
[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Learning Unix for Mac OS X Panther

By Brian Jepson, Dave Taylor

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00617-9

Pages: 184

This compact book provides a user-friendly tour for the uninitiated of the Mac Unix base. You can safely explore
Terminal and familiarize yourself with the command line, learning as you go about the hundreds of Unix programs that
come with your Mac. You'll begin to understand the power and flexibility of Unix. And if Unix isn't new to you, you'll
discover how it translates into this latest Mac incarnation. Updated to cover Mac OS X Panther (Mac OS X 10.3), this
book will keep you current with the latest features of your Mac.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
Learning Unix for Mac OS X Panther

By Brian Jepson, Dave Taylor

Publisher: O'Reilly

Pub Date: December 2003

ISBN: 0-596-00617-9

Pages: 184

 Copyright

 Preface

 Audience

 Who This Book Is Not For

 A Brief History

 Versions of Unix

 Interfaces to Unix

 Conventions Used in This Book

 Using Code Examples

 Comments and Questions

 The Evolution of This Book

 Acknowledgments for Dave Taylor

 Acknowledgments for Brian Jepson

 Chapter 1. Getting Into Unix

 Section 1.1. Why Use Unix?

 Section 1.2. Launching Terminal

 Section 1.3. Customizing Your Shell Environment

 Section 1.4. Further Customization

 Chapter 2. Using the Terminal

 Section 2.1. Working with the Terminal

 Section 2.2. Syntax of a Unix Command Line

 Section 2.3. Types of Commands

 Section 2.4. The Unresponsive Terminal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Chapter 3. Using Unix

 Section 3.1. The Mac OS X Filesystem

 Section 3.2. Protecting and Sharing Files

 Section 3.3. Superuser Privileges with sudo

 Section 3.4. Exploring External Volumes

 Chapter 4. File Management

 Section 4.1. File and Directory Names

 Section 4.2. File and Directory Wildcards

 Section 4.3. Creating and Editing Files

 Section 4.4. A Simpler vi Alternative: Pico

 Section 4.5. Managing Files

 Chapter 5. Printing

 Section 5.1. Formatting and Print Commands

 Section 5.2. Non-PostScript Printers

 Chapter 6. Redirecting I/O

 Section 6.1. Standard Input and Standard Output

 Section 6.2. Pipes and Filters

 Chapter 7. Multitasking

 Section 7.1. Running a Command in the Background

 Section 7.2. Checking on a Process

 Section 7.3. Canceling a Process

 Chapter 8. Accessing the Internet

 Section 8.1. Remote Logins

 Section 8.2. Transferring Files

 Chapter 9. Of Windows and Downloads

 Section 9.1. X11

 Section 9.2. Fink

 Section 9.3. Some Picks

 Chapter 10. Where to Go from Here

 Section 10.1. Documentation

 Section 10.2. Shell Aliases and Functions

 Section 10.3. Programming

 Section 10.4. More Possibilities: Perl and Python

 Colophon

 Index

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Copyright

Copyright © 2004, 2003, 2002 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Learning Unix for Mac OS X Panther, the image of an Alaskan malamute, and related trade dress are
trademarks of O'Reilly & Associates, Inc.

Apple, the Apple logo, AppleScript, AppleTalk, AppleWorks, Cocoa, Finder, Mac, Macintosh, MPW, QuickDraw,
QuickTime, and Sherlock are trademarks of Apple Computer, Inc., registered in the United States and other countries.
Aqua, Carbon, and Quartz are trademarks of Apple Computer, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Preface
Mac OS X (pronounced "Mac OS Ten"), the latest incarnation of the Macintosh operating system, is a radical departure
from previous versions. Not only is there a whole new look and feel on the surface, there are also huge differences
under the hood. All the old, familiar Macintosh system software has been replaced with another operating system,
called Unix. Unix is a multiuser, multitasking operating system. Being multiuser means Mac OS X allows multiple users
to share the same system, each having the ability to customize their desktop, create files that can be kept private from
other users, and make settings that will automatically be restored whenever that person uses the computer. Being
multitasking means Mac OS X can easily run many different applications at the same time, and that if one application
crashes or hangs, the entire system doesn't need to be rebooted.

The fact that Mac OS X is Unix under the hood doesn't matter to users who simply want to use its slick graphical
interface to run their applications or manage their files. But it opens up worlds of possibilities for users who want to dig
a little deeper. The Unix command-line interface, which is accessible through a Mac application in the Utilities folder
called Terminal, provides an enormous amount of power for intermediate and advanced users. What's more, once
you've learned to use Unix in Mac OS X, you'll also be able to use the command line in other versions of Unix or the
Unix-compatible Linux.

This book is designed to teach the basics of Unix to Macintosh users. We tell you how to use the command line (which
Unix users refer to as "the shell") and the filesystem, as well as some of the most useful commands. Unix is a complex
and powerful system, so we scratch only the surface, but we also tell you how to deepen your Unix knowledge once
you're ready for more.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Audience
This book teaches basic system utility commands to get you started with Unix. Instead of overwhelming you with lots of
details, we want you to be comfortable in the Unix environment as soon as possible. So we cover each command's most
useful features instead of describing all its options in detail.

We also assume that your computer works properly; you have started it, know the procedure for turning the power off,
and know how to perform system maintenance.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Who This Book Is Not For
If you're seeking a book that talks about how to develop Cocoa programs or otherwise build Mac software applications,
this isn't your book (though it's quite helpful for developers to have a good grasp of Mac OS X Unix essentials). If you're
a complete beginner and are occasionally stymied by where the second mouse button went, this might be a better book
to put on the shelf until you're more comfortable with your computing environment. Finally, if you live and breathe Unix
every day and can make your Linux box do backflips, this book will be too basic for you (though, since we cover many
of the Mac OS X Unix nuances, you'll still glean information from reading it). We don't cover either Unix system
administration or Mac system administration from the command line.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

A Brief History
The Macintosh started out with a single-tasking operating system that allowed simple switching between applications
through an application called the Finder. More recent versions of Mac OS have supported multiple applications running
simultaneously, but it wasn't until the landmark release of Mac OS X that true multitasking arrived in the Macintosh
world. With Mac OS X, Macintosh applications run in separate memory areas; the Mac is a true multiuser system that
also finally includes proper file-level security.

To accomplish these improvements, Mac OS X made the jump from a proprietary underlying operating environment to
Unix. Mac OS X is built on top of Darwin, a version of Unix based on BSD 4.4 Lite, FreeBSD, NetBSD, and the Mach
microkernel.

Unix itself was invented more than 30 years ago for scientific and professional users who wanted a very powerful and
flexible OS. It has evolved since then through a remarkably circuitous path, with stops at Bell Telephone Labs, UC
Berkeley, research centers in Australia and Europe, and the U.S. Department of Defense Advanced Research Projects
Agency (for funding). Because Unix was designed for experts, it can be a bit overwhelming at first. But after you get the
basics (from this book!), you'll start to appreciate some of the reasons to use Unix:

It comes with a huge number of powerful application programs. You can get many others for free on the
Internet. (The Fink project, available from SourceForge (http://fink.sourceforge.net/), brings many open source
packages to Mac OS X.) You can thus do much more at a much lower cost. Another place to explore is the cool
DarwinPorts project, where a dedicated team of software developers are creating Darwin versions of many
popular Unix apps (http://www.opendarwin.org/projects/darwinports).

Not only are the applications often free, but so are some Unix (and Unix-compatible) operating systems. Linux
and FreeBSD are good examples. Like the free applications, most free Unix versions are of excellent quality.
They're maintained by volunteer programmers and corporations who want a powerful OS and are frustrated by
the slow, bug-ridden OS development at some big software companies. Mac OS X's Darwin core is a free Unix
OS (get it at http://developer.apple.com/darwin/), but it does not have Mac OS X's easy-to-use interface. Many
people use Mac OS X daily without ever knowing about all the power lurking under the hood.

Unix runs on almost any kind of computer, from tiny embedded systems to giant supercomputers. After you
read this book, you'll not only know all about Darwin, but you'll also be ready to use many other kinds of Unix-
based computers without learning a new OS for each one.

In general, Unix (especially without a windowing system) is less resource intensive than other major operating
systems. For instance, Linux will run happily on an old system with an Intel 80386 microprocessor and let
multiple users share the same computer. (Don't bother trying to use the latest versions of Microsoft Windows
on a system that's more than a few years old!) If you need a windowing system, Unix lets you choose from
modern feature-rich interfaces as well as from simple ones that need much less system power. Anyone with
limited resources—educational institutions, organizations in developing countries, and so on—can use Unix to do
more with less.

Much of the Internet's development was done on Unix systems. Many Internet web sites and service providers
use Unix because it's so flexible and inexpensive. With powerful hardware, Unix really shines.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Versions of Unix
There are several versions of Unix. Some past and present commercial versions include Solaris, AIX, and HP/UX. Freely
available versions include Linux, NetBSD, OpenBSD, and FreeBSD. Darwin, the free Unix underneath Mac OS X, was
built by grafting an advanced version called Mach onto BSD, with a light sprinkling of Apple magic for the windowing
system.

Although graphical user interfaces (GUIs) and advanced features differ among Unix systems, you should be able to use
much of what you learn from this introductory handbook on any system. Don't worry too much about what's from what
version of Unix. Just as English borrows words from French, German, Japanese, Italian, and even Hebrew, Mac OS X
Unix borrows commands from many different versions of Unix, and you can use them all without paying attention to
their origins.

From time to time, we do explain features of Unix on other systems. Knowing the differences can help you if you ever
want to use another type of Unix system. When we write "Unix" in this book, we mean "Unix and its versions," unless
we specifically mention a particular version.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Interfaces to Unix
Unix can be used as it was originally designed: on typewriter-like terminals, from a prompt on a command line. Most
versions of Unix also work with window systems (or GUIs). These allow each user to have a single screen with multiple
windows—including "terminal" windows that act like the original Unix interface.

Mac OS X includes a simple terminal application for accessing the command-line level of the system. That application,
reasonably enough, is called Terminal and can be found in the Applications Utilities folder. The Terminal
application will be examined more closely in Chapter 1 and Chapter 2.

Although you can certainly use your Mac quite efficiently without typing text at a shell prompt, we'll spend all our time
in this book on that traditional command-line interface to Unix. Why?

Every Unix system has a command-line interface. If you know how to use the command line, you'll always be
able to use the system.

If you become a more advanced Unix user, you'll find that the command line is actually much more flexible than
a windowing interface. Unix programs are designed to be used together from the command line—as "building
blocks"—in an almost infinite number of combinations, to do an infinite number of tasks. No windowing system
we've seen (yet!) has this tremendous power.

You can launch and close GUI programs from the command line.

Once you learn to use the command line, you can use those same techniques to write scripts. These little (or
big!) programs automate jobs you'd have to do manually and repetitively with a window system (unless you
understand how to program a window system, which is usually a much harder job). See Section 10.3 in Chapter
10 for a brief introduction to scripting.

In general, text-based interfaces are much easier than GUIs for sight- impaired users.

We aren't saying that the command-line interface is right for every situation. For instance, using the Web—with its
graphics and links—is usually easier with a GUI web browser within Mac OS X. But the command line is the fundamental
way to use Unix. Understanding it will let you work on any Unix system, with or without windows. A great resource for
general Mac OS X information (the GUI you're probably used to) can be found in Mac OS X: The Missing Manual by
David Pogue (Pogue Press/O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and Ctrl).

Italic

Indicates new terms, example URLs, email addresses, filenames, file extensions, pathnames, directories, and
Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes, namespaces,
methods, modules, properties, parameters, values, objects, events, event handlers, XML tags, HTML tags,
macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For
example: "Learning Unix for Mac OS X Panther, Third Edition, by Dave Taylor and Brian Jepson. Copyright 2004 O'Reilly
& Associates, Inc., 0-596-00617-9."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this
page at:

http://www.oreilly.com/catalog/lunixpanther

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

The Evolution of This Book
This book is based on the popular O'Reilly title Learning the Unix Operating System, by Jerry Peek, Grace Todino, and
John Strang (currently in its fifth edition). There are many differences in this book to meet the needs of Mac OS X
users, but the fundamental layout and explanations are the same.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments for Dave Taylor
I'd like to acknowledge the great work of Nat Torkington, our editor at O'Reilly, and the valuable information and review
of the manuscript by Apple Computer, Inc. I would also like to express my gratitude to Chuck Toporek for his valuable
comments on the draft manuscript. Thanks also to Christian Crumlish for his back-room assistance, and to Tim O'Reilly
for the opportunity to help revise the popular Learning the Unix Operating System book for the exciting new Mac OS X
world. Oh, and a big thumbs up to Linda, Ashley, Gareth, and "Peanut" for letting me type, type, and type some more,
ultimately getting this book out the door in a remarkably speedy manner.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Acknowledgments for Brian Jepson
I'd like to thank Nathan Torkington, my editor, for helping me shape, launch, and complete this project. Thanks also to
Chuck Toporek, who gave us lots of guidance on where to take this next edition. Special thanks to Joan, Seiji, and Yeuhi
for their patience as I slipped away into various corners of the house to work on this book.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 1. Getting Into Unix
One of the great pleasures of using Unix with Mac OS X surrounding it is that you get the benefit of a truly wonderful
graphical application environment and the underlying power of the raw Unix interface. A match made in heaven!

This chapter explains the how and the why: how to customize your Terminal environment both from the graphical user
interface using Terminal Window Settings and from the Unix shell by using shell configuration files, and why you'd
want to use Unix in the first place. Let's start with the question of why, shall we?

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.1 Why Use Unix?
It's an obvious question, particularly if you're a long-time Macintosh person who is familiar and happy with the
capabilities and logic of the graphical world, with its Aqua interface built on top of the Quartz rendering system. Dipping
into the primarily text-based Unix tools on your Mac OS X system can give you even greater power and control over
both your computer and your computing environment. There are other reasons, including that it's fun and there are
thousands of open source and otherwise freely downloadable Unix-based applications, particularly for science and
engineering. But, fundamentally, it's all about power and control.

As an example, consider the difference between the graphical Force Quit option on the Apple menu and the Unix
programs ps and kill. While Force Quit is more attractive, as shown in Figure 1-1, notice that it lists only a very small
number of applications.

Figure 1-1. Force Quit doesn't show all running applications

By contrast, the ps (processor status) command used from within the Terminal application (Applications Utilities
 Terminal) shows a complete and full list of every application, utility, and system process running on the computer:

$ ps -ax
 PID TT STAT TIME COMMAND
 1 ?? Ss 0:00.04 /sbin/init
 2 ?? Ss 0:00.19 /sbin/mach_init
 78 ?? Ss 0:00.18 /usr/sbin/syslogd -s -m 0
 84 ?? Ss 0:02.67 kextd
 86 ?? Ss 0:01.51 /usr/sbin/configd
 87 ?? Ss 0:01.12 /usr/sbin/diskarbitrationd
...
 358 std Ss 0:00.03 login -pf taylor
 359 std S 0:00.04 -bash
 361 std R+ 0:00.01 ps ax

Quite a few applications, certainly many more than Force Quit suggests, are running. This is the key reason to learn and
work with the Unix side of Mac OS X in addition to the attractive graphical facet of the operating system: to really know
what's going on and be able to make it match what you want and need.

Here's another example. Suppose you just received a CD-ROM from a client with a few hundred files all in the main
folder. You need to copy to your home directory just those files that have "-nt-" or "-dt-" as part of their filenames.
Within the Finder, you'd be doomed to going through the list manually, a tedious and error-prone process. On the Unix
command line, it'd be a breeze:

$ cd /Volumes/MyCDROM
$ cp *-dt-* *-nt-* ~

Fast, easy, and doable by any and all Mac OS X users.

There are a million reasons why it's helpful to know Unix as a Mac OS X power user, and you'll see them demonstrated
time and again throughout this book. They are shown in even more detail in advanced books like Mac OS X Panther for
Unix Geeks, by Brian Jepson and Ernest E. Rothman (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.2 Launching Terminal
Launch Terminal by moving to the Applications folder in the Finder, opening up Utilities, and then double-clicking on the
Terminal application, as shown in Figure 1-2. It starts up and you have a dull, uninspiring, white window with black text
that says "Welcome to Darwin!", and a shell prompt.

Figure 1-2. Finding Terminal in the Utilities folder

By default, Terminal uses bash as its shell. If you'd like to configure it to use a different
shell, you can do so by selecting Terminal Preferences and specifying the shell to
use. We talk about that later in this chapter in Section 1.2.1.1.

1.2.1 Changing Terminal Preferences

To change the Terminal's preferences, go to Terminal Window Settings You see a display similar to Figure 1-
3.

Figure 1-3. Shell settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the top of the window, notice that a drop-down list lets you select which options to configure: Shell, Processes,
Emulation, Buffer, Display, Color, Window, and Keyboard. The names suggest what each does, but let's have a closer
look anyway, particularly since some of these settings definitely should be changed in our view.

Any changes you make within the Terminal Inspector will affect only the current Terminal
window unless you click "Use Settings as Defaults," after which they will apply to all future
Terminal windows that you open.

1.2.1.1 Shell

When you first open the Terminal Inspector, the Shell settings are displayed, as shown in Figure 1-3. This panel
specifies which tty (virtual Terminal device) and shell are associated with the current Terminal window. In addition, it
allows you to choose one of the following options: when a login shell exits, the Terminal application can close the
window; close the window only if the shell exited cleanly (that is, returned a zero status code, which means that all the
applications gracefully shut down); or never close the window. If you like to study what you've done and want to be
forced to explicitly close the Terminal window, "Don't close the window" is for you. Otherwise, either of the other two
will work fine.

If you want to change the login shell for future Terminal windows, open up the Terminal Preferences dialog box,
as shown in Figure 1-4.

Figure 1-4. Terminal Preferences

Almost all users will leave these preferences alone. The most interesting of them is the option of opening a saved .term
file: we'll talk about .term files later in this chapter in Section 1.3.5.

1.2.1.2 Processes

One of the more subtle capabilities of the Terminal application is that it can keep track of what applications you're
running so it can be smart about confirming window close requests: if there's something still running in the window, a
dialog box pops up asking if you're sure you want to quit. This feature is very helpful if you are prone to accidentally
clicking the wrong window element or pushing the wrong key sequence.

The Processes window shown in Figure 1-5 lists all the processes running under the Terminal window and lets you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Processes window shown in Figure 1-5 lists all the processes running under the Terminal window and lets you
specify what to do when you close a window. Set "Prompt before closing window" to "Always" if you'd like Terminal to
always ask before closing the window, or set it to "Never" to prevent it from ever asking. You can also use "If there are
processes other than" setting (the default) to ignore the programs shown in the list (you can add or remove items from
this list).

Figure 1-5. Processes

1.2.1.3 Emulation

These preferences, shown in Figure 1-6, don't need to be altered by most users.

Figure 1-6. Emulation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some PowerBook G4s have a long delay before emitting audio. If you have one of these
and you feel it's a problem, deselect "Audible bell" to neatly sidestep the issue. This also
has a nice side effect of preventing people around you knowing when you've made a
mistake.

It's best to leave "Paste newlines as carriage returns" so that you can ignore the difference in end-of-line sequences in
Mac files versus Unix files, and to avoid strict "VT-100" emulation because it can get in the way of some of the newer
Mac OS X Unix utilities. Whether you enable "Option click to position cursor" might depend on whether you're a Unix
purist (for whom the "good old keyboard" works fine) or whether you're trying to simplify things. Beware that if you do
enable Option-click positioning, it won't work in all cases — only when you're in a full-screen application such as Emacs
or vi.

1.2.1.4 Buffer

The settings in this area probably don't need changing, as shown in Figure 1-7. The scrollback buffer allows you to scroll
back and review earlier commands and command output. The default value of 10,000 lines should be more than
enough for most people. If you want to use less memory, you can put in a smaller number or completely disable the
scrollback buffer, rather than specify a size.

Figure 1-7. Buffer settings

You can also choose whether the Terminal should wrap long lines (not all Unix programs will wrap long lines, and might
disappear off the edge of the window if this option isn't set), or whether you should automatically jump to the bottom of
the scroll buffer upon input (if you've scrolled back to examine something that transpired earlier in your session). These
options are set by default, and you should probably leave them that way.

1.2.1.5 Display

One area that you'll probably fine-tune more than others is Display, as shown in Figure 1-8. Here you can specify a
different (or larger) font, define the shape of your cursor within the Terminal window, and control character set
encoding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

encoding.

Figure 1-8. Display settings

While you can choose any font available on your system, you'll find that your display will end up quite wonky and
unreadable if you don't stick with monospace or fixed-width typefaces. Monaco is a good choice, and is the default
typeface for the Terminal application.

Finally, you can specify a nonstandard string encoding if you're working with an unusual language or font. The default
UTF-8 (Unicode 8-bit) encoding will work in most situations.

1.2.1.6 Color

The Color settings let you change the normal text, background, bold text, cursor, and selection colors, as well set the
transparency of your Terminal window. The default color settings display black text on a white background, but we find
that light text on a dark background is easier to read for extended periods. One suggested setting is to have the
background very dark blue, the cursor yellow, normal text light yellow, bold text light green, and the selection dark
green. The default color scheme is black text on a white background, as shown in Figure 1-9.

Figure 1-9. Color settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It's worth experimenting with the different predefined color settings. We particularly like green on black and white on
blue, but your tastes will undoubtedly vary!

1.2.1.7 Window

If you have a large display or are running at a higher resolution than 800 x 600, you'll find it quite helpful to enlarge
the Terminal window to offer a bigger space within which to work. The default is 80 characters wide by 24 lines tall, as
shown in Figure 1-10.

Figure 1-10. Window preferences

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The title of each Terminal window can be fine-tuned as well. You might find the device name (what you'd get if you
typed tty at the shell prompt), the window dimensions, and the Command Key option (this shows you which command
sequence lets you jump directly to that Terminal window from any other Terminal window you might be using) all
particularly helpful.

If you want to change the Terminal window title at any point, you can use the Set Title

option either by choosing it from the File menu or by typing -Shift-T.

1.2.1.8 Keyboard

The final Terminal Inspector pane is the Keyboard pane (see Figure 1-11), which offers much control over which key
performs which function within the Unix environment. However, switching something without knowing how it's used can
be quite problematic, so we recommend that you do not change any of these settings unless you know exactly what
you're doing.

Figure 1-11. Keyboard preferences

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.3 Customizing Your Shell Environment
The Unix shell reads a number of configuration files when it starts up. These configuration files are really shell
programs, so they are extraordinarily powerful. Shell programming is beyond the scope of this book. For more detail,
see Cameron Newham and Bill Rosenblatts' book Learning the bash Shell (O'Reilly) or Dave Taylors' Wicked Cool Shell
Scripts (NoStarch). Because Unix is a multiuser system, there are two possible locations for the configuration files: one
applies to all users of the system and another to each individual user.

The system-wide setup files that are read by bash, the default shell for Mac OS X, are found in /etc (profile and bashrc).
You only have permission to change these system-wide files if you use sudo (see Section 3.3 in Chapter 3). However,
you can create another file called .profile in your home directory that will add additional commands to be executed
whenever you start a new Terminal window. (If you configure Terminal to use another shell, such as the Bourne shell,
the C shell, or the Z shell, you'll need to set up different configuration files. See the manpage for the appropriate shell
for details.)

The system-wide setup files are read first, then the user-specific ones, so commands in your .profile file can override
those in the system-wide files. The system-wide profile and bashrc files are succinct:

$ cat /etc/profile
System-wide .profile for sh(1)

PATH="/bin:/sbin:/usr/bin:/usr/sbin"
export PATH

[-r /etc/bashrc] && source /etc/bashrc
$ cat /etc/bashrc
System-wide .bashrc file for interactive bash(1) shells.
PS1='\h:\w \u\$ '
$

If you want to change the PATH for all users, perhaps to add /Developer/Tools (see Chapter 4 for details on what you
can find in that directory), modify the /etc/profile contents thusly:

PATH="/bin:/sbin:/usr/bin:/usr/sbin:/Developer/Tools"

The .profile file can contain any shell command that you want to run automatically whenever you create a new
Terminal. Some typical examples include changing the shell prompt, setting environment variables (values that control
the operation of other Unix utilities), setting aliases, or adding to the search path (where the shell searches for
programs to be run). A .profile file could look like this:

export PS1="\w (\!) : "
export LESS="eMq"
alias desktop="cd ~/Desktop"
date

This sample .profile file issues the following commands:

The line that changes the value of PS1 tells the shell to use a different prompt than the standard one. We'll
explain the details of prompt setting in Section 1.3.1 later in this chapter.

 The line with export LESS sets a shell variable that the less program recognizes to change its default behavior.
In this case, it's identical to typing in less -eMq each time you use the command. Not all commands recognize
environment variables, but for those that do, this saves you the trouble of typing the options on every less
command line.

The line that begins with alias defines a new, custom command that your shell will recognize just as if it were a
built-in Unix command. Aliases are a great way to save shorthand names for long, complicated Unix command
lines, or even to fix common mistakes you might make when typing command lines. This particular alias creates
a command for going right to the Desktop directory. We give a brief tutorial on creating aliases later in this
chapter in Section 1.3.2.

The date line simply runs the date command to print the time and date when you open a new Terminal window.
You probably don't want to do this, but we want you to understand that you can put in any command that you
could type at the shell prompt and have it automatically executed whenever a new shell starts up.

By default, the .profile file doesn't exist in your home directory, and only the system-wide configuration files are read
each time a Terminal window is opened. But if you create the file in your home directory, it will be read and its contents
executed the next time you start a shell. You can create or change these files with a text editor, such as vi (see Section
4.3.2 in Chapter 4). Don't use a word processor that breaks long lines or puts special nontext codes into the file. Any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3.2 in Chapter 4). Don't use a word processor that breaks long lines or puts special nontext codes into the file. Any
changes you make to these files will take effect when you open a new Terminal window. Unfortunately, it's not always
easy to know which shell setup file you should change. And an editing mistake in your shell setup file can interfere with
the normal startup of the Terminal window. We suggest that beginners get help from experienced users, and don't
make changes to these files at all if you're about to do some critical work with your account, unless there's some reason
you have to make the changes immediately.

You can execute any customization command we discuss here from the command line as well. In this case, the changes
are in effect only until you close that window or quit Terminal.

For example, to change the default options for less so it will clear the Terminal window before it shows each new page of
text, you could add the -c option to the LESS environment variable. The command would look something like this:

$ export LESS='eMqc'

(If you don't want some of the less options we've shown, you could leave those letters out.)

Unix has many other configuration commands to learn about; the sources listed in Chapter 10 can help you identify
which modifications you can make and how they can help you produce an optimal computing environment for yourself.

Just as you can execute the setup commands from the command line, the converse is true: any command that you can
execute from the command line can be executed automatically when you log in by placing it in your setup file. (Running
interactive commands such as vi or ftp from your setup file isn't a good idea, though.)

1.3.1 Changing Your Prompt

The easiest customization you can perform is to change your prompt. By default, bash on Mac OS X has a shell prompt
made up of your computer hostname, your current working directory, your account name, and a dollar sign (for
example: Dave-Taylors-Computer:~ taylor$). If you'd rather have something else, it's time to edit your own .bashrc file.
Use the vi editor (you might need to flip to Section 4.3.2 in Chapter 4) to create a file called .profile in your home
directory (/Users/yourname), and then add the following to the end of the file: export PS1="$ ". You can also change
the prompt for a single session by invoking the command as follows:

Dave-Taylors-Computer:~ taylor$ PS1="$ "
$

This command will give you a simple, spare $ prompt with nothing else. (The % is traditional for shells derived from the
Berkeley Unix C Shell, while $ is traditional for shells derived from the original Bell Labs Bourne Shell.) It's not
necessary—you could use a colon, a greater-than sign, or any other prompt character—but it is a nice convention,
because it will immediately tell an advanced user what kind of shell you are using.

If that's all you could do to set your prompt, it wouldn't be very interesting, though. There are a number of special
character sequences that, when used to define the prompt, cause the shell to print out various bits of useful data. Table
1-1 shows a partial list of these special character sequences for fine-tuning your prompt.

Table 1-1. Favorite escape sequences for bash prompts
Value Meaning

\w The current working directory

\W The trailing element of the current working directory, with ~ substitution

\! The current command history number

\H The full hostname

\h The hostname up to the first dot

\@ Time of day in 12-hour (a.m./p.m.) format

\A Time of day in 24-hour format

\u The username

\$ A # if the effective user ID is zero (root), or a $ otherwise

Experiment and see what you can create that will meet your needs and be fun too. For many years, a popular Unix
prompt was:

$ PS1="Yes, Master? "

It might be a bit obsequious, but on the other hand, how many people in your life call you "Master"?

One prompt sequence that we like is:

$ PS1="\W \! \$ "

This prompt sequence shows the current working directory, followed by a space and the current history number, and
then a $ or # to remind the user that this is bash and whether they're currently running as root. For example, the
prompt might read:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prompt might read:

/Users/taylor 55 $

This tells you immediately that /Users/taylor is the current directory, and that you're on the 55th command you've
executed. (Because you can use the arrow keys to scroll back to previous commands, as described in Section 2.1.3 in
Chapter 2, this is no longer as important, but there is a very powerful command history syntax built into bash that
allows you to recall a previous command by number. If you're familiar with this syntax, making the command history
number part of the prompt can be handy.) On multiuser systems, it's not a bad idea to put the username into the
prompt as well, so you always know who the system thinks you are.

1.3.2 Creating Aliases

The flexibility of Unix is simultaneously its greatest strength and downfall; the operating system can do just about
anything you can imagine (the command-line interface is certainly far more flexible than the Finder!) but it's very
difficult to remember every single flag to every command. That's where shell aliases can be a real boon. A shell alias is
a simple mechanism that lets you create your own command names that act exactly as you desire.

For example, we really like the -a flag to be included every time we list a directory with ls, so we created an alias:

$ alias ls="/bin/ls -a"

This indicates that each time we type ls in the shell, the /bin/ls command is going to be run, and it's going to
automatically have the -a flag specified. To have this available in your next session, make sure you remember to add
the alias to your .profile file.

You can also have aliases that let you jump quickly to common locations, a particularly helpful trick when in Mac OS X:

$ alias desktop="cd ~/Desktop"

Chapter 4 describes the cp, mv, and rm commands, which copy, move, and remove files, respectively. Each of these
support the -i switch, which will prompt you before overwriting or deleting a file. You can use aliases to always enable
this switch:

$ alias rm="rm -i"
$ alias cp="cp -i"
$ alias mv="mv -i"

You can list active aliases all by typing alias without any arguments:

$ alias
alias cp='cp -i'
alias desktop='cd ~/Desktop'
alias ls='/bin/ls -a'
alias m2u='tr '\''\015'\'' '\''\012'\'''
alias u2m='tr '\''\012'\'' '\''\015'\'''

Have an alias you really want to omit? You can use unalias for that. For example, unalias ls would remove the -a flag
addition.

1.3.3 Setting the Terminal Title

You can change the current Terminal title using the following cryptic sequence of characters:

echo '^[]2;My-Window-Title^G'

To type the ^[characters in bash, use the key sequence Control-V Escape (press Control-V and release, then press the
Escape key). To type ^G, use Control-V Control-G. The vi editor supports the same key sequence.

Such cryptic sequences of characters are called ANSI escape sequences. An ANSI escape sequence is a special
command that manipulates some characteristic of the Terminal, such as its title. ^[is the ASCII ESC character (which
begins the sequence), and ^G is the ASCII BEL character. (The BEL character is used to ring the Terminal bell, but in
this context, it terminates the escape sequence.)

