, " +\
 "%(state)s %(country)s is %(temp)s F.") % vars()

get_temperature('FR', '', 'Paris')
get_temperature('US', 'RI', 'Providence')
get_temperature('US', 'CA', 'San Francisco')

When run, it produces output like:

~/book:> python get_temperature.py
On Wed Nov 25 16:22:25 1998, the temperature in Paris, FR is 39 F.
On Wed Nov 25 16:22:30 1998, the temperature in Providence, RI US is 39 F.
On Wed Nov 25 16:22:35 1998, the temperature in San Francisco, CA US is 58 F.

The code in get_temperature.py suffers from one flaw, which is that the logic of the
URL creation and of the temperature extraction is dependent on the specific HTML
produced by the web site you use. The day the site's graphic designer decides that
"current temp:" should be spelled with capitalized words, this script won't work. This is
a problem with programmatic parsing of web pages that will go away only when more
structural formats (such as XML) are used to produce web pages.[6]

[6] XML (eXtensible Markup Language) is a language for marking up structured text files that emphasizes the structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[6] XML (eXtensible Markup Language) is a language for marking up structured text files that emphasizes the structure
of the document, not its graphical nature. XML processing is an entirely different area of Python text processing, with
much ongoing work. See Appendix A, for some pointers to discussion groups and software.

9.4.2 Checking the Validity of Links and Mirroring Web Sites: webchecker.py
and Friends

One of the big hassles of maintaining a web site is that as the number of links in the
site increases, so does the chance that some of the links will no longer be valid. Good
web-site maintenance therefore includes periodic checking for such stale links. The
standard Python distribution includes a tool that does just this. It lives in the
Tools/webchecker directory and is called webchecker.py .

A companion program called websucker.py located in the same directory uses similar
logic to create a local copy of a remote web site. Be careful when trying it out,
because if you're not careful, it will try to download the entire Web on your machine!
The same directory includes two programs called wsgui.py and webgui.py that are
Tkinter-based frontends to websucker and webchecker, respectively. We encourage
you to look at the source code for these programs to see how one can build
sophisticated web-management systems with Python's standard toolset.

In the Tools/Scripts directory, you'll find many other small to medium-sized scripts that
might be of interest, such as an equivalent of websucker.py for FTP servers called
ftpmirror.py.

9.4.3 Checking Mail

Electronic mail is probably the most important medium on the Internet today; it's
certainly the protocol with which most information passes between individuals. Python
includes several libraries for processing mail. The one you'll need to use depends on
the kind of mail server you're using. Modules for interacting with POP3 servers
(poplib) and IMAP servers (imaplib) are included. If you need to talk to a
Microsoft Exchange server, you'll need some of the tools in the win32 distribution
(see Appendix B, for pointers to the win32 extensions web page).

Here's a simple test of the poplib module, which is used to talk to a mail server
running the POP protocol:

>>> from poplib import *
>>> server = POP3('mailserver.spam.org')
>>> print server.getwelcome()
+OK QUALCOMM Pop server derived from UCB (version 2.1.4-R3) at spam starting.
>>> server.user('da')
'+OK Password required for da.'
>>> server.pass_('youllneverguess')
'+OK da has 153 message(s) (458167 octets).'
>>> header, msg, octets = server.retr(152)# let's get the latest msgs
>>> import string
>>> print string.join(msg[:3], '\n') # and look at the first three lines
Return-Path: <jim@bigbad.com>
Received: from gator.bigbad.com by mailserver.spam.org (4.1/SMI-4.1)
 id AA29605; Wed, 25 Nov 98 15:59:24 PST

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 id AA29605; Wed, 25 Nov 98 15:59:24 PST

In a real application, you'd use a specialized module such as rfc822 to parse the
header lines, and perhaps the mimetools and mimify modules to get the data out
of the message body (e.g., to process attached files).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.5 Bigger Examples

9.5.1 Compounding Your Interest

Someday, most of us hope to put a little money away in a savings account (assuming
those student loans ever go away). Banks hope you do too, so much so that they'll
pay you for the privilege of holding onto your money. In a typical savings account,
your bank pays you i nterest on your principal. Moreover, they keep adding the
percentage they pay you back to your total, so that your balance grows a little bit
each year. The upshot is that you need to project on a year-by-year basis if you want
to track the growth in your savings. This program, interest.py , is an easy way to do it
in Python:

trace = 1 # print each year?

def calc(principal, interest, years):
 for y in range(years):
 principal = principal * (1.00 + (interest / 100.0))
 if trace: print y+1, '=> %.2f' % principal
 return principal

This function just loops through the number of years you pass in, accumulating the
principal (your initial deposit plus all the interest added so far) for each year. It
assumes that you'll avoid the temptation to withdraw money. Now, suppose we have
$65,000 to invest in a 5.5% interest yield account, and want to track how the principal
will grow over 10 years. We import and call our compounding function passing in a
starting principal, an interest rate, and the number of years we want to project:

% python
>>> from interest import calc
>>> calc(65000, 5.5, 10)
1 => 68575.00
2 => 72346.63
3 => 76325.69
4 => 80523.60
5 => 84952.40
6 => 89624.78
7 => 94554.15
8 => 99754.62
9 => 105241.13
10 => 111029.39
111029.389793

and we wind up with $111,029. If we just want to see the final balance, we can set the
trace global (module-level) variable in interest to before we call the calc
function:

>>> import interest
>>> interest.trace = 0
>>> calc(65000, 5.5, 10)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> calc(65000, 5.5, 10)
111029.389793

Naturally, there are many ways to calculate compound interest. For example, the
variation of the interest calculator function below adds to the principal explicitly, and
prints both the interest earned (earnings) and current balance (principal) as it
steps through the years:

def calc(principal, interest, years):
 interest = interest / 100.0
 for y in range(years):
 earnings = principal * interest
 principal = principal + earnings
 if trace: print y+1, '(+%d)' % earnings, '=> %.2f' % principal
 return principal

We get the same results with this version, but more information:

>>> interest.trace = 1
>>> calc(65000, 5.5, 10)
1 (+3575) => 68575.00
2 (+3771) => 72346.63
3 (+3979) => 76325.69
4 (+4197) => 80523.60
5 (+4428) => 84952.40
6 (+4672) => 89624.78
7 (+4929) => 94554.15
8 (+5200) => 99754.62
9 (+5486) => 105241.13
10 (+5788) => 111029.39
111029.389793

The last comment on this script is that it may not give you exactly the same numbers
as your bank. Bank programs tend to round everything off to the cent on a regular
basis. Our program rounds off the numbers to the cent when printing the results
(that's what the %.2f does; see Chapter 2 for details), but keeps the full precision
afforded by the computer in its intermediate computation (as shown in the last line).

9.5.2 An Automated Dial-Out Script

One upon a time, a certain book's coauthor worked at a company without an Internet
feed. The system support staff did, however, install a dial-out modem on site, so
anyone with a personal Internet account and a little Unix savvy could connect to a
shell account and do all their Internet business at work. Dialing out meant using the
Kermit file transfer utility.

One drawback with the modem setup was that people wanting to dial out had to keep
trying each of 10 possible modems until one was free (dial on one; if it's busy, try
another, and so on). Since modems were addressable under Unix using the filename
pattern /dev/modem*, and modem locks via /var/spool/locks/LCK*modem*, a simple
Python script was enough to check for free modems automatically. The following
program, dokermit, uses a list of integers to keep track of which modems are locked,
glob.glob to do filename expansion, and os.system to run a kermit command
when a free modem has been found:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/bin/env python
find a free modem to dial out on

import glob, os, string
LOCKS = "/var/spool/locks/"

locked = [0] * 10
for lockname in glob.glob(LOCKS + "LCK*modem*"): # find locked modems
 print "Found lock:", lockname
 locked[string.atoi(lockname[-1])] = 1 # 0..9 at end of name

print 'free: ',
for i in range(10): # report, dial-out
 if not locked[i]: print i,
print

for i in range(10):
 if not locked[i]:
 if raw_input("Try %d? " % i) == 'y':
 os.system("kermit -m hayes -l /dev/modem%d -b 19200 -S"
 if raw_input("More? ") != 'y': break

By convention, modem lock files have the modem number at the end of their names;
we use this hook to build a modem device name in the Kermit command. Notice that
this script keeps a list of 10 integer flags to mark which modems are free (1 means
locked). The program above works only if there are 10 or fewer modems; if there are
more, you'd need to use larger lists and loops, and parse the lock filename, not just
look at its last character.

9.5.3 An Interactive Rolodex

While most of the preceding examples use lists as the primary data structures,
dictionaries are in many ways more powerful and fun to use. Their presence as a
built-in data type is part of what makes Python high level, which basically means
"easy to use for complex tasks." Complementing this rich set of built-in data types is
an extensive standard library. One powerful module in this library is the cmd module
that provides a class Cmd you can subclass to make simple command-line interpreter.
The following example is fairly large, but it's really not that complicated, and illustrates
well the power of dictionaries and of reuse of standard modules.

The task at hand is to keep track of names and phone numbers and allow the user to
manipulate this list using an interactive interface, with error checking and user-friendly
features such as online help. The following example shows the kind of interaction our
program allows:

% python rolo.py
Monty's Friends: help

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Monty's Friends: help
Documented commands (type help <topic>):
==
EOF add find list load
save

Undocumented commands:
======================
help

We can get help on specific commands:

Monty's Friends: help find # compare with the help_find() method
Find an entry (specify a name)

We can manipulate the entries of the Rolodex easily enough:

Monty's Friends: add larry # we can add entries
Enter Phone Number for larry: 555-1216
Monty's Friends: add # if the name is not specified...
Enter Name: tom # ...the program will ask for it
Enter Phone Number for tom: 555-1000
Monty's Friends: list
===
 larry : 555-1216
 tom : 555-1000
===
Monty's Friends: find larry
The number for larry is 555-1216.
Monty's Friends: save myNames # save our work
Monty's Friends: ^D # quit the program (^Z on Windows)
And the nice thing is, when we restart this program, we can recover the saved data:

% python rolo.py # restart
Monty's Friends: list # by default, there is no one listed
Monty's Friends: load myNames # it only takes this to reload the dir
Monty's Friends: list
===
 larry : 555-1216
 tom : 555-1000
===

Most of the interactive interpreter functionality is provided by the Cmd class in the cmd
module, which just needs customization to work. Specifically, you need to set the
prompt attribute and add some methods that start with do_ and help_. The do_
methods must take a single argument, and the part after the do_ is the name of the
command. Once you call the cmdloop() method, the Cmd class does the rest. Read
the following code, rolo.py, one method at a time and compare the methods with the
previous output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#!/usr/bin/env python
An interactive rolodex

import string, sys, pickle, cmd

class Rolodex(cmd.Cmd):

 def __init__(self):
 cmd.Cmd.__init__(self) # initialize the base
 self.prompt = "Monty's Friends: " # customize the prompt
 self.people = {} # at first, we know nobody

 def help_add(self):
 print "Adds an entry (specify a name)"
 def do_add(self, name):
 if name == "": name = raw_input("Enter Name: ")
 phone = raw_input("Enter Phone Number for "+ name+": ")
 self.people[name] = phone # add phone number for name

 def help_find(self):
 print "Find an entry (specify a name)"
 def do_find(self, name):
 if name == "": name = raw_input("Enter Name: ")
 if self.people.has_key(name):
 print "The number for %s is %s." % (name, self.people[name])
 else:
 print "We have no record for %s." % (name,)

 def help_list(self):
 print "Prints the contents of the directory"
 def do_list(self, line):
 names = self.people.keys() # the keys are the names
 if names == []: return # if there are no names, exit
 names.sort() # we want them in alphabetic order
 print '='*41
 for name in names:
 print string.rjust(name, 20), ":", string.ljust(self.people[name], 20)
 print '='*41

 def help_EOF(self):
 print "Quits the program"
 def do_EOF(self, line):
 sys.exit()

 def help_save(self):
 print "save the current state of affairs"
 def do_save(self, filename):
 if filename == "": filename = raw_input("Enter filename: ")
 saveFile = open(filename, 'w')
 pickle.dump(self.people, saveFile)

 def help_load(self):
 print "load a directory"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print "load a directory"
 def do_load(self, filename):
 if filename == "": filename = raw_input("Enter filename: ")
 saveFile = open(filename, 'r')
 self.people = pickle.load(saveFile) # note that this will override
 # any existing people

if __name__ == '__main__': # this way the module can be
 rolo = Rolodex() # imported by other programs as well
 rolo.cmdloop()

So, the people instance variable is a simple mapping between names and phone
numbers that the add and find commands use. Commands are the methods which
start with do_ , and their help is given by the corresponding help_ methods. Finally,
the load and save commands use the pickle module, which is explained in more
detail in Chapter 10.

How Does the Cmd Class Work, Anyway?
To understand how the Cmd class works, read the cmd module in the standard Python library
you've already installed on your computer.

The Cmd interpreter does most of the work we're interested in its onecmd() method, which is
called whenever a line is entered by the user. This method figures out the first word of the line
that corresponds to a command (e.g., help, find, save, load, etc.). It then looks to see if the
instance of the Cmd subclass has an attribute with the right name (if the command was
tom", it looks for an attribute called do_find). If it finds this attribute, it calls it with the
arguments to the command (in this case 'tom'), and returns the result. Similar magic is done by
the do_help() method, which is invoked by this same mechanism, which is why it's called
do_help()! The code for the onecmd() method once looked like this (the version you have may
have had features added):

onecmd method of Cmd class, see Lib/cmd.py
def onecmd(self, line): # line is something like "find tom"
 line = string.strip(line) # get rid of extra whitespace
 if not line: # if there is nothing left,
 line = self.lastcmd # redo the last command
 else:
 self.lastcmd = line # save for next time
 i, n = 0, len(line)
 # next line finds end of first word
 while i < n and line[i] in self.identchars: i = i+1
 # split line into command + arguments
 cmd, arg = line[:i], string.strip(line[i:])
 if cmd == '': # happens if line doesn't start with A-z
 return self.default(line)
 else: # cmd is 'find', line is 'tom'
 try:
 func = getattr(self, 'do_' + cmd) # look for method
 except AttributeError:
 return self.default(line)
 return func(arg) # call method with the rest of the line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This example demonstrates the power of Python that comes from extending existing
modules. The cmd module takes care of the prompt, help facility, and parsing of the
input. The pickle module does all the loading and saving that can be so difficult in
lesser languages. All we had to write were the parts specific to the task at hand. The
generic aspect, namely an interactive interpreter, came free.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

9.6 Exercises

This chapter is full of programs we encourage you to type in and play with. However,
if you really want exercises, here are a few more challenging ones:

1. Redirecting stdout. Modify the mygrep.py script to output to the last file specified
on the command line instead of to the console.

2. Writing a shell. Using the Cmd class in the cmd module and the functions listed
in Chapter 8 for manipulating files and directories, write a little shell that
accepts the standard Unix commands (or DOS commands if you'd rather): ls
(dir) for listing the current directory, cd for changing directory, mv (or ren) for
moving/renaming a file, and cp (copy) for copying a file.

3. Understanding map, reduce, and filter. The map, reduce, and filter
functions are somewhat difficult to understand if it's the first time you've
encountered this type of function, partly because they involve passing functions
as arguments, and partly because they do a lot even with such small names.
One good way to ensure you know how they work is to rewrite them; in this
exercise, write three functions (map2, reduce2, filter2), that do the same
thing as map, filter, and reduce, respectively, at least as far as we've
described how they work:

map2 takes two arguments. The first should be a function accepting two
arguments, or None. The second should be a sequence. If the first
argument is a function, that function is called with each element of the
sequence, and the resulting values are returned in a list. If the first
argument is None, the sequence is converted to a list, and that list is
returned.

reduce2 takes two arguments. The first must be a function accepting two
arguments, and the second must be a sequence. The first two arguments
of the sequence are used as arguments to the function, and the result of
that call is sent as the first argument to the function again, with the third
element to the sequence as the second argument, and so on, until all
elements of the sequence have been used as arguments to the function.
The last returned value from the function is then the return value for the
reduce2 call.

filter2 takes two arguments. The first can be None or a function
accepting two arguments. The second must be a sequence. If the first
argument is None, filter2 returns the subset of the elements in the
sequence that tests true. If the first argument is a function, filter2 is
called with every element in the sequence in turn, and only those
elements for which the return value of the function applied to them is true
are returned by filter2.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Chapter 10. Frameworks and Applications
All the examples in this book so far have been quite small, and they may seem toys
compared to real-world applications. This chapter shows some of the frameworks that
are available to Python programmers who wish to build such applications in some
specific domains. A framework can be thought of as a domain-specific set of classes
and expected patterns of interactions between these classes. We mention just three
here: the COM framework for interacting with Microsoft's Common Object Model, the
Tkinter graphical user interface (GUI), and the Swing Java GUI toolkit. Along the way
we also use a few of the web-related modules in the standard library.

We illustrate the power of frameworks using a hypothetical, real-world scenario, that
of a small company's web site, and the need to collect, maintain, and respond to
customer input about the product through a web form. We describe three programs in
this scenario. The first program is a web-based data entry form that asks the user to
enter some information in their web browser, and then saves that information on disk.
The second program uses the same data and automatically uses Microsoft Word to
print out a customized form letter based on that information. The final example is a
simple browser for the saved data built with the Tkinter module, which uses the Tk
GUI, a powerful, portable toolkit for managing windows, buttons, menus, etc.
Hopefully, these examples will make you realize how these kinds of toolkits, when
combined with the rapid development power of Python, can truly let you build "real"
applications fast. Each program builds on the previous one, so we strongly
recommend that you read through each program, even if you can't (or don't wish to)
get them up and running on your computer.

The last section of this chapter covers JPython, the Java port of Python. The chapter
closes with a medium-sized JPython program that allows users to manipulate
mathematical functions graphically using the Swing toolkit.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.1 An Automated Complaint System

The scenario we use for this example is that of a startup company, Joe's Toothpaste,
Inc., which sells the latest in 100% organic, cruelty-free tofu-based toothpaste. Since
there is only one employee, and that employee is quite busy shopping for the best
tofu he can find, the tube doesn't say "For customer complaints or comments, call 1-
800-TOFTOOT," but instead, says "If you have a complaint or wish to make a
comment, visit our web site at www.toftoot.com." The web site has all the usual
glossy pictures and an area where the customer can enter a complaint or comment.
This page looks like that in Figure 10.1.

Figure 10.1. What the customer finds at http://www.toftoot.com/comment.html

The key parts of the HTML that generated this page are displayed in the sidebar
Excerpt From the HTML File. As this is not a book about CGI, HTML, or any of
that,[1] we just assume that you know enough about these technologies to follow this
discussion. The important parts of the HTML code in the sidebar are in bold: here's a
brief description:

[1] If you've never heard of these acronyms: CGI stands for the Common Gateway Interface and is a protocol for
having web browsers call programs on web servers; HTML stands for HyperText Markup Language, which is the
format that encodes web pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Excerpt From the HTML File
This is the important part of the code that generates the web page shown in Figure 10.1

<FORM METHOD=POST ACTION="http://toftoot.com/cgi-bin/feedback.py"
<I>Please fill out the entire form:</I>
<CENTER><TABLE WIDTH="100%" >
<TR><TD ALIGN=RIGHT WIDTH="20%">Name:</TD>
 <TD><INPUT TYPE=text NAME=name SIZE=50 VALUE=""></TD></TR>
<TR><TD ALIGN=RIGHT>Email Address:</TD>
 <TD><INPUT TYPE=text NAME=email SIZE=50 VALUE=""></TD></TR>
<TR><TD ALIGN=RIGHT>Mailing Address:</TD>
 <TD><INPUT TYPE=text NAME=address SIZE=50 VALUE=""></TD></TR>
<TR><TD ALIGN=RIGHT>Type of Message:</TD>
<TD><INPUT TYPE=radio NAME=type CHECKED VALUE=comment>comment
 <INPUT TYPE=radio NAME=type VALUE=complaint>complaint</TD></TR>
<TR><TD ALIGN=RIGHT VALIGN=TOP>Enter the text in here:</TD>
 <TD><TEXTAREA NAME=text ROWS=5, COLS=50 VALUE="">
 </TEXTAREA></TD></TR>
<TR><TD></TD>
<TD><INPUT type=submit name=send value="Send the feedback!"></TD></TR>
</TABLE></CENTER>
</FORM>

The FORM line specifies what CGI program should be invoked when the form is
submitted; specifically, the URL points to a script called feedback.py, which we'll
cover in detail.

