
Copyright © 1998, 1995 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps. The use of the fish image in association with the bash shell is a
trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
The first thing users of the UNIX or Linux operating systems come face to face with is the shell. "Shell" is
the UNIX term for a user interface to the system—something that lets you communicate with the computer
via the keyboard and the display. Shells are just separate programs that encapsulate the system, and, as
such, there are many to choose from.

Systems are usually set up with a "standard" shell that new users adopt without question. However, some of
these standard shells are rather old and lack many features of the newer shells. This is a shame, because
shells have a large bearing on one's working environment. Since changing shells is as easy as changing hats,
there is no reason not to change to the latest and greatest in shell technology.

Of the many shells to choose from, this book introduces the Bourne Again shell (bash for short), a modern
general-purpose shell. Other useful modern shells are the Korn shell (ksh) and the "Tenex C shell" (tcsh);
both are also the subjects of O'Reilly handbooks.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bash Versions
This book is relevant to all versions of bash, although older versions lack some of the features of the most
recent version. []You can easily find out which version you are using by typing echo $BASH_VERSION.
The earliest public version of bash was 1.0, and the most recent is 2.01 (released in May 1997). If you have
an older version, you might like to upgrade to the latest one. Chapter 11, shows you how to go about it.

[] Even though version 2.0 has been out for a while, bash version 1.14.x is still in widespread use. Throughout this
book we have clearly marked with footnotes the features that are not present in the earlier versions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary of bash Features
bash is a backward-compatible evolutionary successor to the Bourne shell that includes most of the C shell's
major advantages as well as features from the Korn shell and a few new features of its own. Features
appropriated from the C shell include:

· Directory manipulation, with the pushd, popd, and dirs commands.

· Job control, including the fg and bg commands and the ability to stop jobs with CTRL-Z.

· Brace expansion, for generating arbitrary strings.

· Tilde expansion, a shorthand way to refer to directories.

· Aliases, which allow you to define shorthand names for commands or command lines.

· Command history, which lets you recall previously entered commands.

bash's major new features include:

· Command-line editing, allowing you to use vi- or emacs-style editing commands on your
command lines.

· Key bindings that allow you to set up customized editing key sequences.

· Integrated programming features: the functionality of several external UNIX commands, including
test, expr, getopt, and echo, has been integrated into the shell itself, enabling common
programming tasks to be done more cleanly and efficiently.

· Control structures, especially the select construct, which enables easy menu generation.

· New options and variables that give you more ways to customize your environment.

· One dimensional arrays that allow easy referencing and manipulation of lists of data.

· Dynamic loading of built-ins, plus the ability to write your own and load them into the running
shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Intended Audience
This book is designed to address casual UNIX and Linux users who are just above the "raw beginner" level.
You should be familiar with the process of logging in, entering commands, and doing simple things with
files. Although Chapter 1, reviews concepts such as the tree-like file and directory scheme, you may find
that it moves too quickly if you're a complete neophyte. In that case, we recommend the O'Reilly &
Associates handbook, Learning the UNIX Operating System, by Jerry Peek, Grace Todino, and John Strang.

If you're an experienced user, you may wish to skip Chapter 1 altogether. But if your experience is with the
C shell, you may find that Chapter 1 reveals a few subtle differences between the bash and C shells.

No matter what your level of experience is, you will undoubtedly learn many things in this book that make
you a more productive bash user—from major features down to details at the "nook-and-cranny" level that
you may not have been aware of.

If you are interested in shell programming (writing shell scripts and functions that automate everyday tasks
or serve as system utilities), you should also find this book useful. However, we have deliberately avoided
drawing a strong distinction between interactive shell use (entering commands during a login session) and
shell programming. We see shell programming as a natural, inevitable outgrowth of increasing experience
as a user.

Accordingly, each chapter depends on those previous to it, and although the first three chapters are oriented
toward interactive use only, subsequent chapters describe interactive, user-oriented features in addition to
programming concepts.

This book aims to show you that writing useful shell programs doesn't require a computing degree. Even if
you are completely new to computing, there is no reason why you shouldn't be able to harness the power of
bash within a short time.

Toward that end, we have decided not to spend too much time on features of interest exclusively to low-
level systems programmers. Concepts like file descriptors and special file types can only confuse the casual
user, and anyway, we figure that those of you who understand such things are smart enough to extrapolate
the necessary information from our cursory discussions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Code Examples
This book is full of examples of shell commands and programs that are designed to be useful in your
everyday life as a user, not just to illustrate the feature being explained. In Chapter 4, and onwards, we
include various programming problems, which we call tasks, that illustrate particular shell programming
concepts. Some tasks have solutions that are refined in subsequent chapters. The later chapters also include
programming exercises, many of which build on the tasks in the chapter.

Feel free to use any code you see in this book and to pass it along to friends and colleagues. We especially
encourage you to modify and enhance it yourself.

If you want to try examples but you don't use bash as your login shell, you must put the following line at the
top of each shell script:

#!/bin/bash

If bash isn't installed as the file /bin/bash, substitute its pathname in the above.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter Summary
If you want to investigate specific topics rather than read the entire book through, here is a chapter-by-
chapter summary:

Chapter 1, introduces bash and tells you how to install it as your login shell. Then it surveys the basics of
interactive shell use, including overviews of the UNIX file and directory scheme, standard I/O, and
background jobs.

Chapter 2, discusses the shell's command history mechanism (including the emacs- and vi-editing modes),
history substitution and the fc history command, and key bindings with readline and bind.

Chapter 3, covers ways to customize your shell environment without programming, by using the startup and
environment files. Aliases, options, and shell variables are the customization techniques discussed.

Chapter 4, is an introduction to shell programming. It explains the basics of shell scripts and functions, and
discusses several important "nuts-and-bolts" programming features: string manipulation operators, brace
expansion, command-line arguments (positional parameters), and command substitution.

Chapter 5, continues the discussion of shell programming by describing command exit status, conditional
expressions, and the shell's flow-control structures: if, for, case, select, while, and until.

Chapter 6, goes into depth about positional parameters and command-line option processing, then discusses
special types and properties of variables, integer arithmetic, and arrays.

Chapter 7, gives a detailed description of bash I/O. All of the shell's I/O redirectors are covered, as are the
line-at-a-time I/O commands read and echo. Then the chapter discusses the shell's command-line
processing mechanism and the eval command.

Chapter 8, covers process-related issues in detail. It starts with a discussion of job control, then gets into
various low-level information about processes, including process IDs, signals, and traps. The chapter then
moves to a higher level of abstraction to discuss coroutines and subshells.

Chapter 9, discusses various debugging techniques, like trace and verbose modes, and the "fake" signal
traps. We then present in detail a useful shell tool, written using the shell itself: a bash debugger.

Chapter 10, gives information for system administrators, including techniques for implementing system-
wide shell customization and features related to system security.

Chapter 11, shows you how to go about getting bash and how to install it on your system. It also outlines
what to do in the event of problems along the way.

Appendix A compares bash to several similar shells, including the standard Bourne shell, the IEEE 1003.2
POSIX shell standard, the Korn shell (ksh) and the public-domain Korn shell (pdksh), and the MKS Toolkit
shell for MS-DOS and OS/2.

Appendix B contains lists of shell invocation options, built-in commands, built-in variables, conditional test
operators, options, I/O redirection, and emacs and vi editing mode commands.

Appendix C gives information on writing and compiling your own loadable built-ins.

Appendix D lists the bash reserved words and provides a complete BNF description of the shell.

Appendix E lists the ways that you can obtain the major scripts in this book for free, using anonymous FTP
or electronic mail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions Used in This Handbook
We leave it as understood that, when you enter a shell command, you press RETURN at the end. RETURN
is labeled ENTER on some keyboards.

Characters called CTRL-X, where X is any letter, are entered by holding down the CTRL (or CTL, or
CONTROL) key and pressing that letter. Although we give the letter in uppercase, you can press the letter
without the SHIFT key.

Other special characters are LINEFEED (which is the same as CTRL-J), BACKSPACE (same as CTRL-H),
ESC, TAB, and DEL (sometimes labeled DELETE or RUBOUT).

This book uses the following font conventions:

Italic

is used for UNIX filenames, commands not built into the shell (which are files anyway), and
shell functions. Italic is also used for dummy parameters that should be replaced with an
actual value, to distinguish the vi and emacs programs from their bash modes, and to
highlight special terms the first time they are defined.

Bold
is used for bash built-in commands, aliases, variables, and options, as well as command lines
when they are within regular text. Bold is used for all elements typed in by the user within
regular text.

Constant
Width is used in examples to show the contents of files or the output from commands.

Constant
Bold

is used in examples to show interaction between the user and the shell; any text the user
types in is shown in Constant Bold. For example:

$ pwd/home/cam/adventure/carrol
$

Constant
Italic

is used in displayed command lines for dummy parameters that should be replaced with an
actual value.

Reverse
Video

is used in Chapter 2, to show the position of the cursor on the command line being edited.
For example:

grep -l Alice < ~cam/book/[[a]]iw

We use UNIX as a shorthand for "UNIX and Linux." Purists will correctly insist that Linux is not UNIX—
but as far as this book is concerned, they behave identically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We'd Like to Hear from You
We have tested and verified all of the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any errors you
find, as well as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the US or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send email
to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You
can access this page at:

http://www.oreilly.com/catalog/bash2/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments for the First Edition
This project has been an interesting experience and wouldn't have been possible without the help of a
number of people. Firstly, I'd like to thank Brian Fox and Chet Ramey for creating bash and making it the
polished product it is today. Thanks also to Chet Ramey for promptly answering all of my questions on
bash and pointing out my errors.

Many thanks to Bill Rosenblatt for Learning the korn Shell, on which this book is based; Michael O'Reilly
and Michael Malone at iiNet Technologies for their useful comments and suggestions (and my
net.connection!); Chris Thorne, Justin Twiss, David Quin-Conroy, and my mum for their comments,
suggestions, and corrections; Linus Torvalds for the Linux operating system which introduced me to bash
and was the platform for all of my work on the book; Brian Fox for providing a short history of bash; David
Korn for information on the latest Korn shell. Thanks also to Depeche Mode for "101" as a backdrop while
I worked, Laurence Durbridge for being a likable pest and never failing to ask "Finished the book yet?" and
Adam (for being in my book).

The sharp eyes of our technical reviewers picked up many mistakes. Thanks to Matt Healy, Chet Ramey,
Bill Reynolds, Bill Rosenblatt, and Norm Walsh for taking time out to go through the manuscript.

The crew at O'Reilly & Associates were indispensable in getting this book out the door. I'd like to thank
Lenny Muellner for providing me with the formatting tools for the job, Chris Reilley for the figures, and
Edie Freedman for the cover design. On the production end, I'd like to thank David Sewell for his
copyediting, Clairemarie Fisher O'Leary for managing the production process, Michael Deutsch and Jane
Ellin for their production assistance, Ellen Siever for tools support, Kismet McDonough for providing
quality assurance, and Seth Maislin for the index.

I'm grateful to Frank Willison for taking me up on my first piece of email to ORA: "What about a book on
bash?"

Last but by no means least, a big thank you to my editor, Mike Loukides, who helped steer me through this
project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments for the Second Edition
Thanks to all the people at O'Reilly & Associates. Gigi Estabrook was the editor for the second edition.
Nicole Gipson Arigo was the production editor and project manager. Nancy Wolfe Kotary and Ellie
Fountain Maden performed quality control checks. Seth Maislin wrote the index. Edie Freedman designed
the cover, and Nancy Priest designed the interior format of the book. Lenny Muellner implemented the
format in troff. Robert Romano updated the illustrations for this second edition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. bash Basics
Since the early 1970s, when it was first created, the UNIX operating system has become more and more
popular. During this time it has branched out into different versions, and taken on such names as Ultrix,
AIX, Xenix, SunOS, and Linux. Starting on minicomputers and mainframes, it has moved onto desktop
workstations and even personal computers used at work and home. No longer a system used only by
academics and computing wizards at universities and research centers, UNIX is used in many businesses,
schools, and homes. As time goes on, more people will come into contact with UNIX.

You may have used UNIX at your school, office, or home to run your applications, print documents, and
read your electronic mail. But have you ever thought about the process that happens when you type a
command and hit RETURN?

Several layers of events take place whenever you enter a command, but we're going to consider only the top
layer, known as the shell. Generically speaking, a shell is any user interface to the UNIX operating system,
i.e., any program that takes input from the user, translates it into instructions that the operating system can
understand, and conveys the operating system's output back to the user. Figure 1.1 shows the relationship
between user, shell, and operating system.

Figure 1.1. The shell is a layer around the UNIX operating system

There are various types of user interfaces. bash belongs to the most common category, known as character-
based user interfaces. These interfaces accept lines of textual commands that the user types in; they usually
produce text-based output. Other types of interfaces include the increasingly common graphical user
interfaces (GUI), which add the ability to display arbitrary graphics (not just typewriter characters) and to
accept input from a mouse or other pointing device, touch-screen interfaces (such as those on some bank
teller machines), and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 What Is a Shell?
The shell's job, then, is to translate the user's command lines into operating system instructions. For
example, consider this command line:

sort -n phonelist > phonelist.sorted

This means, "Sort lines in the file phonelist in numerical order, and put the result in the file
phonelist.sorted." Here's what the shell does with this command:

1. Breaks up the line into the pieces sort, -n, phone list, >, and phone list.sorted. These pieces are
called words.

2. Determines the purpose of the words: sort is a command, -n and phone list are arguments, and >
and phonelist.sorted, taken together, are I/O instructions.

3. Sets up the I/O according to > phonelist.sorted (output to the file phone list.sorted) and some
standard, implicit instructions.

4. Finds the command sort in a file and runs it with the option -n (numerical order) and the argument
phonelist (input filename).

Of course, each of these steps really involves several substeps, each of which includes a particular
instruction to the underlying operating system.

Remember that the shell itself is not UNIX—just the user interface to it. UNIX is one of the first operating
systems to make the user interface independent of the operating system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 Scope of This Book
In this book you will learn about bash, which is one of the most recent and powerful of the major UNIX
shells. There are two ways to use bash: as a user interface and as a programming environment.

This chapter and the next cover interactive use. These two chapters should give you enough background to
use the shell confidently and productively for most of your everyday tasks.

After you have been using the shell for a while, you will undoubtedly find certain characteristics of your
environment (the shell's "look and feel") that you would like to change, and tasks that you would like to
automate. Chapter 3 shows several ways of doing this.

Chapter 3, also prepares you for shell programming, the bulk of which is covered in Chapter 4 through
Chapter 6. You need not have any programming experience to understand these chapters and learn shell
programming. Chapter 7 and Chapter 8 give more complete descriptions of the shell's I/O and process
handling capabilities, while Chapter 9, discusses various techniques for debugging shell programs.

You'll learn a lot about bash in this book; you'll also learn about UNIX utilities and the way the UNIX
operating system works in general. It's possible to become a virtuoso shell programmer without any
previous programming experience. At the same time, we've carefully avoided going into excessive detail
about UNIX internals. We maintain that you shouldn't have to be an internals expert to use and program the
shell effectively, and we won't dwell on the few shell features that are intended specifically for low-level
systems programmers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 History of UNIX Shells
The independence of the shell from the UNIX operating system per se has led to the development of dozens
of shells throughout UNIX history—although only a few have achieved widespread use.

The first major shell was the Bourne shell (named after its inventor, Steven Bourne); it was included in the
first popular version of UNIX, Version 7, starting in 1979. The Bourne shell is known on the system as sh.
Although UNIX has gone through many, many changes, the Bourne shell is still popular and essentially
unchanged. Several UNIX utilities and administration features depend on it.

The first widely used alternative shell was the C shell, or csh. This was written by Bill Joy at the University
of California at Berkeley as part of the Berkeley Software Distribution (BSD) version of UNIX that came
out a couple of years after Version 7. It's included in most recent UNIX versions.

The C shell gets its name from the resemblance of its commands to statements in the C Programming
Language, which makes the shell easier for programmers on UNIX systems to learn. It supports a number of
operating system features (e.g., job control; see Chapter 8) that were unique to BSD UNIX but by now have
migrated to most other modern versions. It also has a few important features (e.g., aliases; see Chapter 3)
that make it easier to use in general.

In recent years a number of other shells have become popular. The most notable of these is the Korn shell.
This shell is a commercial product that incorporates the best features of the Bourne and C shells, plus many
features of its own. The Korn shell is similar to bash in most respects; both have an abundance of features
that make them easy to work with. The advantage of bash is that it is free. For further information on the
Korn shell see Appendix A.

1.3.1 The Bourne Again Shell

The Bourne Again shell (named in punning tribute to Steve Bourne's shell) was created for use in the GNU
project. [1]The GNU project was started by Richard Stallman of the Free Software Foundation (FSF) for the
purpose of creating a UNIX-compatible operating system and replacing all of the commercial UNIX
utilities with freely distributable ones. GNU embodies not only new software utilities, but a new distribution
concept: the copyleft. Copylefted software may be freely distributed so long as no restrictions are placed on
further distribution (for example, the source code must be made freely available).

[1] GNU is a recursive acronym, standing for "GNU's Not UNIX".

bash, intended to be the standard shell for the GNU system, was officially "born" on Sunday, January 10,
1988. Brian Fox wrote the original versions of bash and readline and continued to improve the shell up
until 1993. Early in 1989 he was joined by Chet Ramey, who was responsible for numerous bug fixes and
the inclusion of many useful features. Chet Ramey is now the official maintainer of bash and continues to
make further enhancements.

In keeping with the GNU principles, all versions of bash since 0.99 have been freely available from the
FSF. bash has found its way onto every major version of UNIX and is rapidly becoming the most popular
Bourne shell derivative. It is the standard shell included with Linux, a widely used free UNIX operating
system.

In 1995 Chet Ramey began working on a major new release, 2.0, which was released to the public for the
first time on December 23, 1996. bash 2.0 adds a range of new features to the old release (the last being
1.14.7) and brings the shell into better compliance with various standards.

This book describes the latest release of bash 2.0 (version 2.01, dated June 1997). It is applicable to all
previous releases of bash. Any features of the current release that are different in, or missing from, previous
releases will be noted in the text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3.2 Features of bash

Although the Bourne shell is still known as the "standard" shell, bash is becoming increasingly popular. In
addition to its Bourne shell compatibility, it includes the best features of the C and Korn shells as well as
several advantages of its own.

bash's command-line editing modes are the features that tend to attract people to it first. With command-line
editing, it's much easier to go back and fix mistakes or modify previous commands than it is with the C
shell's history mechanism—and the Bourne shell doesn't let you do this at all.

The other major bash feature that is intended mostly for interactive users is job control. As Chapter 8
explains, job control gives you the ability to stop, start, and pause any number of commands at the same
time. This feature was borrowed almost verbatim from the C shell.

The rest of bash's important advantages are meant mainly for shell customizers and programmers. It has
many new options and variables for customization, and its programming features have been significantly
expanded to include function definition, more control structures, integer arithmetic, advanced I/O control,
and more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 Getting bash
You may or may not be using bash right now. Your system administrator probably set your account up with
whatever shell he or she uses as the "standard" on the system. You may not even have been aware that there
is more than one shell available.

Yet it's easy for you to determine which shell you are using. Log in to your system and type echo $SHELL
at the prompt. You will see a response containing sh, csh, ksh, or bash; these denote the Bourne, C, Korn,
and bash shells, respectively. (There's also a chance that you're using another shell such as tcsh.)

If you aren't using bash and you want to, then you first need to find out if it exists on your system. Just type
bash. If you get a new prompt consisting of some information followed by a dollar-sign (e.g: bash2-2.01$
), then all is well; type exit to go back to your normal shell.

If you get a "not found" message, your system may not have it. Ask your system administrator or another
knowledgeable user; there's a chance that you might have some version of bash installed on the system in a
place (directory) that is not normally accessible to you. If not, read Chapter 11, to find out how you can
obtain a version of bash.

Once you know you have bash on your system, you can invoke it from whatever other shell you use by
typing bash as above. However, it's much better to install it as your login shell, i.e., the shell that you get
automatically whenever you log in. You may be able to do the installation by yourself. Here are instructions
that are designed to work on the widest variety of UNIX systems. If something doesn't work (e.g., you type
in a command and get a "not found" error message or a blank line as the response), you'll have to abort the
process and see your system administrator or, alternatively, turn to Chapter 11 where we demonstrate a less
straightforward way of replacing your current shell.

You need to find out where bash is on your system, i.e., in which directory it's installed. You might be able
to find the location by typing whereis bash (especially if you are using the C shell); if that doesn't work, try
whence bash, which bash, or this complex command: [2]

[2] Make sure you use the correct quotation mark in this command: ' rather than `.

grep bash /etc/passwd | awk -F: '{print $7}' | sort -u

You should see a response that looks like /bin/bash or /usr/local/bin/bash.

To install bash as your login shell, type chsh bash-name, where bash-name is the response you got to your
whereis command (or whatever worked). For example:

% chsh /usr/local/bin/bash
You'll either get an error message saying that the shell is invalid, or you'll be prompted for your password.
[3]Type in your password, then log out and log back in again to start using bash.

[3] For system security reasons, only certain programs are allowed to be installed as login shells.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5 Interactive Shell Use
When you use the shell interactively, you engage in a login session that begins when you log in and ends
when you type exit or logout or press CTRL-D. [4]During a login session, you type in command lines to the
shell; these are lines of text ending in RETURN that you type in to your terminal or workstation.

[4] The shell can be set up so that it ignores a single CTRL-D to end the session. We recommend doing this,
because CTRL-D is too easy to type by accident. See the section on options in Chapter 3 for further details.

By default, the shell prompts you for each command with an information string followed by a dollar sign,
though as you will see in Chapter 3, the entire prompt can be changed.

1.5.1 Commands, Arguments, and Options

Shell command lines consist of one or more words, which are separated on a command line by blanks or
TABs. The first word on the line is the command. The rest (if any) are arguments (also called parameters)
to the command, which are names of things on which the command will act.

For example, the command line lp myfile consists of the command lp (print a file) and the single argument
myfile. lp treats myfile as the name of a file to print. Arguments are often names of files, but not
necessarily: in the command line mail cam, the mail program treats cam as the username to which a
message will be sent.

An option is a special type of argument that gives the command specific information on what it is supposed
to do. Options usually consist of a dash followed by a letter; we say "usually" because this is a convention
rather than a hard-and-fast rule. The command lp -h myfile contains the option -h, which tells lp not to print
the "banner page" before it prints the file.

Sometimes options take their own arguments. For example, lp -d lp1 -h myfile has two options and one
argument. The first option is -d lp1, which means "Send the output to the printer (destination) called lp1."
The second option and argument are the same as in the previous example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.6 Files
Although arguments to commands aren't always files, files are the most important types of "things" on any
UNIX system. A file can contain any kind of information, and indeed there are different types of files.
Three types are by far the most important:

Regular files

Also called text files; these contain readable characters. For example, this book was created from
several regular files that contain the text of the book plus human-readable formatting instructions to
the troff word processor.

Executable files

Also called programs; these are invoked as commands. Some can't be read by humans; others—the
shell scripts that we'll examine in this book—are just special text files. The shell itself is a (non-
human-readable) executable file called bash.

Directories

These are like folders that contain other files—possibly other directories (called subdirectories).

1.6.1 Directories

Let's review the most important concepts about directories. The fact that directories can contain other
directories leads to a hierarchical structure, more popularly known as a tree, for all files on a UNIX system.

Figure 1.2 shows part of a typical directory tree; rectangles are directories and ovals are regular files.

Figure 1.2. A tree of directories and files

The top of the tree is a directory called root that has no name on the system. [5] All files can be named by
expressing their location on the system relative to root; such names are built by listing all of the directory
names (in order from root), separated by slashes (/), followed by the file's name. This way of naming files is
called a full (or absolute) pathname.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[5] Most UNIX tutorials say that root has the name /. We stand by this alternative explanation because it is more
logically consistent with the rest of the UNIX filename conventions.

For example, say there is a file called aaiw that is in the directory book, which is in the directory cam,
which is in the directory home, which is in the root directory. This file's full pathname is
/home/cam/book/aaiw.

1.6.1.1 The working directory

Of course, it's annoying to have to use full pathnames whenever you need to specify a file. So there is also
the concept of the working directory (sometimes called the current directory), which is the directory you are
"in" at any given time. If you give a pathname with no leading slash, then the location of the file is worked
out relative to the working directory. Such pathnames are called relative pathnames; you'll use them much
more often than full pathnames.

When you log in to the system, your working directory is initially set to a special directory called your
home (or login) directory. System administrators often set up the system so that everyone's home directory
name is the same as their login name, and all home directories are contained in a common directory under
root.

For example, /home/cam is a typical home directory. If this is your working directory and you give the
command lp memo, then the system looks for the file memo in /home/cam. If you have a directory called
hatter in your home directory, and it contains the file teatime, then you can print it with the command lp
hatter/teatime.

1.6.1.2 Tilde notation

As you can well imagine, home directories occur often in pathnames. Although many systems are organized
so that all home directories have a common parent (such as /home or /users), you should not rely on that
being the case, nor should you even have to know the absolute pathname of someone's home directory.

Therefore, bash has a way of abbreviating home directories: just precede the name of the user with a tilde
(~). For example, you could refer to the file story in user alice's home directory as ~alice/story. This is an
absolute pathname, so it doesn't matter what your working directory is when you use it. If alice's home
directory has a subdirectory called adventure and the file is in there instead, you can use
~alice/adventure/story as its name.

Even more convenient, a tilde by itself refers to your own home directory. You can refer to a file called
notes in your home directory as ~/notes (note the difference between that and ~notes, which the shell would
try to interpret as user notes's home directory). If notes is in your adventure subdirectory, then you can call
it ~/adventure/notes. This notation is handiest when your working directory is not in your home directory
tree, e.g., when it's some system directory like /tmp.

1.6.1.3 Changing working directories

If you want to change your working directory, use the command cd. If you don't remember your working
directory, the command pwd tells the shell to print it.

cd takes as an argument the name of the directory you want to become your working directory. It can be
relative to your current directory, it can contain a tilde, or it can be absolute (starting with a slash). If you
omit the argument, cd changes to your home directory (i.e., it's the same as cd ~).

Table 1.1 gives some sample cd commands. Each command assumes that your working directory is
/home/cam just before the command is executed, and that your directory structure looks like Figure 1.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 1.1. Sample cd Commands

Command New Working Directory
cd book /home/cam/book
cd book/wonderland /home/cam/book/wonderland
cd ~/book/wonderland /home/cam/book/wonderland
cd /usr/lib /usr/lib
cd .. /home
cd ../gryphon /home/gryphon
cd ~gryphon /home/gryphon

The first four are straightforward. The next two use a special directory called .. (two dots), which means
"parent of this directory." Every directory has one of these; it's a universal way to get to the directory above
the current one in the hierarchy—which is called the parent directory. [6]

[6] Each directory also has the special directory . (single dot), which just means "this directory." Thus, cd .
effectively does nothing. Both . and .. are actually special hidden files in each directory that point to the directory
itself and to its parent directory, respectively. root is its own parent.

Another feature of bash's cd command is the form cd -, which changes to whatever directory you were in
before the current one. For example, if you start out in /usr/lib, type cd without an argument to go to your
home directory, and then type cd -, you will be back in /usr/lib.

1.6.2 Filenames, Wildcards, and Pathname Expansion

Sometimes you need to run a command on more than one file at a time. The most common example of such
a command is ls, which lists information about files. In its simplest form, without options or arguments, it
lists the names of all files in the working directory except special hidden files, whose names begin with a
dot (.).

If you give ls filename arguments, it will list those files—which is sort of silly: if your current directory has
the files duchess and queen in it and you type ls duchess queen, the system will simply print those
filenames.

Actually, ls is more often used with options that tell it to list information about the files, like the -l (long)
option, which tells ls to list the file's owner, size, time of last modification, and other information, or -a
(all), which also lists the hidden files described above. But sometimes you want to verify the existence of a
certain group of files without having to know all of their names; for example, if you use a text editor, you
might want to see which files in your current directory have names that end in .txt.

Filenames are so important in UNIX that the shell provides a built-in way to specify the pattern of a set of
filenames without having to know all of the names themselves. You can use special characters, called
wildcards, in filenames to turn them into patterns. Table 1.2 lists the basic wildcards.

Table 1.2. Basic Wildcards

Wildcard Matches
? Any single character
* Any string of characters
[set] Any character in set
[!set] Any character not in set

The ? wildcard matches any single character, so that if your directory contains the files program.c,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ? wildcard matches any single character, so that if your directory contains the files program.c,
program.log, and program.o, then the expression program.? matches program.c and program.o but not
program.log.

The asterisk (*) is more powerful and far more widely used; it matches any string of characters. The
expression program.* will match all three files in the previous paragraph; text editor users can use the
expression *.txt to match their input files. [7]

[7] MS-DOS and VAX/VMS users should note that there is nothing special about the dot (.) in UNIX filenames
(aside from the leading dot, which "hides" the file); it's just another character. For example, ls * lists all files in the
current directory; you don't need *.* as you do on other systems. Indeed, ls *.* won't list all the files—only those
that have at least one dot in the middle of the name.

Table 1.3 should help demonstrate how the asterisk works. Assume that you have the files bob, darlene,
dave, ed, frank, and fred in your working directory.

Table 1.3. Using the * Wildcard

Expression Yields
fr* frank fred
*ed ed fred
b* bob
e darlene dave ed fred
r darlene frank fred
* bob darlene dave ed frank fred
d*e darlene dave
g* g*

Notice that * can stand for nothing: both *ed and *e* match ed. Also notice that the last example shows
what the shell does if it can't match anything: it just leaves the string with the wildcard untouched.

The remaining wildcard is the set construct. A set is a list of characters (e.g., abc), an inclusive range (e.g.,
a-z), or some combination of the two. If you want the dash character to be part of a list, just list it first or
last. Table 1.4 should explain things more clearly.

Table 1.4. Using the Set Construct Wildcards

Expression Matches
[abc] a, b, or c
[.,;] Period, comma, or semicolon
[-_] Dash or underscore
[a-c] a, b, or c
[a-z] All lowercase letters
[!0-9] All non-digits
[0-9!] All digits and exclamation point
[a-zA-Z] All lower- and uppercase letters
[a-zA-Z0-9_-] All letters, all digits, underscore, and dash

In the original wildcard example, program.[co] and program.[a-z] both match program.c and program.o,
but not program.log.

An exclamation point after the left bracket lets you "negate" a set. For example, [!.;] matches any character
except period and semicolon; [!a-zA-Z] matches any character that isn't a letter. To match ! itself, place it
after the first character in the set, or precede it with a backslash, as in [\!].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The range notation is handy, but you shouldn't make too many assumptions about what characters are
included in a range. It's safe to use a range for uppercase letters, lowercase letters, digits, or any subranges
thereof (e.g., [f-q], [2-6]). Don't use ranges on punctuation characters or mixed-case letters: e.g., [a-Z] and
[A-z] should not be trusted to include all of the letters and nothing more. The problem is that such ranges
are not entirely portable between different types of computers. [8]

[8] Specifically, ranges depend on the character encoding scheme your computer uses. The vast majority use
ASCII, but IBM mainframes use EBCDIC.

The process of matching expressions containing wildcards to filenames is called wildcard expansion or
globbing. This is just one of several steps the shell takes when reading and processing a command line;
another that we have already seen is tilde expansion, where tildes are replaced with home directories where
applicable. We'll see others in later chapters, and the full details of the process are enumerated in Chapter 7.

However, it's important to be aware that the commands that you run only see the results of wildcard
expansion. That is, they just see a list of arguments, and they have no knowledge of how those arguments
came into being. For example, if you type ls fr* and your files are as on the previous page, then the shell
expands the command line to ls fred frank and invokes the command ls with arguments fred and frank. If
you type ls g*, then (because there is no match) ls will be given the literal string g* and will complain with
the error message, g*: No such file or directory. [9]

[9] This is different from the C shell's wildcard mechanism, which prints an error message and doesn't execute the
command at all.

Here is an example that should help make things clearer. Suppose you are a C programmer. This means that
you deal with files whose names end in .c (programs, also known as source files), .h (header files for
programs), and .o (object code files that aren't human-readable) as well as other files. Let's say you want to
list all source, object, and header files in your working directory. The command ls *.[cho] does the trick.
The shell expands *.[cho] to all files whose names end in a period followed by a c, h, or o and passes the
resulting list to ls as arguments. In other words, ls will see the filenames just as if they were all typed in
individually—but notice that we required no knowledge of the actual filenames whatsoever! We let the
wildcards do the work.

The wildcard examples that we have seen so far are actually part of a more general concept called pathname
expansion. Just as it is possible to use wildcards in the current directory, they can also be used as part of a
pathname. For example, if you wanted to list all of the files in the directories /usr and /usr2, you could type
ls /usr*. If you were only interested in the files beginning with the letters b and e in these directories, you
could type ls /usr*/[be]* to list them.

1.6.3 Brace Expansion

A concept closely related to pathname expansion is brace expansion. Whereas pathname expansion
wildcards will expand to files and directories that exist, brace expansion expands to an arbitrary string of a
given form: an optional preamble, followed by comma-separated strings between braces, and followed by
an optional postscript. If you type echo b{ed,olt,ar}s, you'll see the words beds, bolts, and bars printed.
Each instance of a string inside the braces is combined with the preamble b and the postscript s. Notice that
these are not filenames—the strings produced are independent of filenames. It is also possible to nest the
braces, as in b{ar{d,n,k},ed}s. This will result in the expansion bards, barns, barks, and beds.

Brace expansion can also be used with wildcard expansions. In the example from the previous section
where we listed the source, object, and header files in the working directory, we could have used ls *.
{c,h,o}. [10]

[10] This differs slightly from C shell brace expansion. bash requires at least one unquoted comma to perform an
expansion, otherwise the word is left unchanged, e.g., b{o}lt remains as b{o}lt.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.7 Input and Output
The software field—really, any scientific field—tends to advance most quickly and impressively on those
few occasions when someone (i.e., not a committee) comes up with an idea that is small in concept yet
enormous in its implications. The standard input and output scheme of UNIX has to be on the short list of
such ideas, along with such classic innovations as the LISP language, the relational data model, and object-
oriented programming.

The UNIX I/O scheme is based on two dazzlingly simple ideas. First, UNIX file I/O takes the form of
arbitrarily long sequences of characters (bytes). In contrast, file systems of older vintage have more
complicated I/O schemes (e.g., "block," "record," "card image," etc.). Second, everything on the system that
produces or accepts data is treated as a file; this includes hardware devices like disk drives and terminals.
Older systems treated every device differently. Both of these ideas have made systems programmers' lives
much more pleasant.

1.7.1 Standard I/O

By convention, each UNIX program has a single way of accepting input called standard input, a single way
of producing output called standard output, and a single way of producing error messages called standard
error output, usually shortened to standard error. Of course, a program can have other input and output
sources as well, as we will see in Chapter 7.

Standard I/O was the first scheme of its kind that was designed specifically for interactive users at
terminals, rather than the older batch style of use that usually involved decks of punch-cards. Since the
UNIX shell provides the user interface, it should come as no surprise that standard I/O was designed to fit in
very neatly with the shell.

All shells handle standard I/O in basically the same way. Each program that you invoke has all three
standard I/O channels set to your terminal or workstation, so that standard input is your keyboard, and
standard output and error are your screen or window. For example, the mail utility prints messages to you
on the standard output, and when you use it to send messages to other users, it accepts your input on the
standard input. This means that you view messages on your screen and type new ones in on your keyboard.

When necessary, you can redirect input and output to come from or go to a file instead. If you want to send
the contents of a pre-existing file to someone as mail, you redirect mail's standard input so that it reads from
that file instead of your keyboard.

You can also hook programs together in a pipeline, in which the standard output of one program feeds
directly into the standard input of another; for example, you could feed mail output directly to the lp
program so that messages are printed instead of shown on the screen.

This makes it possible to use UNIX utilities as building blocks for bigger programs. Many UNIX utility
programs are meant to be used in this way: they each perform a specific type of filtering operation on input
text. Although this isn't a textbook on UNIX utilities, they are essential to productive shell use. The more
popular filtering utilities are listed in Table 1.5.

Table 1.5. Popular UNIX Data Filtering Utilities

Utility Purpose
cat Copy input to output
grep Search for strings in the input
sort Sort lines in the input
cut Extract columns from input
sed Perform editing operations on input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tr Translate characters in the input to other characters

You may have used some of these before and noticed that they take names of input files as arguments and
produce output on standard output. You may not know, however, that all of them (and most other UNIX
utilities) accept input from standard input if you omit the argument. [11]

[11] If a particular UNIX utility doesn't accept standard input when you leave out the filename argument, try using a
dash (-) as the argument.

For example, the most basic utility is cat, which simply copies its input to its output. If you type cat with a
filename argument, it will print out the contents of that file on your screen. But if you invoke it with no
arguments, it will expect standard input and copy it to standard output. Try it: cat will wait for you to type a
line of text; when you type RETURN, cat will repeat the text back to you. To stop the process, hit CTRL-D
at the beginning of a line. You will see ^D when you type CTRL-D. Here's what this should look like:

$ catHere is a line of text.Here is a line of text.This is another line of text.

1.7.2 I/O Redirection

cat is short for "catenate," i.e., link together. It accepts multiple filename arguments and copies them to the
standard output. But let's pretend, for now, that cat and other utilities don't accept filename arguments and
accept only standard input. As we said above, the shell lets you redirect standard input so that it comes from
a file. The notation command < filename does this; it sets things up so that command takes standard input
from a file instead of from a terminal.

For example, if you have a file called cheshire that contains some text, then cat < cheshire will print
cheshire's contents out onto your terminal. sort < cheshire will sort the lines in the cheshire file and print
the result on your terminal (remember: we're pretending that these utilities don't take filename arguments).

Similarly, command > filename causes the command's standard output to be redirected to the named file.
The classic "canonical" example of this is date > now: the date command prints the current date and time
on the standard output; the previous command saves it in a file called now.

Input and output redirectors can be combined. For example: the cp command is normally used to copy files;
if for some reason it didn't exist or was broken, you could use cat in this way:

$ cat < file1 > file2
This would be similar to cp file1 file2.

1.7.3 Pipelines

It is also possible to redirect the output of a command into the standard input of another command instead of
a file. The construct that does this is called the pipe, notated as |. A command line that includes two or more
commands connected with pipes is called a pipeline.