1.3.4 Using AppleScript to Manipulate the Terminal

AppleScript is a powerful programming language used to automate Mac OS X applications. The Mac OS X Terminal is
one such application. You can run AppleScript commands at the shell prompt using the osascript utility. The \ character
tells the shell that you want to enter a single command on several lines (when you use this, the shell will prompt you
with a ? character):

osascript -e \
'tell app "Terminal" to set option of first window to value'

For example, to minimize your current Terminal window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, to minimize your current Terminal window:

$ osascript -e \
> 'tell app "Terminal" to set miniaturized of first window to true'
$

For a complete list of properties you can manipulate with AppleScript, open the Script Editor (/Applications/AppleScript)
and select File Open Dictionary. Open the Terminal dictionary and examine the properties available under window.
If a property is marked [r/o], it is read-only, which means you can't modify it on the fly.

1.3.5 Working with .term Files

A quite useful capability of Terminal is the ability to create a specific Terminal window, customize its appearance and
behavior, and then save that configuration as a .term file. Later, simply double-click on the .term file and you'll have
your Terminal window back and ready to go, exactly as you set it up previously. Even better, you can set up multiple
windows and have them all saved into a single .term file and then collectively relaunched when you restart the Terminal
program.

As an example, we have set up the main Terminal window exactly as we prefer — large, blue text on a white
background — and would like to save it as a .term file. To accomplish this, choose File Save As. You'll be
prompted with the dialog shown in Figure 1-12.

Figure 1-12. Saving a .term file

Perhaps the most interesting option is the checkbox "Open this file when Terminal starts up". Set things up the way you
want and automatically, every time you start up Terminal, you could find a half dozen different size and different color
windows on your desktop, all ready to go. Further, notice that instead of having a shell, you could have some start up
running specific commands. A popular command to use is top or tail -f /var/log/system.log, to help keep an eye on how
your system is performing. Explore the pop-up menu too; that's where you choose a single window to save as a .term,
or specify "All Windows" to save them all in a single .term file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

1.4 Further Customization
There's not much more you can do with the Terminal application than what's shown in this chapter, but there's an
infinite amount of customization possible with the bash shell (or any other shell you might have picked). To learn more
about how to customize your shell, read the manpage. Be warned, though, the bash manpage is over 4,500 lines long!

Oh, and in case you're wondering, manpages are the Unix version of online help documentation. Just about every
command-line (Unix) command has a corresponding manpage with lots of information on starting flags, behaviors, and
much more. You can access any manpage by simply typing man cmd. Start with man man to learn more about the man
system.

For more information on customizing bash, see Cameron Newham and Bill Rosenblatts' book Learning the bash Shell, or
Unix Power Tools, by Jerry Peek, Tim O'Reilly, and Mike Loukides, both available from O'Reilly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 2. Using the Terminal
With a typical Unix system, a staff person has to set up a Unix account for you before you can use it. With Mac OS X,
however, the operating system installation automatically creates a default user account. The account is identified by
your username, which is usually a single word or an abbreviation. Think of this account as your office—it's your
personal place in the Unix environment.

When you log into your Mac OS X system, you're automatically logged into your Unix account as well. In fact, your
Desktop and other customized features of your Mac OS X environment have corresponding features in the Unix
environment. Your files and programs can be accessed either through the Mac Finder or through a variety of Unix
command-line utilities that you can reach from within Mac OS X's Terminal window.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.1 Working with the Terminal

To get into the Unix environment, launch the Terminal application (go to Finder Applications Utilities
Terminal). If you expect to use the Terminal a lot, drag the Terminal icon from the Finder window onto the Dock. You
can then launch Terminal with a single click.) Once Terminal is running, you'll see a window like the one in Figure 2-1.

Figure 2-1. The Terminal window

Once you have a window open and you're typing commands, it's helpful to know that regular Mac OS X copy and paste
commands work, so it's simple to send an email message to a colleague showing your latest Unix interaction, or to
paste some text from a web page into a file you're editing with a Unix text editor such as vi.

You can also have a number of different Terminal windows open if that helps your workflow. Simply use -N to open

each one, and -~ to cycle between them without removing your hands from the keyboard.

If you have material in your scroll buffer you want to find, use -F (or select Find Find from the Edit menu) and

enter the specific text. -G (Find Next) lets you search down the scroll buffer for the next occurrence, and -D
(Find Previous) lets you search up the scroll buffer for the previous occurrence. You can also search for material

by highlighting a passage, entering -E (Use Selection for Find), or jumping to the selected material with -J
(Jump to Selection). You can also save an entire Terminal session as a text file with File Save Text As, and you
can print the entire session with File Print. It's a good idea to study the key sequences shown in the Scrollback
menu, as illustrated in Figure 2-2.

Figure 2-2. Command sequences accessible from the Scrollback menu

There are some symbols in the Scrollback menu you might not have seen before in your Mac OS X exploration: the
upward facing diagonal arrow for Scroll to Top is the Top or Home key on your keyboard, and the downward facing
diagonal arrow for Scroll to Bottom is the End key. You can move up a page with the Page Up key, and down a page

with the Page Down key. To move up or down lines, use -Up Arrow or -Down Arrow, as needed.

Inside the Terminal window, you're working with a program called a shell. The shell interprets command lines you
enter, runs programs you ask for, and generally coordinates what happens between you and the Unix operating system.
The default shell on Mac OS X is called bash (it used to be tcsh in previous versions of Mac OS X). Other available shells
include the Bourne shell (sh), the C shell (csh), the Tabbed C shell (tcsh), and the Z shell (zsh). A popular shell on other
versions of Unix (not available by default on Mac OS X) is the Korn shell (ksh). To change the shell that Terminal uses,
see Section 1.2 in Chapter 1.

For a beginner, differences between shells are slight. If you plan to work with Unix a lot, though, you should learn more
about your shell and its special commands.

To find out which shell you're using, run the command echo $SHELL. (See Section 2.1.2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To find out which shell you're using, run the command echo $SHELL. (See Section 2.1.2
later in this chapter.) The answer, which will be something like /bin/bash, is your shell's
pathname and name.

2.1.1 The Shell Prompt

When the system is ready to run a command, the shell outputs a prompt to tell you that you can enter a command.

The default prompt in bash is the computer name (which might be something automatically generated, such as dhcp-
254-108, or a name you've given your system), the current directory (which might be represented by ~, Unix's
shorthand for your home directory), your login name, and a dollar sign. For example, the complete prompt might look
like this: limbo:~ taylor$. The prompt can be customized, though, so your own shell prompt may be different. We showed
you how to customize your prompt in Chapter 1.

A prompt that ends with a hash mark (#) usually means you're logged in as the superuser. The superuser doesn't have
the protections for standard users that are built into the Unix system. If you don't know Unix well, you can
inadvertently damage your system software when you are logged in as the superuser. In this case, we recommend that
you stop work until you've found out how to access your personal Unix account. The simplest solution is to open a new
Terminal window (File New Shell) and work in that window. If you've still got the superuser prompt, it means that
you either logged into Mac OS X as the superuser or your shell prompt has been customized to end with a #, even
when you're not the superuser. Try logging out of Mac OS X (File Log Out) and logging back in as yourself.

2.1.2 Entering a Command

Entering a command line at the shell prompt tells the computer what to do. Each command line includes the name of a
Unix program. When you press Return, the shell interprets your command line and executes the program.

The first word that you type at a shell prompt is always a Unix command (or program name). Like most things in Unix,
program names are case sensitive; if the program name is lowercase (and most are), you must type it in lowercase.
Some simple command lines have just one word, which is the program name. For more information, see Section 2.2
later in this chapter.

2.1.2.1 date

An example of a single-word command is date. Entering the command date displays the current date and time:

$ date
Tue Sep 23 12:57:06 MDT 2003
$

As you type a command line, the system simply collects your keyboard input. Pressing the Return key tells the shell
that you've finished entering text, and it can run the program.

2.1.2.2 who

Another simple command is who. It displays a list of each logged-on user's username, terminal number, and login time.
Try it now, if you'd like.

The who program can also tell you which account is currently using the Terminal application, in case you have multiple
user accounts on your Mac. The command line for this is who am i. This command line consists of the command (who,
the program's name) and arguments (am i). (Arguments are explained in Section 2.2 later in this chapter.) For
example:

$ who am i
taylor ttyp1 Sep 23 16:26

The response shown in this example says that:

"taylor" is the username. The username is the same as the Short Name you define when you create a new user
with System Preferences Accounts +.

Terminal p1 is in use. This cryptic syntax, ttyp1, is a holdover from the early days of Unix. All you need to know
as a Unix beginner is that each time you open a new terminal window, the number at the end of the name gets
incremented. The first one is ttyp1, the second ttyp2, and so on. The terminal ID also appears in the titlebar of
the Terminal window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the Terminal window.

A new Terminal window was opened at 4:26 in the afternoon of September 23rd.

2.1.3 Recalling Previous Commands

Modern Unix shells remember commands you've typed previously. They can even remember commands from previous
login sessions. This handy feature can save you a lot of retyping of common commands. As with many things in Unix,
though, there are several different ways to do this; we don't have room to show and explain them all. You can get more
information from sources listed in Chapter 10.

After you've typed and executed several commands, try pressing the Up Arrow key on your keyboard. You will see the
previous command after your shell prompt, just as you typed it before. Pressing the Up Arrow again recalls the previous
command, and so on. Also, as you'd expect, the Down Arrow key will recall more recent commands.

To execute one of these remembered commands, just press the Return key. (Your cursor doesn't even have to be at
the end of the command line.)

Once you've recalled a command, you can also edit it as necessary. If you don't want to execute any remembered

commands, cancel the command shown with -. or Control-C. The next section explains both of these.

2.1.4 Correcting a Command

What if you make a mistake in a command line? Suppose you typed dare instead of date and pressed the Return key
before you realized your mistake? The shell will give you an error message:

$ dare
-bash: dare: command not found
$

Don't be too concerned about getting error messages. Sometimes you'll get an error even if it appears that you typed
the command correctly. This can be caused by accidentally typing control characters that are invisible on the screen.
Once the prompt returns, reenter your command.

As we said earlier (in Section 2.1), you can recall previous commands and edit command lines. Use the Up-Arrow key to
recall a previous command.

To edit the command line, use the Left-Arrow and Right-Arrow keys to move your cursor to the point where you want to
make a change. You can use the Delete key to erase characters to the left of the cursor, and type in changes as
needed.

If you have logged into your Macintosh remotely from another system (see Chapter 8), your keyboard may be different.
The erase character differs between systems and accounts, and can be customized. The most common erase characters
are:

Delete or Del

Control-H

Control-C or -. will interrupt or cancel a command, and can be used in many (but not all) cases when you want to
quit what you're doing.

Other common control characters are:

Control-U

Erases the whole input line; you can start over.

Control-S

Pauses output from a program that's writing to the screen. This can be confusing; we don't recommend using
Control-S but want you to be aware of it.

Control-Q

Restarts output after a Control-S pause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control-D

Signals the end of input for some programs (such as cat, explained in Section 6.1.1 in Chapter 6) and returns
you to a shell prompt. If you type Control-D at a shell prompt, it quits your shell. Depending on your
preferences, your Terminal window either closes or sits there, which is useless, until you manually close the
window.

2.1.5 Ending Your Session

To end a Unix session, you must exit the shell. You should not end a session just by quitting the Terminal application or
closing the terminal window. It's possible that you might have started a process running in the background (see
Chapter 7), and closing the window could therefore interrupt the process so it won't complete. Instead, type exit at a
shell prompt. The window will either close or simply not display any sort of prompt; you can then safely quit the
Terminal application. If you've started a background process, you'll instead get one of the messages described in the
next section.

2.1.5.1 Problem checklist

The first few times you use Mac OS X, you aren't likely to have the following problems. But you may encounter these
problems later, as you do more advanced work.

You get another shell prompt, or the shell says "logout: not login shell".

You've been using a subshell (a shell created by your original Terminal shell). To end each subshell, type exit (or
just type Control-D) until the Terminal window closes.

The shell says "There are stopped jobs" or "There are running jobs".

Mac OS X and many other Unix systems have a feature called job control that lets you suspend a program
temporarily while it's running or keep it running separately in the "background." One or more programs you ran
during your session has not ended but is stopped (paused) or in the background. Enter fg to bring each stopped
job into the foreground, then quit the program normally. (See Chapter 9 for more information.)

The Terminal application refuses to quit, saying "Closing this window will terminate the following processes inside it:",
followed by a list of programs.

Terminal tries to help by not quitting when you're in the middle of running a command. Cancel the dialog box
and make sure you don't have any commands running that you forgot about.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.2 Syntax of a Unix Command Line
Unix command lines can be simple, one-word entries such as the date command. They can also be more complex; you
may need to type more than the command or program name.[1]

[1] The command can be the name of a Unix program (such as date), or it can be a command that's built into the
shell (such as exit). You probably don't need to worry about this! You can read more precise definitions of these
terms and others in the Glossary.

A Unix command can have arguments. An argument can be an option or a filename. The general format for a Unix
command line is:

command option(s) filename(s)

There isn't a single set of rules for writing Unix commands and arguments, but these general rules work in most cases:

Enter commands in lowercase.

Options modify the way in which a command works. Options are often single letters prefixed with a dash (-, also
called "hyphen" or "minus") and set off by any number of spaces or tabs. Multiple options in one command line
can be set off individually (such as -a -b). In most cases, you can combine them after a single dash (such as -
ab), but most commands' documentation doesn't tell you whether this will work; you'll have to try it.

Some commands also have options made from complete words or phrases and starting with two dashes, such
as --delete or --confirm-delete. When you enter a command line, you can use this option style, the single-letter
options (which each start with a single dash), or both.

The argument filename is the name of a file you want to use. Most Unix programs also accept multiple filenames,
separated by spaces or specified with wildcards (see Chapter 8). If you don't enter a filename correctly, you
may get a response such as "filename: no such file or directory" or "filename: cannot open."

Some commands, such as who (shown earlier in this chapter), have arguments that aren't filenames.

 You must type spaces between commands, options, and filenames. You'll need to "quote" filenames that
contain spaces. For more information, see Section 4.1 in Chapter 4.

Options come before filenames.

In a few cases, an option has another argument associated with it; type this special argument just after its
option. Most options don't work this way, but you should know about them. The sort command is an example of
this feature: you can tell sort to write the sorted text to a filename given after its -o option. In the following
example, sort reads the file sortme (given as an argument), and writes to the file sorted (given after the -o
option):

$ sort -o sorted -n sortme

We also used the -n option in that example. But -n is a more standard option; it has nothing to do with the final
argument sortme on that command line. So, we also could have written the command line this way:

$ sort -n -o sorted sortme

Don't be too concerned about these special cases, though. If a command needs an option like this, its
documentation will say so.

Command lines can have other special characters, some of which we see later in this book. They can also have
several separate commands. For instance, you can write two or more commands on the same command line,
each separated by a semicolon (;). Commands entered this way are executed one after another by the shell.

Mac OS X has a lot of commands! Don't try to memorize all of them. In fact, you'll probably need to know just a few
commands and their options. As time goes on, you'll learn these commands and the best way to use them for your job.
We cover some useful commands in later chapters. This book's quick reference card has quick reminders.

Let's look at a sample command. The ls program displays a list of files. You can use it with or without options and
arguments. If you enter:

$ ls

you'll see a list of filenames. But if you enter:

$ ls -l

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ls -l

there will be an entire line of information for each file. The -l option (a dash and a lowercase letter "L") changes the
normal ls output to a long format. You can also get information about a particular file by using its name as the second
argument. For example, to find out about a file called chap1, enter:

$ ls -l chap1

Many Unix commands have more than one option. For instance, ls has the -a (all) option for listing hidden files. You can
use multiple options in either of these ways:

$ ls -a -l
$ ls -al

You must type one space between the command name and the dash that introduces the options. If you enter ls-al, the
shell will say "ls-al: command not found."

2.2.1 Exercise: Entering a Few Commands

The best way to get used to the Terminal is to enter some commands. To run a command, type the command and then
press the Return key. Remember that almost all Unix commands are typed in lowercase.

Here are a few to try:

Task Command

Get today's date. date

List logged-in users. who

Obtain more information about users. who -u, finger, or w

Find out who is at your terminal. who am i

Enter two commands in the same line. who am i;date

Mistype a command. woh

In this session, you've tried several simple commands and seen the results on the screen.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.3 Types of Commands
When you use a program, you'll want to know how to control it. How can you tell it what job you want done? Do you
give instructions before the program starts, or after it's started? There are several general ways to give commands on a
Mac OS X system. It's good to be aware of them.

Graphical programs

Some programs work only within the graphical window environment (on Mac OS X, this is called Aqua). On Mac
OS X, you can run these programs using the open command. For instance, when you type open -a Chess at a
shell prompt, the chess game starts. It opens one or more windows on your screen. The program has its own
way to receive your commands—through menus and buttons on its windows, for instance. Although you can't
interact with these programs using traditional Unix utilities, Mac OS X includes the osascript utility, which lets
you run AppleScript commands from the Unix shell.

Noninteractive Unix programs

You saw in Section 2.2 that you can enter many Unix commands at a shell prompt. These programs work in a
window system (from a Terminal window) or from any terminal. You control those programs from the Unix
command line—that is, by typing options and arguments from a shell prompt before you start the program.
After you start the program, wait for it to finish; you generally don't interact with it.

Interactive Unix programs

Some Unix programs that work in the terminal window have commands of their own. (If you'd like some
examples, see Chapter 3 and Chapter 4.) These programs may accept options and arguments on their
command lines. But, once you start a program, it prints its own prompt and/or menus, and it understands its
own commands. It also takes instructions from your keyboard that weren't given on its command line.

For instance, if you enter ftp at a shell prompt, you'll see a new prompt from the ftp program. Enter FTP
commands to transfer files to and from remote systems. When you enter the special command quit to quit the
ftp program, ftp will stop prompting you. Then you'll get another shell prompt, where you can enter other Unix
commands.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

2.4 The Unresponsive Terminal
During your Unix session, your terminal may not respond when you type a command, or the display on your screen
may stop at an unusual place. That's called a "hung" or "frozen" terminal or session. Note that most of the techniques
in this section apply to a terminal window, but not to nonterminal windows such as a web browser.

A session can hang for several reasons. For instance, your computer can get too busy; the Terminal application has to
wait its turn. In that case, your session resumes after a few moments. You should not try to "un-hang" the session by
entering extra commands, because those commands will all take effect after Terminal comes back to life.

If your display becomes garbled, press Control-L. In the shell, this will clear the screen and
display the prompt. In a full-screen program, such as a text editor, it will redraw the
screen.

If the system doesn't respond for quite a while (how long that is depends on your individual situation; ask other users
about their experiences), the following solutions usually work. Try the following steps in the order shown until the
system responds:

Press the Return key once.

You may have typed text at a prompt (for example, a command line at a shell prompt) but haven't yet pressed
Return to say that you're done typing and your text should be interpreted.

Try job control (see Chapter 7); type Control-Z.

This control key sequence suspends a program that may be running and gives you a shell prompt. Now you can
enter the jobs command to find the program's name, then restart the program with fg or terminate it with kill.

Press Control-C or -..

This interrupts a program that may be running. (Unless the program is run in the background; as described in ,
Section 7.1 in Chapter 7, the shell waits for a background program to finish before giving a new prompt. A long-
running background program may thus appear to hang the terminal.) If this doesn't work the first time, try it
once more; doing it more than twice usually won't help.

Type Control-Q.

If output has been stopped with Control-S, this will restart it. Note that some systems will automatically issue
Control-S if they need to pause output; this character may not have been typed from the keyboard.

Type Control-D once at the beginning of a new line.

Some programs (such as mail) expect text from the user. A program may be waiting for an end-of-input
character from you to tell it that you've finished entering text. Typing Control-D may cause you to log out, so
you should try this only as a last resort.

Otherwise, close your Terminal window (-W) and open a new one.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 3. Using Unix
Once you launch Terminal, you can use the many facilities that Mac OS X provides. As a user, you have an account that
gives you:

A place in the filesystem where you can store your files

A username that identifies you and lets you control access to your files

An environment you can customize

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.1 The Mac OS X Filesystem
A file is the unit of storage in Mac OS X. A file can hold anything: text (a report you're writing, a to-do list), a program,
digitally encoded pictures or sound, and so on. All of those are just sequences of raw data until they're interpreted by
the right program.

Files are organized into directories (more commonly referred to as a folder on the Aqua (graphical) side of the Mac). A
directory is actually a special kind of file where the system stores information about other files. You can think of a
directory as a place, so that files are said to be contained in directories, and you work inside a directory. It's important
that you realize that everything is a file in Unix. Whether you're working with a directory (perhaps moving files around)
or editing a document, Unix fundamentally looks at everything as the same sort of container of information.

A filesystem includes all the files and directories on a mounted volume, such as your system's hard disk or your iDisk.
This section introduces the Mac OS X filesystem. Later sections show how you can look in files and protect them.
Chapter 4 has more information.

3.1.1 Your Home Directory

When you launch Terminal, you're placed in a directory called your home directory. This directory, which can also be
opened in the Finder by clicking the Home icon, contains personal files, application preferences, and application data
such as bookmarks. In your home directory, you can create your own files. As you'll see, you can also create directories
within your home directory. Like folders in a file cabinet, this is a good way to organize your files.

3.1.2 Your Working Directory

Your working directory (also called your current directory) is the directory in which you're currently working. Every time
you open a new Terminal window, your home directory is your working directory. When you change to another
directory, the directory you move to becomes your working directory.

Unless you specify otherwise, all commands that you enter apply to the files in your working directory. In the same
way, when you create files, they're created in your working directory unless you specify another directory. For instance,
if you type the command vi report, the vi editor is started, and a file named report is created in your working directory.
But if you type a command such as vi /Users/john/Documents/report, a report file is created in a different directory—
without changing your working directory. You'll learn more about this when we cover pathnames later in this chapter.

If you have more than one Terminal window open, each shell has its own working directory. Changing the working
directory in one shell doesn't affect other Terminal windows.

3.1.3 The Directory Tree

All directories on Mac OS X are organized into a hierarchical structure that you can imagine as a family tree. The parent
directory of the tree (the directory that contains all other directories) is known as the root directory and is written as a
forward slash (/). The root directory is what you see if you open a new Finder window, click the Computer icon, and
then open your startup disk.

The root directory contains several other directories. Figure 3-1 shows a visual representation of the top of the Mac OS
X filesystem tree: the root directory and some directories under the root. (To see how this appears in the Finder, see
Figure 3-7.)

Figure 3-1. Example of a directory tree

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Applications , Library, System, and Users are some of the subdirectories (child directories) of the root directory. There
are several other directories that are invisible in the Finder but visible at the shell prompt (you can see them if you use
the command ls /). These subdirectories are standard Unix directories: bin, dev, etc, sbin, tmp, usr, and var; they
contain Unix system files. For instance, bin contains many Unix programs.

In our example, the parent directory of Users (one level above) is the root directory. Users has two subdirectories (one
level below), john and carol. On a Mac OS X system, each directory has only one parent directory, but it may have one
or more subdirectories.[1]

[1] The root directory at the top of the tree is its own parent.

A subdirectory (such as carol) can have its own subdirectories (such as Documents and Music).

To specify a file or directory location, write its pathname. A pathname is like the address of the directory or file in the
filesystem. We will look at pathnames in the next section.

On a basic Mac OS X system, all files in the filesystem are stored on disks connected to your computer. Mac OS X has a
way to access files on other computers: a networked filesystem. Networked filesystems make a remote computer's files
appear as if they're part of your computer's directory tree. For instance, when you mount your iDisk (Choose Go
iDisk My iDisk in the Finder), Mac OS X mounts your iDisk on your desktop and also makes it available as a
directory under /Volumes. You can also mount shared directories from other Macintoshes or Windows machines (choose
Go Connect to Server . . . in the Finder). These will also appear in the /Volumes directory, as will other disks, such
as external FireWire drives.

3.1.4 Absolute Pathnames

As you saw earlier, the Unix filesystem organizes its files and directories in an inverted tree structure with the root
directory at the top. An absolute pathname tells you the path of directories through which you must travel to get from
the root to the directory or file you want. In a pathname, put slashes (/) between the directory names.

For example, /Users/john is an absolute pathname. It identifies one (only one!) directory. Here's how:

The root is the first slash (/).

The directory Users (a subdirectory of root) is second.

The directory john (a subdirectory of Users) is last.

Be sure that you do not type spaces anywhere in the pathname. If there are spaces in one
or more of the directories, you need to either quote the entire directory pathname, or
preface each space with a backslash to ensure that the shell understands that the spaces
are part of the pathname itself.

Figure 3-2 shows this structure.

Figure 3-2. Absolute path of directory john

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Figure 3-2, you'll see that the directory john has a subdirectory named Documents. Its absolute pathname is
/Users/john/Documents.

The root is always indicated by the slash (/) at the start of the pathname. In other words, an absolute pathname always
starts with a slash.

3.1.5 Relative Pathnames

You can also locate a file or directory with a relative pathname. A relative pathname gives the location relative to your
working directory.

Unless you use an absolute pathname (starting with a slash), Unix assumes that you're using a relative pathname. Like
absolute pathnames, relative pathnames can go through more than one directory level by naming the directories along
the path.

For example, if you're currently in the Users directory (see Figure 3-2), the relative pathname to the carol directory
below is simply carol. The relative pathname to the Music directory below that is carol/Music.

Notice that neither pathname in the previous paragraph starts with a slash. That's what makes them relative
pathnames! Relative pathnames start at the working directory, not the root directory. In other words, a relative
pathname never starts with a slash.

3.1.5.1 Pathname puzzle

Here's a short but important question. The previous example explains the relative pathname carol/Music. What do you
think Unix would say about the pathname /carol/Music? (Look again at Figure 3-2.)

Unix would say "No such file or directory." Why? (Please think about that before you read more. It's very important and
it's one of the most common beginner's mistakes.) Here's the answer. Because it starts with a slash, the pathname
/carol/Music is an absolute pathname that starts from the root. It says to look in the root directory for a subdirectory
named carol. But there is no subdirectory named carol one level directly below the root, so the pathname is wrong. The
only absolute pathname to the Music directory is /Users/ carol/Music.

3.1.5.2 Relative pathnames up

You can go up the tree with the shorthand .. (dot dot) for the parent directory. As you saw earlier, you can also go
down the tree by using subdirectory names. In either case (up or down), separate each level by a / (slash).

Figure 3-3 shows part of Figure 3-1. If your working directory in the figure is Documents, then there are two
pathnames for the Music subdirectory of carol. You already know how to write the absolute pathname,
/Users/carol/Music. You can also go up one level (with ..) to carol, then go down the tree to Music. Figure 3-3 illustrates
this.

Figure 3-3. Relative pathname from Documents to Music

The relative pathname would be ../Music. It would be wrong to give the relative address as carol/Music. Using
carol/Music would say that carol is a subdirectory of your working directory instead of what it is in this case: the parent
directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directory.

Absolute and relative pathnames are interchangeable. Unix programs simply follow whichever path you specify to
wherever it leads. If you use an absolute pathname, the path starts from the root. If you use a relative pathname, the
path starts from your current working directory. Choose whichever is easier at the moment.

3.1.6 Changing Your Working Directory

Once you know the absolute or relative pathname of a directory where you'd like to work, you can move up and down
the Mac OS X filesystem to reach it. The following sections explain some helpful commands for navigating through a
directory tree.

3.1.6.1 pwd

To find which directory you're currently in, use pwd (print working directory), which prints the absolute pathname of
your working directory. The pwd command takes no arguments:

$ pwd
/Users/john
$

3.1.6.2 cd

You can change your working directory to any directory (including another user's directory, if you have permission) with
the cd (change directory) command, which has the form:

cd pathname

The argument is an absolute or a relative pathname (whichever is easier) for the directory you want to change to:

$ cd /Users/carol
$ pwd
/Users/carol
$ cd Documents
$ pwd
/Users/carol/Documents
$

The command cd, with no arguments, takes you to your home directory from wherever
you are in the filesystem.

Note that you can only change to another directory. You cannot cd to a filename. If you try, your shell (in this example,
bash) gives you an error message:

$ cd /etc/manpath.config
-bash: cd: /etc/manpath.config: Not a directory.
$

/etc/manpath.config is a file with information about the configuration of the man command.

One neat trick worth mentioning is that you can always have Terminal enter the path directly by dragging a file or
folder icon from the Finder onto the active Terminal window.

Two Ways to Explore Your Filesystem
Every file and folder that you view from the Finder is also accessible from the Unix shell. Changes made in
one environment are reflected (almost) immediately in the other. For example, the Desktop folder is also
the Unix directory /Users/yourname/Desktop.

Just for fun, open a Finder window, move to your Home folder, and keep it visible while you type these
commands at the shell prompt:

$ cd
$ touch mac-rocks

Switch back to the Finder (you can click on the desktop) and watch a file called mac-rocks appear
magically. (The touch command creates an empty file with the name you specify.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

magically. (The touch command creates an empty file with the name you specify.)

Now type:

$ rm mac-rocks

Return to the Finder, and watch the file disappear. The rm command removes the file.

3.1.7 Files in the Directory Tree

A directory can hold subdirectories. And, of course, a directory can hold files. Figure 3-4 is a close-up of the filesystem
around john's home directory. There are six directories shown, along with the mac-rocks file created by using the touch
command, as demonstrated in the sidebar Two Ways to Explore Your Filesystem.

Figure 3-4. Files in the directory tree

Pathnames to files are made the same way as pathnames to directories. As with directories, files' pathnames can be
absolute (starting from the root directory) or relative (starting from the working directory). For example, if your
working directory is Users, the relative pathname to the Documents directory below would be john/Documents. The
relative pathname to the mac-rocks file would be john/mac-rocks.

Unix filesystems can hold things that aren't directories or files, such as symbolic links (similar to aliases), devices (the
/dev directory contains entries for devices attached to the system), and sockets (network communication channels).
You may see some of them as you explore the filesystem. We don't cover those advanced topics in this little book.

3.1.8 Listing Files with ls

To use the cd command, you must know which entries in a directory are subdirectories and which are files. The ls
command lists entries in the directory tree and can also show you which is which.

When you enter the ls command, you get a list of the files and subdirectories contained in your working directory. The
syntax is:

ls option(s) directory-and-filename(s)

If you've just moved into an empty directory, entering ls without any arguments may seem to do nothing. This isn't
surprising, because you haven't made any files in your working directory. If you have no files, nothing is displayed;
you'll simply get a new shell prompt:

$ ls
$

But if you're in your home directory, ls displays the names of the files and directories in that directory. The output
depends on what's in your directory. The screen should look something like this:

$ ls
Desktop Library Music Public mac-rocks
Documents Movies Pictures Sites
$

Sometimes ls might display filenames in a single column. If yours does, you can make a multicolumn display with the -C
option or the -x option. ls has a lot of options that change the information and display format.

The -a option (for all) is guaranteed to show you some more files, as in the following example:

$ ls -a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ls -a
. .Trash Library Public
.. .bash_history Movies Sites
.CFUserTextEncoding Desktop Music mac-rocks
.DS_Store Documents Pictures
$

When you use ls -a, you'll always see at least two entries with the names . (dot) and .. (dot dot). As mentioned earlier,
.. is always the relative pathname to the parent directory. A single . always stands for its working directory; this is
useful with commands such as cp (see Section 4.5.2 in Chapter 4). There may also be other files, such as .bashrc or
.Trash. Any entry whose name begins with a dot is hidden—it's listed only if you use ls -a.

To get more information about each item that ls lists, add the -l option. (That's a lowercase "L" for "long.") This option
can be used alone, or in combination with -a, as shown in Figure 3-5. Because .bash_history and .Trash are hidden files,
only ch1 and ch2 would appear if you viewed this directory in the Finder.

Figure 3-5. Output from ls -al

The long format provides the following information about each item:

Total n

States the amount of storage (n) used by everything in this directory. (This is measured in blocks.) On Mac OS
X, blocks are 1,024 bytes in size.

Type

Tells whether the item is a directory (d) or a plain file (-). (There are other less common types as well.)