The INPUT tags indicate the names of the fields in the form (name, address,
email, and text, as well as type). The values of those fields are whatever the
user enters, except for the case of type, which takes either the value
'comment' or 'complaint', depending on which radio button the user
checked.

Finally, the INPUT TYPE=SUBMIT tag is for the submission button, which
actually calls the CGI script.

We now get to the interesting part as far as Python is concerned: the processing of
the request. Here is the entire feedback.py program:

import cgi, os, sys, string

def gush(data):
 print "Content-type: text/html\n"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print "Content-type: text/html\n"
 print "<h3>Thanks, %(name)s!</h3>" % vars(data)
 print "Our customer's comments are always appreciated."
 print "They drive our business directions, as well as"
 print "help us with our karma."
 print "<p>Thanks again for the feedback!<p>"
 print "And feel free to enter more comments if you wish."
 print "<p>"+10*" "+"--Joe."

def whimper(data):
 print "Content-type: text/html\n"
 print "<h3>Sorry, %(name)s!</h3>" % vars(data)
 print "We're very sorry to read that you had a complaint"
 print "regarding our product__We'll read your comments"
 print "carefully and will be in touch with you."
 print "<p>Nevertheless, thanks for the feedback.<p>"
 print "<p>"+10*" "+"--Joe."

def bail():
 print "<H3>Error filling out form</H3>"
 print "Please fill in all the fields in the form.<P>"
 print ''
 print 'Go back to the form'
 sys.exit()

class FormData:
 """ A repository for information gleaned from a CGI form """
 def __init__(self, form):
 for fieldname in self.fieldnames:
 if not form.has_key(fieldname) or form[fieldname].value == "":
 bail()
 else:
 setattr(self, fieldname, form[fieldname].value)

class FeedbackData(FormData):
 """ A FormData generated by the comment.html form. """
 fieldnames = ('name', 'address', 'email', 'type', 'text')
 def __repr__(self):
 return "%(type)s from %(name)s on %(time)s" % vars(self)

DIRECTORY = r'C:\complaintdir'

if __name__ == '__main__':
 sys.stderr = sys.stdout
 form = cgi.FieldStorage()
 data = FeedbackData(form)
 if data.type == 'comment':
 gush(data)
 else:
 whimper(data)

 # save the data to file
 import tempfile, pickle, time
 tempfile.tempdir = DIRECTORY
 data.time = time.asctime(time.localtime(time.time()))
 pickle.dump(data, open(tempfile.mktemp(), 'w'))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 pickle.dump(data, open(tempfile.mktemp(), 'w'))

The output of this script clearly depends on the input, but the output with the form
filled out with the parameters shown in Figure 10.1 is displayed in Figure 10.2.

Figure 10.2. What the user sees after hitting the "send the feedback" button

How does the feedback.py script work? There are a few aspects of the script common
to all CGI programs, and those are highlighted in bold. To start, the first line of the
program needs to refer to the Python executable. This is a requirement of the web
server we're using here, and it might not apply in your case; even if it does, the
specific location of your Python program is likely to be different from this. The second
line includes import cgi, which, appropriately enough, loads a module called cgi
that deals with the hard part of CGI, such as parsing the environment variables and
handling escaped characters. (If you've never had to do these things by hand,
consider yourself lucky.) The documentation for the cgi module describes a very
straightforward and easy way to use it. For this example, however, mostly because
we're going to build on it, the script is somewhat more complicated than strictly
necessary.

Let's just go through the code in the if _ _name__ == '_ _main__' block one
statement at a time.[2] The first statement redirects the sys.stderr stream to
whatever standard out is. This is done for debugging because the output of the
stdout stream in a CGI program goes back to the web browser, and the stderr
stream goes to the server's error log, which can be harder to read than simply looking
at the web page. This way, if a runtime exception occurs, we can see it on the web
page, as opposed to having to guess what it was. The second line is crucial and does
all of the hard CGI work: it returns a dictionary-like object (called a FieldStorage
object) whose keys are the names of the variables filled out in the form, and whose
value can be obtained by asking for the value attribute of the entries in the
FieldStorage object. Sounds complicated, but all it means is that for our form, the
form object has keys 'name', 'type', 'email', 'address', and 'text', and
that to find out what the user entered in the Name field of the web form, we need to
look at form['name'].value.

[2] You'll remember that this if statement is true only when the program is run as a script, not when it's imported. CGI
programs qualify as scripts, so the code in the if block runs when this program is called by the web server. We use it
later as an imported script, so keep your eyes peeled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The third line in the if block creates an instance of our user-defined class
FeedbackData, passing it the form object as an argument. If you now look at the
definition of the FeedbackData class, you'll see that it's a very simple subclass of
FormData, which is also a user-defined class. All we've defined in the
FeedbackData subclass is a class attribute fieldnames and a _ _repr__ function
used by the print statement, among others. Clearly, the _ _init__ method of the
FormData class must do something with the FieldStorage argument. Indeed, it
looks at each of the field names defined in the fieldnames class attribute of the
instance (that's what self.fieldnames refers to), and for each field name, checks
to see that the FieldStorage object has a corresponding nonempty key. If it does, it
sets an attribute with the same name as the field in the instance, giving it as value the
text entered by the user. If it doesn't, it calls the bail function.

We'll get to what bail does in a minute, but first, let's walk through the usual case,
when the user dutifully enters all of the required data. In those cases, FieldStorage
has all of the keys ('name', 'type', etc.) which the FeedbackData class says it
needs. The FormData class __init__ method in turn sets attributes for each field
name in the instance. So, when the data = FeedbackData(form) call returns,
data is guaranteed to be an instance of FeedbackData, which is a subclass of
FormData, and data has the attributes name, type, email, etc., with the
corresponding values the user entered.

A similar effect could have been gotten with code like:

form = cgi.FieldStorage()
form_ok = 1
if not form.has_key("name") or form["name"].value == "":
 form_ok = 0
else:
 data_name = form["name"].value
if not form.has_key("email") or form["email"].value == "":
 form_ok = 0
else:
 data_email = form["email"].value
...

but it should be clear that this kind of programming can get very tedious, repetitive,
and error-prone (thanks to the curse of cut and paste). With our scheme, when Joe
changes the set of field names in the web page, all we need to change is the
fieldnames attribute of the FeedbackData class. Also, we can use the same
FormData class in any other CGI script, and thus reuse code.

What if the user didn't enter all of the required fields? Either the FieldStorage
dictionary will be missing a key, or its value will be the empty string. The
FormData.__init__ method then calls the bail function, which displays a polite
error message and exits the script. Control never returns back to the main program,
so there is no need to test the validity of the data variable; if we got something back
from FeedbackData(), it's a valid instance.

With the data instance, we check to see if the feedback type was a comment, in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

With the data instance, we check to see if the feedback type was a comment, in
which case we thank the user for their input. If the feedback type was a complaint, we
apologize profusely and promise to get back in touch with them.

We now have a basic CGI infrastructure in place. To save the data to file is
remarkably easy. First, we define the DIRECTORY variable outside the if test
because we'll use it from another script that will import this one, so we wish it to be
defined even if this script is not run as a program.

Stepping through the last few lines of feedback.py:

Import the tempfile, pickle, and time modules. The tempfile module, as
we've seen in previous chapters, comes up with filenames currently not in use;
that way we don't need to worry about "collisions" in any filename generation
scheme. The pickle module allows the serialization, or saving, of any Python
object. The time module lets us find the current time, which Joe judges to be
an important aspect of the feedback.

The next line sets the tempdir attribute of the tempfile module to the value
of the DIRECTORY variable, which is where we want our data to be saved. This
is an example of customizing an existing module by directly modifying its
namespace, just as we modified the stderr attribute of the sys module earlier.

The next line uses several functions in the time module to provide a string
representation of the current date and time (something like 'Sat Jul 04
18:09:00 1998', which is precise enough for Joe's needs), and creates a
new attribute called time in the data instance. It is therefore saved along with
data.

The last line does the actual saving; it opens the file with a name generated by
the tempfile module in write mode and dumps the instance data into it. That's
it! Now the specified file contains a so-called "pickled" instance.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.2 Interfacing with COM: Cheap Public Relations

We use the data to do two things. First, we'll write a program that's run periodically
(say, at 2 a.m., every night[3]) and looks through the saved data, finds out which
saved pickled files correspond to complaints, and prints out a customized letter to the
complainant. Sounds sophisticated, but you'll be surprised at how simple it is using
the right tools. Joe's web site is on a Windows machine, so we'll assume that for this
program, but other platforms work in similar ways.

[3] Setting up this kind of automatic regularly scheduled program is easily done on most platforms, using, for example,
cron on Unix or the AT scheduler on Windows NT.

Before we talk about how to write this program, a word about the technology it uses,
namely Microsoft's Common Object Model (COM). COM is a standard for interaction
between programs (an Object Request Broker service, to be technical), which allows
any COM-compliant program to talk to, access the data in, and execute commands in
other COM-compliant programs. Grossly, the program doing the calling is called a
COM client, and the program doing the executing is called a COM server. Now, as
one might suspect given the origin of COM, all major Microsoft products are COM-
aware, and most can act as servers. Microsoft Word Version 8 is one of those, and
the one we'll use here. Indeed, Microsoft Word is just fine for writing letters, which is
what we're doing. Luckily for us, Python can be made COM-aware as well, at least on
Windows 95, Windows 98, and Windows NT. Mark Hammond and Greg Stein have
made available a set of extensions to Python for Windows called win32com that allow
Python programs to do almost everything you can do with COM from any other
language. You can write COM clients, servers, ActiveX scripting hosts, debuggers,
and more, all in Python. We only need to do the first of these, which is also the
simplest. Basically, our form letter program needs to do the following things:

1. Open all of the pickled files in the appropriate directory and unpickle them.

2. For each unpickled instance file, test if the feedback is a complaint. If it is, find
out the name and address of the person who filled out the form and go on to
Step 3. If not, skip it.

3. Open a Word document containing a template of the letter we want to send, and
fill in the appropriate pieces with the customized information.

4. Print the document and close it.

It's almost as simple in Python with win32com . Here's a little program called
formletter.py :

from win32com.client import constants, Dispatch
WORD = 'Word.Application.8'
False, True = 0, -1
import string

class Word:
 def __init__(self):
 self.app = Dispatch(WORD)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 self.app = Dispatch(WORD)
 def open(self, doc):
 self.app.Documents.Open(FileName=doc)
 def replace(self, source, target):
 self.app.Selection.HomeKey(Unit=constants.wdLine)
 find = self.app.Selection.Find
 find.Text = "%"+source+"%"
 self.app.Selection.Find.Execute()
 self.app.Selection.TypeText(Text=target)
 def printdoc(self):
 self.app.Application.PrintOut()
 def close(self):
 self.app.ActiveDocument.Close(SaveChanges=False)

def print_formletter(data):
 word.open(r"h:\David\Book\tofutemplate.doc")
 word.replace("name", data.name)
 word.replace("address", data.address)
 word.replace("firstname", string.split(data.name)[0])
 word.printdoc()
 word.close()

if __name__ == '__main__':
 import os, pickle
 from feedback import DIRECTORY, FormData, FeedbackData
 word = Word()
 for filename in os.listdir(DIRECTORY):
 data = pickle.load(open(os.path.join(DIRECTORY, filename)))
 if data.type == 'complaint':
 print "Printing letter for %(name)s." % vars(data)
 print_formletter(data)
 else:
 print "Got comment from %(name)s, skipping printing." % vars(data)

The first few lines of the main program show the power of a well-designed framework.
The first line is a standard import statement, except that it's worth noting that
win32com is a package, not a module. It is, in fact, a collection of subpackages,
modules, and functions. We need two things from the win32com package: the
Dispatch function in the client module, a function that allows us to "dispatch"
functions to other objects (in this case COM servers), and the constants submodule
of the same module, which holds the constants defined by the COM objects we want
to talk to.

The second line simply defines a variable that contains the name of the COM server
we're interested in. It's called Word.Application.8 , as you can find out from
using a COM browser or reading Word's API (see the sidebar Finding Out About
COM Interfaces).

Let's focus now on the if _ _name__ == '_ _main__' block, which is the next
statement after the class and function definitions.

The first task is to read the data. We import the os and pickle modules for fairly
obvious reasons, and then three references from the feedback module we just
wrote: the DIRECTORY where the data is stored (this way if we change it in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wrote: the DIRECTORY where the data is stored (this way if we change it in
feedback.py, this module reflects the change the next time it's run), and the
FormData and FeedbackData classes. The next line creates an instance of the
Word class; this opens a connection with the Word COM server, starting the server if
needed.

The for loop is a simple iteration over the files in the directory with all the saved files.
It's important that this directory contain only the pickled instances, since we're not
doing any error checking. As usual we should make the code more robust, but we've
ignored stability for simplicity.

The first line in the for loop does the unpickling. It uses the load function from the
pickle module, which takes a single argument, the file which is being unpickled. It
returns as many references as were stored in the file—in our case, just one. Now, the
data that was stored was just the instance of the FeedbackData class. The definition
of the class itself isn't stored in the pickled file, just the instance values and a
reference to the class.[4]

[4] There are very good reasons for this behavior: first, it reduces the total size of pickled objects, and more
importantly, it allows you to unpickle instances of previous versions of a class and automatically upgrade them to the
newer class definitions.

At unpickling time, unpickling instances automatically causes an
import of the module in which the class was defined. Why, then,
did we need to import the classes specifically? In Chapter 5, we
said the name of the currently running module is __main__. In
other words, the name of the module in which the class is
defined is _ _main__ (even though the name of the file is
feedback.py), and alas, importing _ _main__ when we're
unpickling imports the currently running module (which lives in
formletter.py), which doesn't contain the definition of the classes
of the pickled instances. This is why we need to import the class
definitions explicitly from the feedback module. If they weren't
made available to the code calling pickle.unload (in either
the local or global namespaces), the unpickling would fail.
Alternatively, we could save the source of the class in a file and
import it first before any of the instances, or, even more simply,
place the class definitions in a separate module that's imported
explicitly by feedback.py and implicitly by the unpickling process
in the formletter.py. The latter is the usual case, and as a result,
in most circumstances, you don't need to explicitly import the
class definitions; unpickling the instance does it all, "by magic."[5]

[5] This point about pickling of top-level classes is a subtle one; it's much beyond the
level of this book. We mention it here because 1) we need to explain the code we
used, and 2) this is about as complex as Python gets. In some ways this should be
comforting—there is really no "magic" here. The apparently special-case behavior of
pickle is in fact a natural consequence of understanding what the __main__
module is.

The if statement inside the loop is straightforward. All that remains is to explain is
the print_formletter function, and, of course, the Word class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the print_formletter function, and, of course, the Word class.

The print_formletter function simply calls the various methods of the word
instance of the Word class with the data extracted from the data instance. Note that
we use the string.split function to extract the first name of the user, just to make
the letter more friendly, but this risks strange behavior for nonstandard names.

In the Word class, the __init_ _ method appears simple yet hides a lot of work. It
creates a connection with the COM server and stores a reference to that COM server
in an instance variable app. Now, there are two ways in which the subsequent code
might use this server: dynamic dispatch and nondynamic dispatch. In dynamic
dispatch, Python doesn't "know" at the time the program is running what the interface
to the COM server (in this case Microsoft Word) is. It doesn't matter, because COM
allows Python to interrogate the server and determine the protocol, for example, the
number and kinds of arguments each function expects. This approach can be slow,
however. A way to speed it up is to run the makepy.py program, which does this once
for each specified COM server and stores this information on disk. When a program
using that specific server is executed, the dispatch routine uses the precomputed
information rather than doing the dynamic dispatch. The program as written works in
both cases. If makepy.py was run on Word in the past, the fast dispatch method is
used; if not, the dynamic dispatch method is used. For more information on these
issues, see the information for the win32 extensions at
http://www.python.org/windows/win32all/.

To explain the Word class methods, let's start with a possible template document, so
that we can see what needs to be done to it to customize it. It's shown in Figure
10.3.

Figure 10.3. Joe's template letter to complainants

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see, it's a pretty average document, with the exception of some text in
between % signs. We've used this notation just to make it easy for a program to find
the parts which need customization, but any other technique could work as well. To
use this template, we need to open the document, customize it, print it, and close it.
Opening it is done by the open method of the Word class. The printing and closing
are done similarly. To customize, we replace the %name%, %firstname%, and
%address% text with the appropriate strings. That's what the replace method of the
Word class does (we won't cover how we figured out what the exact sequence of calls
should be; see Finding Out About COM Interfaces for details).

Finding Out About COM Interfaces
How can you find out what the various methods and attributes of COM
objects are? In general, COM objects are just like any other program; they
should come with documentation. In the case of COM objects, however, it's
quite possible to have the software without the documentation, simply
because, as in the case of Word, it's possible to use Word without needing
to program it. There are three strategies available to you if you want to
explore a COM interface:

Find or buy the documentation; some COM programs have their
documentation available on the Web, or available in printed form.

Use a COM browser to explore the objects. Pythonwin (part of the
win32all extensions to Python on Windows, see Appendix B), for
example, comes with a COM browser tool that lets you explore the
complex hierarchy of COM objects. It's not much more than a listing of
available objects and functions, but sometimes that's all you need.
Development tools such as Microsoft's Visual Studio also come with
COM browsers.

Use another tool to find what's available. For the example above, we
simply used Microsoft Word's "macro recorder" facility to produce a
VBA (Visual Basic for Applications) script, which is fairly
straightforward to translate to Python. Macros tend to be fairly low-
intelligence programs, meaning that the macro-recording facility can't
pick up on the fact that you might want to do something 10 times, and
so just records the same action multiple times. But they work fine for
finding out that the equivalent of selecting the Print item of the File
menu is to "say" ActiveDocument.PrintOut().

Putting all of this at work, the program, when run, outputs text like:

C:\Programs> python formletter.py
Printing letter for John Doe.
Got comment from Your Mom, skipping printing.
Printing letter for Susan B. Anthony.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Printing letter for Susan B. Anthony.

and prints two customized letters, ready to be sent in the mail. Note that the Word
program doesn't show up on the desktop; by default, COM servers are invisible, so
Word just acts behind the scenes. If Word is currently active on the desktop, each
step is visible to the user (one more reason why it's good to run these things after
hours).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.3 A Tkinter-Based GUI Editor for Managing Form Data

Let's recap: we wrote a CGI program (feedback.py) that takes the input from a web
form and stores the information on disk on our server. We then wrote a program
(formletter.py) that takes some of those files and generates apologies to those
deserving them. The next task is to construct a program to allow a human to look at
the comments and complaints, using the Tkinter toolkit to build a GUI browser for
these files.

The Tkinter toolkit is a Python-specific interface to a non-Python GUI library called Tk.
Tk is the de facto choice for most Python users because it provides professional-
looking GUIs within a fairly easy-to-use system. The interfaces it generates don't look
exactly like Windows, the Mac, or any Unix toolkit, but they look very close to each of
them, and the same Python program works on all those platforms, which is basically
impossible with any platform-specific toolkit. Another portable toolkit worth
considering is wxPython (http://www.alldunn.com/wxPython).

Tk, then, is what we'll use in this example. It's a toolkit developed by John Ousterhout,
originally as a companion to Tcl, another scripting language. Since then, Tk has been
adopted by many other scripting languages including Python and Perl. For more
information on Perl and Tk, see O'Reilly's Learning Perl/Tk by Nancy Walsh.