Pipes are very often used with the more command, which works just like cat except that it prints its output
screen by screen, pausing for the user to type SPACE (next screen), RETURN (next line), or other
commands. If you're in a directory with a large number of files and you want to see details about them, ls -l |
more will give you a detailed listing a screen at a time.

Pipelines can get very complex, and they can also be combined with other I/O directors. To see a sorted
listing of the file cheshire a screen at a time, type sort < cheshire | more. To print it instead of viewing it on
your terminal, type sort < cheshire | lp.

Here's a more complicated example. The file /etc/passwd stores information about users' accounts on a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's a more complicated example. The file /etc/passwd stores information about users' accounts on a
UNIX system. Each line in the file contains a user's login name, user ID number, encrypted password, home
directory, login shell, and other information. The first field of each line is the login name; fields are
separated by colons (:). A sample line might look like this:

cam:LM1c7GhNesD4GhF3iEHrH4FeCKB/:501:100:Cameron Newham:/home/cam:/bin/bash

To get a sorted listing of all users on the system, type:

$ cut -d: -f1 < /etc/passwd | sort
(Actually, you can omit the <, since cut accepts input filename arguments.) The cut command extracts the
first field (-f1), where fields are separated by colons (-d:), from the input. The entire pipeline will print a list
that looks like this:

adm
bin
cam
daemon
davidqc
ftp
games
gonzo
...

If you want to send the list directly to the printer (instead of your screen), you can extend the pipeline like
this:

$ cut -d: -f1 < /etc/passwd | sort | lp
Now you should see how I/O directors and pipelines support the UNIX building block philosophy. The
notation is extremely terse and powerful. Just as important, the pipe concept eliminates the need for messy
temporary files to store command output before it is fed into other commands.

For example, to do the same sort of thing as the above command line on other operating systems (assuming
that equivalent utilities are available...), you need three commands. On DEC's VAX/VMS system, they
might look like this:

$ cut [etc]passwd /d=":" /f=1 /out=temp1$ sort temp1 /out=temp2$ print temp2
After sufficient practice, you will find yourself routinely typing in powerful command pipelines that do in
one line what it would take several commands (and temporary files) in other operating systems to
accomplish.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.8 Background Jobs
Pipes are actually a special case of a more general feature: doing more than one thing at a time. This is a
capability that many other commercial operating systems don't have, because of the rigid limits that they
tend to impose upon users. UNIX, on the other hand, was developed in a research lab and meant for internal
use, so it does relatively little to impose limits on the resources available to users on a computer—as usual,
leaning towards uncluttered simplicity rather than overcomplexity.

"Doing more than one thing at a time" means running more than one program at the same time. You do this
when you invoke a pipeline; you can also do it by logging on to a UNIX system as many times
simultaneously as you wish. (If you try that on an IBM's VM/CMS system, for example, you will get an
obnoxious "already logged in" message.)

The shell also lets you run more than one command at a time during a single login session. Normally, when
you type a command and hit RETURN, the shell will let the command have control of your terminal until it
is done; you can't type in further commands until the first one is done. But if you want to run a command
that does not require user input and you want to do other things while the command is running, put an
ampersand (&) after the command.

This is called running the command in the background, and a command that runs in this way is called a
background job; by contrast, a job run the normal way is called a foreground job. When you start a
background job, you get your shell prompt back immediately, enabling you to enter other commands.

The most obvious use for background jobs is programs that take a long time to run, such as sort or
uncompress on large files. For example, assume you just got an enormous compressed file loaded into your
directory from magnetic tape. [12]Let's say the file is gcc.tar.Z, which is a compressed archive file that
contains well over 10 MB of source code files.

[12] Compressed files are created by the compress utility, which packs files into smaller amounts of space; they
have names of the form filename.Z, where filename is the name of the original uncompressed file.

Type uncompress gcc.tar & (you can omit the .Z), and the system will start a job in the background that
uncompresses the data "in place" and ends up with the file gcc.tar. Right after you type the command, you
will see a line like this:

[1] 175

followed by your shell prompt, meaning that you can enter other commands. Those numbers give you ways
of referring to your background job; Chapter 8, explains them in detail.

You can check on background jobs with the command jobs. For each background job, jobs prints a line
similar to the above but with an indication of the job's status:

[1]+ Running uncompress gcc.tar &

When the job finishes, you will see a message like this right before your shell prompt:

[1]+ Done uncompress gcc.tar

The message changes if your background job terminated with an error; again, see Chapter 8 for details.

1.8.1 Background I/O

Jobs you put in the background should not do I/O to your terminal. Just think about it for a moment and
you'll understand why.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By definition, a background job doesn't have control over your terminal. Among other things, this means
that only the foreground process (or, if none, the shell itself) is "listening" for input from your keyboard. If a
background job needs keyboard input, it will often just sit there doing nothing until you do something about
it (as described in Chapter 8).

If a background job produces screen output, the output will just appear on your screen. If you are running a
job in the foreground that produces output too, then the output from the two jobs will be randomly (and
often annoyingly) interspersed.

If you want to run a job in the background that expects standard input or produces standard output, you
usually want to redirect the I/O so that it comes from or goes to a file. Programs that produce small, one-line
messages (warnings, "done" messages, etc.) are an exception to this general rule; you may not mind if these
are interspersed with whatever other output you are seeing at a given time.

For example, the diff utility examines two files, whose names are given as arguments, and prints a summary
of their differences on the standard output. If the files are exactly the same, diff is silent. Usually, you
invoke diff expecting to see a few lines that are different.

diff, like sort and compress, can take a long time to run if the input files are very large. Suppose that you
have two large files that are called warandpeace.txt and warandpeace.txt.old. The command diff
warandpeace.txt warandpeace.txt.old [13]reveals that the author decided to change the name "Ivan" to
"Aleksandr" throughout the entire file—i.e., hundreds of differences, resulting in very large amounts of
output.

[13] You could use diff warandpeace* as a shorthand to save typing—as long as there are no other files with
names of that form. Remember that diff doesn't see the arguments until after the shell has expanded the
wildcards. Many people overlook this use of wildcards.

If you type diff warandpeace.txt warandpeace.txt.old &, then the system will spew lots and lots of output
at you, which will be difficult to stop—even with the techniques explained in Chapter 7. However, if you
type:

$ diff warandpeace.txt warandpeace.txt.old > txtdiff &
then the differences will be saved in the file txtdiff for you to examine later.

1.8.2 Background Jobs and Priorities

Background jobs can save you a lot of thumb-twiddling time. Just remember that such jobs eat up lots of
system resources like memory and the processor (CPU). Just because you're running several jobs at once
doesn't mean that they will run faster than they would if run sequentially—in fact, performance is usually
slightly worse.

Every job on the system is assigned a priority, a number that tells the operating system how much priority
to give the job when it doles out resources (the higher the number, the lower the priority). Commands that
you enter from the shell, whether foreground or background jobs, usually have the same priority. The
system administrator is able to run commands at a higher priority than normal users.

Note that if you're on a multiuser system, running lots of background jobs may eat up more than your fair
share of resources, and you should consider whether having your job run as fast as possible is really more
important than being a good citizen.

Speaking of good citizenship, there is also a UNIX command that lets you lower the priority of any job: the
aptly named nice. If you type nice command, where command can be a complex shell command line with
pipes, redirectors, etc., then the command will run at a lower priority. [14]You can control just how much
lower by giving nice a numerical argument; consult the nice manpage for details. [15]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[14] Complex commands following nice should be quoted.

[15] If you are a system administrator logged in as root, then you can also use nice to raise a job's priority.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.9 Special Characters and Quoting
The characters <, >, |, and & are four examples of special characters that have particular meanings to the
shell. The wildcards we saw earlier in this chapter (*, ?, and [...]) are also special characters.

Table 1.6 gives the meanings of all special characters within shell command lines only. Other characters
have special meanings in specific situations, such as the regular expressions and string-handling operators
that we'll see in Chapter 3 and Chapter 4.

Table 1.6. Special Characters

Character Meaning See Chapter
~ Home directory 1
` Command substitution (archaic) 4
Comment 4
$ Variable expression 3
& Background job 1
* String wildcard 1
(Start subshell 8
) End subshell 8
\ Quote next character 1
| Pipe 1
[Start character-set wildcard 1
] End character-set wildcard 1
{ Start command block 7
} End command block 7
; Shell command separator 3
' Strong quote 1
<"> Weak quote 1
< Input redirect 1
> Output redirect 1
/ Pathname directory separator 1
? Single-character wildcard 1
! Pipeline logical NOT 5

1.9.1 Quoting

Sometimes you will want to use special characters literally, i.e., without their special meanings. This is
called quoting. If you surround a string of characters with single quotation marks (or quotes), you strip all
characters within the quotes of any special meaning they might have.

The most obvious situation where you might need to quote a string is with the echo command, which just
takes its arguments and prints them to the standard output. What is the point of this? As you will see in later
chapters, the shell does quite a bit of processing on command lines—most of which involves some of the
special characters listed in Table 1.6. echo is a way of making the result of that processing available on the
standard output.

But what if we wanted to print the string 2 * 3 > 5 is a valid inequality? Suppose you typed this:

$ echo 2 * 3 > 5 is a valid inequality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ echo 2 * 3 > 5 is a valid inequality.
You would get your shell prompt back, as if nothing happened! But then there would be a new file, with the
name 5, containing "2", the names of all files in your current directory, and then the string 3 is a valid
inequality. Make sure you understand why. [16]

[16] This should also teach you something about the flexibility of placing I/O redirectors anywhere on the command
line—even in places where they don't seem to make sense.

However, if you type:

$ echo '2 * 3 > 5 is a valid inequality.'
the result is the string, taken literally. You needn't quote the entire line, just the portion containing special
characters (or characters you think might be special, if you just want to be sure):

$ echo '2 * 3 > 5' is a valid inequality.
This has exactly the same result.

Notice that Table 1.6 lists double quotes (") as weak quotes. A string in double quotes is subjected to some
of the steps the shell takes to process command lines, but not all. (In other words, it treats only some special
characters as special.) You'll see in later chapters why double quotes are sometimes preferable; Chapter 7
contains the most comprehensive explanation of the shell's rules for quoting and other aspects of command-
line processing. For now, though, you should stick to single quotes.

1.9.2 Backslash-Escaping

Another way to change the meaning of a character is to precede it with a backslash (\). This is called
backslash-escaping the character. In most cases, when you backslash-escape a character, you quote it. For
example:

$ echo 2 * 3 \> 5 is a valid inequality.
will produce the same results as if you surrounded the string with single quotes. To use a literal backslash,
just surround it with quotes ('\') or, even better, backslash-escape it (\\).

Here is a more practical example of quoting special characters. A few UNIX commands take arguments that
often include wildcard characters, which need to be escaped so the shell doesn't process them first. The most
common such command is find, which searches for files throughout entire directory trees.

To use find, you supply the root of the tree you want to search and arguments that describe the
characteristics of the file(s) you want to find. For example, the command find . -name string searches the
directory tree whose root is your current directory for files whose names match the string. (Other arguments
allow you to search by the file's size, owner, permissions, date of last access, etc.)

You can use wildcards in the string, but you must quote them, so that the find command itself can match
them against names of files in each directory it searches. The command find . -name '*.c' will match all
files whose names end in .c anywhere in your current directory, subdirectories, sub-subdirectories, etc.

1.9.3 Quoting Quotation Marks

You can also use a backslash to include double quotes within a quoted string. For example:

$ echo \"2 * 3 \> 5\" is a valid inequality.
produces the following output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"2 * 3 > 5" is a valid inequality.

However, this won't work with single quotes inside quoted expressions. For example, echo 'Hatter\'s tea
party' will not give you Hatter's tea party. You can get around this limitation in various ways. First, try
eliminating the quotes:

$ echo Hatter\'s tea party
If no other characters are special (as is the case here), this works. Otherwise, you can use the following
command:

$ echo 'Hatter'\''s tea party'
That is, '\'' (i.e., single quote, backslash, single quote, single quote) acts like a single quote within a quoted
string. Why? The first ' in '\'' ends the quoted string we started with ('Hatter), the \' inserts a literal single
quote, and the next ' starts another quoted string that ends with the word "party". If you understand this,
then you will have no trouble resolving the other bewildering issues that arise from the shell's often cryptic
syntax.

1.9.4 Continuing Lines

A related issue is how to continue the text of a command beyond a single line on your terminal or
workstation window. The answer is conceptually simple: just quote the RETURN key. After all, RETURN
is really just another character.

You can do this in two ways: by ending a line with a backslash, or by not closing a quote mark (i.e., by
including RETURN in a quoted string). If you use the backslash, there must be nothing between it and the
end of the line—not even spaces or TABs.

Whether you use a backslash or a single quote, you are telling the shell to ignore the special meaning of the
RETURN character. After you press RETURN, the shell understands that you haven't finished your
command line (i.e., since you haven't typed a "real" RETURN), so it responds with a secondary prompt,
which is > by default, and waits for you to finish the line. You can continue a line as many times as you
wish.

For example, if you want the shell to print the first sentence of Chapter 5 of Lewis Carroll's Alice's
Adventures in Wonderland, you can type this:

$ echo The Caterpillar and Alice looked at each other for some \
> time in silence: at last Caterpillar took the hookah out of its \
Or you can do it this way:

$ echo 'The Caterpillar and Alice looked at each other for some
> time in silence: at last Caterpillar took the hookah out of its>

1.9.5 Control Keys

Control keys—those that you type by holding down the CONTROL (or CTRL) key and hitting another key
—are another type of special character. These normally don't print anything on your screen, but the
operating system interprets a few of them as special commands. You already know one of them: RETURN
is actually the same as CTRL-M (try it and see). You have probably also used the BACKSPACE or DEL
key to erase typos on your command line.

Actually, many control keys have functions that don't really concern you—yet you should know about them
for future reference and in case you type them by accident.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Perhaps the most difficult thing about control keys is that they can differ from system to system. The usual
arrangement is shown in Table 1.7, which lists the control keys that all major modern versions of UNIX
support. Note that DEL and CTRL-? are the same character.

You can use the stty command to find out what your settings are and change them if you wish; see Chapter
8 for details. If the version of UNIX on your system is one of those that derive from BSD (such as SunOS
and Ultrix), type stty all to see your control-key settings; you will see something like this:

erase kill werase rprnt flush lnext susp intr quit stop eof
^? ^U ^W ^R ^O ^V ^Z/^Y ^C ^\ ^S/^Q ^D

Table 1.7. Control Keys

Control Key stty Name Function Description
CTRL-C intr Stop current command
CTRL-D eof End of input
CTRL-\ quit Stop current command, if CTRL-C doesn't work
CTRL-S stop Halt output to screen
CTRL-Q Restart output to screen
DEL or CTRL-? erase Erase last character
CTRL-U kill Erase entire command line
CTRL-Z susp Suspend current command (see Chapter 8)

The ^X notation stands for CTRL-X. If your UNIX version derives from System III or System V (this
includes AIX, HP/UX, SCO, Linux, and Xenix), type stty -a.

The resulting output will include this information:

intr = ^c; quit = ^|; erase = DEL; kill = ^u; eof = ^d; eol = ^`;
swtch = ^`; susp = ^z; dsusp <undef>;

The control key you will probably use most often is CTRL-C, sometimes called the interrupt key. This
stops—or tries to stop—the command that is currently running. You will want to use this when you enter a
command and find that it's taking too long, you gave it the wrong arguments, you change your mind about
wanting to run it, or whatever.

Sometimes CTRL-C doesn't work; in that case, if you really want to stop a job, try CTRL-\. But don't just
type CTRL-\; always try CTRL-C first! Chapter 8 explains why in detail. For now, suffice it to say that
CTRL-C gives the running job more of a chance to clean up before exiting, so that files and other resources
are not left in funny states.

We've already seen an example of CTRL-D. When you are running a command that accepts standard input
from your keyboard, CTRL-D tells the process that your input is finished—as if the process were reading a
file and it reached the end of the file. mail is a utility in which this happens often. When you are typing in a
message, you end by typing CTRL-D. This tells mail that your message is complete and ready to be sent.
Most utilities that accept standard input understand CTRL-D as the end-of-input character, though many
such programs accept commands like q, quit, exit, etc.

CTRL-S and CTRL-Q are called flow-control characters. They represent an antiquated way of stopping and
restarting the flow of output from one device to another (e.g., from the computer to your terminal) that was
useful when the speed of such output was low. They are rather obsolete in these days of high-speed local
networks and dialup lines. In fact, under the latter conditions, CTRL-S and CTRL-Q are basically a
nuisance. The only thing you really need to know about them is that if your screen output becomes "stuck,"
then you may have hit CTRL-S by accident. Type CTRL-Q to restart the output; any keys you may have hit
in between will then take effect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The final group of control characters gives you rudimentary ways to edit your command line. DEL acts as a
backspace key (in fact, some systems use the actual BACKSPACE or CTRL-H key as "erase" instead of
DEL); CTRL-U erases the entire line and lets you start over. Again, these have been superseded. [17]The
next chapter will look at bash's editing modes, which are among its most useful features and far more
powerful than the limited editing capabilities described here.

[17] Why are so many outmoded control keys still in use? They have nothing to do with the shell per se; instead,
they are recognized by the tty driver, an old and hoary part of the operating system's lower depths that controls
input and output to/from your terminal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.10 Help
A feature in bash that no other shell has is an online help system. The help command gives information on
commands in bash. If you type help by itself, you'll get a list of the built-in shell commands along with their
options.

If you provide help with a shell command name it will give you a detailed description of the command:

$ help cd
cd: cd [-PL] [dir]
 Change the current directory to DIR. The variable $HOME is the
 default DIR. The variable $CDPATH defines the search path for
 the directory containing DIR. Alternative directory names in
 CDPATH are separated by a colon (:). A null directory name is
 the same as the current directory, i.e. `.'. If DIR begins with
 a slash (/), then $CDPATH is not used. If the directory is not
 found, and the shell option `cdable_vars' is set, then try the
 word as a variable name. If that variable has a value, then cd
 to the value of that variable. The -P option says to use the
 physical directory structure instead of following symbolic links;
 the -L option forces symbolic links to be followed.

You can also provide help with a partial name, in which case it will return details on all commands
matching the partial name. For example, help re will provide details on read, readonly, and return. The
partial name can also include wildcards. You'll need to quote the name to ensure that the wildcard is not
expanded to a filename. So the last example is equivalent to help 're*', and help 're??' will only return
details on read.

Sometimes help will show more than a screenful of information and it will scroll the screen. You can use
the more command to show one screenful at a time by typing help command | more.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Command-Line Editing
It's always possible to make mistakes when you type at a computer keyboard, but perhaps even more so
when you are using a UNIX shell. UNIX shell syntax is powerful, yet terse, full of odd characters, and not
particularly mnemonic, making it possible to construct command lines that are as cryptic as they are
complex. The Bourne and C shells exacerbate this situation by giving you extremely limited ways of editing
your command lines.

In particular, there is no way to recall a previous command line so that you can fix a mistake. If you are an
experienced Bourne shell user, undoubtedly you know the frustration of having to retype long command
lines. You can use the BACKSPACE key to edit, but once you hit RETURN, it's gone forever!

The C shell provided a small improvement via its history mechanism, which provides a few very awkward
ways of editing previous commands. But there are more than a few people who have wondered, "Why can't
I edit my UNIX command lines in the same way I can edit text with an editor?"

This is exactly what bash allows you to do. It has editing modes that allow you to edit command lines with
editing commands similar to those of the two most popular UNIX editors, vi and emacs. It also provides a
much-extended analog to the C shell history mechanism called fc (for fix command) that, among other
things, allows you to use your favorite editor directly for editing your command lines. To round things out,
bash also provides the original C shell history mechanism.

In this chapter, we will discuss the features that are common to all of bash's command-history facilities;
after that, we will deal with each facility in detail. If you use either vi or emacs, you may wish to read the
section on the emulation mode for only the one you use. [1]If you use neither vi or emacs, but are interested
in learning one of the editing modes anyway, we suggest emacs-mode, because it is more of a natural
extension of the minimal editing capability you get with the bare shell.

[1] You will get the most out of these sections if you are already familiar with the editor(s) in question. Good
sources for more complete information on the editors are the O'Reilly & Associates books Learning the vi Editor,
by Linda Lamb, and Learning GNU Emacs, by Debra Cameron and Bill Rosenblatt.

We should mention up front that both emacs- and vi-modes introduce the potential for clashes with control
keys set up by the UNIX terminal interface. Recall the control keys shown in Chapter 1, in Table 1.7 and
the sample stty command output. The control keys shown there override their functions in the editing
modes.

During the rest of this chapter, we'll warn you when an editing command clashes with the default setting of
a terminal-interface control key.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Enabling Command-Line Editing
bash initially starts interactively with emacs-mode as the default (unless you have started bash with the -
noediting option; [2]see Chapter 10). There are two ways to enter either editing mode while in the shell.
First, you can use the set command:

[2] -nolineediting in versions of bash prior to 2.0.

$ set -o emacs
or:

$ set -o vi
The second way of selecting the editing mode is to set a readline variable in the file .inputrc. We will look
at this method later in this chapter.

You will find that the vi- and emacs-editing modes are good at emulating the basic commands of these
editors, but not their advanced features; their main purpose is to let you transfer "keyboard habits" from
your favorite editor to the shell. fc is quite a powerful facility; it is mainly meant to supplant C shell history
and as an "escape hatch" for users of editors other than vi or emacs. Therefore the section on fc is mainly
recommended to C shell users and those who don't use either standard editor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 The History File
All of bash's command history facilities depend on a list that records commands as you type them into the
shell. Whenever you log in or start another interactive shell, bash reads an initial history list from the file
.bash_history in your home directory. From that point on, every bash interactive session maintains its own
list of commands. When you exit from a shell, it saves the list in .bash_history. You can call this file
whatever you like by setting the environment variable HISTFILE. We'll look more closely at HISTFILE
and some other related command history variables in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 emacs Editing Mode
If you are an emacs user, you will find it most useful to think of emacs editing mode as a simplified emacs
with a single, one-line window. All of the basic commands are available for cursor motion, cut-and-paste,
and search.

2.3.1 Basic Commands

emacs-mode uses control keys for the most basic editing functions. If you aren't familiar with emacs, you
can think of these as extensions of the rudimentary "erase" character (usually BACKSPACE or DEL) that
UNIX provides through its interface to users' terminals. For the sake of consistency, we'll assume your erase
character is DEL from now on; if it is CTRL-H or something else, you will need to make a mental
substitution. The most basic control-key commands are shown in Table 2.1. (Important: remember that
typing CTRL-D when your command line is empty may log you off!) The basic keyboard habits of emacs-
mode are easy to learn, but they do require that you assimilate a couple of concepts that are peculiar to the
emacs editor.

Table 2.1. Basic emacs-Mode Commands

Command Description
CTRL-B Move backward one character (without deleting)
CTRL-F Move forward one character
DEL Delete one character backward
CTRL-D Delete one character forward

The first of these is the use of CTRL-B and CTRL-F for backward and forward cursor motion. These keys
have the advantage of being obvious mnemonics. You can also use the left and right cursor motion keys
("arrow" keys), but for the rest of this discussion we will use the control keys, as they work on all
keyboards. In emacs-mode, the point (sometimes also called dot) is an imaginary place just to the left of the
character the cursor is on. In the command descriptions in Table 2.1, some say "forward" while others say
"backward." Think of forward as "to the right of point" and backward as "to the left of point."

For example, let's say you type in a line and, instead of typing RETURN, you type CTRL-B and hold it
down so that it repeats. The cursor will move to the left until it is over the first character on the line, like
this:

$ [[f]]grep -l Duchess < ~cam/book/alice_in_wonderland
Now the cursor is on the f, and point is at the beginning of the line, just before the f. If you type DEL,
nothing will happen because there are no characters to the left of point. However, if you press CTRL-D (the
"delete character forward" command) you will delete the first letter:

$ [[g]]rep -l Duchess < ~cam/book/alice_in_wonderland
Point is still at the beginning of the line. If this were the desired command, you could hit RETURN now and
run it; you don't need to move the cursor back to the end of the line. However, you could type CTRL-F
repeatedly to get there:

$ grep -l Duchess < ~cam/book/alice_in_wonderland[[]]
At this point, typing CTRL-D wouldn't do anything, but hitting DEL would erase the final d.

2.3.2 Word Commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The basic commands are really all you need to get around a command line, but a set of more advanced
commands lets you do it with fewer keystrokes. These commands operate on words rather than single
characters; emacs-mode defines a word as a sequence of one or more alphanumeric characters.

The word commands are shown in Table 2.2. The basic commands are all single characters, whereas these
consist of two keystrokes, ESC followed by a letter. You will notice that the command ESC X, where X is
any letter, often does for a word what CTRL-X does for a single character. "Kill" is another word for
"delete"; it is the standard term used in the readline library documentation for an "undoable" deletion.

Table 2.2. emacs-Mode Word Commands

Command Description
ESC-B Move one word backward
ESC-F Move one word forward
ESC-DEL Kill one word backward
ESC-CTRL-H Kill one word backward
ESC-D Kill one word forward
CTRL-Y Retrieve ("yank") last item killed

To return to our example: if we type ESC-B, point will move back a word. Since the underscore (_) is not
an alphanumeric character, emacs-mode will stop there:

$ grep -l Duchess < ~cam/book/alice_in_[[w]]onderland
The cursor is on the w in wonderland, and point is between the _ and the w. Now let's say we want to
change the -l option of this command from Duchess to Cheshire. We need to move back on the command
line, so we type ESC-B four more times. This gets us here:

$ grep -l Duchess < ~[[c]]am/book/alice_in_wonderland
If we type ESC-B again, we end up at the beginning of Duchess:

$ grep -l [[D]]uchess < ~cam/book/alice_in_wonderland
Why? Remember that a word is defined as a sequence of alphanumeric characters only. Therefore < is not a
word; the next word in the backward direction is Duchess. We are now in position to delete Duchess, so we
type ESC-D and get:

$ grep -l [[]]< ~cam/book/alice_in_wonderland
Now we can type in the desired argument:

$ grep -l Cheshire[[]]< ~cam/book/alice_in_wonderland
If you want Duchess back again you can use the CTRL-Y command. The CTRL-Y "yank" command will
undelete a word if the word was the last thing deleted. In this case, CTRL-Y would insert Duchess at the
point.

2.3.3 Line Commands

There are still more efficient ways of moving around a command line in emacs-mode. A few commands
deal with the entire line; they are shown in Table 2.3.

Table 2.3. emacs-Mode Line Commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Command Description
CTRL-A Move to beginning of line
CTRL-E Move to end of line
CTRL-K Kill forward to end of line

Using CTRL-A, CTRL-E, and CTRL-K should be straightforward. Remember that CTRL-Y will always
undelete the last thing deleted; if you use CTRL-K, that could be quite a few characters.

2.3.4 Moving Around in the History File

Now we know how to get around the command line efficiently and make changes. But that doesn't address
the original issue of recalling previous commands by accessing the history file. emacs-mode has several
commands for doing this, summarized in Table 2.4.

Table 2.4. emacs-Mode Commands for Moving Through the History File

Command Description
CTRL-P Move to previous line
CTRL-N Move to next line
CTRL-R Search backward
ESC-< Move to first line of history file
ESC-> Move to last line of history file

CTRL-P and CTRL-N move you through the command history. If you have cursor motion keys (arrow
keys) you can use them instead. The up-arrow is the same as CTRL-P and the down-arrow is the same as
CTRL-N. For the rest of this discussion, we'll stick to using the control keys because they can be used on all
keyboards.

CTRL-P is by far the one you will use most often—it's the "I made a mistake, let me go back and fix it" key.
You can use it as many times as you wish to scroll back through the history file. If you want to get back to
the last command you entered, you can hold down CTRL-N until bash beeps at you, or just type ESC->. As
an example, you hit RETURN to run the command above, but you get an error message telling you that
your option letter was incorrect. You want to change it without retyping the whole thing.

First, you would type CTRL-P to recall the bad command. You get it back with point at the end:

$ grep -l Duchess < ~cam/book/alice_in_wonderland[[]]
After CTRL-A, ESC-F, two CTRL-Fs, and CTRL-D, you have:

$ grep -[[]]Duchess < ~cam/book/alice_in_wonderland
You decide to try -s instead of -l, so you type s and hit RETURN. You get the same error message, so you
give up and look it up in the manual. You find out that the command you want is fgrep—not grep—after all.

You sigh heavily and go back and find the fgrep command you typed in an hour ago. To do this, you type
CTRL-R; whatever was on the line will disappear and be replaced by (reverse-i-search)`':. Then type
fgrep, and you will see this:

$ (reverse-i-search)`fgrep': fgrep -l Duchess <~cam/book/ \
 alice_in_wonderland[[]]
The shell dynamically searches back through the command history each time you type a letter, looking for
the current substring in the previous commands. In this example, when you typed f the shell would have

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the current substring in the previous commands. In this example, when you typed f the shell would have
printed the most recent command in the history with that letter in it. As you typed more letters, the shell
narrowed the search until you ended up with the line displayed above. Of course, this may not have been the
particular line you wanted. Typing CTRL-R again makes the shell search further back in the history list for
a line with "fgrep" in it. If the shell doesn't find the substring again, it will beep.

If you try the fgrep command by hitting RETURN, two things will happen. First, of course, the command
will run. Second, this line will be entered into the history file at the end, and your "current line" will be at
the end as well. You will no longer be somewhere else in the command history.

CTRL-P, CTRL-N, and CTRL-R are clearly the most important emacs-mode commands that deal with the
command history. The others are less useful but are included for compatibility with the full emacs editor.

2.3.5 Textual Completion

One of the most powerful (and typically underused) features of emacs-mode is its textual completion
facility, inspired by similar features in the full emacs editor, the C shell, and (originally) the old DEC
TOPS-20 operating system.

The premise behind textual completion is simple: you should have to type only as much of a filename, user
name, function, etc., to identify it unambiguously. This is an excellent feature; there is an analogous one in
vi-mode. We recommend that you take the time to learn it, since it will save you quite a bit of typing.

There are three commands in emacs-mode that relate to textual completion. The most important is TAB.
[3]When you type in a word of text followed by TAB, bash will attempt to complete the name. Then one of
four things can happen:

[3] emacs users will recognize this as minibuffer completion.

1. If there is nothing whose name begins with the word, the shell will beep and nothing further will
happen.

2. If there is a command name in the search path, a function name, or a filename that the string
uniquely matches, the shell will type the rest of it, followed by a space in case you want to type in
more command arguments. Command name completion is only attempted when the word is in a
command position (e.g., at the start of a line).

3. If there is a directory that the string uniquely matches, the shell will complete the filename,
followed by a slash.

4. If there is more than one way to complete the name, the shell will complete out to the longest
common prefix among the available choices. Commands in the search path and functions take
precedence over filenames.

For example, assume you have a directory with the files tweedledee.c and tweedledum.c. You want to
compile the first of these by typing cc tweedledee.c. You type cc twee followed by TAB. This is not an
unambiguous prefix, since the prefix "twee" is common to both filenames, so the shell only completes out to
cc tweedled. You need to type more letters to distinguish between them, so you type e and hit TAB again.
Then the shell completes out to "cc tweedledee.c", leaving the extra space for you to type in other filenames
or options.

If you didn't know what options were available after trying to complete cc twee, you could press TAB
again. bash prints out the possible completions for you and presents your input line again:

$ cc tweedled
tweedledee.c tweedledum.c
$ cc tweedled
A related command is ESC-?, which expands the prefix to all possible choices, listing them to standard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A related command is ESC-?, which expands the prefix to all possible choices, listing them to standard
output. Be aware that the completion mechanism doesn't necessarily expand to a filename. If there are
functions and commands that satisfy the string you provide, the shell expands those first and ignores any
files in the current directory. As we'll see, you can force completion to a particular type.

It is also possible to complete other environment entities. If the text being completed is preceded by a dollar
sign ($), the shell attempts to expand the name to that of a shell variable (see Chapter 3, for a discussion of
shell variables). If the text is preceded by a tilde (~), completion to a username is attempted; if preceded by
an at sign (@), a hostname is attempted.

For example, suppose there was a username cameron on the system. If you wanted to change to this user's
home directory, you could just use tilde notation and type the first few letters of the name, followed by a
TAB:

$ cd ~ca
which would expand to:

$ cd ~cameron/
You can force the shell to complete to specific things. Table 2.5 lists the standard keys for these.

Table 2.5. Completion Commands

Command Description
TAB Attempt to perform general completion of the text
ESC-? List the possible completions
ESC-/ Attempt filename completion
CTRL-X / List the possible filename completions
ESC-~ Attempt username completion
CTRL-X ~ List the possible username completions
ESC-$ Attempt variable completion
CTRL-X $ List the possible variable completions
ESC-@ Attempt hostname completion
CTRL-X @ List the possible hostname completions
ESC-! Attempt command completion
CTRL-X ! List the possible command completions
ESC-TAB Attempt completion from previous commands in the history list

If you find that you are interested only in completing long filenames, you are probably better off using
ESC-/ rather than TAB. This ensures that the result will be a filename and not a function or command name.

2.3.6 Miscellaneous Commands

Several miscellaneous commands complete emacs editing mode; they are shown in Table 2.6.

Table 2.6. emacs-Mode Miscellaneous Commands

Command Description
CTRL-J Same as RETURN
CTRL-L Clears the screen, placing the current line at the top of the screen
CTRL-M Same as RETURN
CTRL-O Same as RETURN, then display next line in command history

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CTRL-T Transpose two characters on either side of point and move point forward by one
CTRL-U Kills the line from the beginning to point
CTRL-V Quoted insert
CTRL-[Same as ESC (most keyboards)
ESC-C Capitalize word after point
ESC-U Change word after point to all capital letters
ESC-L Change word after point to all lowercase letters
ESC-. Insert last word in previous command line after point
ESC-_ Same as ESC-.

BSD-derived systems use CTRL-V and CTRL-W as default settings for the "quote next character" and
"word erase" terminal interface functions, respectively.

A few of these miscellaneous commands are worth discussing, even though they may not be among the
most useful emacs-mode commands.

CTRL-O is useful for repeating a sequence of commands you have already entered. Just go back to the first
command in the sequence and press CTRL-O instead of RETURN. This will execute the command and
bring up the next command in the history file. Press CTRL-O again to enter this command and bring up the
next one. Repeat this until you see the last command in the sequence; then just hit RETURN.

Of the case-changing commands, ESC-L is useful when you hit the CAPS LOCK key by accident and don't
notice it immediately. Since all-caps words aren't used too often in the UNIX world, you probably won't use
ESC-U very often.

CTRL-V will cause the next character you type to appear in the command line as is; i.e., if it is an editing
command (or an otherwise special character like CTRL-D), it will be stripped of its special meaning.

If it seems like there are too many synonyms for RETURN, bear in mind that CTRL-M is actually the same
(ASCII) character as RETURN, and that CTRL-J is actually the same as LINEFEED, which UNIX usually
accepts in lieu of RETURN anyway.

ESC-. and ESC-_ are useful if you want to run several commands on a given file. The usual UNIX
convention is that a filename is the last argument to a command. Therefore you can save typing by just
entering each command followed by SPACE and then typing ESC-. or ESC-_. For example, say you want
to examine a file using more, so you type:

$ more myfilewithaverylongname
Then you decide you want to print it, so you type the print command lp. You can avoid typing the very long
name by typing lp followed by a space and then ESC-. or ESC-_; bash will insert myfilewithaverylongname
for you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 vi Editing Mode
Like emacs-mode, vi-mode essentially creates a one-line editing window into the history file. vi-mode is
popular because vi is the most standard UNIX editor. But the function for which vi was designed, writing C
programs, has different editing requirements from those of command interpreters. As a result, although it is
possible to do complex things in vi with relatively few keystrokes, the relatively simple things you need to
do in bash sometimes take too many keystrokes.

Like vi, vi-mode has two modes of its own: input and control mode. The former is for typing commands (as
in normal bash use); the latter is for moving around the command line and the history file. When you are in
input mode, you can type commands in and hit RETURN to run them. In addition, you have minimal
editing capabilities via control characters, which are summarized in Table 2.7.

Table 2.7. Editing Commands in vi Input Mode

Command Description
DEL Delete previous character
CTRL-W Erase previous word (i.e., erase until a blank)
CTRL-V Quote the next character
ESC Enter control mode (see below)

Note that at least some of these—depending on which version of UNIX you have—are the same as the
editing commands provided by UNIX through its terminal interface. [4] vi-mode will use your "erase"
character as the "delete previous character" key; usually it is set to DEL or CTRL-H (BACKSPACE).
CTRL-V works the same way as in emacs-mode; it causes the next character to appear in the command line
as is and lose its special meaning.

[4] In particular, versions of UNIX derived from 4.x BSD have all of these commands built in.

Under normal circumstances, you just stay in input mode. But if you want to go back and make changes to
your command line, or if you want to recall previous commands, you need to go into control mode. To do
this, hit ESC.

2.4.1 Simple Control Mode Commands

A full range of vi editing commands are available to you in control mode. The simplest of these move you
around the command line and are summarized in Table 2.8. vi-mode contains two "word" concepts. The
simplest is any sequence of non-blank characters; we'll call this a non-blank word. The other is any
sequence of only alphanumeric characters (letters and digits) plus the underscore (_), or any sequence of
only non-alphanumeric characters; we'll just call this a word. [5]

[5] Neither of these definitions is the same as the definition of a word in emacs-mode.

Table 2.8. Basic vi Control Mode Commands

Command Description
h Move left one character
l Move right one character
w Move right one word
b Move left one word
W Move to beginning of next non-blank word
B Move to beginning of preceding non-blank word

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

e Move to end of current word
E Move to end of current non-blank word
0 Move to beginning of line
^ Move to first non-blank character in line
$ Move to end of line

All of these commands except the last three can be preceded by a number that acts as a repeat count.
Whenever you type a number for the repeat count, the number replaces the command prompt for the
duration of the repeat command. If your keyboard has cursor motion keys ("arrow" keys), you can use the
left and right arrows to move between characters instead of the h and l keys. Repeat counts will work with
the cursor keys as well.

The last two will be familiar to users of UNIX utilities (such as grep) that use regular expressions, as well as
to vi users.