Access modes

Specifies three types of users (yourself, your group, and all others) who are allowed to read (r), write (w), or
execute (x) your files or directories. We'll talk more about access modes later.

Links

Lists the number of files or directories linked to this directory. (This isn't the same as a web page link.)

Owner

States the user who created or owns this file or directory.

Group

Lists the group that owns the file or directory.

Size (in bytes)

States the size of the file or directory. (A directory is actually a special type of file. Here, the "size" of a
directory is of the directory file itself, not the total of all the files in that directory.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directory is of the directory file itself, not the total of all the files in that directory.)

Modification date

States the date when the file was last modified or when the directory contents last changed (when something in
the directory was added, renamed, or removed). If an entry was modified more than six months ago, ls shows
the year instead of the time.

Name

Tells the name of the file or directory.

Notice especially the columns that list the owner and group of the files, and the access modes (also called permissions).
The person who creates a file is its owner; if you've created any files, this column should show your username. You also
belong to a group. Files you create are marked either with the name of your group or, in some cases, the group that
owns the directory.

The permissions show who can read, write, or execute the file or directory. The permissions have 10 characters. The
first character shows the file type (d for directory or - for a plain file). The other characters come in groups of 3. The
first group, characters 2-4, shows the permissions for the file's owner (which is you if you created the file). The second
group, characters 5-7, shows permissions for other members of the file's group. The third group, characters 8-10,
shows permissions for all other users.

For example, the permissions for .DS_Store in Figure 3-5 are -rw-r--r--. The first hyphen, -, indicates that it's a plain file.
The next three characters, rw-, mean that the owner, john, has both read (r) and write (w) permissions. The next two
sets of permissions are both r--, which means that other users who belong to the file's group john, as well as all other
users of the system, can only read the file; they don't have write permission, so they can't change what's in the file. No
one has execute (x) permission, which should be used only for executable files (programs) and directories.

In the case of directories, x means the permission to access the directory— for example, to run a command that reads a
file there or to use a subdirectory. Notice that the first directory shown in Figure 3-5, Desktop, is executable
(accessible) by john, but completely closed off to everyone else on the system. A directory with write (w) permission
allows deleting, renaming, or adding files within the directory. Read (r) permission allows listing the directory with ls.

You can use the chmod command to change the permissions of your files and directories (see Section 3.2 later in this
chapter).

If you need to know only which files are directories and which are executable files, you can use the -F option with ls. If
you give the pathname to a directory, ls lists the directory but does not change your working directory. The pwd
command here shows this:

$ ls -F /Users/andy
$ ls -F
Desktop/ Library/ Music/ Public/ mac-rocks
Documents/ Movies/ Pictures/ Sites/
$ pwd
/Applications
$

ls -F puts a / (slash) at the end of each directory name. (The directory name doesn't really have a slash in it; that's just
the shorthand ls -F uses to identify a directory.) In our example, every entry other than "mac-rocks" is a directory.. You
can verify this by using ls -l and noting the d in the first field of the output. Files with an execute status (x), such as
programs, are marked with an * (asterisk).

ls -R (recursive) lists a directory and all its subdirectories. This can make a very long list—especially when you list a
directory near the root! (Piping the output of ls to a pager program solves this problem. There's an example in Section
6.2.3 in Chapter 6.) You can combine other options with -R; for instance, ls -RF marks each directory and file type, while
recursively listing files and directories.

3.1.9 Calculating File Size

You can find the size of a file with the du command:

$ du Documents/Outline.doc
300 Documents/Outline.doc

The size is reported in kilobytes, so Outline.doc is 300 KB in size. If you give du the name of a directory, it will calculate
the sizes of everything in it:

$ du Library
8 Library/Application Support/AddressBook/Images
120 Library/Application Support/AddressBook
3776 Library/Application Support/Chess
...

If you want the total for the directory, use -s (summarize):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want the total for the directory, use -s (summarize):

$ du -s Library
56120 Library

If you'd like separate totals for all directories and files, including hidden ones, use a wildcard pattern that ignores the .
(current) and .. (parent) directories (see Section 3.1.5.2, earlier in this chapter):

$ du -s * .[^.]*
40 Desktop
2200 Documents
56120 Library
...
438048 .Trash
8 .bash_history

You can also calculate your system's free disk space with df -h (the -h produces more user-friendly output):

$ df -h
Filesystem Size Used Avail Capacity Mounted on
/dev/disk2s10 7.3G 3.5G 3.7G 49% /
devfs 105K 105K 0B 100% /dev
fdesc 1.0K 1.0K 0B 100% /dev
<volfs> 512K 512K 0B 100% /.vol
/dev/disk1s9 37G 17G 21G 45% /Volumes/X
automount -nsl [273] 0B 0B 0B 100% /Network
automount -fstab [290] 0B 0B 0B 100% /automount/Servers
automount -static [290] 0B 0B 0B 100% /automount/static

The first column (Filesystem) shows the Unix device name for the volume. The second column (Size) shows the total disk
size, and it's followed by the amount of disk space used up (Used) and the amount that's available (Avail). After that, the
Use% column shows the percentage of disk space used, followed by where the volume is mounted (Mounted on).

/ is the root of your filesystem (a volume that is named Macintosh HD by default). /dev contains files that correspond to
hardware devices, and /.vol exposes some internals of the Mac OS X filesystem called HFS+ file ids. The last entry is a
volume called Mac OS 9.

3.1.10 Completing File and Directory Names

Most Unix shells can complete a partly typed file or directory name for you. Different shells have different methods. If
you're using the default shell in Mac OS X (i.e., bash), just type the first few letters of the name, then press Tab. If the
shell can find just one way to finish the name, it will; your cursor will move to the end of the new name, where you can
type more or press Return to run the command. (You can also edit or erase the completed name.)

What happens if more than one file or directory name matches what you've typed so far? The shell will beep at you to
tell you that it couldn't find a unique match. To get a list of all possible completions, simply press the Tab key again and
you will see a list of all names starting with the characters you've typed so far (you won't see anything if there are no
matches). Here's an example from the bash shell:

$ cd /usr/bin
$ ma<Tab><Tab>
mach_init machine mail mailq mailstat makedbm makeinfo
man manpath
$ ma

At this point, you could type another character or two—an i, for example—and then press Tab once more to list only the
mail-related commands.

3.1.11 Multiple Commands on the Command Line

An extremely helpful technique for working with the Unix system is the ability to have more than one command
specified on a single command line. Perhaps you want to run a command and find out how long it took to complete.
This can be done by calling date before and after the command. If you hunt and peck out date each time, the timing is
hardly going to be accurate. Much better is to put all three commands on the same line:

$ cd ; date ; du -s . ; date
Tue Sep 23 14:36:42 MDT 2003
4396680 .
Tue Sep 23 14:36:57 MDT 2003

This shows 4 different commands all strung together on a single command line. First, cd moves you into your home
directory, then date shows the current date and time. The du -s command figures out how much disk space is used by
the . (current) directory, and a second date command shows the time after the du command has run. Now you know it
takes exactly 15 seconds to calculate disk space used by your home directory, rather than knowing it takes 25 seconds
for you to type the command, for du to run, and for you to type date again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1.12 Exercise: Exploring the Filesystem

You're now equipped to explore the filesystem with cd, ls, and pwd. Take a tour of the directory system, hopping one or
many levels at a time, with a mixture of cd and pwd commands.

Task Command

Go to your home directory. cd

Find your working directory. pwd

Change to new working directory with its absolute pathname. cd /bin

List files in new working directory. ls

Change directory to root and list it in one step. (Use the command separator: a semicolon.) cd /; ls

Find your working directory. pwd

Change to a subdirectory; use its relative pathname. cd usr

Find your working directory. pwd

Change to a subdirectory. cd lib

Find your working directory. pwd

Give a wrong pathname. cd xqk

List files in another directory. ls /bin

Find your working directory (notice that ls didn't change it). pwd

Return to your home directory. cd

3.1.13 Looking Inside Files with less

By now, you're probably tired of looking at files from the outside. It's like visiting a bookstore and looking at the covers,
but never getting to open the book and read what's inside. Let's look at a program for reading text files.

If you want to "read" a long plain text file on the screen, you can use the less command to display one "page" (a
Terminal window filled from top to bottom) of text at a time.

If you don't like less, you can try a very similar program named more. In fact, the name less is a play on the name of
more, which came first (but less has more features than more). The syntax for less is:

less option(s) file(s)

less lets you move forward or backward in the files by any number of pages or lines; you can also move back and forth
between two or more files specified on the command line. When you invoke less, the first "page" of the file appears. A
prompt appears at the bottom of the Terminal window, as in the following example:

$ less ch03
A file is the unit of storage in Unix, as in most other systems.
A file can hold anything: text (a report you're writing,
 .
 .
 .
:

The basic less prompt is a colon (:); although, for the first screenful, less displays the file's name as a prompt. The
cursor sits to the right of this prompt as a signal for you to enter a less command to tell less what to do. To quit, type q.

Like almost everything about less, the prompt can be customized. For example, using the -M starting flag on the less
command line makes the prompt show the filename and your position in the file (as a percentage).

If you want this to happen every time you use less, you can set the LESS environment
variable to M (without a dash) in your shell setup file. See Section 1.3 in Chapter 1.

You can set or unset most options temporarily from the less prompt. For instance, if you have the short less prompt (a
colon), you can enter -M while less is running. less responds "Long prompt (press Return)," and for the rest of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

colon), you can enter -M while less is running. less responds "Long prompt (press Return)," and for the rest of the
session, less prompts with the filename, line number, and percentage of the file viewed.

To display the less commands and options available on your system, press h (for "help") while less is running. Table 3-1
lists some simple (but still quite useful) commands.

Table 3-1. Useful less commands
Command Description Command Description

SPACE Display next page v Starts the vi editor

Return Display next line Control-L Redisplay current page

nf Move forward n lines h Help

b Move backward one page :n Go to next file on command line

nb Move backward n lines :p Go back to previous file on command line

/word Search forward for word q Quit less

?word Search backward for word

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.2 Protecting and Sharing Files
Mac OS X makes it easy for users on the same system to share files and directories. For instance, everyone in a group
can read documents stored in one of their manager's directories without needing to make their own copies, if the
manager has allowed access. There might be no need to fill peoples' email inboxes with file attachments if everyone can
access those files directly through the Unix filesystem.

Here's a brief introduction to file security and sharing. If you have critical security needs, or you just want more
information, talk to your system staff or see an up-to-date book on Unix security such as Practical Unix and Internet
Security, by Simson Garfinkel, Gene Spafford, and Alan Schwartz (O'Reilly).

Note that any admin user can use the sudo command (see Section 3.3 later in this chapter)
to do anything to any file at any time, no matter what its permissions are. So, access
permissions won't keep your private information safe from everyone—although let's hope
that you can trust the other folks who share your Macintosh!

3.2.1 Directory Access Permissions

A directory's access permissions help to control access to the files and subdirectories in that directory:

If a directory has read permission, a user can run ls to see what's in the directory and use wildcards to match
files in it.

A directory that has write permission allows users to add, rename, and delete files in the directory.

To access a directory (that is, to read or write the files in the directory or to run the files if they're programs), a
user needs execute permission on that directory. Note that to access a directory, a user must also have execute
permission to all its parent directories, all the way up to the root.

Mac OS X includes a shared directory for all users: /Users/Shared. You can create files in
this directory and modify files you have put there. However, you cannot modify a file there
that's owned by another user.

3.2.2 File Access Permissions

The access permissions on a file control what can be done to the file's contents. The access permissions on the
directory where the file is kept control whether the file can be renamed or removed. If this seems confusing, think of it
this way: the directory is actually a list of files. Adding, renaming, or removing a file changes the contents of the
directory. If the directory isn't writable, you can't change that list.

Read permission controls whether you can read a file's contents. Write permission lets you change a file's contents. A
file shouldn't have execute permission unless it's a program or a script.

3.2.3 Setting Permissions with chmod

Once you know what permissions a file or directory needs—and if you're the owner (listed in the third column of ls -l
output)—you can change the permissions with the chmod program. If you select a file or directory in the Finder, and

then choose File Get Info (-I), you can also change the permissions using the Ownership & Permissions section
of the Get Info dialog (see Figure 3-6).

Figure 3-6. The Finder's Get Info dialog

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-6. The Finder's Get Info dialog

There are two ways to change permissions: by specifying the permissions to add or delete, or by specifying the exact
permissions. For instance, if a directory's permissions are almost correct, but you also need to make it writable by its
group, tell chmod to add group-write permission. But if you need to make more than one change to the permissions—for
instance, if you want to add read and execute permission but delete write permission—it's easier to set all permissions
explicitly instead of changing them one by one. The syntax is:

chmod permissions file(s)

Let's start with the rules; we see examples next. The permissions argument has three parts, which you must give in
order with no space between.

1. The category of permission you want to change. There are three: the owner's permission (which chmod calls
"user," abbreviated u), the group's permission (g), or others' permission (o). To change more than one
category, string the letters together, such as go for "group and others," or simply use a to mean "all" (same as
ugo).

2. Whether you want to add (+) the permission, delete (-) it, or specify it exactly (=).

3. What permissions you want to affect: read (r), write (w), or execute (x). To change more than one permission,
string the letters together—for example, rw for "read and write."

Some examples should make this clearer! In the following command lines, you can replace dirname or filename with
the pathname (absolute or relative) of the directory or file. An easy way to change permissions on the working directory
is by using its relative pathname, . (dot), as in chmod o- w .. You can combine two permission changes in the same
chmod command by separating them with a comma (,), as shown in the final example.

To protect a file from accidental editing, delete everyone's write permission with the command:

 chmod a-w filename

On the other hand, if you own an unwritable file that you want to edit, but you don't want to change other
peoples' write permissions, you can add "user" (owner) write permission with:

chmod u+w filename

To keep yourself from accidentally removing files (or adding or renaming files) in an important directory of
yours, delete your own write permission with the command:

 chmod u-w dirname

If other users have that permission too, you could delete everyone's write permission with:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If other users have that permission too, you could delete everyone's write permission with:

 chmod a-w dirname

If you want you and your group to be able to read and write all the files in your working directory—but those
files have various permissions now, so adding and deleting the permissions individually would be a pain—this is
a good place to use the = operator to set the exact permissions you want. Use the filename wildcard *, which
means "everything in this directory" (explained in Section 4.2 in Chapter 4) and type:

chmod ug=rw *

If your working directory has any subdirectories, though, that command would be wrong because it takes away
execute permission from the subdirectories, so the subdirectories couldn't be accessed anymore. In that case,
you could try a more specific wildcard. Or, instead of a wildcard, you can simply list the filenames you want to
change, separated by spaces, as in:

chmod ug=rw afile bfile cfile

To protect the files in a directory and all its subdirectories from everyone else on your system, but still keep the
access permissions you have there, you could use:

chmod go-rwx dirname

to delete all "group" and "others" permission to read, write, and execute. A simpler way is to use the command:

chmod go= dirname

to set "group" and "others" permission to exactly nothing.

You want full access to a directory. Other people on the system should be able to see what's in the directory
(and read or edit the files if the file permissions allow it) but not rename, remove, or add files. To do that, give
yourself all permissions, but give "group" and "others" only read and execute permission. Use the command:

chmod u=rwx,go=rx dirname

After you change permissions, it's a good idea to check your work with ls -l filename or ls -ld dirname. (Without the -d
option, ls will list the contents of the directory instead of its permissions and other information.)

3.2.3.1 Problem checklist

I get the message "chmod: Not owner".

Only the owner of a file or directory (or the superuser) can set its permissions. Use ls -l to find the owner or use
superuser privileges (see Section 3.3, later in this chapter).

A file is writable, but my program says it can't be written.

First, check the file permissions with ls -l and be sure you're in the category (user, group, or others) that has
write permission.

The problem may also be in the permissions of the file's directory. Some programs need permission to write
more files into the same directory (for example, temporary files) or to rename files (for instance, making a file
into a backup) while editing. If it's safe to add write permission to the directory (if other files in the directory
don't need protection from removal or renaming), try that. Otherwise, copy the file to a writable directory (with
cp), edit it there, then copy it back to the original directory.

3.2.4 Changing Group and Owner

Group ownership lets a certain group of users have access to a file or directory. You might need to let a different group
have access. The chgrp program sets the group owner of a file or directory. You can set the group to any of the groups
to which you belong. Because you're likely going to be administering your system, you can control the list of groups
you're in. (In some situations, the system administrator controls the list of groups you're in.) The groups program lists
your groups.

For example, if you're a designer creating a directory named images for several illustrators, the directory's original
group owner might be admin. You'd like the illustrators, all of whom are in the group named staff, to access the
directory; members of other groups should have no access. Use commands such as:

$ groups
gareth admin
$ mkdir images

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ mkdir images
$ ls -ld images
drwxr-xr-x 2 gareth admin 68 Nov 6 09:53 images
$ chgrp staff images
$ chmod o= images
$ ls -ld images
drwxr-x--- 2 gareth staff 68 Nov 6 09:53 images

Mac OS X also lets you set a directory's group ownership so that any files you later create
in that directory will be owned by the same group as the directory. Try the command
chmod g+s dirname. The permissions listing from ls -ld will now show an s in place of the
second x, such as drwxr- s---.

The chown program changes the owner of a file or directory. Only the superuser can use chown (see Section 3.3, later in
this chapter).[2]

[2] If you have permission to read another user's file, you can make a copy of it (with cp; see Section 4.5.2 in
Chapter 4). You'll own the copy.

$ chown eric images
chown: changing ownership of `images': Operation not permitted
$ sudo chown eric images
Password:
$

3.2.5 Changing Your Password

The ownership and permissions system described in this chapter depends on the security of your username and
password. If others get your username and password, they can log into your account and do anything you can. They
can read private information, corrupt or delete important files, send email messages as if they came from you, and
more. If your computer is connected to a network, whether it be the Internet or a local network inside your
organization, intruders may also be able to log in without sitting at your keyboard! See Section 8.1 in Chapter 8 for one
way this can be done.

Anyone may be able to get your username—it's usually part of your email address, for instance, or shows up as a file's
owner in a long directory listing. Your password is what keeps others from logging in as you. Don't leave your password
anywhere around your computer. Don't give your password to anyone who asks you for it unless you're sure he'll
preserve your account security. Also, don't send your password by email; it can be stored, unprotected, on other
systems and on backup tapes, where other people may find it and then break into your account.

If you think that someone knows your password, you should probably change it right away—although if you suspect
that a computer "cracker" (or "hacker") is using your account to break into your system, you should ask your system
administrator for advice first, if possible. You should also change your password periodically. Every few months is
recommended.

A password should be easy for you to remember but hard for other people (or password-guessing programs) to guess.
Here are some guidelines. A password should be between six and eight characters long. It should not be a word in any
language, a proper name, your phone number, your address, or anything anyone else might know or guess that you'd
use as a password. It's best to mix upper- and lowercase letters, punctuation, and numbers. A good way to come up
with a unique but memorable password is to think of a phrase that only you might know, and use the first letters of
each word (and punctuation) to create the password. For example, consider the password mlwsiF! ("My laptop was
stolen in Florence!").

To change your password, you can use System Preferences Accounts, but you can also change it from
the command line using the passwd command. After you enter the command, it prompts you to enter your old
password. If the password is correct, it asks you to enter the new password—twice, to be sure there is no typing
mistake.

$ passwd
Changing password for taylor.
Old password:
New password:
Retype new password:

For security, neither the old nor the new passwords appear as you type them.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.3 Superuser Privileges with sudo
Your Mac OS X user account runs with restricted privileges; there are parts of the filesystem to which you don't have
access, and there are certain activities that are prohibited until you supply a password. For example, when you run the
Software Update utility from System Preferences, Mac OS X may ask you for your password before it proceeds. This
extra authentication step allows Software Update to run installers with superuser privileges.

You can invoke these same privileges at the command line by prefixing a command with sudo, a utility that prompts
you for your password and executes the command as the superuser. You must be an Admin user to use sudo. The user
you created when you first set up your Mac will be an Admin user. You can add new Admin users or grant Admin status
to a user in System Preferences Accounts.

What if you don't know your administrative password? If you forgot your password, read
the Mac OS Help to direct you. You might need to reboot your computer off your original
Mac OS X install CD-ROM, then when you get to the installer, select the Reset Password...
option from the Installer menu. The program will then prompt you for a new password and
set it for your machine. Reboot again (without the CD-ROM), and you should be set
forever.

You may need to use sudo when you install Unix utilities or if you want to modify a file you don't own. Suppose that you
accidentally created a file in the /Users directory while you were doing something else as the superuser. You won't be
able to modify it with your normal privileges, so you'll need to use sudo:

$ ls -l logfile.out
-rw-r--r-- 1 root wheel 1784064 Nov 6 11:25 logfile.out
$ rm logfile.out
override rw-r--r-- root/wheel for logfile.out? y
rm: logfile.out: Permission denied
$ sudo rm logfile.out
Password:
$ ls -l logfile.out
ls: logfile.out: No such file or directory

If you use sudo again within five minutes, it won't ask for your password. Be careful using sudo, since it gives you the
ability to modify protected files, all of which are protected to ensure the system runs properly.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

3.4 Exploring External Volumes
Earlier we mentioned that additional hard disks on your system and any network-based disks are all mounted onto the
filesystem in the /Volumes directory. Let's take a closer look to see how it works:

$ ls /Volumes
110GB Extra 30 Panther X
$ ls -l /Volumes
total 8
drwxrwxrwx 29 taylor staff 986 22 Sep 16:37 110GB
drwxrwxrwx 11 taylor unknown 374 4 Sep 23:28 Extra 30
lrwxr-xr-x 1 root admin 1 23 Sep 12:30 Panther -> /
drwxrwxr-t 61 root admin 2074 22 Sep 16:51 X

There are four disks available, one of which is actually the root (or boot) disk: Panther. Notice that the entry for
Panther is different than the others, with the first character shown an l rather than a d. This means it's a link (see
Section 4.5.6 in Chapter 4), which is confirmed by the fact that it's shown as Panther in the regular ls output, while the
value of the alias is shown in the long listing (you can see that Panther actually points to /).

If you insert a CD or DVD into the system, it will also show up as a /Volumes entry:

$ ls -l /Volumes
total 12
drwxrwxrwx 29 taylor staff 986 22 Sep 16:37 110GB
dr-xr-xr-x 4 unknown nogroup 136 17 Aug 2001 CITIZEN_KANE
drwxrwxrwx 11 taylor unknown 374 4 Sep 23:28 Extra 30
lrwxr-xr-x 1 root admin 1 23 Sep 12:30 Panther -> /
drwxrwxr-t 61 root admin 2074 22 Sep 16:51 X

Plugging in an iPod and a digital camera proceeds as follows:

$ ls -l /Volumes
total 44
drwxrwxrwx 29 taylor staff 986 22 Sep 16:37 110GB
dr-xr-xr-x 4 unknown nogroup 136 17 Aug 2001 CITIZEN_KANE
drwxrwxrwx 11 taylor unknown 374 4 Sep 23:28 Extra 30
drwxrwxrwx 1 taylor admin 16384 19 Aug 20:54 NIKON D100
lrwxr-xr-x 1 root admin 1 23 Sep 12:30 Panther -> /
drwxrwxr-t 61 root admin 2074 22 Sep 16:51 X
drwxr-xr-x 15 taylor unknown 510 27 Apr 09:37 Zephyr

Zephyr is the name of the iPod, and NIKON D100 is the camera.

Now, for a neat trick, let's use Unix commands to look at the files on Zephyr:

$ ls -F Zephyr
Calendars/ Icon? Norton FS Volume
Desktop DB Norton FS Data Norton FS Volume 2
Desktop DF Norton FS Index iPod_Control/

These are the files and directories on the iPod. Where's the music? Let's have a peek in iPod_Control:

$ cd Zephyr/iPod_Control/
$ ls -F
Device/ Music/ iPodPrefs* iTunes/
$ ls -F iTunes
DeviceInfo* iTunes Temp 3* iTunesControl* iTunesPrefs*
iTunes Temp* iTunes Temp 4* iTunesDB*
iTunes Temp 1* iTunes Temp 5* iTunesEQPresets*
iTunes Temp 2* iTunes Temp 6* iTunesPlaylists*
$ ls -F Music
F00/ F02/ F04/ F06/ F08/ F10/ F12/ F14/ F16/ F18/
F01/ F03/ F05/ F07/ F09/ F11/ F13/ F15/ F17/ F19/
$ ls -F Music/F00
A Thousand Years.mp3* Moody_s Mood For Love.mp3*
African Ripples.mp3* My One And Only.mp3*
All The Pretty Little Ponie.mp3* My Thanksgiving.mp3*
Apollo.mp3* Nucleus.mp3*
Arrival.mp3* Oh_ Yes_ Take Another Guess.mp3*
...

So you can see the disk structure the iPod uses and it's completely Unix-friendly: music is stored in the
iPod_Control/Music directory, and split into directories called F00 through F19.[3] Within each directory is a set of audio

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

iPod_Control/Music directory, and split into directories called F00 through F19.[3] Within each directory is a set of audio
files (mp3, AIFF, AAC, etc.). You can even copy them using the commands we'll discuss in the next chapter. The iPod
maintains a difficult-to-manipulate index of the audio files, so you can't add music to your iPod as easily. However, you
can make directories in other areas of your iPod and copy files into them, using your iPod as a portable hard drive.

[3] Surprisingly, this disk structure is identical across iPods, regardless of size. It's a compromise between the slow
seeks of a single directory for all data and the needless complexity of each album (or artist) having their own
subdirectory.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 4. File Management
Chapter 3 introduced the Unix filesystem, including an extensive discussion of the directory structure and how to move
around using cd and pwd. In this chapter, we focus on Unix file naming schemes — which aren't the same as names
you'd see in the Finder, as you'll see — and how to rename, edit, copy, and move files. You'll also learn how to use
Unix-based file search utilities, which tend to be dramatically faster than Sherlock and other GUI-based find utilities.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.1 File and Directory Names
As Chapter 3 explained, both files and directories are identified by their names. A directory is really just a special kind
of file, so the rules for naming directories are the same as the rules for naming files.

Filenames may contain any character except /, which is reserved as the separator between files and directories in a
pathname. Filenames are usually made of upper- and lowercase letters, numbers, "." (dots), and "_" (underscores).
Other characters (including spaces) are legal in a filename, but they can be hard to use because the shell gives them
special meanings. However, spaces are a standard part of Macintosh file and folder names, so while we recommend
using only letters, numbers, dots, and underscore characters for filenames, the reality is that you will have to work with
spaces in file and directory names. The Finder, by contrast, dislikes colons (which older versions of Mac OS used as a
directory separator, just as Unix uses the slash). If you display a file called test:me in the Finder, the name is shown as
test/me instead. (The reverse is also true: if you create a file in the Finder whose name contains a slash, it will appear
as a colon in the Terminal.)

Though it's tempting to include spaces in filenames as you do in the Finder, if you're
planning on doing any substantial amount of work on the Unix side, get used to using
dashes or underscores in lieu of spaces in your filenames. It's 99% as legible, but
considerably easier to work with. Further, in the interest of having files correctly identified
in both the Finder and Unix, it's a good habit to get into using the appropriate filename
suffixes too, i.e., ".doc" for Microsoft Word documents, ".txt" for text files, ".xls" for Excel
spreadsheets, and so on. As an added bonus, this makes life easier for your less-fortunate
(Windows-using) friends when you send them files.

If you have a file with spaces in its name, the shell will be confused if you type its name on the command line. That's
because the shell breaks command lines into separate arguments at the spaces. To tell the shell not to break an
argument at spaces, either put quotation marks (") around the argument or preface each space with a backslash (\).

For example, the rm program, covered later in this chapter, removes Unix files. To remove a file named "a confusing
name," the first rm command in the following snippet doesn't work, but the second does. Also note that you can escape
spaces (that is, avoid having the shell interpret them inappropriately) by using a backslash character, as shown in the
third example:

$ ls -l
total 2
-rw-r--r-- 1 taylor staff 324 Feb 4 23:07 a confusing name
-rw-r--r-- 1 taylor staff 64 Feb 4 23:07 another odd name
$ rm a confusing name
rm: a: no such file or directory
rm: confusing: no such file or directory
rm: name: no such file or directory
$ rm "a confusing name"
$ rm another\ odd\ name
$

You should also use a backslash (\) before any of the following special characters, which have meaning to the shell: * #
` " ' \ $ | & ? ; ~ () < > ! ^.

A filename must be unique inside its directory, but other directories may have files with the same names. For example,
you may have the files called chap1.doc and chap2.doc in the directory /Users/carol/Documents, and also have different
files with the same names in /Users/carol/Desktop.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.2 File and Directory Wildcards
When you have a number of files named in series (for example, chap1.doc to chap12.doc) or filenames with common
characters (such as aegis, aeon, and aerie), you can use wildcards to specify many files at once. These special
characters are * (asterisk), ? (question mark), and [] (square brackets). When used in a file or directory name given as
an argument on a command line, the characteristics detailed in Table 4-1 are true.

Table 4-1. Shell wildcards
Notation Definition

*

An asterisk stands for any number of characters in a filename. For example, ae* would match aegis, aerie,
aeon, etc. if those files were in the same directory. You can use this to save typing for a single filename
(for example, al* for alphabet.txt) or to choose many files at once (as in ae*). A * by itself matches all file
and subdirectory names in a directory, with the exception of any starting with a period. To match all your
dot files, try .??*.

? A question mark stands for any single character (so h?p matches hop and hip, but not help).

[]
Square brackets can surround a choice of single characters (i.e., one digit or one letter) you'd like to
match. For example, [Cc]hapter would match either Chapter or chapter, but chap[12] would match chap1 or
chap2. Use a hyphen (-) to separate a range of consecutive characters. For example, chap[1-3] would
match chap1, chap2, or chap3.

The following examples show the use of wildcards. The first command lists all the entries in a directory, and the rest
use wildcards to list just some of the entries. The last one is a little tricky; it matches files whose names contain two (or
more) a's.

$ ls
chap0.txt chap2.txt chap5.txt cold.txt
chap1a.old.txt chap3.old.txt chap6.txt haha.txt
chap1b.txt chap4.txt chap7.txt oldjunk
$ ls chap?.txt
chap0.txt chap4.txt chap6.txt
chap2.txt chap5.txt chap7.txt
$ ls chap[3-7]*
chat3.old.txt chap4.txt chap5.txt chap6.txt chap7.txt
$ ls chap??.txt
chap1b.txt
$ ls *old*
chap1a.old.txt chap3.old.txt cold.txt oldjunk
$ ls *a*a*

Wildcards are useful for more than listing files. Most Unix programs accept more than one filename, and you can use
wildcards to name multiple files on the command line. For example, both the cat and less programs display files on the
screen. cat streams a file's contents until end of file, while less shows the file one screenfull at a time. Let's say you want
to display files chap3.old.txt and chap1a.old.txt. Instead of specifying these files individually, you could enter the
command as:

$ less *.old.txt

This is equivalent to less chap1a.old.txt chap3.old.txt.

Wildcards match directory names, too. You can use them anywhere in a pathname—absolute or relative—though you
still need to separate directory levels with slashes (/). For example, let's say you have subdirectories named Jan, Feb,
Mar, and so on. Each has a file named summary. You could read all the summary files by typing less */summary. That's
almost equivalent to less Jan/summary Feb/summary. However, there's one important difference when you use less
*/summary: the names will be alphabetized, so Apr/summary would be first in the list.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.3 Creating and Editing Files
One easy way to create a file is with a Unix feature called input/output redirection, as Chapter 6 explains. This sends
the output of a program directly to a file, to make a new file or add to an existing one.

You'll usually create and edit a plain-text file with a text editor program. Text editors are somewhat different than word
processors.