The goals of this program are simple: to display in a window a listing of all of the
feedback data items, allowing the user to select one to examine in greater detail (e.g.,
seeing the contents of the text widget). Furthermore, Joe wants to be able to discard
items that are dealt with, to avoid having an always increasing list of items. A
screenshot of the finished program in action is shown in Figure 10.4.

Figure 10.4. A sample screen dump of the feedbackeditor.py program

We'll work through one possible way of coding it. Our entire program, called
feedbackeditor.py, is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from FormEditor import FormEditor
from feedback import FeedbackData, FormData
from Tkinter import mainloop
FormEditor("Feedback Editor", FeedbackData, r"c:\Complaintdir")
mainloop()

This is cheating only if we don't tell you what's in FormEditor, but we will. The point of
breaking these four lines out into a separate file is that we've broken out all that is
specific to our form. As we'll see, the FormEditor program is completely independent
of the specific CGI form. A further point made explicit by this microprogram is that it
shows how to interact with Tkinter; you create widgets and windows, and then call the
mainloop function, which sets the GUI running. Every change in the program that
follows happens as a result of GUI actions. As for formletter.py, this program imports
the class objects from the feedback module, for the same reason (unpickling). Then,
an instance of the FormEditor class is created, passing to its initialization function
the name of the editor, the class of the objects being unpickled, and the location of
the pickled instances.

The code for FormEditor is just a class definition, which we'll describe in parts, one
method at a time. First, the import statements and the initialization method:

from Tkinter import *
import string, os, pickle

class FormEditor:
 def __init__(self, name, dataclass, storagedir):
 self.storagedir = storagedir # stash away some references
 self.dataclass = dataclass
 self.row = 0
 self.current = None

 self.root = root = Tk() # create window and size it
 root.minsize(300,200)

 root.rowconfigure(0, weight=1) # define how columns and rows scale
 root.columnconfigure(0, weight=1) # when the window is resized
 root.columnconfigure(1, weight=2)

 # create the title Label
 Label(root, text=name, font='bold').grid(columnspan=2)
 self.row = self.row + 1
 # create the main listbox and configure it
 self.listbox = Listbox(root, selectmode=SINGLE)
 self.listbox.grid(columnspan=2,sticky=E+W+N+S)
 self.listbox.bind('<ButtonRelease-1>', self.select)
 self.row = self.row + 1

 # call self.add_variable once per variable in the class's fieldnames var
 for fieldname in dataclass.fieldnames:
 setattr(self, fieldname, self.add_variable(root, fieldname))

 # create a couple of buttons, with assigned commands
 self.add_button(self.root, self.row, 0, 'Delete Entry', self.delentry)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 self.add_button(self.root, self.row, 0, 'Delete Entry', self.delentry)
 self.add_button(self.root, self.row, 1, 'Reload', self.load_data)

 self.load_data()

We use the sometimes dangerous from ... import * construct we warned you
about earlier. In Tkinter programs, it's usually fairly safe, because Tkinter only exports
variables that are fairly obviously GUI-related (Label, Widget, etc.), and they all
start with uppercase letters.

Understanding the __init__ method is best done by comparing the structure of the
code to the structure of the window screen dump. As you move down the _ _init__
method lines, you should be able to match many statements with their graphical
consequences.

The first few lines simply stash away a few things in instance variables and assign
default values to variables. The next set of lines access a so-called Toplevel widget
(basically, a window; the Tk() call returns the currently defined top-level widget), sets
its minimum size, and sets a few properties. The row and column configuration
options allow the widgets inside the window to scale if the user enlarges the window
and determines the relative width of the two columns of internal widgets.

The next call creates a Label widget, which is defined in the Tkinter module, and
which, as you can see in the screen dump, is just a text label. It spans both columns
of widgets, meaning that it extends from the leftmost edge of the window to the
rightmost edge. Specifying the locations of graphical elements is responsible for the
majority of GUI calls, due to the wide array of possible arrangements.

The Listbox widget is created next; it's a list of text lines, which can be selected by
the user using arrow keys and the mouse button. This specific listbox allows only one
line to be selected at a time (selectmode=SINGLE) and fills all the space available
to it (the sticky option).

The for loop block is the most interesting bit of code in the method; by iterating over
the fieldnames attribute of the dataclass variable (in our example, the
fieldnames class of the FeedbackData class), it finds out which variables are in
the instance data, and for each, calls the add_variable method of the
FormEditor class and takes the returned value and stuffs it in an instance variable.
This is equivalent in our case to:

...
self.name = self.add_variable(root, 'name')
self.email = self.add_variable(root, 'email')
self.address = self.add_variable(root, 'address')
self.type = self.add_variable(root, 'type')
self.text = self.add_variable(root, 'text')

The version in the code sample, however, is better, because the list of field names is
already available to the program and retyping anything is usually an indicator of bad
design. Furthermore, there is nothing about FormData that is specific to our specific
forms. It can be used to browse any instance of a class that defines a variable
fieldnames. Making the program generic like this makes it more likely to be reused
in other contexts for other tasks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finishing off with the __init__ method, we see that two buttons finish the graphical
layout of the window, each associated with a command that's executed when it's
clicked. One is the delentry method, which deletes the current entry, and the other
is a reloading function that rereads the data in the storage directory.

Finally, the data is loaded by a call to the load_data method. We'll describe it as
soon as we're done with the calls that set up widgets, namely add_variable and
add_button.

add_variable creates a Label widget, which displays the name of the field, and on
the same row, places a Label widget, which will contain the value of the
corresponding field in the entry selected in the listbox:

def add_variable(self, root, varname):
 Label(root, text=varname).grid(row=self.row, column=0, sticky=E)
 value = Label(root, text='', background='gray90',
 relief=SUNKEN, anchor=W, justify=LEFT)
 value.grid(row=self.row, column=1, sticky=E+W)
 self.row = self.row + 1
 return value

add_button is simpler, as it needs to create only one widget:

def add_button(self, root, row, column, text, command):
 button = Button(root, text=text, command=command)
 button.grid(row=row, column=column, sticky=E+W, padx=5, pady=5)

The load_data function cleans up any contents in the listbox (the graphical list of
items) and resets the items attribute (which is a Python list that will contain
references to the actual data instances). The loop is quite similar to that used for
printcomplaints.py, except that:

The name of the file in which an instance is stored is attached as an attribute to
that instance (we'll see why shortly)

The instance is added to the items instance attribute

The string representation of the item (note the use of the backtick `) is added to
the listbox

Finally, the first item in the listbox is selected:

def load_data(self):
 self.listbox.delete(0,END)
 self.items = []
 for filename in os.listdir(self.storagedir):
 item = pickle.load(open(os.path.join(self.storagedir, filename)))
 item._filename = filename
 self.items.append(item)
 self.listbox.insert('end', `item`)
 self.listbox.select_set(0)
 self.select(None)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 self.select(None)

We now get to the select method we mentioned previously. It's called in one of two
circumstances. The first, as we just showed, is the last thing to happen when the data
is loaded. The second is a consequence of the binding operation in the __init__
method, which we reprint here:

self.listbox.bind('<ButtonRelease-1>', self.select)

This call binds the occurrence of a specific event ('<ButtonRelease-1>') in a
specific widget (self.listbox) to an action calling self.select. In other words,
whenever you let go of the left mouse button on an item in the listbox, the select
method of your editor is called. It's called with an argument of type Event, which can
let us know such things as when the button click occurred, but since we don't need to
know anything about the event except that it occurred, we'll ignore it. What must
happen on selection? First, the instance corresponding to the item being selected in
the GUI element must be identified, and then the fields corresponding to the values of
that instance must be updated. This is performed by iterating over each field name
(looking back to the fieldnames class variable again), finding the value of the field
in the selected instance, and configuring the appropriate label widget to display the
right text:[6]

[6] The replace operation is needed because Tk treats the \r\n sequence that occurs on Windows machines as
two carriage returns instead of one.

def select(self, event):
 selection = self.listbox.curselection()
 self.selection = self.items[int(selection[0])]
 for fieldname in self.dataclass.fieldnames:
 label = getattr(self, fieldname) # GUI field
 labelstr = getattr(self.selection, fieldname) # instance attribute
 labelstr = string.replace(labelstr,'\r', '')
 label.config(text=labelstr)

The reload functionality we need is exactly that of the load_data method, which is
why that's what was passed as the command to be called when the reload button is
clicked. The deletion of an entry, however, is a tad more difficult. As we mentioned,
the first thing to do when loading an instance from disk is to give it an attribute that
corresponds to the filename whence it came. We use this information to delete the file
before asking for a reload; the listbox is automatically updated:

def delentry(self):
 os.remove(os.path.join(self.storagedir,self.selection._filename))
 self.load_data()

This program is probably the hardest to understand of any in this book, simply
because it uses the complex and powerful Tkinter library extensively. There is
documentation for Tkinter, as well as for Tk itself (see Tkinter Documentation).

Tkinter Documentation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The documentation for Tkinter is as elusive as it is needed; it's getting better all the
time, however. Tkinter was originally written by someone (Steen Lumholdt) who
needed a GUI for his work with Python. He didn't write much documentation, alas.
Tkinter has since been upgraded many times over, mostly by Guido van Rossum.
The documentation for Tkinter is still incomplete; however, there are a few pieces
of documentation currently available, and by the time you read this, much more
may be available.

The most complete documentation is Fredrik Lundh's documentation,
available on the Web at
http://www.pythonware.com/library/tkinter/introduction/index.htm.

An older but still useful document called Matt Conway's life preserver is
available at http://www.python.org/doc/life-preserver/index.html.

Programming Python also has documentation on Tkinter, especially Chapters
11, 12, and 16.

Possibly more: see the python.org web site section on Tkinter at
http://www.python.org/topics/tkinter/.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.4 Design Considerations

Think of the CGI script feedback.py and the GUI program FormEditor.py as two
different ways of manipulating a common dataset (the pickled instances on disk).
When should you use a web-based interface, and when should you use a GUI? The
choice should be based on a couple of factors:

How easy is it to implement the needed functionality in a given framework?

What software can you require the user to install in order to access or modify
the data?

The web frontend is therefore well suited to cases where the complexity of the data
manipulation requirements is low and where it's more important that users be able to
"work the program" than that the program be full-featured. Building a "real" program
on top of a GUI toolkit, on the other hand, allows maximum flexibility, at the cost of
having to teach the user how to use it and/or installing specific programs. One reason
for Python's success among experienced programmers is that Python allows them to
design programs based on such reasoned bases, as opposed to forcing them to use
one type of programming framework just because it's what the language designer had
in mind. It's also possible to develop full-featured applications that happen to use web
browsers as their GUI. Zope is a framework for writing such applications, and is
available free from Digital Creations under an Open Source license. If you're
interested in developing full-fledged web-based applications, give Zope a look (see
Appendix A, for more details).

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.5 JPython: The Felicitous Union of Python and Java

JPython is a recently released version of Python written entirely in Java by Jim
Hugunin. JPython is a very exciting development for both the Python community and
the Java community. Python users are happy that their current Python knowledge can
transfer to Java-based development environments; Java programmers are happy that
they can use the Python scripting language as a way to control their Java systems,
test libraries, and learn about Java libraries from an interpreted environment.

JPython is available from http://www.python.org/jpython, with license and
distribution terms similar to those of CPython (which is what the reference
implementation of Python is called when contrasted with JPython).

The JPython installation includes several parts:

jpython: The equivalent of the Python program used throughout the book.

jpythonc: Takes a JPython program and compiles it to Java class files. The
resulting Java class files can be used as any Java class file can, for example as
applets, as servlets, or as beans.

A set of modules that provide the JPython user with the vast majority of the
modules in the standard Python library.

A few programs demonstrating various aspects of JPython programming.

Using JPython is very similar to using Python:

~/book> jpython
JPython 1.0.3 on java1.2beta4
Copyright 1997-1998 Corporation for National Research Initiatives
>>> 2 + 3
5

In fact, JPython works almost identically to CPython. For an up-to-date listing of the
differences between the two, see
http://www.python.org/jpython/differences.html. The most important
differences are:

JPython is currently slower than CPython. How much slower depends on the
test code used and on the Java Virtual Machine JPython is using. JPython's
author has, on the other hand, explored very promising optimizations, which
could make future versions of JPython as fast or faster than CPython.

Some of the built-ins or library modules aren't available for JPython. For
example, the os.system() call is not implemented yet, as doing so is difficult

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, the os.system() call is not implemented yet, as doing so is difficult
given Java's interaction with the underlying operating system. Also, some of the
largest extension modules such as the Tkinter GUI framework aren't available,
because the underlying tools (the Tk/Tcl toolkit, in the case of Tkinter) aren't
available in Java.

10.5.1 JPython Gives Python Programmers Access to Java Libraries

The most important difference between JPython and CPython, however, is that
JPython offers the Python programmer seamless access to Java libraries. Consider
the following program, jpythondemo.py, the output of which is shown in Figure 10.5.

Figure 10.5. The output of jpythondemo.py

from pawt import swing
import java

def exit(e): java.lang.System.exit(0)

frame = swing.JFrame('Swing Example', visible=1)
button = swing.JButton('This is a Swinging button!', actionPerformed=exit)
frame.contentPane.add(button)
frame.pack()

This simple program demonstrates how easy it is to write a Python program that uses
the Swing Java GUI framework.[7] The first line imports the swing Java package (the
pawt module figures out the exact location of Swing, which can be in
java.awt.swing, in com.sun.java.swing, or maybe in javax.swing). The
second line imports the java package that we need for the
java.lang.System.exit() call. The fourth line creates a JFrame, setting its
bean property visible to true. The fifth line creates a JButton with a label and
specifies what function should be called when the button is clicked. Finally, the last
two lines put the JButton in the JFrame and make them both visible.

[7] Documentation for Swing and the Java Foundation Classes is available online at
http://java.sun.com/products/jfc/index.html. Alternatively, Robert Eckstein, Marc Loy, and Dave Wood have
published a thorough review of the Swing toolkit for Java, Java Swing, published by O'Reilly & Associates.

Experienced Java programmers might be a bit surprised at some of the code in
jpythondemo.py, as it has some differences from the equivalent Java program. In
order to make using Java libraries as easy as possible for Python users, JPython
performs a lot of work behind the scenes. For example, when JPython imports a Java
package, it actively tracks down the appropriate package, and then, using the Java
Reflection API, finds the contents of packages, and the signatures of classes and
methods. JPython also performs on-the-fly conversion between Python types and
Java types. In jpythondemo.py, for example, the text of the button ('This is a
Swinging example!') is a Python string. Before the constructor for JButton is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Swinging example!') is a Python string. Before the constructor for JButton is
called, JPython finds which variant of the constructor can be used (e.g., by rejecting
the version that accepts an Icon as a first argument), and automatically converts the
Python string object to a Java string object. More sophisticated mechanisms allow the
convenient actionPerformed=exit keyword argument to the JButton
constructor. This idiom isn't possible in Java, since Java can't manipulate functions
(or methods) as first-class objects. JPython makes it unnecessary to create an
ActionListener class with a single actionPerformed method, although you can
use the more verbose form if you wish.

10.5.2 JPython as a Java Scripting Language

JPython is gaining in popularity because it allows programmers to explore the myriad
Java libraries that are becoming available in an interactive, rapid turnaround
environment. It also is proving useful to embed Python as a scripting language in
Java frameworks, for customization, testing, and other programming tasks by end
users (as opposed to systems developers). For an example of a Python interpreter
embedded in a Java program, see the program in the demo/embed directory of the
JPython distribution.

10.5.3 A Real JPython/Swing Application: grapher.py

The grapher.py program (output shown in Figure 10.6) allows users to graphically
explore the behavior of mathematical functions. It's also based on the Swing GUI
toolkit. There are two text-entry widgets in which Python code should be entered. The
first is an arbitrary Python program that's invoked before the function is drawn; it
imports the needed modules and defines any functions that might be needed in
computing the value of the function. The second text area (labeled Expression:)
should be a Python expression (as in sin(x)), not a statement. It's called for each
data point, with the value of the variable x set to the horizontal coordinate.

Figure 10.6. Output of grapher.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The user can control whether to draw a line graph or a filled graph, the number of
points to plot, and what color to plot the graph in. Finally, the user can save
configurations to disk and reload them later (using the pickle module) Here is the
grapher.py program:

from pawt import swing, awt, colors, GridBag
RIGHT = swing.JLabel.RIGHT
APPROVE_OPTION = swing.JFileChooser.APPROVE_OPTION
import java.io
import pickle, os

default_setup = """from math import *
def squarewave(x,order):
 total = 0.0
 for i in range(1, order*2+1, 2):
 total = total + sin(x*i/10.0)/(float(i))
 return total
"""
default_expression = "squarewave(x, order=3)"

class Chart(awt.Canvas):
 color = colors.darkturquoise
 style = 'Filled'

 def getPreferredSize(self):
 return awt.Dimension(600,300)

 def paint(self, graphics):
 clip = self.bounds
 graphics.color = colors.white
 graphics.fillRect(0, 0, clip.width, clip.height)

 width = int(clip.width * .8)
 height = int(clip.height * .8)
 x_offset = int(clip.width * .1)
 y_offset = clip.height - int(clip.height * .1)

 N = len(self.data); xs = [0]*N; ys = [0]*N

 xmin, xmax = 0, N-1
 ymax = max(self.data)
 ymin = min(self.data)

 zero_y = y_offset - int(-ymin/(ymax-ymin)*height)
 zero_x = x_offset + int(-xmin/(xmax-xmin)*width)

 for i in range(N):
 xs[i] = int(float(i)*width/N) + x_offset
 ys[i] = y_offset - int((self.data[i]-ymin)/(ymax-ymin)*height)
 graphics.color = self.color
 if self.style == "Line":

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if self.style == "Line":
 graphics.drawPolyline(xs, ys, len(xs))
 else:
 xs.insert(0, xs[0]); ys.insert(0, zero_y)
 xs.append(xs[-1]); ys.append(zero_y)
 graphics.fillPolygon(xs, ys, len(xs))

 # draw axes
 graphics.color = colors.black
 graphics.drawLine(x_offset,zero_y, x_offset+width, zero_y)
 graphics.drawLine(zero_x, y_offset, zero_x, y_offset-height)

 # draw labels
 leading = graphics.font.size
 graphics.drawString("%.3f" % xmin, x_offset, zero_y+leading)
 graphics.drawString("%.3f" % xmax, x_offset+width, zero_y+leading)
 graphics.drawString("%.3f" % ymin, zero_x-50, y_offset)
 graphics.drawString("%.3f" % ymax, zero_x-50, y_offset-height+leading)

class GUI:
 def __init__(self):
 self.numelements = 100
 self.frame = swing.JFrame(windowClosing=self.do_quit)

 # build menu bar
 menubar = swing.JMenuBar()
 file = swing.JMenu("File")
 file.add(swing.JMenuItem("Load", actionPerformed = self.do_load))
 file.add(swing.JMenuItem("Save", actionPerformed = self.do_save))
 file.add(swing.JMenuItem("Quit", actionPerformed = self.do_quit))
 menubar.add(file)
 self.frame.JMenuBar = menubar

 # create widgets
 self.chart = Chart(visible=1)
 self.execentry = swing.JTextArea(default_setup, 8, 60)
 self.evalentry = swing.JTextField(default_expression,
 actionPerformed = self.update)
 # create options panel
 optionsPanel = swing.JPanel(awt.FlowLayout(
 alignment=awt.FlowLayout.LEFT))

 # whether the plot is a line graph or a filled graph
 self.filled = swing.JRadioButton("Filled",
 actionPerformed=self.set_filled)
 optionsPanel.add(self.filled)
 self.line = swing.JRadioButton("Line",
 actionPerformed=self.set_line)
 optionsPanel.add(self.line)
 styleGroup = swing.ButtonGroup()
 styleGroup.add(self.filled)
 styleGroup.add(self.line)