Time for a few examples. Let's say you type in this line and, before you hit RETURN, decide you want to
change it:

$ fgrep -l Duchess < ~cam/book/alice_in_wonderland[[]]
As shown, your cursor is beyond the last character of the line. First, type ESC to enter control mode; your
cursor will move back one space so that it is on the d. Then if you type h, your cursor will move back to the
n. If you type 3h from the n, you will end up at the r.

Now we will see the difference between the two "word" concepts. Go back to the end of the line by typing
$. If you type b, the word in question is alice_in_wonderland, and the cursor will end up on the a:

$ fgrep -l Duchess < ~cam/book/[[a]]lice_in_wonderland
If you type b again, the next word is the slash (it's a "sequence" of non-alphanumeric characters), so the
cursor ends up over it:

$ fgrep -l Duchess < ~cam/book[[/]]alice_in_wonderland
However, if you typed B instead of b, the non-blank word would be the entire pathname, and the cursor
would end up at the beginning of it—over the tilde:

$ fgrep -l Duchess < [[~]]cam/book/alice_in_wonderland
You would have had to type b four times—or just 4b—to get the same effect, since there are four "words"
in the part of the pathname to the left of /alice_in_wonderland: book, slash, cam, and the leading tilde.

At this point, w and W do the opposite: typing w gets you over the c, since the tilde is a "word," while
typing W brings you to the end of the line. But whereas w and W take you to the beginning of the next
word, e and E take you to the end of the current word. Thus, if you type w with the cursor on the tilde, you
get to:

$ fgrep -l Duchess < ~[[c]]am/book/alice_in_wonderland
Then typing e gets you to:

$ fgrep -l Duchess < ~ca[[m]]/book/alice_in_wonderland
And typing an additional w gets you to:

$ fgrep -l Duchess < ~cam[[/]]book/alice_in_wonderland
On the other hand, E gets you to the end of the current non-blank word—in this case, the end of the line. (If

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On the other hand, E gets you to the end of the current non-blank word—in this case, the end of the line. (If
you find these commands non-mnemonic, you're right. The only way to assimilate them is through lots of
practice.)

2.4.2 Entering and Changing Text

Now that you know how to enter control mode and move around on the command line, you need to know
how to get back into input mode so you can make changes and type in additional commands. A number of
commands take you from control mode into input mode; they are listed in Table 2.9. All of them enter input
mode a bit differently.

Table 2.9. Commands for Entering vi Input Mode

Command Description
i Text inserted before current character (insert)
a Text inserted after current character (append)
I Text inserted at beginning of line
A Text inserted at end of line
R Text overwrites existing text

Most likely, you will use either i or a consistently, and you may use R occasionally. I and A are
abbreviations for 0i and $a respectively. To illustrate the difference between i, a, and R, say we start out
with our example line:

$ fgrep -l Duchess < ~cam/book[[/]]alice_in_wonderland
If you type i followed by end, you will get:

$ fgrep -l Duchess < ~cam/bookend[[/]]alice_in_wonderland
That is, the cursor will always appear to be under the / before alice_in_wonderland. But if you type a
instead of i, you will notice the cursor move one space to the right. Then if you type miss_, you will get:

$ fgrep -l Duchess < ~cam/book/miss_[[a]]lice_in_wonderland
That is, the cursor will always be just after the last character you typed, until you type ESC to end your
input. Finally, if you go back to the first a in alice_in_wonderland, type R instead, and then type
through_the_looking_glass, you will see:

$ fgrep -l Duchess < ~cam/book/through_the_looking_glas[[s]]
In other words, you will be replacing (hence R) instead of inserting text.

Why capital R instead of lowercase r? The latter is a slightly different command, which replaces only one
character and does not enter input mode. With r, the next single character overwrites the character under the
cursor. So if we start with the original command line and type r followed by a semicolon, we get:

$ fgrep -l Duchess < ~cam/book[[;]]alice_in_wonderland
If you precede r with a number N, it will allow you to replace the next N existing characters on the line—
but still not enter input mode. Lowercase r is effective for fixing erroneous option letters, I/O redirection
characters, punctuation, and so on.

2.4.3 Deletion Commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that you know how to enter commands and move around the line, you need to know how to delete.
The basic deletion command in vi-mode is d followed by one other letter. This letter determines what the
unit and direction of deletion is, and it corresponds to a motion command, as listed previously in Table 2.8.

Table 2.10 shows some commonly used examples.

Table 2.10. Some vi-Mode Deletion Commands

Command Description
dh Delete one character backwards
dl Delete one character forwards
db Delete one word backwards
dw Delete one word forwards
dB Delete one non-blank word backwards
dW Delete one non-blank word forwards
d$ Delete to end of line
d0 Delete to beginning of line

These commands have a few variations and abbreviations. If you use a c instead of d, you will enter input
mode after it does the deletion. You can supply a numeric repeat count either before or after the d (or c).
Table 2.11 lists the available abbreviations.

Table 2.11. Abbreviations for vi-Mode Delete Commands

Command Description
D Equivalent to d$ (delete to end of line)
dd Equivalent to 0d$ (delete entire line)
C Equivalent to c$ (delete to end of line, enter input mode)
cc Equivalent to 0c$ (delete entire line, enter input mode)
X Equivalent to dl (delete character backwards)
x Equivalent to dh (delete character forwards)

Most people tend to use D to delete to end of line, dd to delete an entire line, and x (as "backspace") to
delete single characters. If you aren't a hardcore vi user, you may find it difficult to get some of the more
esoteric deletion commands under your fingers.

Every good editor provides "un-delete" commands as well as delete commands, and vi-mode is no
exception. vi-mode maintains a delete buffer that stores all of the modifications to text on the current line
only (note that this is different from the full vi editor). The command u undoes previous text modifications.
If you type u, it will undo the last change. Typing it again will undo the change before that. When there are
no more undo's, bash will beep. A related command is . (dot), which repeats the last text modification
command.

There is also a way to save text in the delete buffer without having to delete it in the first place: just type in
a delete command but use y ("yank") instead of d. This does not modify anything, but it allows you to
retrieve the yanked text as many times as you like later on. The commands to retrieve yanked text are p,
which inserts the text on the current line to the right of the cursor, and P, which inserts it to the left of the
cursor. The y, p, and P commands are powerful but far better suited to "real vi" tasks like making global
changes to documents or programs than to shell commands, so we doubt you'll use them very often.

2.4.4 Moving Around in the History File

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next group of vi control mode commands we cover allows you to move around in and search your
command history. This is the all-important functionality that lets you go back and fix an erroneous
command without retyping the entire line. These commands are summarized in Table 2.12.

Table 2.12. vi Control Mode Commands for Searching the Command History

Command Description
k or - Move backward one line
j or + Move forward one line
G Move to line given by repeat count
/string Search backward for string
?string Search forward for string
n Repeat search in same direction as previous
N Repeat search in opposite direction of previous

The first two can also be accomplished with the up and down cursor movement keys if your keyboard has
them. The first three can be preceded by repeat counts (e.g., 3k or 3- moves back three lines in the
command history).

If you aren't familiar with vi and its cultural history, you may be wondering at the wisdom of choosing such
seemingly poor mnemonics as h, j, k, and l for backward character, forward line, backward line, and
forward character, respectively. Well, there actually is a rationale for the choices—other than that they are
all together on the standard keyboard. Bill Joy originally developed vi to run on Lear-Siegler ADM-3a
terminals, which were the first popular models with addressable cursors (meaning that a program could send
an ADM-3a command to move the cursor to a specified location on the screen). The ADM-3a's h, j, k, and l
keys had little arrows on them, so Joy decided to use those keys for appropriate commands in vi. Another
(partial) rationale for the command choices is that CTRL-H is the traditional backspace key, and CTRL-J
denotes linefeed.

Perhaps + and - are better mnemonics than j and k, but the latter have the advantage of being more easily
accessible to touch typists. In either case, these are the most basic commands for moving around the history
file. To see how they work, let's use the same examples from the emacs-mode section earlier.

You enter the example command (RETURN works in both input and control modes, as does LINEFEED or
CTRL-J):

$ fgrep -l Duchess < ~cam/book/alice_in_wonderland
but you get an error message saying that your option letter was wrong. You want to change it to -s without
having to retype the entire command. Assuming you are in control mode (you may have to type ESC to put
yourself in control mode), you type k or - to get the command back. Your cursor will be at the beginning of
the line:

$ [[f]]grep -l Duchess < ~cam/book/alice_in_wonderland
Type w to get to the -, then l to get to the l. Now you can replace it by typing rs; press RETURN to run the
command.

Now let's say you get another error message, and you finally decide to look at the manual page for the fgrep
command. You remember having done this a while ago today, so rather than typing in the entire man
command, you search for the last one you used. To do this, type ESC to enter control mode (if you are
already in control mode, this will have no effect), then type / followed by man or ma. To be on the safe
side, you can also type ^ma; the ^ means match only lines that begin with ma. [6]

[6] Fans of vi and search utilities like grep should note that caret (^) for beginning-of-line is the only context
operator vi-mode provides for search strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

But typing /^ma doesn't give you what you want: instead, the shell gives you:

$ make myprogram
To search for "man" again, you can type n, which does another backward search using the last search string.
Typing / again without an argument and hitting RETURN will accomplish the same thing.

The G command retrieves the command whose number is the same as the numeric prefix argument you
supply. G depends on the command numbering scheme described in Chapter 3, in Section 3.4.2.3" Without
a prefix argument, it goes to command number 1. This may be useful to former C shell users who still want
to use command numbers.

2.4.5 Character-Finding Commands

There are some additional motion commands in vi-mode, although they are less useful than the ones we saw
earlier in the chapter. These commands allow you to move to the position of a particular character in the
line. They are summarized in Table 2.13, in which x denotes any character.

All of these commands can be preceded by a repeat count.

Table 2.13. vi-Mode Character-Finding Commands

Command Description
fx Move right to next occurrence of x
Fx Move left to previous occurrence of x
tx Move right to next occurrence of x, then back one space
Tx Move left to previous occurrence of x, then forward one space
; Redo last character-finding command
, Redo last character-finding command in opposite direction

Starting with the previous example: let's say you want to change Duchess to Duckess. Make sure that you're
at the end of the line (or, in any case, to the left of the h in Duchess); then, if you type Fh, your cursor will
move to the h:

$ fgrep -l Duc[[h]]ess < ~cam/book/alice_in_wonderland
At this point, you could type r to replace the h with k. But let's say you wanted to change Duchess to
Dutchess. You would need to move one space to the right of the u. Of course, you could just type l. But,
given that you're somewhere to the right of Duchess, the fastest way to move to the c would be to type Tu
instead of Fu followed by l.

As an example of how the repeat count can be used with character-finding commands, let's say you want to
change the filename from alice_in_wonderland to alice. In this case, assuming your cursor is still on the D,
you need to get to one character beyond the second slash. To do this, you can type 2fa. Your cursor will
then be on the a in alice_in_wonderland.

The character-finding commands also have associated delete commands. Read the command definitions in
the previous table and mentally substitute "delete" for move. You'll get what happens when you precede the
given character-finding command with a d. The deletion includes the character given as argument. For
example, assume that your cursor is under the a in alice_in_wonderland:

$ fgrep -l Duchess < ~cam/book/[[a]]lice_in_wonderland
If you want to change alice_in_wonderland to natalie_in_wonderland, one possibility is to type dfc. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you want to change alice_in_wonderland to natalie_in_wonderland, one possibility is to type dfc. This
means "delete right to next occurrence of c," i.e., delete "alic". Then you can type i (to enter input mode)
and then "natali" to complete the change.

One final command rounds out the vi control mode commands for getting around on the current line: you
can use the pipe character (|) to move to a specific column, whose number is given by a numeric prefix
argument. Column counts start at 1; count only your input, not the space taken up by the prompt string. The
default repeat count is 1, of course, which means that typing | by itself is equivalent to 0 (see Table 2.8).

2.4.6 Textual Completion

Although the character-finding commands and | are not particularly useful, vi-mode provides one additional
feature that we think you will use quite often: textual completion. This feature is not part of the real vi
editor, and it was undoubtedly inspired by similar features in emacs and, originally, in the TOPS-20
operating system for DEC mainframes.

The rationale behind textual completion is simple: you should have to type only as much of a filename, user
name, function, etc, as is necessary. Backslash (\) is the command that tells bash to do completion in vi-
mode. If you type in a word, hit ESC to enter control mode, and then type \, one of four things will happen;
they are the same as for TAB in emacs-mode:

1. If there is nothing whose name begins with the word, the shell will beep and nothing further will
happen.

2. If there is a command name in the search path, a function name, or a filename that the string
uniquely matches, the shell will type the rest of it, followed by a space in case you want to type in
more command arguments. Command name completion is only attempted when the word is in a
command position (e.g: at the start of a line).

3. If there is a directory that the string uniquely matches, the shell will complete the filename,
followed by a slash.

4. If there is more than one way to complete the name, the shell will complete out to the longest
common prefix among the available choices. Commands in the search path and functions take
precedence over filenames.

A related command is *. It behaves similarly to ESC-\, but if there is more than one completion possibility
(number four in the previous list), it lists all of them and allows you to type further. Thus, it resembles the *
shell wildcard character.

Less useful is the command =, which does the same kind of expansion as *, but in a different way. Instead
of expanding the names onto the command line, it prints them, then gives you your shell prompt back and
retypes whatever was on your command line before you typed =. For example, if the files in your directory
include tweedledee.c and tweedledum.c, and you type tweedl followed by ESC and then =, you will see
this:

$ cc tweedltweedledee.c tweedledum.c
It is also possible to expand other environment entities, as we saw in emacs-mode. If the text being
expanded is preceded by a dollar sign ($), the shell will attempt to expand the name to that of a shell
variable. If the text is preceded by a tilde (~), expansion to a username is attempted; if preceded by an at
sign (@), a hostname.

2.4.7 Miscellaneous Commands

Several miscellaneous commands round out vi-mode; some of them are quite esoteric. They are listed in
Table 2.14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2.14. Miscellaneous vi-Mode Commands

Command Description
~ Invert (twiddle) case of current character(s)
- Append last word of previous command, enter input mode
CTRL-L Clear the screen and redraw the current line on it; good for when your screen becomes garbled

Prepend # (comment character) to the line and send it to the history file; useful for saving a
command to be executed later without having to retype ita

[7]

[7] The line is also "executed" by the shell. However, # is the shell's comment character, so the shell ignores it.

The first of these can be preceded by a repeat count. A repeat count of n preceding the ~ changes the case of
the next n characters. The cursor will advance accordingly.

A repeat count preceding _ causes the nth word in the previous command to be inserted in the current line;
without the count, the last word is used. Omitting the repeat count is useful because a filename is usually the
last thing on a UNIX command line, and because users often run several commands in a row on the same
file. With this feature, you can type all of the commands (except the first) followed by ESC-_, and the shell
will insert the filename.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 The fc Command
fc is a built-in shell command that provides a superset of the C shell history mechanism. You can use it to
examine the most recent commands you entered, to edit one or more commands with your favorite "real"
editor, and to run old commands with changes without having to type the entire command in again. We'll
look at each of these uses in turn.

The -l option to fc lists previous commands. It takes arguments that refer to commands in the history file.
Arguments can be numbers or alphanumeric strings; numbers refer to the commands in the history file,
while strings refer to the most recent command beginning with the string. fc treats arguments in a rather
complex way:

· If you give two arguments, they serve as the first and last commands to be shown.

· If you specify one number argument, only the command with that number is shown.

· With a single string argument, it searches for the most recent command starting with that string and
shows you everything from that command to the most recent command.

· If you specify no arguments, you will see the last 16 commands you entered. bash also has a built-
in command for displaying the history: history.

A few examples should make these options clearer. Let's say you logged in and entered these commands:

ls -l
more myfile
vi myfile
wc -l myfile
pr myfile | lp -h
If you type fc -l with no arguments, you will see the above list with command numbers, as in:

1 ls -l
2 more myfile
3 vi myfile
4 wc -l myfile
5 pr myfile | lp -h

Adding another option, -n, suppresses the line numbers. If you want to see only commands 2 through 4,
type fc -l 2 4. If you want to see only the vi command, type fc -l 3. To see everything from the vi command
up to the present, type fc -l v. Finally, if you want to see commands between more and wc, you can type fc -
l m w, fc -l m 4, fc -l 2 4, etc.

The other important option to fc is -e for "edit." This is useful as an "escape hatch" from vi- and emacs-
modes if you aren't used to either of those editors. You can specify the pathname of your favorite editor and
edit commands from your history file; then when you have made the changes, the shell will actually execute
the new lines.

Let's say your favorite editor is a little home-brew gem called zed. You could edit your commands by
typing:

$ fc -e /usr/local/bin/zed
This seems like a lot of work just to fix a typo in your previous command; fortunately, there is a better way.
You can set the environment variable FCEDIT to the pathname of the editor you want fc to use. If you put a
line in your .bash_profile or environment file saying: [8]

[8] See Chapter 3 for information on the bash startup file .bash_profile.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[8] See Chapter 3 for information on the bash startup file .bash_profile.

FCEDIT=/usr/local/bin/zed

you will get zed when you invoke fc. If FCEDIT isn't set, then bash uses whatever the variable EDITOR is
set to. If that's also not set, then bash defaults to vi.

fc is usually used to fix a recent command. When used without options, it handles arguments a bit
differently than it does for the fc -l variation discussed earlier:

· With no arguments, fc loads the editor with the most recent command.

· With a numeric argument, fc loads the editor with the command with that number.

· With a string argument, fc loads the most recent command starting with that string.

· With two arguments to fc, the arguments specify the beginning and end of a range of commands,
as above.

Remember that fc actually runs the command(s) after you edit them. Therefore, the last-named choice can
be dangerous. bash will attempt to execute all commands in the range you specify when you exit your
editor. If you have typed in any multi line constructs (like those we will cover in Chapter 5), the results
could be even more dangerous. Although these might seem like valid ways of generating "instant shell
programs," a far better strategy would be to direct the output of fc -ln with the same arguments to a file;
then edit that file and execute the commands when you're satisfied with them:

$ fc -l cp > lastcommands$ vi lastcommands$ source lastcommands
In this case, the shell will not try to execute the file when you leave the editor!

There is one final option with fc. fc -s allows you to rerun a command. With an argument, fc will rerun the
last command starting with the given string. Without an argument, it will rerun the previous command. The
-s option also allows you to provide a pattern and replacement. For example, if you typed:

$ cs prog.c
You could correct it with fc -s cs=cc. This can be combined with the string search: fc -s cs=cc cs. The last
occurence of cs will be found and replaced with cc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6 History Expansion
If you are a C shell user, you may be familiar with the history expansion mechanism that it provides. bash
provides a similar set of features. History expansion is a primitive way to recall and edit commands in the
history list. The way to recall commands is by the use of event designators. Table 2.15 gives a complete list.

Table 2.15. Event Designators

Command Description
! Start a history substitution
!! Refers to the last command
!n Refers to command line n
!-n Refers to the current command line minus n
!string Refers to the most recent command starting with string
!?string? Refers to the most recent command containing string. The ending ? is optional
^string1^string2 Repeat the last command, replacing string1 with string2

By far the most useful command is !!. Typing !! on the command line re-executes the last command. If you
know the command number of a specific command, you can use the !n form, where n is the command
number. Command numbers can be determined from the history command. Alternatively, you can re-
execute the most recent command beginning with the specified string by using !string.

You might also find the last expansion in the table to be of some use if you've made a typing mistake. For
example, you might have typed

$ cat through_the_loking_glass | grep Tweedledee > dee.list
Instead of moving back to the line and changing loking to looking, you could just type ^lok^look. This will
change the string lok to look and then execute the resulting command.

It's also possible to refer to certain words in a previous command by the use of a word designator. Table
2.16 lists available designators. Note that when counting words, bash (like most UNIX programs) starts
counting with zero, not with one.

Table 2.16. Word Designators

Designator Description
0 The zeroth (first) word in a line
n The nth word in a line
^ The first argument (the second word)
$ The last argument in a line
% The word matched by the most recent ?string search
x-y A range of words from x to y. -y is synonymous with 0-y.

* All words but the zeroth (first). Synonymous with 1-$. If there is only one word on the line,
an empty string is returned.

x* Synonymous with x-$
x- The words from x to the second last word

The word designator follows the event designator, separated by a colon. You could, for example, repeat the
previous command with different arguments by typing !!:0 followed by the new arguments.

Event designators may also be followed by modifiers. The modifiers follow the word designator, if there is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event designators may also be followed by modifiers. The modifiers follow the word designator, if there is
one. Table 2.17 lists the available modifiers.

Table 2.17. Modifiers

Modifier Description
h Removes a trailing pathname component, leaving the head
r Removes a trailing suffix of the form .xxx
e Removes all but the trailing suffix
t Removes all leading pathname components, leaving the tail
p Prints the resulting command but doesn't execute it
q Quote the substituted words, escaping further substitutions
x Quote the substituted words, breaking them into words at blanks and newlines
s/old/new/ Substitutes new for old

More than one modifier may be used with an event designator; each one is separated by a colon.

History expansion is fine for re-executing a command quickly, but it has been superseded by the command-
line editing facilities that we looked at earlier in this chapter. Its inclusion is really only for completeness,
and we feel you are better off mastering the techniques offered in the vi or emacs editing modes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7 readline
bash's command-line editing interface is readline. It is actually a library of software developed for the GNU
project that can be used by applications requiring a text-based interface. It provides editing and text-
manipulation features to make it easier for the user to enter and edit text. Just as importantly, it allows
standardization, in terms of both key strokes and customization methods, across all applications that use it.

readline provides default editing in either of two modes: vi or emacs. Both modes provide a subset of the
editing commands found in the full editors. We've already looked at the command sets of these modes in the
previous sections of this chapter. We'll now look at how you can make your own command sets.

readline gives bash added flexibility compared to other shells because it can be customized through the use
of key bindings, either from the command line or in a special startup file. You can also set readline
variables. We'll see how you can set up readline using your own startup file now, and then go on to
examine how the binding capability can be used from the command line.

2.7.1 The readline Startup File

The default startup file is called .inputrc and must exist in your home directory if you wish to customize
readline. You can change the default filename by setting the environment variable INPUTRC (see Chapter
3 for further information on environment variables).

When bash starts up, it reads the startup file (if there is one) and any settings there come into effect. The
startup file is just a sequence of lines that bind a keyname to a macro or readline function name. You can
also place comments in the file by preceding any line with a #.

You can use either an English name or a key escape sequence for the keyname. For example, to bind CTRL-
T to the movement command for moving to the end of the current line, you could place Control-t: end-of-
line in your .inputrc. If you wanted to use a key escape sequence you could have put "\C-t<">: end-of-
line. The \C- is the escape sequence prefix for Control. The advantage of the key sequence is that you can
specify a sequence of keys for an action. In our example, once readline has read this line, typing a CTRL-T
will cause the cursor to move to the end of the line.

The end-of-line in the previous example is a readline function. There are over 60 functions that allow you
to control everything from cursor motions to changing text and command completion (for a complete list,
see the bash manual page). All of the emacs and vi editing mode commands that we looked at in this chapter
have associated functions. This allows you to customize the default modes or make up completely new ones
using your own key sequences.

Besides the readline functions, you can also bind a macro to a key sequence. A macro is simply a sequence
of keystrokes inside single or double quotes. Typing the key sequence causes the keys in the macro to be
entered as though you had typed them. For example, we could bind some text to CTRL-T; "\C-t<">:
<">Curiouser and curiouser!<">. Hitting CTRL-T would cause the phrase Curiouser and curiouser! to
appear on the command line.

If you want to use single or double quotes in your macros or key sequence, you can escape them by using a
backslash (\). Table 2.18 lists the common escape sequences.

Table 2.18. Escape Sequences

Sequence Description
\C- Control key prefix
\M- Meta (Escape) key prefix
\e The escape character
\\ The backslash character (\)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\<"> The double quote character (<">)
\' The single quote character (')

readline also allows simple conditionals in the .inputrc. There are three directives: $if, $else, and $endif.
The conditional of the $if can be an editing mode, a terminal type, or an application-specific condition.

To test for an editing mode, you can use the form mode= and test for either vi or emacs. For instance, to set
up readline so that setting CTRL-T will take place only in emacs mode, you could put the following in your
.inputrc:

$if mode=emacs
"\C-t": "Curiouser and curiouser!"
$endif

Likewise, to test for a terminal type, you can use the form term=. You must provide the full terminal name
on the right-hand side of the test. This is useful when you need a terminal-specific key binding. You may,
for instance, want to bind the function keys of a particular terminal type to key sequences.

If you have other applications that use readline, you might like to keep your bash-specific bindings
separate. You can do this with the last of the conditionals. Each application that uses readline sets its own
variable which you can test for. To test for bash specifics, you could put $if bash into your .inputrc.

2.7.1.1 readline variables

readline has its own set of variables that you can set from within your .inputrc. Table 2.19 lists them. [9]

[9] The variables disable-completion, enable-keypad, input-meta, mark-directories, and visible-stats are not
available in versions of bash prior to 2.0.

Table 2.19. readline Variables

Variable Description

bell-style If set to none, readline never rings the bell (beeps). If set to visible, readline will attempt to
use a visible bell. If set to audible, it will attempt to ring the bell. The default is audible.

comment-
begin

The string to insert when the readline insert-comment command is executed. The default is
a #.

completion-
query-items

Determines when the user is asked to see further completions if the number of completions
is greater than that given. The default is 100.

convert-
meta

If set to On, converts characters with the eighth bit set to an ASCII key sequence by
stripping the eighth bit and prepending an escape character. The default is On.

disable-
completion

If set to On, inhibits word completion. Completion characters will be inserted into the line
as if they had been mapped to self-insert. The default is Off.

editing-
mode Sets the editing mode to vi or emacs.

enable-
keypad

If set to On, readline tries to enable the keyboard's application keypad when it is called.
Some systems need this to enable the arrow keys. The default is Off.

expand-
tilde

If set to On, tilde expansion is attempted when readline attempts word completion. The
default is Off.

horizontal-
scroll-mode

Set to On means that lines will scroll horizontally if you type beyond the right-hand side of
the screen. The default is Off, which wraps the line onto a new screen line.

input-meta If set to On, eight-bit input will be accepted. The default is Off. This is synonymous with
meta-flag.
Sets readline's current keymap for bindings. Acceptable names are emacs, emacs-standard,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

keymap
Sets readline's current keymap for bindings. Acceptable names are emacs, emacs-standard,
emacs-meta, emacs-ctlx, vi, vi-move, vi-command and vi-insert. The default is emacs. Note
that the value of editing-mode also affects the keymap.

mark-
directories If set to On, completed directory names have a slash appended.

mark-
modified-
lines

If set to On, displays an asterisk at the start of history lines that have been modified. The
default is Off.

meta-flag If set to On, eight-bit input will be accepted. The default is Off.
output-
meta If set to On, displays characters with the eighth bit set directly. The default is Off.

show-all-if-
ambiguous

If set to On, words with more than one possible completion are listed instead of ringing the
bell. The default is Off.

visible-
stats

If set to On, a character denoting a file's type as reported by the stat system call is appended
to the filename when listing possible completions. The default is Off.

To set any of the variables, you can use the set command in your .inputrc. For example, to set vi-mode
when you start up, you could place the line set editing-mode vi in your .inputrc. Every time bash starts it
would change to vi-mode.

2.7.2 Key Bindings Using bind

If you want to try out key bindings or you want to see what the current settings are, you can do it from the
bash command line by using the bind command. The binding syntax is the same as that of the .inputrc file,
but you have to surround each binding in quotes so that it is taken as one argument.

To bind a string to CTRL-T, we could type bind '"\C-t<">: <">Curiouser and curiouser!"'. This would
bind the given string to CTRL-T just as in the .inputrc, except that the binding will apply only to the current
shell and will cease once you log out.

bind also allows you to print out the bindings currently in effect by typing bind -P. [10]If you do so, you'll
see things like:

[10] Versions of bash prior to 2.0 use -d instead of -p, and -v instead of -P. Also, the -r, -V, -S, -s and the new -v
options are not available in these older versions.

abort can be found on "\C-g", "\C-x\C-g", "\e\C-g".
accept-line can be found on "\C-j", "\C-m".
alias-expand-line is not bound to any keys
arrow-key-prefix is not bound to any keys
backward-char can be found on "\C-b", "\eOD", "\e[D".
...

If you just want to see the names of the readline functions, you can use bind -l.

Another option you might find useful is -p. This prints out the bindings to standard output in a format that
can be re-read by bind, or used as a .inputrc file. So, to create a complete .inputrc file that you can then
edit, you could type bind -p > .inputrc.

To read the file back in again you can use another option, -f. This option takes a filename as its argument
and reads the key bindings from that file. You can also use it to update the key bindings if you've just
modified your .inputrc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8 Keyboard Habits
In this chapter we have seen that bash provides command-line editing with two modes: vi and emacs. You
may be wondering why these two editors were chosen. The primary reason is because vi and emacs are the
most widely used editors for UNIX. People who have used either editor will find familiar editing facilities.

If you are not familiar with either of these editors, you should seriously consider adopting emacs-mode
keyboard habits. Because it is based on control keys and doesn't require you to think in terms of a
"command mode" and "insert mode," you will find emacs-mode easier to assimilate. Although the full
emacs is an extremely powerful editor, its command structure lends itself very well to small subsetting:
there are several "mini-emacs" editors floating around for UNIX, MS-DOS, and other systems.

The same cannot be said for vi, because its command structure is really meant for use in a full-screen editor.
vi is quite powerful too, in its way, but its power becomes evident only when it is used for purposes similar
to that for which it was designed: editing source code in C and LISP. As mentioned earlier, a vi user has the
power to move mountains in few keystrokes—but at the cost of being unable to do anything meaningful in
very few keystrokes. Unfortunately, the latter is most desired in a command interpreter, especially
nowadays when users are spending more time within applications and less time working with the shell. In
short, if you don't already know vi, you will probably find its commands obscure and confusing.

Both bash editing modes have quite a few commands; you will undoubtedly develop keyboard habits that
include just a few of them. If you use emacs-mode and you aren't familiar with the full emacs, here is a
subset that is easy to learn yet enables you to do just about anything:

· For cursor motion around a command line, stick to CTRL-A and CTRL-E for beginning and end of
line, and CTRL-F and CTRL-B for moving around.

· Delete using DEL (or whatever your "erase" key is) and CTRL-D; as with CTRL-F and CTRL-B,
hold down to repeat if necessary. Use CTRL-K to erase the entire line.

· Use CTRL-P and CTRL-N (or the up and down arrow keys) to move through the command
history.

· Use CTRL-R to search for a command you need to run again.

· Use TAB for filename completion.

After a few hours spent learning these keystrokes, you will wonder how you ever got along without
command-line editing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Customizing Your Environment
An environment is a collection of concepts that express the things a computer system or other set of tools
does in terms designed to be understandable and coherent, and a look and feel that is comfortable. For
example, your desk at work is an environment. Concepts involved in desk work usually include memos,
phone calls, letters, forms, etc. The tools on or in your desk that you use to deal with these things include
paper, staples, envelopes, pens, a telephone, a calculator, etc. Every one of these has a set of characteristics
that express how you use it; such characteristics range from location on your desk or in a drawer (for simple
tools) to more sophisticated things like which numbers the memory buttons on your phone are set to. Taken
together, these characteristics make up your desk's look and feel.

You customize the look and feel of your desk environment by putting pens where you can most easily reach
them, programming your phone buttons, etc. In general, the more customization you have done, the more
tailored to your personal needs—and therefore the more productive—your environment is.

Similarly, UNIX shells present you with such concepts as files, directories, and standard input and output,
while UNIX itself gives you tools to work with these, such as file manipulation commands, text editors, and
print queues. Your UNIX environment's look and feel is determined by your keyboard and display, of
course, but also by how you set up your directories, where you put each kind of file, and what names you
give to files, directories, and commands. There are also more sophisticated ways of customizing your shell
environment.

This chapter will look at the four most important features that bash provides for customizing your
environment.

Special files

The files .bash_profile, .bash_logout, and .bashrc that are read by bash when you log in and out or
start a new shell.

Aliases

Synonyms for commands or command strings that you can define for convenience.

Options

Controls for various aspects of your environment, which you can turn on and off.

Variables

Changeable values that are referred to by a name. The shell and other programs can modify their
behavior according to the values stored in the variables.

Although these features are not the only ones available, they form the basis for doing more advanced
customization. They are also the features that are common to the various shells available on UNIX. Later
chapters will cover more advanced shell features, such as the ability to program the shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1 The .bash_profile, .bash_logout, and .bashrc Files
Three files in your home directory have a special meaning to bash, providing a way for you to set up your
account environment automatically when you log in and when you invoke another bash shell, and allowing
you to perform commands when you log out. These files may already exist in your home directory,
depending on how your system administrator has set up your account. If they don't exist, your account is
using only the default system file /etc/profile. You can easily create your own bash files using your favorite
text editor. If you are unfamiliar with text editors available under UNIX, we suggest that you familiarize
yourself with one of the better-known ones such as vi or emacs before proceeding further with the
techniques described in this chapter.

The most important bash file, .bash_profile, is read and the commands in it executed by bash every time
you log in to the system. If you examine your .bash_profile you will probably see lines similar to:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin
SHELL=/bin/bash
MANPATH=/usr/man:/usr/X11/man
EDITOR=/usr/bin/vi

PS1='\h:\w\$ '
PS2='> '
export EDITOR

These lines define the basic environment for your login account. For the moment, it is probably best to
leave these lines alone until you understand what they do. When editing your .bash_profile, just add your
new lines after the existing ones.

Note that whatever you add to your .bash_profile won't take effect until the file is re-read by logging out
and then logging in again. Alternatively, you can also use the source command. [1]For example:

[1] You can also use the synonymous command dot (.).

source .bash_profile

source executes the commands in the specified file, in this case .bash_profile, including any commands that
you have added.

bash allows two synonyms for .bash_profile: .bash_login, derived from the C shell's file named .login, and
.profile, derived from the Bourne shell and Korn shell files named .profile. Only one of these three is read
when you log in. If .bash_profile doesn't exist in your home directory, then bash will look for .bash_login.
If that doesn't exist it will look for .profile.

One advantage of bash's ability to look for either synonym is that you can retain your .profile if you have
been using the Bourne shell. If you need to add bash-specific commands, you can put them in .bash_profile
followed by the command source .profile. When you log in, all the bash-specific commands will be
executed, and bash will source .profile, executing the remaining commands. If you decide to switch to using
the Bourne shell you don't have to modify your existing files. A similar approach was intended for
.bash_login and the C shell .login, but due to differences in the basic syntax of the shells, this is not a good
idea.

.bash_profile is read and executed only by the login shell. If you start up a new shell (a subshell) by typing
bash on the command line, it will attempt to read commands from the file .bashrc. This scheme allows you
the flexibility to separate startup commands needed at login time from those you might need when you run a
subshell. If you need to have the same commands run regardless of whether it is a login shell or a subshell,
you can just use the source command from within .bash_profile to execute .bashrc. If .bashrc doesn't exist
then no commands are executed when you start up a subshell.

The file .bash_logout is read and executed every time a login shell exits. It is provided to round out the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The file .bash_logout is read and executed every time a login shell exits. It is provided to round out the
capabilities for customizing your environment. If you wanted to execute some commands that remove
temporary files from your account or record how much time you have spent logged in to the system then
you would place the commands in .bash_logout. This file doesn't have to exist in your account—if it isn't
there when you log out, then no extra commands are executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 Aliases
If you have used UNIX for any length of time you will have noticed that there are many commands
available and that some of them have cryptic names. Sometimes the commands you use the most have a
string of options and arguments that need to be specified. Wouldn't it be nice if there was a feature that let
you rename the commands or allowed you to type in something simple instead of half a dozen options?
Fortunately, bash provides such a feature: the alias. [2]

[2] C shell users should note that the bash alias feature does not support arguments in alias expansions, as C
shell aliases do. This functionality is provided by functions, which we'll look at in Chapter 4.

Aliases can be defined on the command line, in your .bash_profile, or in your .bashrc, using this form:

alias name=command

This syntax specifies that name is an alias for command. Whenever you type name as a command, bash will
substitute command in its place when it executes the line. Notice that there are no spaces on either side of
the equal sign (=); this is the required syntax.

There are a few basic ways to use an alias. The first, and simplest, is as a more mnemonic name for an
existing command. Many commonly used UNIX commands have names that are poor mnemonics and are
therefore excellent candidates for aliasing, the classic example being:

alias search=grep

grep, the UNIX file-searching utility, was named as an acronym for something like "Generalized Regular
Expression Parser." [3]This acronym may mean something to a computer scientist, but not to the office
administrator who has to find Fred in a list of phone numbers. If you have to find Fred and you have the
word search defined as an alias for grep, you can type:

[3] Another theory has it that grep stands for the command "g/re/p", in the old ed text editor, which does essentially
the same thing as grep.

$ search Fred phonelist
Some people who aren't particularly good typists like to use aliases for typographical errors they make
often. For example:

alias emcas=emacs
alias mali=mail
alias gerp=grep

This can be handy, but we feel you're probably better off suffering with the error message and getting the
correct spelling under your fingers. Another common way to use an alias is as a shorthand for a longer
command string. For example, you may have a directory to which you need to go often. It's buried deep in
your directory hierarchy, so you want to set up an alias that will allow you to cd there without typing (or
even remembering) the entire pathname:

alias cdvoy='cd sipp/demo/animation/voyager'

Notice the quotes around the full cd command; these are necessary if the string being aliased consists of
more than one word. [4]

[4] This contrasts with C shell aliases, in which the quotes aren't required.

As another example, a useful option to the ls command is -F: it puts a slash (/) after directory files and an
asterisk (*) after executable files. Since typing a dash followed by a capital letter is inconvenient, many
people define an alias like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alias lf='ls -F'

A few things about aliases are important to remember. First, bash makes a textual substitution of the alias
for that which it is aliasing; it may help to imagine bash passing your command through a text editor or
word processor and issuing a "change" or "substitute" command before interpreting and executing it. Any
special characters (such as wildcards like * and ?) that result when the alias is expanded are interpreted
properly by the shell. [5]For example, to make it easier to print all of the files in your directory, you could
define the alias:

[5] An important corollary: wildcards and other special characters cannot be used in the names of aliases, i.e., on
the left side of the equal sign.

alias printall='pr * | lpr'

Second, keep in mind that aliases are recursive, which means that it is possible to alias an alias. A legitimate
objection to the previous example is that the alias, while mnemonic, is too long and doesn't save enough
typing. If we want to keep this alias but add a shorter abbreviation, we could define:

alias pa=printall

With recursive aliasing available it would seem possible to create an infinite loop:

alias ls='ls -l'

bash ensures that this loop cannot happen, because only the first word of the replacement text is checked for
further aliasing; if that word is identical to the alias being expanded, it is not expanded a second time. The
above command will work as expected (typing ls produces a long list with permissions, sizes, owners, etc.),
while in more meaningless situations such as:

alias listfile=ls
alias ls=listfile

the alias listfile is ignored.