4.3.1 Text Editors and Word Processors

A text editor lets you add, change, and rearrange text easily. Three popular Unix editors included with Mac OS X are vi
(pronounced "vee-eye"), Pico, ("pea-co"), and Emacs ("e-max").

You should choose an editor you're comfortable with. vi is probably the best choice because all Unix systems have it,
but Emacs is also widely available. If you'll be doing simple editing only, Pico is a great choice. Although Pico is much
less powerful than Emacs or vi, it's a lot easier to learn. For this book, however, we'll focus on the rudiments of vi since
it's the most widely available Unix editor, and there's a terrific version included with Mac OS X called vim.

None of these plain text editors has the same features as popular word-processing software, but vi and Emacs are
sophisticated, extremely flexible editors for all kinds of plain-text files: programs, email messages, and so on.

Of course, you can opt to use a graphical text editor such as BBEdit or TextEdit with good
results too, if you'd rather just sidestep editing while within the Terminal application. If
you do, try using the open command within the Terminal to launch the editor with the
proper file already loaded. For example: open -e myfile.txt will open the specified file in
TextEdit. One gotcha: you won't see any dot files in the Finder.

Fixing Those Pesky Carriage Returns
The only caveat regarding switching between Finder applications and Unix tools for editing is that you
might end up having to translate file formats along the way. Fortunately, this is easy with Unix.

One of the more awkward things about Apple putting a Mac graphical environment on top of a Unix core is
that the two systems use different end-of-line character sequences. If you ever open up a file in a Finder
application and see lots of little boxes at the end of each line, or if you try to edit a file within Unix and find
that it's littered with ^M sequences, you've hit the end-of-line problem.

To fix it, use vi to edit .profile, the tcsh configuration file:

$ vi ~/.profile

Add the following lines anywhere in the file:

alias m2u= "tr '\015' '\012' "
alias u2m="tr '\012' '\015' "

Save the file, close your current Terminal window, and open a new one. (Each time you launch a new
Terminal window, bash will process the contents of this file.)

Now, whenever you're working with Unix editing tools and you need to fix a Mac-format file, simply use
m2u (Mac to Unix), as in:

$ m2u < mac-format-file > unix-friendly-file

And if you find yourself in the opposite situation, where you're editing a Unix file in a Mac tool and it has
some carriage-return weirdness, use the reverse (Unix to Mac) within Terminal before editing:

$ u2m < unix-friendly-file > mac-format-file

Worthy of note is the helpful tr command, which makes it easy to translate all occurrences of one
character to another. Use man tr to learn more about this powerful utility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By "plain text," we mean a file with only letters, numbers, and punctuation characters in it (text without formatting such
as point size, bold and italics, or embedded images). Unix systems use plain-text files in many places: in redirected
input and output of Unix programs (see Chapter 6), as shell setup files (see Chapter 1), for shell scripts (see Chapter
10), for system configuration, and more. Text editors edit these files. When you use a word processor, though,
although the screen may look as if the file is only plain text, the file probably also has hidden codes (nontext
characters) in it. That's often true even if you tell the word processor to "Save as plain text." One easy way to check for
nontext characters in a file is by reading the file with less; look for characters in reversed colors, codes such as <36>,
and so on.

If you need to do word processing—making documents, envelopes, and so on—your best bet is to work with a program
designed for that purpose such as Microsoft Office X, or Panther's all-powerful TextEdit, which can read and write Word
files.

4.3.2 The vi Text Editor

The vi editor, originally written by Bill Joy at the University of California, Berkeley, is easy to use once you master the
fundamental concept of a modal editor. Mac OS X actually includes a version of vi that has many useful new features,
called vim. In this section, we cover only its basic commands, but if you become a vi master, you'll enjoy vim's powerful
extensions.

Modes can be best explained by thinking about your car stereo. When you have a tape in (or a CD), the "1" button does
one task, but if you are listening to the radio, the very same button does something else (perhaps jump to
preprogrammed station #1). The vi editor is exactly the same: in Command mode, i jumps you into Insert mode, but in
Insert mode it actually inserts an "i" into the text itself. The handiest key on your keyboard while you're learning vi is
unquestionably ESC: if you're in Insert mode, ESC will move you back into Command mode, and if you're in Command
mode, it'll beep to let you know that all is well. Use ESC often, until you're completely comfortable keeping track of
what mode you're in.

Start vi by typing its name; the argument is the filename you want to create or edit. For instance, to edit your .profile
setup file, you would cd to your home directory and enter:

$ vi .profile

The terminal fills with a copy of the file (and, because the file is short, some blank lines too, as denoted by the ~ at the
beginning of the line), as shown in Figure 4-1.

Figure 4-1. vi display while editing

The bottom row of the window is the status line, which indicates what file you're editing: ".profile" 8L, 164C. This
indicates that the file has eight lines with a total of 164 characters. Quit the program by typing :q and pressing Return
while in Command mode.

4.3.2.1 vi tour

Let's take a tour through vi. In this example, you'll make a new file. You can call the file anything you want, but it's best
to use only letters and numbers in the filename. For instance, to make a file named sample, enter the command vi
sample. Let's start our tour now.

1. Your screen should look something like Figure 4-1, but the cursor should be on the top line and the rest of the
lines should have the ~ blank line delimiter. Press i to move out of Command mode and into Insert mode, and
you're ready to enter text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Enter some lines of text. Make some lines too short (press Return before the line gets to the right margin).
Make others too long; watch how vi wraps long lines. If you have another terminal window open with some text
in it, or if you have an Aqua application open, you can also use your mouse to copy text from another window
and paste it into the vi window. (Always make sure you're in Insert mode before you do this, however, or you
could irrevocably mess up your file.) To get a lot of text quickly, paste the same text more than once.

3. Let's practice moving around the file. To do this, we'll need to leave Insert mode by pressing ESC once. Press it
again and you'll hear a beep, reminding you that you are already in Command mode. You can use your arrow
keys to move around the file, but vi also lets you keep your fingers on the keyboard by using h, j, k, and l as the
four motion keys (left, down, up, and right, respectively). Unless you have enabled "Option click to position
cursor" in Terminal's Preferences, vi will ignore your mouse if you try to use it to move the cursor. If you've
entered a lot of text, you can experiment with various movement commands: H to jump to the first line on the
screen, G to jump to the bottom of the file. You should also try the w and b commands, to move forward and
backward by words. Also, 0 (zero) jumps to the beginning of the line, while $ jumps to the end.

vi's search or "where is" command, /pattern, can help you find a word quickly. It's handy even on a short file,
where it can be quicker to type / and a word than to use the cursor-moving commands. The search command is
also a good example of the way that vi can move your cursor to the status line so you can enter more
information. Let's try it by typing /. You should see a display like Figure 4-2.

Figure 4-2. vi display while searching

4. Notice that the cursor has jumped to the bottom of the display (which has changed since you started vi) and is
sitting next to a /. You can type a word or characters to search for, then press Return to do the search. After a
search finishes, you can type n to repeat the search.

5. If your text isn't in paragraphs separated by blank lines, break some of it into paragraphs. Put your cursor at
the place you want to break the text, and press i to move back into Insert mode, then press Return twice (once
to break the line, another to make a blank line).

6. Now justify one paragraph. Put the cursor at the beginning of the paragraph and type !}fmt. (vi's status line
won't change until you press the } character.) Now the paragraph's lines should flow and fit neatly between the
margins.

7. Text can be deleted by using x to delete the character that's under the cursor, or the powerful d command: dd
deletes lines, dw deletes individual words, d$ deletes to the end of the line, d0 deletes to the beginning of the
line, and dG deletes to the end of the file (if you're seeing a pattern and thinking that it's d + motion specifier,
you're absolutely correct). To undo the deletion, press u. You can also paste the deleted text with the p
command.

8. The first step to copying text is to position your cursor. The copy command, or "yank," works similar to the
delete command. The yw command copies one word, yy yanks the line, y1 a single character, and ynw yanks n
number words. Move the cursor to the line you want to copy and press yy. After repositioning your cursor to
where you'd like the text copied, press p to paste the text.

9. As with any text editor, it's a good idea to save your work from vi every 5 or 10 minutes. That way, if
something goes wrong on the computer or network, you'll be able to recover the edited buffer since the last
time you saved it. When launching vi again, use the -r option with a filename to recover the edited buffer where
the filename is the name of the file you were editing.

Try writing out your work with :w followed by Return. The bottom of the display will show the filename saved
and the number of lines and characters in the file.

This part confuses some vi beginners. If you want to save the file with the same name it had when you started,
just press :w and Return. That's all! You can also choose a different filename: type :w followed by the new
filename. Press Return and it's saved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10. Make one or two more small edits. Then, exit with :q. vi warns you that the file has not been saved. If you want
to override the warning, type :q!. You can also use a shortcut: :wq writes out your changes and quits vi.

That's it. There's a lot more you can learn about. In Table 4-2, you'll find a handy listing of some of the most common
vi commands and their descriptions. O'Reilly has two very helpful books if you want to become a power user: Learning
the vi Editor, by Linda Lamb and Arnold Robbins, and vi Editor Pocket Reference, by Arnold Robbins. Though focused on
vi, they offer extensive information about vim as well, and will get you up to speed in no time.

Table 4-2. Common vi editing commands
Command Meaning

/pattern Search forward for specified pattern. Repeat search with n.

:q Quit the edit session.

:q! Quit, discarding any changes.

:w Write (save) any changes out to the file.

:wq or ZZ Write out any changes, then quit (shortcut).

a Move into Append mode (like Insert mode, but you enter information after the cursor, not before).

b Move backward one word.

w Move forward one word.

d1G Delete from the current point back to the beginning of the file.

dd Delete the current line.

dG Delete through end of file.

dw Delete the following word.

ESC Move into Command mode.

h Move backward one character.

l Move forward one character.

i Move into Insert mode (ESC moves you back to Command mode).

j Move down one line.

k Move up one line.

O Open up a line above the current line and move into Insert mode.

o Open up a line below the current line and move into Insert mode.

P Put (paste) deleted text before the cursor.

p Put (paste) deleted text after the cursor.

X Delete character to the left of the cursor.

x Delete the character under the cursor.

yw Yank (copy) from the cursor to the end of the current word. You can then paste it with p or P.

yy Yank (copy) the current line. You can then paste it with p or P.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.4 A Simpler vi Alternative: Pico
If the section on vi has left you longing for the safety and logic of the graphical world, you might want to explore the
simple editing alternative of Pico. Originally written as part of a text-based email system called Pine, Pico has taken on
a life of its own and is included in many Unix distributions, including Mac OS X. Figure 4-3 shows the test file from the
earlier example in Pico.

Figure 4-3. Pico, a simpler alternative to vi

Pico offers a menu-based approach to editing, with on-screen help. It's a lot friendlier than vi, whose primary way to
tell you that you've done something wrong is to beep. Pico offers a comfortable middle-ground between text editors
such as TextEdit and hardcore Unix text editors such as vi. It's a friendly editor that you can launch from the command
line and never have to take your hands off the keyboard to use. To learn more about Pico, type Control-G while within
the editor, or use man pico to read the manpage.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

4.5 Managing Files
The tree structure of the Unix filesystem makes it easy to organize your files. After you make and edit some files, you
may want to copy or move files from one directory to another, or rename files to distinguish different versions of a file.
You may want to create new directories each time you start a different project. If you copy a file, it's worth learning
about the subtle sophistication of the cp and CpMac commands: if you copy a file to a directory, it automatically reuses
the filename in the new location. This can save lots of typing!

A directory tree can get cluttered with old files you don't need. If you don't need a file or a directory, delete it to free
storage space on the disk. The following sections explain how to make and remove directories and files.

4.5.1 Creating Directories with mkdir

It's handy to group related files in the same directory. If you were writing a spy novel, you probably wouldn't want your
intriguing files mixed with restaurant listings. You could create two directories: one for all the chapters in your novel
(spy, for example), and another for restaurants (boston.dine).

To create a new directory, use the mkdir program. The syntax is:

mkdir dirname(s)

dirname is the name of the new directory. To make several directories, put a space between each directory name. To
continue our example, you would enter:

$ mkdir spy boston.dine

4.5.2 Copying Files

If you're about to edit a file, you may want to save a copy first. That makes it easy to get back the original version. You
should use the cp program when copying plain files and directories containing only plain files. Other files having
resource forks, such as Applications, should be copied with CpMac (available only if you have installed Apple's XCode
Tools).

4.5.2.1 cp

The cp program can put a copy of a file into the same directory or into another directory. cp doesn't affect the original
file, so it's a good way to keep an identical backup of a file.

To copy a file, use the command:

cp old new

where old is a pathname to the original file and new is the pathname you want for the copy. For example, to copy the
/etc/passwd file into a file called password in your working directory, you would enter:

$ cp /etc/passwd password
$

You can also use the form:

cp old olddir

This puts a copy of the original file old into an existing directory olddir. The copy will have the same filename as the
original.

If there's already a file with the same name as the copy, cp replaces the old file with your new copy. This is handy when
you want to replace an old copy with a newer version, but it can cause trouble if you accidentally overwrite a copy you
wanted to keep. To be safe, use ls to list the directory before you make a copy there.

Also, cp has an -i (interactive) option that asks you before overwriting an existing file. It works like this:

$ cp -i master existing-file.txt
overwrite existing-file.txt? no
$

You can copy more than one file at a time to a single directory by listing the pathname of each file you want copied,
with the destination directory at the end of the command line. You can use relative or absolute pathnames (see Section
3.1 in Chapter 3) as well as simple filenames. For example, let's say your working directory is /Users/carol (from the
filesystem diagram in Figure 3-1). To copy three files called ch1, ch2, and ch3 from /Users/john to a subdirectory called

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filesystem diagram in Figure 3-1). To copy three files called ch1, ch2, and ch3 from /Users/john to a subdirectory called
Documents (that's /Users/carol/ Documents), enter:

$ cp ../john/ch1.doc ../john/ch2.doc ../john/ch3.doc Documents

Or you could use wildcards and let the shell find all the appropriate files. This time, let's add the -i option for safety:

$ cp -i ../john/ch[1-3].doc Documents
cp: overwrite work/ch2.doc ? n

There is already a file named ch2 in the Documents directory. When cp asks, answer n to prevent copying ch2.
Answering y would overwrite the old ch2.As you saw in Section 3.1.5.2 in Chapter 3, the shorthand form . refers to the
copy in the working directory, and .. puts it in the parent directory. For example, the following puts the copies into the
working directory:

$ cp ../john/ch[1-3].doc .

One more possibility: when you're working with home directories, you can use a convenient shorthand ~account to
represent John and Carol's home directory (and ~ by itself to represent your own). So here's yet another way to copy
those three files:

$ cp ~john/ch[1-3.doc] Documents

cp can also copy entire directory trees. Use the option -R, for "recursive." There are two arguments after the option: the
pathname of the top-level directory from which you want to copy and the pathname of the place where you want the
top level of the copy to be. As an example, let's say that a new employee, Asha, has joined John and Carol. She needs
a copy of John's Documents/work directory in her own home directory. See the filesystem diagram in Figure 3-1. Her
home directory is /Users/asha. If Asha's own work directory doesn't exist yet (important!), she could type the following
commands:

$ cd /Users
$ cp -R john/Documents/work asha/work

Or, from her home directory, she could have typed cp -R ../john/Documents/work work. Either way, she'd now have a new
subdirectory /Users/asha/work with a copy of all files and subdirectories from /Users/john/Documents/work.

If you give cp -R the wrong pathnames, it can copy a directory tree into itself—running
forever until your filesystem fills up!

4.5.2.2 Problem checklist

The system says something like "cp: cannot copy file to itself".

If the copy is in the same directory as the original, the filenames must be different.

The system says something like "cp: filename: no such file or directory".

The system can't find the file you want to copy. Check for a typing mistake. If a file isn't in the working
directory, be sure to use its pathname.

The system says something like "cp: permission denied".

You may not have permission to copy a file created by someone else or to copy it into a directory that does not
belong to you. Use ls -l to find the owner and the permissions for the file, or use ls -ld to check the directory. If
you feel that you should be able to copy a file, ask the file's owner or use sudo (see Section 3.3 in Chapter 3) to
change its access modes.

Xcode
If you're working with applications and other complex file structures in Mac OS X, you'll want to have
access to CpMac and MvMac, both of which are only available through Xcode. Fortunately, Xcode is easy to
get and install: if you bought the boxed version of Mac OS X, Xcode should be included on a separate CD-
ROM. If you bought a new Macintosh that came with Mac OS X preinstalled, the Xcode installer will
probably be in /Applications/Installers. The latest version of the tools are also available to Apple Developer
Connection (ADC) members (http://connect.apple.com/). Sign up for a free account and you'll be able to
download Xcode and install it yourself!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.2.3 Copying Mac files with resources

The cp program works on plain files and directories, but the Macintosh system stores applications with resource
information. These attributes are known as resource forks, and are used extensively in Classic Mac OS applications and
documents. (You will also find them in various places on the Mac OS X filesystem). If you're a Mac OS 9 veteran, you'll
remember that the resources in the resource fork were only editable with ResEdit, and otherwise were hidden in the
system. A file's resource fork, if it exists, can be seen by looking at a special file called filename/rsrc. For example,
Microsoft Word has a resource fork:

$ cd /Applications
$ ls -l Microsoft\ Word
-rwxrwxr-x 1 taylor taylor 10508000 2 Jul 00:00 Microsoft Word
$ ls -l Microsoft\ Word/rsrc
-rwxrwxr-x 1 taylor taylor 2781444 2 Jul 00:00 Microsoft Word/rsrc
$ cd Microsoft\ Word

The preceding listing should appear rather puzzling, actually. The file Microsoft Word isn't a directory, yet there's a file
within as if it were a directory (rsrc). But you can't cd into Microsoft Word to see the directory. Weird. Further, if you
copy Microsoft Word with cp, it won't copy the contents of the resource fork (in this example, /tmp is a directory used to
hold temporary files):

$ cp Microsoft\ Word /tmp
$ ls -l /tmp/Microsoft\ Word
-rwxr-xr-x 1 bjepson wheel 10568066 Nov 10 14:35 /tmp/Microsoft Word
$ ls -l /tmp/Microsoft\ Word/rsrc
-rwxr-xr-x 1 bjepson wheel 0 Nov 10 14:35 /tmp/Microsoft Word/rsrc

A special version of cp is used to copy files with resource forks. The program, CpMac, is included with XCode.

If you find yourself using CpMac or MvMac a lot, add /Developer/Tools to your PATH so you
can simply type CpMac rather than the full path to the program. PATH is one of a set of
environment variables that help the shell keep track of your particular session. Information
on customizing your path is found in Section 1.3 in Chapter 1.

CpMac is found in /Developer/Tools. To copy Microsoft Word and its resources, invoke the following:

$ /Developer/Tools/CpMac Microsoft\ Word /tmp
$ ls -l /tmp/Microsoft\ Word
-rwxrwxrwx 1 bjepson wheel 10568066 Nov 10 14:37 /tmp/Microsoft Word
$ ls -l /tmp/Microsoft\ Word/rsrc
-rwxrwxrwx 1 bjepson wheel 2781434 Nov 10 14:37 /tmp/Microsoft Word/rsrc

In addition to resource forks, some files may include HFS metadata. A legacy of the earlier
Mac OS, HFS metadata holds useful information about a file within the first several bytes
of the file itself. The Mac OS X Finder will still make use of some of this data, including
creator and type codes that, if a document doesn't have a dot extension such as .mp3,
dictate the file's icon as well as which application should launch when you double-click it. A
document file that loses this metadata might display only a generic icon, and the Finder
wouldn't know which application to launch it with.

4.5.3 Renaming and Moving Files with mv

To rename a file, use mv (move). The mv program can also move a file from one directory to another.

The mv command has the same syntax as the cp command:

mv old new

old is the old name of the file and new is the new name. mv will write over existing files, which is handy for updating old
versions of a file. If you don't want to overwrite an old file, be sure that the new name is unique. The Mac OS X version
of mv has an -i option for safety:

$ mv chap1.doc intro.doc
$ mv -i chap2.doc intro.doc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ mv -i chap2.doc intro.doc
mv: overwrite `intro.doc'? n
$

The previous example changed the file named chap1.doc to intro.doc, and then tried to do the same with chap2.doc
(answering n cancelled the last operation). If you list your files with ls, you will see that the filename chap1.doc has
disappeared, but chap2.doc and intro.doc are preserved.

The mv command can also move a file from one directory to another. As with the cp command, if you want to keep the
same filename, you need only to give mv the name of the destination directory.

There's also a MvMac command, analogous to the CpMac command explained earlier. Again, check by looking for a /rsrc
resource file before moving and use MvMac if needed.

4.5.4 Finding Files

If your account has lots of files, organizing them into subdirectories can help you find the files later. Sometimes you
may not remember which subdirectory has a file. The find program can search for files in many ways; we'll look at two.

Change to your home directory so find will start its search there. Then carefully enter one of the following two find
commands. (The syntax is strange and ugly—but find does the job!)

$ cd
$ find . -type f -name "chap*" -print
./chap2
./old/chap10b
$ find . -type f -mtime -2 -print
./work/to_do

The first command looks in your working directory (.) and all its subdirectories for files (-type f) whose names start with
chap. (find understands wildcards in filenames. Be sure to put quotes around any filename pattern with a wildcard in it,
as we did in the example.) The second command looks for all files that have been created or modified in the last two
days (-mtime -2). The relative pathnames that find finds start with a dot (./), the name of the working directory, which
you can ignore. Worth noting is that -print displays the results on the screen, not on your printer.

Mac OS X also has the locate program to find files quickly. You can use locate to search part or all of a filesystem for a
file with a certain name.

First, you need to build the database of filenames. Use the command:

$ sudo /usr/libexec/locate.updatedb

It takes a while for this to complete, as it searches through all your directories looking for files and recording their
names. This database is automatically rebuilt weekly, but if you ever add a lot of files and want to add them to the
database, rerun this command to rebuild the database with the new files.

Once you have the database, search it with the locate command. For instance, if you're looking for a file named alpha-
test, alphatest, or something like that, try this:

$ locate alpha
/Users/alan/Desktop/alpha3
/usr/local/projects/mega/alphatest

You'll get the absolute pathnames of files and directories with alpha in their names. (If you get a lot of output, add a
pipe to less. See Section 6.2.3 in Chapter 6.) locate may or may not list protected, private files; its listings usually also
aren't completely up to date. The fundamental difference between the two is that find lets you search by file type,
contents, and much more, while locate is a simple list of all filenames on the system. To learn much more about find and
locate, read their manpages or read the chapter about them in Mac OS X in a Nutshell (O'Reilly).

4.5.5 Removing Files and Directories

You may have finished work on a file or directory and see no need to keep it, or the contents may be obsolete.
Periodically removing unwanted files and directories frees storage space.

4.5.5.1 rm

The rm program removes files. Unlike moving an item to the Trash, no opportunity exists to recover the item before you
"Empty the Trash" when using rm.

The syntax is simple:

rm filename(s)

rm removes the named files, as the following example shows:

$ ls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ls
chap10 chap2 chap5 cold
chap1a.old chap3.old chap6 haha
chap1b chap4 chap7 oldjunk
$ rm *.old chap10
$ ls
chap1b chap4 chap6 cold oldjunk
chap2 chap5 chap7 haha
$ rm c*
$ ls
haha oldjunk
$

When you use wildcards with rm, be sure you're deleting the right files! If you accidentally remove a file you need, you
can't recover it unless you have a copy in another directory or in your backups.

Do not enter rm * carelessly. It deletes all the files in your working directory.

Here's another easy mistake to make: you want to enter a command such as rm c*
(remove all filenames starting with "c"), but instead enter rm c * (remove the file named c
and all files!).

It's good practice to list the files with ls before you remove them. Or, if you use rm's -i
(interactive) option, rm asks you whether you want to remove each file.

4.5.5.2 rmdir

Just as you can create new directories with mkdir, you can remove them with the rmdir program. As a precaution, rmdir
won't let you delete directories that contain any files or subdirectories; the directory must first be empty. (The rm -r
command removes a directory and everything in it. It can be dangerous for beginners, though.)

The syntax is:

rmdir dirname(s)

If a directory you try to remove does contain files, you get a message like "rmdir: dirname not empty".

To delete a directory that contains some files:

1. Enter cd dirname to get into the directory you want to delete.

2. Enter rm * to remove all files in that directory.

3. Enter cd .. to go to the parent directory.

4. Enter rmdir dirname to remove the unwanted directory.

4.5.5.3 Problem checklist

I still get the message "dirname not empty" even after I've deleted all the files.

Use ls -a to check that there are no hidden files (names that start with a period) other than . and .. (the working
directory and its parent). The following command is good for cleaning up hidden files (which aren't matched by
a simple wildcard such as *). It matches all hidden files except for . (the current directory) and .. (the parent
directory):

$ rm -i .[^.]*

4.5.6 Working with Links

If you've used the Mac for a while, you're familiar with aliases, empty files that point to other files on the system. A
common use of aliases is to have a copy of an application on the desktop, or to have a shortcut in your home directory.

Within the graphical environment, you make aliases by using -Click and then choosing Make Alias from the context
menu. The result of an alias, in Unix, looks like this:

$ ls -l *3*
-rw-r--r-- 1 taylor taylor 1546099 23 Sep 20:58 fig0403.pdf
-rw-r--r-- 1 taylor taylor 0 24 Sep 08:34 fig0403.pdf alias

In this case, the file fig0403.pdf alias is an Aqua alias pointing to the actual file fig0403.pdf in the same directory. But
you wouldn't know it because it appears to be an empty file: the size is shown as zero bytes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unix works with aliases differently; on the Unix side, we talk about links, not aliases. There are two types of links
possible in Unix, hard links or symbolic links, and both are created with the ln command.

The syntax is:

ln [-s] source target

The -s flag indicates that you're creating a symbolic link, so to create a second file that links to the file fig0403.pdf, the
command would be:

$ ln -s fig0403.pdf neato-pic.pdf

and the results would be:

$ ls -l *pdf
-rw-r--r-- 1 taylor taylor 1532749 23 Sep 20:47 fig0401.pdf
-rw-r--r-- 1 taylor taylor 1539493 23 Sep 20:52 fig0402.pdf
-rw-r--r-- 1 taylor taylor 1546099 23 Sep 20:58 fig0403.pdf
lrwxr-xr-x 1 taylor taylor 18 24 Sep 08:40 neato-pic.pdf@ ->
 fig0403.pdf

One way to think about symbolic links is that they're akin to a Stickies note saying "the info you want isn't here, it's in
file X." This also implies a peculiar behavior of symbolic links (and Aqua aliases): move, rename, or remove the item
being pointed to and you have an orphan link. The system doesn't remove or update symbolic links automatically.

The other type of link is a hard link, which essentially creates a second name entry for the exact same contents. That is,
if we create a hard link to fig0403.pdf, we can then delete the original file, and the contents remain accessible through
the second filename — they're different doors into the same room (as opposed to a Sticky left on a door telling you to
go to the second door instead, as would be the case with a symbolic link). Hard links are created by omitting the -s flag:

$ ln mypic.pdf copy2.pdf
$ ls -l mypic.pdf copy2.pdf
-rw-r--r-- 2 taylor taylor 1546099 24 Sep 08:45 copy2.pdf
-rw-r--r-- 2 taylor taylor 1546099 24 Sep 08:45 mypic.pdf
$ rm mypic.pdf
$ ls -l copy2.pdf
-rw-r--r-- 1 taylor taylor 1546099 24 Sep 08:45 copy2.pdf

Notice that both files are exactly the same size when the hard link is created. This makes sense because they're both
names to the same underlying set of data, so they should be completely identical. Then, when the original is deleted,
the data survives with the second name now as its only name.

4.5.7 Compressing and Archiving Files

Aqua users may commonly use StuffIt's .sit and .hqx formats for file archives, but Unix users have many other options
worth exploring. There are three compression programs included with Mac OS X, though the most popular is gzip (the
others are compress and bzip2; read their manpages to learn more about how they differ). There's also a very common
Unix archive format called tar that we'll cover briefly.

4.5.7.1 gzip

Though it may initially confuse you into thinking that it's part of the Zip archive toolset, gzip is actually a compression
program that does a very good job of shrinking down individual files for storage and transmission. If you're sending a
file to someone with a dial-up connection, for example, running the file through gzip can significantly reduce its size and
make it much more portable. Just as importantly, it can help save space on your disk by letting you compress files you
want to keep, but aren't using currently. gzip works particularly well with tar too, as you'll see.

The syntax is:

gzip [-v] file(s)

The -v flag offers verbose output, letting the program indicate how much space it saved by compressing the file. Very
useful information, as you may expect!

$ ls -l ch06.doc
-rwxr-xr-x 1 taylor taylor 138240 24 Sep 08:52 ch06.doc
$ gzip -v ch06.doc
ch06.doc: 75.2% -- replaced with ch06.doc.gz
$ ls -l ch06.doc.gz
-rwxr-xr-x 1 taylor taylor 34206 24 Sep 08:52 ch06.doc.gz

You can see that gzip did a great job compressing the file, saving over 75%. Notice that it's automatically appended a
.gz filename suffix to indicate that the file is now compressed. To uncompress the file, just use gunzip:

$ gunzip ch06.doc.gz
$ ls -l ch06.doc
-rwxr-xr-x 1 taylor taylor 138240 24 Sep 08:52 ch06.doc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-rwxr-xr-x 1 taylor taylor 138240 24 Sep 08:52 ch06.doc

4.5.7.2 tar

In the old days, Unix system backups were done to streaming tape devices (today you can only see them in cheesy 60s
scifi films, the huge round tape units that randomly spin as data is accessed). The tool of choice for creating backups
from Unix systems onto these streaming tape devices was tar, the tape archiver. Fast forward to Mac OS X, and tar
continues to be a useful utility, but now it's used to create files that contain directories and other files within, as an
archive. It's similar to the Zip format, but differs from gzip because its job is to create a file that contains multiple files.
gzip, by contrast, makes an existing file shrink as much as possible through compression.

The tar program is particularly helpful when combined with gzip, actually, because it makes creating archive copies of
directories simple and effective. Even better, if you use the -z flag to tar, it automatically invokes gzip to compress its
output without any further work.

The syntax is:

tar [c|t|x] [flags] files and directories to archive

The tar program is too complex to fully explain here, but in a nutshell, tar -c creates archives, tar -t shows what's in an
existing archive, and tar -x extracts files and directories from an archive. The -f file flag is used to specify the archive
name, and the -v flag offers verbose output to let you see what's going on. As always, man tar will produce lots more
information.

$ du -s Masters\ Thesis/
6704 Masters Thesis/
$ tar -czvf masters.thesis.tgz Masters\ Thesis
Masters Thesis/
Masters Thesis/.DS_Store
Masters Thesis/analysis.doc
...
Masters Thesis/Web Survey Results.doc
Masters Thesis/web usage by section.doc
$ ls -l masters.thesis.tgz
-rw-r--r-- 1 taylor staff 853574 24 Sep 09:20 masters.thesis.tgz

In this example, the directory Masters Thesis is 6.7 MB in size, and hasn't been accessed in quite a while. This makes it
a perfect candidate for a compressed tar archive. This is done by combining the -c (create) -z (compress with gzip) -v
(verbose) and -f file (output file; notice that we added the .gz suffix to avoid later confusion about the file type). In
under 10 seconds, a new archive file is created, which is less than 1 MB in size, yet contains all the files and directories
in the original archive. To unpack the archive, we'd use tar -xvfz masters.thesis.tgz.

Notice that we gave tar the directory name, rather than a list of files. This ensures that
when the directory is unpacked, the files will be put in a new directory (Masters Thesis),
rather than filling the current directory. This is a good habit for people who make lots of
archives.

4.5.8 Files on Other Operating Systems

Chapter 8 includes Section 8.2, which explains ways to transfer files across a network—possibly to non-Unix operating
systems. Mac OS X has the capability of connecting to a variety of different filesystems remotely, including Microsoft
Windows, other Unix systems, and even web-based filesystems.