 # color selection
 optionsPanel.add(swing.JLabel("Color:", RIGHT))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 optionsPanel.add(swing.JLabel("Color:", RIGHT))
 colorlist = filter(lambda x: x[0] != '_', dir(colors))
 self.colorname = swing.JComboBox(colorlist)
 self.colorname.itemStateChanged = self.set_color
 optionsPanel.add(self.colorname)

 # number of points
 optionsPanel.add(swing.JLabel("Number of Points:", RIGHT))
 self.sizes = [50, 100, 200, 500]
 self.numpoints = swing.JComboBox(self.sizes)
 self.numpoints.selectedIndex = self.sizes.index(self.numelements)
 self.numpoints.itemStateChanged = self.set_numpoints
 optionsPanel.add(self.numpoints)

 # do the rest of the layout in a GridBag
 self.do_layout(optionsPanel)

 def do_layout(self, optionsPanel):
 bag = GridBag(self.frame.contentPane, fill='BOTH',
 weightx=1.0, weighty=1.0)
 bag.add(swing.JLabel("Setup Code: ", RIGHT))
 bag.addRow(swing.JScrollPane(self.execentry), weighty=10.0)
 bag.add(swing.JLabel("Expression: ", RIGHT))
 bag.addRow(self.evalentry, weighty=2.0)
 bag.add(swing.JLabel("Output: ", RIGHT))
 bag.addRow(self.chart, weighty=20.0)
 bag.add(swing.JLabel("Options: ", RIGHT))
 bag.addRow(optionsPanel, weighty=2.0)
 self.update(None)
 self.frame.visible = 1
 self.frame.size = self.frame.getPreferredSize()

 self.chooser = swing.JFileChooser()
 self.chooser.currentDirectory = java.io.File(os.getcwd())

 def do_save(self, event=None):
 self.chooser.rescanCurrentDirectory()
 returnVal = self.chooser.showSaveDialog(self.frame)
 if returnVal == APPROVE_OPTION:
 object = (self.execentry.text, self.evalentry.text,
 self.chart.style,
 self.chart.color.RGB,
 self.colorname.selectedIndex,
 self.numelements)
 file = open(os.path.join(self.chooser.currentDirectory.path,
 self.chooser.selectedFile.name), 'w')
 pickle.dump(object, file)
 file.close()

 def do_load(self, event=None):
 self.chooser.rescanCurrentDirectory()
 returnVal = self.chooser.showOpenDialog(self.frame)
 if returnVal == APPROVE_OPTION:
 file = open(os.path.join(self.chooser.currentDirectory.path,
 self.chooser.selectedFile.name))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 self.chooser.selectedFile.name))
 (setup, each, style, color,
 colorname, self.numelements) = pickle.load(file)
 file.close()
 self.chart.color = java.awt.Color(color)
 self.colorname.selectedIndex = colorname
 self.chart.style = style
 self.execentry.text = setup
 self.numpoints.selectedIndex = self.sizes.index(self.numelements)
 self.evalentry.text = each
 self.update(None)

 def do_quit(self, event=None):
 import sys
 sys.exit(0)

 def set_color(self, event):
 self.chart.color = getattr(colors, event.item)
 self.chart.repaint()

 def set_numpoints(self, event):
 self.numelements = event.item
 self.update(None)

 def set_filled(self, event):
 self.chart.style = 'Filled'
 self.chart.repaint()

 def set_line(self, event):
 self.chart.style = 'Line'
 self.chart.repaint()

 def update(self, event):
 context = {}
 exec self.execentry.text in context
 each = compile(self.evalentry.text, '<input>', 'eval')
 numbers = [0]*self.numelements
 for x in xrange(self.numelements):
 context['x'] = float(x)
 numbers[x] = eval(each, context)
 self.chart.data = numbers
 if self.chart.style == 'Line':
 self.line.setSelected(1)
 else:
 self.filled.setSelected(1)
 self.chart.repaint()

GUI()

The logic of this program is fairly straightforward, and the class and method names
make it easy to follow the flow of control. Most of this program could have been
written in fairly analogous (but quite a bit longer) Java code. The parts in bold,
however, show the power of having Python available: at the top of the module, default
values for the Setup and Expression text widgets are defined. The former imports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values for the Setup and Expression text widgets are defined. The former imports
the functions in the math module and defines a function called squarewave. The
latter specifies a call to this function, with a specific order parameter (as that
parameter grows, the resulting graph looks more and more like a square wave, hence
the name of the function). If you have Java, Swing, and JPython installed, feel free to
play around with other possibilities for both the Setup and Expression text widgets.

The key asset of using JPython instead of Java in this example is in the update
method: it simply calls the standard Python exec statement with the Setup code as
an argument, and then calls eval with the compiled version of the Expression
code for each coordinate. The user is free to use any part of Python in these text
widgets!

JPython is still very much a work in progress; Jim Hugunin is constantly refining the
interface between Python and Java and optimizing it. JPython, by being the second
implementation of Python, is also forcing Guido van Rossum to decide what aspects
of Python are core to the language and what aspects are features of his
implementation. Luckily, Jim and Guido seem to be getting along and agreeing on
most points.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.6 Other Frameworks and Applications

With limited space, we could cover only a few of the most popular frameworks
currently used with Python. There are several others, which are also deserving of
mention and which might very well be what you need. We briefly describe some here.

10.6.1 Python Imaging Library (PIL)

The Python Imaging Library is an extensive framework written by Fredrik Lundh for
creating, manipulating, converting, and saving bitmapped images in a variety of
formats (such as GIF, JPEG, and PNG). It has interfaces to Tk and Pythonwin, so that
one can use either Tk widgets or Pythonwin code to display PIL-generated images.
Alternatively, the images can be saved to disk in a variety of formats. The home for
PIL is at http://www.pythonware.com.

10.6.2 Numeric Python (NumPy)

Numeric Python is a set of extensions to Python designed to manipulate large arrays
of numbers quickly and elegantly. It was written by Jim Hugunin (JPython's author),
with the support of the subscribers to the Matrix-SIG (more on SIGs in Appendix A).
Since Jim started work on JPython, the responsibility for Numeric Python has been
taken over by folks at the Lawrence Livermore National Laboratory. NumPy is a
remarkably powerful tool for scientists and engineers, and as such is close to the
heart of one of these authors. More information on it is available at the main Python
web site's topic guide for scientific computing
(http://www.python.org/topics/scicomp/).

Here's an example of typical NumPy code, numpytest.py, and one representation of
the data in generates:

from Numeric import *
coords = arange(-6, 6, .02) # create a range of coordinates
xs = sin(coords) # take the sine of all of the x's
ys = cos(coords)*exp(-coords*coords/18.0) # take a complex function of the y's
zx = xs * ys[:,NewAxis] # multiply the x row with the y column

If you remember your math, you might figure out that xs is an array of the sines of the
numbers between -6 and 6, and ys is an array of the cosines of those same numbers
scaled by an exponential function centered at 0. zs is simply the outer product of
those two arrays of numbers. If you're curious as to what that might look like, you
could convert the array zs into an image (with the aforementioned PIL, for example)
and obtain the image shown in Figure 10.7.

Figure 10.7. Graphical representation of the array zs in numpytest.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NumPy lets you manipulate very large arrays of numbers very efficiently. The
preceding code runs orders of magnitude faster than comparable code using large
lists of numbers and uses a fraction of the memory. Many Python users never have to
deal with these kinds of issues, but many scientists and engineers require such
capabilities daily.

10.6.3 SWIG

Extension modules for Python can be written in C or C++. Such modules allow easy
extension of Python with functions and new types. The guidelines for writing such
extension modules are available as part of the standard Python library reference and
described at some length in Programming Python as well. One common use of
extension modules is to write interfaces between Python and existing libraries, which
can contain hundreds or thousands of single functions. When this is the case, the use
of automated tools is a lifesaver. David Beazley's SWIG, the Simple Wrapper
Interface Generator, is the most popular such tool. It's available at
http://www.swig.org and is very well documented. With SWIG, you write simple
interface definitions, which SWIG then uses to generate the C programs that conform
to the Python/C extension guidelines. One very nice feature of SWIG is that when it's
used to wrap C++ class libraries, it automatically creates so-called shadow classes in
Python that let the user manipulate C++ classes as if they were Python classes.
SWIG can also create extensions for other languages, including Perl and Tcl.

10.6.4 Python MegaWidgets (Pmw)

Anyone doing serious GUI work with Tkinter should check out Pmw, a 100% Python
framework built on top of Tkinter, designed to allow the creation of megawidgets
(compound widgets). Pmw, written by Greg McFarlane, is the next step beyond
Tkinter, and learning it can pay off in the long run. Pmw's home page is at
http://www.dscpl.com.au/pmw/.

10.6.5 ILU and Fnorb

If the notion of programs talking to programs is of interest to you, but you want a
solution that works on platforms with no COM support, there are many other
packages with similar functionality. Two favorites are ILU and Fnorb.

ILU stands for Xerox PARC's Inter Language Unification project. It's free, well-
supported, stable, and efficient, and supports C, C++, Java, Common Lisp, Modula-3,
and Perl 5, in addition to Python. It's available at
ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unlike ILU, Fnorb is written in Python and supports only Python. It's especially helpful
for learning more about CORBA systems, since it's easy to set up and play with once
you know Python. Fnorb is available from http://www.dstc.edu.au/Fnorb/.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

10.7 Exercises

Most of the topics of this chapter are not really good topics for exercises without first
covering the frameworks they cover. A couple of things can be done with the
knowledge you already have, however:

1. Faking the Web. You may not have a web server running, which makes using
formletter.py and FormEditor.py difficult, since they use data generated by the
CGI script. As an exercise, write a program that creates files with the same
properties as those created by the CGI script.

2. Cleaning up. There's a serious problem with the formletter.py program: namely,
if, as we mention, it's run nightly, any complaint is going to cause a letter to be
printed. That will happen every night, since there is no mechanism for indicating
that a letter has been generated and that no more letters need be generated
regarding that specific complaint. Fix this problem.

3. Adding parametric plotting to grapher.py. Modify grapher.py to allow the user to
specify expressions that return both x and y values, instead of the current "just
y" solution. For example, the user should be able to write in the Expression
widget: sin(x/3.1),cos(x/6.15) (note the comma: this is a tuple!) and get
a picture like that shown in Figure 10.8.

Figure 10.8. Output of Exercise 3

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Part III: Appendixes
This last part of the book consists of three appendixes that are mostly
pointers to other sources of information.

Appendix A, presents general Python resources such as sources of
documation, advice, and software.

Appendix B, covers resources that are specific to certain operating
systems.

Appendix C, lists the answers to all the exercises presented at the
end of chapters in Part I and Part II.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Appendix A. Python Resources
This appendix is a selection of the most useful resources for the Python programmer,
including items that aren't part of the standard distribution. These include software
(both Python modules and extension modules), documentation, discussion groups,
and commercial sources of support.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.1 The Python Language Web Site

The single most important source of information is http://www.python.org.This
web site is the focal point of the Python community. All Python software,
documentation, and other information is available either on that web site directly or
from locations listed on the web site. We encourage you to spend a fair bit of time
exploring it, as it's quite large and comprehensive. See Figure A.1 for a snapshot of
the web site's home page .

Figure A.1. A screenshot of the python.org web site

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.2 Python Software

A.2.1 The Standard Python Distribution

The most essential piece of Python software is clearly the Python interpreter itself. It's
available in many formats for a variety of platforms. We defer discussion of the
platform-specific issues until Appendix B. In general, the most reliable way to get an
up-to-date distribution is to download it from the main Python web site
(http://www.python.org). The Python web site is maintained by volunteers from
the Python Software Association (see the next sidebar, The Python Software
Association (PSA) and the Python Consortium), a group dedicated to the long-
term success of Python. If you'd rather get Python binaries on a CD, Walnut Creek
has a Python CD-ROM available that includes binaries for all common platforms
(Windows, Macs, many versions of Unix, BeOS, and VMS). The URL for the last
distribution available at time of writing is
http://www.cdrom.com/titles/prog/python.htm, but check the Walnut Creek
catalog for eventual newer releases. As described in Appendix B, most Linux
distributions include Python. Both Programming Python and Internet Programming
with Python (see Section A.3.3) also come with CDs that include Python
distributions.

The standard distribution comes with hundreds of modules, both in C and Python.
These modules are all officially supported by Guido and his crew (unless otherwise
noted; when replaced by newer tools, old modules are kept for a few years to give
users time to upgrade their software, and support for them decreases gradually). The
interpreter, the standard library, and the standard documentation constitute the
minimum set of tools a Python user has access to.

In addition to the standard distribution, there are hundreds of packages and modules
available on the Web, most of which are free. We'll mention a few specifically and
where to get them.

The Python Software Association (PSA) and
the Python Consortium

While Guido van Rossum is Python's primary creator, he has been getting
some help in recent years, especially when it comes to the various public-
relations aspect of the Python language. The Python Software Association
is an association of companies and individuals who wish to help preserve
Python's existence as a free, evolving, well-supported language. PSA
volunteers help run the python.org web site, organize the Python
conferences, and collect membership dues from PSA members to help
underwrite the costs of the web site, conferences, and other Python-related
events. If you or your company are interested in joining the PSA, visit the
PSA's web site at: http://www.python.org/psa/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One perk of a PSA membership is that it entitles you to a free account on
the "Starship Python," a web site run by a grateful Python user, Christian
Tismer, as a public service to the Python community. The starship's current
URL is http://starship.skyport.net, but it will soon move to
http://starship.python.net.

The Python Consortium is a recent development that holds promise for long-
term support of Python's development. CNRI (Guido van Rossum's current
employer) is proposing to host a consortium of companies that would
support, through membership dues, the development of the Python and
JPython development environments. More information about the Python
Consortium is available at http://www.python.org/consortium/.

A.2.2 Gifts from Guido

As if Python and its standard libraries weren't enough, Guido ships a few other
programs as part of the standard distribution. They are located in the Tools directory
of the Python source tree (or the Python installation directory on Windows and Mac).

In this set, as of Python 1.5.2, there is a first cut at an integrated development
environment for Python, called idle. As Figure A.2 shows, it's a GUI based on top of
Tkinter, so it requires that you have Tk/Tcl installed. idle is still in its infancy, but
already provides quite a few nice features that make it ideal for the Python novice
uses to friendly development environments:

A Python shell, smarter than the standard one we've been using all along.

A Python-aware editor, which does automatic "colorization" of Python code:
statements are drawn with one color, comments with another, etc. This is a
feature of the Python mode for Emacs as well, and one that's easy to learn to
love.

A class browser that lets you explore a module's classes and jump directly to
the method definitions in the source code.

An interactive debugger.

Figure A.2. The idle IDE in action

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2.3 Offerings from Commercial Vendors

We mention a few commercial software companies in this
section. While this might seem at odds with a language that's
usually "free," there is no contradiction in the Python community
to having Python-based projects and "business models."
Python's license is specifically crafted so that software vendors
can use Python with no restrictions. Most Python users are glad
to hear that companies are building successful companies based
on Python. There are quite a few Python-related success stories
that executives more or less freely disclose.[A] We mention only
the companies that distribute code specifically aimed at Python
programmers, not companies whose products include Python.

[A] Guido van Rossum is sometimes frustrated to hear companies say, off the record,
that they use Python, but that they don't want it known publicly because they view
their decision to use Python as a "strategic advantage."

A.2.3.1 Scriptics Corporation's Tcl/Tk toolkits

The Tkinter GUI framework we've referred to throughout the text is built on top of the
Tk GUI toolkit, which itself uses the Tcl language. These are available in binary and
source form from the web site of the Scriptics Corporation:
http://www.scriptics.com/. For information about Tkinter-related resources,
consult the Tkinter topic guide at http://www.python.org/topics/tkinter/.

A.2.3.2 Digital Creation's free releases

Digital Creation is a software company that has recently shifted from selling Python-
based software packages to distributing them for free under the Open Source license.
They have made several significant contributions to the Python community, by
contributing to the standard distribution (they are responsible for the cPickle and
cStringIO modules, for example), by helping the Python Software Association grow
in many ways, and by distributing at no cost two very powerful Python tools. These
are:

ExtensionClass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A C extension module that allows the creation of extension types that can act as
Python classes. In addition, ExtensionClasses allow you to modify the way
these new types work, including support for Acquisition. Acquisition is a
mechanism by which objects can get attributes from the objects that they are a
part of, much like instances can get attributes from their class or from their
class' base classes.

Zope

A framework for publishing Python object hierarchies on the Web. With Zope,
it's easy to set up a powerful interface to a database of Python objects. There
are several extensions to Zope that allow scaling of web-based applications, by
providing support for templates, interfaces to database engines, etc. If you're
thinking about developing sophisticated web applications (as opposed to simple
forms processing as we showed in Chapter 10), you should seriously
investigate these tools.

Digital Creations' web site is at http://www.digicool.com; their free tools are
available at http://www.digicool.com/site/Free/, and Zope is available at
http://www.zope.org.

A.2.3.3 Pythonware

Pythonware is a Swedish Python toolsmith company, with several projects currently in
development, including an Integrated Development Environment for Python, a
lightweight replacement for Tk for Windows platforms, and an image processing
framework. The reason we mention what is still "vaporware" is that the folks at
Pythonware have already released other tools for free that have shown themselves to
be quite useful, suggesting that these products will be worth the wait. Most important
among their free releases is the Python Imaging Library (PIL), which we mentioned in
Chapter 10, and the most comprehensive documentation for Tkinter anywhere. For
PIL and other Pythonware tools, look at their web site,
http://www.pythonware.com.

A.2.4 Other Modules and Packages

There are many other modules and packages available on the Web. These can be
found in many locations:

The Contributed Modules section on the main Python web site
(http://www.python.org/download/Contributed.html) lists hundreds of
modules, in a range of topics, including network tools, and graphic, database,
and system interfaces.

The PyModules FAQ is an always evolving list of modules, also organized by
category. It's available at:
http://starship.skyport.net/crew/aaron_watters/faqwiz/contrib.cgi.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The crew of the Starship make many of their tools available. The Starship
project is a web site at which any member of the Python Software Association
can get an account for free, including web pages. See the previous sidebar for
details.

A few of the tools that can be found in these three directories deserve special
mention, because they have been found remarkably useful. These are:

Gadfly

An SQL database engine written entirely in Python by Aaron Watters. While its
speed is not that of a high-performance commercial software vendor's database
engine, its speed compares well to Microsoft's Access. Gadfly is at
http://www.chordate.com/gadfly.html.

Medusa

A high-performance Internet server framework also written entirely in Python,
this time by Sam Rushing. By using a multiplexing I/O single-process server, it
offers high-performance for HTTP, FTP, and other IP services. While only free
for noncommercial use, commercial licenses are quite inexpensive. Medusa is
at http://www.nightmare.com/medusa/.

If you're looking for tools to use to teach programming with Python, two tools to
consider are:

turtle.py

A Python module written by Guido van Rossum, and part of the standard
Python library as of Python 1.5.2. This module provides simple "turtle graphics"
in a Tk window. Turtle graphics have been used extensively to teach
programming to children using the Logo language.

Alice

A program designed to allow nonexperts to explore interactive 3-D graphics. It
was developed originally by a group at the University of Virginia, but is now
under the auspices of the computer science department at Carnegie-Mellon
University. See http://alice.cs.cmu.edu/.

A.2.5 Emacs Support

While this is not truly Python software, there is very good support for editing Python
code from within the Emacs editor (on all platforms for which Emacs is available).
From within Emacs, you can edit syntax-colored Python code, browse the functions,
classes, and methods within a buffer, and run a Python interpreter or the Pdb python
debugger, all within one of the most popular and powerful editors available.
Information on Python support in Emacs can be found at
http://www.python.org/emacs/.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.3 Python Documentation and Books

There are three kinds of sources of published information on Python: the standard
Python documentation set, published books, and online material.

A.3.1 The Standard Python Documentation Set

The standard Python documentation set includes five separate documents. They are
all available in various formats (HTML, PDF, and PostScript, among others) at
http://www.python.org/doc/. They are:

The Tutorial

A fast-paced introduction to the language that most current Python
programmers used to learn Python. It assumes a fair bit of previous
programming knowledge, so novices tend to find it overwhelming in places, and
it doesn't give Python's object-oriented features their due.