Aliases can be used only for the beginning of a command string—albeit with certain exceptions. In the cd
example above, you might want to define an alias for the directory name alone, not for the entire command.
But if you define:

alias anim=sipp/demo/animation/voyager

and then type cd anim, bash will probably print a message like anim: No such file or directory.

An obscure feature of bash's alias facility—one not present in the analogous C shell feature—provides a
way around this problem. If the value of an alias (the right side of the equal sign) ends in a blank, then bash
tries to do alias substitution on the next word on the command line. To make the value of an alias end in a
blank, you need to surround it with quotes.

Here is how you would use this capability to allow aliases for directory names, at least for use with the cd
command. Just define:

alias cd='cd '

This causes bash to search for an alias for the directory name argument to cd, which in the previous
example would enable it to expand the alias anim correctly.

Another way to define a directory variable for use with the cd command is to use the environment variable
cdable_vars, discussed later in this chapter.

Finally, there are a few useful adjuncts to the basic alias command. If you type alias name without an equal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, there are a few useful adjuncts to the basic alias command. If you type alias name without an equal
sign (=) and value, the shell will print the alias's value or alias namenot found if it is undefined. If you type
alias without any arguments, you get a list of all the aliases you have defined. The command unalias name
removes any alias definition for its argument.

Aliases are very handy for creating a comfortable environment, but they have essentially been superseded
by shell scripts and functions, which we will look at in the next chapter. These give you everything aliases
do plus much more, so if you become proficient at them, you may find that you don't need aliases anymore.
However, aliases are ideal for novices who find UNIX to be a rather forbidding place, full of terseness and
devoid of good mnemonics. Chapter 4 shows the order of precedence when, for example, an alias and a
function have the same name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 Options
While aliases let you create convenient names for commands, they don't really let you change the shell's
behavior. Options are one way of doing this. A shell option is a setting that is either "on" or "off." While
several options relate to arcane shell features that are of interest only to programmers, those that we will
cover here are of interest to all users.

The basic commands that relate to options are set -o optionname and set +o optionname. You can change
more than one option with the one set command by preceding each optionname with a -o or +o. The use of
plus (+) and minus (-) signs is counterintuitive: the - turns the named option on, while the + turns it off. The
reason for this incongruity is that the dash (-) is the conventional UNIX way of specifying options to a
command, while the use of + is an afterthought.

Most options also have one-letter abbreviations that can be used in lieu of the set -o command; for example,
set -o noglob can be abbreviated set -f. These abbreviations are carryovers from the Bourne shell. Like
several other "extra" bash features, they exist to ensure upward compatibility; otherwise, their use is not
encouraged.

Table 3.1 lists the options that are useful to general UNIX users. All of them are off by default except as
noted.

Table 3.1. Basic Shell Options

Option Description
emacs Enter emacs editing mode (on by default)

ignoreeof Don't allow use of a single CTRL-D to log off; use the exit command to log off immediately.
This has the same effect as setting the shell variable IGNOREEOF=10.

noclobber Don't allow output redirection (>) to overwrite an existing file

noglob Don't expand filename wildcards like * and ? (wildcard expansion is sometimes called
globbing)

nounset Indicate an error when trying to use a variable that is undefined
vi Enter vi editing mode

There are several other options (21 in all; Appendix B, lists them). To check the status of an option, just
type set -o. bash will print a list of all options along with their settings.

3.3.1 shopt

bash 2.0 introduces a new built-in for configuring shell behaviour, shopt. This built-in is meant as a
replacement for option configuration originally done through environment variables and the set command.
[6]

[6] Appendix B provides a complete list of shopt shell options and the corresponding environment variables in
earlier versions of the shell.

The shopt -o functionality is a duplication of parts of the set command and is provided for completeness on
the part of shopt, while retaining backward compatibility by its continued inclusion in set.

The format for this command is shopt options option-names. Table 3.2 lists shopt's options.

Table 3.2. Options to shopt

Option Meaning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-p Display a list of the settable options and their current values
-s Sets each option name
-u Unset each option name
-q Suppress normal output; the return status indicates if a variable is set or unset
-o Allows the values of the option names to be those defined for the -o option of the set command

The default action is to unset (turn off) the named options. If no options and arguments are given, or the -p
option is used, shopt displays a list of the settable options and the values that they currently have. If -s or -u
is also given, the list is confined to only those options that are set or unset, respectively.

A list of the most useful option names is given in Table 3.3. A complete list is given in Appendix B.

Table 3.3. shopt Option Names

Option Meaning

cdable_vars If set, an argument to the cd built-in command that is not a directory is assumed to be the
name of a variable whose value is the directory to change to.

checkhash If set, bash checks that a command found in the hash table exists before trying to execute it.
If a hashed command no longer exists, a normal path search is performed.

cmdhist If set, bash attempts to save all lines of a multiple-line command in the same history entry.

dotglob If set, bash includes filenames beginning with a . (dot) in the results of pathname
expansion.

execfail If set, a non-interactive shell will not exit if it cannot execute the file specified as an
argument to the exec command. An interactive shell does not exit if exec fails.

histappend If set, the history list is appended to the file named by the value of the HISTFILE variable
when the shell exits, rather than overwriting the file.

lithist If set, and the cmdhist option is enabled, multiline commands are saved to the history with
embedded newlines, rather than using semicolon separators where possible.

mailwarn If set, and a file that bash is checking for mail has been accessed since the last time it was
checked, the message "The mail in mailfile has been read" is displayed.

We'll look at the use of the various options later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Shell Variables
There are several characteristics of your environment that you may want to customize but that cannot be
expressed as an on/off choice. Characteristics of this type are specified in shell variables. Shell variables can
specify everything from your prompt string to how often the shell checks for new mail.

Like an alias, a shell variable is a name that has a value associated with it. bash keeps track of several built-
in shell variables; shell programmers can add their own. By convention, built-in variables should have
names in all capital letters. bash does, however, have two exceptions. [7]The syntax for defining variables is
somewhat similar to the syntax for aliases:

[7] Versions prior to 2.0 have many more lowercase built-in variables. Most of these are now obsolete, the
functionality having been moved to the shopt command.

varname=value

There must be no space on either side of the equal sign, and if the value is more than one word, it must be
surrounded by quotes. To use the value of a variable in a command, precede its name by a dollar sign ($).

You can delete a variable with the command unset varname. Normally this isn't useful, since all variables
that don't exist are assumed to be null, i.e., equal to the empty string "". But if you use the option nounset,
which causes the shell to indicate an error when it encounters an undefined variable, then you may be
interested in unset.

The easiest way to check a variable's value is to use the echo built-in command. All echo does is print its
arguments, but not until the shell has evaluated them. This includes—among other things that will be
discussed later—taking the values of variables and expanding filename wildcards. So, if the variable
wonderland has the value alice, typing:

$ echo "$wonderland"
will cause the shell to simply print alice. If the variable is undefined, the shell will print a blank line. A
more verbose way to do this is:

$ echo "The value of \$ varname is \"$ varname \"."
The first dollar sign and the inner double quotes are backslash-escaped (i.e., preceded with \ so the shell
doesn't try to interpret them; see Chapter 1, so that they appear literally in the output, which for the above
example would be:

The value of $wonderland is "alice".

3.4.1 Variables and Quoting

Notice that we used double quotes around variables (and strings containing them) in these echo examples.
In Chapter 1, we said that some special characters inside double quotes are still interpreted, while none are
interpreted inside single quotes.

A special character that "survives" double quotes is the dollar sign—meaning that variables are evaluated.
It's possible to do without the double quotes in some cases; for example, we could have written the above
echo command this way:

$ echo The value of \$ varname is \"$ varname \".
But double quotes are more generally correct. Here's why. Suppose we did this:

$ fred='Four spaces between these words.'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ fred='Four spaces between these words.'
Then if we entered the command echo $fred, the result would be:

Four spaces between these words.

What happened to the extra spaces? Without the double quotes, the shell splits the string into words after
substituting the variable's value, as it normally does when it processes command lines. The double quotes
circumvent this part of the process (by making the shell think that the whole quoted string is a single word).

Therefore the command echo "$fred" prints this:

Four spaces between these words.

The distinction between single and double quotes becomes particularly important when we start dealing
with variables that contain user or file input later on.

Double quotes also allow other special characters to work, as we'll see in Chapter 4, Chapter 6, and Chapter
7. But for now, we'll revise the "When in doubt, use single quotes" rule in Chapter 1 by adding, "...unless a
string contains a variable, in which case you should use double quotes."

3.4.2 Built-In Variables

As with options, some built-in shell variables are meaningful to general UNIX users, while others are
arcana for hackers. We'll look at the more generally useful ones here, and we'll save some of the more
obscure ones for later chapters. Again, Appendix B contains a complete list.

3.4.2.1 Editing mode variables

Several shell variables relate to the command-line editing modes that we saw in the previous chapter. These
are listed in Table 3.4.

Table 3.4. Editing Mode Variables

Variable Meaning
HISTCMD The history number of the current command

HISTCONTROL

If set to the value of ignorespace, lines beginning with a space are not entered into the
history list. If set to ignoredups, lines matching the last history line are not entered.
Setting it to ignoreboth enables both options.

[8]

HISTIGNORE

A list of patterns, separated by colons (:), used to decide which command lines to save
in the history list. Patterns are considered to start at the beginning of the command line
and must fully specify the line, i.e., no wildcard (*) is implicitly appended. The patterns
are checked against the line after HISTCONTROL is applied. An ampersand (&)
matches the previous line. An explicit & may be generated by escaping it with a
backslash.

[9]

HISTFILE Name of history file in which the command history is saved. The default is
~/.bash_history.

HISTFILESIZE
The maximum number of lines to store in the history file. The default is 500. When this
variable is assigned a value, the history file is truncated, if necessary, to the given
number of lines.

HISTSIZE The maximum number of commands to remember in the command history. The default
is 500.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FCEDIT Pathname of the editor to use with the fc command.

[8] history_control is synonymous with HISTCONTROL in versions of bash prior to 2.0. Versions prior to 1.14
only define history_control. ignoreboth is not available in bash versions prior to 1.14. HISTCONTROL is now
considered to be obsolete, having been superseded by HISTIGNORE.

[9] This variable is not available in versions of bash prior to 2.0.

In the previous chapter, we saw how bash numbers commands. To find out the current command number in
an interactive shell, you can use the HISTCMD. Note that if you unset HISTCMD, it will lose its special
meaning, even if you subsequently set it again.

We also saw in the last chapter how bash keeps the history list in memory and saves it to a file when you
exit a shell session. The variables HISTFILESIZE and HISTSIZE allow you to set the maximum number
of lines that the shell saves in the history file, and the maximum number of lines to "remember" in the
history list, i.e., the lines that it displays with the history command.

Suppose you wanted to maintain a small history file in your home directory. By setting HISTFILESIZE to
100, you immediately cause the history file to allow a maximum of 100 lines. If it is already larger than the
size you specify, it will be truncated.

HISTSIZE works in the same way, but only on the history that the current shell has in memory. When you
exit an interactive shell, HISTSIZE will be the maximum number of lines saved in your history file. If you
have already set HISTFILESIZE to be less than HISTSIZE, the saved list will be truncated.

You can also cut down on the size of your history file and history list by use of the HISTCONTROL
variable. If set to ignorespace, any commands that you type that start with a space won't appear in the
history. Even more useful is the ignoredups option. This discards consecutive entries from the history list
that are duplicated. Suppose you want to monitor the size of a file with ls as it is being created. Normally,
every time you type ls it will appear in your history. By setting HISTCONTROL to ignoredups, only the
first ls will appear in the history.

bash 2.0 introduced a new and more flexible type of history control variable. HISTIGNORE allows you to
specify a list of patterns which the command line is checked against. If the command line matches one of
the patterns, it is not entered into the history list. You can also request that it ignore duplicates by using the
pattern &.

For example, suppose you didn't want any command starting with l, nor any duplicates, to appear in the
history. Setting HISTIGNORE to l*:& will do just that. Just as with other pattern matching we have seen,
the wildcard after the l will match any command line starting with that letter.

3.4.2.2 Mail variables

Since the mail program is not running all the time, there is no way for it to inform you when you get new
mail; therefore the shell does this instead. [10]The shell can't actually check for incoming mail, but it can
look at your mail file periodically and determine whether the file has been modified since the last check.
The variables listed in Table 3.5 let you control how this works.

[10] BSD UNIX users should note that the biff command on those systems does a better job of informing you about
new mail; while bash only prints "you have new mail" messages right before it prints command prompts, biff can
do so at any time.

Table 3.5. Mail Variables

Variable Meaning
MAIL Name of file to check for incoming mail
MAILCHECK How often, in seconds, to check for new mail (default 60 seconds)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAILPATH List of filenames, separated by colons (:), to check for incoming mail

Under the simplest scenario, you use the standard UNIX mail program, and your mail file is
/usr/mail/yourname or something similar. In this case, you would just set the variable MAIL to this
filename if you want your mail checked:

MAIL=/usr/mail/yourname

If your system administrator hasn't already done it for you, put a line like this in your .bash_profile.

However, some people use nonstandard mailers that use multiple mail files; MAILPATH was designed to
accommodate this. bash will use the value of MAIL as the name of the file to check, unless MAILPATH is
set, in which case the shell will check each file in the MAILPATH list for new mail. You can use this
mechanism to have the shell print a different message for each mail file: for each mail filename in
MAILPATH, append a question mark followed by the message you want printed.

For example, let's say you have a mail system that automatically sorts your mail into files according to the
username of the sender. You have mail files called /usr/mail/you/martin, /usr/mail/you/geoffm,
/usr/mail/you/paulr, etc. You define your MAILPATH as follows:

MAILPATH=/usr/mail/you/martin:/usr/mail/you/geoffm:\
/usr/mail/you/paulr

If you get mail from Martin Lee, the file /usr/mail/you/martin will change. bash will notice the change
within one minute and print the message:

You have new mail in /usr/mail/you/martin

If you are in the middle of running a command, the shell will wait until the command finishes (or is
suspended) to print the message. To customize this further, you could define MAILPATH to be:

MAILPATH="\
/usr/mail/you/martin?You have mail from Martin.:\
/usr/mail/you/geoffm?Mail from Geoff has arrived.:\
/usr/mail/you/paulr?There is new mail from Paul."

The backslashes at the end of each line allow you to continue your command on the next line. But be
careful: you can't indent subsequent lines. Now, if you get mail from Martin, the shell will print:

You have mail from Martin.

You can also use the variable $_ in the message to print the name of the current mail file. For example:

MAILPATH='/usr/mail/you?You have some new mail in $_'

When new mail arrives, this will print the line:

You have some new mail in /usr/mail/you

The ability to receive notification of mail can be switched on and off by using the mailwarn option to the
shopt command.

3.4.2.3 Prompting variables

If you have seen enough experienced UNIX users at work, you may already have realized that the shell's
prompt is not engraved in stone. Many of these users have all kinds of things encoded in their prompts. It is
possible to put useful information into the prompt, including the date and the current directory. We'll give
you some of the information you need to modify your own here; the rest will come in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Actually, bash uses four prompt strings. They are stored in the variables PS1, PS2, PS3, and PS4. [11]The
first of these is called the primary prompt string; it is your usual shell prompt, and its default value is "\s-
\v\$ ". [12]Many people like to set their primary prompt string to something containing their login name.
Here is one way to do this:

[11] PS3 was not defined in bash versions prior to 1.14.

[12] In versions of bash prior to 2.0, the default was "bash\$ ".

PS1="\u—> "

The \u tells bash to insert the name of the current user into the prompt string. If your user name is alice,
your prompt string will be "alice-->". If you are a C shell user and, like many such people, are used to
having a history number in your prompt string, bash can do this similarly to the C shell: if the sequence \! is
used in the prompt string, it will substitute the history number. Thus, if you define your prompt string to be:

PS1="\u \!—> "

then your prompts will be like alice 1-->, alice 2-->, and so on.

But perhaps the most useful way to set up your prompt string is so that it always contains your current
directory. This way, you needn't type pwd to remember where you are. Here's how:

PS1="\w—> "

Table 3.6 lists the prompt customizations that are available. [13]

[13] \[and \] are not available in bash versions prior to 1.14. \a, \e, \H, \T, \@, \v, and \V are not available in
versions prior to 2.0.

Table 3.6. Prompt String Customizations

Command Meaning
\a The ASCII bell character (007)
\d The date in "Weekday Month Day" format
\e The ASCII escape character (033)
\H The hostname
\h The hostname up to the first "."
\n A carriage return and line feed
\s The name of the shell
\T The current time in 12-hour HH:MM:SS format
\t The current time in HH:MM:SS format
\@ The current time in 12-hour am/pm format
\u The username of the current user
\v The version of bash (e.g., 2.00)
\V The release of bash; the version and patchlevel (e.g., 2.00.0)
\w The current working directory
\W The basename of the current working directory
\# The command number of the current command
\! The history number of the current command
\$ If the effective UID is 0 print a #, otherwise print a $
\nnn Character code in octal
\\ Print a backslash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\[Begin a sequence of non-printing characters, such as terminal control sequences
\] End a sequence of non-printing characters

PS2 is called the secondary prompt string; its default value is >. It is used when you type an incomplete line
and hit RETURN, as an indication that you must finish your command. For example, assume that you start a
quoted string but don't close the quote. Then if you hit RETURN, the shell will print > and wait for you to
finish the string:

$ echo "This is a long line, # PS1 for the command
> which is terminated down here" # PS2 for the continuation
$ # PS1 for the next command
PS3 and PS4 relate to shell programming and debugging. They will be explained in Chapter 5, and Chapter
9.

3.4.2.4 Command search path

Another important variable is PATH, which helps the shell find the commands you enter.

As you probably know, every command you use is actually a file that contains code for your machine to
run. [14]These files are called executable files or just executables for short. They are stored in various
directories. Some directories, like /bin or /usr/bin, are standard on all UNIX systems; some depend on the
particular version of UNIX you are using; some are unique to your machine; if you are a programmer, some
may even be your own. In any case, there is no reason why you should have to know where a command's
executable file is in order to run it.

[14] Unless it's a built-in command (one of those shown in boldface, like cd and echo), in which case the code is
simply part of the executable file for the entire shell.

That is where PATH comes in. Its value is a list of directories that the shell searches every time you enter a
command; [15]the directory names are separated by colons (:), just like the files in MAILPATH.

[15] Unless the command name contains a slash (/), in which case the search does not take place.

For example, if you type echo $PATH, you will see something like this:

/bin:/usr/bin:/usr/local/bin:/usr/X386/bin

Why should you care about your path? There are two main reasons. First, once you have read the later
chapters of this book and you try writing your own shell programs, you will want to test them and
eventually set aside a directory for them. Second, your system may be set up so that certain restricted
commands' executable files are kept in directories that are not listed in PATH. For example, there may be a
directory /usr/games in which there are executables that are verboten during regular working hours.

Therefore you may want to add directories to your PATH. Let's say you have created a bin directory under
your login directory, which is /home/you, for your own shell scripts and programs. To add this directory to
your PATH so that it is there every time you log in, put this line in your .bash_profile:

PATH=$PATH":/home/you/bin"

This sets PATH to whatever it was before, followed immediately by a colon and /home/you/bin.

This is the safe way of doing it. When you enter a command, the shell searches directories in the order they
appear in PATH until it finds an executable file. Therefore, if you have a shell script or program whose
name is the same as an existing command, the shell will use the existing command—unless you type in the
command's full pathname to make it clear. For example, if you have created your own version of the more
command in the above directory and your PATH is set up as in the last example, you will need to type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

command in the above directory and your PATH is set up as in the last example, you will need to type
/home/you/bin/more (or just ~/bin/more) to get your version.

The more reckless way of resetting your path is to put your own directory before the other directories:

PATH="/home/you/bin:"$PATH

This is unsafe because you are trusting that your own version of the more command works properly. But it
is also risky for a more important reason: system security. If your PATH is set up in this way, you leave
open a "hole" that is well known to computer crackers and mischief makers: they can install "Trojan horses"
and do other things to steal files or do damage. (See Chapter 10, for more details.) Therefore, unless you
have complete control of (and confidence in) everyone who uses your system, use the first of the two
methods of adding your own command directory.

If you need to know which directory a command comes from, you need not look at directories in your
PATH until you find it. The shell built-in command type prints the full pathname of the command you give
it as argument, or just the command's name and its type if it's a built-in command itself (like cd), an alias, or
a function (as we'll see in Chapter 4).

3.4.2.5 Command hashing

You may be thinking that having to go and find a command in a large list of possible places would take a
long time, and you'd be right. To speed things up, bash uses what is known as a hash table.

Every time the shell goes and finds a command in the search path, it enters it in the hash table. If you then
use the command again, bash first checks the hash table to see if the command is listed. If it is, it uses the
path given in the table and executes the command; otherwise, it just has to go and look for the command in
the search path.

You can see what is currently in the hash table with the command hash:

$ hash
hits command
 2 /bin/cat
 1 /usr/bin/stat
 2 /usr/bin/less
 1 /usr/bin/man
 2 /usr/bin/apropos
 2 /bin/more
 1 /bin/ln
 3 /bin/ls
 1 /bin/ps
 2 /bin/vi

This not only shows the hashed commands, but how many times they have been executed (the hits) during
the current login session.

Supplying a command name to hash forces the shell to look up the command in the search path and enter it
in the hash table. You can also make bash "forget" what is in the hash table by using the -r option to hash.
Another option, -p, allows you to enter a command into the hash table, even if the command doesn't exist.
[16]

[16] The -p option is not available in versions of bash prior to 2.0.

Command hashing can be turned on and off with the hashall option to set. In general use, there shouldn't be
any need to turn it off.

Don't be too concerned about the details of hashing. The command hashing and lookup is all done by bash
without you knowing it's taking place.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4.2.6 Directory search path and variables

CDPATH is a variable whose value, like that of PATH, is a list of directories separated by colons. Its
purpose is to augment the functionality of the cd built-in command.

By default, CDPATH isn't set (meaning that it is null), and when you type cd dirname, the shell will look
in the current directory for a subdirectory that is called dirname. [17]If you set CDPATH, you give the shell
a list of places to look for dirname; the list may or may not include the current directory.

[17] This search is disabled when dirname starts with a slash. It is also disabled when dirname starts with ./ or ../.

Here is an example. Consider the alias for the long cd command from earlier in this chapter:

alias cdvoy='cd sipp/demo/animation/voyager'

Now suppose there were a few directories under this directory to which you need to go often; they are
called src, bin, and doc. You define your CDPATH like this:

CDPATH=:~/sipp/demo/animation/voyager

In other words, you define your CDPATH to be the empty string (meaning the current directory) followed
by ~/sipp/demo/animation/voyager.

With this setup, if you type cd doc, then the shell will look in the current directory for a (sub)directory
called doc. Assuming that it doesn't find one, it looks in the directory ~/sipp/demo/animation/voyager. The
shell finds the doc directory there, so you go directly there.

If you often find yourself going to a specific group of directories as you work on a particular project, you
can use CDPATH to get there quickly. Note that this feature will only be useful if you update it whenever
your work habits change.

bash provides another shorthand mechanism for referring to directories; if you set the shell option
cdable_vars using shopt, [18]any argument supplied to the cd command that is not a directory is assumed
to be a variable.

[18] In versions of bash prior to 2.0, cdable_vars is a shell variable that you can set and unset.

We might define the variable anim to be ~/sipp/demo/animation/voyager. If we set cdable_vars and then
type:

cd anim

the current directory will become ~/sipp/demo/animation/voyager.

3.4.2.7 Miscellaneous variables

We have covered the shell variables that are important from the standpoint of customization. There are also
several that serve as status indicators and for various other miscellaneous purposes. Their meanings are
relatively straightforward; the more basic ones are summarized in Table 3.7.

Table 3.7. Status Variables

Variable Meaning
HOME Name of your home (login) directory
SECONDS Number of seconds since the shell was invoked

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BASH Pathname of this instance of the shell you are running
BASH_VERSION The version number of the shell you are running
BASH_VERSINFO An array of version information for the shell you are running
PWD Current directory
OLDPWD Previous directory before the last cd command

The shell sets the values of these variables, except HOME (which is set by the login process: login, rshd,
etc.). The first five are set at login time, the last two whenever you change directories. Although you can
also set their values, just like any other variables, it is difficult to imagine any situation where you would
want to. In the case of SECONDS, if you set it to a new value it will start counting from the value you give
it, but if you unset SECONDS it will lose its special meaning, even if you subsequently set it again.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 Customization and Subprocesses
Some of the variables discussed above are used by commands you may run—as opposed to the shell itself—
so that they can determine certain aspects of your environment. The majority, however, are not even known
outside the shell.

This dichotomy begs an important question: which shell "things" are known outside the shell, and which are
only internal? This question is at the heart of many misunderstandings about the shell and shell
programming. Before we answer, we'll ask it again in a more precise way: which shell "things" are known
to subprocesses? Remember that whenever you enter a command, you are telling the shell to run that
command in a subprocess; furthermore, some complex programs may start their own subprocesses.

Now for the answer, which (like many UNIX concepts) is unfortunately not as simple as you might like. A
few things are known to subprocesses, but the reverse is not true: subprocesses can never make these things
known to the processes that created them.

Which things are known depends on whether the subprocess in question is a bash program (see Chapter 4)
or an interactive shell. If the subprocess is a bash program, then it's possible to propagate nearly every type
of thing we've seen in this chapter—options and variables—plus a few we'll see later.

3.5.1 Environment Variables

By default, only one kind of thing is known to all kinds of subprocesses: a special class of shell variables
called environment variables. Some of the built-in variables we have seen are actually environment
variables: HOME, MAIL, PATH, and PWD.

It should be clear why these and other variables need to be known by subprocesses. For example, text
editors like vi and emacs need to know what kind of terminal you are using; the environment variable
TERM is their way of determining this. As another example, most UNIX mail programs allow you to edit a
message with your favorite text editor. How does mail know which editor to use? The value of EDITOR
(or sometimes VISUAL).

Any variable can become an environment variable. First it must be defined as usual; then it must be
exported with the command: [19]

[19] Unless automatic exporting has been turned on by set -a or set -o allexport, in which case all variables that
are assigned to will be exported.

export varnames

(varnames can be a list of variable names separated by blanks). You can combine variable assignment and
the export into one statement:

export wonderland=alice

It is also possible to define variables to be in the environment of a particular subprocess (command) only,
by preceding the command with the variable assignment, like this:

varname=value command

You can put as many assignments before the command as you want. [20]For example, assume that you're
using the emacs editor. You are having problems getting it to work with your terminal, so you're
experimenting with different values of TERM. You can do this most easily by entering commands that look
like:

[20] There is an obscure option, set -k, that lets you put this type of environment variable definition anywhere on
the command line, not just at the beginning.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TERM=trythisone emacs filename
emacs will have trythisone defined as its value of TERM, yet the environment variable in your shell will
keep whatever value (if any) it had before. This syntax is surprisingly useful, but not very widely used; we
won't see it much throughout the remainder of this book.

Nevertheless, environment variables are important. Most .bash_profile files include definitions of
environment variables; the sample built-in .bash_profile earlier in this chapter contained six such
definitions:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin
SHELL=/bin/bash
MANPATH=/usr/man:/usr/X11/man
EDITOR=/usr/bin/vi
PS1='\h:\w\$ '
PS2='> '
export EDITOR

You can find out which variables are environment variables and what their values are by typing export
without arguments or by using the -p option to the command.

Some environment variable names have been used by so many applications that they have become standard
across many shell environments. These variables are not built into bash, although some shells, such as the
Korn shell, have them as built-ins. Table 3.8 lists the ones you are most likely to come across.

Table 3.8. Standard Variables

Variable Meaning
COLUMNS The number of columns your display has
EDITOR Pathname of your text editor
LINES The number of lines your display has
SHELL Pathname of the shell you are running
TERM The type of terminal that you are using

You may well find that some of these already exist in your own environment, most likely set from the
system /etc/profile file (see Chapter 10). You can define them yourself in your .bash_profile and export
them, as we did earlier.

3.5.1.1 Terminal types

The variable TERM is vitally important for any program that uses your entire screen or window, like a text
editor. Such programs include all screen editors (such as vi and emacs), more, and countless third-party
applications.

Because users are spending more and more time within programs, and less and less using the shell itself, it
is extremely important that your TERM is set correctly. It's really your system administrator's job to help
you do this (or to do it for you), but in case you need to do it yourself, here are a few guidelines.

The value of TERM must be a short character string with lowercase letters that appears as a filename in the
terminfo database. [21]This database is a two-tiered directory of files under the root directory
/usr/lib/terminfo. This directory contains subdirectories with single-character names; these in turn contain
files of terminal information for all terminals whose names begin with that character. Each file describes
how to tell the terminal in question to do certain common things like position the cursor on the screen, go
into reverse video, scroll, insert text, and so on. The descriptions are in binary form (i.e., not readable by
humans).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[21] Versions of UNIX not derived from System V use termcap, an older-style database of terminal capabilities that
uses the single file /etc/termcap for all terminal descriptions.

Names of terminal description files are the same as that of the terminal being described; sometimes an
abbreviation is used. For example, the DEC VT100 has a description in the file /usr/lib/terminfo/v/vt100. An
xterm terminal window under the X Window System has a description in /usr/lib/terminfo/x/xterm.

Sometimes your UNIX software will set up TERM incorrectly; this usually happens for X terminals and
PC-based UNIX systems. Therefore, you should check the value of TERM by typing echo $TERM before
going any further. If you find that your UNIX system isn't setting the right value for you (especially likely if
your terminal is of a different make from that of your computer), you need to find the appropriate value of
TERM yourself.

The best way to find the TERM value—if you can't find a local guru to do it for you—is to guess the
terminfo name and search for a file of that name under /usr/lib/terminfo by using ls. For example, if your
terminal is a Hewlett-Packard 70092, you could try:

$ cd /usr/lib/terminfo
$ ls 7/7*
If you are successful, you will see something like this:

70092 70092A 70092a

In this case, the three names are likely to be synonyms for (links to) the same terminal description, so you
could use any one as a value of TERM. In other words, you could put any of these three lines in your
.bash_profile:

TERM=70092
TERM=70092A
TERM=70092a

If you aren't successful, ls will print an error message, and you will have to make another guess and try
again. If you find that terminfo contains nothing that resembles your terminal, all is not lost. Consult your
terminal's manual to see if the terminal can emulate a more popular model; nowadays the odds for this are
excellent.

Conversely, terminfo may have several entries that relate to your terminal, for submodels, special modes,
etc. If you have a choice of which entry to use as your value of TERM, we suggest you test each one out
with your text editor or any other screen-oriented programs you use and see which one works best.

The process is much simpler if you are using a windowing system, in which your "terminals" are logical
portions of the screen rather than physical devices. In this case, operating system-dependent software was
written to control your terminal window(s), so the odds are very good that if it knows how to handle
window resizing and complex cursor motion, then it is capable of dealing with simple things like TERM.
The X Window System, for example, automatically sets xterm as its value for TERM in an xterm terminal
window.

3.5.1.2 Other common variables

Some programs, such as mail, need to know what type of editor you would like to use. In most cases they
will default to a common editor like ed unless you set the EDITOR variable to the path of your favorite
editor and export it in your .bash_profile.

Some programs run shells as subprocesses within themselves (e.g., many mail programs and the emacs
editor's shell mode); by convention they use the SHELL variable to determine which shell to use. SHELL
is usually set by the process that invokes the login shell; usually login or something like rshd if you are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is usually set by the process that invokes the login shell; usually login or something like rshd if you are
logged in remotely. bash sets it only if it hasn't already been set.

You may have noticed that the value of SHELL looks the same as BASH. These two variables serve
slightly different purposes. BASH is set to the pathname of the current shell, whether it is an interactive
shell or not. SHELL, on the other hand, is set to the name of your login shell, which may be a completely
different shell.

COLUMNS and LINES are used by screen-oriented editors like vi. In most cases a default is used if they
are undefined, but if you are having display problems with screen-oriented applications then you should
check these variables to see if they are correct.

3.5.2 The Environment File

Although environment variables will always be known to subprocesses, the shell must be explicitly told
which other variables, options, aliases, and so on, are to be communicated to subprocesses. The way to do
this is to put all such definitions into the environment file. bash's default environment file is the .bashrc file
that we touched on briefly at the beginning of this chapter.

Remember that if you take your definitions out of .bash_profile and put them in .bashrc you will have to
have the line source .bashrc at the end of your .bash_profile so that the definitions become available to the
login shell.

The idea of the environment file comes from the C shell's .cshrc file. This is reflected in the choice of the
name .bashrc. The rc suffix for initialization files is practically universal throughout the UNIX world. [22]

[22] According to the folklore, it stands for "run commands" and has its origins in old DEC operating systems.

As a general rule, you should put as few definitions as possible in .bash_profile and as many as possible in
your environment file. Because definitions add to rather than take away from an environment, there is little
chance that they will cause something in a subprocess not to work properly. (An exception might be name
clashes if you go overboard with aliases.)

The only things that really need to be in .bash_profile are environment variables and their exports and
commands that aren't definitions but actually run or produce output when you log in. Option and alias
definitions should go into the environment file. In fact, there are many bash users who have tiny
.bash_profile files, e.g.:

stty stop ^S intr ^C erase ^?
date
source .bashrc

Although this is a small .bash_profile, this user's environment file could be huge.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 Customization Hints
You should feel free to try any of the techniques presented in this chapter. The best strategy is to test
something out by typing it into the shell during your login session; then if you decide you want to make it a
permanent part of your environment, add it to your .bash_profile.

A nice, painless way to add to your .bash_profile without going into a text editor makes use of the echo
command and one of bash's editing modes. If you type a customization command in and later decide to add
it to your .bash_profile, you can recall it via CTRL-P or CTRL-R (in emacs-mode) or j, -, or ? (vi-mode).
Let's say the line is:

PS1="\u \!—> "

After you recall it, edit the line so that it is preceded by an echo command, surrounded by single quotes, and
followed by an I/O redirector that (as you will see in Chapter 7) appends the output to ~/.bash_profile:

$ echo 'PS1="\u \!—> " ' >> ~/.bash_profile
Remember that the single quotes are important because they prevent the shell from trying to interpret things
like dollar signs, double quotes, and exclamation points. Also make sure that you use a double right-caret
(>>). A single one will overwrite the file rather than appending to it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Basic Shell Programming
If you have become familiar with the customization techniques we presented in the previous chapter, you
have probably run into various modifications to your environment that you want to make but can't—yet.
Shell programming makes these possible.

bash has some of the most advanced programming capabilities of any command interpreter of its type.
Although its syntax is nowhere near as elegant or consistent as that of most conventional programming
languages, its power and flexibility are comparable. In fact, bash can be used as a complete environment for
writing software prototypes. [1]

[1] An example of this (a compiler for a simple language) is provided in the examples archive for this book. See
Appendix E for instructions on how to obtain the archive.

Some aspects of bash programming are really extensions of the customization techniques we have already
seen, while others resemble traditional programming language features. We have structured this chapter so
that if you aren't a programmer, you can read this chapter and do quite a bit more than you could with the
information in the previous chapter. Experience with a conventional programming language like Pascal or C
is helpful (though not strictly necessary) for subsequent chapters. Throughout the rest of the book, we will
encounter occasional programming problems, called tasks, whose solutions make use of the concepts we
cover.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Shell Scripts and Functions
A script, which is a file that contains shell commands, is a shell program. Your .bash_profile and
environment files, discussed in the previous chapter, are shell scripts.

You can create a script using the text editor of your choice. Once you have created one, there are two ways
to run it. One, which we have already covered, is to type source scriptname. This causes the commands in
the script to be read and run as if you typed them in.

The second way to run a script is simply to type its name and hit RETURN, just as if you were invoking a
built-in command. This, of course, is the more convenient way. This method makes the script look just like
any other UNIX command, and in fact several "regular" commands are implemented as shell scripts (i.e.,
not as programs originally written in C or some other language), including spell, man on some systems, and
various commands for system administrators. The resulting lack of distinction between "user command
files" and "built-in commands" is one factor in UNIX's extensibility and, hence, its favored status among
programmers.

You can run a script by typing its name only if the directory where the script is located is in your command
search path, or . (the current directory) is part of your command search path, i.e., the script's directory path
(as discussed in Chapter 3). If these aren't in your path, you must type ./scriptname, which is really the same
thing as typing the script's absolute pathname (see Chapter 1.

Before you can invoke the shell script by name, you must also give it "execute" permission. If you are
familiar with the UNIX filesystem, you know that files have three types of permissions (read, write, and
execute) and that those permissions apply to three categories of user (the file's owner, a group of users, and
everyone else). Normally, when you create a file with a text editor, the file is set up with read and write
permission for you and read-only permission for everyone else.

Therefore you must give your script execute permission explicitly, by using the chmod command. The
simplest way to do this is to type:

$ chmod +x scriptname
Your text editor will preserve this permission if you make subsequent changes to your script. If you don't
add execute permission to the script and you try to invoke it, the shell will print the message:

scriptname: Permission denied
But there is a more important difference between the two ways of running shell scripts. While using source
causes the commands in the script to be run as if they were part of your login session, the "just the name"
method causes the shell to do a series of things. First, it runs another copy of the shell as a subprocess; this
is called a subshell. The subshell then takes commands from the script, runs them, and terminates, handing
control back to the parent shell.

Figure 4.1 shows how the shell executes scripts. Assume you have a simple shell script called alice that
contains the commands hatter and gryphon. In Figure 4-1.a, typing source alice causes the two commands
to run in the same shell, just as if you had typed them in by hand. Figure 4-1.b shows what happens when
you type just alice: the commands run in the subshell while the parent shell waits for the subshell to finish.

You may find it interesting to compare this with the situation in Figure 4-1.c, which shows what happens
when you type alice &. As you will recall from Chapter 1, the & makes the command run in the
background, which is really just another term for "subprocess." It turns out that the only significant
difference between Figure 4-1.c and Figure 4-1.b is that you have control of your terminal or workstation
while the command runs—you need not wait until it finishes before you can enter further commands.