If the Windows-format filesystem is mounted with your other filesystems, you'll be able to use its files by typing a Unix-
like pathname. If you've mounted a remote Windows system's C: drive over a share named winc, you can access the
Windows file C:\WORD\REPORT.DOC through the pathname /Volumes/winc/word/report.doc. Indeed, most external
volumes are automatically mounted within the /Volumes directory.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 5. Printing
Working in the Macintosh environment, you're used to a simple and elegant printer interface, particularly in Mac OS X,
where the Printer Setup Utility makes it a breeze to add new printers and configure your existing printers. Until the
advent of the Common Unix Printing System (CUPS), the Unix environment has never had a printing interface that even
comes close in usability. As of Mac OS X 10.3, the Printer Setup Utility and CUPS are combined in a way that brings joy
to command-line and GUI lovers alike.

Add a printer with Printer Setup Utility, and you'll have access to hundreds of different
printer models that are supported in Panther. The Linux Printing archive has even more
Mac OS X compatible drivers (http://www.linuxprinting.org/).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.1 Formatting and Print Commands
Before you print a file on a Unix system, you may want to reformat it to adjust the margins, highlight some words, and
so on. Most files can also be printed without reformatting, but the raw print out might not look quite as nice. Further,
some printers accept only PostScript, which means you'll need to use a text-to-PostScript filter such as enscript for good
results. Before we cover printing itself, let's look at both pr and enscript to see how they work.

PostScript is a page-description language from Adobe supported by some printer models.
PostScript printers were once the norm among Macintosh users and are still popular. If
you're using an inexpensive USB inkjet printer or a low- to mid-range laser printer,
chances are good that your printer doesn't support PostScript. Some of the utilities
described in this section require PostScript, others don't. Refer to your printer's
documentation (or the manufacturer's web site) to ascertain whether your printer supports
PostScript.

If you don't have a PostScript printer and are working in Unix, don't despair: almost all of Unix is text-oriented, so even
a basic inkjet printer will be able to print code listings, simple email messages, and manpages without a hiccup.

5.1.1 pr

The pr program does minor formatting of files on the Terminal or for a printer. For example, if you have a long list of
names in a file, you can format it onscreen into two or more columns.

The syntax is:

pr option(s) filename(s)

pr changes the format of the file only on the screen or on the printed copy; it doesn't modify the original file. Table 5-1
lists some pr options.

Table 5-1. Some pr options
Option Description

-k Produces k columns of output

-d Double-spaces the output

-h header Prints header at top of each page

-t Eliminates printing of header and top/bottom margins

Other options allow you to specify the width of columns, set the page length, etc. For a complete list of options, see the
manpage, man pr.

Before using pr, here are the contents of a sample file named food:

$ cat food
Sweet Tooth
Bangkok Wok
Mandalay
Afghani Cuisine
Isle of Java
Big Apple Deli
Sushi and Sashimi
Tio Pepe's Peppers
$

Let's use pr options to make a two-column report with the header "Restaurants":

$ pr -2 -h "Restaurants" food

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ pr -2 -h "Restaurants" food

Sep 24 12:41 2003 Restaurants Page 1
Sweet Tooth Isle of Java
Bangkok Wok Big Apple Deli
Mandalay Sushi and Sashimi
Afghani Cuisine Tio Pepe's Peppers.
.
.
$

The text is output in two-column pages. The top of each page has the date and time, header (or name of the file, if a
header is not supplied), and page number. To send this output to the default Mac OS X printer instead of to the
terminal screen, create a pipe to the lpr printer program:

$ pr -2 -h "Restaurants" food | lpr

See Section 6.2 in Chapter 6 for more information on pipes. The lpr program will be discussed in more detail later in this
chapter.

pr does not require a PostScript printer.

5.1.2 enscript

One reason for the success of the Macintosh is its integrated support of PostScript for printing. Allowing sophisticated
imaging and high-quality text, PostScript printers are the norm in the Mac world. However, this proves a bit of a
problem from the Unix perspective, because Unix commands are used to working with regular text without any special
PostScript formatting included.

Translating plain text into PostScript is the job of enscript. The enscript program has a remarkable number of different
command flags, allowing you access to all the layout and configuration options you're familiar with from the Page Setup
and Print dialog boxes in Aqua.

The most helpful command flags are summarized in Table 5-2 (you can learn about all the many options to enscript by
reading the enscript manpage). A typical usage is to send the file to a printer:

$ enscript -p - Sample.txt | lpr
[1 pages * 1 copy] left in -
$

Enscript can also produce PostScript output files for distribution in electronic form: enscript -psample.eps sample.txt
translates sample.txt into PostScript and saves the resultant output to the file sample.eps.

Table 5-2. Useful enscript options
Option Description

-B Do not print page headers.

-f font Print body text using font (the default is Courier10).

-j Print borders around columns (you can turn on multicolumn output with -1 or -2).

-p file Send output to file. Use - to stream output to standard out (for pipes).

-r Rotate printout 90 degrees, printing in landscape mode instead of portrait (the default).

-W lang Output in the specified language. Default is PostScript, but enscript also supports HTML, overstrike, and RTF.

5.1.3 lpr

The underlying printing command in Unix is the command lpr, which sends files or the input stream to your default
printer (as chosen using the Printer Setup Utility). The syntax is:

lpr option(s) filename(s)

After you enter the command to print a file, the shell prompt returns to the screen and you can enter another
command. However, seeing the prompt doesn't mean your file has been printed. Your file has been added to the printer
queue to be printed in turn.

To print a file named bills on the default printer, use the lpr command, as in this example:

$ lpr bills
$

lpr has no output if everything was accepted and queued properly. If you need ID numbers for lpr jobs, use the lpq
program to view the print queue (see Section 5.1.4.1 later in this chapter). The file bills will be sent to the default
system printer. lpr has a number of options, most of which aren't useful in the Mac OS X Unix environment. Table 5-3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system printer. lpr has a number of options, most of which aren't useful in the Mac OS X Unix environment. Table 5-3
lists the most useful of them.

Table 5-3. The most useful lpr options
Command Description

-Pprinter Use given printer name if there is more than one printer at your site. The printer names are assigned in
Printer Setup Utility.

-# Print # copies of the file.

-Cname Specify job name.

-p Print file should be formatted with a shaded information header containing filename, date, time, and
page number. Useful only with text files.

-r Files printed should be deleted after completion of printing task (only for named files).

5.1.3.1 Problem checklist

lpr returns "jobs queued, but cannot start daemon".

Your system is probably not configured properly for an lpr printer. If you have a named lpr printer that works,
try the command again with the -Pprintername option. If not, double check that your printer is set up and chosen
as the default printer in Printer Setup Utility. You might want to try using atprint or opening up your files in
TextEdit and printing from the Aqua environment.

My printout hasn't come out.

See whether the printer is printing now. If it is, other users may have made requests to the same printer ahead
of you, and your file should be printed in turn. The following section explains how to check the print requests.
Use the lpq command to ensure that it's still in the queue too.

If no file is printing, check the printer's paper supply, physical connections, and power switch. The printer may
also be hung (stalled). If it is, ask other users or system staff people for advice.

My printout is garbled or doesn't look anything like the file did on my terminal.

The printer may not be configured to handle the kind of file you're printing. For instance, a file in plain-text
format will look fine when previewed in your Terminal window, but look like gibberish when you try to print it. If
the printer understands only PostScript, make sure that you use enscript to translate the plain-text format into
acceptable PostScript.

lpr does not require a PostScript printer.

5.1.4 Viewing the Printer Queue

If you want to find out how many files or "requests" for output are ahead of yours in the printer queue, use the
program lpq. The lprm command lets you cancel print jobs from the lpr queue.

Remember that you can also check on the status of print jobs by going into Applications Utilities Printer
Setup Utility. Double-click on the printer to see the state of the queue.

5.1.4.1 lpq

The lpq command shows what's currently printing and what's in the queue for the default printer:

$ lpq
LaserJet is ready and printing
Rank Owner Job File(s) Total Size
1st taylor 5 (stdin) 1024 bytes
2nd taylor 6 Microsoft Word - ch05.doc 190464 bytes
3rd taylor 8 TINTIN.COM 30720 bytes
$

The first line displays the printer status. If the printer is disabled or out of paper, you may see different messages on
this first line. Here you can see that the printer is ready for new print jobs and is currently printing. Jobs are printed in
the order indicated in the lpq output. The Job number is important, because you can remove print jobs from the queue
(if you're the owner) with lprm.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(if you're the owner) with lprm.

5.1.4.2 lprm

lprm terminates lpr requests. You can specify either the ID of the request (displayed by lpq) or the name of the printer.

If you don't have the request ID, get it from lpq, then use lprm. Specifying the request ID cancels the request, even if it
is currently printing:

$ lprm 8

To cancel whatever request is currently printing, regardless of its ID, simply enter lprm and the printer name:

$ lprm LaserJet

lprm does not provide any feedback unless it encounters an error.

5.1.5 Working with AppleTalk Printers

If you have an AppleTalk-based printer, or want to use a network printer that's accessible on your AppleTalk network,
there is a set of easy-to-use AppleTalk-aware Unix commands included with Mac OS X. The most important of the
commands is atprint, which lets you easily stream any Unix output to a printer.

To start working with the AppleTalk tools, run atlookup, which lists all the AppleTalk devices recognized on the network
(and that can be quite a few):

$ atlookup
Found 4 entries in zone *
ff41.d0.80 Dave Taylor's Computer:Darwin
ff01.04.08 LJ2100TN-via-AppleTalk:SNMP Agent
ff01.04.9d LJ2100TN-via-AppleTalk:LaserWriter
ff01.04.9e LJ2100TN-via-AppleTalk:LaserJet 2100

You can see that the LJ2100TN printer (an HP LaserJet2100) appears with two different AppleTalk addresses.
Fortunately, that can safely be ignored as well as the other AppleTalk devices that show up in the list. The important
thing is that the atlookup command confirmed that there is indeed an AppleTalk printer online.

To select a specific AppleTalk printer as the default printer for the atprint command, run the oddly named at_cho_prn
command. The trick is that you need to run this command as root or administrator. Use the sudo command (see Section
3.3 in Chapter 3) to run the program as root:

$ sudo at_cho_prn
Password:
Zone:*??????@??`??Pp???????@??`??RH??????????RP?
 1: ff01.04.9dtLJ2100TN-via-AppleTalk:LaserWriter

ITEM number (0 to make no selection)?1
Default printer is:LJ2100TN-via-AppleTalk:LaserWriter@*
status: idle

If you are on a multizone network, you'll be prompted to select a zone first.

Now, finally, the LaserJet 2100 printer is selected as the default AppleTalk printer, and all subsequent invocations of
atprint will be sent to that printer without having to remember its exact name.

Because most of the printers available through AppleTalk on a Macintosh network are PostScript printers, it's essential
to use the enscript program to ensure the output is in proper PostScript format. As an example, the following prints the
intro manpage (an introduction to the manpage system) on the LaserWriter printer, properly translated into PostScript:

$ man intro | enscript -p - | atprint
Looking for LJ2100TN-via-AppleTalk:LaserWriter@*.
Trying to connect to LJ2100TN-via-AppleTalk:LaserWriter@*.
[1 pages * 1 copy] left in -
atprint: printing on LJ2100TN-via-AppleTalk:LaserWriter@*.
$

Pipes (command sequences with a pipe (|) between the commands) are covered in more detail in Chapter 6.

atprint does not require a PostScript printer (unless used with enscript), but it does require an AppleTalk printer.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

5.2 Non-PostScript Printers
Before Mac OS X 10.3 Panther, the lpr command could handle a variety of file types (including PDF, plain text, and
many image types), but not PostScript, unless you had a PostScript printer. If your printer does not support PostScript,
you will not be able to use lpr to print PostScript files directly. This also means that you won't be able to use enscript for
printing.

However, if you've installed Fink (see Section 9.2 in Chapter 9), you can install the ghostscript package and run ps2pdf
to turn your PostScript file into a PDF. To run enscript on the food file, convert it to PDF and print it, using pipes between
enscript, ps2pdf, and lpr:

$ enscript -o - food | ps2pdf - - | lpr

The -o - switches and the pipe symbol (|) tell enscript to send its PostScript output to the ps2pdf program. The - - options
and the pipe tell ps2pdf to read its input from the pipe and send its output to lpr, which sends the PDF to the printer. For
more information on pipes, see Chapter 6.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 6. Redirecting I/O
Many Unix programs read input (such as a file) and write output in a standard way that lets them work with each other.
In this chapter, we discuss some of these tools and learn how to connect programs and files in new and powerful ways.

This chapter generally doesn't apply to full-screen programs, such as the vi editor, that take control of your whole
Terminal window. (less and more do work together in this way, however.) It also doesn't apply to graphical programs,
such as the Finder or Safari, that open their own windows on your screen.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.1 Standard Input and Standard Output
What happens if you don't give a filename argument on a command line? Most programs will take their input from your
keyboard instead (after you press Return to start the program running, that is). Your Terminal keyboard is the
program's standard input.

As a program runs, the results are usually displayed on your Terminal screen. The Terminal screen is the program's
standard output. So, by default, each of these programs takes its information from the standard input and sends the
results to the standard output. These two default cases of input/ output (I/O) can be varied. This is called I/O
redirection.

If a program writes to its standard output, which is normally the screen, you can make it write to a file instead by using
the greater-than symbol (>) operator. The pipe operator (|) sends the standard output of one program to the standard
input of another program. Input/output redirection is one of the most powerful and flexible Unix features.

If a program doesn't normally read from files, but reads from its standard input, you can give a filename by using the
less-than symbol (<) operator. tr (character translator) is such a program. Here's how to use the input redirection
operator to convert commas to linefeeds in the to_do file:

$ cat to_do
Install Mac OS X,Learn Unix,???,Profit!
$ tr ',' '\n' < to_do
Install Mac OS X
Learn Unix
???
Profit!
$

Can you see what's happened here? The tr command has translated every comma in the input file (to_do, which
replaced standard input because of the < notation) to a carriage return, displaying the output on standard output (the
Terminal window).

6.1.1 Putting Text in a File

Instead of always letting a program's output come to the screen, you can redirect output to a file. This is useful when
you'd like to save program output or when you put files together to make a bigger file.

6.1.1.1 cat

cat , which is short for "concatenate," reads files and outputs their contents one after another, without stopping.

To display files on the standard output (your screen), use:

cat file(s)

For example, let's display the contents of the file /etc/bashrc. This system file is the global login file for bassh:

$ cat /etc/bashrc
System-wide .bashrc file for interactive bash(1) shells.
PS1='\h:\w \u\$ '
$

You cannot go back to view the previous screens, as you can when you use a pager program such as less (unless you're
using a Terminal window with a sufficient scrollback buffer, that is). cat is mainly used with redirection, as we'll see in a
moment.

By the way, if you enter cat without a filename, it tries to read from the keyboard (as we mentioned earlier). You can
get out by pressing Control-D.

When you add > filename to the end of a command line, the program's output is diverted from the standard output to a
file. The > symbol is called the output redirection operator.

When you use the > operator, be careful not to accidentally overwrite a file's contents.
Your system may let you redirect output to an existing file. If so, the old file's contents will
be lost forever (or, in Unix lingo, "clobbered"). Be careful not to overwrite a much needed
file!

Many shells can protect you from the risk. In bash (the default shell for Mac OS X), use the
command set noclobber. Enter the command at a shell prompt or put it in your ~/.profile file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command set noclobber. Enter the command at a shell prompt or put it in your ~/.profile file.
After that, the shell won't allow you to redirect onto an existing file and overwrite its
contents.

This doesn't protect against overwriting by Unix programs such as cp; it works only with
the > redirection operator. For more protection, you can set Unix file access permissions
(see Chapter 4).

For example, let's use cat with the output redirection operator. The file contents that you'd normally see on the screen
(from the standard output) are diverted into another file, which we'll then read using cat (without any redirection!):

$ cat /etc/bashrc > mybashrc
$ cat mybashrc
System-wide .bashrc file for interactive bash(1) shells.
PS1='\h:\w \u\$ '
$

An earlier example showed how cat /etc/bashrc displays the file /etc/bashrc on the screen. The example here adds the >
operator, so the output of cat goes to a file called mybashrc in the working directory. Displaying the file mybashrc shows
that its contents are the same as the file /etc/bashrc (the effect is the same as the copy command cp /etc/bashrc
mybashrc).

You can use the > redirection operator with any program that sends text to its standard output—not just with cat. For
example:

$ who > users
$ date > today
$ ls
mylogin today users ...

We've sent the output of who to a file called users and the output of date to the file named today. Listing the directory
shows the two new files. Let's look at the output from the who and date programs by reading these two files with cat:

$ cat users
taylor console Sep 24 07:58
taylor ttyp1 Sep 24 08:00
$ cat today
Wed Sep 24 09:41:07 MDT 2003
$

You can also use the cat program and the > operator to make a small text file. We told you earlier to type Control-D if
you accidentally enter cat without a filename. This is because the cat program alone takes whatever you type on the
keyboard as input. Thus, the command:

cat > filename

takes input from the keyboard and redirects it to a file. Try the following example:

$ cat > to_do
Finish report by noon
Lunch with Xian
Swim at 5:30
^D
$

cat takes the text that you typed as input (in this example, the three lines that begin with Finish, Lunch, and Swim), and
the > operator redirects it to a file called to_do. Type Control-D once, on a new line by itself, to signal the end of the
text. You should get a shell prompt.

You can also create a bigger file from smaller files with the cat command and the > operator. The form:

cat file1 file2 > newfile

creates a file newfile, consisting of file1 followed by file2.

$ cat today to_do > diary
$ cat diary
Wed Sep 24 09:41:07 MDT 2003
Finish report by noon
Lunch with Xian
Swim at 5:30
$

You shouldn't use redirection to add a file to itself, along with other files. For example, you
might hope that the following command would merge today's to-do list with tomorrow's.
This isn't a good idea.

$ cat to_do to_do.tomorrow > to_do.tomorrow

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ cat to_do to_do.tomorrow > to_do.tomorrow

It works, but it runs for all eternity because it keeps copying the file over itself. If you
cancel it with Control-C, and use ls to examine the file, you'll see that it's gotten quite
large:

^C
$ ls -sk to_do.tomorrow
81704 to_do.tomorrow

ls -sk shows the size in kilobytes, so it grew to about 80 megabytes! The right way to do
this is either to use a temporary file (as you'll see in a later example) or simply to use a
text editor program.

You can add more text to the end of an existing file, instead of replacing its contents, by using the >> (append
redirection) operator. Use it as you would the > (output redirection) operator. So, the following:

cat file2 >> file1

appends the contents of file2 to the end of file1. This doesn't affect the contents of file2: it is being read from, not
written to.

For an example, let's append the contents of the file users and the current date and time to the file diary. Here's what it
looks like:

$ cat users >> diary
$ date >> diary
$ cat diary
Wed Sep 24 09:41:07 MDT 2003
Finish report by noon
Lunch with Xian
Swim at 5:30
taylor console Nov 11 22:06
taylor ttyp1 Nov 15 08:16
Wed Sep 24 11:21:35 MDT 2003
$

Unix doesn't have a redirection operator that adds text to the beginning of a file. You can do this by storing the new
text in a temporary file, then using a text editor program to read the temporary file into the start of the file you want to
edit. You also can do the job with a temporary file and redirection. Maybe you'd like each day's entry to go at the
beginning of your diary file. Simply rename diary to something like temp. Make a new diary file with today's entries,
then append temp (with its old contents) to the new diary. For example:

$ mv diary temp
$ date > diary
$ cat users >> diary
$ cat temp >> diary
$ rm temp

This example could be shortened by combining the two cat commands into one, giving both filenames as arguments to a
single cat command. That wouldn't work, though, if you were making a real diary with a command other than cat users.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

6.2 Pipes and Filters
We've seen how to redirect input from a file and output to a file. You can also connect two programs together so that
the output from one program becomes the input of the next program. Two or more programs connected in this way
form a pipe. To make a pipe, put a vertical bar (|) on the command line between two commands. When a pipe is set up
between two commands, the standard output of the command to the left of the pipe symbol becomes the standard
input of the command to the right of the pipe symbol. Any two commands can form a pipe as long as the first program
writes to standard output and the second program reads from standard input.

When a program takes its input from another program, performs some operation on that input, and writes the result to
the standard output (which may be piped to yet another program), it is referred to as a filter. A common use of filters is
to modify output. Just as a common filter culls unwanted items, Unix filters can restructure output.

Most Unix programs can be used to form pipes. Some programs that are commonly used as filters are described in the
next sections. Note that these programs aren't used only as filters or parts of pipes. They're also useful on their own.

6.2.1 grep

The grep program searches the contents of files for lines that have a certain pattern. The syntax is:

grep "pattern" file(s)

The name "grep" is derived from the ed (a Unix line editor) command g/ re/p, which means "globally search for a regular
expression and print all matching lines containing it." A regular expression is either some plain text (a word, for
example) or special characters used for pattern matching. When you learn more about regular expressions, you can use
them to specify complex patterns of text.

grep understands plain text and that's all. The Find command in the Finder can
meaningfully search Microsoft Word data files, for example, but grep knows text only.
Feeding it non-text files can produce puzzling and peculiar results. For example, Word files
and a lot of other application data contain characters that, when sent to Terminal.app,
mess up your display in strange and interesting ways. One way to search such files from
the command line is to extract only the printable characters using the strings program (see
man strings for details).

The simplest use of grep is to look for a pattern consisting of a single word. It can be used in a pipe so only those lines
of the input files containing a given string are sent to the standard output. But let's start with an example reading from
files: searching all files in the working directory for a word— say, Unix. We'll use the wildcard * to quickly give grep all
filenames in the directory.

$ grep "Unix" *
ch01:Unix is a flexible and powerful operating system
ch01:When the Unix designers started work, little did
ch05:What can we do with Unix?
$

When grep searches multiple files, it shows the filename where it finds each matching line of text. Alternatively, if you
don't give grep a filename to read, it reads its standard input; that's the way all filter programs work:

$ ls -l | grep "Jan"
drwx------ 4 taylor taylor 264 Jan 29 22:33 Movies/
drwx------ 2 taylor taylor 264 Jan 13 10:02 Music/
drwx------ 95 taylor taylor 3186 Jan 29 22:44 Pictures/
drwxr-xr-x 3 taylor taylor 264 Jan 24 21:24 Public/
$

First, the example runs ls -l to list your directory. The standard output of ls -l is piped to grep, which outputs only lines
that contain the string Jan (that is, files or directories that were last modified in January and any other lines that have
the pattern "Jan" within). Because the standard output of grep isn't redirected, those lines go to the Terminal screen.

grep options let you modify the search. Table 6-1 lists some of the options.

Table 6-1. Some grep options
Option Description

-v Print all lines that do not match pattern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-n Print the matched line and its line number.

-l Print only the names of files with matching lines (lowercase letter "L").

-c Print only the count of matching lines.

-i Match either upper- or lowercase.

Next, let's use a regular expression that tells grep to find lines with root, followed by zero or more other characters
(abbreviated in a regular expression as .*), then followed by Jan:

$ ls -l | grep "root.*Jan"
drwxr-xr-x 12 root staff 364 Jan 9 20:24 NetInfo/
$

Note that the regular expression for "zero or more characters," .*, is different than the
corresponding filename wildcard *. See Section 4.2 in Chapter 4. We can't cover regular
expressions in enough depth here to explain the difference, though more-detailed books
do. As a rule of thumb, remember that the first argument to grep is a regular expression;
other arguments, if any, are filenames that can use wildcards.

For more about regular expressions, see the references in Section 10.1 in Chapter 10.

6.2.2 sort

The sort program arranges lines of text alphabetically or numerically. The following example sorts the lines in the food
file (from Section 5.1.1 in Chapter 5) alphabetically. sort doesn't modify the file itself; it just reads the file and displays
the result on standard output (in this case, the Terminal).

$ sort food
Afghani Cuisine
Bangkok Wok
Big Apple Deli
Isle of Java
Mandalay
Sushi and Sashimi
Sweet Tooth
Tio Pepe's Peppers

By default, sort arranges lines of text alphabetically. Many options control the sorting, and Table 6-2 lists some of them.

Table 6-2. Some sort options
Option Description

-n Sort numerically (for example, 10 sorts after 2); ignore blanks and tabs.

-r Reverse the sorting order.

-f Sort upper- and lowercase together.

+x Ignore first x fields when sorting.

More than two commands may be linked up into a pipe. Taking a previous pipe example using grep, we can further sort
the files modified in January by order of size. The following pipe uses the commands ls, grep, and sort:

$ ls -l | grep "Jan" | sort +4n
drwx------ 2 taylor taylor 264 Jan 13 10:02 Music/
drwx------ 4 taylor taylor 264 Jan 29 22:33 Movies/
drwxr-xr-x 3 taylor taylor 264 Jan 24 21:24 Public/
drwx------ 95 taylor taylor 3186 Jan 29 22:44 Pictures/
$

This pipe sorts all files in your directory modified in January by order of size, and prints them to the Terminal screen.
The sort option +4n skips 4 fields (fields are separated by blanks), then sorts the lines in numeric order. So, the output
of ls, filtered by grep, is sorted by the file size (this is the fifth column, starting with 264). Both grep and sort are used
here as filters to modify the output of the ls -l command. You could print the listing by piping the sort output to your
printer command (either lp, lpr, or atprint).

6.2.3 Piping to a Pager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The less program, which you saw in Section 3.1.13 in Chapter 3, can also be used as a filter. A long output normally
zips by you on the screen, but if you run text through less, the display stops after each page or screenfull of text (that's
why they're called "pagers": they let you see the output page by page).

Let's assume that you have a long directory listing. (If you want to try this example and need a directory with lots of
files, use cd first to change to a system directory such as /bin or /usr/bin.) To make it easier to read the sorted listing,
pipe the output through less:

$ cd /bin
$ ls -l | sort +4n | less
total 8288
-r-xr-xr-x 1 root wheel 9736 27 Aug 04:36 echo
-r-xr-xr-x 1 root wheel 10256 27 Aug 04:44 sync
-r-xr-xr-x 1 root wheel 10476 27 Aug 05:03 domainname
...
-r-sr-xr-x 1 root wheel 25248 27 Aug 05:03 rcp
-r-xr-xr-x 1 root wheel 27308 27 Aug 04:31 dd

less reads a screenful of text from the pipe (consisting of lines sorted by order of file size), then prints a colon (:)
prompt. At the prompt, you can type a less command to move through the sorted text. less reads more text from the
pipe, shows it to you, and saves a copy of what it has read, so you can go backward to reread previous text if you
want. (The simpler pager program more can't back up while reading from a pipe.) When you're done seeing the sorted
text, the q command quits less.

6.2.4 Exercise: Redirecting Input/Output

In the following exercises, you redirect output, create a simple pipe, and use filters to modify output:

Task Command

Redirect output to a file. ls > files

Change all the letters to uppercase. tr '[a-z]' '[A-Z]' < files

Sort the output of a program. ls | sort

Append sorted output to a file. ls | sort >> files

Display output to the screen. less files (or more files)

Display long output to the screen. ls -l /bin | less (or more)

Format and print a file with pr. pr files | lp or pr files | lpr

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 7. Multitasking
Mac OS X can do many jobs at once, dividing the processor's time between the tasks so quickly that it looks as if
everything is running at the same time. This is called multitasking.

With a window system, you can have many applications running at the same time, with many windows open. But Mac
OS X, like most Unix systems, also lets you run more than one program inside the same Terminal. This is called job
control. It gives some of the benefits of window systems to users who don't have windows. But, even if you're using a
window system, you may want to use job control to do several things inside the same Terminal window. For instance,
you may prefer to do most of your work from one Terminal window, instead of covering your desktop with multiple
windows.

Why else would you want job control? Suppose you're running a program that will take a long time to process. On a
single-task operating system, you would enter the command and wait for the system prompt to return, telling you that
you could enter a new command. In Mac OS X, however, you can enter new commands in the "foreground" while one
or more programs are still running in the "background."

When you enter a command as a background process, the shell prompt reappears immediately so that you can enter a
new command. The original program will still run in the background, but you can use the system to do other things
during that time. Depending on your system and your shell, you may even be able to log off and let the background
process run to completion.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.1 Running a Command in the Background
Running a program as a background process is most often done to free a Terminal when you know the program will
take a long time to run. It's also used whenever you want to launch a new application from an existing Terminal window
—so that you can keep working in the existing Terminal, as well as within the new application.

To run a program in the background, add the & character at the end of the command line before you press the Return
key. The shell then assigns and displays a process ID number for the program:

$ sort bigfile > bigfile.sort &
[1] 372
$

Sorting is a good example because it can take a while to sort huge files.

The process ID (PID) for this program is 372. The PID is useful when you want to check the status of a background
process, or if you need to cancel it. To check on the status of the process, use ps -up PID; if you want to cancel a
process, use kill PID. In this instance, these commands would look like:

$ ps -up 372
USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
taylor 372 0.0 0.0 18208 340 std S 10:56PM 0:00.04 sort
$ kill 372
$

Fortunately, you don't need to remember the PID every time, because there are Unix commands (explained in the next
section) to check on the processes you have running. Also, bash writes a status line to your screen when the
background process finishes.

In bash, you can put an entire sequence of commands separated by semicolons (;) into the background by putting an
ampersand (&) at the end of the entire command line. In other shells, enclose the command sequence in parentheses
before adding the ampersand:

(command1; command2) &

Mac OS X Unix shells also have a feature (mentioned earlier) called job control. You can use the suspend character
(usually Control-Z) to suspend a program running in the foreground. The program pauses, and you get a new shell
prompt. You can then do anything else you like, including putting the suspended program into the background using the
bg command. The fg command brings a suspended or background process to the foreground.

For example, you might start sort running on a big file, and, after a minute, want to edit a file. Stop sort, then put it in
the background. The shell prints a message, and then another shell prompt, at which you can enter your vi command
while sort runs.

$ sort hugefile1 hugefile2 > sorted
...time goes by...
CTRL-Z
Stopped
$ bg
[1] sort hugefile1 hugefile2 > sorted &
$ vi test.txt
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.2 Checking on a Process
If a background process takes too long, or you change your mind and want to stop a process, you can check the status
of the process and even cancel it.

7.2.1 ps

When you enter the command ps, you can see how long a process has been running, the process ID of the background
process, and the terminal from which it was run. The tty program shows the name of the Terminal where it's running;
this is especially helpful when you're logged into multiple terminals, as the following code shows:

$ ps
 PID TT STAT TIME COMMAND
 347 std S 0:00.17 -bash
 391 p2 S+ 0:00.02 -bash
$ tty
/dev/ttyp1

std corresponds to your current Terminal window, and p2 corresponds to the Terminal window for ttyp2. In its basic
form, ps lists the following:

Process ID (PID)

A unique number assigned by Unix to the process.

Terminal name (TT)

The Unix name for the terminal from which the process was started.

Runtime state (STAT)

The current state of each job. S is sleeping, R is runnable, T is stopped, and I is idle (sleeping for more than 20-
30 seconds). Additionally, the state can include + to indicate it's part of the foreground group process, E to
indicate the process is exiting, and W to mean it's swapped out.[1]

[1] The ps manpage has details on all possible states for a process. It's quite interesting reading.

Runtime (TIME)

The amount of computer time (in minutes and seconds) that the process has used.

COMMAND

The name of the process.

Each terminal window has its own terminal name. The previous code shows processes running on two windows: std and
p2. If you want to see the processes that a certain user is running, type ps -U username, where username is the
username of someone logged into the system.

To see all processes running on the system, use ps -ax. The -a option shows processes from all users, and the -x option
shows processes that are not connected with a Terminal session; many of these are processes that are a core part of
Mac OS X, while others may be graphical programs you are running, such as a web browser.