The Library Reference

The most important of the Python books. It lists all the built-in functions and
what the built-in type methods and semantics are, and describes almost all the
modules that make up the standard distribution. It's well worth keeping on your
local hard disk and consulting when in doubt about a specific function's interface
or semantics, or when you can't remember specific method names for the built-
in objects.

The Language Reference

The most formal specification of the language itself. It gives the precise
definition of syntactic operations, precedence rules, etc. Most users happily
ignore it, but it does give the final word on intricate details of the language.

Extending and Embedding

A document describing the precise rules of interaction between Python and C
extensions (and the simpler case of embedding, when Python is being called by
an existing C or C++ program). If you wish to write an extension module for
Python, this book defines just what to do. The section on keeping track of
references is especially important for tracking bugs in such modules.

The Python/C API

A document describing the routines Python uses internally. You can also use
these routines to manipulate Python objects from within C/C++ programs,
usually in extension modules.

A.3.2 The FAQ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like many other topics of interest on the Internet, Python has developed a list of
Frequently Asked Questions. It's available at
http://www.python.org/doc/FAQ.html, and covers everything from general
information about Python (its name, origins, design choices, etc.) to issues arising
when compiling or installing Python, programming questions, and more. The Python
FAQ is maintained by the community at large. Any PSA member can log onto a web-
driven program (a CGI program, like the one we saw in Chapter 10) and update
existing entries or add new entries. As a result, the FAQ is both quite large and very
current.

A.3.3 Other Published Books

There are three books besides the one you're holding that are available in
bookstores. These are:

Programming Python , by Mark Lutz, published by O'Reilly & Associates. This
860-page book is the logical next step after Learning Python. It covers in greater
depth all the material covered here, and then some. Almost all aspects of
Python are covered with progressively more sophisticated examples.
Programming Python also discusses Python/C integration, and advanced
applications such as Tkinter GUIs and persistence.

Internet Programming with Python, by Aaron Watters, Guido van Rossum, and
James Ahlstrom, published by M&T Books. This is a 477-page book that
provides an introduction to most of the Python, with special emphasis on writing
programs to publish web pages.

The Python Pocket Reference, by Mark Lutz, published by O'Reilly &
Associates. This is a short (75 pages) booklet listing the core aspect of the
syntax, and the most commonly used modules and their function signatures. It
covers Python 1.5.1.

A.3.4 Other Sources of Documentation

The number of web pages describing Python modules, howto's, guides for novices,
common tasks, etc., makes it impossible to list them all here. Instead, we'll encourage
you to browse the Web, starting at the main Python web site. The PSA volunteers
(Ken Manheimer, Andrew Kuchling, Barry Warsaw, and Guido van Rossum, to be
precise) spend considerable effort making sure the web site is both comprehensive
and well organized, so you shouldn't have a problem finding what you need. Most
significant packages and modules have associated web pages and documentation for
them.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.4 Newsgroups, Discussion Groups, and Email Help

Python owes a great deal of its growth to a worldwide community of users who
exchange information about Python via the Internet. Most day-to-day exchanges
about Python occur in various electronic forums, which each have specific aims and
scopes.

A.4.1 comp.lang.python/python-list

The main "public space" for discussions of Python is the comp.lang.python Usenet
newsgroup, which is bidirectionally gatewayed as the mailing list python-list@cwi.nl
(although there are plans to move it to python-list@python.org). If you don't have
access to a Usenet newsfeed already, you can read comp.lang.python using the
Dejanews service (www.dejanews.com), or read the equivalent python-list mailing
list via the eGroups service (http://www.egroups.com/list/python-list/). This
mailing list/newsgroup is the appropriate forum to ask questions, discuss specific
Python problems, post announcements of Python jobs, etc.

A.4.2 comp.lang.python.announce/python-list-announce

Recently, a new newsgroup was created, with the aim of being a low-traffic list just for
significant announcements of Python-related news. The
comp.lang.python.announce newsgroup (also gatewayed as python-list-
announce@cwi.nl) is a moderated forum, so only postings deemed appropriate are
allowed through.

A.4.3 python-help@python.org

One of the characteristics of the main Usenet newsgroup/mailing list is that it's
automatically broadcast to tens of thousands of readers around the world. While this
allows for rapid response time from someone almost always (no matter what time it is,
someone is reading the Python newsgroup somewhere in the world), it also can be
somewhat intimidating, especially to novices. A more private place to ask questions is
the python-help address, which serves as a helpline. Email to python-
help@python.org is broadcast to a set of about a dozen volunteers, who will try
their best to promptly answer questions sent to python-help. When writing to this list, it
helps to specify exactly what configuration you're using (Python version, operating
system, etc.) and to describe your problem or question precisely. This helps the
volunteers understand your problem, and hopefully help you solve it fast.

A.4.4 The SIGs

One more set of mailing lists should be mentioned here. The main Python newsgroup
is remarkable by its generality. However, periodically, groups of concerned individuals
decide to work together on as specific project, such as the development of a
significant extension or the formalization of a standard interface for a tool or set of
tools. These groups of volunteers are called special interest groups, or SIGs. These

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tools. These groups of volunteers are called special interest groups, or SIGs. These
groups have their own mailing lists, which you should feel free to browse and join if
you feel an affinity with the topic at hand. Successful SIGs have included the Matrix-
SIG, which helped Jim Hugunin develop the Numeric Python extensions; the String-
SIG, which has worked on the regular expression engine among other topics; and the
XML-SIG, which is developing tools for parsing and processing of XML (eXtensible
Markup Language). An up-to-date listing of the current SIGs (they die as their task is
done, and are born as a need arises) can be found at
http://www.python.org/sigs/. Each SIG has its own mailing list, archive page,
and description.

A.4.5 JPython-interest

There is a mailing list for discussion of JPython-specific issues. It is worth reading if
you're interested in JPython, as it's a forum Jim Hugunin and Barry Warsaw use to
spread information about JPython and solicit feedback. Information on the list is
available at http://www.python.org/mailman/listinfo/jpython-interest.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.5 Conferences

While most Python communications happen electronically, the PSA also organizes
periodic conferences. These conferences are the only forum where many folks get to
meet their email colleagues.[B] They're also an important forum for presenting new
work, learning about aspects of Python by attending tutorials and talks, and a place
for discussions on the future directions of Python. Information about the conferences
is regularly posted on the newsgroup as well as displayed on the main Python web
site. Locations of past conferences have included Washington, DC; San Jose and
Livermore, CA; and Houston, TX.

[B] So far, your two authors have only met in person at Python conferences!

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.6 Support Companies, Consultants, Training

The last group of resources for Python users consists of support companies,
consultants and trainers.

Python Professional Services, Inc., is a company that provides various types of
technical support for Python and related modules. Their URL is
http://www.pythonpros.com.

While there is at present no online listing of Python consultants, several experienced
Python users are available for short- and long-term consulting work. Check
www.python.org for information, and feel free to post a request for help on the
Python newsgroup. If you want to keep your inquiries more private, email python-
help@python.org.

Finally, several training programs are available for companies who wish to have
onsite classes for their employees. No global listing is available at present, but might
be available by the time you read this. Again, check http://www.python.org, the
newsgroup or python-help@python.org.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

A.7 Tim Peters

He's not paid to do it, but a fellow by the name of Tim Peters is known to answer more
questions about Python on the newsgroup than anyone in their right mind should. His
comments are not only wise and helpful but quite often hilarious as well. Rumor has it
that he is a living human being, although we have never met him in person, so there's
always the possibility that he's just a nicely crafted Python program. Come to think of
it, only one person we have talked to claims to have met Tim in person, and that's
Guido. Makes you wonder...

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Appendix B. Platform-Specific Topics
This appendix covers platform-specific topics—where to get distributions of Python for
each specific platform (i.e., combination of hardware and operating system), and any
important notes regarding compatibility or availability of tools specific to your platform.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

B.1 Unix

Python's largest user base is most likely Unix users these days, although the number
of Windows users is growing steadily. There are several distributions available for
Unix. The standard method of obtaining Python is to download the source distribution
(http://www.python.org/download/download_source.html), and configure,
build, and install Python yourself. There was an effort a while back to keep at the
Python web site a set of precompiled binaries of Python for most of the major Unix
platforms, but this effort has mostly been dropped, because there was no way to
make it maintainable; there are too many different versions of Unix and too many
ways to configure Python for each one.

We haven't mentioned configurations of Python in this book; that's because we've
mostly covered the most standard part of the Python distribution. Someone who
downloads the source distribution, however, will soon notice a references to a file
called Setup in the Modules directory. This file allows you to configure which modules
are compiled, either for static or for dynamic linking. The set of available optional
modules changes with each release and can be augmented by downloading third-
party extensions.

There is an exception to the "no binary distributions" rule, and that is for Linux. Most
versions of Linux come with Python already installed, and some use it extensively in
their configuration management system. The version on the Linux distributions may
not be the latest version available. Oliver Andrich maintains a set of RPMs (which are
packages in a standard format for Red Hat Linux) of the latest distributions of Python,
including the most popular extensions. These are available at
http://www.python.org/download/download_linux.html.

B.1.1 Unix-Specific Extensions

Several extensions are available on most if not all Unix versions. These include:

B.1.1.1 Standard distribution

There are interfaces to most well-established services on Unix. For example, there is
a pwd module for interacting with the password file, a grp module for manipulating
the Unix group database, as well as modules allowing one to interface to the crypt
library functions (crypt), the dbm/ndbm/gdbm database libraries (dbm and gdbm),
the tty I/O control calls (termios), the file descriptor I/O interface (fcntl), a module
for measuring and controlling system resources (resources), a module for
interfacing with the system logging tools (syslog), a wrapper module around the
popen call that makes interfacing with shell commands easier (commands), and finally
a module that gives access to the stat system call for finding such things as
modification times of files and the like (stat).

The standard library also includes modules that operate on specific Unix flavors, such
as SGI and SunOS/Solaris:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1.1.2 SGI-specific extensions

On Silicon Graphics systems, the standard distribution includes modules for
interfacing with the AL audio library (al and AL), the CD library (cd), the FORMS
Library by Mark Overmas (fl, flp and FL), the font manager (fm), the old IRIX GL
library (gl, GL and DEVICE),[A] and the imglib image file format (imgfile).

[A] The OpenGL interface is supported cross-platform by a set of modules currently maintained by one of your authors
(David Ascher), and is available at http://starship.python.net/~da/PyOpenGL/. It currently works on SGI systems
as well as other Unix platforms and Windows, and can be linked with either OpenGL or the compatible Mesa toolkit.

B.1.1.3 SunOS-specific extensions

On SunOS/Solaris, the standard distribution includes one module, sunaudiodev,
that allows an interface to the audio device.

B.1.1.4 Other Unix resources

Many modules have been published for support of various Unix tools or have been
tested on Unix. These include interfaces to audio subsystems, scanners, and
cameras, the X Window System interface and its layered toolkits, and many others;
search the Python web site if you're looking for a specific extension you think might
have been interfaced already.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

B.2 Windows-Specific Information

The Windows platform (Windows 95, 98, and NT) is one of the most active areas of
growth for Python, both in terms of the number of users and in the number of
extensions being built. While the standard distribution from www.python.org works
just fine on Windows, there are a set of Windows-specific extensions that are
available as part of the win32all package, from Mark Hammond. The win32all
package is available at http://www.python.org/windows/win32all/ and includes
several powerful programs and extensions.

The most visible is the Pythonwin program, which is an integrated development
environment for Python, providing an interactive interpreter interface (with keyboard
shortcuts, font coloring, etc.), an editor, and an object browser (see Figure B.1).
Pythonwin is, in fact, using several large packages that allow Python to drive a great
deal of the libraries available as part of Windows, such as the Microsoft Foundation
Classes, the ODBC database interface, NT-specific services such as logging,
performance monitoring, memory-mapped files, pipes, timers, and, most importantly,
all of COM, Microsoft's Common Object Model. This means that, as we mentioned in
Chapter 10, most modern software written for Windows should be scriptable from
Python if it supports any scripting at all. In general, almost anything you can do in
heavily marketed scripting languages such as Visual Basic, you can do in Python with
COM support. Python can also be used as an ActiveX scripting host in such programs
as Internet Explorer.

Figure B.1. The Pythonwin program in action

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

B.3 Macintosh-Specific Information

The Macintosh platform also supports Python fully, thanks mostly to the efforts of
Jack Jansen. There are a few Mac-specific features worth knowing about. First, you
can make applets out of scripts, so that dropping a file on the script is the same as
running the script with the dropped file's name in sys.argv. Also, Just van Rossum
(yes, Guido's brother) wrote an Integrated Development Environment for Python on
the Mac. It is included in the distribution, but the latest version can always be found at
http://www.python.org/download/download_mac.html. A sample screenshot
of Just's debugger in action is shown in Figure B.2.

Figure B.2. Screenshot of the Macintosh IDE's debugger in action

Also, there are several modules that provide interfaces to Mac-specific services
available as part of the MacPython distribution. These include interfaces to Apple
Events, the Component, Control, Dialog, Event, Font, List, and Menu Managers,
QuickDraw, QuickTime, the Resource, Scrap and Sound managers, TextEdit, and the
Window Manager. Also covered (and documented in a supplement to the library
reference available at http://www.python.org/doc/mac/) are interfaces
implementing the os and os.path modules, interfaces to the Communications Tool
Box, the domain name resolver, the FSSpec, Alias Manager, finder aliases, and the
Standard File package, Internet Config, MacTCP, the Speech Manager, and more.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

B.4 Java

As we described in Chapter 10, JPython is a complete implementation by Jim
Hugunin of Python for Java. It's the most different port mentioned in this appendix,
since it shares none of the C code base (but most of the Python code base) of the
reference implementation of Python. The home page for JPython is
http://www.python.org/jpython/. The set of extensions to JPython is the same
as the set of Java libraries that are available. In other words, it's a huge list. A good
place to look for Java information is at Sun's web site: http://java.sun.com.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

B.5 Other Platforms

Finally, many enterprising souls have ported Python more or less completely to a
variety of other platforms. Table B.1 lists each port we know about, each platform,
the author or maintainer of the port, and the URL from which more information can be
gleaned.

Table B.1. Sources of Information
Platform Author/Maintainer URL

Amiga Irmen De Jong http://www.geocities.com/ResearchTriangle/Lab/3172/python.html
BeOS Chris Herborth http://www.qnx.com/~chrish/Be/software/#programming
Windows CE Brian Lloyd http://www.digicool.com/~brian/PythonCE/index.html
DOS/Windows
3.1 Hans Novak http://www.cuci.nl/~hnowak/python/python.htm

QNX Chris Herborth ftp://ftp.qnx.com/usr/free/qnx4/os/language/python-1.5.tgz
Psion Series 5 Duncan Booth http://dales.rmplc.co.uk/Duncan/PyPsion.htm
OpenVMS Uwe Zessin http://decus.decus.de/~zessin/
VxWorks Jeff Stearns mailto:jeffstearns@home.com

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Appendix C. Solutions to Exercises
This appendix contains solutions to the exercises that appear at the end of each
chapter.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.1 Chapter 1

1. Interaction. Assuming your Python is configured properly, you should participate
in an interaction that looks something like this:

% python
copyright information lines...
>>> "Hello World!"
'Hello World!'
>>> # <Ctrl-D or Ctrl-Z to exit>

2. Programs. Here's what your code (i.e., module) file and shell interactions should
look like:

% cat module1.py
print 'Hello module world!'

% python module1.py
Hello module world!

3. Modules. The following interaction listing illustrates running a module file by
importing it. Remember that you need to reload it to run again without stopping
and restarting the interpreter. The bit about moving the file to a different
directory and importing it again is a trick question: if Python generates a
module1.pyc file in the original directory, it uses that when you import the
module, even if the source code file (.py) has been moved to a directory not on
Python's search path. The .pyc file is written automatically if Python has access
to the source file's directory and contains the compiled bytecode version of a
module. We look at how this works in more detail in Chapter 5.

% python
>>> import module1
Hello module world!
>>>

4. Scripts. Assuming your platform supports the #! trick, your solution will look like
the following (though your #! line may need to list another path on your
machine):

% cat module1.py
#!/usr/local/bin/python (or #!/usr/bin/env python)
print 'Hello module world!'

% chmod +x module1.py
% module1.py
Hello module world!

5. Errors. The interaction below demonstrates the sort of error messages you get if
you complete this exercise. Really, you're triggering Python exceptions; the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you complete this exercise. Really, you're triggering Python exceptions; the
default exception handling behavior terminates the running Python program and
prints an error message and stack trace on the screen. The stack trace shows
where you were at in a program when the exception occurred (it's not very
interesting here, since the exceptions occur at the top level of the interactive
prompt; no function calls were in progress). In Chapter 7, you will see you can
catch exceptions using try statements and process them arbitrarily; you'll also
see that Python includes a full-blown source-code debugger for special error
detection requirements. For now, notice that Python gives meaningful
messages when programming errors occur (instead of crashing silently):

% python
>>> 1 / 0
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo
>>>
>>> x
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: x

6. Breaks. When you type this code:

L = [1, 2]
L.append(L)

you create a cyclic data-structure in Python. In Python releases before Version
1.5.1, the Python printer wasn't smart enough to detect cycles in objects, and it
would print an unending stream of [1, 2, [1, 2, [1, 2, [1, 2, and so on,
until you hit the break key combination on your machine (which, technically,
raises a keyboard-interrupt exception that prints a default message at the top
level unless you intercept it in a program). Beginning with Python Version 1.5.1,
the printer is clever enough to detect cycles and prints [[...]] instead.

The reason for the cycle is subtle and requires information you'll gain in
Chapter 2. But in short, assignment in Python always generates references to
objects (which you can think of as implicitly followed pointers). When you run
the first assignment above, the name L becomes a named reference to a two-
item list object. Now, Python lists are really arrays of object references, with an
append method that changes the array in-place by tacking on another object
reference. Here, the append call adds a reference to the front of L at the end of
L, which leads to the cycle illustrated in Figure C.1. Believe it or not, cyclic data
structures can sometimes be useful (but not when printed!).

Figure C.1. A cyclic list

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.2 Chapter 2

1. The basics. Here are the sort of results you should get, along with a few
comments about their meaning:

Numbers

>>> 2 ** 16 # 2 raised to the power 16
65536
>>> 2 / 5, 2 / 5.0 # integer / truncates, float / doesn't
(0, 0.4)

 Strings

>>> "spam" + "eggs" # concatenation
'spameggs'
>>> S = "ham"
>>> "eggs " + S
'eggs ham'
>>> S * 5 # repetition
'hamhamhamhamham'
>>> S[:0] # an empty slice at the front--[0:0]
''
>>> "green %s and %s" % ("eggs", S) # formatting
'green eggs and ham'

 Tuples

>>> ('x',)[0] # indexing a single-item tuple
'x'
>>> ('x', 'y')[1] # indexing a 2-item tuple
'y'

 Lists

>>> L = [1,2,3] + [4,5,6] # list operations
>>> L, L[:], L[:0], L[-2], L[-2:]
([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6], [], 5, [5, 6])
>>> ([1,2,3]+[4,5,6])[2:4]
[3, 4]
>>> [L[2], L[3]] # fetch from offsets, store in a list
[3, 4]
>>> L.reverse(); L # method: reverse list in-place
[6, 5, 4, 3, 2, 1]
>>> L.sort(); L # method: sort list in-place
[1, 2, 3, 4, 5, 6]
>>> L.index(4) # method: offset of first 4 (search)
3

 Dictionaries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dictionaries

>>> {'a':1, 'b':2}['b'] # index a dictionary by key
2
>>> D = {'x':1, 'y':2, 'z':3}
>>> D['w'] = 0 # create a new entry
>>> D['x'] + D['w']
1
>>> D[(1,2,3)] = 4 # a tuple used as a key (immutable)
>>> D
{'w': 0, 'z': 3, 'y': 2, (1, 2, 3): 4, 'x': 1}
>>> D.keys(), D.values(), D.has_key((1,2,3)) # methods
(['w', 'z', 'y', (1, 2, 3), 'x'], [0, 3, 2, 4, 1], 1)

 Empties

>>> [[]], ["",[],(),{},None] # lots of nothings
([[]], ['', [], (), {}, None])

2. Indexing and slicing.

a. Indexing out-of-bounds (e.g., L[4]) raises an error; Python always checks
to make sure that all offsets are within the bounds of a sequence (unlike
C, where out-of-bound indexes will happily crash your system).

b. On the other hand, slicing out of bounds (e.g., L[-1000:100]) works,
because Python scales out-of-bounds slices so that they always fit (they're
set to zero and the sequence length, if required).

c. Extracting a sequence in reverse—with the lower bound > the higher
bound (e.g., L[3:1])—doesn't really work. You get back an empty slice
([]), because Python scales the slice limits to makes sure that the lower
bound is always less than or equal to the upper bound (e.g., L[3:1] is
scaled to L[3:3], the empty insertion point after offset 3). Python slices
are always extracted from left to right, even if you use negative indexes
(they are first converted to positive indexes by adding the length).