Figure 4.1. Ways to run a shell script

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are many ramifications to using subshells. An important one is that the exported environment
variables that we saw in the last chapter (e.g., TERM, EDITOR, PWD) are known in subshells, whereas
other shell variables (such as any that you define in your .bash_profile without an export statement) are not.

Other issues involving subshells are too complex to go into now; see Chapter 7, and Chapter 8, for more
details about subshell I/O and process characteristics, respectively. For now, just bear in mind that a script
normally runs in a subshell.

4.1.1 Functions

bash's function feature is an expanded version of a similar facility in the System V Bourne shell and a few
other shells. A function is sort of a script-within-a-script; you use it to define some shell code by name and
store it in the shell's memory, to be invoked and run later.

Functions improve the shell's programmability significantly, for two main reasons. First, when you invoke a
function, it is already in the shell's memory; therefore a function runs faster. Modern computers have plenty
of memory, so there is no need to worry about the amount of space a typical function takes up. For this
reason, most people define as many commonly used functions as possible rather than keep lots of scripts
around.

The other advantage of functions is that they are ideal for organizing long shell scripts into modular
"chunks" of code that are easier to develop and maintain. If you aren't a programmer, ask one what life
would be like without functions (also called procedures or subroutines in other languages) and you'll
probably get an earful.

To define a function, you can use either one of two forms:

function functname{
 shell commands}
or:

functname ()
{
 shell commands}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 shell commands}
There is no functional difference between the two. We will use both forms in this book. You can also delete
a function definition with the command unset -f functname.

When you define a function, you tell the shell to store its name and definition (i.e., the shell commands it
contains) in memory. If you want to run the function later, just type in its name followed by any arguments,
as if it were a shell script.

You can find out what functions are defined in your login session by typing declare -f. The shell will print
not just the names but the definitions of all functions, in alphabetical order by function name. Since this
may result in long output, you might want to pipe the output through more or redirect it to a file for
examination with a text editor. If you just want to see the names of the functions, you can use declare -F.
[2]We will look at declare in more detail in Chapter 6.

[2] The -F option is not available in versions of bash prior to 2.0.

Apart from the advantages, there are two important differences between functions and scripts. First,
functions do not run in separate processes, as scripts do when you invoke them by name; the "semantics" of
running a function are more like those of your .bash_profile when you log in or any script when invoked
with the source command. Second, if a function has the same name as a script or executable program, the
function takes precedence.

This is a good time to show the order of precedence for the various sources of commands when you type a
command to the shell:

1. Aliases

2. Keywords such as function and several others, like if and for, that we will see in Chapter 5

3. Functions

4. Built-ins like cd and type

5. Scripts and executable programs, for which the shell searches in the directories listed in the PATH
environment variable

Thus, an alias takes precedence over a function or a script with the same name. You can, however, change
the order of precedence by using the built-ins command, builtin, and enable. This allows you to define
functions, aliases, and script files with the same names, and select which one you want to execute. We'll
examine this process in more detail in the section on command-line processing in Chapter 7.

If you need to know the exact source of a command, there are options to the type built-in command that we
saw in Chapter 3. type by itself will print how bash would interpret the command, based on the search
locations listed above. If you had a shell script, a function, and an alias all called dodo, type would tell you
that dodo, as an alias, would be used if you typed dodo. If you supply more than one argument to type, it
will print the information for each one in turn.

type has three options that allow you to find specific details of a command. If you want to find out all of the
definitions for dodo you can use type -all. This will produce output similar to the following:

$ type -all dodododo is aliased to `echo "Everybody has won, and all must have prizes"'
dodo is a function
dodo ()
{
 echo "Everybody has won, and all must have prizes"
}
dodo is ./dodo

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is also possible to restrict the search to commands that are executable files or shell scripts by using the -
path option. If the command as typed to bash executes a file or shell script, the path name of the file is
returned; otherwise, nothing is printed.

The default output from type is verbose; it will give you the full definition for an alias or function. By using
the -type option, you can restrict this to a single word descriptor: alias, keyword, function, builtin, or file.
For example:

$ type -type bash
file
$ type -type if
keyword

The -type option can also be used with -all.

We will refer mainly to scripts throughout the remainder of this book, but unless we note otherwise, you
should assume that whatever we say applies equally to functions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Shell Variables
bash derives much of its programming functionality from shell variables. We've already seen the basics of
variables. To recap briefly: they are named places to store data, usually in the form of character strings, and
their values can be obtained by preceding their names with dollar signs ($). Certain variables, called
environment variables, are conventionally named in all capital letters, and their values are made known
(with the export statement) to subprocesses.

If you are a programmer, you already know that just about every major programming language uses
variables in some way; in fact, an important way of characterizing differences between languages is
comparing their facilities for variables.

The chief difference between bash's variable schema and those of conventional languages is that bash's
places heavy emphasis on character strings. (Thus it has more in common with a special-purpose language
like SNOBOL than a general-purpose one like Pascal.) This is also true of the Bourne shell and the C shell,
but bash goes beyond them by having additional mechanisms for handling integers explicitly.

4.2.1 Positional Parameters

As we have already seen, you can define values for variables with statements of the form varname=value,
e.g.:

$ hatter=mad
$ echo "$hatter"
mad

Some environment variables are predefined by the shell when you log in. There are other built-in variables
that are vital to shell programming. We will look at a few of them now and save the others for later.

The most important special, built-in variables are called positional parameters. These hold the command-
line arguments to scripts when they are invoked. Positional parameters have the names 1, 2, 3, etc., meaning
that their values are denoted by $1, $2, $3, etc. There is also a positional parameter 0, whose value is the
name of the script (i.e., the command typed in to invoke it).

Two special variables contain all of the positional parameters (except positional parameter 0): * and @. The
difference between them is subtle but important, and it's apparent only when they are within double quotes.

"$*" is a single string that consists of all of the positional parameters, separated by the first character in the
environment variable IFS (internal field separator), which is a space, TAB, and NEWLINE by default. On
the other hand, "$@" is equal to "$1" "$2"... "$N", where N is the number of positional parameters. That
is, it's equal to N separate double-quoted strings, which are separated by spaces. If there are no positional
parameters, "$@" expands to nothing. We'll explore the ramifications of this difference in a little while.

The variable # holds the number of positional parameters (as a character string). All of these variables are
"read-only," meaning that you can't assign new values to them within scripts.

For example, assume that you have the following simple shell script:

echo "alice: $@"
echo "$0: $1 $2 $3 $4"
echo "$# arguments"

Assume further that the script is called alice. Then if you type alice in wonderland, you will see the
following output:

alice: in wonderland
alice: in wonderland

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alice: in wonderland
2 arguments

In this case, $3 and $4 are unset, which means that the shell will substitute the empty (or null) string for
them. [3]

[3] Unless the option nounset is turned on, in which case the shell will return an error message.

4.2.1.1 Positional parameters in functions

Shell functions use positional parameters and special variables like * and # in exactly the same way as shell
scripts do. If you wanted to define alice as a function, you could put the following in your .bash_profile or
environment file:

function alice
{
 echo "alice: $*"
 echo "$0: $1 $2 $3 $4"
 echo "$# arguments"
}

You will get the same result if you type alice in wonderland.

Typically, several shell functions are defined within a single shell script. Therefore each function will need
to handle its own arguments, which in turn means that each function needs to keep track of positional
parameters separately. Sure enough, each function has its own copies of these variables (even though
functions don't run in their own subshells, as scripts do); we say that such variables are local to the function.

However, other variables defined within functions are not local (they are global), meaning that their values
are known throughout the entire shell script. For example, assume that you have a shell script called ascript
that contains this:

function afunc
{
 echo in function: $0 $1 $2
 var1="in function"
 echo var1: $var1
}

var1="outside function"
echo var1: $var1
echo $0: $1 $2
afunc funcarg1 funcarg2
echo var1: $var1
echo $0: $1 $2

If you invoke this script by typing ascript arg1 arg2, you will see this output:

var1: outside function
ascript: arg1 arg2
in function: ascript funcarg1 funcarg2
var1: in function
var1: in function
ascript: arg1 arg2

In other words, the function afunc changes the value of the variable var1 from "outside function" to "in
function," and that change is known outside the function, while $1 and $2 have different values in the
function and the main script. Notice that $0 doesn't change because the function executes in the
environment of the shell script and $0 takes the name of the script. Figure 4.2 shows the scope of each

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

environment of the shell script and $0 takes the name of the script. Figure 4.2 shows the scope of each
variable graphically.

Figure 4.2. Functions have their own positional parameters

4.2.2 Local Variables in Functions

A local statement inside a function definition makes the variables involved all become local to that
function. The ability to define variables that are local to "subprogram" units (procedures, functions,
subroutines, etc.) is necessary for writing large programs, because it helps keep subprograms independent of
the main program and of each other.

Here is the function from our last example with the variable var1 made local:

function afunc
{
 local var1
 echo in function: $0 $1 $2

 var1="in function"
 echo var1: $var1
}

Now the result of running ascript arg1 arg2 is:

var1: outside function
ascript: arg1 arg2
in function: ascript funcarg1 funcarg2
var1: in function
var1: outside function
ascript: arg1 arg2

Figure 4.3 shows the scope of each variable in our new script. Note that afunc now has its own, local copy
of var1, although the original var1 would still be used by any other functions that ascript invokes.

Figure 4.3. Functions can have local variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2.3 Quoting with $@ and $*

Now that we have this background, let's take a closer look at "$@" and "$*". These variables are two of
the shell's greatest idiosyncracies, so we'll discuss some of the most common sources of confusion.

· Why are the elements of "$*" separated by the first character of IFS instead of just spaces? To
give you output flexibility. As a simple example, let's say you want to print a list of positional
parameters separated by commas. This script would do it:

· IFS=,
echo "$*"

Changing IFS in a script is risky, but it's probably OK as long as nothing else in the script depends
on it. If this script were called arglist, then the command arglist alice dormouse hatter would
produce the output alice,dormouse,hatter. Chapter 5 and Chapter 10 contain other examples of
changing IFS.

· Why does "$@" act like N separate double-quoted strings? To allow you to use them again as
separate values. For example, say you want to call a function within your script with the same list
of positional parameters, like this:

· function countargs
· {
· echo "$# args."

}

Assume your script is called with the same arguments as arglist above. Then if it contains the
command countargs "$*", the function will print 1 args. But if the command is countargs "$@",
the function will print 3 args.

4.2.4 More on Variable Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before we show the many things you can do with shell variables, we have to point out a simplification we
have been making: the syntax of $varname for taking the value of a variable is actually the simple form of
the more general syntax, ${varname}.

Why two syntaxes? For one thing, the more general syntax is necessary if your code refers to more than
nine positional parameters: you must use ${10} for the tenth instead of $10. Aside from that, consider the
following case where you would like to place an underscore after your user ID:

echo $UID_

The shell will try to use UID_ as the name of the variable. Unless, by chance, $UID_ already exists, this
won't print anything (the value being null or the empty string, ""). To obtain the desired result, you need to
enclose the shell variable in curly brackets:

echo ${UID}_

It is safe to omit the curly brackets ({}) if the variable name is followed by a character that isn't a letter,
digit, or underscore.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 String Operators
The curly-bracket syntax allows for the shell's string operators. String operators allow you to manipulate
values of variables in various useful ways without having to write full-blown programs or resort to external
UNIX utilities. You can do a lot with string-handling operators even if you haven't yet mastered the
programming features we'll see in later chapters.

In particular, string operators let you do the following:

· Ensure that variables exist (i.e., are defined and have non-null values)

· Set default values for variables

· Catch errors that result from variables not being set

· Remove portions of variables' values that match patterns

4.3.1 Syntax of String Operators

The basic idea behind the syntax of string operators is that special characters that denote operations are
inserted between the variable's name and the right curly bracket. Any argument that the operator may need
is inserted to the operator's right.

The first group of string-handling operators tests for the existence of variables and allows substitutions of
default values under certain conditions. These are listed in Table 4.1. [4]

[4] The colon (:) in all but the last of these operators is actually optional. If the colon is omitted, then change "exists
and isn't null" to "exists" in each definition, i.e., the operator tests for existence only.

Table 4.1. Substitution Operators

Operator Substitution
${varname:-word} If varname exists and isn't null, return its value; otherwise return word.
Purpose: Returning a default value if the variable is undefined.
Example: ${count:-0} evaluates to 0 if count is undefined.

${varname:=word}
If varname exists and isn't null, return its value; otherwise set it to word and
then return its value. Positional and special parameters cannot be assigned this
way.

Purpose: Setting a variable to a default value if it is undefined.
Example: ${count:=0} sets count to 0 if it is undefined.

${varname:?message}
If varname exists and isn't null, return its value; otherwise print varname:
followed by message, and abort the current command or script (non-interactive
shells only). Omitting message produces the default message parameter null
or not set.

Purpose: Catching errors that result from variables being undefined.

Example: {count:?"undefined!"} prints "count: undefined!" and exits if count is
undefined.

${varname:+word} If varname exists and isn't null, return word; otherwise return null.
Purpose: Testing for the existence of a variable.
Example: ${count:+1} returns 1 (which could mean "true") if count is defined.
${varname:offset}

Performs substring expansion.a It returns the substring of $varname starting at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

${varname:offset:length}

Performs substring expansion.a It returns the substring of $varname starting at
offset and up to length characters. The first character in $varname is position
0. If length is omitted, the substring starts at offset and continues to the end of
$varname. If offset is less than 0 then the position is taken from the end of
$varname. If varname is @, the length is the number of positional parameters
starting at parameter offset.

Purpose: Returning parts of a string (substrings or slices).

Example: If count is set to frogfootman, ${count:4} returns footman. ${count:4:4}
returns foot.

[5]

[5] The substring expansion operator is not available in versions of bash prior to 2.0.

The first of these operators is ideal for setting defaults for command-line arguments in case the user omits
them. We'll use this technique in our first programming task.

Task 4-1
You have a large album collection, and you want to write some software to keep track of it.
Assume that you have a file of data on how many albums you have by each artist. Lines in the
file look like this:

5 Depeche Mode
2 Split Enz
3 Simple Minds
1 Vivaldi, Antonio

Write a program that prints the N highest lines, i.e., the N artists by whom you have the most
albums. The default for N should be 10. The program should take one argument for the name of
the input file and an optional second argument for how many lines to print.

By far the best approach to this type of script is to use built-in UNIX utilities, combining them with I/O
redirectors and pipes. This is the classic "building-block" philosophy of UNIX that is another reason for its
great popularity with programmers. The building-block technique lets us write a first version of the script
that is only one line long:

sort -nr $1 | head -${2:-10}

Here is how this works: the sort program sorts the data in the file whose name is given as the first argument
($1). The -n option tells sort to interpret the first word on each line as a number (instead of as a character
string); the -r tells it to reverse the comparisons, so as to sort in descending order.

The output of sort is piped into the head utility, which, when given the argument -N, prints the first N lines
of its input on the standard output. The expression -${2:-10} evaluates to a dash (-) followed by the second
argument if it is given, or to -10 if it's not; notice that the variable in this expression is 2, which is the
second positional parameter.

Assume the script we want to write is called highest. Then if the user types highest myfile, the line that
actually runs is:

sort -nr myfile | head -10

Or if the user types highest myfile 22, the line that runs is:

sort -nr myfile | head -22

Make sure you understand how the :- string operator provides a default value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This is a perfectly good, runnable script—but it has a few problems. First, its one line is a bit cryptic. While
this isn't much of a problem for such a tiny script, it's not wise to write long, elaborate scripts in this
manner. A few minor changes will make the code more readable.

First, we can add comments to the code; anything between # and the end of a line is a comment. At a
minimum, the script should start with a few comment lines that indicate what the script does and what
arguments it accepts. Second, we can improve the variable names by assigning the values of the positional
parameters to regular variables with mnemonic names. Finally, we can add blank lines to space things out;
blank lines, like comments, are ignored. Here is a more readable version:

#
highest filename [howmany]
#
Print howmany highest-numbered lines in file filename.
The input file is assumed to have lines that start with
numbers. Default for howmany is 10.
#

filename=$1
howmany=${2:-10}

sort -nr $filename | head -$howmany

The square brackets around howmany in the comments adhere to the convention in UNIX documentation
that square brackets denote optional arguments.

The changes we just made improve the code's readability but not how it runs. What if the user were to
invoke the script without any arguments? Remember that positional parameters default to null if they aren't
defined. If there are no arguments, then $1 and $2 are both null. The variable howmany ($2) is set up to
default to 10, but there is no default for filename ($1). The result would be that this command runs:

sort -nr | head -10

As it happens, if sort is called without a filename argument, it expects input to come from standard input,
e.g., a pipe (|) or a user's terminal. Since it doesn't have the pipe, it will expect the terminal. This means that
the script will appear to hang! Although you could always hit CTRL-D or CTRL-C to get out of the script, a
naive user might not know this.

Therefore we need to make sure that the user supplies at least one argument. There are a few ways of doing
this; one of them involves another string operator. We'll replace the line:

filename=$1

with:

filename=${1:?"filename missing."}

This will cause two things to happen if a user invokes the script without any arguments: first the shell will
print the somewhat unfortunate message:

highest: 1: filename missing.

to the standard error output. Second, the script will exit without running the remaining code. With a
somewhat "kludgy" modification, we can get a slightly better error message.

Consider this code:

filename=$1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filename=$1
filename=${filename:?"missing."}

This results in the message:

highest: filename: missing.

(Make sure you understand why.) Of course, there are ways of printing whatever message is desired; we'll
find out how in Chapter 5.

Before we move on, we'll look more closely at the three remaining operators in Table 4.1 and see how we
can incorporate them into our task solution. The := operator does roughly the same thing as :-, except that it
has the "side effect" of setting the value of the variable to the given word if the variable doesn't exist.

Therefore we would like to use := in our script in place of :-, but we can't; we'd be trying to set the value of
a positional parameter, which is not allowed. But if we replaced:

howmany=${2:-10}

with just:

howmany=$2

and moved the substitution down to the actual command line (as we did at the start), then we could use the
:= operator:

sort -nr $filename | head -${howmany:=10}

Using := has the added benefit of setting the value of howmany to 10 in case we need it afterwards in later
versions of the script.

The operator :+ substitutes a value if the given variable exists and isn't null. Here is how we can use it in
our example: Let's say we want to give the user the option of adding a header line to the script's output. If he
or she types the option -h, then the output will be preceded by the line:

ALBUMS ARTIST

Assume further that this option ends up in the variable header, i.e., $header is -h if the option is set or null
if not. (Later we will see how to do this without disturbing the other positional parameters.)

The following expression yields null if the variable header is null, or ALBUMSARTIST\n if it is non-null:

${header:+"ALBUMSARTIST\n"}

This means that we can put the line:

echo -e -n ${header:+"ALBUMSARTIST\n"}

right before the command line that does the actual work. The -n option to echo causes it not to print a
LINEFEED after printing its arguments. Therefore this echo statement will print nothing—not even a blank
line—if header is null; otherwise it will print the header line and a LINEFEED (\n). The -e option makes
echo interpret the \n as a LINEFEED rather than literally.

The final operator, substring expansion, returns sections of a string. We can use it to "pick out" parts of a
string that are of interest. Assume that our script is able to assign lines of the sorted list, one at a time, to the
variable album_line. If we want to print out just the album name and ignore the number of albums, we can
use substring expansion:

echo ${album_line:8}

This prints everything from character position 8, which is the start of each album name, onwards.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we just want to print the numbers and not the album names, we can do so by supplying the length of the
substring:

echo ${album_line:0:7}

Although this example may seem rather useless, it should give you a feel for how to use substrings. When
combined with some of the programming features discussed later in the book, substrings can be extremely
useful.

4.3.2 Patterns and Pattern Matching

We'll continue refining our solution to Task 4-1 later in this chapter. The next type of string operator is used
to match portions of a variable's string value against patterns. Patterns, as we saw in Chapter 1, are strings
that can contain wildcard characters (*, ?, and [] for character sets and ranges).

Table 4.2 lists bash's pattern-matching operators.

Table 4.2. Pattern-Matching Operators

Operator Meaning

${variable#pattern} If the pattern matches the beginning of the variable's value, delete the shortest
part that matches and return the rest.

${variable##pattern} If the pattern matches the beginning of the variable's value, delete the longest
part that matches and return the rest.

${variable%pattern} If the pattern matches the end of the variable's value, delete the shortest part
that matches and return the rest.

${variable%%pattern} If the pattern matches the end of the variable's value, delete the longest part
that matches and return the rest.

${variable/pattern/string}

${variable//pattern/string}

The longest match to pattern in variable is replaced by string. In the first
form, only the first match is replaced. In the second form, all matches are
replaced. If the pattern is begins with a #, it must match at the start of the
variable. If it begins with a %, it must match with the end of the variable. If
string is null, the matches are deleted. If variable is @ or *, the operation is
applied to each positional parameter in turn and the expansion is the resultant
list.a

[6]

[6] The pattern-matching and replacement operator is not available in versions of bash prior to 2.0.

These can be hard to remember, so here's a handy mnemonic device: # matches the front because number
signs precede numbers; % matches the rear because percent signs follow numbers.

The classic use for pattern-matching operators is in stripping off components of pathnames, such as
directory prefixes and filename suffixes. With that in mind, here is an example that shows how all of the
operators work. Assume that the variable path has the value /home/cam/book/long.file.name; then:

Expression Result
${path##/*/} long.file.name
${path#/*/} cam/book/long.file.name
$path /home/cam/book/long.file.name
${path%.*} /home/cam/book/long.file
${path%%.*} /home/cam/book/long

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

${path%%.*} /home/cam/book/long

The two patterns used here are /*/, which matches anything between two slashes, and .*, which matches a
dot followed by anything.

The longest and shortest pattern-matching operators produce the same output unless they are used with the *
wildcard operator. As an example, if filename had the value alicece, then both ${filename%ce} and
${filename%%ce} would produce the result alice. This is because ce is an exact match; for a match to
occur, the string ce must appear on the end $filename. Both the short and long matches will then match the
last grouping of ce and delete it. If, however, we had used the * wildcard, then ${filename%ce*} would
produce alice because it matches the shortest occurrence of ce followed by anything else.
${filename%%ce*} would return ali because it matches the longest occurrence of ce followed by anything
else; in this case the first and second ce.

The next task will incorporate one of these pattern-matching operators.

Task 4-2
You are writing a graphics file conversion utility for use in creating your World Wide Web
home page. You want to be able to take a PCX file and convert it to a GIF file for use on the
Web page. [7]

[7] PCX is a popular graphics file format under Microsoft Windows. GIF (Graphics Interchange Format) is a
common graphics format on the Internet and is used to a great extent on Web pages.

Graphics file conversion utilities are quite common because of the plethora of different graphics formats
and file types. They allow you to specify an input file, usually from a range of different formats, and
convert it to an output file of a different format. In this case, we want to take a PCX file, which can't be
displayed with a Web browser, and convert it to a GIF which can be displayed by nearly all browsers. Part
of this process is taking the filename of the PCX file, which ends in .pcx, and changing it to one ending in
.gif for the output file. In essence, you want to take the original filename and strip off the .pcx, then append
.gif. A single shell statement will do this:

outfile=${filename%.pcx}.gif

The shell takes the filename and looks for .pcx on the end of the string. If it is found, .pcx is stripped off
and the rest of the string is returned. For example, if filename had the value alice.pcx, the expression
${filename%.pcx} would return alice. The .gif is appended to form the desired alice.gif, which is then
stored in the variable outfile.

If filename had an inappropriate value (without the .pcx) such as alice.jpg, the above expression would
evaluate to alice.jpg.gif: since there was no match, nothing is deleted from the value of filename, and .gif is
appended anyway. Note, however, that if filename contained more than one dot (e.g., if it were
alice.1.pcx—the expression would still produce the desired value alice.1.gif).

The next task uses the longest pattern-matching operator.

Task 4-3
You are implementing a filter that prepares a text file for printer output. You want to put the
file's name—without any directory prefix—on the "banner" page. Assume that, in your script,
you have the pathname of the file to be printed stored in the variable pathname.

Clearly, the objective is to remove the directory prefix from the pathname. The following line will do it:

bannername=${pathname##*/}

This solution is similar to the first line in the examples shown before. If pathname were just a filename, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This solution is similar to the first line in the examples shown before. If pathname were just a filename, the
pattern */ (anything followed by a slash) would not match and the value of the expression would be
pathname untouched. If pathname were something like book/wonderland, the prefix book/ would match
the pattern and be deleted, leaving just wonderland as the expression's value. The same thing would
happen if pathname were something like /home/cam/ book/wonderland: since the ## deletes the longest
match, it deletes the entire /home/cam/book/.

If we used #*/ instead of ##*/, the expression would have the incorrect value home/cam/book/wonderland,
because the shortest instance of "anything followed by a slash" at the beginning of the string is just a slash
(/).

The construct ${variable##*/} is actually equivalent to the UNIX utility basename. basename takes a
pathname as argument and returns the filename only; it is meant to be used with the shell's command
substitution mechanism (see the following explanation). basename is less efficient than ${variable##*/}
because it runs in its own separate process rather than within the shell. Another utility, dirname, does
essentially the opposite of basename: it returns the directory prefix only. It is equivalent to the bash
expression ${variable%/*} and is less efficient for the same reason.

The last operator in the table matches patterns and performs substitutions. Task 4-4 is a simple task where it
comes in useful.

Task 4-4
The directories in PATH can be hard to distinguish when printed out as one line with colon
delimiters. You want a simple way to display them, one to a line.

As directory names are separated by colons, the easiest way would be to replace each colon with a
LINEFEED:

$ echo -e ${PATH//:/'\n'}
/home/cam/bin
/usr/local/bin
/bin
/usr/bin
/usr/X11R6/bin

Each occurrence of the colon is replaced by \n. As we saw earlier, the -e option allows echo to interpret \n
as a LINEFEED. In this case we used the second of the two substitution forms. If we'd used the first form,
only the first colon would have been replaced with a \n.

4.3.3 Length Operator

There is one remaining operator on variables. It is ${#varname}, which returns the length of the value of the
variable as a character string. (In Chapter 6, we will see how to treat this and similar values as actual
numbers so they can be used in arithmetic expressions.) For example, if filename has the value alice.c, then
${#filename} would have the value 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Command Substitution
From the discussion so far, we've seen two ways of getting values into variables: by assignment statements
and by the user supplying them as command-line arguments (positional parameters). There is another way:
command substitution, which allows you to use the standard output of a command as if it were the value of
a variable. You will soon see how powerful this feature is.

The syntax of command substitution is: [8]

[8] Bourne and C shell users should note that the command substitution syntax of those shells, `UNIX command`
(with backward quotes, or grave accents), is also supported by bash for backward compatibility reasons. However,
it is harder to read and less conducive to nesting.

$(UNIX command)

The command inside the parentheses is run, and anything the command writes to standard output is returned
as the value of the expression. These constructs can be nested, i.e., the UNIX command can contain
command substitutions.

Here are some simple examples:

· The value of $(pwd) is the current directory (same as the environment variable $PWD).

· The value of $(ls $HOME) is the names of all files in your home directory.

· The value of $(ls $(pwd)) is the names of all files in the current directory.

· To find out detailed information about a command if you don't know where its file resides, type ls -
l $(type -path -all command-name). The -all option forces type to do a pathname look-up and -
path causes it to ignore keywords, built-ins, etc.

· If you want to edit (with vi) every chapter of your book on bash that has the phrase "command
substitution," assuming that your chapter files all begin with ch, you could type:

vi $(grep -l 'command substitution' ch*)
The -l option to grep prints only the names of files that contain matches.

Command substitution, like variable and tilde expansion, is done within double quotes. Therefore, our rule
in Chapter 1 and Chapter 3 about using single quotes for strings unless they contain variables will now be
extended: "When in doubt, use single quotes, unless the string contains variables or command substitutions,
in which case use double quotes."

Command substitution helps us with the solution to the next programming task, which relates to the album
database in Task 4-1.

Task 4-5
The file used in Task 4-1 is actually a report derived from a bigger table of data about albums.
This table consists of several columns, or fields, to which a user refers by names like "artist,"
"title," "year," etc. The columns are separated by vertical bars (|, the same as the UNIX pipe
character). To deal with individual columns in the table, field names need to be converted to
field numbers.

Suppose there is a shell function called getfield that takes the field name as argument and writes
the corresponding field (or column) number on the standard output. Use this routine to help
extract a column from the data table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The cut utility is a natural for this task. cut is a data filter: it extracts columns from tabular data. If you
supply the numbers of columns you want to extract from the input, cut will print only those columns on the
standard output. Columns can be character positions or—relevant in this ex ample—fields that are separated
by TAB characters or other delimiters. [9] Assume that the data table in our task is a file called albums and
that it looks like this:

[9] Some older BSD-derived systems don't have cut, but you can use awk instead. Whenever you see a command
of the form: cut -fN -dC filename, use this instead: awk -FC '{print $N}' filename.

Depeche Mode|Speak and Spell|Mute Records|1981
Depeche Mode|Some Great Reward|Mute Records|1984
Depeche Mode|101|Mute Records|1989
Depeche Mode|Violator|Mute Records|1990
Depeche Mode|Songs of Faith and Devotion|Mute Records|1993
...

Here is how we would use cut to extract the fourth (year) column:

cut -f4 -d\| albums

The -d argument is used to specify the character used as field delimiter (TAB is the default). The vertical
bar must be backslash-escaped so that the shell doesn't try to interpret it as a pipe.

From this line of code and the getfield routine, we can easily derive the solution to the task. Assume that the
first argument to getfield is the name of the field the user wants to extract. Then the solution is:

fieldname=$1
cut -f$(getfield $fieldname) -d\| albums

If we called this script with the argument year, the output would be:

1981
1984
1989
1990
1993
...

Task 4-6 shows another small task that makes use of cut.

Task 4-6
Send a mail message to everyone who is currently logged in.

The command who tells you who is logged in (as well as which terminal they're on and when they logged
in). Its output looks like this:

root tty1 Oct 13 12:05
michael tty5 Oct 13 12:58
cam tty23 Oct 13 11:51
kilrath tty25 Oct 13 11:58

The fields are separated by spaces, not TABs. Since we need the first field, we can get away with using a
space as the field separator in the cut command. (Otherwise we'd have to use the option to cut that uses
character columns instead of fields.) To provide a space character as an argument on a command line, you
can surround it by quotes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ who | cut -d' ' -f1
With the above who output, this command's output would look like this:

root
michael
cam
kilrath

This leads directly to a solution to the task. Just type:

$ mail $(who | cut -d' ' -f1)
The command mail root michael cam kilrath will run and then you can type your message.

Task 4-7 is another task that shows how useful command pipelines can be in command substitution.

Task 4-7
The ls command gives you pattern-matching capability with wildcards, but it doesn't allow you
to select files by modification date. Devise a mechanism that lets you do this.

Here is a function that allows you to list all files that were last modified on the date you give as argument.
Once again, we choose a function for speed reasons. No pun is intended by the function's name:

function lsd
{
 date=$1
 ls -l | grep -i "^.\{42\}$date" | cut -c55-
}

This function depends on the column layout of the ls -l command. In particular, it depends on dates starting
in column 42 and filenames starting in column 55. If this isn't the case in your version of UNIX, you will
need to adjust the column numbers. [10]

[10] For example, ls -l on SunOS 4.1.x has dates starting in column 33 and filenames starting in column 46.

We use the grep search utility to match the date given as argument (in the form Mon DD, e.g., Jan 15 or
Oct 6, the latter having two spaces) to the output of ls -l. This gives us a long listing of only those files
whose dates match the argument. The -i option to grep allows you to use all lowercase letters in the month
name, while the rather fancy argument means, "Match any line that contains 41 characters followed by the
function argument." For example, typing lsd 'jan 15' causes grep to search for lines that match any 41
characters followed by jan 15 (or Jan 15). [11]

[11] Some older BSD-derived versions of UNIX (without System V extensions) do not support the \{N\} option. For
this example, use 42 periods in a row instead of .\{42\}.

The output of grep is piped through our ubiquitous friend cut to retrieve the filenames only. The argument
to cut tells it to extract characters in column 55 through the end of the line.

With command substitution, you can use this function with any command that accepts filename arguments.
For example, if you want to print all files in your current directory that were last modified today, and today
is January 15th, you could type:

$ lp $(lsd 'jan 15')
The output of lsd is on multiple lines (one for each filename), but LINEFEEDs are legal field separators for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The output of lsd is on multiple lines (one for each filename), but LINEFEEDs are legal field separators for
the lp command, because the environment variable IFS (see earlier in this chapter) contains LINEFEED by
default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5 Advanced Examples: pushd and popd
We will conclude this chapter with a couple of functions that are already built into bash but are useful in
demonstrating some of the concepts we have covered in this chapter. [12]

[12] Your copy of bash may not have pushd and popd, since it can be configured without these built-ins.

Task 4-8
The functions pushd and popd implement a stack of directories that enable you to move to
another directory temporarily and have the shell remember where you were. Implement them as
shell functions.

We will start by implementing a significant subset of their capabilities and finish the implementation in
Chapter 6.

Think of a stack as a spring-loaded dish receptacle in a cafeteria. When you place dishes on the receptacle,
the spring compresses so that the top stays at roughly the same level. The dish most recently placed on the
stack is the first to be taken when someone wants food; thus, the stack is known as a "last-in, first-out" or
LIFO structure. Putting something onto a stack is known in computer science parlance as pushing, and
taking something off the top is called popping.

A stack is very handy for remembering directories, as we will see; it can "hold your place" up to an
arbitrary number of times. The cd - form of the cd command does this, but only to one level. For example:
if you are in firstdir and then you change to seconddir, you can type cd - to go back. But if you start out in
firstdir, then change to seconddir, and then go to thirddir, you can use cd - only to go back to seconddir. If
you type cd - again, you will be back in thirddir, because it is the previous directory. [13]

[13] Think of cd - as a synonym for cd $OLDPWD; see the previous chapter.

If you want the "nested" remember-and-change functionality that will take you back to firstdir, you need a
stack of directories along with the pushd and popd commands. Here is how these work:

· The first time pushd dir is called, pushd pushes the current directory onto the stack, then cds to
dir and pushes it onto the stack.

· Subsequent calls to pushd dir cd to dir and push dir only onto the stack.

· popd removes the top directory off the stack, revealing a new top. Then it cds to the new top
directory.

For example, consider the series of events in Table 4.3. Assume that you have just logged in, and that you
are in your home directory (/home/you).

Table 4.3. pushd/popd Example

Command Stack Contents Result Directory
pushd lizard /home/you/lizard /home/you /home/you/lizard
pushd /etc /etc /home/you/lizard /home/you /etc
popd /home/you/lizard /home/you /home/you/lizard
popd /home/you /home/you
popd <empty> (error)

We will implement a stack as an environment variable containing a list of directories separated by spaces.
[14]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[14]

[14] bash also maintains a directory stack for the pushd and popd built-ins, accessible through the environment
variable DIRSTACK. Unlike our version, however, it is implemented as an array (see Chapter 6 for details on
arrays).

Your directory stack should be initialized to the null string when you log in. To do this, put this in your
.bash_profile:

DIR_STACK=""
export DIR_STACK

Do not put this in your environment file if you have one. The export statement guarantees that
DIR_STACK is known to all subprocesses; you want to initialize it only once. If you put this code in an
environment file, it will get reinitialized in every subshell, which you probably don't want.

Next, we need to implement pushd and popd as functions. Here are our initial versions:

pushd ()
{
 dirname=$1
 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
 cd ${dirname:?"missing directory name."}
 echo "$DIR_STACK"
}

popd ()
{
 DIR_STACK=${DIR_STACK#* }
 cd ${DIR_STACK%% *}
 echo "$PWD"
}

Notice that there isn't much code! Let's go through the two functions and see how they work, starting with
pushd. The first line merely saves the first argument in the variable dirname for readability reasons.

The second line of the function pushes the new directory onto the stack. The expression
${DIR_STACK:-$PWD' '} evaluates to $DIR_STACK if it is non-null or $PWD'' (the current directory
and a space) if it is null. The expression within double quotes, then, consists of the argument given,
followed by a single space, followed by DIR_STACK or the current directory and a space. The trailing
space on the current directory is required for pattern matching in the popd function; each directory in the
stack is considered to be of the form "dirname ".

The double quotes in the assignment ensure that all of this is packaged into a single string for assignment
back to DIR_STACK. Thus, this line of code handles the special initial case (when the stack is empty) as
well as the more usual case (when it's not empty).

The third line's main purpose is to change to the new directory. We use the :? operator to handle the error
when the argument is missing: if the argument is given, then the expression ${dirname:?"missing
directory name."} evaluates to $dirname, but if it is not given, the shell will print the message pushd:
dirname: missing directory name and exit from the function.

The last line merely prints the contents of the stack, with the implication that the leftmost directory is both
the current directory and at the top of the stack. (This is why we chose spaces to separate directories, rather
than the more customary colons as in PATH and MAILPATH.)

The popd function makes yet another use of the shell's pattern-matching operators. Its first line uses the #
operator, which tries to delete the shortest match of the pattern "* " (anything followed by a space) from the
value of DIR_STACK. The result is that the top directory and the space following it are deleted from the
stack. This is why we need the space on the end of the first directory pushed onto the stack.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second line of popd uses the pattern-matching operator %% to delete the longest match to the pattern
"*" (a space followed by anything) from DIR_STACK. This extracts the top directory as an argument to cd,
but doesn't affect the value of DIR_STACK because there is no assignment. The final line just prints a
confirmation message.

This code is deficient in four ways. First, it has no provision for errors. For example:

· What if the user tries to push a directory that doesn't exist or is invalid?

· What if the user tries popd and the stack is empty?

Test your understanding of the code by figuring out how it would respond to these error conditions. The
second problem is that if you use pushd in a shell script, it will exit everything if no argument is given;
${varname:?message} always exits from non-interactive shells. It won't, however, exit an interactive shell
from which the function is called. The third deficiency is that it implements only some of the functionality
of bash's pushd and popd commands—albeit the most useful parts. In the next chapter, we will see how to
overcome all of these deficiencies.