Indeed, you can find out what processes are being run as root by using grep and adding a -u flag to get user-oriented
output (basically more fields):

$ ps -aux | grep root | head

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ps -aux | grep root | head
root 408 3.0 0.0 18096 344 std R+ 11:06PM 0:00.02 ps -aux
root 87 0.0 0.1 27868 1036 ?? Ss 10:38PM 0:01.26 /usr/
sbin/diskarbitrationd
root 89 0.0 0.1 19220 804 ?? Ss 10:38PM 0:00.08 /usr/
sbin/notifyd
root 116 0.0 0.0 27472 328 ?? Ss 10:38PM 0:00.28 netinfod
-s local
root 118 0.0 0.0 18048 112 ?? Ss 10:38PM 0:00.40 update
root 121 0.0 0.0 18076 120 ?? Ss 10:38PM 0:00.00 dynamic_
pager -F /private/var/vm/swapf
root 139 0.0 0.8 34280 6404 ?? Ss 10:38PM 0:01.40 /System/
Library/CoreServices/coreservi
root 161 0.0 0.1 28884 1052 ?? Ss 10:38PM 0:00.18 /System/
Library/CoreServices/SecurityS
root 172 0.0 0.1 27744 648 ?? Ss 10:38PM 0:00.20 /usr/
sbin/distnoted
root 177 0.0 0.0 27608 184 ?? Ss 10:38PM 0:00.00 cron

This is particularly long, so if you want to be fancy, you can add one more command to the pipe to just see the running
commands: the awk filtering tool:

$ ps -aux | grep root | awk '{ print $1,$2,$11 }' | head
root 118 update
root 84 kextd
root 86 /usr/sbin/configd
root 87 /usr/sbin/diskarbitrationd
root 89 /usr/sbin/notifyd
root 116 netinfod
root 121 dynamic_pager
root 139 /System/Library/CoreServices/coreservi
root 161 /System/Library/CoreServices/SecurityS
root 172 /usr/sbin/distnoted
$

This command specifies that we are only interested in the first, second, and eleventh fields in the input stream.

7.2.2 top

Another way to see what applications are running and which are taking up the most resources is to use the helpful top
command. Figure 7-1 shows the top command in action.

Figure 7-1. The top command shows processes running

If you're curious what commands consume the most system resources, leave top running in a Terminal window while
you work. However, do be aware that the top command itself consumes some system resources, so if you're not paying
attention to its output, type q to quit. You can always start it up again if things seem to be oddly slow on your
computer.

top packs a lot of information into its display, considerably more than we have space to explain here. However, we do
have one quick tip: to have processes shown sorted by CPU usage (rather than process ID), use top -o cpu to start the
program. We recommend you look at man top for more information. Panther also comes with a very attractive top-like
application worth exploring: Applications/Utilities/Activity Monitor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

application worth exploring: Applications/Utilities/Activity Monitor.

Watching System Processes
ps -ax tells you what system processes are running, but if you want to see what they are up to, you'll need
to look in the system log. To view the system log, use the command tail. It's kind of like cat, except that it
prints only the last few lines of the file. If you use the -f option, it will follow the file as it grows. So, if you
open up a new Terminal window and issue the following command, you can monitor the informational
messages that come out of system utilities:

$ tail -f /var/log/system.log
Sep 24 22:38:45 localhost /usr/libexec/ConsoleMessage: Talking to
Directory Services
Sep 24 22:38:45 localhost /usr/libexec/ConsoleMessage: Getting Local
Users
Sep 24 22:38:47 localhost kernel: IP packet filtering initialized,
divert enabled, rule-based forwarding enabled, default to accept,
logging disabled
Sep 24 22:38:47 localhost kernel: IPv6 packet filtering initialized,
default to accept, logging disabled
Sep 24 22:38:47 localhost kernel: IP firewall loaded

When you're done, use Control-C to get a new command prompt. You can also see some system
messages by running the Console application (/Applications/Utilities).

You can also specify process ID values to ps to find out about specific jobs. Consider the following:

$ sort verybigfile > big-sorted-output
[1] 522
$ ps 522
 PID TT STAT TIME COMMAND
 522 std R 0:00.32 sort verybigfile
$ ps $$
 PID TT STAT TIME COMMAND
347 std S 0:00.35 -bash

As the last command shows, you can easily ascertain what command shell you're running at any time by using the $$
shortcut for the process ID of the current shell. Feed $$ to ps, and it'll tell you which shell you're running.

You should be aware that there are two types of programs on Unix systems: directly executable programs and
interpreted programs. Directly executable programs are written in a programming language such as C, and have been
compiled into a binary format that the system can execute directly. Interpreted programs, such as shell and Perl scripts,
are sequences of commands that are read by an interpreter program. If you execute an interpreted program, you will
see an additional command (such as perl, sh, or csh) in the ps listing, as well as any Unix commands that the interpreter
is executing currently.

Shells with job control have a command called jobs that lists background processes started from that shell. As
mentioned earlier, there are commands to change the foreground/background status of jobs. There are other job
control commands as well. See the references in Section 10.1 in Chapter 10.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

7.3 Canceling a Process
You may decide that you shouldn't have put a process in the background or the process is taking too long to execute.
You can cancel a background process if you know its process ID.

Mac OS X includes a very helpful utility called Force Quit, accessible from the Apple menu,
which can be quite useful when applications are stuck or nonresponsive. However,
commands entered into the Terminal window can only be cancelled from the command line
—they don't show up in Force Quit. In addition, Force Quit doesn't show you administrative
processes. To stop Unix programs and administrative processes, you must use the
command line or the Activity Monitor.

7.3.1 kill

The kill command terminates a process. This has the same result as using the Finder's Force Quit command. The kill
command's format is:

kill PID(s)

kill terminates the designated process IDs (shown under the PID heading in the ps listing). If you do not know the
process ID, do a ps first to display the status of your processes.

In the following example, the sleep n command simply causes a process to "go to sleep" for n seconds. We enter two
commands, sleep and who, on the same line, as a background process.

$ (sleep 60;who) &
[1] 472
$ ps
 PID TT STAT TIME COMMAND
 347 std S 0:00.36 -bash
 472 std S 0:00.00 -bash
 473 std S 0:00.01 sleep 60
$ kill 473
$ -bash: line 53: 473 Terminated sleep 60
taylor console Sep 24 22:38
taylor ttyp1 Sep 24 22:40

[1]+ Done (sleep 60; who)
$

We decided that 60 seconds was too long to wait for the output of who. The ps listing showed that sleep had the process
ID number 472, so we use this PID to kill the sleep process. You should see a message like "terminated" or "killed"; if
you don't, use another ps command to be sure the process has been killed.

In our example, the who program is now executed immediately, as it is no longer waiting on sleep; it lists the users
logged into the system.

7.3.1.1 Problem checklist

The process didn't die when I told it to.

Some processes can be hard to kill. If a normal kill of these processes is not working, enter kill -9 PID. This is a
sure kill and can destroy almost anything, including the shell that is interpreting it.

In addition, if you've run an interpreted program (such as a shell script), you may not be able to kill all
dependent processes by killing the interpreter process that got it all started; you may need to kill them
individually. However, killing a process that is feeding data into a pipe generally kills any processes receiving
that data.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 8. Accessing the Internet
A network lets computers communicate with each other, sharing files, email, and much more. Unix systems have been
networked for more than 25 years, and Macintosh systems have always had networking as an integral part of the
system design from the very first system released in 1984.

This chapter introduces Unix networking: remotely accessing your Mac from other computers and copying files between
computers. It also shows you how the Connect to Server capability of Terminal can make common connections a breeze
once you've set them up the first time.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.1 Remote Logins
There may be times when you need to access your Mac, but you can't get to the desk it's sitting on. If you're working
on a different computer, you may not have the time or inclination to stop what you're doing, walk over to your Mac, and
log in (laziness may not be the only reason for this: perhaps someone else is using your Mac when you need to get on it
or perhaps your Mac is miles away). Mac OS X's file sharing (System Preferences Sharing) can let you access your
files, but there may be times you want to use the computer interactively, perhaps to move files around, search for a
particular file, or perform a system maintenance task.

If you enable Remote Login under System Preferences Sharing, you can access your Mac's Unix shell from any
networked computer that can run SSH (http://www.ssh.com), OpenSSH (http://www.openssh.org), or a compatible
application such as PuTTY (a Windows implementation of SSH available at
http://www.chiark.greenend.org.uk/~sgtatham/putty/). SSH and OpenSSH can be installed on many Unix systems, and
OpenSSH is included with many Linux distributions, including Mac OS X.

Figure 8-1 shows how remote login programs such as ssh work. In a local login, you interact directly with the shell
program running on your local system. In a remote login, you run a remote-access program on your local system; that
program lets you interact with a shell program on the remote system.

Figure 8-1. Local login, remote login

When you enable Remote Login, the Sharing panel will display instructions for logging into your Mac from another
computer. This message is shown in Figure 8-2.

Figure 8-2. Instructions for remote access to your Mac

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To log into your Mac from a remote Unix system, use the command displayed in the Sharing panel, as shown in the
following sample session where a user on a Red Hat Linux system is connecting to a Mac OS X computer (the first time
you connect, you'll be asked to vouch for your Mac's authenticity):

Red Hat: taylor $ ssh taylor@192.168.1.100
The authenticity of host '192.168.1.100 (192.168.1.100)' can't be established.
RSA key fingerprint is 86:f6:96:f9:22:50:ea:4c:02:0c:58:a7:e4:a8:10:67.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.1.100' (RSA) to the list of known hosts.
taylor@192.168.1.100's password:
Last login: Thu Sep 25 10:27:58 2003
Welcome to Darwin!
~ 452 $

To log in to your Mac from a Windows machine using PuTTY, launch the PuTTY application, specify SSH (the default is to
use the Telnet protocol described later), and type in your Mac OS X system's IP address as shown in the Mac's Sharing
panel. PuTTY will prompt you for your Mac OS X username and password. Figure 8-3 shows a sample PuTTY session.

Figure 8-3. Connecting to Mac OS X with PuTTY

8.1.1 Web and FTP Access

You can also use the Sharing preferences panel to enable your system's web and FTP server. Start Personal Web
Sharing to enable the web server. Other users can access the main home page (located in
/Library/WebServer/Documents) using http://address, where address is your machine's IP address or hostname (see
the sidebar "Remote Access and the Outside World" if you are using an Airport Base Station or other router between
your network and the Internet).

Remote Access and the Outside World
If your Macintosh has an IP address that was assigned by an AirPort Base Station, then it's very likely that
your machine will not be visible to the outside world. Because of this, you will only be able to connect to
your Mac from machines on your network. You can allow remote users to connect by using the AirPort
Admin Utility Show All Settings Port Mapping (for Remote Login via ssh, you must map port 22
to your Macintosh; use port 80 for Personal Web Sharing). Other SoHo (Small Office/Home Office)
gateways may support this feature as well.

If you use this technique, the IP address shown on the Sharing panel will be incorrect. You should use your
AirPort Base Station's WAN address when you connect from a computer outside your network.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Start FTP Access to enable remote users to use FTP to connect to your system. Again, remote users should use your
machine's IP address or hostname to connect.

8.1.2 Remote Access to Other Unix Systems

You can also connect to other systems from Mac OS X. To do so, launch the Terminal application. Then start a program
that connects to the remote computer. In addition to ssh, some typical programs for connecting over a computer
network are telnet, rsh (remote shell), or rlogin (remote login). All of these are supported and included with Mac OS X. In
any case, when you log off the remote computer, the remote login program quits and you get another shell prompt
from your Mac.

The syntax for most remote login programs is:

program-name remote-hostname

For example, when Dr. Nelson wants to connect to the remote computer named biolab.medu.edu, she'd first make a
local login to her Mac named fuzzy by launching Terminal. Next, she'd use the telnet program to reach the remote
computer. Her session would look something like this:

Welcome to Darwin!
~ 452 $ telnet biolab.medu.edu

Medical University Biology Laboratory

biolab.medu.edu login: jdnelson
Password:

biolab$
.
.
.
biolab$ exit
Connection closed by foreign host.
~ 453 $

Her accounts have shell prompts that include the hostname. This reminds her when she's logged in remotely. If you use
more than one system but don't have the hostname in your prompt, see Section 1.3.1 in Chapter 1 or Section 10.1 in
Chapter 10 to find out how to add it.

Actually, Dr. Nelson would be unwise to use telnet to connect to the remote system,
because ssh is a much more secure alternative and is highly preferred. However, some
remote sites still stick with telnet, and while it's important to encourage them to switch to
ssh-only access, you will still sometimes find yourself using telnet, as shown here.

Also, when you're logged on to a remote system, keep in mind that the commands you type will take effect on the
remote system, not your local one! For instance, if you use lpr to print a file, the printer it comes out of may be very far
away.

The programs rsh (also called rlogin) and ssh generally don't give you a login: prompt. These programs assume that your
remote username is the same as your local username. If they're different, give your remote username on the command
line of the remote login program, as shown in the next example.

You may be able to log in without typing your remote password or passphrase.[1] Otherwise, you'll be prompted after
entering the command line.

[1] In ssh, you can run an agent program, such as ssh-agent, that asks for your passphrase once, then handles
authentication every time you run ssh or scp afterward.

Following are four sample ssh and rsh command lines. The first pair shows how to log in to the remote system,
biolab.medu.edu, when your username is the same on both the local and remote systems. The second pair shows how
to log in if your remote username is different (in this case, jdnelson); note that the Mac OS X versions of ssh and rsh
may support both syntaxes shown depending on how the remote host is configured:

$ ssh biolab.medu.edu
$ rsh biolab.medu.edu
$ ssh jdnelson@biolab.medu.edu
$ rsh -l jdnelson biolab.medu.edu

About Security

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Today's Internet and other public networks have users who try to break into computers and snoop on
other network users. While the popular media calls these people hackers, most hackers are self-respecting
programmers who enjoy pushing the envelope of technology. The evildoers are better known as crackers.
Most remote login programs (and file transfer programs, which we cover later in this chapter) were
designed 20 years ago or more, when networks were friendly places with cooperative users. Those
programs (many versions of telnet and rsh, for instance) make a cracker's job easy. They transmit your
data, including your password, across the network in a way that allows even the most inexperienced
crackers to read it. Worse, some of these utilities can be configured to allow access without passwords.

SSH is different; it was designed with security in mind. It sends your password (and everything else
transmitted or received during your SSH session) in a secure way. A good place to get more details on
SSH is the book SSH: The Secure Shell, by Daniel J. Barrett and Richard Silverman (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

8.2 Transferring Files
You may need to copy files between computers. For instance, you can put a backup copy of an important file you're
editing onto an account at a computer in another building or another city. Or, Dr. Nelson could put a copy of a data file
from her local computer onto a central computer, where her colleagues can access it. Or you might want to download
20 files from an FTP server, but not want to go through the tedious process of clicking on them one by one in a web
browser window. If you need to do this sort of thing often, you may be able to set up a networked filesystem
connection; then you'll be able to use the Finder or local programs such as cp and mv. But Unix systems also have
command-line tools for transferring files between computers. These often work more quickly than graphical tools. We
explore them later in this section.

8.2.1 scp and rcp

Mac OS X includes both scp (secure copy) and rcp (remote copy) programs for copying files between two computers. In
general, you must have accounts on both computers to use these. The syntax of scp and rcp are similar to cp, but also
let you add the remote hostname to the start of a file or directory pathname. The syntax of each argument is:

hostname:pathname

hostname: is needed only for remote files. You can copy from a remote computer to the local computer, from the local
computer to a remote computer, or between two remote computers.

The scp program is much more secure than rcp, so we suggest using scp to transfer private files over insecure networks
such as the Internet. For privacy, scp encrypts the file and your passphrase.

For example, let's copy the files report.may and report.june from your home directory on the computer named
giraffe.intuitive.com and put the copies into your working directory (.) on the machine you're presently logged in to. If
you haven't set up the SSH agent that lets you use scp without typing your passphrase, scp will ask you:

$ scp giraffe.intuitive.com:report.may giraffe.intuitive.com:report.june .
Enter passphrase for RSA key 'taylor@mac':

To use wildcards in the remote filenames, put quotation marks ("name") around each remote name.[2] You can use
absolute or relative pathnames; if you use relative pathnames, they start from your home directory on the remote
system. For example, to copy all files from your food/lunch subdirectory on your giraffe account into your working
directory (.) on the local account, enter:

[2] Quotes tell the local shell not to interpret special characters, such as wildcards, in the filename. The wildcards
are passed, unquoted, to the remote shell, which interprets them there.

$ scp "giraffe.intuitive.com:food/lunch/*" .

Unlike cp, the Mac OS X versions of scp and rcp don't have an -i safety option. If the files you're copying already exist on
the destination system (in the previous example, that's your local machine), those files are overwritten.

If your system has rcp, your system administrator may not want you to use it for system security reasons. Another
program, ftp, is more flexible and secure than rcp (but much less secure than scp).

8.2.2 FTP

FTP, or file transfer protocol, is a standard way to transfer files between two computers. Many users of earlier Mac OS
versions are familiar with Fetch (http://fetchsoftworks.com/), a shareware graphical FTP client that runs on Mac OS X
as well as earlier versions.

The Unix ftp program does FTP transfers from the command line. There are also a number of easy-to-use graphical FTP
tools available from the Apple web site (go to "Get Mac OS X Software . . . " from the Apple menu and click on Internet
Utilities). But we cover the standard ftp program here. The computers on either end of the FTP connection must be
connected by a network (such as the Internet).

To start FTP, identify yourself to the remote computer by giving the username and password for your account on that
remote system. Unfortunately, sending your username and password over a public network means that snoopers might
see them—and use them to log into your account on that system.

A special kind of FTP, anonymous FTP, happens if you log into the remote server with the username anonymous. The
password is your email address, such as alex@foo.co.uk. (The password isn't usually required; it's a courtesy to the
remote server.) Anonymous FTP lets anyone log into a remote system and download publicly accessible files to their
local systems. Here's how that might look:

$ ftp ftp.apple.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ ftp ftp.apple.com
Trying 17.254.16.11...
Connected to ftp.apple.com.
220 ProFTPD 1.2.8 Server (Apple Anonymous FTP Server) [ftp02.apple.com]
Name (ftp.apple.com:taylor): ftp
331 Anonymous login ok, send your complete email address as your password.
Password:
230 Anonymous access granted, restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> dir
500 EPSV not understood
227 Entering Passive Mode (17,254,16,11,223,250).
150 Opening ASCII mode data connection for file list
drwxrwxrwx 3 ftpprod ftpprod 102 May 7 19:11 Apple_Support_Area
drwxrwxr-x 20 ftpprod ftpprod 680 Aug 28 22:07 developer
drwxrwxr-x 30 ftpprod ftpprod 1020 Sep 15 13:44 emagic
drwxrwxr-x 10 ftpprod ftpprod 340 Sep 3 16:23 filemaker
drwxrwxrwx 10 ftpprod ftpprod 340 Apr 7 16:50 research
226 Transfer complete.
ftp> quit
221 Goodbye.
$

8.2.2.1 Command-line ftp

To start the standard Unix ftp program, provide the remote computer's hostname:

ftp hostname

ftp prompts for your username and password on the remote computer. This is something like a remote login (see
Section 8.1, earlier in this chapter), but ftp doesn't start your usual shell. Instead, ftp prints its own prompt and uses a
special set of commands for transferring files. Table 8-1 lists the most important ftp commands.

Table 8-1. Some ftp commands
Command Description

put filename Copies the file filename from your local computer to the remote computer. If you give a second argument,
the remote copy will have that name.

mput
filenames Copies the named files (you can use wildcards) from the local computer to the remote computer.

get filename Copies the file filename from the remote computer to your local computer. If you give a second argument,
the local copy will have that name.

mget
filenames Copies the named files (you can use wildcards) from the remote computer to the local computer.

prompt

A "toggle" command that turns prompting on or off during transfers with the mget and mput commands.
By default, mget and mput will prompt you "mget filename?" or "mput filename?" before transferring each
file; you answer y or n each time. Typing prompt once, from an ftp> prompt, stops the prompting; all files
will be transferred without question until the end of the ftp session. Or, if prompting is off, typing prompt
at an ftp> prompt resumes prompting.

hash Displays progress marks on file uploads and downloads so you can gauge progress. Particularly helpful
with large transfers.

cd
pathname

Changes the working directory on the remote machine to pathname (ftp typically starts at your home
directory on the remote machine).

lcd
pathname

Changes ftp's working directory on the local machine to pathname. (ftp's first local working directory is the
same working directory from which you started the program.) Note that the ftp lcd command changes
only ftp's working directory. After you quit ftp, your shell's working directory will not have changed.

dir Lists the remote directory (like ls -l).

binary Tells ftp to copy the file(s) that follow it without translation. This preserves pictures, sound, or other
data.

ascii
Transfers plain-text files, translating data if needed. For instance, during transfers between a Microsoft
Windows system (which adds Control-M to the end of each line of text) and a Unix system (which
doesn't), an ascii-mode transfer removes or adds those characters as needed.

passive Toggles the setting of passive mode. This may help ftp to run correctly if you are behind a firewall. If you
put the command setenv FTP_PASSIVE 1 in your .tcshrc, all your ftp sessions will use passive mode.

quit Ends the ftp session and takes you back to a shell prompt.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's an example. Carol moves into the local directory she wants to use as a starting point (a good idea whether
you're uploading or downloading), then uses ftp to copy the file todo from her work subdirectory on her account on the
remote computer rhino:

$ cd uploads
$ ls
afile ch2 somefile
$ ftp rhino.zoo.edu
Connected to rhino.zoo.edu.
Name (rhino:carol): csmith
Password:
ftp> cd work
ftp> dir
total 3
-rw-r--r-- 1 csmith mgmt 47 Feb 5 2001 for.ed
-rw-r--r-- 1 csmith mgmt 264 Oct 11 12:18 message
-rw-r--r-- 1 csmith mgmt 724 Nov 20 14:53 todo
ftp> get todo
local: todo remote: todo
227 Entering Passive Mode (17,254,16,11,224,18).
150 Opening BINARY mode data connection for todo (724 bytes)
226 Transfer complete.
724 bytes received in 00:00 (94.06 KB/s)
ftp> quit
$ ls
afile ch2 somefile todo

We've explored the most basic ftp commands here. Entering help at an ftp> prompt gives a list of all commands;
entering help followed by an ftp command name gives a one-line summary of that command.

8.2.2.2 SFTP: FTP to secure sites

If you can only use ssh to connect to a remote site, chances are it won't support regular FTP transactions either,
probably due to higher security. Mac OS X also includes a version of ftp that is compatible with the standard SSH server
programs and works identically to regular FTP. Just type sftp at the command line. Here's an example:

$ cd downloads
$ sftp taylor@intuitive.com
Connecting to intuitive.com...
The authenticity of host 'intuitive.com (128.121.96.234)' can't be
established.
RSA key fingerprint is d0:db:8a:cb:74:c8:37:e4:9e:71:fc:7a:eb:d6:40:81.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'intuitive.com,128.121.96.234' (RSA) to the list
of known hosts.
taylor@intuitive.com's password:
sftp> cd mybin
sftp> dir -l
drwxr-xr-x 0 24810 100 1024 Jun 26 20:18 .
drwxr-xr-x 0 24810 100 1536 Sep 16 18:59 ..
-rw-r--r-- 0 24810 100 140 Jan 17 2003 .library.account.
info
-rwxr-xr-x 0 24810 100 3312 Jan 27 2003 addvirtual
...
-rw-r--r-- 0 24810 100 406 Jan 24 2003 trimmailbox.sh
-rwxr-xr-x 0 24810 100 1841 Jan 24 2003 unpacker
-rwxr-xr-x 0 24810 100 946 Jan 22 2003
webspell
sftp> get webspell
webspell 100% 946 4.7KB/s 00:00
sftp> quit
$ ls -l webspell
-rwxr-xr-x 1 taylor taylor 946 25 Sep 11:28 webspell

8.2.2.3 FTP with a web browser

If you need a file from a remote site, and you don't need all the control that you get with the ftp program, you can use
a web browser to download files using anonymous FTP. To do that, make a URL (location) with this syntax:

ftp://hostname/pathname

For instance, ftp://somecorp.za/pub/reports/2001.pdf specifies the file 2001.pdf from the directory /pub/reports on the
host somecorp.za. In most cases, you can also start with just the first part of the URL—such as ftp://somecorp.za—and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

host somecorp.za. In most cases, you can also start with just the first part of the URL—such as ftp://somecorp.za—and
browse your way through the FTP directory tree to find what you want. If your web browser doesn't prompt you to save
a file, use its Save menu command.

If you are using the Safari browser, it will open ftp: directories by mounting them in the
Finder.

An even faster way to download a file is with the curl (copy from URL) command. For example, to save a copy of the
report in the current directory, simply enter:

$ curl -O ftp://somecorp.za/pub/reports/2001.pdf

Without the -O option, curl will display the file in the Terminal window. If you want to read a text file from an Internet
server, you can combine curl and less:

$ curl ftp://ftp.oreilly.com/pub/README.ftp | less

You can also use curl with web pages, but this will bring the page up in HTML source view:

$ curl http://www.oreilly.com | less

8.2.2.4 Other FTP solutions

One of the pleasures of working with Unix within the Mac OS X environment is that there are a wealth of great Aqua
applications. In the world of FTP-based file transfer, the choices are all uniformly excellent, starting with Fetch,
NetFinder, Transmit, FTPeel, rbrowser, and Anarchie, and encompassing many other possibilities. Either open the Apple
menu and select "Get Mac OS X Software . . . ", or try VersionTracker (see http://www.versiontracker.com/), Mac OS X
Apps (see http://www.macosxapps.com/), MacUpdate (see http://macupdate.com/), or the shareware archive site
Download.com (see http://www.download.com/).

8.2.3 Easy Shortcuts with Connect to Server

The Terminal application has a very helpful feature that can make connecting to remote systems via telnet, ssh, ftp, or
sftp a breeze, once it's set up. Connect To Server is available off the File menu and is shown in Figure 8-4.

Figure 8-4. Connect to Server offers simple shortcuts

To add a service, click on the + icon on the left side of the window. More commonly, you'll add servers, which you can
do by clicking on the + icon on the right side of the window. It produces a window that asks for the hostname or host IP
address, which is easily entered, as shown in Figure 8-5.

Figure 8-5. Adding a New Server to Connect to Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 8-5. Adding a New Server to Connect to Server

Once added in one area, the new server is available for all services, so to connect to Apple's anonymous FTP archive
site, choose ftp, then the new server name, and then enter ftp into the User box, as shown in Figure 8-6.

Figure 8-6. Specifying user ftp on ftp connections to ftp.apple.com

Finally, the connection to Apple's server is a breeze: specify the server, specify the user, and click on Connect. The
results are shown in Figure 8-7.

Figure 8-7. Instant connection to Apple's ftp server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2.4 Practice

You can practice your ftp skills by connecting to the public FTP archive ftp.apple.com. Log in as ftp with your email
address as the password, then look around. Try downloading a research paper or document. If you have an account on
a remote system, try using rcp and scp to copy files back and forth.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 9. Of Windows and Downloads
Mac OS X comes with great applications, and a trip to the Apple Store or VersionTracker
(http://www.versiontracker.com/) can bag you quite a few more. But there's a flood of new applications coming to your
Mac OS X system because of its Unix core. Many of these are applications that have been around for a long time, and
many are flowing in from other members of the Unix family, including Linux and FreeBSD. X11 is a terrific example: it's
a graphical interface for Unix that's been around a long, long, time. Although the Mac OS X user interface is fantastic,
there are many powerful Unix programs that require X11, but Apple's on top of it: Mac OS X 10.3 (Panther) includes
X11 in the distribution. Read on to learn more about how you can use X11 on Mac OS X.

For typical Mac applications, freeware, shareware, or commercial, they're a breeze to install, thanks to the Mac OS X
Installer. Unix applications don't have the same easy interface, but a team of dedicated programmers have created the
next best thing, a powerful software distribution and installation system called Fink. Later in this chapter, we'll look at
Fink, a project that makes it easy to add a vast amount of open source software to Mac OS X.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.1 X11
The X Window System (commonly called X11 for short, reflecting that the current version is 11), is the standard
graphical user interface for Unix systems. Mac OS X is a significant exception, as was its predecessor, NeXTStep. On
Mac OS X, the Quartz Compositor is responsible for drawing what appears on your screen. In an X11-based system, an
application called an X server handles this. The programs that run under X11, such as office applications, web browsers,
and terminal windows, are X clients. X servers and clients talk to each other using Unix networking: if an X11 word
processor needs to pop up a dialog asking whether you want to save a document, it makes a network connection to the
X server and asks it to draw that window. Because X11 is networked in this way, you can run an X client on a machine
across the office or across the planet, and have it display on your computer's X server.

X servers are typically full-screen applications that completely take over the display. Figure 9-1 shows a fullscreen X
server running on a Linux computer. Three applications are running: an xterm (which is similar to the Mac OS X
Terminal), a meter that shows how busy the Linux computer's CPU is, and a similar meter that's running on a Solaris
system nearly one hundred miles away, measuring the system load on that box. In addition, a menu is visible. This
belongs to the window manager, an X11 program that takes care of putting frames and window controls (such as close,
resize, and zoom) around application windows. The window manager provides the overall look and feel, and also lets
you launch applications and log out of X11. X11 users have many windows managers to choose from; the one shown in
Figure 9-1 is icewm.

Figure 9-1. An X server running on Linux

Because X11 behaves very differently from Quartz, Apple's solution was to ship a rootless X server, which is an X server
that does not take over the screen. Apple's X11 implementation, which includes the X server, many common X clients,
and a software development kit for writing X11 applications, is derived from XFree86 (http://www.xfree86.org), the
X11 release used on Linux, FreeBSD, NetBSD, OpenBSD, and many other operating systems.

Apple also created an X11 window manager, quartz-wm, which draws X11 windows that look and behave much like
Quartz windows. As you can see, the X11 xterm and Mac OS X Terminal shown in Figure 9-2 look remarkably similar.

Figure 9-2. Examining an xterm and Mac OS X Terminal side by side

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1.1 Installing X11

Apple's X11 is included with Mac OS X 10.3 Panther, but it is not installed by default. To locate the X11 installer, use
the Finder to look for a file named X11User.pkg on the Mac OS X installation CD-ROMs. If you are using an earlier
version of Mac OS X, or if you have trouble finding this file, visit http://www.apple.com/macosx/x11/ for the latest
information.

Double-click the Mac OS X installer to start it, and install it on your Mac, following the prompts. When the installer is
finished, you'll have an application called X11 in /Applications/Utilities.

9.1.2 Using X11

Launch the X11 application by opening /Applications/Utilities in the Finder and double-clicking on the X11 icon. After a

few seconds, an xterm window will appear. You can start a new xterm by selecting File New Window (or using -
N). Click the Applications menu to see a list of shortcuts. By default, there are options for Terminal (starts a new
xterm), xman (lets you browse Unix manpages), and xclock (displays a clock on the screen). Figure 9-3 shows X11
running along with these three applications.

Figure 9-3. Running some X11 clients

X11 includes many other applications. To see a list, examine the X11 application directory with the command ls
/usr/X11R6/bin. Here are a few of the most interesting utilities included with Mac OS X:

bitmap

An X11 bitmap (.xbm) editor.

glxgears

An OpenGL 3D graphics demonstration. OpenGL applications running under Apple's X11 implementation have
the benefit of full 3D hardware acceleration.

glxinfo

Displays information about OpenGL capabilities.

oclock

An X11 clock.

xcalc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xcalc

A calculator program that runs under X11.

xeyes

A pair of eyeballs that follows your mouse cursor.

xhost

Gives another computer permission to open windows on your display.

xkill

Changes your cursor to the "cursor of doom." Any X11 window you click in will be shut down. If you change
your mind and don't want to kill an app, press Control-C. This will not kill any Aqua application; it works only on
X11 applications.

xload

Displays the CPU load.