>>> L = [1, 2, 3, 4]
>>> L[4]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> L[-1000:100]
[1, 2, 3, 4]
>>> L[3:1]
[]
>>> L
[1, 2, 3, 4]
>>> L[3:1] = ['?']
>>> L
[1, 2, 3, '?', 4]

3. Indexing, slicing, and del. Your interaction with the interpreter should look

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3. Indexing, slicing, and del. Your interaction with the interpreter should look
something like that listed below. Note that assigning an empty list to an offset
stores an empty list object there, but assigning it to a slice deletes the slice.
Slice assignment expects another sequence, or you'll get a type error.

>>> L = [1,2,3,4]
>>> L[2] = []
>>> L
[1, 2, [], 4]
>>> L[2:3] = []
>>> L
[1, 2, 4]
>>> del L[0]
>>> L
[2, 4]
>>> del L[1:]
>>> L
[2]
>>> L[1:2] = 1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation

4. Tuple assignment. The values of X and Y are swapped. When tuples appear on
the left and right of an assignment operator (=), Python assigns objects on the
right to targets on the left, according to their positions. This is probably easiest
to understand by noting that targets on the left aren't a real tuple, even though
they look like one; they are simply a set of independent assignment targets. The
items on the right are a tuple, which get unpacked during the assignment (the
tuple provides the temporary assignment needed to achieve the swap effect).

>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X
>>> X
'eggs'
>>> Y
'spam'

5. Dictionary keys. Any immutable object can be used as a dictionary key—
integers, tuples, strings, and so on. This really is a dictionary, even though
some of its keys look like integer offsets. Mixed type keys work fine too.

>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

6. Dictionary indexing. Indexing a nonexistent key (D['d']) raises an error;
assigning to a nonexistent key (D['d'] = 'spam') creates a new dictionary

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assigning to a nonexistent key (D['d'] = 'spam') creates a new dictionary
entry. On the other hand, out-of-bounds indexing for lists raises an error too, but
so do out-of-bounds assignments. Variable names work like dictionary keys:
they must have already been assigned when referenced, but are created when
first assigned. In fact, variable names can be processed as dictionary keys if
you wish (they're visible in module namespace or stack-frame dictionaries).

>>> D = {'a':1, 'b':2, 'c':3}
>>> D['a']
1
>>> D['d']
Traceback (innermost last):
 File "<stdin>", line 1, in ?
KeyError: d
>>> D['d'] = 4
>>> D
{'b': 2, 'd': 4, 'a': 1, 'c': 3}
>>>
>>> L = [0,1]
>>> L[2]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range
>>> L[2] = 3
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range

7. Generic operations.

a. The + operator doesn't work on different/mixed types (e.g., string + list, list
+ tuple).

b. + doesn't work for dictionaries, because they aren't sequences.

c. The append method works only for lists, not strings, and keys works only
on dictionaries. append assumes its target is mutable, since it's an in-
place extension; strings are immutable.

d. Slicing and concatenation always return a new object of the same type as
the objects processed.

>>> "x" + 1
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: illegal argument type for built-in operation
>>>
>>> {} + {}
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: bad operand type(s) for +
>>>
>>> [].append(9)
>>> "".append('s')

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> "".append('s')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: attribute-less object
>>>
>>> {}.keys()
[]
>>> [].keys()
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: keys
>>>
>>> [][:]
[]
>>> ""[:]
''

8. String indexing. Since strings are collections of one-character strings, every
time you index a string, you get back a string, which can be indexed again.
S[0][0][0][0][0] just keeps indexing the first character over and over. This
generally doesn't work for lists (lists can hold arbitrary objects), unless the list
contains strings.

>>> S = "spam"
>>> S[0][0][0][0][0]
's'
>>> L = ['s', 'p']
>>> L[0][0][0]
's'

9. Immutable types. Either of the solutions below work. Index assignment doesn't,
because strings are immutable.

>>> S = "spam"
>>> S = S[0] + 'l' + S[2:]
>>> S
'slam'
>>> S = S[0] + 'l' + S[2] + S[3]
>>> S
'slam'

10. Nesting. Your mileage will vary.

>>> me = {'name':('mark', 'e', 'lutz'), 'age':'?', 'job':'engineer'}
>>> me['job']
'engineer'
>>> me['name'][2]
'lutz'

11. Files.

% cat maker.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cat maker.py
file = open('myfile.txt', 'w')
file.write('Hello file world!\n')
file.close() # close not always needed

% cat reader.py
file = open('myfile.txt', 'r')
print file.read()

% python maker.py
% python reader.py
Hello file world!

% ls -l myfile.txt
-rwxrwxrwa 1 0 0 19 Apr 13 16:33 myfile.txt

12. The dir function revisited: Here's what you get for lists; dictionaries do the same
(but with different method names).

>>> [].__methods__
['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort']
>>> dir([])
['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort']

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.3 Chapter 3

1. Coding basic loops. If you work through this exercise, you'll wind up with code
that looks like the following:

>>> S = 'spam'
>>> for c in S:
... print ord(c)
...
115
112
97
109

>>> x = 0
>>> for c in S: x = x + ord(c)
...
>>> x
433

>>> x = []
>>> for c in S: x.append(ord(c))
...
>>> x
[115, 112, 97, 109]

>>> map(ord, S)
[115, 112, 97, 109]

2. Backslash characters. The example prints the bell character (\a) 50 times;
assuming your machine can handle it, you'll get a series of beeps (or one long
tone, if your machine is fast enough). Hey—we warned you.

3. Sorting dictionaries. Here's one way to work through this exercise; see Chapter
2 if this doesn't make sense:

>>> D = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6, 'g':7}
>>> D
{'f': 6, 'c': 3, 'a': 1, 'g': 7, 'e': 5, 'd': 4, 'b': 2}
>>>
>>> keys = D.keys()
>>> keys.sort()
>>> for key in keys:
... print key, '=>', D[key]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

... print key, '=>', D[key]

...
a => 1
b => 2
c => 3
d => 4
e => 5
f => 6
g => 7

4. Program logic alternatives. Here's how we coded the solutions; your results may
vary a bit.

a. L = [1, 2, 4, 8, 16, 32, 64]
X = 5

i = 0
while i < len(L):
 if 2 ** X == L[i]:
 print 'at index', i
 break
 i = i+1
else:
 print X, 'not found'

b. L = [1, 2, 4, 8, 16, 32, 64]
X = 5

for p in L:
 if (2 ** X) == p:
 print (2 ** X), 'was found at', L.index(p)
 break
else:
 print X, 'not found'

c. L = [1, 2, 4, 8, 16, 32, 64]
X = 5

if (2 ** X) in L:
 print (2 ** X), 'was found at', L.index(2 ** X)
else:
 print X, 'not found'

d. X = 5
L = []
for i in range(7): L.append(2 ** i)
print L

if (2 ** X) in L:
 print (2 ** X), 'was found at', L.index(2 ** X)
else:
 print X, 'not found'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 print X, 'not found'

e. X = 5
L = map(lambda x: 2**x, range(7))
print L

if (2 ** X) in L:
 print (2 ** X), 'was found at', L.index(2 ** X)
else:
 print X, 'not found'

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.4 Chapter 4

1. Basics.

% python
>>> def func(x): print x
...
>>> func("spam")
spam
>>> func(42)
42
>>> func([1, 2, 3])
[1, 2, 3]
>>> func({'food': 'spam'})
{'food': 'spam'}

2. Arguments. Here's what one solution looks like. You have to use print to see
results in the test calls, because a file isn't the same as code typed interactively;
Python doesn't echo the results of expression statements.

% cat mod.py
def adder(x, y):
 return x + y

print adder(2, 3)
print adder('spam', 'eggs')
print adder(['a', 'b'], ['c', 'd'])

% python mod.py
5
spameggs
['a', 'b', 'c', 'd']

3. varargs. Two alternative adder functions are shown in the following code. The
hard part here is figuring out how to initialize an accumulator to an empty value
of whatever type is passed in. In the first solution, we use manual type testing to
look for an integer and an empty slice of the first argument (assumed to be a
sequence) otherwise. In the second solution, we just use the first argument to
initialize and scan items 2 and beyond. The second solution is better (and
frankly, comes from students in a Python course, who were frustrated with trying
to understand the first solution). Both of these assume all arguments are the
same type and neither works on dictionaries; as we saw in Chapter 2, +
doesn't work on mixed types or dictionaries. We could add a type test and
special code to add dictionaries too, but that's extra credit.

% cat adders.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cat adders.py
def adder1(*args):
 print 'adder1',
 if type(args[0]) == type(0): # integer?
 sum = 0 # init to zero
 else: # else sequence:
 sum = args[0][:0] # use empty slice of arg1
 for arg in args:
 sum = sum + arg
 return sum

def adder2(*args):
 print 'adder2',
 sum = args[0] # init to arg1
 for next in args[1:]:
 sum = sum + next # add items 2..N
 return sum

for func in (adder1, adder2):
 print func(2, 3, 4)
 print func('spam', 'eggs', 'toast')
 print func(['a', 'b'], ['c', 'd'], ['e', 'f'])

% python adders.py
adder1 9
adder1 spameggstoast
adder1 ['a', 'b', 'c', 'd', 'e', 'f']
adder2 9
adder2 spameggstoast
adder2 ['a', 'b', 'c', 'd', 'e', 'f']

4. Keywords. Here is our solution to the first part of this one. To iterate over
keyword arguments, use a **args for in the function header and use a loop
like: for x in args.keys(): use args[x]

% cat mod.py
def adder(good=1, bad=2, ugly=3):
 return good + bad + ugly

print adder()
print adder(5)
print adder(5, 6)
print adder(5, 6, 7)
print adder(ugly=7, good=6, bad=5)

% python mod.py
6
10
14
18
18

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18

5. and 6. Here are our solutions to Exercises 5 and 6, but Guido has already made
them superfluous; Python 1.5 includes new dictionary methods, to do things like
copying and adding (merging) dictionaries. See Python's library manual or the
Python Pocket Reference for more details. X[:] doesn't work for dictionaries,
since they're not sequences (see Chapter 2). Notice that if we assign (e = d)
rather than copy, we generate a reference to a shared dictionary object;
changing d changes e too.

% cat dict.py
def copyDict(old):
 new = {}
 for key in old.keys():
 new[key] = old[key]
 return new

def addDict(d1, d2):
 new = {}
 for key in d1.keys():
 new[key] = d1[key]
 for key in d2.keys():
 new[key] = d2[key]
 return new

% python
>>> from dict import *
>>> d = {1:1, 2:2}
>>> e = copyDict(d)
>>> d[2] = '?'
>>> d
{1: 1, 2: '?'}
>>> e
{1: 1, 2: 2}

>>> x = {1:1}
>>> y = {2:2}
>>> z = addDict(x, y)
>>> z
{1: 1, 2: 2}

6. More argument matching examples. Here is the sort of interaction you should
get, along with comments that explain the matching that goes on:

def f1(a, b): print a, b # normal args

def f2(a, *b): print a, b # positional varargs

def f3(a, **b): print a, b # keyword varargs

def f4(a, *b, **c): print a, b, c # mixed modes

def f5(a, b=2, c=3): print a, b, c # defaults

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

def f6(a, b=2, *c): print a, b, c # defaults + positional varargs

% python
>>> f1(1, 2) # matched by position (order matters)
1 2
>>> f1(b=2, a=1) # matched by name (order doesn't matter)
1 2

>>> f2(1, 2, 3) # extra positionals collected in a tuple
1 (2, 3)

>>> f3(1, x=2, y=3) # extra keywords collected in a dictionary
1 {'x': 2, 'y': 3}

>>> f4(1, 2, 3, x=2, y=3) # extra of both kinds
1 (2, 3) {'x': 2, 'y': 3}

>>> f5(1) # both defaults kick in
1 2 3
>>> f5(1, 4) # only one default used
1 4 3

>>> f6(1) # one argument: matches "a"
1 2 ()
>>> f6(1, 3, 4) # extra positional collected
1 3 (4,)

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.5 Chapter 5

1. Basics, import. This one is simpler than you may think. When you're done, your
file and interaction should look close to the following code; remember that
Python can read a whole file into a string or lines list, and the len built-in
returns the length of strings and lists:

% cat mymod.py
def countLines(name):
 file = open(name, 'r')
 return len(file.readlines())

def countChars(name):
 return len(open(name, 'r').read())

def test(name): # or pass file object
 return countLines(name), countChars(name) # or return a dictionary

% python
>>> import mymod
>>> mymod.test('mymod.py')
(10, 291)

On Unix, you can verify your output with a wc command. Incidentally, to do the
"ambitious" part (passing in a file object, so you only open the file once), you'll
probably need to use the seek method of the built-in file object. We didn't cover
it in the text, but it works just like C's fseek call (and calls it behind the scenes);
seek resets the current position in the file to an offset passed in. To rewind to
the start of a file without closing and reopening, call file.seek (0); the file read
methods all pick up at the current position in the file, so you need to rewind to
reread. Here's what this tweak would look like:

% cat mymod2.py
def countLines(file):
 file.seek(0) # rewind to start of file
 return len(file.readlines())

def countChars(file):
 file.seek(0) # ditto (rewind if needed)
 return len(file.read())

def test(name):
 file = open(name, 'r') # pass file object
 return countLines(file), countChars(file) # only open file once

>>> import mymod2
>>> mymod2.test("mymod2.py")
(11, 392)

2. from/from*. Here's the from* bit; replace * with countChars to do the rest:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

from/from*. Here's the from* bit; replace * with countChars to do the rest:

% python
>>> from mymod import *
>>> countChars("mymod.py")
291

3. __main__. If you code it properly, it works in either mode (program run or
module import):

% cat mymod.py
def countLines(name):
 file = open(name, 'r')
 return len(file.readlines())

def countChars(name):
 return len(open(name, 'r').read())

def test(name): # or pass file object
 return countLines(name), countChars(name) # or return a dictionary

if __name__ == '__main__':
 print test('mymod.py')

% python mymod.py
(13, 346)

4. Nested imports. Our solution for this appears below:

% cat myclient.py
from mymod import countLines
from mymod import countChars
print countLines('mymod.py'), countChars('mymod.py')

% python myclient.py
13 346

As for the rest of this one: mymod 's functions are accessible (that is,
importable) from the top level of myclient, since from assigns just to names in
the importer (it's as if mymod 's defs appeared in myclient). If myclient used
import, you'd need to use a path to get to the functions in mymod from myclient
(for instance, myclient.mymod.countLines). In fact, you can define
collector modules that import all the names from other modules, so they're
available in a single convenience module. Using the following code, you wind
up with three different copies of name somename: mod1.somename,
collector.somename, and _ _main__.somename; all three share the same
integer object initially.

% cat mod1.py
somename = 42

% cat collector.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% cat collector.py
from mod1 import * # collect lots of names here
from mod2 import * # from assigns to my names
from mod3 import *

>>> from collector import somename
5. Reload. This exercise just asks you to experiment with changing the changer.py

example in the book, so there's not much for us to show here. If you had some
fun with it, give yourself extra points.

6. Circular imports. The short story is that importing recur2 first works, because
the recursive import then happens at the import in recur1, not at a from in
recur2. The long story goes like this: importing recur2 first works, because
the recursive import from recur1 to recur2 fetches recur2 as a whole,
instead of getting specific names. recur2 is incomplete when imported from
recur1, but because it uses import instead of from, you're safe: Python finds
and returns the already created recur2 module object and continues to run the
rest of recur1 without a glitch. When the recur2 import resumes, the second
from finds name Y in recur1 (it's been run completely), so no error is reported.
Running a file as a script is not the same as importing it as a module; these
cases are the same as running the first import or from in the script
interactively. For instance, running recur1 as a script is the same as importing
recur2 interactively, since recur2 is the first module imported in recur1. (E-
I-E-I-O!)

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.6 Chapter 6

1. The basics. Here's the solution we coded up for this exercise, along with some
interactive tests. The __add__ overload has to appear only once, in the
superclass. Notice that you get an error for expressions where a class instance
appears on the right of a +; to fix this, use __radd__ methods also (an
advanced topic we skipped; see other Python books and/or Python reference
manuals for more details). You could also write the add method to take just two
arguments, as shown in the chapter's examples.

% cat adder.py
class Adder:
 def add(self, x, y):
 print 'not implemented!'
 def __init__(self, start=[]):
 self.data = start
 def __add__(self, other):
 return self.add(self.data, other) # or in subclasses--return type?

class ListAdder(Adder):
 def add(self, x, y):
 return x + y

class DictAdder(Adder):
 def add(self, x, y):
 new = {}
 for k in x.keys(): new[k] = x[k]
 for k in y.keys(): new[k] = y[k]
 return new

% python
>>> from adder import *
>>> x = Adder()
>>> x.add(1, 2)
not implemented!
>>> x = ListAdder()
>>> x.add([1], [2])
[1, 2]
>>> x = DictAdder()
>>> x.add({1:1}, {2:2})
{1: 1, 2: 2}

>>> x = Adder([1])
>>> x + [2]
not implemented!
>>>
>>> x = ListAdder([1])
>>> x + [2]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> x + [2]
[1, 2]
>>> [2] + x
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: __add__ nor __radd__ defined for these operands

2. Operator overloading. Here's what we came up with for this one. It uses a few
operator overload methods we didn't say much about, but they should be
straightforward to understand. Copying the initial value in the constructor is
important, because it may be mutable; you don't want to change or have a
reference to an object that's possibly shared somewhere outside the class. The
routes method __getattr__ calls to the wrapped list:

% cat mylist.py
class MyList:
 def __init__(self, start):
 #self.wrapped = start[:] # copy start: no side effects
 self.wrapped = [] # make sure it's a list here
 for x in start: self.wrapped.append(x)
 def __add__(self, other):
 return MyList(self.wrapped + other)
 def __mul__(self, time):
 return MyList(self.wrapped * time)
 def __getitem__(self, offset):
 return self.wrapped[offset]
 def __len__(self):
 return len(self.wrapped)
 def __getslice__(self, low, high):
 return MyList(self.wrapped[low:high])
 def append(self, node):
 self.wrapped.append(node)
 def __getattr__(self, name): # other members--sort/reverse/etc.
 return getattr(self.wrapped, name)
 def __repr__(self):
 return `self.wrapped`

if __name__ == '__main__':
 x = MyList('spam')
 print x
 print x[2]
 print x[1:]
 print x + ['eggs']
 print x * 3
 x.append('a')
 x.sort()
 for c in x: print c,

% python mylist.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% python mylist.py
['s', 'p', 'a', 'm']
a
['p', 'a', 'm']
['s', 'p', 'a', 'm', 'eggs']
['s', 'p', 'a', 'm', 's', 'p', 'a', 'm', 's', 'p', 'a', 'm']
a a m p s

3. Subclassing. Our solution appears below. Your solution should appear similar.

% cat mysub.py
from mylist import MyList

class MyListSub(MyList):
 calls = 0 # shared by instances

 def __init__(self, start):
 self.adds = 0 # varies in each instance
 MyList.__init__(self, start)

 def __add__(self, other):
 MyListSub.calls = MyListSub.calls + 1 # class-wide counter
 self.adds = self.adds + 1 # per instance counts
 return MyList.__add__(self, other)

 def stats(self):
 return self.calls, self.adds # all adds, my adds

if __name__ == '__main__':
 x = MyListSub('spam')
 y = MyListSub('foo')
 print x[2]
 print x[1:]
 print x + ['eggs']
 print x + ['toast']
 print y + ['bar']
 print x.stats()

% python mysub.py
a
['p', 'a', 'm']
['s', 'p', 'a', 'm', 'eggs']
['s', 'p', 'a', 'm', 'toast']
['f', 'o', 'o', 'bar']
(3, 2)

4. Metaclass methods. We worked through this exercise as follows. Notice that
operators try to fetch attributes through _ _getattr__ too; you need to return a
value to make them work.