The fourth problem with the code is that it will not work if, for some reason, a directory name contains a
space. The code will treat the space as a separator character. We'll accept this deficiency for now, but you
might like to think about how to overcome it in the next few chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Flow Control
If you are a programmer, you may have read the last chapter—with its claim at the outset that bash has an
advanced set of programming capabilities—and wondered where many of the features from conventional
languages were. Perhaps the most glaringly obvious "hole" in our coverage thus far concerns flow control
constructs like if, for, while, and so on.

Flow control gives a programmer the power to specify that only certain portions of a program run, or that
certain portions run repeatedly, according to conditions such as the values of variables, whether or not
commands execute properly, and others. We call this the ability to control the flow of a program's
execution.

Almost every shell script or function that's been shown thus far has had no flow control—they have just
been lists of commands to be run! Yet bash, like the C and Bourne shells, has all of the flow control abilities
you would expect and more; we will examine them in this chapter. We'll use them to enhance the solutions
to some of the programming tasks we saw in the last chapter and to solve tasks that we will introduce here.

Although we have attempted to explain flow control so that non-programmers can understand it, we also
sympathize with programmers who dread having to slog through yet another tabula rasa explanation. For
this reason, some of our discussions relate bash's flow-control mechanisms to those that programmers
should know already. Therefore you will be in a better position to understand this chapter if you already
have a basic knowledge of flow control concepts.

bash supports the following flow control constructs:

if/else

Execute a list of statements if a certain condition is/is not true

for

Execute a list of statements a fixed number of times

while

Execute a list of statements repeatedly while a certain condition holds true

until

Execute a list of statements repeatedly until a certain condition holds true

case

Execute one of several lists of statements depending on the value of a variable

In addition, bash provides a new type of flow-control construct:

select

Allow the user to select one of a list of possibilities from a menu

We will now cover each of these in detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 if/else
The simplest type of flow control construct is the conditional, embodied in bash's if statement. You use a
conditional when you want to choose whether or not to do something, or to choose among a small number
of things to do, according to the truth or falsehood of conditions. Conditions test values of shell variables,
characteristics of files, whether or not commands run successfully, and other factors. The shell has a large
set of built-in tests that are relevant to the task of shell programming.

The if construct has the following syntax:

if condition
then
 statements
[elif condition
 then statements...]
[else
 statements]
fi

The simplest form (without the elif and else parts, or clauses) executes the statements only if the condition
is true. If you add an else clause, you get the ability to execute one set of statements if a condition is true or
another set of statements if the condition is false. You can use as many elif (a contraction of "else if")
clauses as you wish; they introduce more conditions, and thus more choices for which set of statements to
execute. If you use one or more elifs, you can think of the else clause as the "if all else fails" part.

5.1.1 Exit Status and Return

Perhaps the only aspect of this syntax that differs from that of conventional languages like C and Pascal is
that the "condition" is really a list of statements rather than the more usual Boolean (true or false)
expression. How is the truth or falsehood of the condition determined? It has to do with a general UNIX
concept that we haven't covered yet: the exit status of commands.

Every UNIX command, whether it comes from source code in C, some other language, or a shell
script/function, returns an integer code to its calling process—the shell in this case—when it finishes. This
is called the exit status. 0 is usually the OK exit status, while anything else (1 to 255) usually denotes an
error. [1]

[1] Because this is a convention and not a "law," there are exceptions. For example, diff (find differences between
two files) returns 0 for "no differences," 1 for "differences found," or 2 for an error such as an invalid filename
argument.

if checks the exit status of the last statement in the list following the if keyword. The list is usually just a
single statement. If the status is 0, the condition evaluates to true; if it is anything else, the condition is
considered false. The same is true for each condition attached to an elif statement (if any).

This enables us to write code of the form:

if command ran successfully
then
 normal processing
else
 error processing
fi

More specifically, we can now improve on the pushd function that we saw in the last chapter:

pushd ()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pushd ()
{
 dirname=$1
 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
 cd ${dirname:?"missing directory name."}
 echo $DIR_STACK
}

This function requires a valid directory as its argument. Let's look at how it handles error conditions: if no
argument is given, the third line of code prints an error message and exits. This is fine.

However, the function reacts deceptively when an argument is given that isn't a valid directory. In case you
didn't figure it out when reading the last chapter, here is what happens: the cd fails, leaving you in the same
directory you were in. This is also appropriate. But the second line of code has pushed the bad directory
onto the stack anyway, and the last line prints a message that leads you to believe that the push was
successful. Even placing the cd before the stack assignment won't help because it doesn't exit the function if
there is an error.

We need to prevent the bad directory from being pushed and to print an error message. Here is how we can
do this:

pushd ()
{
 dirname=$1
 if cd ${dirname:?"missing directory name."} # if cd was successful
 then
 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}" # push the directory
 echo $DIR_STACK
 else
 echo still in $PWD. # else do nothing
 fi
}

The call to cd is now inside an if construct. If cd is successful, it will return 0; the next two lines of code are
run, finishing the pushd operation. But if the cd fails, it returns with exit status 1, and pushd will print a
message saying that you haven't gone anywhere.

Notice that in providing the check for a bad directory, we have slightly altered the way pushd functions.
The stack will now always start out with two copies of the first directory pushed onto it. That is because
$PWD is expanded after the new directory has been changed to. We'll fix this in the next section.

You can usually rely on built-in commands and standard UNIX utilities to return appropriate exit statuses,
but what about your own shell scripts and functions? For example, what if you wrote a cd function that
overrides the built-in command?

Let's say you have the following code in your .bash_profile.

cd ()
{
 builtin cd "$@"
 echo "$OLDPWD —> $PWD"
}

The function cd simply changes directories and prints a message saying where you were and where you are
now. Because functions have higher priority than most built-in commands in the shell's order of command
look-up, we need to make sure that the built-in cd is called, otherwise the shell will enter an endless loop of
calling the function, known as infinite recursion.

The builtin command allows us to do this. builtin tells the shell to use the built-in command and ignore any
function of that name. Using builtin is easy; you just give it the name of the built-in you want to execute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function of that name. Using builtin is easy; you just give it the name of the built-in you want to execute
and any parameters you want to pass. If you pass in the name of something which isn't a built-in command,
builtin will display an appropriate message. For example: builtin: alice: not a shell builtin.

We want this function to return the same exit status that the built-in cd returns. The problem is that the exit
status is reset by every command, so it "disappears" if you don't save it immediately. In this function, the
built-in cd's exit status disappears when the echo statement runs (and sets its own exit status).

Therefore, we need to save the status that cd sets and use it as the entire function's exit status. Two shell
features we haven't seen yet provide the way. First is the special shell variable ?, whose value ($?) is the
exit status of the last command that ran. For example:

cd baddir
echo $?

causes the shell to print 1, while the following command causes it to print 0:

cd gooddir
echo $?

So, to save the exit status we need to assign the value of ? to a variable with the line es=$? right after the cd
is done.

5.1.1.1 Return

The second feature we need is the statement return N, which causes the surrounding function to exit with
exit status N. N is actually optional; it defaults to the exit status of the last command. Functions that finish
without a return statement (i.e., every one we have seen so far) return whatever the last statement returns.
return can only be used inside functions, and shell scripts that have been executed with source. In contrast,
the statement exit N exits the entire script, no matter how deeply you are nested in functions.

Getting back to our example: if the call to the built-in cd were last in our cd function, it would behave
properly. Unfortunately, we really need the assignment statement where it is. Therefore we need to save
cd's exit status and return it as the function's exit status. Here is how to do it:

cd ()
{
 builtin cd "$@"
 es=$?
 echo "$OLDPWD —> $PWD"
 return $es
}

The second line saves the exit status of cd in the variable es; the fourth returns it as the function's exit status.
We'll see a substantial cd "wrapper" in Chapter 7.

Exit statuses aren't very useful for anything other than their intended purpose. In particular, you may be
tempted to use them as "return values" of functions, as you would with functions in C or Pascal. That won't
work; you should use variables or command substitution instead to simulate this effect.

5.1.2 Combinations of Exit Statuses

One of the more obscure parts of bash syntax allows you to combine exit statuses logically, so that you can
test more than one thing at a time.

The syntax statement1 && statement2 means, "execute statement1, and if its exit status is 0, execute
statement2." The syntax statement1 || statement2 is the converse: it means, "execute statement1, and if its
exit status is not 0, execute statement2." At first, these look like "if/then" and "if not/then" constructs,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exit status is not 0, execute statement2." At first, these look like "if/then" and "if not/then" constructs,
respectively. But they are really intended for use within conditions of if constructs—as C programmers will
readily understand.

It's much more useful to think of these constructs as "and" and "or," respectively. Consider this:

if statement1 && statement2
then
 ...
fi

In this case, statement1 is executed. If it returns a 0 status, then presumably it ran without error. Then
statement2 runs. The then clause is executed if statement2 returns a 0 status. Conversely, if statement1 fails
(returns a non-zero exit status), then statement2 doesn't even run; the last statement that actually ran was
statement1, which failed—so the then clause doesn't run, either. Taken all together, it's fair to conclude that
the then clause runs if statement1 and statement2 both succeeded.

Similarly, consider this:

if statement1 || statement2
then
 ...
fi

If statement1 succeeds, then statement2 does not run. This makes statement1 the last statement, which
means that the then clause runs. On the other hand, if statement1 fails, then statement2 runs, and whether
the then clause runs or not depends on the success of statement2. The upshot is that the then clause runs if
statement1 or statement2 succeeds.

bash also allows you to reverse the return status of a statement with the use of !, the logical "not". Preceding
a statement with ! will cause it to return 0 if it fails and 1 if it succeeds. We'll see an example of this at the
end of this chapter.

As a simple example of testing exit statuses, assume that we need to write a script that checks a file for the
presence of two words and just prints a message saying whether either word is in the file or not. We can use
grep for this: it returns exit status 0 if it found the given string in its input, non-zero if not:

filename=$1
word1=$2
word2=$3

if grep $word1 $filename || grep $word2 $filename
then
 echo "$word1 or $word2 is in $filename."
fi

The then clause of this code runs if either grep statement succeeds. Now assume that we want the script to
say whether the input file contains both words. Here's how to do it:

filename=$1
word1=$2
word2=$3

if grep $word1 $filename && grep $word2 $filename
then
 echo "$word1 and $word2 are both in $filename."
fi

We'll see more examples of these logical operators later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1.3 Condition Tests

Exit statuses are the only things an if construct can test. But that doesn't mean you can check only whether
commands ran properly. The shell provides a way of testing a variety of conditions with the [...] construct.
[2]

[2] The built-in command test is synonymous with [...]. For example, to test the equivalence of two strings you can
either put [string1 = string2] or test string1 = string2.

You can use the construct to check many different attributes of a file (whether it exists, what type of file it
is, what its permissions and ownership are, etc.), compare two files to see which is newer, and do
comparisons on strings.

[condition] is actually a statement just like any other, except that the only thing it does is return an exit
status that tells whether condition is true. (The spaces after the opening bracket "[" and before the closing
bracket "]" are required.) Thus it fits within the if construct's syntax.

5.1.3.1 String comparisons

The square brackets ([]) surround expressions that include various types of operators. We will start with the
string comparison operators, listed in Table 5.1. (Notice that there are no operators for "greater than or
equal" or "less than or equal" comparisons.) In the table, str1 and str2 refer to expressions with a string
value.

Table 5.1. String Comparison Operators

Operator True if...
str1 = str2a str1 matches str2
str1 != str2 str1 does not match str2
str1 < str2 str1 is less than str2
str1 > str2 str1 is greater than str2
-n str1 str1 is not null (has length greater than 0)
-z str1 str1 is null (has length 0)

[3]

[3] Note that there is only one equal sign (=). This is a common source of error.

We can use one of these operators to improve our popd function, which reacts badly if you try to pop and
the stack is empty. Recall that the code for popd is:

popd ()
{
 DIR_STACK=${DIR_STACK#* }
 cd ${DIR_STACK%% *}
 echo "$PWD"
}

If the stack is empty, then $DIR_STACK is the null string, as is the expression ${DIR_STACK%% }.
This means that you will change to your home directory; instead, we want popd to print an error message
and do nothing.

To accomplish this, we need to test for an empty stack, i.e., whether $DIR_STACK is null or not. Here is
one way to do it:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

popd ()
{
 if [-n "$DIR_STACK"]; then
 DIR_STACK=${DIR_STACK#* }
 cd ${DIR_STACK%% *}
 echo "$PWD"
 else
 echo "stack empty, still in $PWD."
 fi
}

In the condition, we have placed the $DIR_STACK in double quotes, so that when it is expanded it is
treated as a single word. If you don't do this, the shell will expand $DIR_STACK to individual words and
the test will complain that it was given too many arguments.

There is another reason for placing $DIR_STACK in double quotes, which will become important later on:
sometimes the variable being tested will expand to nothing, and in this example the test will become [-n],
which returns true. Surrounding the variable in double quotes ensures that even if it expands to nothing,
there will be an empty string as an argument (i.e., [-n ""]).

Also notice that instead of putting then on a separate line, we put it on the same line as the if after a
semicolon, which is the shell's standard statement separator character.

We could have used operators other than -n. For example, we could have used -z and switched the code in
the then and else clauses.

While we're cleaning up code we wrote in the last chapter, let's fix up the error handling in the highest script
(Task 5-1). The code for that script was:

filename=${1:?"filename missing."}
howmany=${2:-10}
sort -nr $filename | head -$howmany

Recall that if you omit the first argument (the filename), the shell prints the message highest: 1: filename
missing. We can make this better by substituting a more standard "usage" message. While we are at it, we
can also make the command more in line with conventional UNIX commands by requiring a dash before the
optional argument.

if [-z "$1"]; then
 echo 'usage: highest filename [-N]'
else
 filename=$1
 howmany=${2:—10}
 sort -nr $filename | head $howmany
fi

Notice that we have moved the dash in front of $howmany inside the parameter expansion ${2:--10}.

It is considered better programming style to enclose all of the code in the if-then-else, but such code can get
confusing if you are writing a long script in which you need to check for errors and bail out at several points
along the way. Therefore, a more usual style for shell programming follows.

if [-z "$1"]; then
 echo 'usage: highest filename [-N]'
 exit 1
fi

filename=$1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filename=$1
howmany=${2:—10}
sort -nr $filename | head $howmany

The exit statement informs any calling program whether it ran successfully or not.

As an example of the = operator, we can add to the graphics utility that we touched on in Task 4-2. Recall
that we were given a filename ending in .pcx (the original graphics file), and we needed to contruct a
filename that was the same but ended in .gif (the output file). It would be nice to be able to convert several
other types of formats to GIF files so that we could use them on a Web page. Some common types we might
want to convert besides PCX include XPM (X PixMap), TGA (Targa), TIFF (Tagged Image File Format),
and JPEG (Joint Photographics Expert Group).

We won't attempt to perform the actual manipulations needed to convert one graphics format to another
ourselves. Instead we'll use some tools that are freely available on the Internet, conversion utilities from the
NetPBM archive and from the Independent JPEG Group. [4]

[4] NetPBM is a portable graphics conversion utility package derived from another package written in the late '80s
by Jef Poskanzer, called PBMplus. It is freely available from many FTP sites including
ftp://ftp.x.org/contrib/utilities/netpbm-1mar1994.tar.gz. NetPBM doesn't include any conversion utilities for handling
JPEG files (JPEG, like GIF, is a popular graphics format for Web pages) but the necessary utilities, which are
cjpeg and djpeg, are available from the Independent JPEG Group at ftp://ftp.uu.net/graphics/jpeg/.

Don't worry about the details of how these utilities work; all we want to do is create a shell frontend that
processes the filenames and calls the correct conversion utilities. At this point it is sufficient to know that
each conversion utility takes a filename as an argument and sends the results of the conversion to standard
output. To reduce the number of conversion programs necessary to convert between the thirty or so
different graphics formats it supports, NetPBM has its own format: a Portable Anymap file, also called a
PNM, with extensions .ppm (Portable Pix Map) for color images, .pgm (Portable Gray Map) for grayscale
images, and .pbm (Portable Bit Map) for black and white images. Each graphics format has a utility to
convert to and from this "central" PNM format.

The frontend script we are developing should first choose the correct conversion utility based on the
filename extension, and then convert the resulting PNM file into a GIF:

filename=$1
extension=${filename##*.}
ppmfile=${filename%.*}.ppm
outfile=${filename%.*}.gif

if [-z $filename]; then
 echo "procfile: No file specified"
 exit 1
fi

if [$extension = gif]; then
 exit 0
elif [$extension = tga]; then
 tgatoppm $filename > $ppmfile
elif [$extension = xpm]; then
 xpmtoppm $filename > $ppmfile
elif [$extension = pcx]; then
 pcxtoppm $filename > $ppmfile
elif [$extension = tif]; then
 tifftopnm $filename > $ppmfile
elif [$extension = jpg]; then
 djpeg $filename > $ppmfile
else
 echo "procfile: $filename is an unknown graphics file."
 exit 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exit 1
fi

ppmquant -quiet 256 $ppmfile | ppmtogif -quiet > $outfile

rm $ppmfile

Recall from the previous chapter that the expression ${filename%.*} deletes the extension from filename;
${filename##*.} deletes the basename and keeps the extension.

Once the correct conversion is chosen, the script runs the utility and writes the output to a temporary file.
The second to last line takes the temporary file, performs some magic, and then converts it to a GIF. [5]The
temporary file is then removed. Notice that if the original file was a GIF we just exit without having to do
any processing.

[5] ppmquant quantizes the image. Some of the input formats have a higher number of colors than GIF's
maximum of 256 colors, so we have to compress the colors down to 256 or fewer. This is one good reason why
GIF shouldn't be used for "real world" images, e.g., photographs of people or landscapes. However, for the
purposes of this and future examples, we'll stick with the GIF format.

This script has a few problems. We'll look at improving it later in this chapter.

5.1.3.2 File attribute checking

The other kind of operator that can be used in conditional expressions checks a file for certain properties.
There are 20 such operators. We will cover those of most general interest here; the rest refer to arcana like
sticky bits, sockets, and file descriptors, and thus are of interest only to systems hackers. Refer to Appendix
B, for the complete list. Table 5.2 lists those that we will examine.

Table 5.2. File Attribute Operators

Operator True if...
-d file file exists and is a directory
-e file file exists
-f file file exists and is a regular file (i.e., not a directory or other special type of file)
-r file You have read permission on file
-s file file exists and is not empty
-w file You have write permission on file
-x file You have execute permission on file, or directory search permission if it is a directory
-O file You own file
-G file file's group ID matches yours (or one of yours, if you are in multiple groups).
file1 -nt file2 file1 is newer than file2a

file1 -ot file2 file1 is older than file2

[6]

[6] Specifically, the -nt and -ot operators compare modification times of two files.

Before we get to an example, you should know that conditional expressions inside [and] can also be
combined using the logical operators && and ||, just as we saw with plain shell commands, in the previous
section entitled Section 5.1.2 For example:

if [condition] && [condition]; then
It's also possible to combine shell commands with conditional expressions using logical operators, like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if command && [condition]; then
 ...
You can also negate the truth value of a conditional expression by preceding it with an exclamation point
(!), so that ! expr evaluates to true only if expr is false. Furthermore, you can make complex logical
expressions of conditional operators by grouping them with parentheses (which must be "escaped" with
backslashes to prevent the shell from treating them specially), and by using two logical operators we haven't
seen yet: -a (AND) and -o (OR).

The -a and -o operators are similar to the && and || operators used with exit statuses. However, unlike those
operators, -a and -o are only available inside a test conditional expression.

Here is how we would use two of the file operators, a logical operator, and a string operator to fix the
problem of duplicate stack entries in our pushd function. Instead of having cd determine whether the
argument given is a valid directory—i.e., by returning with a bad exit status if it's not—we can do the
checking ourselves. Here is the code:

pushd ()
{
 dirname=$1
 if [-n "$dirname"] && [\(-d "$dirname" \) -a \
 \(-x "$dirname" \)]; then
 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
 cd $dirname
 echo "$DIR_STACK"
 else
 echo "still in $PWD."
 fi
}

The conditional expression evaluates to true only if the argument $1 is not null (-n), a directory (-d) and the
user has permission to change to it (-x). [7]Notice that this conditional handles the case where the argument
is missing ($dirname is null) first; if it is, the rest of the condition is not executed. This is important
because, if we had just put:

[7] Remember that the same permission flag that determines execute permission on a regular file determines
search permission on a directory. This is why the -x operator checks both things depending on file type.

if [\(-n "$dirname"\) -a \(-d "$dirname" \) -a \
 \(-x "$dirname" \)]; then

the second condition, if null, would cause test to complain and the function would exit prematurely.

Here is a more comprehensive example of the use of file operators.

Task 5-1
Write a script that prints essentially the same information as ls -l but in a more user-friendly
way.

Although this task requires relatively long-winded code, it is a straightforward application of many of the
file operators:

if [! -e "$1"]; then
 echo "file $1 does not exist."
 exit 1
fi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

fi
if [-d "$1"]; then
 echo -n "$1 is a directory that you may "
 if [! -x "$1"]; then
 echo -n "not "
 fi
 echo "search."
elif [-f "$1"]; then
 echo "$1 is a regular file."
else
 echo "$1 is a special type of file."
fi
if [-O "$1"]; then
 echo 'you own the file.'
else
 echo 'you do not own the file.'
fi
if [-r "$1"]; then
 echo 'you have read permission on the file.'
fi
if [-w "$1"]; then
 echo 'you have write permission on the file.'
fi
if [-x "$1" -a ! -d "$1"]; then
 echo 'you have execute permission on the file.'
fi

We'll call this script fileinfo. Here's how it works:

· The first conditional tests if the file given as argument does not exist (the exclamation point is the
"not" operator; the spaces around it are required). If the file does not exist, the script prints an error
message and exits with error status.

· The second conditional tests if the file is a directory. If so, the first echo prints part of a message;
remember that the -n option tells echo not to print a LINEFEED at the end. The inner conditional
checks if you do not have search permission on the directory. If you don't have search permission,
the word "not" is added to the partial message. Then, the message is completed with "search." and a
LINEFEED.

· The elif clause checks if the file is a regular file; if so, it prints a message.

· The else clause accounts for the various special file types on recent UNIX systems, such as
sockets, devices, FIFO files, etc. We assume that the casual user isn't interested in details of these.

· The next conditional tests to see if the file is owned by you (i.e., if its owner ID is the same as your
login ID). If so, it prints a message saying that you own it.

· The next two conditionals test for your read and write permission on the file.

· The last conditional checks if you can execute the file. It checks to see if you have execute
permission and that the file is not a directory. (If the file were a directory, execute permission
would really mean directory search permission.) In this test we haven't used any brackets to group
the tests and have relied on operator precedence. Simply put, operator precedence is the order in
which the shell processes the operators. This is exactly the same concept as arithmetic precedence
in mathematics, where multiply and divide are done before addition and subtraction. In our case, [-
x "$1" -a ! -d "$1"] is equivalent to [\(-x "$1" \) -a \(! -d "$1" \)]. The file tests are done first,
followed by any negations (!) and followed by the AND and OR tests.

As an example of fileinfo's output, assume that you do an ls -l of your current directory and it contains these

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an example of fileinfo's output, assume that you do an ls -l of your current directory and it contains these
lines:

-rwxr-xr-x 1 cam users 2987 Jan 10 20:43 adventure
-rw-r--r-- 1 cam users 30 Jan 10 21:45 alice
-r--r--r— 1 root root 58379 Jan 11 21:30 core
drwxr-xr-x 2 cam users 1024 Jan 10 21:41 dodo

alice and core are regular files, dodo is a directory, and adventure is a shell script. Typing fileinfo
adventure produces this output:

adventure is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

Typing fileinfo alice results in this:

alice is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.

Finally, typing fileinfo dodo results in this:

dodo is a directory that you may search.
you own the file.
you have read permission on the file.
you have write permission on the file.

Typing fileinfo core produces this:

core is a regular file.
you do not own the file.
you have read permission on the file.

5.1.4 Integer Conditionals

The shell also provides a set of arithmetic tests. These are different from character string comparisons like
< and >, which compare lexicographic values of strings, [8]not numeric values. For example, "6" is greater
than "57" lexicographically, just as "p" is greater than "ox," but of course the opposite is true when they're
compared as integers.

[8] "Lexicographic order" is really just "dictionary order."

The integer comparison operators are summarized in Table 5.3.

Table 5.3. Arithmetic Test Operators

Test Comparison
-lt Less than
-le Less than or equal
-eq Equal
-ge Greater than or equal
-gt Greater than
-ne Not equal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You'll find these to be of the most use in the context of the integer variables we'll see in the next chapter.
They're necessary if you want to combine integer tests with other types of tests within the same conditional
expression.

However, the shell has a separate syntax for conditional expressions that involve integers only. It's
considerably more efficient, so you should use it in preference to the arithmetic test operators listed above.
Again, we'll cover the shell's integer conditionals in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 for
The most obvious enhancement we could make to the previous script is the ability to report on multiple files
instead of just one. Tests like -e and -d take only single arguments, so we need a way of calling the code
once for each file given on the command line.

The way to do this—indeed, the way to do many things with bash—is with a looping construct. The
simplest and most widely applicable of the shell's looping constructs is the for loop. We'll use for to
enhance fileinfo soon.

The for loop allows you to repeat a section of code a fixed number of times. During each time through the
code (known as an iteration), a special variable called a loop variable is set to a different value; this way
each iteration can do something slightly different.

The for loop is somewhat, but not entirely, similar to its counterparts in conventional languages like C and
Pascal. The chief difference is that the shell's for loop doesn't let you specify a number of times to iterate or
a range of values over which to iterate; instead, it only lets you give a fixed list of values. In other words,
you can't do anything like this Pascal-type code, which executes statements 10 times:

for x := 1 to 10 do
begin
 statements...end
(You need the while construct, which we'll see soon, to construct this type of loop. You also need the ability
to do integer arithmetic, which we will see in Chapter 6.)

However, the for loop is ideal for working with arguments on the command line and with sets of files (e.g.,
all files in a given directory). We'll look at an example of each of these. But first, we'll show the syntax for
the for construct:

for name [in list]
do
 statements that can use $name...
done

The list is a list of names. (If in list is omitted, the list defaults to "$@", i.e., the quoted list of command-line
arguments, but we'll always supply the in list for the sake of clarity.) In our solutions to the following task,
we'll show two simple ways to specify lists.

Task 5-2
Task 4-4 used pattern matching and substitution to list the directories in PATH, one to a line.
Unfortunately, old versions of bash don't have that particular pattern operator. Write a general
shell script, listpath, that prints each directory in PATH, one per line. In addition, have it print
out information about each directory, such as the permissions and the modification times.

The easiest way to do this is by changing the IFS variable we saw in Chapter 4:

IFS=:

for dir in $PATH
do
 ls -ld $dir
done

This sets the IFS to be a colon, which is the separator used in PATH. The for loop then loops through,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This sets the IFS to be a colon, which is the separator used in PATH. The for loop then loops through,
setting dir to each of the colon delimited fields in PATH. ls is used to print out the directory name and
associated information. The -l parameter specifies the "long" format and the -d tells ls to show only the
directory itself and not its contents.

In using this you might see an error generated by ls saying, for example, ls: /usr/TeX/bin: No such file or
directory. It indicates that a directory in PATH doesn't exist. We can modify the listpath script to check the
PATH variable for nonexistent directories by adding some of the tests we saw earlier;

IFS=:

for dir in $PATH; do
 if [-z "$dir"]; then dir=.; fi

 if ! [-e "$dir"]; then
 echo "$dir doesn't exist"
 elif ! [-d "$dir"]; then
 echo "$dir isn't a directory"
 else
 ls -ld $dir
 fi
done

This time, as the script loops, we first check to see if the length of $dir is zero (caused by having a value of
:: in the PATH). If it is, we set it to the current directory. Then we check to see if the directory doesn't
exist. If it doesn't, we print out an appropriate message. Otherwise we check to see if the file is not a
directory. If it isn't, we say so.

The foregoing illustrated a simple use of for, but it's much more common to use for to iterate through a list
of command-line arguments. To show this, we can enhance the fileinfo script above to accept multiple
arguments. First, we write a bit of "wrapper" code that does the iteration:

for filename in "$@" ; do
 finfo "$filename"
 echo
done

Next, we make the original script into a function called finfo: [9]

[9] A function can have the same name as a script; however, this isn't good programming practice.

finfo ()
{
 if [! -e "$1"]; then
 print "file $1 does not exist."
 return 1
 fi
 ...
}

The complete script consists of the for loop code and the above function, in either order; good programming
style dictates that the function definition should go first.

The fileinfo script works as follows: in the for statement, "$@" is a list of all positional parameters. For
each argument, the body of the loop is run with filename set to that argument. In other words, the function
finfo is called once for each value of $filename as its first argument ($1). The call to echo after the call to
finfo merely prints a blank line between sets of information about each file.

Given a directory with the same files as the earlier example, typing fileinfo * would produce the following
output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

adventure is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.
you have execute permission on the file.

alice is a regular file.
you own the file.
you have read permission on the file.
you have write permission on the file.

core is a regular file.
you do not own the file.
you have read permission on the file.

dodo is a directory that you may search.
you own the file.
you have read permission on the file.
you have write permission on the file.

Here is a programming task that exploits the other major use of for.

Task 5-3
It is possible to print out all of the directories below a given one by using the -R option of ls.
Unfortunately, this doesn't give much idea about the directory structure because it prints all the
files and directories line by line. Write a script that performs a recursive directory listing and
produces output that gives an idea of the structure for a small number of subdirectories.

We'll probably want output that looks something like this:

.
 adventure
 aaiw
 dodo
 duchess
 hatter
 march_hare
 queen
 tarts
 biog
 ttlg
 red_queen
 tweedledee
 tweedledum
 lewis.carroll

Each column represents a directory level. Entries below and to the right of an entry are files and directories
under that directory. Files are just listed with no entries to their right. This example shows that the directory
adventure and the file lewis.carroll are in the current directory; the directories aaiw and ttlg, and the file
biog are under adventure, etc. To make life simple, we'll use TABs to line the columns up and ignore any
"bleed over" of filenames from one column into an adjacent one.

We need to be able to traverse the directory hierarchy. To do this easily we'll use a programming technique
known as recursion. Recursion is simply referencing something from itself; in our case, calling a piece of
code from itself. For example, consider this script, tracedir, in your home directory:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

file=$1
echo $file

if [-d "$file"]; then
 cd $file
 ~/tracedir $(ls)
 cd ..
fi

First we copy and print the first argument. Then we test to see if it is a directory. If it is, we cd to it and call
the script again with an argument of the files in that directory. This script is recursive; when the first
argument is a directory, a new shell is invoked and a new script is run on the new directory. The old script
waits until the new script returns, then the old script executes a cd back up one level and exits. This happens
in each invocation of the tracedir script. The recursion will stop only when the first argument isn't a
directory.

Running this on the directory structure listed above with the argument adventure will produce:

adventure
aaiw
dodo

dodo is a file and the script exits.

This script has a few problems, but it is the basis for the solution to this task. One major problem with the
script is that it is very inefficient. Each time the script is called, a new shell is created. We can improve on
this by making the script into a function, because (as you probably remember from Chapter 4) functions are
part of the shell they are started from. We also need a way to set up the TAB spacing. The easiest way is to
have an initializing script or function and call the recursive routine from that. Let's look at this routine.

recls ()
{
 singletab="\t"

 for tryfile in "$@"; do
 echo $tryfile
 if [-d "$tryfile"]; then
 thisfile=$tryfile
 recdir $(command ls $tryfile)
 fi
 done

 unset dir singletab tab
}

First, we set up a variable to hold the TAB character for the echo command (Chapter 7, explains all of the
options and formatting commands you can use with echo). Then we loop through each argument supplied to
the function and print it out. If it is a directory, we call our recursive routine, supplying the list of files with
ls. We have introduced a new command at this point: command. command is a shell built-in that disables
function and alias look-up. In this case, it is used to make sure that the ls command is one from your
command search path, PATH, and not a function (for further information on command, see Chapter 7).
After it's all over, we clean up by unsetting the variables we have used.

Now we can expand on our earlier shell script.

recdir ()
{
 tab=tabsingletab

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 tab=tabsingletab

 for file in "$@"; do
 echo -e tabfile
 thisfile=$thisfile/$file

 if [-d "$thisfile"]; then
 recdir $(command ls $thisfile)
 fi

 thisfile=${thisfile%/*}
 done

 tab=${tab%\t}
}

Each time it is called, recdir loops through the files it is given as arguments. For each one it prints the
filename and then, if the file is a directory, calls itself with arguments set to the contents of the directory.
There are two details that have to be taken care of: the number of TABs to use, and the pathname of the
"current" directory in the recursion.

Each time we go down a level in the directory hierarchy we want to add a TAB character, so we append a
TAB to the variable tab every time we enter recdir. Likewise, when we exit recdir we are moving up a
directory level, so we remove the TAB when we leave the function. Initially, tab is not set, so the first time
recdir is called, tab will be set to one TAB. If we recurse into a lower directory, recdir will be called again
and another TAB will be appended. Remember that tab is a global variable, so it will grow and shrink in
TABs for every entry and exit of recdir. The -e option to echo tells it to recognize escaped formatting
characters, in our case the TAB character, \t.

In this version of the recursive routine we haven't used cd to move between directories. That means that an
ls of a directory will have to be supplied with a relative path to files further down in the hierarchy. To do
this, we need to keep track of the directory we are currently examining. The initialization routine sets the
variable thisfile to the directory name each time a directory is found while looping. This variable is then
used in the recursive routine to keep the relative pathname of the current file being examined. On each
iteration of the loop, thisfile has the current filename appended to it, and at the end of the loop the filename
is removed.

You might like to think of ways to modify the behavior and improve the output of this code. Here are some
programming challenges:

1. In the current version, there is no way to determine if biog is a file or a directory. An empty
directory looks no different to a file in the listing. Change the output so it appends a / to each
directory name when it displays it.

2. Modify the code so that it only recurses down a maximum of eight subdirectories (which is about
the maximum before the lines overflow the right-hand side of the screen). Hint: think about how
TABs have been implemented.

3. Change the output so it includes dashed lines and adds a blank line after each directory, thus:

4. .
5. |
6. |-------adventure
7. | |
8. | |-------aaiw
9. | | |
10. | | |-------dodo
11. | | |-------duchess
12. | | |-------hatter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12. | | |-------hatter
13. | | |-------march_hare
14. | | |-------queen
15. | | |-------tarts
16. | |
17. | |-------biog

...

Hint: You'll need at least two other variables that contain the characters "|" and "-".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 case
The next flow-control construct we will cover is case. While the case statement in Pascal and the similar
switch statement in C can be used to test simple values like integers and characters, bash's case construct
lets you test strings against patterns that can contain wildcard characters. Like its conventional-language
counterparts, case lets you express a series of if-then-else type statements in a concise way.

The syntax of case is as follows:

case expression in
 pattern1)
 statements ;;
 pattern2)
 statements ;;
 ...
esac

Any of the patterns can actually be several patterns separated by pipe characters (|). If expression matches
one of the patterns, its corresponding statements are executed. If there are several patterns separated by pipe
characters, the expression can match any of them in order for the associated statements to be run. The
patterns are checked in order until a match is found; if none is found, nothing happens.

This construct should become clearer with an example. Let's revisit our solution to Task 4-2 and the
additions to it presented earlier in this chapter, our graphics utility. Remember that we wrote some code that
processed input files according to their suffixes (.pcx for PCX format, .jpg for JPEG format, etc.).

We can improve upon this solution in two ways. Firstly, we can use a for loop to allow multiple files to be
processed one at a time; secondly, we can use the case construct to streamline the code:

for filename in "$@"; do
 ppmfile=${filename%.*}.ppm

 case $filename in
 *.gif) exit 0 ;;

 *.tga) tgatoppm $filename > $ppmfile ;;

 *.xpm) xpmtoppm $filename > $ppmfile ;;

 *.pcx) pcxtoppm $filename > $ppmfile ;;

 *.tif) tifftopnm $filename > $ppmfile ;;

 *.jpg) djpeg $filename > $ppmfile ;;

 *) echo "procfile: $filename is an unknown graphics file."
 exit 1 ;;
 esac

 outfile=${ppmfile%.ppm}.new.gif

 ppmquant -quiet 256 $ppmfile | ppmtogif -quiet > $outfile
 rm $ppmfile

done

The case construct in this code does the same thing as the if statements that we saw in the earlier version. It

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The case construct in this code does the same thing as the if statements that we saw in the earlier version. It
is, however, clearer and easier to follow.

The first six patterns in the case statement match the various file extensions that we wish to process. The
last pattern matches anything that hasn't already been matched by the previous statements. It is essentially a
catchall and is analogous to the default case in C.

There is another slight difference to the previous version; we have moved the pattern matching and
replacement inside the added for loop that processes all of the command-line arguments. Each time we pass
through the loop, we want to create a temporary and final file with a name based on the name in the current
command-line argument.

We'll return to this example in Chapter 6, when we further develop the script and discuss how to handle
dash options on the command line. In the meantime, here is a task that requires that we use case.

Task 5-4
Write a function that implements the Korn shell's cd old new. cd takes the pathname of the
current directory and tries to find the string old. If it finds it, it substitutes new and attempts to
change to the resulting directory.

We can implement this by using a case statement to check the number of arguments and the built-in cd
command to do the actual change of directory.

Here is the code: [10]

[10] To make the function a little clearer, we've used some advanced I/O redirection. I/O redirection is covered in
Chapter 7.

cd()
{
 case "$#" in
 0 | 1) builtin cd $1 ;;
 2) newdir=$(echo $PWD | sed -e "s:$1:$2:g")
 case "$newdir" in
 $PWD) echo "bash: cd: bad substitution" >&2 ;
 return 1 ;;
 *) builtin cd "$newdir" ;;
 esac ;;
 *) echo "bash: cd: wrong arg count" 1>&2 ; return 1 ;;
 esac
}

The case statement in this task tests the number of arguments to our cd command against three alternatives.

For zero or one arguments, we want our cd to work just like the built-in one. The first alternative in the case
statement does this. It includes something we haven't used so far; the pipe symbol between the 0 and 1
means that either pattern is an acceptable match. If the number of arguments is either of these, the built-in
cd is executed.

The next alternative is for two arguments, which is where we'll add the new functionality to cd. The first
thing that has to be done is finding and replacing the old string with the new one. We use sed to perform
this operation on the current directory, s:$1:$2:g, meaning globally substitute string $2 for string $1. The
result is then assigned to newdir. If the substitution didn't take place, the pathname will be unchanged.
We'll use this fact in the next few lines.