There are some significant differences between X11 and the Mac OS X interface that you need to watch out for.
Although Apple's X11 does a great job of minimizing these differences, there are still some quirks that may throw you
off:

Cutting and pasting

If you press -C while you've selected something in an X11 window, you can paste it into another Mac OS X

application. But that's where the similarity ends: to paste something into an X11 window, you can't use -V.
Instead, use Option-Click. If you have a three-button mouse, press the middle button to paste into an X11
window.

X11 application menus

The menu at the top of the screen always belongs to X11 itself. Individual X11 applications may have their own
menu near the top of their main window. Figure 9-4 shows two different types of X11 application menus, a
classic X11 menu from xmh (X11 mail reader) and a more modern X11 menu from gataxx (a game from the
GNOME desktop system).

Figure 9-4. Comparing X11 menu styles

Be careful with -Q

If you press -Q (quit) while running an X11 application, this will attempt to shut down all of X11. Because of
this, you'll get a warning if you try to do this when there are X11 clients running. Look for a quit option on the
X11 application's own menu, or click the close button on its window.

Scrolling the xterm

By default, the xterm doesn't have scrollbars. However, like the Terminal, you can use a keystroke to scroll up
and down, though, unfortunately, it's not the same keystroke: Terminal uses Page Up and Page Down, while
xterm expects Shift-Page Up and Shift-Page Down.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Launching applications from the xterm

When you type the name of an X11 program in the xterm, it will launch, but the xterm window will appear to
hang because it is waiting for the program to exit. To avoid this problem, you can either append the & character
after the program name (to put it in the background) or press Control-Z after the program starts, and type bg
to put the program in the background. See Figure 9-5 for an example of launching xeyes both ways.

You can also use the open-x11 command from within an xterm or the Mac OS X Terminal
to launch an X11 application, as in open-x11 xterm.

X11, .bashrc, and .profile

If you've customized your Unix shell by editing ~/.profile, applications that run under X11, including xterm,
won't respect the settings in that file. To correct this problem, put any essential settings in your ~/.bashrc file,
which X11 will read. For more information, see the Apple X11 FAQ, which you can find by searching for "X11
FAQ" at http://developer.apple.com/qa/.

Figure 9-5. Launching X11 applications from the xterm

9.1.3 Customizing the Applications Menu

You can customize X11's Applications menu by selecting Applications Customize. Click Add Item to insert a new
item. Specify the menu title in the Name column, and use the Command column for the command to execute. You can
also add any necessary parameters or switches here. For example, to change the Terminal/xterm menu item so it uses
a 12-point antialiased Monaco font, add the switches -fa Monaco -fs 12, as shown in Figure 9-6.

Although the Application Menu item for xterm is named Terminal, it's not the same as the
Mac OS X Terminal application.

Figure 9-6. Configuring xterm to launch with a different font

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-6. Configuring xterm to launch with a different font

You can also specify a shortcut in the shortcut column. The shortcut key must be used with the Command () key, so

the n in the Terminal/xterm entry specifies the -N keystroke.

9.1.4 OpenOffice.org

OpenOffice.org is a free office suite that stands up remarkably well in a head-to-head comparison to Microsoft Office. It
started life as StarOffice, and its owner, Sun Microsystems, continues to market it under that brand name
(http://www.sun.com/staroffice). However, Sun has released the source code to most of StarOffice, and from that
massive collection of source, the OpenOffice.org project was born.

OpenOffice.org is available in Windows and Unix (X11) versions. As of this writing, it does not have native support for
Mac OS X. So, if you want to use this suite on Mac OS X, you'll need to run it under X11. However, an effort is
underway to make OpenOffice.org a full-fledged Aqua application (see http://porting.openoffice.org/mac/timeline.html).

To install OpenOffice.org on your Mac:

1. Download the installer (http://porting.openoffice.org/mac/) for OpenOffice.org. It is quite large (over 100 MB),
so be patient.

2. Double-click the installer and follow the prompts. You will need to accept the license terms, consult a README
file, and select installation options (the default selections are fine). The OpenOffice.org installer launches a
couple of other installers, each of which will ask you for your password. During the installation, you may get a
warning that "XDarwin does not exist in the Applications directory." This tells you that OpenOffice.org could not
find the X11 installation it expected to find (XDarwin is another distribution of X11 for Mac OS X). However,
OpenOffice.org will work fine with Apple's X11.

After you've installed OpenOffice.org, you can launch it by double-clicking Start OpenOffice.org, which is located in
/Applications/OpenOffice.org1.0.3 (the last few numbers of that folder name may vary depending on which version of
OpenOffice.org you have). The first time you launch this program, you'll be asked for the location of your X11
installation. Click Browse and select /Applications/Utilities/X11. The OpenOffice.org word processor will appear, and you
can select File Open to open an existing document, or start typing to create a new one. Figure 9-7 shows the
Microsoft Word document for the text of this chapter. Select File New to create a spreadsheet, drawing, or
presentation application.

Figure 9-7. Editing a Microsoft Word document in OpenOffice.org.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also launch OpenOffice.org from within an xterm or Terminal with the following command:

open-x11 /Applications/OpenOffice.org1.0.3/program/soffice

Although OpenOffice.org does not use the full power of Mac OS X's Aqua GUI, it's one of the snazzier X11 applications
out there. Also, it offers near-complete compatibility with Microsoft's Word, Excel, and PowerPoint. So although it's not
perfect, the price is right, and it may be just what you need if you have to work with Microsoft Office formats but don't
want to purchase the product.

9.1.5 Remote X11 Access to Your Mac

If you use other Unix systems that run X11, you can log in remotely to your Mac, run X11 applications, and have them
display on that Unix system (the applications are still executing on the Mac, but they appear on the Unix system). If you
have an always-on broadband connection, you can even do this from afar (perhaps you use a Unix system at school or
at work, but want to connect to your Mac at home).

These instructions apply only to X11 applications that are installed on your Mac. If you
want a complete remote desktop solution, see Share My Desktop
(http://www.bombich.com/software/smd.html). You'll be able to remotely control your Mac
from any system for which you can get a VNC (Virtual Network Computer) client, including
Windows, Unix, Palm, Pocket PC, cell phones, and more. See http://www.realvnc.com/ for
more information about VNC.

To set up your Mac for remote X11 access:

1. Use the command sudo cp /etc/sshd_config /etc/sshd_config.backup to make a backup of the configuration file you'll
edit in the next step. If anything goes wrong during this process, you can use the command sudo cp
/etc/sshd_config.backup /etc/sshd_config to restore the original file and restart your Mac.

2. Use the command sudo vi /etc/sshd_config to edit your remote login configuration file. Find the line that reads
#X11Forwarding no. The leading # tells sshd to ignore that line in the file, and to use the default value instead. To
be absolutely sure that remote X11 access is enabled, regardless of the default, remove the comment character
(the "#"), and change no to yes. So, change this line to read X11Forwarding yes, and save the file.

3. Open System Preferences Sharing and find the Remote Login setting. If it's disabled, enable it. If it's
enabled, stop it and start it again to be sure that the configuration change you made in the previous step takes
effect.

Pay attention to the instructions at the bottom of the Sharing preference pane (you need to have Remote Login selected
for these to appear). This will tell you how to connect to your computer remotely. In Figure 9-8, it specifies the
command ssh bjepson@192.168.254.104 for connecting to Brian's computer. This command (with some changes; you'll
have a different user name and IP address) will let you run X11 applications on your Mac and display them on other
Mac OS X systems on the same network as your Mac. It will also work with any Unix system on the same network as
your Mac that has either the commercial version of SSH from SSH Communications Security (http://www.ssh.com/) or
the open source version (the version that Mac OS X uses) from http://www.openssh.org/.

Figure 9-8. Examining the Remote Login settings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To run X11 applications on your Mac and display them on another computer, take the following steps:

1. Log in to the remote machine. If it's a Mac, start X11 and bring the xterm window to the front or launch a new
xterm from the Applications menu. If it's a Unix or Linux system, start X11 (many systems start it
automatically), and open an xterm or other terminal application, such as dtterm.

2. On the remote machine, use ssh +x hostname (SSH Communications Security) or ssh -X hostname (OpenSSH) to
connect to your Macintosh.

3. After you've logged in to your Mac over SSH, run the X11 application that you're interested in.

Figure 9-9 shows an example of connecting from a Solaris system and launching OpenOffice on the Macintosh (but it
appears on the Solaris system instead of the Macintosh).

Figure 9-9. OpenOffice.org running on a Mac, but displayed on a Solaris system
using remote X11

9.1.5.1 Opening a private network

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your Macintosh is on a private network and you try to connect from the outside, the command shown in the Sharing
pane will probably fail, since private network addresses are not reachable from other networks on the Internet. If you
use an AirPort base station or a non-Apple access point or router to connect your home network to a broadband
connection, then you are almost certainly on a private network. However, you can use the Port Mapping tab of the
AirPort Admin Utility (located in /Applications/Utilities) to open a connection on port 22 (the port that SSH uses) and
forward it to your Mac.

When you issue the ssh command from a remote machine, you'll need to replace the IP address shown in Sharing
preferences to that of your AirPort base station (see the Internet tab of the Airport Admin Utility). Even with this
configuration, remote access may not work, since some Internet Service Providers (ISPs) place restrictions on inbound
connections.

9.1.6 X11 Access to Other Computers

You can also run X11 applications on other computers and display them on your Mac once you have X11 running. To do
this:

1. Log in to your Mac, start X11 (Applications Utilities X11), and launch an xterm.

2. Issue the command ssh -X hostname, where hostname is the name or IP address of the remote computer.

3. After you've logged in to the remote machine, run the X11 application that you're interested in. Figure 9-10
shows Netscape running on a Solaris system, but displayed on a Macintosh via X11.

Figure 9-10. Running an application on Solaris, but displaying it on a Mac

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.2 Fink
The Fink Project is a mechanism for obtaining, installing, and keeping up-to-date a wide variety of open source
applications on your Macintosh. The project itself is made up of volunteers who are dedicated to bringing the best open
source software to Mac OS X. They fine-tune these open source applications for the Mac OS X environment, and then
keep the applications updated so they work with the latest release of Mac OS X.

Many of the programs featured in this chapter are available through Fink, as is a wealth of other applications. To install
Fink, do the following:

1. Download the Fink binary installer disk image (a .dmg file) from http://fink.sourceforge.net/download.

2. If your web browser doesn't automatically open the disk image, switch to the Finder and double-click the .dmg
file to mount the disk image.

3. Open the mounted disk image and double-click the Fink Installer .pkg package inside.

4. Follow the instructions on the screen.

You can also find an installer for many open source applications by selecting the "Get Mac
OS X Software . . . " menu from the Apple menu, which opens a web browser and takes
you to the Apple web site. From there, find and click on the "Unix & Open Source" link,
which offers a list of useful Unix applications. The advantage of using Fink is that it will
manage thousands of available packages, making sure that you have the latest versions
and that different packages cooperate with each other.

To begin using Fink, you need to set up your PATH and some environment variables. Fortunately, Fink provides a shell
script to help with this. Add this command to the end of your .profile file (see Section 4.3.2 in Chapter 4):

. /sw/bin/init.sh

Next, close your Terminal window and open a new one. You won't notice anything different, but the addition to your
.profile will configure future Terminal sessions for Fink. After you've installed Fink and started a new Terminal session,
you can use the apt-get utility to install packages. When you issue the apt-get command, you must use sudo (see Section
3.3 in Chapter 3) so you can make changes to the system.

After you've done a fresh install of Fink, your first step should always be to update the list of available packages with
apt-get update (you can also run this command every couple of weeks to see whether any new packages have been
released, perhaps by adding it to the cron monthly file):

$ sudo apt-get update
Password: ********
Get:1 http://us.dl.sourceforge.net release/main Packages [112kB]
Get:2 http://us.dl.sourceforge.net release/main Release [85B]
Get:3 http://us.dl.sourceforge.net release/crypto Packages [9247B]
Get:4 http://us.dl.sourceforge.net release/crypto Release [87B]
Get:5 http://us.dl.sourceforge.net current/main Packages [112kB]
Get:6 http://us.dl.sourceforge.net current/main Release [85B]
Get:7 http://us.dl.sourceforge.net current/crypto Packages [9247B]
Get:8 http://us.dl.sourceforge.net current/crypto Release [87B]
Fetched 243kB in 1s (207kB/s)
Reading Package Lists... Done
Building Dependency Tree... Done

9.2.1 Listing Available Packages

To see a list of available packages, use the command fink list (this sample shows an abbreviated list):

$ fink list | more
Information about 1710 packages read in 1 seconds.

 3dpong 0.4-2 Pong clone
 a2ps 4.12-4 Any to PostScript filter
 i aalib 1.4rc5-2 Ascii art library
 i aalib-bin 1.4rc5-2 Ascii art library
 i aalib-shlibs 1.4rc5-2 Ascii art library
 abiword 1.0.2-2 Open-source word processor
 [... output deleted for brevity...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [... output deleted for brevity...]

An i in the leftmost column indicates that the package is already installed. The second column is the package name. The
third column shows the version number, and the last column provides a brief description of the package.

9.2.2 Installing Packages

You can use the apt-get install command to install a package, such as Lynx, a text-only web browser:

$ sudo apt-get install lynx
Reading Package Lists... Done
Building Dependency Tree... Done
The following NEW packages will be installed:
 lynx
0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 1319kB of archives. After unpacking 0B will be used.
Get:1 http://us.dl.sourceforge.net release/main lynx 2.8.4-1 [1319kB]
Fetched 1319kB in 11s (120kB/s)
Selecting previously deselected package lynx.
(Reading database ... 3450 files and directories currently installed.)
Unpacking lynx (from .../lynx_2.8.4-1_darwin-powerpc.deb) ...
Setting up lynx (2.8.4-1) ...

The web site http://finkcommander.sourceforge.net/ is home to FinkCommander, a free
graphical user interface for Fink. Use this program if you'd rather have a GUI interface to
maintain your Fink installation.

When you use apt-get to install a package, Fink searches the Fink archive web site for a pre-built package provided by
the volunteer team. A pre-built package is an application that has been bundled up in a manner similar to the installers
used by other Mac OS X applications. Although the fink list command will list many packages, not all of them have binary
packages. However, if you've installed the Mac OS X Xcode Tools, you can use the fink install command to automatically
download, compile, and install an application. For example, as of this writing, there was no binary package for the
command-line email program Pine. Here's how you'd install it using fink install:

$ fink install pine
sudo /sw/bin/fink install pine
Password: ********
Information about 1710 packages read in 3 seconds.

pkg pine version ###
pkg pine version 4.44-2
The following package will be installed or updated:
 pine
 [... output deleted for brevity...]

The fink install command performs a lot of actions on your behalf: downloading source code, locating patches
(modifications to the source code that provide Mac OS X compatibility), compiling the source, and installing the
compiled programs. This process can take a long time, depending on which packages you have selected. If you select a
package that depends on another package, fink will automatically install them both. If there are many dependencies
between packages, you could be in for a long wait.

For this reason, it's best to use apt-get to install packages whenever possible. Since apt-get uses precompiled packages,
you don't have to download all the source and wait for compilation. Also, apt-get warns you if there are any
dependencies, and gives you a chance to cancel the installation prior to adding software you're not sure about:

$ sudo apt-get install ethereal
Password: ********
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
 dlcompat glib glib-shlibs gtk+ gtk+-data gtk+-shlibs libpcap
 libpcap-shlibs system-xfree86 zlib
The following NEW packages will be installed:
 dlcompat ethereal glib glib-shlibs gtk+ gtk+-data gtk+-shlibs
 libpcap libpcap-shlibs system-xfree86 zlib
0 packages upgraded, 11 newly installed, 0 to remove and 0 not upgraded.
Need to get 13.7MB of archives. After unpacking 0B will be used.
Do you want to continue? [Y/n]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

9.3 Some Picks
This section describes just a few of the applications you can install using Fink. First up is lynx, a text-based web
browser that's great for viewing or downloading web pages quickly. After that, we talk about Pine, an email client and
USENET newsreader. Finally, we discuss GIMP, a general-purpose graphics manipulation package that can do all sorts of
great things with images.

9.3.1 Browsing the Web with Lynx

There are a number of excellent web browsers available for Mac OS X, including Safari, Camino, Mozilla, and OmniWeb.
However, attractive, graphically based web browsers can be slow—especially with flashy, graphics-laden web pages on
a slow network.

To install Lynx, use the command sudo apt-get install fink (see "Installing Packages", earlier
in this chapter).

The Lynx web browser (originally from the University of Kansas and available on many Unix systems) is different
because it's a text-based web browser that works within the Terminal application. Being text-only causes it to have
some trade-offs you should know about. Lynx indicates where graphics occur in a page layout; you won't see the
graphics, but the bits of text that Lynx uses in their place can clutter the screen. Still, because it doesn't have to
download or display those graphics, Lynx is fast, which is especially helpful over a dial-up modem or busy network
connection. Sites with complex multicolumn layouts can be hard to follow with Lynx; a good rule is to page through the
screens, looking for the link you want and ignore the rest. The Lynx command line syntax is:

lynx "location"

For example, to visit the O'Reilly home page, enter lynx "http://www. oreilly.com", or simply lynx "www.oreilly.com". Figure
9-11 shows part of the home page.

Figure 9-11. Viewing the O'Reilly home page in Lynx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To move around the Web, use your keyboard's arrow keys, spacebar, and a set of single-letter commands. The third
line from the bottom of a Lynx screen gives you a hint of what you might want to do at the moment. In Figure 9-11, for
instance, "(NORMAL LINK) Use right-arrow or <return> to activate" means you can follow the link by pressing right
arrow. The bottom two lines of the screen remind you of common commands, and the help system (which you get by
typing h) lists the rest (use the spacebar to scroll forward one screenfull, and press b to move back a screenfull).

When you first view a screen, the link nearest the top is selected and highlighted. To select a later link (farther down
the page), press the down-arrow key. The up-arrow key selects the previous link (farther up the page). Once you've
selected a link you want to visit, press the right-arrow key to follow that link; the new page appears. Go back to the
previous page by pressing the left-arrow key (from any selected link; it doesn't matter which one).

9.3.1.1 Dumping a web page with Lynx

You can use Lynx to dump the contents of a web page in plain text, which you can then paste into an email message to
send a web page around in a plain, easy-to-read format. Lynx preserves URLs in documents by formatting them as
footnotes. To dump a web page, use lynx -dump URL, as in lynx -dump "http://www.intuitive.com/kana.shtml". This produces
the following output:

Calligraphy
 "Chokkan"

 The calligraphy on the Intuitive Systems Web site was produced by
 Master Japanese Calligrapher [1]Eri Takase, and it means "insight" or
 "intuition":

 The first character means "direct". It is interesting in that it
 originally meant "ten eyes" or clear, transparent, no concealment.

 The second character is constructed of characters meaning "bite the
 heart" and now means "feel" or "sense".

 Intuition means to "directly sense"

 [2]close this window

References

 1. http://www.takase.com/
 2. javascript:window.close();

9.3.2 Electronic Mail with Pine

When you install Mac OS X or boot it for the first time, the installer may ask whether you want to sign up for .Mac,
Apple's suite of Internet services that includes electronic mail (email). If you signed up for .Mac, you probably use
Apple's Mail application to send and receive email. If you didn't sign up for .Mac, you may be using an email account
provided by your ISP or employer along with Apple's Mail or some other application.

There are many great graphical mail applications for Mac OS X. However, Terminal-based email programs have some
benefits:

They are not affected by conventional email viruses, although security holes do appear from time to time in
nearly every program that interacts with the Internet.

You can read your email while logged in to your Mac from another machine (see Section 8.1 in Chapter 8).

Pine, from the University of Washington, is a popular program for reading and sending email from a terminal. It works
completely from your keyboard; you don't need a mouse.

Mac OS X does not include Pine by default. To install Pine, see Section 9.2.2, earlier in this chapter. Start Pine by
entering its name at a shell prompt. It also accepts options and arguments on its command line; to find out more, enter
pine -h (help). Figure 9-12 shows the starting display, i.e., the main menu.

Figure 9-12. Pine main menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-12. Pine main menu

9.3.2.1 Configuring Pine

The Pine main menu has a Setup entry for configuring Pine. After you enter S (the "Setup" command), you can choose
what kind of setup you want. From the setup screen, you can get to the option configuration area with C (the "Config"
command).

The configuration screen has page after page of options. You can look through them with the spacebar (to move
forward one page), the - key (back one page), the N key (to move forward to the next entry), and the P key (back to
the previous entry). If you know the name of an option you want to change, you can search for it with W (the "Whereis"
command).

When you highlight an option, the menu of commands at the bottom of the screen will show you what can do with that
particular option. A good choice, while you're exploring, is the ? (help) command, to find out about the option you've
highlighted. There are several kinds of options:

Options with variable values: names of files, hostnames of computers, and so on. For example, the personal-
name option sets the name used in the "From: " header field of mail messages you send. The setup entry looks
like this:

personal-name = <No Value Set: using "Robert L. Stevenson">

"No Value Set" can mean that Pine is using the default from the system-wide settings, as it is here. If this user
wants his email to come from "Bob Stevenson," he could use the C (Change Val) command to set that name.

Options that set preferences for various parts of Pine. For instance, the enable-sigdashes option in the "Composer
Preferences" section puts two dashes and a space on the line before your default signature. The option line
looks like this:

[X] enable-sigdashes

The X means that this preference is set, or "on." If you want to turn this option off, use the X (Set/Unset)
command to toggle the setting.

Options for which you can choose one of many possible settings. The option appears as a series of lines. For
instance, the first few lines of the saved-msg-name-rule option look like this:

saved-msg-name-rule =
 Set Rule Values
 --- ----------------------
 (*) by-from
 () by-nick-of-from
 () by-nick-of-from-then-from
 () by-fcc-of-from
 () by-fcc-of-from-then-from

The * means that the saved-msg-name-rule option is currently set to by-from. (Messages will be saved to a folder

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The * means that the saved-msg-name-rule option is currently set to by-from. (Messages will be saved to a folder
named for the person who sent the message.) If you wanted to choose a different setting—for instance, by-fcc-
of-from—you'd move the highlight to that line and use the * (Select) command to choose that setting.

These settings are trickier than the others, but the built-in help command ? explains each choice in detail. Start
by highlighting the option name (here, saved-msg-name-rule) and reading its help info. Then look through the
settings' names, highlight one you might want, and read its help info to see if it's right for you.

When you exit the setup screen with the E command, Pine asks you to confirm whether you want to save any option
changes you made. Answer N if you were just experimenting or aren't sure.

9.3.2.2 Configuring Pine to send and receive email

Before you can send or receive email with Pine, you must configure it to talk to your email servers. You will need the
following information (if you are not using .Mac, you will need to get this information from your ISP or system
administrator):

Your email address

This will be supplied by your ISP. If you are using .Mac, it will be username@mac.com.

Your Mac OS X username must be the same as the username in your email address, since
Pine uses your Mac OS X username and your user-domain to generate your email address.

Incoming mail server

This is the server where your email messages sit until you're ready to read them. Your ISP may refer to this as
a POP or IMAP server. If you are using .Mac, this will be mail.mac.com.

Incoming mail protocol

Pine supports two protocols for downloading remote email: POP (Post Office Protocol) and IMAP (Internet
Message Access Protocol). If you are using . Mac, this will be IMAP.

Outgoing mail server

This is a server that accepts your outgoing email and delivers it to the recipients. Your ISP may refer to this as
an SMTP server (SMTP is Simple Mail Transfer Protocol, the network protocol for sending and receiving email).
If you are using .Mac, this will be smtp.mac.com.

Enter the setup screen by pressing S at Pine's main menu. Then press C to enter the Config screen. To configure your
email account, do the following:

1. Look at your email address. Set Pine's user-domain to everything after the @ symbol (for example, mac.com).

2. Set the smtp-server to your outgoing mail server (for example, smtp.mac.com).

3. Set your inbox-path:

a. If you are using IMAP, set the inbox-path to {incoming mail server/user=username}inbox, as in
{mail.mac.com/user=dtaylor}inbox.

b. If you are using POP, set the inbox-path to {incoming mail server/pop3/user=username}inbox, as in
{pop3.nowhere.oreilly.com/pop3/user=dtaylor}inbox.

The exact settings may vary. If you need more help, visit the Usenet newsgroup comp.mail.pine and look for the latest
posting of the FAQ.

After you've made these changes, press E to exit Setup, press Y to commit changes, and then quit and restart Pine.

9.3.2.3 Reading email with Pine

When you first start Pine, the main menu appears, as shown earlier in Figure 9-12. You may also be prompted for your

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you first start Pine, the main menu appears, as shown earlier in Figure 9-12. You may also be prompted for your
password, since Pine needs this to connect to your POP or IMAP server.

The highlighted line, which is the default command, gives a list of your email folders.[1] You can choose the highlighted
command by pressing Return, pressing the greater-than sign (>), or typing the letter next to the command. (Here, this
is l—a lowercase L. You don't need to type the commands in uppercase.) But because you probably haven't used Pine
before, the only interesting folder is the inbox, which is the folder where your new messages wait for you to read them.

[1] Pine also lets you read Usenet newsgroups. The L command takes you to another display where you choose the
source of the folders, then you see the list of folders from that source.

The display in Figure 9-13 shows that there are two messages waiting. Let's go directly to the inbox by pressing I (or by
highlighting that line in the menu and pressing Return) to read the new mail. Figure 9-13 has the message index for our
inbox.

Figure 9-13. Pine message index

The main part of the window is a list of the messages in the folder, one message per line. If a line starts with N, it's a
new message that hasn't been read. (The first message has been sitting in the inbox for some time now.) Next on each
line is the message number; messages in a folder are numbered 1, 2, and so on. That's followed by the date the
message was sent, who sent it, the number of characters in the message (size), and, finally, the message subject.

Let's skip the first message and read number 2. The down-arrow key or the N key moves the highlight bar over that
message. As usual, you can get the default action—the one shown in brackets at the bottom of the display (here,
[ViewMsg])—by pressing Return or >. The message from Apple will appear.

Just as > takes you forward in Pine, the < key generally takes you back to where you came from—in this case, the
message index. You can type R to reply to this message, F to forward it (send it on to someone else), D to mark it for
deletion, and the Tab key to go to the next message without deleting this one.

When you mark a message for deletion, it stays in the folder message index, marked with a D at the left side of its line,
until you quit Pine. Type Q to quit. Pine asks if you really want to quit. If you've marked messages for deletion, Pine
asks if you want to expunge ("really delete") them. Answering Y here deletes the message.

9.3.2.4 Sending email with Pine

If you've already started Pine, you can compose a message from many of its displays by typing C. (Though, as always,
not every Pine command is available at every display.) You can also start from the main menu. Or, at a shell prompt,
you can go straight into message composition by typing pine addr1 addr2, where each addr is an email address such as
bjepson@oreilly.com. In that case, after you've sent the mail message, Pine quits and leaves you at another shell
prompt.

When you compose a message, Pine puts you in a window called the composer. (You'll also go into the composer if you
use the Reply or Forward commands while you're reading another mail message.) The composer is a lot like another
Unix text editor (Pico), but the first few lines are special because they're the message header—the "To:," "Cc:" (carbon
copy), "Attchmnt:" (attached file), and "Subject:" lines. Figure 9-14 shows an example, already filled in.

Figure 9-14. Pine composer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-14. Pine composer

As you fill in the header, the composer works differently than when you're in the message text (body of the message).
The list of commands at the bottom of the window is a bit different in those cases, too. For instance, while you edit the
header, you can attach a file to the end of the message with the "Attach" command, which is Control-J. (Pine uses the
^ symbol to indicate a control character.) However, when you edit the body, you can read a file into the place you're
currently editing (as opposed to attaching it) with the Control-R "Read File" command. But the main difference between
editing the body and the header is the way you enter addresses.

If you have more than one address on the same line, separate them with commas (,). Pine will rearrange the addresses
so there's just one on each line.

Move up and down between the header lines with Control-N and Control-P, or with the up-arrow and down-arrow keys.
When you move into the message body (under the "Message Text" line), type any text you want. Paragraphs are
usually separated with single blank lines.

If you put a file in your home directory named .signature (the name starts with a dot (.),
the composer automatically adds its contents to the end of every message you compose.
(Some other Unix email programs work the same way.) It's good Internet etiquette to
keep this file short—no more than four or five lines, if possible.

You can use editing commands such as Control-J to justify a paragraph and Control-T to check your spelling. When
you're done, Control-X (exit) leaves the composer, asking first if you want to send the message you just wrote. Control-
C cancels the message, though you'll be asked if you're sure. If you need to quit but don't want to send or cancel, the
Control-O command postpones your message; then, the next time you try to start the composer, Pine asks whether
you want to continue the postponed composition.

9.3.3 Editing Graphics with GIMP

GIMP (the GNU Image Manipulation Program) is a powerful free graphics manipulation program. You can get it at
http://www.gimp.org/, and can use it to manipulate photos and other bitmap images in ways previously possible only
with expensive graphics software.

To install GIMP, use the command sudo apt-get install gimp (see Section 9.2.2, earlier in this
chapter).

To run GIMP, you'll need to launch X11 and run the command gimp & at an xterm window. You can also add GIMP to the
X11 Applications menu (see Section 9.1.3, earlier in this chapter). The first time you run GIMP, it will walk you through
its user installation process (see Figure 9-15).

Figure 9-15. Installing GIMP for the first time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-15. Installing GIMP for the first time

After you've finished setting GIMP up, several windows will appear, as shown in Figure 9-16. Clockwise from the top,
they are:

Main Window and Toolbar

Use the menus in this window to open a file (File Open), create a new file (File New), or quit the
GIMP (File Quit). You can also select the active tool. Click this window to bring it to the front, and hover
the mouse over the toolbar to see its name. Click a tool to select it.

Tool Options

Use this window to set configurable options for the current tool.

Brush Selection

Many tools, such as the paintbrush and eraser, use a certain brush shape. Use this window to select the brush
properties.

Layers, Channels, and Paths

This Window lets you work with multilayered documents.

GIMP Tip of the Day

This window displays some helpful tips to help you use the GIMP.

Figure 9-16. The GIMP's default windows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-16. The GIMP's default windows

To open an existing file, select File Open, and choose a file. Figure 9-17 shows a JPG picture open in the GIMP.

Figure 9-17. Editing a photograph in the GIMP

Command-Click or click the wedge in the upper-lefthand corner of the window to bring up a menu. The options are too
numerous to describe completely, but the following list describes some you may find useful.

File Save

Save the file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Save the file.

File Revert

Abandon all your changes and revert to the saved version.

Edit

Contains the usual suspects: Undo, Redo, Cut, Copy, and Paste. It also includes Paste as New, which creates a
new image out of whatever's in GIMP's clipboard.

Image Scale Image

Change the size of the image.

Image Filters

Runs a filter over the image; you'll find filters that sharpen, despeckle, blur, and many more.

Script-Fu

Performs more complicated transformations to the image. You'll want to play around here, but be sure you are
working on a backup copy. Figure 9-18 shows the result of the Alchemy Predator transformation.

Figure 9-18. Transforming a predator with the Alchemy Predator
transformation

GIMP includes a set of extensions for generating various types of graphics, including buttons and logos. Switch to the
GIMP main window and select Script-Fu from the Xtns menu (see Figure 9-19).

Figure 9-19. Exploring the Script-Fu options for generating graphics

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 9-19. Exploring the Script-Fu options for generating graphics

The GIMP is a deep and broad application, and this section of the chapter has barely scratched the surface. You can use
the GIMP to resize images, clear up red-eye (in your photos, that is; you're on your own for your own eyes), and
perform sophisticated image enhancements. For more information on the GIMP, see the GIMP Pocket Reference, by
Sven Neumann (O'Reilly).