>>> class Meta:
... def __getattr__(self, name): print 'get', name
... def __setattr__(self, name, value): print 'set', name, value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

... def __setattr__(self, name, value): print 'set', name, value

...
>>> x = Meta()
>>> x.append
get append
>>> x.spam = "pork"
set spam pork
>>>
>>> x + 2
get __coerce__
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: call of non-function
>>>
>>> x[1]
get __getitem__
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: call of non-function

>>> x[1:5]
get __len__
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: call of non-function

5. Set objects. Here's the sort of interaction you should get; comments explain
which methods are called.

% python
>>> from set import Set
>>> x = Set([1,2,3,4]) # runs __init__
>>> y = Set([3,4,5])
>>> x & y # __and__, intersect, then __repr__
Set:[3, 4]
>>> x | y # __or__, union, then __repr__
Set:[1, 2, 3, 4, 5]

>>> z = Set("hello") # __init__ removes duplicates
>>> z[0], z[-1] # __getitem__
('h', 'o')

>>> for c in z: print c, # __getitem__
...
h e l o
>>> len(z), z # __len__, __repr__
(4, Set:['h', 'e', 'l', 'o'])

>>> z & "mello", z | "mello"
(Set:['e', 'l', 'o'], Set:['h', 'e', 'l', 'o', 'm'])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Set:['e', 'l', 'o'], Set:['h', 'e', 'l', 'o', 'm'])

Our solution to the multiple-operand extension subclass looks like the class
below. It needs only to replace two methods in the original set. The class's
documentation string explains how it works:

from set import Set

class MultiSet(Set):
 """
 inherits all Set names, but extends intersect
 and union to support multiple operands; note
 that "self" is still the first argument (stored
 in the *args argument now); also note that the
 inherited & and | operators call the new methods
 here with 2 arguments, but processing more than
 2 requires a method call, not an expression:
 """

 def intersect(self, *others):
 res = []
 for x in self: # scan first sequence
 for other in others: # for all other args
 if x not in other: break # item in each one?
 else: # no: break out of loop
 res.append(x) # yes: add item to end
 return Set(res)

 def union(*args): # self is args[0]
 res = []
 for seq in args: # for all args
 for x in seq: # for all nodes
 if not x in res:
 res.append(x) # add new items to
 return Set(res)

Assuming the new set is stored in a module called multiset.py, your interaction
with the extension will be something along these lines; note that you can
intersect by using & or calling intersect, but must call intersect for three
or more operands; & is a binary (two-sided) operator:

>>> from multiset import *
>>> x = MultiSet([1,2,3,4])
>>> y = MultiSet([3,4,5])
>>> z = MultiSet([0,1,2])
>>> x & y, x | y # 2 operands
(Set:[3, 4], Set:[1, 2, 3, 4, 5])

>>> x.intersect(y, z) # 3 operands
Set:[]
>>> x.union(y, z)
Set:[1, 2, 3, 4, 5, 0]

>>> x.intersect([1,2,3], [2,3,4], [1,2,3]) # 4 operands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> x.intersect([1,2,3], [2,3,4], [1,2,3]) # 4 operands
Set:[2, 3]
>>> x.union(range(10)) # non-MultiSets work too
Set:[1, 2, 3, 4, 0, 5, 6, 7, 8, 9]

6. Class tree links. Here's the way we extended the Lister class and a rerun of
the test to show its format. To display class attributes too, you'd need to do
something like what the attrnames method currently does, but recursively, at
each class reached by climbing __bases__ links.

class Lister:
 def __repr__(self):
 return ("<Instance of %s(%s), address %s:\n%s>" %
 (self.__class__.__name__, # my class's name
 self.supers(), # my class's supers
 id(self), # my address
 self.attrnames())) # name=value list
 def attrnames(self):

 Unchanged...

def supers(self):
 result = ""
 first = 1
 for super in self.__class__.__bases__: # one level up from class
 if not first:
 result = result + ", "
 first = 0
 result = result + super.__name__
 return result

C:\python\examples> python testmixin.py
<Instance of Sub(Super, Lister), address 7841200:
 name data3=42
 name data2=eggs
 name data1=spam
>

7. Composition. Our solution is below, with comments from the description mixed
in with the code. This is one case where it's probably easier to express a
problem in Python than it is in English:

class Lunch:
 def __init__(self):
 # make/embed Customer and Employee
 self.cust = Customer()
 self.empl = Employee()
 def order(self, foodName):
 # start a Customer order simulation
 self.cust.placeOrder(foodName, self.empl)
 def result(self):
 # ask the Customer what kind of Food it has
 self.cust.printFood()

class Customer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

class Customer:
 def __init__(self):
 # initialize my food to None
 self.food = None
 def placeOrder(self, foodName, employee):
 # place order with an Employee
 self.food = employee.takeOrder(foodName)
 def printFood(self):
 # print the name of my food
 print self.food.name

class Employee:
 def takeOrder(self, foodName):
 # return a Food, with requested name
 return Food(foodName)

class Food:
 def __init__(self, name):
 # store food name
 self.name = name

if __name__ == '__main__':
 x = Lunch()
 x.order('burritos')
 x.result()
 x.order('pizza')
 x.result()

% python lunch.py
burritos
pizza

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.7 Chapter 7

1. try/except. Our version of the oops function follows. As for the noncoding
questions, changing oops to raise KeyError instead of IndexError means
that the exception won't be caught by our try handler (it "percolates" to the top
level and triggers Python's default error message). The names KeyError and
IndexError come from the outermost built-in names scope. If you don't
believe us, import _ _builtin__ and pass it as an argument to the dir
function to see for yourself.

% cat oops.py
def oops():
 raise IndexError

def doomed():
 try:
 oops()
 except IndexError:
 print 'caught an index error!'
 else:
 print 'no error caught...'

if __name__ == '__main__': doomed()

% python oops.py
caught an index error!

2. Exception lists. Here's the way we extended this module for an exception of our
own:

% cat oops.py
MyError = 'hello'

def oops():
 raise MyError, 'world'

def doomed():
 try:
 oops()
 except IndexError:
 print 'caught an index error!'
 except MyError, data:
 print 'caught error:', MyError, data
 else:
 print 'no error caught...'

if __name__ == '__main__':
 doomed()

% python oops.py

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

% python oops.py
caught error: hello world

3. Error handling. Finally, here's one way to solve this one; we decided to do our
tests in a file, rather than interactively, but the results are about the same.

% cat safe2.py
import sys, traceback

def safe(entry, *args):
 try:
 apply(entry, args) # catch everything else
 except:
 traceback.print_exc()
 print 'Got', sys.exc_type, sys.exc_value

import oops
safe(oops.oops)

% python safe2.py
Traceback (innermost last):
 File "safe2.py", line 5, in safe
 apply(entry, args) # catch everything else
 File "oops.py", line 4, in oops
 raise MyError, 'world'
hello: world
Got hello world

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.8 Chapter 8

1. Describing a directory. There are several solutions to this exercise, naturally.
One simple solution is:

import os, sys, stat

def describedir(start):
 def describedir_helper(arg, dirname, files):
 """ Helper function for describing directories """
 print "Directory %s has files:" % dirname
 for file in files:
 # find the full path to the file (directory + filename)
 fullname = os.path.join(dirname, file)
 if os.path.isdir(fullname):
 # if it's a directory, say so; no need to find the size
 print ' '+ file + ' (subdir)'
 else:
 # find out the size, and print the info.
 size = os.stat(fullname)[stat.ST_SIZE]
 print ' '+file+' size=' + `size`

 # Start the 'walk'.
 os.path.walk(start, describedir_helper, None)

which uses the walk function in the os.path module, and works just fine:

>>> import describedir
>>> describedir.describedir2('testdir')
Directory testdir has files:
 describedir.py size=939
 subdir1 (subdir)
 subdir2 (subdir)
Directory testdir\subdir1 has files:
 makezeros.py size=125
 subdir3 (subdir)
Directory testdir\subdir1\subdir3 has files:
Directory testdir\subdir2 has files:

Note that you could have found the size of the files by doing
len(open(fullname, 'rb').read()), but this works only when you have
read access to all the files and is quite inefficient. The stat call in the os
module gives out all kinds of useful information in a tuple, and the stat module
defines some names that make it unnecessary to remember the order of the
elements in that tuple. See the Library Reference for details.

2. Modifying the prompt. The key to this exercise is to remember that the ps1 and
ps2 attributes of the sys module can be anything, including a class instance
with a __repr__ or _ _str__ method. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with a __repr__ or _ _str__ method. For example:

import sys, os
class MyPrompt:
 def __init__(self, subprompt='>>> '):
 self.lineno = 0
 self.subprompt = subprompt
 def __repr__(self):
 self.lineno = self.lineno + 1
 return os.getcwd()+'|%d'%(self.lineno)+self.subprompt

sys.ps1 = MyPrompt()
sys.ps2 = MyPrompt('... ')

This code works as shown (use the -i option of the Python interpreter to make
sure your program starts right away):

h:\David\book> python -i modifyprompt.py
h:\David\book|1>>> x = 3
h:\David\book|2>>> y = 3
h:\David\book|3>>> def foo():
h:\David\book|3... x = 3 # the secondary prompt is supported
h:\David\book|3...
h:\David\book|4>>> import os
h:\David\book|5>>> os.chdir('..')
h:\David|6>>> # note the prompt changed!

3. Avoiding regular expressions. This program is long and tedious, but not
especially complicated. See if you can understand how it works. Whether this is
easier for you than regular expressions depends on many factors, such as your
familiarity with regular expressions and your comfort with the functions in the
string module. Use whichever type of programming works for you.

import string
file = open('pepper.txt')
text = file.read()
paragraphs = string.split(text, '\n\n')

def find_indices_for(big, small):
 indices = []
 cum = 0
 while 1:
 index = string.find(big, small)
 if index == -1:
 return indices
 indices.append(index+cum)
 big = big[index+len(small):]
 cum = cum + index + len(small)

def fix_paragraphs_with_word(paragraphs, word):
 lenword = len(word)
 for par_no in range(len(paragraphs)):
 p = paragraphs[par_no]
 wordpositions = find_indices_for(p, word)
 if wordpositions == []: return

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if wordpositions == []: return
 for start in wordpositions:
 # look for 'pepper' ahead
 indexpepper = string.find(p, 'pepper')
 if indexpepper == -1: return -1
 if string.strip(p[start:indexpepper]) != '':
 # something other than whitespace in between!
 continue
 where = indexpepper+len('pepper')
 if p[where:where+len('corn')] == 'corn':
 # it's immediately followed by 'corn'!
 continue
 if string.find(p, 'salad') < where:
 # it's not followed by 'salad'
 continue
 # Finally! we get to do a change!
 p = p[:start] + 'bell' + p[start+lenword:]
 paragraphs[par_no] = p # change mutable argument!

fix_paragraphs_with_word(paragraphs, 'red')
fix_paragraphs_with_word(paragraphs, 'green')

for paragraph in paragraphs:
 print paragraph+'\n'

We won't repeat the output here; it's the same as that of the regular expression
solution.

4. Wrapping a text file with a class. This one is surprisingly easy, if you understand
classes and the split function in the string module. The following is a
version that has one little twist over and beyond what we asked for:

import string

class FileStrings:
 def __init__(self, filename=None, data=None):
 if data == None:
 self.data = open(filename).read()
 else:
 self.data = data
 self.paragraphs = string.split(self.data, '\n\n')
 self.lines = string.split(self.data, '\n')
 self.words = string.split(self.data)
 def __repr__(self):
 return self.data
 def paragraph(self, index):
 return FileStrings(data=self.paragraphs[index])
 def line(self, index):
 return FileStrings(data=self.lines[index])
 def word(self, index):
 return self.words[index]

This solution, when applied to the file pepper.txt, gives:

>>> from FileStrings import FileStrings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>>> from FileStrings import FileStrings
>>> bigtext = FileStrings('pepper.txt')
>>> print bigtext.paragraph(0)
This is a paragraph that mentions bell peppers multiple times. For
one, here is a red Pepper and dried tomato salad recipe. I don't like
to use green peppers in my salads as much because they have a harsher
flavor.
>>> print bigtext.line(0)
This is a paragraph that mentions bell peppers multiple times. For
>>> print bigtext.line(-4)
aren't peppers, they're chilies, but would you rather have a good cook
>>> print bigtext.word(-4)
botanist

How does it work? The constructor simply reads all the file into a big string (the
instance attribute data) and then splits it according to the various criteria,
keeping the results of the splits in instance attributes that are lists of strings.
When returning from one of the accessor methods, the data itself is wrapped in
a FileStrings object. This isn't required by the assignment, but it's nice
because it means you can chain the operations, so that to find out what the last
word of the third line of the third paragraph is, you can just write:

>>> print bigtext.paragraph(2).line(2).word(-1)
'cook'

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.9 Chapter 9

1. Redirecting stdout. This is simple: all you have to do is to replace the first line
with:

import fileinput, sys, string # no change here
sys.stdout = open(sys.argv[-1], 'w') # open the output file
del sys.argv[-1] # we've dealt with this argument
... # continue as before

2. Writing a simple shell. Mostly, the following script, which implements the Unix
set of commands (well, some of them) should be self-explanatory. Note that
we've only put a "help" message for the ls command, but there should be one
for all the other commands as well:

import cmd, os, string, sys, shutil

class UnixShell(cmd.Cmd):
 def do_EOF(self, line):
 """ The do_EOF command is called when the user presses Ctrl-D
 or Ctrl-Z (PC). """
 sys.exit()

 def help_ls(self):
 print "ls <directory>: list the contents of the specified directory"
 print " (current directory used by default)"

 def do_ls(self, line):
 # 'ls' by itself means 'list current directory'
 if line == '': dirs = [os.curdir]
 else: dirs = string.split(line)
 for dirname in dirs:
 print 'Listing of %s:' % dirname
 print string.join(os.listdir(dirname), '\n')

 def do_cd(self, dirname):
 # 'cd' by itself means 'go home'
 if dirname == '': dirname = os.environ['HOME']
 os.chdir(dirname)

 def do_mkdir(self, dirname):
 os.mkdir(dirname)

 def do_cp(self, line):
 words = string.split(line)
 sourcefiles,target = words[:-1], words[-1] # target could be a dir
 for sourcefile in sourcefiles:
 shutil.copy(sourcefile, target)

 def do_mv(self, line):
 source, target = string.split(line)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 source, target = string.split(line)
 os.rename(source, target)

 def do_rm(self, line):
 map(os.remove, string.split(line))

class DirectoryPrompt:
 def __repr__(self):
 return os.getcwd()+'> '

cmd.PROMPT = DirectoryPrompt()
shell = UnixShell()
shell.cmdloop()

Note that we've reused the same trick as in Exercise 2 of Chapter 8 to have a
prompt that adjusts with the current directory, combined with the trick of
modifying the attribute PROMPT in the cmd module itself. Of course those weren't
part of the assignment, but it's hard to just limit oneself to a simple thing when a
full-featured one will do. It works, too!

h:\David\book> python -i shell.py
h:\David\book> cd ../tmp
h:\David\tmp> ls
Listing of .:
api
ERREUR.DOC
ext
giant_~1.jpg
icons
index.html
lib
pythlp.hhc
pythlp.hhk
ref
tut
h:\David\tmp> cd ..
h:\David> cd tmp
h:\David\tmp> cp index.html backup.html
h:\David\tmp> rm backup.html
h:\David\tmp> ^Z
Of course, to be truly useful, this script needs a lot of error checking and many
more features, all of which is left, as math textbooks say, as an exercise for the
reader.

3. Understanding map, reduce and filter. The following functions do as much of the
job of map, reduce, and filter as we've told you about; if you're curious about the
differences, check the reference manual.

def map2(function, sequence):
 if function is None: return list(sequence)
 retvals = []
 for element in sequence:
 retvals.append(function(element))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 retvals.append(function(element))
 return retvals

def reduce2(function, sequence):
 arg1 = function(sequence[0])
 for arg2 in sequence[1:]:
 arg1 = function(arg1, arg2)
 return arg1

def filter2(function, sequence):
 retvals = []
 for element in sequence:
 if (function is None and element) or function(element):
 retvals.append(element)
 return retvals

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

C.10 Chapter 10

1. Faking the Web. What you need to do is to create instances of a class that has
the fieldnames attribute and appropriate instance variables. One possible
solution is:

class FormData:
 def __init__(self, dict):
 for k, v in dict.items():
 setattr(self, k, v)
class FeedbackData(FormData):
 """ A FormData generated by the comment.html form. """
 fieldnames = ('name', 'address', 'email', 'type', 'text')
 def __repr__(self):
 return "%(type)s from %(name)s on %(time)s" % vars(self)

fake_entries = [
 {'name': "John Doe",
 'address': '500 Main St., SF CA 94133',
 'email': 'john@sf.org',
 'type': 'comment',
 'text': 'Great toothpaste!'},
 {'name': "Suzy Doe",
 'address': '500 Main St., SF CA 94133',
 'email': 'suzy@sf.org',
 'type': 'complaint',
 'text': "It doesn't taste good when I kiss John!"},
]

DIRECTORY = r'C:\complaintdir'
if __name__ == '__main__':
 import tempfile, pickle, time
 tempfile.tempdir = DIRECTORY
 for fake_entry in fake_entries:
 data = FeedbackData(fake_entry)
 filename = tempfile.mktemp()
 data.time = time.asctime(time.localtime(time.time()))
 pickle.dump(data, open(filename, 'w'))

As you can see, the only thing you really had to change was the way the
constructor for FormData works, since it has to do the setting of attributes from
a dictionary as opposed to a FieldStorage object.

2. Cleaning up. There are many ways to deal with this problem. One easy one is to
modify the formletter.py program to keep a list of the filenames that it has
already processed (in a pickled file, of course!). This can be done by modifying
the if __main__ == '__name__' test to read something like this (new lines
are in bold):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if __name__ == '__main__':
 import os, pickle
 CACHEFILE = 'C:\cache.pik'
 from feedback import DIRECTORY#, FormData, FeedbackData
 if os.path.exists(CACHEFILE):
 processed_files = pickle.load(open(CACHEFILE))
 else:
 processed_files = []
 for filename in os.listdir(DIRECTORY):
 if filename in processed_files: continue # skip this filename
 processed_files.append(filename)
 data = pickle.load(open(os.path.join(DIRECTORY, filename)))
 if data.type == 'complaint':
 print "Printing letter for %(name)s." % vars(data)
 print_formletter(data)
 else:
 print "Got comment from %(name)s, skipping printing." % \
 vars(data)
 pickle.dump(processed_file, open(CACHEFILE, 'w')
As you can tell, you simply load a list of the previous filenames if it exists (and
use an empty list otherwise) and compare the filenames with entries in the list to
determine which to skip. If you don't skip one, it needs to be added to the list.
Finally, at program exit, pickle the new list.