Another case statement chooses between performing the cd or reporting an error because the new directory
is unchanged. If sed is unable to find the old string, it leaves the pathname untouched. The * alternative is a
catchall for anything other than the current pathname (caught by the first alternative).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might notice one small problem with this code: if your old and new strings are the same you'll get
bash:: cd: bad substitution. It should just leave you in the same directory with no error message, but
because the directory path doesn't change, it uses the first alternative in the inner case statement. The
problem lies in knowing if sed has performed a substitution or not. You might like to think about ways to
fix this problem (hint: you could use grep to check whether the pathname has the old string in it).

The last alternative in the outer case statement prints an error message if there are more than two arguments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 select
All of the flow-control constructs we have seen so far are also available in the Bourne shell, and the C shell
has equivalents with different syntax. Our next construct, select, is available only in the Korn shell and
bash; [11]moreover, it has no analogy in conventional programming languages.

[11] select is not available in bash versions prior to 1.14.

select allows you to generate simple menus easily. It has concise syntax, but it does quite a lot of work. The
syntax is:

select name [in list]
do
 statements that can use $name...
done

This is the same syntax as for except for the keyword select. And like for, you can omit the in list and it
will default to "$@", i.e., the list of quoted command-line arguments. Here is what select does:

· Generates a menu of each item in list, formatted with numbers for each choice

· Prompts the user for a number

· Stores the selected choice in the variable name and the selected number in the built-in variable
REPLY

· Executes the statements in the body

· Repeats the process forever (but see below for how to exit)

Here is a task that adds another command to our pushd and popd utilities.

Task 5-5
Write a function that allows the user to select a directory from a list of directories currently in
the pushd directory stack. The selected directory is moved to the front of the stack and it
becomes the current working directory.

The display and selection of directories is best handled by using select. We can start off with something
along the lines of: [12]

[12] Versions of bash prior to 1.14.3 have a serious bug with select. These versions will crash if the select list is
empty. In this case, surround selects with a test for a null list.

selectd ()
{
 PS3='directory? '
 select selection in $DIR_STACK; do
 if [$selection]; then
 #statements that manipulate the stack...
 break
 else
 echo 'invalid selection.'
 fi
 done
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you type DIR_STACK="/usr /home /bin" and execute this function, you'll see:

1) /usr
2) /home
3) /bin
directory?

The built-in shell variable PS3 contains the prompt string that select uses; its default value is the not
particularly useful "#?". So the first line of the above code sets it to a more relevant value.

The select statement constructs the menu from the list of choices. If the user enters a valid number (from 1
to the number of directories), then the variable selection is set to the corresponding value; otherwise it is
null. (If the user just presses RETURN, the shell prints the menu again.)

The code in the loop body checks if selection is non-null. If so, it executes the statements we will add in a
short while; then the break statement exits the select loop. If selection is null, the code prints an error
message and repeats the menu and prompt.

The break statement is the usual way of exiting a select loop. Actually (like its analog in C), it can be used
to exit any surrounding control structure we've seen so far (except case, where the double semicolons act
like break) as well as the while and until we will see soon. We haven't introduced break until now because
it is considered bad coding style to use it to exit a loop. However, it can make code easier to read if used
judiciously. break is necessary for exiting select when the user makes a valid choice. [13]

[13] A user can also type CTRL-D (for end-of-input) to get out of a select loop. This gives the user a uniform way
of exiting, but it doesn't help the shell programmer much.

Now we'll add the missing pieces to the code:

selectd ()
{
 PS3='directory? '
 dirstack=" $DIR_STACK "

 select selection in $dirstack; do
 if [$selection]; then
 DIR_STACK="$selection${dirstack%% $selection *}"
 DIR_STACK="$DIR_STACK ${dirstack##* $selection }"
 DIR_STACK=${DIR_STACK% }
 cd $selection
 break
 else
 echo 'invalid selection.'
 fi
 done
}

The first two lines initialize environment variables. dirstack is a copy of DIR_STACK with spaces
appended at the beginning and end so that each directory in the list is of the form space directory space.
This form simplifies the code when we come to manipulating the directory stack.

The select and if statements are the same as in our initial function. The new code inside the if uses bash's
pattern-matching capability to manipulate the directory stack.

The first statement sets DIR_STACK to selection, followed by dirstack with everything from selection to
the end of the list removed. The second statement adds everything in the list from the directory following
selection to the end of DIR_STACK. The next line removes the trailing space that was appended at the
start. To complete the operation, a cd is performed to the new directory, followed by a break to exit the
select code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As an example of the list manipulation performed in this function, consider a DIR_STACK set to /home
/bin /usr2. In this case, dirstack would become /home /bin /usr2. Typing selectd would result in:

$ selectd
1) /home
2) /bin
3) /usr2
directory?

After selecting /bin from the list, the first statement inside the if section sets DIR_STACK to /bin followed
by dirstack with everything from /bin onwards removed, i.e., /home.

The second statement then takes DIR_STACK and appends everything in dirstack following /bin (i.e.,
/usr2) to it. The value of DIR_STACK becomes /bin /home /usr2. The trailing space is removed in the next
line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 while and until
The remaining two flow control constructs bash provides are while and until. These are similar; they both
allow a section of code to be run repetitively while (or until) a certain condition becomes true. They also
resemble analogous constructs in Pascal (while/do and repeat/until) and C (while and do/until).

while and until are actually most useful when combined with features we will see in the next chapter, such
as integer arithmetic, input/output of variables, and command-line processing. Yet we can show a useful
example even with what we have covered so far.

The syntax for while is:

while conditiondo
 statements...done
For until, just substitute until for while in the above example. As with if, the condition is really a list of
statements that are run; the exit status of the last one is used as the value of the condition. You can use a
conditional with test here, just as you can with if.

Note that the only difference between while and until is the way the condition is handled. In while, the loop
executes as long as the condition is true; in until, it runs as long as the condition is false. The until
condition is checked at the top of the loop, not at the bottom as it is in analogous constructs in C and Pascal.

The result is that you can convert any until into a while by simply negating the condition. The only place
where until might be more meaningful is something like this:

until command; do
 statements...done
The meaning of this is essentially, "Do statements until command runs correctly." This is not a likely
contingency.

Here is an earlier task that can be rewritten using a while.

Task 5-6
Reimplement Task 5-2 without the use of the IFS variable.

We can use the while construct and pattern matching to traverse the PATH list:

path=$PATH:

while [$path]; do
 ls -ld ${path%%:*}
 path=${path#*:}
done

The first line copies PATH to a temporary copy, path, and appends a colon to it. Normally colons are used
only between directories in PATH; adding one to the end makes the code simple.

Inside the while loop we display the directory with ls as we did in Task 5-2. path is then updated by
removing the first directory pathname and colon (which is why we needed to append the colon in the first
line of the script). The while will keep looping until $path expands to nothing (the empty string ""), which
occurs once the last directory in path has been listed.

Here is another task that is a good candidate for until.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Task 5-7
Write a script that attempts to copy a file to a directory and, if it fails, waits five seconds, then
tries again, continuing until it succeeds.

Here is the code:

until cp $1 $2; do
 echo 'Attempt to copy failed. waiting...'
 sleep 5
done

This is a fairly simple use of until. First, we use the cp command to perform the copy for us. If it can't
perform the copy for any reason, it will return with a non-zero exit code. We set our until loop so that if the
result of the copy is not 0 then the script prints a message and waits five seconds.

As we said earlier, an until loop can be converted to a while by the use of the ! operator:

while ! cp $1 $2; do
 echo 'Attempt to copy failed. waiting...'
 sleep 5
done

In our opinion, you'll seldom need to use until; therefore, we'll use while throughout the rest of this book.
We'll see further use of the while construct in Chapter 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Command-Line Options and Typed Variables
You should have a healthy grasp of shell programming techniques now that you have gone through the
previous chapters. What you have learned up to this point enables you to write many non-trivial, useful
shell scripts and functions.

Still, you may have noticed some remaining gaps in the knowledge you need to write shell code that
behaves like the UNIX commands you are used to. In particular, if you are an experienced UNIX user, it
might have occurred to you that none of the example scripts shown so far have the ability to handle options
preceded by a dash (-) on the command line. And if you program in a conventional language like C or
Pascal, you will have noticed that the only type of data that we have seen in shell variables is character
strings; we haven't seen how to do arithmetic, for example.

These capabilities are certainly crucial to the shell's ability to function as a useful UNIX programming
language. In this chapter, we will show how bash supports these and related features.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 Command-Line Options
We have already seen many examples of the positional parameters (variables called 1, 2, 3, etc.) that the
shell uses to store the command-line arguments to a shell script or function when it runs. We have also seen
related variables like * (for the string of all arguments) and # (for the number of arguments).

Indeed, these variables hold all of the information on the user's command-line. But consider what happens
when options are involved. Typical UNIX commands have the form command [-options]args, meaning that
there can be 0 or more options. If a shell script processes the command teatime alice hatter, then $1 is
"alice" and $2 is "hatter". But if the command is teatime -o alice hatter, then $1 is -o, $2 is "alice", and $3
is "hatter".

You might think you could write code like this to handle it:

if [$1 = -o]; then
 code that processes the -o option
 1=$2
 2=$3
fi

normal processing of $1 and $2...

But this code has several problems. First, assignments like 1=$2 are illegal because positional parameters
are read-only. Even if they were legal, another problem is that this kind of code imposes limitations on how
many arguments the script can handle—which is very unwise. Furthermore, if this command had several
possible options, the code to handle all of them would get very messy very quickly.

6.1.1 shift

Luckily, the shell provides a way around this problem. The command shift performs the function of:

 1=$2
 2=$3
 ...

for every argument, regardless of how many there are. If you supply a numeric argument to shift, it will
shift the arguments that many times over; for example, shift 3 has this effect:

 1=$4
 2=$5
 ...

This leads immediately to some code that handles a single option (call it -o) and arbitrarily many arguments:

if [$1 = -o]; then
 process the -o option
 shift
fi
normal processing of arguments...

After the if construct, $1, $2, etc., are set to the correct arguments.

We can use shift together with the programming features we have seen so far to implement simple option
schemes. However, we will need additional help when things get more complex. The getopts built-in
command, which we will introduce later, provides this help.

shift by itself gives us enough power to implement the -N option to the highest script we saw in Chapter 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shift by itself gives us enough power to implement the -N option to the highest script we saw in Chapter 4
(Task 4-1). Recall that this script takes an input file that lists artists and the number of albums you have by
them. It sorts the list and prints out the N highest numbers, in descending order. The code that does the
actual data processing is:

filename=$1
howmany=${2:-10}
sort -nr $filename | head -$howmany

Our original syntax for calling this script was highest filename [-N], where N defaults to 10 if omitted. Let's
change this to a more conventional UNIX syntax, in which options are given before arguments: highest
[-N] filename. Here is how we would write the script with this syntax:

if [-n "$(echo $1 | grep '^-[0-9][0-9]*$')"]; then
 howmany=$1
 shift
elif [-n "$(echo $1 | grep '^-')"]; then
 print 'usage: highest [-N] filename'
 exit 1
else
 howmany="-10"
fi

filename=$1
sort -nr $filename | head $howmany

This uses the grep search utility to test if $1 matches the appropriate pattern. To do this we provide the
regular expression ^-[0-9][0-9]*$ to grep, which is interpreted as "an initial dash followed by a digit,
optionally followed by one or more digits." If a match is found then grep will return the match and the test
will be true, otherwise grep will return nothing and processing will pass to the elif test. Notice that we have
enclosed the regular expression in single quotes to stop the shell from interpreting the $ and *, and pass
them through to grep unmodified.

If $1 doesn't match, we test to see if it's an option at all, i.e., if it matches the pattern - followed by anything
else. If it does, then it's invalid; we print an error message and exit with error status. If we reach the final
(else) case, we assume that $1 is a filename and treat it as such in the ensuing code. The rest of the script
processes the data as before.

We can extend what we have learned so far to a general technique for handling multiple options. For the
sake of concreteness, assume that our script is called alice and we want to handle the options -a, -b, and -c:

while [-n "$(echo $1 | grep '-')"]; do
 case $1 in
 -a) process option -a ;;
 -b) process option -b ;;
 -c) process option -c ;;
 *) echo 'usage: alice [-a] [-b] [-c] args...'
 exit 1
 esac
 shift
done
normal processing of arguments...

This code checks $1 repeatedly as long as it starts with a dash (-). Then the case construct runs the
appropriate code depending on which option $1 is. If the option is invalid—i.e., if it starts with a dash but
isn't -a, -b, or -c—then the script prints a usage message and returns with an error exit status.

After each option is processed, the arguments are shifted over. The result is that the positional parameters
are set to the actual arguments when the while loop finishes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that this code is capable of handling options of arbitrary length, not just one letter (e.g., -adventure
instead of -a).

6.1.2 Options with Arguments

We need to add one more ingredient to make option processing really useful. Recall that many commands
have options that take their own arguments. For example, the cut command, on which we relied heavily in
Chapter 4, accepts the option -d with an argument that determines the field delimiter (if it is not the default
TAB). To handle this type of option, we just use another shift when we are processing the option.

Assume that, in our alice script, the option -b requires its own argument. Here is the modified code that will
process it:

while [-n "$(echo $1 | grep '-')"]; do
 case $1 in
 -a) process option -a ;;
 -b) process option -b
 $2 is the option's argument
 shift ;;
 -c) process option -c ;;
 *) echo 'usage: alice [-a] [-b barg] [-c] args...'
 exit 1
 esac
 shift
done

normal processing of arguments...

6.1.3 getopts

So far, we have a complete, but constrained, way of handling command-line options. The above code does
not allow a user to combine arguments with a single dash, e.g., -abc instead of -a -b -c. It also doesn't allow
one to specify arguments to options without a space in between, e.g., -barg in addition to -b arg. [1]

[1] Although most UNIX commands allow this, it is actually contrary to the Command Syntax Standard Rules in
intro of the User's Manual.

The shell provides a built-in way to deal with multiple complex options without these constraints. The built-
in command getopts [2]can be used as the condition of the while in an option-processing loop. Given a
specification of which options are valid and which require their own arguments, it sets up the body of the
loop to process each option in turn.

[2] getopts replaces the external command getopt, used in Bourne shell programming; getopts is better
integrated into the shell's syntax and runs more efficiently. C programmers will recognize getopts as very similar
to the standard library routine getopt.

getopts takes two arguments. The first is a string that can contain letters and colons. Each letter is a valid
option; if a letter is followed by a colon, the option requires an argument. getopts picks options off the
command line and assigns each one (without the leading dash) to a variable whose name is getopts's second
argument. As long as there are options left to process, getopts will return exit status 0; when the options are
exhausted, it returns exit status 1, causing the while loop to exit.

getopts does a few other things that make option processing easier; we'll encounter them as we examine
how to use getopts in this example:

while getopts ":ab:c" opt; do

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

while getopts ":ab:c" opt; do
 case $opt in
 a) process option -a ;;
 b) process option -b
 $OPTARG is the option's argument ;;
 c) process option -c ;;
 \?) echo 'usage: alice [-a] [-b barg] [-c] args...'
 exit 1
 esac
done
shift $(($OPTIND - 1))
normal processing of arguments...

The call to getopts in the while condition sets up the loop to accept the options -a, -b, and -c, and specifies
that -b takes an argument. (We will explain the : that starts the option string in a moment.) Each time the
loop body is executed, it will have the latest option available, without a dash (-), in the variable opt.

If the user types an invalid option, getopts normally prints an unfortunate error message (of the form cmd:
getopts: illegal option — o) and sets opt to ?. However if you begin the option letter string with a colon,
getopts won't print the message. [3]We recommend that you specify the colon and provide your own error
message in a case that handles ?, as above.

[3] You can also turn off the getopts messages by setting the environment variable OPTERR to 0. We will
continue to use the colon method in this book.

We have modified the code in the case construct to reflect what getopts does. But notice that there are no
more shift statements inside the while loop: getopts does not rely on shifts to keep track of where it is. It is
unnecessary to shift arguments over until getopts is finished, i.e., until the while loop exits.

If an option has an argument, getopts stores it in the variable OPTARG, which can be used in the code that
processes the option.

The one shift statement left is after the while loop. getopts stores in the variable OPTIND the number of
the next argument to be processed; in this case, that's the number of the first (non-option) command-line
argument. For example, if the command line were alice -ab rabbit, then $OPTIND would be "3". If it were
alice -a -b rabbit, then $OPTIND would be "4".

The expression $(($OPTIND - 1)) is an arithmetic expression (as we'll see later in this chapter) equal to
$OPTIND minus 1. This value is used as the argument to shift. The result is that the correct number of
arguments are shifted out of the way, leaving the "real" arguments as $1, $2, etc.

Before we continue, now is a good time to summarize everything getopts does:

1. Its first argument is a string containing all valid option letters. If an option requires an argument, a
colon follows its letter in the string. An initial colon causes getopts not to print an error message
when the user gives an invalid option.

2. Its second argument is the name of a variable that will hold each option letter (without any leading
dash) as it is processed.

3. If an option takes an argument, the argument is stored in the variable OPTARG.

4. The variable OPTIND contains a number equal to the next command-line argument to be
processed. After getopts is done, it equals the number of the first "real" argument.

The advantages of getopts are that it minimizes extra code necessary to process options and fully supports
the standard UNIX option syntax (as specified in intro of the User's Manual).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As a more concrete example, let's return to our graphics utility (Task 4-2). So far, we have given our script
the ability to process various types of graphics files such as PCX files (ending with .pcx), JPEG files (.jpg),
XPM files (.xpm), etc. As a reminder, here is what we have coded in the script so far:

filename=$1

if [-z $filename]; then
 echo "procfile: No file specified"
 exit 1
fi

for filename in "$@"; do
 ppmfile=${filename%.*}.ppm

 case $filename in
 *.gif) exit 0 ;;

 *.tga) tgatoppm $filename > $ppmfile ;;

 *.xpm) xpmtoppm $filename > $ppmfile ;;

 *.pcx) pcxtoppm $filename > $ppmfile ;;

 *.tif) tifftopnm $filename > $ppmfile ;;

 *.jpg) djpeg $filename > $ppmfile ;;

 *) echo "procfile: $filename is an unknown graphics file."
 exit 1 ;;
 esac

 outfile=${ppmfile%.ppm}.new.gif

 ppmquant -quiet 256 $ppmfile | ppmtogif -quiet > $outfile
 rm $ppmfile

done

This script works quite well, in that it will convert the various different graphics files that we have lying
around into GIF files suitable for our Web page. However, NetPBM has a whole range of useful utilities
besides file converters that we could use on the images. It would be nice to be able to select some of them
from our script.

Things we might wish to do to the images for our Web page include changing the size and placing a border
around them. We want to make the script as flexible as possible; we will want to change the size of the
resulting images and we might not want a border around every one of them, so we need to be able to specify
to the script what it should do. This is where the command-line option processing will come in useful.

We can change the size of an image by using the NetPBM utility pnmscale. You'll recall from the last
chapter that the NetPBM package has its own format called PNM, the Portable Anymap. The fancy utilities
we'll be using to change the size and add borders work on PNM's. Fortunately, our script already converts
the various formats we give it into PNM's (actually PPM's in our script, which are full-color instances of
PNM's). Besides a PNM file, pnmscale also requires some arguments telling it how to scale the image.
[4]There are various different ways to do this, but the one we'll choose is -xysize which takes a horizontal
and a vertical size in pixels for the final image. [5]

[4] We'll also need the -quiet option, which you may already have noticed as an option to the ppmquant and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[4] We'll also need the -quiet option, which you may already have noticed as an option to the ppmquant and
ppmtogif utilities. -quiet suppresses diagnostic output from some NetPBM utilities.

[5] Actually, -xysize fits the image into a box defined by its arguments without changing the aspect ratio of the
image, i.e., without stretching the image horizontally or vertically. For example, if you had an image of size 200 by
100 pixels and you processed it with pnmscale -xysize 100 100, you'd end up with an image of size 100 by 50
pixels.

The other utility we'll need is pnmmargin which places a colored border around an image. It takes as
arguments the width of the border in pixels, and the color of the border.

Our graphics utility will need some options to reflect the ones we have just seen: -s size will specify a size
into which the final image will fit (minus any border), -w width will specify the width of the border around
the image, and -c color-name will specify the color of the border.

Here is the code for the script procimage that includes the option processing:

Set up the defaults
size=320
width=1
colour="-color black"
usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."

while getopts ":s:w:c:" opt; do
 case $opt in
 s) size=$OPTARG ;;
 w) width=$OPTARG ;;
 c) colour="-color $OPTARG" ;;
 \?) echo $usage
 exit 1 ;;
 esac
done

shift $(($OPTIND - 1))

if [-z "$@"]; then
 echo $usage
 exit 1
fi

Process the input files
for filename in "$*"; do
 ppmfile=${filename%.*}.ppm

 case $filename in
 *.gif) giftopnm $filename > $ppmfile ;;

 *.tga) tgatoppm $filename > $ppmfile ;;

 *.xpm) xpmtoppm $filename > $ppmfile ;;

 *.pcx) pcxtoppm $filename > $ppmfile ;;

 *.tif) tifftopnm $filename > $ppmfile ;;

 *.jpg) djpeg $filename > $ppmfile ;;

 *) echo "$0: Unknown filetype '${filename##*.}'"
 exit 1;;
 esac

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 esac

 outfile=${ppmfile%.ppm}.new.gif
 pnmscale -quiet -xysize $size $size $ppmfile |
 pnmmargin $colour $width |
 ppmquant -quiet 256 | ppmtogif -quiet > $outfile

 rm $ppmfile

done

The first several lines of this script initialize variables used as default settings. The defaults set the image
size to 320 pixels and a black border of width 1 pixel.

The while, getopts, and case constructs process the options in the same way as in the previous example.
The code for the first three options assigns the respective argument to a variable (replacing the default
value). The last option is a catchall for any invalid options.

The rest of the code works in much the same way as in the previous example except that we have added the
pnmscale and pnmmargin utilities to the processing pipeline.

The script also now generates a different filename; it appends .new.gif to the basename. This allows us to
process a GIF file as input, applying scaling and borders, and write it out without destroying the original
file.

This version doesn't address every issue, e.g., what if we don't want any scaling to be performed? We'll
return to this script and develop it further in the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Typed Variables
So far we've seen how bash variables can be assigned textual values. Variables can also have other
attributes, including being read only and being of type integer.

You can set variable attributes with the declare built-in. [6]Table 6.1 summarizes the available options with
declare. [7]A - turns the option on, while + turns it off.

[6] The typeset built-in is synonymous with declare but is considered obsolete.

[7] The -a and -F options are not available in bash prior to version 2.0.

Table 6.1. Declare Options

Option Meaning
-a The variables are treated as arrays
-f Use function names only
-F Display function names without definitions
-i The variables are treated as integers
-r Makes the variables read-only
-x Marks the variables for export via the environment

Typing declare on its own displays the values of all variables in the environment. The -f option limits this
display to the function names and definitions currently in the environment. -F limits it further by displaying
only the function names.

The -a option declares arrays—a variable type that we haven't seen yet, but will be discussed shortly.

The -i option is used to create an integer variable, one that holds numeric values and can be used in and
modified by arithmetic operations. Consider this example:

$ val1=12 val2=5
$ result1=val*val2
$ echo $result1
val1*val2
$
$ declare -i val3=12 val4=5
$ declare -i result2
$ result2=val3*val4
$ echo $result2
60

In the first example, the variables are ordinary shell variables and the result is just the string "val1*val2". In
the second example, all of the variables have been declared as type integer. The variable result contains the
result of the arithmetic computation twelve multiplied by five. Actually, we didn't need to declare val3 and
val4 as type integer. Anything being assigned to result2 is interpreted as an arithmetic statement and
evaluation is attempted.

The -x option to declare operates in the same way as the export built-in that we saw in Chapter 3. It allows
the listed variables to be exported outside the current shell environment.

The -r option creates a read-only variable, one that cannot have its value changed by subsequent assignment
statements.

A related built-in is readonly name ... which operates in exactly the same way as declare -r. readonly has

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A related built-in is readonly name ... which operates in exactly the same way as declare -r. readonly has
four options: -f, which makes readonly interpret the name arguments as function names rather than variable
names, -n, which removes the read-only property from the names, -p, which makes the built-in print a list of
all read-only names, and -a, which interprets the name arguments as arrays.

Lastly, variables declared in a function are local to that function, just like using local to declare them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 Integer Variables and Arithmetic
The expression $(($OPTIND - 1)) in the last graphics utility example shows another way that the shell can
do integer arithmetic. As you might guess, the shell interprets words surrounded by $((and)) as arithmetic
expressions. [8] Variables in arithmetic expressions do not need to be preceded by dollar signs, though it is
not wrong to do so.

[8] You can also use the older form $[...], but we don't recommend this because it will be phased out in future
versions of bash.

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and command
substitutions. We're finally in a position to state the definitive rule about quoting strings: When in doubt,
enclose a string in single quotes, unless it contains tildes or any expression involving a dollar sign, in which
case you should use double quotes.

For example, the date command on System V-derived versions of UNIX accepts arguments that tell it how
to format its output. The argument +%j tells it to print the day of the year, i.e., the number of days since
December 31st of the previous year.

We can use +%j to print a little holiday anticipation message:

echo "Only $(((365-$(date +%j)) / 7)) weeks until the New Year"

We'll show where this fits in the overall scheme of command-line processing in Chapter 7.

The arithmetic expression feature is built into bash's syntax, and was available in the Bourne shell (most
versions) only through the external command expr. Thus it is yet another example of a desirable feature
provided by an external command being better integrated into the shell. getopts, as we have already seen, is
another example of this design trend.

bash arithmetic expressions are equivalent to their counterparts in the C language. [9]Precedence and
associativity are the same as in C. Table 6.2 shows the arithmetic operators that are supported. Although
some of these are (or contain) special characters, there is no need to backslash-escape them, because they
are within the $((...)) syntax.

[9] The assignment forms of these operators are also permitted. For example, $((x += 2)) adds 2 to x and stores
the result back in x.

Table 6.2. Arithmetic Operators

Operator Meaning
+ Plus
- Minus
* Multiplication
/ Division (with truncation)
% Remainder
<< Bit-shift left
>> Bit-shift right
& Bitwise and
| Bitwise or
~ Bitwise not
! Bitwise not
^ Bitwise exclusive or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parentheses can be used to group subexpressions. The arithmetic expression syntax also (as in C) supports
relational operators as "truth values" of 1 for true and 0 for false. Table 6.3 shows the relational operators
and the logical operators that can be used to combine relational expressions.

Table 6.3. Relational Operators

Operator Meaning
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to
&& Logical and
|| Logical or

For example, $((3 > 2)) has the value 1; $(((3 > 2) || (4 <= 1))) also has the value 1, since at least one of
the two subexpressions is true.

The shell also supports base N numbers, where N can be from 2 to 36. The notation B#N means "N base B".
Of course, if you omit the B#, the base defaults to 10.

6.3.1 Arithmetic Conditionals

In Chapter 5, we saw how to compare strings by the use of [...] notation (or with the test built-in).
Arithmetic conditions can also be tested in this way. However, the tests have to be carried out with their
own operators. These are shown in Table 6.4.

Table 6.4. Test Relational Operators

Operator Meaning
-lt Less than
-gt Greater than
-le Less than or equal to
-ge Greater than or equal to
-eq Equal to
-ne Not equal to

As with string comparisons, the arithmetic test returns a result of true or false; 0 if true, 1 otherwise. So, for
example, [3 -gt 2] produces exit status 0, as does [\(3 -gt 2 \) || \(4 -le 1 \)], but [\(3 -gt 2 \) && \(4 -le
1 \)] has exit status 1 since the second subexpression isn't true.

In these examples we have had to escape the parentheses and pass them to test as separate arguments. As
you can see, the result can look rather unreadable if there are many parentheses.

Another way to make arithmetic tests is to use the $((...)) form to encapsulate the condition. For example: [
$(((3 > 2) && (4 <= 1))) = 1]. This evaluates the conditionals and then compares the resulting value to 1
(true). [10]

[10] Note that the truth values returned by $((...)) are 1 for true, 0 for false—the reverse of the test and exit
statuses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There is an even neater and more efficient way of performing an arithmetic test: by using the ((...))
construct. [11]This returns an exit status of 0 if the expression is true, and 1 otherwise.

[11] ((...)) is not available in versions of bash prior to 2.0.

The above expression using this construct becomes: (((3 > 2) && (4 <= 1))). This example returns with an
exit status of 1 because, as we said, the second subexpression is false.

6.3.2 Arithmetic Variables and Assignment

As we saw earlier, you can define integer variables by using declare. You can also evaluate arithmetic
expressions and assign them to variables with the use of let. The syntax is:

let intvar=expression

It is not necessary (because it's actually redundant) to surround the expression with $((and)) in a let
statement. let doesn't create a variable of type integer; it only causes the expression following the
assignment to be interpreted as an arithmetic one. As with any variable assignment, there must not be any
space on either side of the equal sign (=). It is good practice to surround expressions with quotes, since
many characters are treated as special by the shell (e.g., *, #, and parentheses); furthermore, you must quote
expressions that include whitespace (spaces or TABs). See Table 6.5 for examples.

Table 6.5. Sample Integer Expression Assignments

Assignment Value
let x= $x
1+4 5
'1 + 4' 5
'(2+3) * 5' 25
'2 + 3 * 5' 17
'17 / 3' 5
'17 % 3' 2
'1<<4' 16
'48>>3' 6
'17 & 3' 1
'17 | 3' 19
'17 ^ 3' 18

Task 6-1
Here is a small task that makes use of integer arithmetic. Write a script called ndu that prints a
summary of the disk space usage for each directory argument (and any subdirectories), both in
terms of bytes, and kilobytes or megabytes (whichever is appropriate).

Here is the code:

for dir in ${*:-.}; do
 if [-e $dir]; then
 result=$(du -s $dir | cut -f 1)
 let total=$result*1024

 echo -n "Total for $dir = $total bytes"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 echo -n "Total for $dir = $total bytes"

 if [$total -ge 1048576]; then
 echo " ($((total/1048576)) Mb)"
 elif [$total -ge 1024]; then
 echo " ($((total/1024)) Kb)"
 fi
 fi
done

To obtain the disk usage of files and directories, we can use the UNIX utility du. The default output of du is
a list of directories with the amount of space each one uses, and looks something like this:

6 ./toc
3 ./figlist
6 ./tablist
1 ./exlist
1 ./index/idx
22 ./index
39 .

If you don't specify a directory to du, it will use the current directory (.). Each directory and subdirectory is
listed along with the amount of space it uses. The grand total is given in the last line.

The amount of space used by each directory and all the files in it is listed in terms of blocks. Depending on
the UNIX system you are running on, one block can represent 512 or 1024 bytes. Each file and directory
uses at least one block. Even if a file or directory is empty, it is still allocated a block of space in the
filesystem.

In our case, we are only interested in the total usage, given on the last line of du's output. To obtain only
this line, we can use the -s option of du. Once we have the line, we want only the number of blocks and can
throw away the directory name. For this we use our old friend cut to extract the first field.

Once we have the total, we can multiply it by the number of bytes in a block (1024 in this case) and print
the result in terms of bytes. We then test to see if the total is greater than the number of bytes in one
megabyte (1048576 bytes, which is 1024 x 1024) and if it is, we can print how many megabytes it is by
dividing the total by this large number. If not, we see if it can be expressed in kilobytes, otherwise nothing
is printed.

We need to make sure that any specified directories exist, otherwise du will print an error message and the
script will fail. We do this by using the test for file or directory existence (-e) that we saw in Chapter 5
before calling du.

To round out this script, it would be nice to imitate du as closely as possible by providing for multiple
arguments. To do this, we wrap the code in a for loop. Notice how parameter substitution has been used to
specify the current directory if no arguments are given.

As a bigger example of integer arithmetic, we will complete our emulation of the pushd and popd functions
(Task 4-8). Remember that these functions operate on DIR_STACK, a stack of directories represented as a
string with the directory names separated by spaces. bash's pushd and popd take additional types of
arguments, which are:

· pushd +n takes the nth directory in the stack (starting with 0), rotates it to the top, and cds to it.

· pushd without arguments, instead of complaining, swaps the two top directories on the stack and
cds to the new top.

· popd +n takes the nth directory in the stack and just deletes it.

The most useful of these features is the ability to get at the nth directory in the stack. Here are the latest

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The most useful of these features is the ability to get at the nth directory in the stack. Here are the latest
versions of both functions:

.ps 8
pushd ()
{
 dirname=$1 if [-n $dirname] && [\(-d $dirname \) -a
 \(-x $dirname \)]; then
 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"
 cd $dirname
 echo "$DIR_STACK"
 else
 echo "still in $PWD."
 fi
}

popd ()
{
 if [-n "$DIR_STACK"]; then
 DIR_STACK=${DIR_STACK#* }

 cd ${DIR_STACK%% *}
 echo "$PWD"
 else
 echo "stack empty, still in $PWD."
 fi
}

To get at the nth directory, we use a while loop that transfers the top directory to a temporary copy of the
stack n times. We'll put the loop into a function called getNdirs that looks like this:

getNdirs ()
{
 stackfront=''
 let count=0
 while [$count -le $1]; do
 target=${DIR_STACK%${DIR_STACK#* }}
 stackfront="$stackfront$target"
 DIR_STACK=${DIR_STACK#$target}
 let count=count+1
 done

 stackfront=${stackfront%$target}
}

The argument passed to getNdirs is the n in question. The variable target contains the directory currently
being moved from DIR_STACK to a temporary stack, stackfront. target will contain the nth directory and
stackfront will have all of the directories above (and including) target when the loop finishes. stackfront
starts as null; count, which counts the number of loop iterations, starts as 0.

The first line of the loop body copies the first directory on the stack to target. The next line appends target
to stackfront and the following line removes target from the stack ${DIR_STACK#$target}. The last line
increments the counter for the next iteration. The entire loop executes n+1 times, for values of count from 0
to N.

When the loop finishes, the directory in $target is the nth directory. The expression
${stackfront%$target} removes this directory from stackfront so that stackfront will contain the first n-1
directories. Furthermore, DIR_STACK now contains the "back" of the stack, i.e., the stack without the first
n directories. With this in mind, we can now write the code for the improved versions of pushd and popd:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pushd ()
{
 if [$(echo $1 | grep '^+[0-9][0-9]*$')]; then

 # case of pushd +n: rotate n-th directory to top
 let num=${1#+}
 getNdirs $num

 DIR_STACK="$target$stackfront$DIR_STACK"
 cd $target
 echo "$DIR_STACK"

 elif [-z "$1"]; then
 # case of pushd without args; swap top two directories
 firstdir=${DIR_STACK%% *}
 DIR_STACK=${DIR_STACK#* }
 seconddir=${DIR_STACK%% *}
 DIR_STACK=${DIR_STACK#* }
 DIR_STACK="$seconddir $firstdir $DIR_STACK"
 cd $seconddir

 else
 # normal case of pushd dirname
 dirname=$1
 if [\(-d $dirname \) -a \(-x $dirname \)]; then
 DIR_STACK="$dirname ${DIR_STACK:-$PWD" "}"
 cd $dirname
 echo "$DIR_STACK"
 else
 echo still in "$PWD."
 fi
 fi
}

popd ()
{
 if [$(echo $1 | grep '^+[0-9][0-9]*$')]; then

 # case of popd +n: delete n-th directory from stack
 let num=${1#+}
 getNdirs $num
 DIR_STACK="$stackfront$DIR_STACK"
 cd ${DIR_STACK%% *}
 echo "$PWD"

 else

 # normal case of popd without argument
 if [-n "$DIR_STACK"]; then
 DIR_STACK=${DIR_STACK#* }
 cd ${DIR_STACK%% *}
 echo "$PWD"
 else
 echo "stack empty, still in $PWD."
 fi
 fi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fi
}

These functions have grown rather large; let's look at them in turn. The if at the beginning of pushd checks
if the first argument is an option of the form +N. If so, the first body of code is run. The first let simply
strips the plus sign (+) from the argument and assigns the result—as an integer—to the variable num. This,
in turn, is passed to the getNdirs function.

The next assignment statement sets DIR_STACK to the new ordering of the list. Then the function cds to
the new directory and prints the current directory stack.

The elif clause tests for no argument, in which case pushd should swap the top two directories on the stack.
The first four lines of this clause assign the top two directories to firstdir and seconddir, and delete these
from the stack. Then, as above, the code puts the stack back together in the new order and cds to the new
top directory.

The else clause corresponds to the usual case, where the user supplies a directory name as argument.

popd works similarly. The if clause checks for the +N option, which in this case means "delete the nth
directory." A let extracts the N as an integer; the getNdirs function puts the first n directories into
stackfront. Finally, the stack is put back together with the nth directory missing, and a cd is performed in
case the deleted directory was the first in the list.

The else clause covers the usual case, where the user doesn't supply an argument.

Before we leave this subject, here are a few exercises that should test your understanding of this code:

1. Implement bash's dirs command and the options +n and -l. dirs by itself displays the list of
currently remembered directories (those in the stack). The +n option prints out the nth directory
(starting at 0) and the -l option produces a long listing; any tildes (~) are replaced by the full
pathname.

2. Modify the getNdirs function so that it checks for N exceeding the number of directories in the
stack and exits with an appropriate error message if true.

3. Modify pushd, popd, and getNdirs so that they use variables of type integer in the arithmetic
expressions.

4. Change getNdirs so that it uses cut (with command substitution), instead of the while loop, to
extract the first N directories. This uses less code but runs more slowly because of the extra
processes generated.

5. bash's versions of pushd and popd also have a -N option. In both cases -N causes the nth directory
from the right-hand side of the list to have the operation performed on it. As with +N, it starts at 0.
Add this functionality.

6. Use getNdirs to reimplement the selectd function from the last chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 Arrays
The pushd and popd functions use a string variable to hold a list of directories and manipulate the list with
the string pattern-matching operators. Although this is quite efficient for adding or retrieving items at the
beginning or end of the string, it becomes cumbersome when attempting to access items that are anywhere
else, e.g., obtaining item N with the getNdirs function. It would be nice to be able to specify the number, or
index, of the item and retrieve it. Arrays allow us to do this. [12]

[12] Support for arrays is not available in versions of bash prior to 2.0.