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Chapter 10. Where to Go from Here
Now that you're almost to the end of this guide, let's look at some ways to continue learning about the Unix side of Mac
OS X. Documentation is an obvious choice, but it isn't always in obvious places. You can also learn how to save time by
taking advantage of other shell features—aliases, functions, and scripts—that let you shorten a repetitive job and "let
the computer do the dirty work."

We'll close by seeing how you can use Unix commands on non-Unix systems.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.1 Documentation
You might want to know the options to the programs we've introduced and get more information about them and the
many other Unix programs. You're now ready to consult your system's documentation and other resources.

10.1.1 The man Command

Different versions of Unix have adapted Unix documentation in different ways. Almost all Unix systems have
documentation derived from a manual originally called the Unix Programmer's Manual. The manual has numbered
sections; each section is a collection of manual pages, often called manpages; each program has its own manpage.
Section 1 has manpages for general Unix programs such as who and ls.

Mac OS X has individual manpages stored on the computer; users can read them online. If you want to know the
correct syntax for entering a command or the particular features of a program, enter the command man and the name
of the command. The syntax is:

man command

For example, if you want to find information about the program vi, which allows you to edit files, enter:

$ man vi
.
.
$

The output of man is filtered through the less pager in Mac OS X by default.

Manpages are displayed using a program that doesn't write the displayed text to
Terminal's scroll buffer. This can be quite annoying. Fortunately it's an easy fix: just
specify PAGER="more" on the command line, or add the line export PAGER="more" to your
~/.bashrc, and the manpages will be left in the Terminal scroll buffer for later reference.

After you enter the command, the screen fills with text. Press the spacebar or Return to read more, and press q to quit.

Mac OS X also includes a command called apropos, or man -k, to help you locate a command if you have an idea of what
it does but are not sure of its correct name. Enter apropos followed by a descriptive word; you'll get a list of commands
that might help. To get this working, however, you need to first build the apropos database. This is done when Mac OS X
runs its weekly maintenance job, which can be run manually with the following command:

$ sudo periodic weekly
Password:
$

Don't be surprised if it takes ten minutes or longer for the periodic command to complete; it's doing quite a lot of work
in the background. Once complete, you can use apropos to find all commands related to PostScript, for example, with:

$ man -k postscript
enscript(1) - convert text files to PostScript
grops(1) - PostScript driver for groff
pfbtops(1) - translate a PostScript font in .pfb format to ASCII
pstopdf(1) - convert PostScript input into a PDF document

10.1.1.1 Problem checklist

man says there is no manual entry for the command.

Some commands—cd and jobs, for example—aren't separate Unix programs; they're part of the shell. On Mac
OS X, you'll find the documentation for those commands in the manual page for bash.

If the program isn't a standard part of your Unix system—that is, you or your system staff added the program
to your system—there may not be a manual page, or you may have to configure the man program to find the
local manpage files.

The third possibility is that you don't have all the manpage directories in your MANPATH variable. If so, add the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The third possibility is that you don't have all the manpage directories in your MANPATH variable. If so, add the
following to your .bashrc (see Section 4.3 in Chapter 4), then open a new Terminal window for the settings to
take effect:

export MANPATH=/sw/share/man:/sw/man:${MANPATH}:/usr/X11R6/man

10.1.2 Documentation Via the Internet

The Internet changes so quickly that any list of online Unix documentation we'd give you would soon be out of date.
Still, the Internet is a great place to find out about Unix systems. Remember that there are many different versions of
Unix, so some documentation you find may not be completely right for you. Also, some information you'll find may be
far too technical for your needs (many computer professionals use and discuss Unix). But don't be discouraged! Once
you've found a site with the general kind of information you want, you can probably come back later for more.

The premier place to start your exploration of online documentation for Mac OS X Unix is the Apple web site. But don't
start on their home page. Start either on their Mac OS X page (http://www.apple.com/macosx/) or their Darwin project
home page (http://developer.apple.com/darwin/). Another excellent place to get information about software downloads
and add-ons to your Unix world is the Fink project (see Section 9.2 in Chapter 9).

Many Unix command names are plain English words, which can make searching hard. If you're looking for collections of
Unix information, try searching for the Unix program named grep. One especially Unix-friendly search engine is Google,
at http://www.google.com. Google offers a specialized Macintosh search engine at http://www.google.com/mac and a
BSD search engine at http://www.google.com/bsd (which is useful because Mac OS X's Unix personality derives from its
BSD heritage).

Here are some other places to try:

Magazines

Some print and online magazines have Unix tutorials and links to more information. Macintosh magazines
include MacTech (http://www.mactech.com), MacWorld (http://www.macworld.com), and MacAddict
(http://www.macaddict.com).

Publishers

Publishers such as O'Reilly & Associates, Inc. (http://www.oreilly.com) have areas of their web sites that
feature Unix and have articles written by their books' authors. They may also have books online (such as the
O'Reilly Safari service) available for a small monthly fee—which is a good way to learn a lot quickly without
needing to buy a paper copy of a huge book, most of which you might not need.

Universities

Many schools use Unix-like systems and will have online documentation. You'll probably have better luck at the
Computer Services division (which services the whole campus) than at the Computer Science department
(which may be more technical).

Mac OS X-related web sites

Many Mac OS X web sites are worthy of note, though they're run by third parties and may change by the time
you read this. Mac OS X Apps (http://www.macosxapps.com) offers a wide variety of Aqua applications.
Information on Darwin can be found at Open Darwin (http://www.opendarwin.org), and Mac OS X Hints
(http://www.macosxhints.com) offers valuable information and hints. One more site well worth a bookmark is
O'Reilly's MacDevCenter (http://www.macdevcenter.com/).

User Groups

Apple User Groups are an excellent source of information, inspiration, and camaraderie. To find an Apple User
Group near you, see http://www.apple.com/usergroups/.

10.1.3 Books

Bookstores, both traditional and online, are full of computer books. The books are written for a wide variety of needs
and backgrounds. Unfortunately, many books are rushed to press, written by authors with minimal Unix experience,
and full of errors. Before you buy a book, read through parts of it. Does the style (brief or lots of detail, chatty and
friendly or organized as a reference) fit your needs? Search the Internet for reviews; online bookstores may have
readers' comments on file.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.2 Shell Aliases and Functions
If you type command names that are hard for you to remember, or command lines that seem too long, you'll want to
learn about shell aliases and shell functions. These shell features let you abbreviate commands, command lines, and
long series of commands. In most cases, you can replace them with a single word or a word and a few arguments. For
example, one of the long pipelines (see Section 6.2 in Chapter 6) could be replaced by an alias or function (for instance,
aug). When you type aug at a shell prompt, the shell would list files modified in August, sorted by size.

Making an alias or function is almost as simple as typing in the command line or lines that you want to run. References
in Section 10.1 earlier in this chapter, have more information. Shell aliases and functions are actually a simple case of
shell programming. For more information on aliases, see Section 1.3.2 in Chapter 1.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.3 Programming
We mention earlier that the shell is the system's command interpreter. It reads each command line you enter at your
terminal and performs the operation that you call for. Your shell is chosen when your account is set up.

The shell is just an ordinary program that can be called by a Unix command. However, it contains some features (such
as variables, control structures, and so on) that make it similar to a programming language. You can save a series of
shell commands in a file, called a shell script, to accomplish specialized functions.

Programming the shell should be attempted only when you are reasonably confident in your ability to use Unix
commands. Unix is quite a powerful tool, and its capabilities become more apparent when you try your hand at shell
programming.

Take time to learn the basics. Then, when you're faced with a new task, take time to browse through references to find
programs or options that will help you get the job done more easily. Once you've done that, learn how to build shell
scripts so that you never have to type a complicated command sequence more than once.

Let's have a closer look at a shell script to give you some flavor of what can be done. First, to list all known user
accounts on the system, you need to extract the information from the NetInfo database, which can be done by using
nireport.

You can try this script, listusers, by entering the following few lines into vi, pico, or another
editor of your choice. See Chapter 4 for additional information on editing files.

#!/bin/sh

echo "UID NAME FULLNAME HOME SHELL"

nireport . /users uid name realname home shell | \
 awk '$1 > 99 { print $0 }'

The first line indicates what program should run the script, and, like most scripts, this is written for the Bourne Shell,
/bin/sh. By using the awk utility to test for user IDs greater than 99, this script further screens out any account
information for system accounts (which, by convention, have an ID value of less than 100).

To make a shell script act as if it's a new program rather than just a text file, you use chmod +x to make it executable,
then you can run it by typing in its name if it's in your current PATH (see Chapter 1 for more information on setting and
customizing your PATH), or with the ./ prefix to indicate that it's in the current directory, as shown here:

$ chmod +x listusers
$./listusers
UID NAME FULLNAME HOME SHELL
501 taylor Dave Taylor /Users/taylor /bin/bash
502 tintin Mr. Tintin /Users/tintin /bin/bash

This is really the tip of the iceberg with shell scripts. For more information, look at Unix in a Nutshell, by Arnold
Robbins, and Unix Power Tools, by Shelley Powers, Jerry Peek, Tim O'Reilly, and Mike Loukides (both published by
O'Reilly), or Wicked Cool Shell Scripts, by Dave Taylor (NoStarch Press).

10.3.1 Shell Scripts into Droplets

Another very cool trick with Mac OS X is to turn a shell script into a droplet, an application that can be have files
dropped onto it from the Finder. To do this, you'll need to have a script to download and launch a copy of Fred Sanchez'
DropScript utility.

Get DropScript by going to http://www.versiontracker.com/ and searching for "dropscript."
VersionTracker is well worth exploring too, helping you keep up-to-date on system and
application updates.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At its simplest, a droplet script accepts one or more files, which are given as command-line arguments, which are then
processed in some manner. As a simple example, here's a droplet script that prints whatever files you give it:

#!/bin/sh
pr "$*" | lpr

This can be turned into a droplet by dragging the shell script icon over the DropScript application in the Finder. It
creates a new version called dropfilename that's fully drag-and-drop-enabled. For example, if this script were called print-
text, the droplet would be called dropprint-text.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

10.4 More Possibilities: Perl and Python
If shell script programming seems too limiting, you might want to learn Perl or Python. Like the shell, Perl and Python
interpret script files full of commands. But these two programming languages have a steeper learning curve than the
shell. Also, because you've already learned a fair amount about the shell and Unix commands by reading this book,
you're almost ready to start writing shell scripts now; on the other hand, a programming language will take longer to
learn. But if you have sophisticated needs, learning one of these languages is another way to use even more of the
power of your Mac OS X system.

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Learning Unix for Mac OS X Panther is an Alaskan malamute. The Alaskan malamute is one
of the oldest Arctic sled dogs. These powerful dogs have muscular bodies, structured for strength and endurance. They
have broad heads with bulky muzzles and triangular ears, which stand erect to signify alertness. Their thick coats are
coarse and dark on the outside, with soft, woolly undercoats.

Alaskan malamutes make excellent companions, as they are affectionate, friendly, and loyal. They can be playful, but
tend to become more reserved as they mature. They are very intelligent, with eyes that reveal their curiosity and
interest.

Mary Brady was the production editor and copyeditor for Learning Unix for Mac OS X Panther. Leanne Soylemez was the
proofreader. Sarah Sherman and Claire Cloutier provided quality control. Angela Howard wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is an
illustration from the Illustrated Natural History: Mammalia. Emma Colby produced the cover layout and the quick
reference card with QuarkXPress 4.1 using Adobe's ITC Garamond, Myriad Condensed, and Linotype Birka fonts.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Linley Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.
[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! escape sequence
"" (quotes)
 around filenames with spaces
 around pathnames with spaces
"d", indicating directory in listing
"l", indicating link in listing
(hash mark), at end of prompt
$ (dollar sign)
 at end of prompt 2nd
 command, vi
$$ (dollar sign, double), PID of current shell
% (percent sign) prompt
& (ampersand), specifying background process
> (greater-than symbol), sending output to file 2nd
>> (greater-than symbol, double), as append redirection operator
< (less-than symbol), getting input from a file
* (asterisk)
 in regular expressions
 indicating executable file
 wildcard
- (dash)
 in command line
 indicating plain file in listing
-- (dash, double) in command line
. (dot), indicating working directory
.. (dot dot), indicating parent directory
.bashrc file
.profile file
.term files 2nd
/ (slash)
 in pathname
 indicating directory in listing
 indicating root directory 2nd
 starting pattern in vi 2nd
/Users/Shared directory
/Volumes directory 2nd 3rd
: (colon)
 in filenames or directory names
 prompt for less command
:q command, vi 2nd 3rd
:q! command, vi
:w command, vi 2nd
:wq command, vi
; (semicolon), on command line
? (help) command, Pine
? (question mark) wildcard
[] (square brackets) wildcards
\ (backslash)
 before spaces in pathname
 prefacing spaces and special characters
\$ escape sequence
\@ escape sequence
\A escape sequence
\H escape sequence

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\h escape sequence
\u escape sequence
\w escape sequence
\W escape sequence
^[escape sequence
^G escape sequence
| (pipe operator) 2nd
~ (tilde), indicating home directory
0 command, vi
1 command, vi

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

a command, vi
absolute pathnames
access modes [See permissions]
accounts
 default
 listing accounts logged on
 password for
 switching from superuser to personal account
ADC (Apple Developer Connection)
Admin user, running sudo command 2nd
AirPort Base Station, remote access and 2nd
alias command 2nd
aliases 2nd [See also links]3rd
 creating
 listing
 relationship to links
ampersand (&), specifying background process
anonymous FTP 2nd
ANSI escape sequences [See escape sequences]
append redirection operator
Apple Developer Connection (ADC)
Apple User Groups
AppleScript commands, running at shell prompt
AppleTalk printers
apropos command
apt-get install command, Fink 2nd
apt-get update command, Fink
ascii command, ftp
asterisk (*)
 in regular expressions
 indicating executable file
 wildcard
at_cho_prn command
atprint command
audio, preferences for

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

b command, vi
background process
 canceling 2nd
 checking status of 2nd
 moving to foreground
 PID for 2nd
 running commands as
 viewing system log for
backslash (\)
 before spaces in pathname
 prefacing spaces and special characters
Barrett, Daniel J. (SSH: The Secure Shell)
bash shell
 books about
 customizing
 default prompt for 2nd
 Terminal application using
BBEdit text editor
BEL character
bg command
binary command, ftp
bitmap application, X11
books [See also documentation]
 about bash shell
 choosing
 about GIMP
 about Mac OS X 2nd
 about shell scripts
 about SSH
 about Unix
 about Unix security
 about vi text editor
brackets ([]) wildcards
Buffer settings in Terminal Inspector

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C (compose) command, Pine
C (Config) command, Pine
c-. (cancel) command 2nd 3rd
c-~ (next window) command
c-C (copy selection) command, X11
c-D (find previous) command
c-Down Arrow (down one line) command
c-E (find with selection) command
c-F (find in scroll buffer) command
c-G (find next) command
c-J (jump to selection) command
c-N (open window) command
c-Q (quit) command, X11
c-Up Arrow (up one line) command
c-W (close window) command
carriage returns
 pasting newlines as
cat command
cd command
cd command, ftp
chgrp command
child directories [See subdirectories]
chmod command 2nd
chown command
colon (:)
 in filenames or directory names
 prompt for less command
Color settings in Terminal Inspector
Command Key option, in title of window
Command mode, vi
commands
 aliases for 2nd
 AppleScript commands
 arguments of
 background, running command in [See background process]
 canceling 2nd
 case sensitivity of
 editing
 ending input for 2nd 3rd
 entering
 executing in configuration files
 exiting shell while running
 filename arguments of
 filtering output of
 foreground, moving command to
 history number of, displaying in prompt
 history of, navigating
 input from a file
 interrupting
 keyboard input to
 multiple, entering on command line 2nd
 options of 2nd
 output as input of another command 2nd
 output to a file 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 output to screen
 pausing output from
 programs started by, controlling
 recalling previous commands
 restarting after pausing
 restarting after suspending
 in scroll buffer 2nd
 shell functions for
 suspending 2nd
 wrapping long lines of
Common Unix Printing System (CUPS)
configuration files 2nd [See also .term files]
Connect To Server feature
control characters, set encoding for
Control-C (cancel) 2nd 3rd
Control-D (end of input) 2nd 3rd
Control-H (erase)
Control-L (clear screen)
Control-Q (restart) 2nd
Control-S (pause)
Control-U (erase line)
Control-Z (suspend) 2nd
copy command
cp command 2nd 3rd [See also rcp command; scp command]
CpMac command 2nd 3rd
crackers
csh (C shell)
CUPS (Common Unix Printing System)
curl command
current directory [See working directory]
cursor
 color of
 option click positioning for
 shape of

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D (delete) command, Pine
d$ command, vi
d0 command, vi
d1G command, vi
Darwin project 2nd 3rd
DarwinPorts project
dash (-)
 in command line
 indicating plain file in listing
date command 2nd 3rd
dd command, vi 2nd
Delete key
df command
dG command, vi 2nd
dir command, ftp
directly executable programs
directories
 changing
 completing name while typing
 creating
 group owner of
 hierarchical structure of
 home directory 2nd
 indicated in listings
 links to
 modification date of
 naming 2nd
 navigating
 owner of 2nd
 parent directory
 pathname for
 permissions for 2nd 3rd 4th
 removing
 root directory 2nd
 shared among users
 shared directories
 size of 2nd
 subdirectories
 wildcards in name of
 working directory [See working directory]
disks
 external, listing
 free space on, calculating
Display settings in Terminal Inspector
documentation [See also books; web sites]
 man command
 on the Internet
dollar sign ($)
 at end of prompt 2nd
 command, vi
dollar sign, double ($$), PID of current shell
dot (.), indicating working directory
dot dot (..), indicating parent directory
Down Arrow key

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

droplets
DropScript utility (Sanchez)
du command
dw command, vi 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

E (exit) command, Pine
editors [See text editors word processors]
email application, Pine
Emulation settings in Terminal Inspector
encoding
 control character set
 string
end of input, signal for 2nd 3rd
end-of-line character sequences 2nd
enscript command 2nd
errors [See troubleshooting]
ESC character
ESC key, vi
escape sequences
 for prompts
 for Terminal title
execute permission
 for directory
 for files
exit command
export command

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

F (forward) command, Pine
fg command 2nd
file transfer protocol (FTP)
filenames
 spaces in
 wildcards in
files 2nd
 accessing from other operating systems
 accidentally overwriting with output redirection
 appending another file to
 archiving
 commands getting input from
 commands sending output to 2nd
 completing name while typing
 compressing
 concatenating
 copying
 copying between computers
 creating and editing [See I/O redirection text editors word processors]
 displaying portion of
 executable, indicated in listings
 finding
 formatting
 group owner of
 hidden
 listing
 modification date of
 moving
 owner of 2nd
 pathname for
 PDF
 permissions for 2nd 3rd 4th
 PostScript 2nd
 prepending another file to
 printing 2nd
 removing
 renaming
 saving session as
 searching contents of
 size of 2nd
 type of
 with resources, copying
filesystem 2nd
filters 2nd
find command
Finder application
 directory names in
 dragging files or directories to window
 filenames in
 files not visible in
 files, accessing
 Force Quit option 2nd
 home directory, accessing
 iDisk, mounting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 root directory, accessing
 setting permissions
 shared directories, mounting
finger command
fink install command
fink list command 2nd
Fink project 2nd
 ghostscript package and
 graphical user interface for
 installing
 packages for 2nd 3rd
FinkCommander application
folders [See directories]
fonts
 color of
 specifying
Force Quit option 2nd
foreground process, moving background processes to
forward slash (/)
 in pathname
 indicating directory in listing
 indicating root directory 2nd
 starting pattern in vi 2nd
FreeBSD
frozen session
FTP (file transfer protocol)
ftp command 2nd
FTP server, accessing
functions, shell

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

G command, vi
Garfinkel, Simson (Practical Unix and Internet Security)
get command, ftp
ghostscript package
GIMP application
GIMP Pocket Reference (Neumann)
glxgears application, X11
glxinfo application, X11
GNU Image Manipulation Program (GIMP)
Google search engine
graphical programs
graphics manipulation program, GIMP
greater-than symbol (>), sending output to file 2nd
greater-than symbol, double (>>), as append redirection operator
grep command 2nd
group owner, changing
groups 2nd
groups command
gzip command

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

h command, vi
H command, vi
h command, vi
hackers
hard links
hash command, ftp
hash mark (#), at end of prompt
help (?) command, Pine
help command, ftp
HFS metadata
hidden files
history of commands 2nd 3rd [See also scroll buffer]
home directory 2nd
hostname, displaying in prompt
hung session
hyphen (-)
 in command line
 indicating plain file in listing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I (inbox) command, Pine
i command, vi 2nd
I/O redirection
icewm window manager
iDisk, mounting
input/output redirection [See I/O redirection]
Insert mode, vi
interactive Unix programs
Internet [See network access web sites]
interpreted programs
IP address, for remote access

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

j command, vi 2nd
Jepson, Brian (Mac OS X Panther for Unix Geeks)
job control 2nd 3rd
jobs
 errors regarding
 running in background [See background process]
 suspending
jobs command 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

k command, vi 2nd
Keyboard settings in Terminal Inspector
keyboard, as standard input
keys, changing function of
kill command 2nd 3rd
ksh (Korn shell)

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

l command, vi
Lamb, Linda (Learning the vi Editor)
lcd command, ftp
Learning the bash Shell (Newham; Rosenblatt) 2nd
Learning the Unix Operating System (Peek; Todina; Strang)
Learning the vi Editor (Lamb; Robbins)
Left Arrow key
less command 2nd 3rd 4th
LESS environment variable 2nd 3rd
less-than symbol (<), getting input from a file
links [See also aliases]2nd
 creating
 indicated in listing
 number of
Linux
Linux Printing archive
ln command
locate command
logging out of session
logins, remote
Loukides, Mike (Unix Power Tools) 2nd
lpq command
lpr command 2nd
lprm command
ls command 2nd
Lynx web browser

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m2u command
Mac OS X [See also Finder application; Terminal application]2nd
 book about
 editors included with
 filesystem
 multitasking by 2nd
 Printer Setup Utility
 web sites about 2nd
 XCode included with
Mac OS X Apps web site
Mac OS X Hints web site
Mac OS X Panther for Unix Geeks (Jepson; Rothman)
Mac OS X: The Missing Manual (Pogue)
MacAddict magazine
MacDevCenter web site
Macintosh operating systems [See also Mac OS X]
 history of
 magazines about
MacTech magazine
MacWorld magazine
man command 2nd
MANPATH environment variable
mget command, ftp
minus sign (-)
 in command line
 indicating plain file in listing
mkdir command
modal editor
more command
mput command, ftp
multitasking 2nd
multiuser operating systems
mv command
MvMac command 2nd 3rd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

networked filesystem
Neumann, Sven (GIMP Pocket Reference)
Newham, Cameron (Learning the bash Shell) 2nd
newlines, pasting as carriage returns
noninteractive Unix programs

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

O command, vi
o command, vi
O'Reilly, Tim (Unix Power Tools) 2nd
oclock application, X11
Open Darwin project
open-x11 command
OpenOffice.org application
OpenSSH program
operating systems [See also Mac OS X]
 accessing files from other operating systems
option click positioning
osascript command
output redirection operator
owner of file or directory, changing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

p command, vi
P command, vi
p command, vi
pagers
parent directory [See also root directory]2nd
passive command, ftp
passwd command
password
 administrator
 changing
 for anonymous FTP
paste command
PATH environment variable
pathnames
pausing command output
PDF files, converting from PostScript
Peek, Jerry
 Learning the Unix Operating System
 Unix Power Tools 2nd
percent sign (%) prompt
Perl programming
permissions (access modes)
 directories
 files
 listing for file or directory
 setting
pico text editor
PID (process ID)
 listing for background processes
 of current shell
Pine email application
 configuring
 reading email with
 sending email with
 signature file for
pipe operator (|) 2nd
pipes 2nd
 grep command used with 2nd
 less command used with
 sort command used with
Pogue, David (Mac OS X: The Missing Manual)
PostScript
 converting to PDF
 formatting files as
PostScript printers
Powers, Shelley (Unix Power Tools) 2nd
pr command
Practical Unix and Internet Security (Garfinkel; Spafford; Schwartz)
print requests, terminating
printer queue
Printer Setup Utility
printers
 AppleTalk
 non-PostScript

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostScript
 status of
process ID [See PID]
processes [See background process jobs]
Processes settings in Terminal Inspector
programming the shell
programs [See also commands]
 types of 2nd
prompt
 changing
 default
 dollar sign ($)
 escape sequences for
 percent sign (%)
prompt command, ftp
ps -up command
ps command 2nd 3rd
PS1 environment variable
ps2pdf command
put command, ftp
PuTTY program 2nd
pwd command
Python programming

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Q (quit) command, Pine
quartz-wm window manager
question mark (?) wildcard
quit command, ftp
quotes ("")
 around filenames with spaces
 around pathnames with spaces

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

r (read permission)
R (reply) command, Pine
rcp command
read permission
 for directory
 for files
redirection I/O [See I/O redirection]
regular expressions
relative pathnames
remote access
 accessing files on other operating systems
 Connect To Server feature for
 copying files between computers
 from X11
 FTP server access
 networked filesystem for
 remote logins
 running X11 on other computers
 to other Unix systems
 web server access
resource forks
resources, copying files with
Right Arrow key
rlogin program
rm command
rmdir command
Robbins, Arnold
 Learning the vi Editor
 Unix in a Nutshell
 vi Editor Pocket Reference
root directory 2nd
Rosenblatt, Bill (Learning the bash Shell) 2nd
Rothman, Ernest E. (Mac OS X Panther for Unix Geeks)
rsh program 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

S (Setup) command, Pine
Sanchez, Fred (DropScript utility)
Schwartz, Alan (Practical Unix and Internet Security)
scp command
screen, clearing or redrawing 2nd [See also windows]
scripts
 Perl or Python
 shell 2nd
scroll buffer [See also history of commands]
 manpages in
 number of lines stored in
 searching
search command, vi
security [See also permissions]
 books about
 passwords
 remote access and
semicolon (;), on command line
servers, connecting to remotely
session [See also jobs; windows]
 ending
 frozen (hung)
 printing
 saving as text file
set noclobber command
setup files [See configuration files]
sftp command 2nd
sh (Bourne shell)
Share My Desktop application
shared directories, mounting
shell 2nd [See also bash shell]3rd
 customizing
 default (bash)
 determining shell in use
 specified in Terminal Inspector
 subshells of
 types of
shell aliases
SHELL environment variable
shell functions
shell programming 2nd
shell prompt [See prompt]
shell scripts 2nd
Shell settings in Terminal Inspector
Silverman, Richard (SSH: The Secure Shell)
slash (/)
 in pathname
 indicating directory in listing
 indicating root directory 2nd
 starting pattern in vi 2nd
sleep command
sockets
sort command
SourceForge, Fink project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

spaces in filenames and directory names
Spafford, Gene (Practical Unix and Internet Security)
special characters, in filenames and directory names [See also escape sequences]2nd
square brackets ([]) wildcards
ssh program 2nd 3rd 4th
SSH: The Secure Shell (Barrett; Silverman)
standard input 2nd
standard output
 filtering
 redirecting to a file 2nd
 redirecting to standard input of another command 2nd
StarOffice application [See OpenOffice.org application]
Strang, John (Learning the Unix Operating System)
string encoding, nonstandard
subdirectories
subshells
sudo command 2nd 3rd
superuser 2nd
suspend character
symbolic links
system administration
system log, viewing

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tail command
tar command
Taylor, Dave (Wicked Cool Shell Scripts)
tcsh (Tabbed C shell)
telnet program 2nd
Terminal application 2nd 3rd
 default shell used by
 frozen (hung)
 in X11
 preferences for
 starting 2nd
Terminal Inspector
 Buffer settings
 Color settings
 Display settings
 Emulation settings
 Keyboard settings
 Processes settings
 setting defaults using
 Shell settings
 Window settings
Terminal session [See session]
Terminal windows [See windows]
text
 color of
 font for
text editors
 BBEdit
 choosing
 end-of-line character problems
 pico
 TextEdit
 vi
 vim
text-based web browser, Lynx
TextEdit text editor
tilde (~), indicating home directory
time, displaying in prompt
Todino, Grace (Learning the Unix Operating System)
top command
tr command 2nd
transparency of window
troubleshooting
 cat command, entering without a filename
 cd to a file instead of a directory
 chmod command errors
 cp command errors
 display becoming garbled
 end-of-line character problems
 exit command errors
 kill command errors
 lpr command errors
 man command errors
 mistyped commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 rmdir command errors
 unable to write writable file
tty, specified in Terminal Inspector

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

u command, vi
u2m command
unalias command
Unicode 8-bit encoding
universities, online documentation at
Unix
 advantages of
 applications for
 books about
 command line [See commands shell]
 command-line interface [See Terminal application]
 history of
 interfaces to
 reasons to use
 resources used by
 versions of 2nd
Unix in a Nutshell (Robbins)
Unix Power Tools (Powers; Peek; O'Reilly; Loukides) 2nd
Unix Programmer's Manual [See man command]
Up Arrow key
user account [See accounts]
user ID, displaying in prompt
username
 anonymous
 displaying in prompt
users [See also accounts; permissions]
 Admin user 2nd
 listing users logged on
 password for
 superuser 2nd
UTF-8 encoding

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

VersionTracker software
vertical bar (|), as pipe operator 2nd
vi Editor Pocket Reference (Robbins)
vi text editor
vim text editor
Virtual Network Computer (VNC)
VNC (Virtual Network Computer)
VT-100 emulation

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

W (Whereis) command, Pine
w (write permission)
w command, vi
web browser
 FTP used with
 Lynx
web server, accessing
web sites
 Apple Developer Connection (ADC)
 Apple User Groups
 Darwin project 2nd
 DarwinPorts project
 DropScript utility
 Fink installer
 FinkCommander application
 for this book
 FTP programs
 GIMP application
 Google search engine
 Mac OS X 2nd
 Mac OS X Apps
 Mac OS X Hints
 MacDevCenter
 Macintosh magazines
 O'Reilly & Associates, Inc.
 online documentation
 Open Darwin
 OpenSSH
 printer drivers
 PuTTY
 remote login programs
 Share My Desktop application
 SourceForge
 SSH
 StarOffice application
 VersionTracker software
 VNC (Virtual Network Computer)
 X11 FAQ
 XFree86
who command 2nd
Wicked Cool Shell Scripts (Taylor)
wildcards in filenames or directory names
window managers for X11
Window settings for Terminal Inspector
windows
 as standard output
 clearing or redrawing
 closing
 closing preferences for 2nd
 Command Key option for
 cycling between open windows
 opening as .term files
 opening multiple windows
 prompting before closing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 saving configuration of as .term file
 size of
 title of 2nd 3rd
 transparency of
Windows operating system, accessing files on
word processors 2nd [See also OpenOffice.org application]
working directory
 changing
 displaying
 displaying in prompt
 in file listing
write permission
 for directory
 for files

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x (execute permission)
X (Set/Unset) command, Pine
X clients
x command, vi
X command, vi
x command, vi
X servers
X Window System [See X11 application]
X11 application
 .bashrc file and
 .profile file ignored in
 application menus in
 applications in 2nd
 Applications menu in
 c-Q command in
 cutting and pasting with
 FAQ for
 installing
 OpenOffice.org application and
 private network remote access and
 remote access from
 running on other computers
 scrolling xterm with
 starting
xcalc application, X11
xclock application, X11
XCode
xeyes application, X11
XFree86
xhost application, X11
xkill application, X11
xload application, X11
xman application, X11

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

y1 command, vi
ynw command, vi
yw command, vi 2nd
yy command, vi 2nd

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Team LiB]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zsh (Z shell)
ZZ command, vi

[Team LiB]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