3. Adding parametric plotting to grapher.py. This exercise is quite simple, as all
that's needed is to change the drawing code in the Chart class. Specifically, the
code between xmin, xmax = 0, N-1 and graphics.fillPolygon(...)
should be placed in an if test, so that the new code reads:

if not hasattr(self.data[0], '__len__'): # it's probably a number
 xmin, xmax = 0, N-1
 # code from existing program, up to
 graphics.fillPolygon(xs, ys, len(xs))
elif len(self.data[0]) == 2: # we'll only deal with 2-D
 xmin = reduce(min, map(lambda d: d[0], self.data))
 xmax = reduce(max, map(lambda d: d[0], self.data))

 ymin = reduce(min, map(lambda d: d[1], self.data))
 ymax = reduce(max, map(lambda d: d[1], self.data))

 zero_y = y_offset - int(-ymin/(ymax-ymin)*height)
 zero_x = x_offset + int(-xmin/(xmax-xmin)*width)

 for i in range(N):
 xs[i] = x_offset + int((self.data[i][0]-xmin)/(xmax-xmin)*width)
 ys[i] = y_offset - int((self.data[i][1]-ymin)/(ymax-ymin)*height)
 graphics.color = self.color
 if self.style == "Line":
 graphics.drawPolyline(xs, ys, len(xs))
 else:
 xs.append(xs[0]); ys.append(ys[0])
 graphics.fillPolygon(xs, ys, len(xs))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 graphics.fillPolygon(xs, ys, len(xs))

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Learning Python is a wood rat (Neotoma, family Muridae).
The wood rat lives in a wide range of living conditions (mostly rocky, scrub, and
desert areas) over much of North and Central America, generally at some distance
from humans, though they occasionally damage some crops. They are good climbers,
nesting in trees or bushes up to six meters off the ground; some species burrow
underground or in rock crevices or inhabit other species' abandoned holes.

These greyish-beige, medium-sized rodents are the original pack rats: they carry
anything and everything into their homes, whether or not it's needed, and are
especially attracted to shiny objects such as tin cans, glass, and silverware.

Mary Anne Weeks Mayo was the production editor and copyeditor of Learning
Python; Sheryl Avruch was the production manager; Jane Ellin, Melanie Wang, and
Clairemarie Fisher O'Leary provided quality control. Robert Romano created the
illustrations using Adobe Photoshop 4 and Macromedia FreeHand 7. Mike Sierra
provided FrameMaker technical support. Ruth Rautenberg wrote the index, with input
from Seth Maislin.

Edie Freedman designed the cover of this book, using a 19th-century engraving from
the Dover Pictorial Archive. The cover layout was produced with Quark XPress 3.32
using the ITC Garamond font.

The inside layout was designed by Alicia Cech and implemented in FrameMaker 5.5
by Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond
Book. This colophon was written by Nancy Kotary.

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

A

 abs function

 __add__ method , 2nd

 addition operator

 Alice

 Amiga Python distributions

 & (bitwise and) operator

 and operator , 2nd

 append method , 2nd , 3rd

 apply function

 argument passing

 arbitrary-argument set functions (example)

 assignment

 keywords, defaults (example)

 matching modes

 ordering rules

 return statement

 arguments

 argv attribute (sys module) , 2nd

 assert statement

 assignment references versus copies

 assignment statements

 forms

 implicit

 object references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 variable name rules

 * (multiplication) operator , 2nd

 automated dial-out script

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

A

 abs function

 __add__ method , 2nd

 addition operator

 Alice

 Amiga Python distributions

 & (bitwise and) operator

 and operator , 2nd

 append method , 2nd , 3rd

 apply function

 argument passing

 arbitrary-argument set functions (example)

 assignment

 keywords, defaults (example)

 matching modes

 ordering rules

 return statement

 arguments

 argv attribute (sys module) , 2nd

 assert statement

 assignment references versus copies

 assignment statements

 forms

 implicit

 object references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 variable name rules

 * (multiplication) operator , 2nd

 automated dial-out script

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

B

 backslash

 != comparison operator

 BeOS Python distribution

 binary files

 binary Python distribution

 bitwise operations

 bitwise operators

 blank lines

 block delimiters

 books for further reading

 Boolean operators

 bound instance methods

 {} (braces)

 [] (brackets) , 2nd , 3rd

 break statement

 built-in functions , 2nd

 built-in modules

 binary files

 cgi module

 debugging

 Internet data processing

 Internet protocols

 pickle

 profiling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 string constants

 string functions

 time module

 Tkinter

 urllib

 urlparse

 built-in object types , 2nd

 __builtins__ namespace

 bytecode , 2nd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

C

 C source-code Python distribution

 C++ language , 2nd

 ^ (bitwise exclusive or) operator

 case-independent sort

 case sensitivity, names

 cgi module

 CGI scripts

 GUI programs vs.

 chr function , 2nd

 class attributes

 class exceptions

class gotchas

 changing attributes

 class function attributes

 methods, classes, nested scopes

 multiple inheritance order

 class methods, using (example)

 class statement

 class attributes

 default behavior

classes

 __add__ method , 2nd

 built-in objects, extending

 designing with OOP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 documentation strings

 generic object factories

 __getattr__ method

 __getitem__ method

 inheritance

 __init__ constructor , 2nd , 3rd

 instance objects

 modules, versus

 __mul__ method

 multiple instance objects

 name mangling

 namespace rules

 OOP (example)

 operator overloading , 2nd

 persistence

 reasons for

 __repr__ method

 subclasses

 superclasses

 close function

 Cmd class

 how works

 interactive functionality

 cmp function

code

 C, Python and

 column 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 modules

 reuse

 coding gotchas

 \: (colon) , 2nd , 3rd , 4th

 colons, compound statements

 COM framework , 2nd

 finding information on

 formletter.py

 command line arguments , 2nd , 3rd

 comments

 comparing numbers , 2nd

 comparison operators

 comparisons

 compile function

 complex function

 complex numbers , 2nd

 composition , 2nd

 compound statements pattern

 compounding interest

 concatenation

 concatenation (+) operator , 2nd

 concept hierarchy

 conferences

 constructor, class , 2nd , 3rd

 continue statement

 Contributed Modules

 control-flow statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 control-flows, unusual

 conversions , 2nd , 3rd

 copy function

 copy module

copying

 copy module

 references vs. , 2nd , 3rd

 counter loops , 2nd

 cPickle , 2nd

 csh shell

 cString

 custom sort

 cyclic data, printing

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

D

 data hiding

 data structure manipulation

 copy module

 making copies inline , 2nd , 3rd

 making new lists, dictionaries

 making new structures and

 sorting

 sorting, randomizing

 UserDict class

 UserList class

 databases

 dbm files , 2nd

 debugging

 debugging modules

 declared global

 def statement , 2nd

 default arguments

 del statement , 2nd , 3rd , 4th

 delattr function

 delegation (OOP)

 __dict__ attribute

 __dict__ attribute , 2nd , 3rd

dictionaries

 assigning indexes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 changing

 characteristics of

 common constants, operations

 copying

 interfaces

 keys

 namespace

 operations

 sequence operations

 Digital Creations

 dir function , 2nd , 3rd , 4th

 directory file manipulation

 distributions

 binary and source forms

 Java

 Linux

 Macintosh

 other platforms

 Unix

 Windows

 division operator

 __doc__ attribute

 documentation

 COM

 Tkinter

 documentation strings

 DOS/Windows 3.1 Python distributions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 downloading Python distributions

 downloading web pages

 dynamic typing , 2nd , 3rd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

E

 elif clause

 else (loops) , 2nd , 3rd

 else statement

 Emacs

 email processing

 embedding Python in C

 empty sequences

 empty strings

 encapsulation

 environment

 == comparison operator , 2nd

 equality tests , 2nd

 See : exceptions errors

 escaping quotes

 eval function

 event notification

 exception gotchas

 catching too little

 catching too much

 matching

 exceptions , 2nd

 assert statement

 catching 1-of-N

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 catching built-in (example)

 class

 error messages (example)

 finally statement

 nest at runtime

 outer try

 passing extra data

 raising

 raw_input

 reasons for

 search routine

 try statement

 try/except/else statement

 try/finally statement

 user-defined (example)

 uses of

 using vs. not using

 exec statement , 2nd

 execfile function

 expression operators

 list of

 mixed types

 overloading

 parentheses

 precedence rules

 expressions

 common

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 functions, methods

 printing values

 Extending and Embedding

 extending Python with C

 ExtensionClass

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

F

 factories

 false objects

 FAQ list

 feedback.py program

 file manipulation

 each line

 fileinput module

 filenames, directories

 glob module

 open and close functions

 scanning text files

 set of files, command line

 sys module

 temporary files

 file scanner loops

 fileinput module

 filename manipulation

files

 basics (example)

 operations

 Python tools

 filter built-in function

 finally statement

 find shell command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 float function

 float, C

 floating-point numbers

 Fnorb

 for loop

 example

 format

 formatting strings

 FormEditor program

 add_variable

 code

 feedback.py vs.

 for loop block

 load_data function

 select method

 formletter.py program

 forward references

 frameworks , 2nd

 COM

 design considerations

 Numeric Python (NumPy)

 Python Imaging Library (PIL)

 Python MegaWidgets (Pmw)

 SWIG (Simple Wrapper Interface Generator)

 Swing Java GUI

 freeware

 freezing Python

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 from statement , 2nd , 3rd

 general form

from statement

 for assignments

 function gotchas

 defaults, mutable objects

 nesting

 reference defaults

 static name detection

 function results

 functions

 apply function

 argument passing

 attribute manipulations

 built-in

 call syntax

 code reuse

 comparisons

 design concepts

 example

 executing Python code

 general form of

 global statement , 2nd

 indirect calls

 inputs, outputs

 lambda expressions

 map function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 numbers

 object attribute manipulation

 Python procedures

 return statement

 scope rules in

 sys module

 type constraints

 type conversions

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

G

 Gadfly

 garbage collection , 2nd

 __getattr__ method

 getattr function , 2nd

 __getitem__ method

 glob module

 global scope

 global statement , 2nd

 gotchas

 built-in object types

 class

 coding

 exception

 function

 module

 grapher.py , 2nd

 GUI programming , 2nd

 design considerations

 Tkinter test

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

H

 Hammond, Mark

 has-a relation

 hasattr function , 2nd

 hello world program

 hex function

 hexadecimal constants

 HTML , 2nd

 Hugunin, Jim , 2nd

 - (unary negation) operator

 - (subtraction) operator

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

I

 identity tests , 2nd

 idle (integrated development environment)

 if statement , 2nd

 ILU

 imaginary numbers

 immutable sequences

 immutable types, changing

 import statement , 2nd

 as assignment

 general form

 importing modules , 2nd

 in operator

 indentation

 indexing , 2nd

 dictionaries

 __getitem__ method

 lists

 inheritance , 2nd

 classes

 namespace tree construction

 specialization methods

 __init__ constructor , 2nd

 __init__ constructor

 installation, binary, C-source code forms

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 instance objects, classes

 int function , 2nd

 integers , 2nd , 3rd

 integration with C , 2nd , 3rd , 4th

 See : Java/JPython integration with Java

 interactive command line, Python

 interactive prompt >>>

 interactive rolodex

 interest calculations

 interest.py program

Internet

 automated dial-out

 cgi module

 data processing

 downloading web pages

 protocols

 urllib module

 urlparse module

 utility modules

 interpreter, defined

 is not operator

 is operator , 2nd

 is-a relation

 iteration , 2nd , 3rd , 4th

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

J

 J suffix for imaginary numbers

 Java/JPython

 distribution

 installation

 Java libraries

 Java scripting

 Java, versus

 swing application, grapher.py

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

K

 keyword arguments , 2nd

 ksh shell

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

L

 L for long integers

 lambda expressions , 2nd

 lambda operator

 Language Reference, The

 launching Python programs

 < comparison operator

 <= comparison operator

 << shift operator

 <> comparison operator

 len function

 LGB rule

 Library Reference, The

 Linux Python distributions

 list function

lists

 basic operations of

 changing, in place

 common constants, operations

 copying

 indexing and slicing

 main properties of

 local scope

 logical operators

 long function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 long integers , 2nd

 long, C

 loop else

 loops

 example

 file scanner

 Lundh, Fredrik

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

M

 Macintosh Python distributions

 mail servers

 mailing lists

 makepy.py program

 See : documentation manuals

 map function

 mapping

 max function

 McFarlane, Greg

 Medusa

 See : in operator membership test

 metaprograms

methods

 bound, unbound

 names available

 Microsoft's Common Object Model (COM) , 2nd

 min function

 mixed types, expression operators

 mixin classes

module files

 defined

 names

 module gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 module gotchas

 from statement

 import, from statements

 recursive imports

 reload

 statement order

 modules , 2nd , 3rd

 classes, versus

 compilation model

 creating

 data hiding convention

 defined

 design concepts

 import, reload

 importing

 metaprograms

 __name__ and __main__

 namespaces

 packages

 PYTHONPATH variable and

 roles of

 search path

 shipping options

 using

 modulus operator

 __mul__ method

multiple inheritance

 classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mixin

 order

 multiple-target assignments

 multiplication operator

 mutability , 2nd , 3rd , 4th

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

N

names

 assignment

 conventions for , 2nd

 mangling

 module files

 namespace

 qualification

 reference

 variable, rules

 namespaces , 2nd

 built-in functions

 class statement (example)

 dictionaries

 LGB rule

 modules , 2nd

 names

 qualified names

 tree construction

 unqualified names

 negation operator

 nested blocks

 nesting scopes

 newsgroups

 None object , 2nd , 3rd , 4th , 5th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 not operator

 not in operator

 not operator

 numbers

 numeric conversion (in expressions)

numeric objects

 basic operations

 bitwise operations

 built-in tools

 built-in tools, extensions

 complex numbers

 long integers

 standard

 numeric precision

 numeric programming

 Numeric Python (NumPy)

 NumPy numeric programming extension

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

O

 See : OOP object-oriented programming

 object persistence

object reference

 creation

 functions

 Object Request Broker service , 2nd

object type

 conversions

 extending (classes)

 numbers

 objects

 classification

 comparisons

 equality tests

 factories

 lists

 methods (bound, unbound)

 shared references

 truth

 oct function

 octal constants

 OOP (object-oriented programming)

 class objects, instance objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 classes (example)

 composition (has-a)

 delegation

 designing with

 factories

 inheritance (is-a)

 open function

 open pairs rule

 open source software

 OpenVMS Python distributions

 operator overloading

 classes

 methods sampling

 operator precedence rules

 or operator , 2nd

 ord function , 2nd

 os module , 2nd

 attribute definition

 functions (frequently used)

 string attributes

 os.environ dictionary

 os.error

 os.listdir function

 os.name

 os.path module, functions

 os.popen

 os.rename function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 os.system()

 Ousterhout, John

 outer try

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

P

 packages

 parameters

 parentheses in expressions

 pass statement

 PATH variable

 % (remainder/format) operator

 ... prompt

 Perl language

 persistence

 Peters, Tim

 pickle module , 2nd , 3rd , 4th

 + (addition/concatenation) operator

 + (addition/concatenation) operator

 + (identity) operator

 polymorphism

 portability

 portable ANSI C

 POSIX conventions

 precedence rules (operators)

 print statement

 forms

 writing to sys.stdout

 private names

 procedures, Python functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 profile module

program manipulation

 calling other programs

 os.popen

 os.system()

 program structure

 Programming Python (Lutz)

 prompts, input (>>>)

 prompts, input (...)

 prototyping

 Psion Series 5 Python distributions

 .py files

 .pyc bytecode

 .pyc files

 PyModules FAQ

 Python Consortium

 Python distributions

 Python Imaging Library (PIL)

 Python Language web site

 Python MegaWidgets (Pmw)

 Python Pocket Reference (Lutz)

 Python Software Association

 Python source tree

 Python/C API

 PYTHONPATH variable , 2nd

 PYTHONSTARTUP variable

 Pythonware

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

Q

 QNX Python distributions

 qualification, name , 2nd

 __getattr__ method

 ' (quotation mark) for strings

 " (quotation mark) for strings

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

R

 raise statement , 2nd

 random module

 range function

 raw_input function

 raw strings

 re module

 re.compile() (strings)

 read stdin

 readlines method (scanning text files)

 recursive functions

 recursive imports

 redirecting input/output

 references, copying vs. , 2nd , 3rd

 regular expressions (strings)

 reloading modules , 2nd

 example

 general form

 remainder operator

 repetition operator

 repetition, one-level deep

 __repr__ method

 reserved words

 resources

 documentation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return statement

 argument passing

 function results

 > comparison operator

 >= comparison operator

 >> shift operator

 >>> (input prompt)

running Python

 embedded code, objects

 interactive command line

 interpreter

 module files

 Unix-style scripts

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

S

 scanning text files

 if __name__ == "__main__" trick

 readlines method

 value key

 scopes , 2nd , 3rd

 example

 illustration

 LGB rule

 nesting

 Scriptics Corporation

 scripting

 scripting languages

 sequences

 setattr function

 shared object references

 shelve module

 shift operators

 shipping options

 short-circuit evaluation

 shutil module

 SIGs (special interest groups)

 size, object

 / (division) operator

 slicing , 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 slicing , 2nd

 lists

 sort method , 2nd

 See : distributions source distributions

 spaces in programs

 special interest groups (SIGs)

 Starship Python

 startup script (example)

 statements

 assignment

 defined

 delimiters for

 expressions

 summary

 syntax rules

 truth tests

 Stein, Greg

 str function

 string module , 2nd

 constants

 defining parts of

 functions

 regular expressions problem

 replacement operation

 string.find

strings

 changing, formatting

 common tools

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 constant variations

 constants, operations

 defined

 documentation (classes)

 formatting codes

 indexing

 operation basics

 raw

 slicing

 struct module

 format codes

 subclasses

 subtraction operator

 superclasses

 SWIG (Simple Wrapper Interface Generator)

 Swing Java GUI toolkit

syntax rules

 backslash

 block delimiters

 block, statement boundaries

 compound statements

 execution sequence

 open pairs

 spaces, comments

 statement delimiters

 statements

 variable names

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sys module

 sys.argv

 sys.modules

 sys.modules dictionary

 sys.path

 sys.path dictionary

 sys.platform

 sys.ps1

 sys.ps2

 sys.stderr

 sys.stdin

 sys.stdout , 2nd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

T

 tempfile module

 temporary files

 ~ (bitwise complement) operator

 time module , 2nd

 Tk/Tkinter , 2nd , 3rd

 documentation

 environment setting

 GUI (graphical user interface)

 testing

 truth

 truth tests

 try statement

 try/except/else statement

 try/finally statement

 tuple function

tuples

 assignment

 constants, operations

 copying

 defined

 properties of

 sorting contents of

 turtle.py

 Tutorial, The Python

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 type collection tuples

types

 categories of

 conversion functions

 converting

 files

 hierarchies

 mutable

 reasons for built-in

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

U

 unary operators

 unbound class methods

Unix

 extensions

 Python distributions

 Unix-like system scripts

 unpacking assignments

 urllib module

 urlparse module

 URLs, urllib module

 UserDict class

 UserList class

 users list , 2nd , 3rd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

V

 van Rossum, Guido , 2nd , 3rd

 variable name rules

 | (bitwise or) operator

 VxWorks Python distributions

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

W

web pages

 cgi module

 checking links

 downloading programmatically

 email processing

 webchecker.py (management)

 web site resources , 2nd

 Alice

 Contributed Modules

 Emacs

 FAQ

 Gadfly

 Medusa

 PyModules FAQ

 Python distribution

 Python Language

 Scriptics Corporation

 Starship Python

 while loop

 whrandom module

 win32com , 2nd

 Dispatch function

 formletter.py program

 information resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Word.Application.8

 Windows CE Python distributions

 Windows Python distributions

 Word.Application.8

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

X

 XML , 2nd , 3rd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I l@ve RuBoard

Learning Python

[A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

Z

 Zope , 2nd

I l@ve RuBoard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