An array is like a series of slots that hold values. Each slot is known as an element, and each element can be
accessed via a numerical index. An array element can contain a string or a number, and you can use it just
like any other variable. The indices for arrays start at 0 and continue up to a very large number. [13]So, for
example, the fifth element of array names would be names[4]. Indices can be any valid arithmetic
expression that evaluates to a number greater than or equal to 0.

[13] Actually, up to 599147937791. That's almost six hundred billion, so yes, it's pretty large.

There are several ways to assign values to arrays. The most straightforward way is with an assignment, just
like any other variable:

names[2]=alice
names[0]=hatter
names[1]=duchess

This assigns hatter to element 0, duchess to element 1, and alice to element 2 of the array names.

Another way to assign values is with a compound assignment:

names=([2]=alice [0]=hatter [1]=duchess)

This is equivalent to the first example and is convenient for initializing an array with a set of values. Notice
that we didn't have to specify the indices in numerical order. In fact, we don't even have to supply the
indices if we reorder our values slightly:

names=(hatter duchess alice)

bash automatically assigns the values to consecutive elements starting at 0. If we provide an index at some
point in the compound assignment, the values get assigned consecutively from that point on, so:

names=(hatter [5]=duchess alice)

assigns hatter to element 0, duchess to element 5, and alice to element 6.

An array is created automatically by any assignment of these forms. To explicitly create an empty array,
you can use the -a option to declare. Any attributes that you set for the array with declare (e.g., the read-
only attribute) apply to the entire array. For example, the statement declare -ar names would create a read-
only array called names. Every element of the array would be read-only.

An element in an array may be referenced with the syntax ${array[i]}. So, from our last example above, the
statement echo ${names[5]} would print the string "duchess". If no index is supplied, array element 0 is
assumed.

You can also use the special indices @ and *. These return all of the values in the array and work in the
same way as for the positional parameters; when the array reference is within double quotes, using *
expands the reference to one word consisting of all the values in the array separated by the first character of
the IFS variable, while @ expands the values in the array to separate words. When unquoted, both of them

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the IFS variable, while @ expands the values in the array to separate words. When unquoted, both of them
expand the values of the array to separate words. Just as with positional parameters, this is useful for
iterating through the values with a for loop:

for i in "${names[@]}"; do
 echo $i
done

Any array elements which are unassigned don't exist; they default to null strings if you explicitly reference
them. Therefore, the previous looping example will print out only the assigned elements in the array names.
If there were three values at indexes 1, 45, and 1005, only those three values would be printed.

A useful operator that you can use with arrays is #, the length operator that we saw in Chapter 4. To find out
the length of any element in the array, you can use ${#array[i]}. Similarly, to find out how many values
there are in the array, use * or @ as the index. So, for names=(hatter [5]=duchess alice), ${#names[5]}
has the value 7, and ${#names[@]} has the value 3.

Reassigning to an existing array with a compound array statement replaces the old array with the new one.
All of the old values are lost, even if they were at different indices to the new elements. For example, if we
reassigned names to be ([100]=tweedledee tweedledum), the values hatter, duchess, and alice would
disappear.

You can destroy any element or the entire array by using the unset built-in. If you specify an index, that
particular element will be unset. unset names[100], for instance, would remove the value at index 100;
tweedledee in the example above. However, unlike assignment, if you don't specify an index the entire
array is unset, not just element 0. You can explicitly specify unsetting the entire array by using * or @ as
the index.

Let's now look at a simple example that uses arrays to match user IDs to account names on the system. The
code takes a user ID as an argument and prints the name of the account plus the number of accounts
currently on the system:

for i in $(cut -f 1,3 -d: /etc/passwd) ; do
 array[${i#*:}]=${i%:*}
done

echo "User ID $1 is ${array[$1]}."
echo "There are currently ${#array[@]} user accounts on the system."

We use cut to create a list from fields 1 and 3 in the /etc/passwd file. Field 1 is the account name and field 3
is the user ID for the account. The script loops through this list using the user ID as an index for each array
element and assigns each account name to that element. The script then uses the supplied argument as an
index into the array, prints out the value at that index, and prints the number of existing array values.

Some of the environment variables in bash are arrays; DIRSTACK functions as a stack for the pushd and
popd built-ins, BASH_VERSINFO is an array of version information for the current instance of the shell,
and PIPESTATUS is an array of exit status values for the last foreground pipe that was executed.

We'll see a further use of arrays when we build a bash debugger in Chapter 9.

To end this chapter, here are some problems relating to what we've just covered:

1. Improve the account ID script so that it checks whether the argument is a number. Also, add a test
to print an appropriate message if the user ID doesn't exist.

2. Make the script print out the username (field 5) as well. Hint: this isn't as easy as it sounds. A
username can have spaces in it, causing the for loop to iterate on each part of the name.

3. As mentioned earlier, the built-in versions of pushd and popd use an array to implement the stack.
Change the pushd, popd, and getNdirs code that we developed in this chapter so that it uses arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Input/Output and Command-Line Processing
The past few chapters have gone into detail about various shell programming techniques, mostly focused on
the flow of data and control through shell programs. In this chapter, we switch the focus to two related
topics. The first is the shell's mechanisms for doing file-oriented input and output. We present information
that expands on what you already know about the shell's basic I/O redirectors.

Second, we'll "zoom in" and talk about I/O at the line and word level. This is a fundamentally different
topic, since it involves moving information between the domains of files/terminals and shell variables. echo
and command substitution are two ways of doing this that we've seen so far.

Our discussion of line and word I/O will lead into a more detailed explanation of how the shell processes
command lines. This information is necessary so that you can understand exactly how the shell deals with
quotation, and so that you can appreciate the power of an advanced command called eval, which we will
cover at the end of the chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 I/O Redirectors
In Chapter 1, you learned about the shell's basic I/O redirectors: >, <, and |. Although these are enough to
get you through 95% of your UNIX life, you should know that bash supports many other redirectors. Table
7.1 lists them, including the three we've already seen. Although some of the rest are broadly useful, others
are mainly for systems programmers.

Table 7.1. I/O Redirectors

Redirector Function
cmd1 | cmd2 Pipe; take standard output of cmd1 as standard input to cmd2
> file Direct standard output to file
< file Take standard input from file
>> file Direct standard output to file; append to file if it already exists
>| file Force standard output to file even if noclobber is set
n>| file Force output to file from file descriptor n even if noclobber is set
<> file Use file as both standard input and standard output
n<> file Use file as both input and output for file descriptor n
<< label Here-document; see text
n> file Direct file descriptor n to file
n< file Take file descriptor n from file
n>> file Direct file descriptor n to file; append to file if it already exists
n>& Duplicate standard output to file descriptor n
n<& Duplicate standard input from file descriptor n
n>&m File descriptor n is made to be a copy of the output file descriptor
n<&m File descriptor n is made to be a copy of the input file descriptor
&>file Directs standard output and standard error to file
<&- Close the standard input
>&- Close the standard output
n>&- Close the output from file descriptor n
n<&- Close the input from file descriptor n

Notice that some of the redirectors in Table 7.1 contain a digit n, and that their descriptions contain the term
file descriptor; we'll cover that in a little while.

The first two new redirectors, >> and >|, are simple variations on the standard output redirector >. The >>
appends to the output file (instead of overwriting it) if it already exists; otherwise it acts exactly like >. A
common use of >> is for adding a line to an initialization file (such as .bashrc or .mailrc) when you don't
want to bother with a text editor. For example:

$ cat >> .bashrc
 alias cdmnt='mount -t iso9660 /dev/sbpcd /cdrom'
 ^D
As we saw in Chapter 1, cat without an argument uses standard input as its input. This allows you to type
the input and end it with CTRL-D on its own line. The alias line will be appended to the file .bashrc if it
already exists; if it doesn't, the file is created with that one line.

Recall from Chapter 3, that you can prevent the shell from overwriting a file with > file by typing set -o
noclobber. >| overrides noclobber—it's the "Do it anyway, dammit!" redirector.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The redirector <> is mainly meant for use with device files (in the /dev directory), i.e., files that correspond
to hardware devices such as terminals and communication lines. Low-level systems programmers can use it
to test device drivers; otherwise, it's not very useful.

7.1.1 Here-documents

The << label redirector essentially forces the input to a command to be the shell's standard input, which is
read until there is a line that contains only label. The input in between is called a here-document. Here-
documents aren't very interesting when used from the command prompt. In fact, it's the same as the normal
use of standard input except for the label. We could use a here-document to simulate the mail facility. When
you send a message to someone with the mail utility, you end the message with a dot (.). The body of the
message is saved in a file, msgfile:

$ cat >> msgfile << .
 > this is the text of
 > our message.
 > .
Here-documents are meant to be used from within shell scripts; they let you specify "batch" input to
programs. A common use of here-documents is with simple text editors like ed. Task 7-1 is a programming
task that uses a here-document in this way.

Task 7-1
The s file command in mail saves the current message in file. If the message came over a
network (such as the Internet), then it has several header lines prepended that give information
about network routing. Write a shell script that deletes the header lines from the file.

We can use ed to delete the header lines. To do this, we need to know something about the syntax of mail
messages; specifically, that there is always a blank line between the header lines and the message text. The
ed command 1,/^[]*$/d does the trick: it means, "Delete from line 1 until the first blank line." We also need
the ed commands w (write the changed file) and q (quit). Here is the code that solves the task:

ed $1 << EOF
1,/^[]*$/d
w
q
EOF

The shell does parameter (variable) substitution and command substitution on text in a here-document,
meaning that you can use shell variables and commands to customize the text. A good example of this is the
bashbug script, which sends a bug report to the bash maintainer (see Chapter 11). Here is a stripped-down
version:

MACHINE="i586"
OS="linux-gnu"
CC="gcc"
CFLAGS=" -DPROGRAM='bash' -DHOSTTYPE='i586' -DOSTYPE='linux-gnu' \
 -DMACHTYPE='i586-pc-linux-gnu' -DSHELL -DHAVE_CONFIG_H -I. \
 -I. -I./lib -g -O2"
RELEASE="2.01"
PATCHLEVEL="0"
RELSTATUS="release"
MACHTYPE="i586-pc-linux-gnu"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TEMP=/tmp/bbug.$$

case "$RELSTATUS" in
alpha*|beta*) BUGBASH=chet@po.cwru.edu ;;
*) BUGBASH=bug-bash@prep.ai.mit.edu ;;
esac

BUGADDR="${1-$BUGBASH}"

UN=
if (uname) >/dev/null 2>&1; then
 UN=`uname -a`
fi

cat > $TEMP <<EOF
From: ${USER}
To: ${BUGADDR}
Subject: [50 character or so descriptive subject here (for reference)]

Configuration Information [Automatically generated, do not change]:
Machine: $MACHINE
OS: $OS
Compiler: $CC
Compilation CFLAGS: $CFLAGS
uname output: $UN
Machine Type: $MACHTYPE

bash Version: $RELEASE
Patch Level: $PATCHLEVEL
Release Status: $RELSTATUS

Description:
 [Detailed description of the problem, suggestion, or complaint.]

Repeat-By:
 [Describe the sequence of events that causes the problem
 to occur.]

Fix:
 [Description of how to fix the problem. If you don't know a
 fix for the problem, don't include this section.]
EOF

vi $TEMP

mail $BUGADDR < $TEMP

The first eight lines are generated when bashbug is installed. The shell will then substitute the appropriate
values for the variables in the text whenever the script is run.

The redirector << has two variations. First, you can prevent the shell from doing parameter and command
substitution by surrounding the label in single or double quotes. In the above example, if you used the line
cat > $TEMP <<'EOF', then text like $USER and $MACHINE would remain untouched (defeating the
purpose of this particular script).

The second variation is <<-, which deletes leading TABs (but not blanks) from the here-document and the
label line. This allows you to indent the here-document's text, making the shell script more readable:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cat > $TEMP <<-EOF
 From: ${USER}
 To: ${BUGADDR}
 Subject: [50 character or so descriptive subject here]

 Configuration Information [Automatically generated,
 do not change]:
 Machine: $MACHINE
 OS: $OS
 Compiler: $CC
 Compilation CFLAGS: $CFLAGS
 ...
EOF

Make sure you are careful when choosing your label so that it doesn't appear as an actual input line.

7.1.2 File Descriptors

The next few redirectors in Table 7.1 depend on the notion of a file descriptor. Like the device files used
with <>, this is a low-level UNIX I/O concept that is of interest only to systems programmers—and then
only occasionally. You can get by with a few basic facts about them; for the whole story, look at the entries
for read(), write(), fcntl(), and others in Section 2 of the UNIX manual. You might wish to refer to UNIX
Power Tools by Jerry Peek, Tim O'Reilly, and Mike Loukides (published by O'Reilly & Associates).

File descriptors are integers starting at 0 that refer to particular streams of data associated with a process.
When a process starts, it usually has three file descriptors open. These correspond to the three standards:
standard input (file descriptor 0), standard output (1), and standard error (2). If a process opens additional
files for input or output, they are assigned to the next available file descriptors, starting with 3.

By far the most common use of file descriptors with bash is in saving standard error in a file. For example,
if you want to save the error messages from a long job in a file so that they don't scroll off the screen,
append 2> file to your command. If you also want to save standard output, append > file1 2> file2.

This leads to another programming task.

Task 7-2
You want to start a long job in the background (so that your terminal is freed up) and save both
standard output and standard error in a single log file. Write a script that does this.

We'll call this script start. The code is very terse:

"$@" > logfile 2>&1 &

This line executes whatever command and parameters follow start. (The command cannot contain pipes or
output redirectors.) It sends the command's standard output to logfile.

Then, the redirector 2>&1 says, "send standard error (file descriptor 2) to the same place as standard output
(file descriptor 1)." Since standard output is redirected to logfile, standard error will go there too. The final
& puts the job in the background so that you get your shell prompt back.

As a small variation on this theme, we can send both standard output and standard error into a pipe instead
of a file: command 2>&1 | ... does this. (Make sure you understand why.) Here is a script that sends both
standard output and standard error to the logfile (as above) and to the terminal:

"$@" 2>&1 | tee logfile &

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"$@" 2>&1 | tee logfile &

The command tee takes its standard input and copies it to standard output and the file given as argument.

These scripts have one shortcoming: you must remain logged in until the job completes. Although you can
always type jobs (see Chapter 1) to check on progress, you can't leave your terminal until the job finishes,
unless you want to risk a breach of security. [1]We'll see how to solve this problem in the next chapter.

[1] Don't put it past people to come up to your unattended terminal and cause mischief!

The other file-descriptor-oriented redirectors (e.g., <&n) are usually used for reading input from (or writing
output to) more than one file at the same time. We'll see an example later in this chapter. Otherwise, they're
mainly meant for systems programmers, as are <&- (force standard input to close) and >&- (force standard
output to close).

Before we leave this topic, we should just note that 1> is the same as >, and 0< is the same as <. If you
understand this, then you probably know all you need to know about file descriptors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 String I/O
Now we'll zoom back in to the string I/O level and examine the echo and read statements, which give the
shell I/O capabilities that are more analogous to those of conventional programming languages.

7.2.1 echo

As we've seen countless times in this book, echo simply prints its arguments to standard output. Now we'll
explore the command in greater detail.

7.2.1.1 Options to echo

echo accepts a few dash options, listed in Table 7.2.

Table 7.2. echo Options

Option Function
-e Turns on the interpretation of backslash-escaped characters

-E Turns off the interpretation of backslash-escaped character on systems where this mode is the
default

-n Omit the final newline (same as the \c escape sequence)

7.2.1.2 echo escape sequences

echo accepts a number of escape sequences that start with a backslash. [2]These are similar to the escape
sequences recognized by echo and the C language; they are listed in Table 7.3.

[2] You must use a double backslash if you don't surround the string that contains them with quotes; otherwise, the
shell itself "steals" a backslash before passing the arguments to echo.

These sequences exhibit fairly predictable behavior, except for \f: on some displays, it causes a screen clear,
while on others it causes a line feed. It ejects the page on most printers. \v is somewhat obsolete; it usually
causes a line feed.

Table 7.3. echo Escape Sequences

Sequence Character Printed
\a ALERT or CTRL-G (bell)
\b BACKSPACE or CTRL-H
\c Omit final NEWLINE
\E Escape charactera

\f FORMFEED or CTRL-L
\n NEWLINE (not at end of command) or CTRL-J
\r RETURN (ENTER) or CTRL-M
\t TAB or CTRL-I
\v VERTICAL TAB or CTRL-K
\n ASCII character with octal (base-8) value n, where n is 1 to 3 digits
\\ Single backslash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[3]

[3] Not available in versions of bash prior to 2.0.

The \n sequence is even more device-dependent and can be used for complex I/O, such as cursor control
and special graphics characters.

7.2.2 read

The other half of the shell's string I/O facilities is the read command, which allows you to read values into
shell variables. The basic syntax is:

read var1 var2...

This statement takes a line from the standard input and breaks it down into words delimited by any of the
characters in the value of the environment variable IFS (see Chapter 4; these are usually a space, a TAB,
and NEWLINE). The words are assigned to variables var1, var2, etc. For example:

$ read character1 character2alice duchess$ echo $character1alice
$ echo $character2duchess
If there are more words than variables, then excess words are assigned to the last variable. If you omit the
variables altogether, the entire line of input is assigned to the variable REPLY.

You may have identified this as the "missing ingredient" in the shell programming capabilities we have seen
thus far. It resembles input statements in conventional languages, like its namesake in Pascal. So why did
we wait this long to introduce it?

Actually, read is sort of an "escape hatch" from traditional shell programming philosophy, which dictates
that the most important unit of data to process is a text file, and that UNIX utilities such as cut, grep, sort,
etc., should be used as building blocks for writing programs.

read, on the other hand, implies line-by-line processing. You could use it to write a shell script that does
what a pipeline of utilities would normally do, but such a script would inevitably look like:

while (read a line) do
 process the line
 print the processed line
end

This type of script is usually much slower than a pipeline; furthermore, it has the same form as a program
someone might write in C (or some similar language) that does the same thing much faster. In other words,
if you are going to write it in this line-by-line way, there is no point in writing a shell script.

7.2.2.1 Reading lines from files

Nevertheless, shell scripts with read are useful for certain kinds of tasks. One is when you are reading data
from a file small enough so that efficiency isn't a concern (say a few hundred lines or less), and it's really
necessary to get bits of input into shell variables.

Consider the case of a UNIX machine that has terminals that are hardwired to the terminal lines of the
machine. It would be nice if the TERM environment variable was set to the correct terminal type when a
user logged in.

One way to do this would be to have some code that sets the terminal information when a user logs in. This
code would presumably reside in /etc/profile, the system-wide initialization file that bash runs before

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code would presumably reside in /etc/profile, the system-wide initialization file that bash runs before
running a user's .bash_profile. If the terminals on the system change over time—as surely they must—then
the code would have to be changed. It would be better to store the information in a file and change just the
file instead.

Assume we put the information in a file whose format is typical of such UNIX "system configuration" files:
each line contains a device name, a TAB, and a TERM value.

We'll call the file /etc/terms, and it would typically look something like this:

console console
tty01 wy60
tty03 vt100
tty04 vt100
tty07 wy85
tty08 vt100

The values on the left are terminal lines and those on the right are the terminal types that TERM can be set
to. The terminals connected to this system are a Wyse 60 (wy60), three VT100s (vt100), and a Wyse 85
(wy85). The machines' master terminal is the console, which has a TERM value of console.

We can use read to get the data from this file, but first we need to know how to test for the end-of-file
condition. Simple: read's exit status is 1 (i.e., non-zero) when there is nothing to read. This leads to a clean
while loop:

TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do
 if [$dev = $line]; then
 TERM=$termtype
 echo "TERM set to $TERM."
 break
 fi
done

The while loop reads each line of the input into the variables dev and termtype. In each pass through the
loop, the if looks for a match between $dev and the user's tty ($line, obtained by command substitution
from the tty command). If a match is found, TERM is set, a message is printed, and the loop exits;
otherwise TERM remains at the default setting of vt100.

We're not quite done, though: this code reads from the standard input, not from /etc/terms! We need to
know how to redirect input to multiple commands. It turns out that there are a few ways of doing this.

7.2.2.2 I/O redirection and multiple commands

One way to solve the problem is with a subshell, as we'll see in the next chapter. This involves creating a
separate process to do the reading. However, it is usually more efficient to do it in the same process; bash
gives us four ways of doing this.

The first, which we have seen already, is with a function:

findterm () {
 TERM=vt100 # assume this as a default
 line=$(tty)
 while read dev termtype; do
 if [$dev = $line]; then
 TERM=$termtype
 echo "TERM set to $TERM."
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 fi
 done
}

findterm < /etc/terms

A function acts like a script in that it has its own set of standard I/O descriptors, which can be redirected in
the line of code that calls the function. In other words, you can think of this code as if findterm were a script
and you typed findterm < /etc/terms on the command line. The read statement takes input from /etc/terms a
line at a time, and the function runs correctly.

The second way is to simplify this slightly by placing the redirection at the end of the function:

findterm () {
 TERM=vt100 # assume this as a default
 line=$(tty)
 while read dev termtype; do
 if [$dev = $line]; then
 TERM=$termtype
 echo "TERM set to $TERM."
 break;
 fi
 done
} < /etc/terms

Whenever findterm is called, it takes its input from /etc/terms.

The third way is by putting the I/O redirector at the end of the loop, like this:

TERM=vt100 # assume this as a default
line=$(tty)
while read dev termtype; do
 if [$dev = $line]; then
 TERM=$termtype
 echo "TERM set to $TERM."
 break;
 fi
done < /etc/terms

You can use this technique with any flow-control construct, including if...fi, case...esac, select...done, and
until...done. This makes sense because these are all compound statements that the shell treats as single
commands for these purposes. This technique works fine—the read command reads a line at a time—as
long as all of the input is done within the compound statement.

7.2.2.3 Command blocks

But if you want to redirect I/O to or from an arbitrary group of commands without creating a separate
process, you need to use a construct that we haven't seen yet. If you surround some code with { and }, the
code will behave like a function that has no name. This is another type of compound statement. In
accordance with the equivalent concept in the C language, we'll call this a command block.

What good is a block? In this case, it means that the code within the curly brackets ({}) will take standard
I/O descriptors just as we described in the last block of code. This construct is appropriate for the current
example because the code needs to be called only once, and the entire script is not really large enough to
merit breaking down into functions. Here is how we use a block in the example:

{
 TERM=vt100 # assume this as a default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TERM=vt100 # assume this as a default
 line=$(tty)
 while read dev termtype; do
 if [$dev = $line]; then
 TERM=$termtype
 echo "TERM set to $TERM."
 break;
 fi
 done
} < /etc/terms

To help you understand how this works, think of the curly brackets and the code inside them as if they were
one command, i.e.:

{ TERM=vt100; line=$(tty); while ... } < /etc/terms;

Configuration files for system administration tasks like this one are actually fairly common; a prominent
example is /etc/hosts, which lists machines that are accessible in a TCP/IP network. We can make /etc/terms
more like these standard files by allowing comment lines in the file that start with #, just as in shell scripts.
This way /etc/terms can look like this:

#
System Console is console
console console
#
Cameron's line has a Wyse 60
tty01 wy60
...

We can handle comment lines by modifying the while loop so that it ignores lines begining with #. We can
place a grep in the test:

if [-z "$(echo $dev | grep ^#)"] && [$dev = $line]; then
 ...

As we saw in Chapter 5, the && combines the two conditions so that both must be true for the entire
condition to be true.

As another example of command blocks, consider the case of creating a standard algebraic notation frontend
to the dc command. dc is a UNIX utility that simulates a Reverse Polish Notation (RPN) calculator: [4]

[4] If you have ever owned a Hewlett-Packard calculator you will be familiar with RPN. We'll discuss RPN further in
one of the exercises at the end of this chapter.

{ while read line; do
 echo "$(alg2rpn $line)"
 done
} | dc

We'll assume that the actual conversion from one notation to the other is handled by a function called
alg2rpn. It takes a line of standard algebraic notation as an argument and prints the RPN equivalent on the
standard output. The while loop reads lines and passes them through the conversion function, until an EOF
is typed. Everything is executed inside the command block and the output is piped to the dc command for
evaluation.

7.2.2.4 Reading user input

The other type of task to which read is suited is prompting a user for input. Think about it: we have hardly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other type of task to which read is suited is prompting a user for input. Think about it: we have hardly
seen any such scripts so far in this book. In fact, the only ones were the modified solutions to Task 5-4,
which involved select.

As you've probably figured out, read can be used to get user input into shell variables.

We can use echo to prompt the user, like this:

echo -n 'terminal? '
read TERM
echo "TERM is $TERM"

Here is what this looks like when it runs:

terminal? wy60TERM is wy60
However, shell convention dictates that prompts should go to standard error, not standard output. (Recall
that select prompts to standard error.) We could just use file descriptor 2 with the output redirector we saw
earlier in this chapter:

echo -n 'terminal? ' >&2
read TERM
echo TERM is $TERM

We'll now look at a more complex example by showing how Task 5-5 would be done if select didn't exist.
Compare this with the code in Chapter 5:

echo 'Select a directory:'
done=false

while [$done = false]; do
 do=true
 num=1
 for direc in $DIR_STACK; do
 echo $num) $direc
 num=$((num+1))
 done
 echo -n 'directory? '
 read REPLY

 if [$REPLY -lt $num] && [$REPLY -gt 0]; then
 set - $DIR_STACK

 #statements that manipulate the stack...

 break
 else
 echo 'invalid selection.'
 fi
done

The while loop is necessary so that the code repeats if the user makes an invalid choice. select includes the
ability to construct multicolumn menus if there are many choices, and better handling of null user input.

Before leaving read, we should note that it has four options: -a, -e, -p, and -r. [5] The first of these options
allows you to read values into an array. Each successive item read in is assigned to the given array starting
at index 0. For example:

[5] -a, -e, and -p are not available in versions of bash prior to 2.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ read -a peoplealice duchess dodo
$ echo ${people[2]}dodo
$
In this case, the array people now contains the items alice, duchess, and dodo.

The option -e can be used only with scripts run from interactive shells. It causes readline to be used to
gather the input line, which means that you can use any of the readline editing features that we looked at in
Chapter 2.

The -p option followed by a string argument prints the string before reading input. We could have used this
in the earlier examples of read, where we printed out a prompt before doing the read. For example, the
directory selection script could have used read -p `directory? ' REPLY.

read lets you input lines that are longer than the width of your display by providing a backslash (\) as a
continuation character, just as in shell scripts. The -r option overrides this, in case your script reads from a
file that may contain lines that happen to end in backslashes. read -r also preserves any other escape
sequences the input might contain. For example, if the file hatter contains this line:

A line with a\n escape sequence

Then read -r aline will include the backslash in the variable aline, whereas without the -r, read will "eat"
the backslash. As a result:

$ read -r aline < hatter$ echo -e "$aline"A line with a
 escape sequence
$
However:

$ read aline < hatter$ echo -e "$aline"A line with an escape sequence
$

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Command-Line Processing
We've seen how the shell uses read to process input lines: it deals with single quotes (''), double quotes
(""), and backslashes (\); it separates lines into words, according to delimiters in the environment variable
IFS; and it assigns the words to shell variables. We can think of this process as a subset of the things the
shell does when processing command lines.

We've touched upon command-line processing throughout this book; now is a good time to make the whole
thing explicit. Each line that the shell reads from the standard input or a script is called a pipeline; it
contains one or more commands separated by zero or more pipe characters (|). For each pipeline it reads, the
shell breaks it up into commands, sets up the I/O for the pipeline, then does the following for each
command (Figure 7.1):

Figure 7.1. Steps in command-line processing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. Splits the command into tokens that are separated by the fixed set of metacharacters: SPACE,
TAB, NEWLINE, ;, (,), <, >, |, and &. Types of tokens include words, keywords, I/O redirectors,
and semicolons.

2. Checks the first token of each command to see if it is a keyword with no quotes or backslashes. If
it's an opening keyword, such as if and other control-structure openers, function, {, or (, then the
command is actually a compound command. The shell sets things up internally for the compound
command, reads the next command, and starts the process again. If the keyword isn't a compound
command opener (e.g., is a control-structure "middle" like then, else, or do, an "end" like fi or
done, or a logical operator), the shell signals a syntax error.

3. Checks the first word of each command against the list of aliases. If a match is found, it substitutes
the alias's definition and goes back to Step 1; otherwise, it goes on to Step 4. This scheme allows
recursive aliases (see Chapter 3). It also allows aliases for keywords to be defined, e.g., alias
aslongas=while or alias procedure=function.

4. Performs brace expansion. For example, a{b,c} becomes ab ac.

5. Substitutes the user's home directory ($HOME) for tilde if it is at the beginning of a word.
Substitutes user's home directory for ~user. [6]

[6] Two obscure variations on this: the shell substitutes the current directory ($PWD) for ~+ and the
previous directory ($OLDPWD) for ~-.

6. Performs parameter (variable) substitution for any expression that starts with a dollar sign ($).

7. Does command substitution for any expression of the form $(string).

8. Evaluates arithmetic expressions of the form $((string)).

9. Takes the parts of the line that resulted from parameter, command, and arithmetic substitution and
splits them into words again. This time it uses the characters in $IFS as delimiters instead of the set
of metacharacters in Step 1.

10. Performs pathname expansion, a.k.a. wildcard expansion, for any occurrences of *, ?, and [/] pairs.

11. Uses the first word as a command by looking up its source according to the rest of the list in
Chapter 4, i.e., as a function command, then as a built-in, then as a file in any of the directories in
$PATH.

12. Runs the command after setting up I/O redirection and other such things.

That's a lot of steps—and it's not even the whole story! But before we go on, an example should make this
process clearer. Assume that the following command has been run:

alias ll="ls -l"

Further assume that a file exists called .hist537 in user alice's home directory, which is /home/alice, and that
there is a double-dollar-sign variable $$ whose value is 2537 (we'll see what this special variable is in the
next chapter).

Now let's see how the shell processes the following command:

ll $(type -path cc) ~alice/.*$(($$%1000))

Here is what happens to this line:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. ll $(type -path cc) ~alice/.*$(($$%1000)) Splitting the input into words.

2. ll is not a keyword, so Step 2 does nothing.

3. ls -l $(type -path cc) ~alice/.*$(($$%1000)) Substituting ls -l for its alias
"ll". The shell then repeats Steps 1 through 3; Step 2 splits the ls -l into two words.

4. ls -l $(type -path cc) ~alice/.*$(($$%1000)) This step does nothing.

5. ls -l $(type -path cc) /home/alice/.*$(($$%1000)) Expanding ~alice into
/home/alice.

6. ls -l $(type -path cc) /home/alice/.*$((2537%1000)) Substituting 2537 for
$$.

7. ls -l /usr/bin/cc /home/alice/.*$((2537%1000)) Doing command substitution
on "type -path cc".

8. ls -l /usr/bin/cc /home/alice/.*537 Evaluating the arithmetic expression
2537%1000.

9. ls -l /usr/bin/cc /home/alice/.*537 This step does nothing.

10. ls -l /usr/bin/cc /home/alice/.hist537 Substituting the filename for the
wildcard expression .*537.

11. The command ls is found in /usr/bin.

12. /usr/bin/ls is run with the option -l and the two arguments.

Although this list of steps is fairly straightforward, it is not the whole story. There are still five ways to
modify the process: quoting; using command, builtin, or enable; and using the advanced command eval.

7.3.1 Quoting

You can think of quoting as a way of getting the shell to skip some of the 12 steps above. In particular:

· Single quotes ('') bypass everything through Step 10—including aliasing. All characters inside a
pair of single quotes are untouched. You can't have single quotes inside single quotes—not even if
you precede them with backslashes. [7]

[7] However, as we saw in Chapter 1, '\'' (i.e., single quote, backslash, single quote, single quote) acts
pretty much like a single quote in the middle of a single-quoted string; e.g., 'abc'\''def' evaluates to
abc'def.

· Double quotes ("") bypass Steps 1 through 4, plus steps 9 and 10. That is, they ignore pipe
characters, aliases, tilde substitution, wildcard expansion, and splitting into words via delimiters
(e.g., blanks) inside the double quotes. Single quotes inside double quotes have no effect. But
double quotes do allow parameter substitution, command substitution, and arithmetic expression
evaluation. You can include a double quote inside a double-quoted string by preceding it with a
backslash (\). You must also backslash-escape $, ` (the archaic command substitution delimiter),
and \ itself.

Table 7.4 has simple examples to show how these work; they assume the statement person=hatter was run
and user alice's home directory is /home/alice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are wondering whether to use single or double quotes in a particular shell programming situation, it is
safest to use single quotes unless you specifically need parameter, command, or arithmetic substitution.

Table 7.4. Examples of Quoting Rules

Expression Value
$person hatter
"$person" hatter
\$person $person
'$person' $person
"'$person'" 'hatter'
~alice /home/alice
"~alice" ~alice
'~alice' ~alice

7.3.2 command, builtin, and enable

Before moving on to the last part of the command-line processing cycle, we'll take a look at the command
lookup order that we touched on in Chapter 4 and how it can be altered with several shell built-ins.

The default order for command lookup is functions, followed by built-ins, with scripts and executables last.
There are three built-ins that you can use to override this order: command, builtin, and enable.

command removes alias and function lookup. [8]Only built-ins and commands found in the search path are
executed. This is useful if you want to create functions that have the same name as a shell built-in or a
command in the search path and you need to call the original command from the function. For instance, we
might want to create a function called cd that replaces the standard cd command with one that does some
fancy things and then executes the built-in cd:

[8] command removes alias lookup as a side effect. Because the first argument of command is no longer the first
word that bash parses, it is not subjected to alias lookup.

cd ()
{
 #Some fancy things
 command cd
}

In this case we avoid plunging the function into a recursive loop by placing command in front of cd. This
ensures that the built-in cd is called and not the function.

command has some options, listed in Table 7.5.

Table 7.5. command Options

Option Description
-p Use a default value for PATH
-v Prints the command or pathname used to invoke the command
-V A more verbose description than with -v
- Turns off further option checking

The -p option is a default path which guarantees that the command lookup will find all of the standard

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The -p option is a default path which guarantees that the command lookup will find all of the standard
UNIX utilities. In this case, command will ignore the directories in your PATH. [9]

[9] Unless bash has been compiled with a brain-dead value for the default. See Chapter 11 for how to change the
default value.

builtin is very similar to command but is more restrictive. It looks up only built-in commands, ignoring
functions and commands found in PATH. We could have replaced command with builtin in the cd
example above.

The last command enables and disables shell built-ins—it is called enable. Disabling a built-in allows a
shell script or executable of the same name to be run without giving a full pathname. Consider the problem
many beginning UNIX shell programmers have when they name a script test. Much to their surprise,
executing test usually results in nothing, because the shell is executing the built-in test, rather than the shell
script. Disabling the built-in with enable overcomes this. [10]

[10] Note that the wrong test may still be run. If your current directory is the last in PATH you'll probably execute
the system file test. test is not a good name for a program.

Table 7.6 lists the options available with enable. [11]Some options are for working with dynamically
loadable built-ins. See Appendix C, for details on these options, and how to create and load your own built-
in commands.

[11] The -d, -f, -p, and -s options are not available in versions of bash prior to 2.0.

Table 7.6. enable Options

Option Description
-a Displays every built-in and whether it is enabled or not
-d Delete a built-in loaded with -f
-f filename Loads a new built-in from the shared-object filename
-n Disables a built-in or displays a list of disabled built-ins
-p Displays a list of all of the built-ins
-s Restricts the output to POSIX "special" built-ins

Of these options, -n is the most useful; it is used to disable a built-in. enable without an option enables a
built-in. More than one built-in can be given as arguments to enable, so enable -n pushd popd dirs would
disable the pushd, popd, and dirs built-ins. [12]

[12] Be careful—it is possible to disable enable (enable -n enable). There is a compile-time option that allows
builtin to act as an escape-hatch. For more details, see Chapter 11.

You can find out what built-ins are currently enabled and disabled by using the command on its own, or
with the -p option; enable or enable -p will list all enabled built-ins, and enable -n will list all disabled
built-ins. To get a complete list with their current status, you can use enable -a.

The -s option restricts the output to POSIX `special' built-ins. These are :, ., source, break, continue, eval,
exec, exit, export, readonly, return, set, shift, trap, and unset.

7.3.3 eval

We have seen that quoting lets you skip steps in command-line processing. Then there's the eval command,
which lets you go through the process again. Performing command-line processing twice may seem strange,
but it's actually very powerful: it lets you write scripts that create command strings on the fly and then pass
them to the shell for execution. This means that you can give scripts "intelligence" to modify their own
behavior as they are running.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The eval statement tells the shell to take eval's arguments and run them through the command-line
processing steps all over again. To help you understand the implications of eval, we'll start with a trivial
example and work our way up to a situation in which we're constructing and running commands on the fly.

eval ls passes the string ls to the shell to execute; the shell prints a list of files in the current directory. Very
simple; there is nothing about the string ls that needs to be sent through the command-processing steps
twice. But consider this:

listpage="ls | more"
$listpage

Instead of producing a paginated file listing, the shell will treat | and more as arguments to ls, and ls will
complain that no files of those names exist. Why? Because the pipe character "appears" in Step 6 when the
shell evaluates the variable, after it has actually looked for pipe characters. The variable's expansion isn't
even parsed until Step 9. As a result, the shell will treat | and more as arguments to ls, so that ls will try to
find files called | and more in the current directory!

Now consider eval $listpage instead of just $listpage. When the shell gets to the last step, it will run the
command eval with arguments ls, |, and more. This causes the shell to go back to Step 1 with a line that
consists of these arguments. It finds | in Step 2 and splits the line into two commands, ls and more. Each
command is processed in the normal (and in both cases trivial) way. The result is a paginated list of the files
in your current directory.

Now you may start to see how powerful eval can be. It is an advanced feature that requires considerable
programming cleverness to be used most effectively. It even has a bit of the flavor of artificial intelligence,
in that it enables you to write programs that can "write" and execute other programs. [13]You probably
won't use eval for everyday shell programming, but it's worth taking the time to understand what it can do.

[13] You could actually do this without eval, by echoing commands to a temporary file and then "sourcing" that file
with . filename. But that is much less efficient.

As a more interesting example, we'll revisit Task 4-1, the very first task in the book. In it, we constructed a
simple pipeline that sorts a file and prints out the first N lines, where N defaults to 10. The resulting pipeline
was:

sort -nr $1 | head -${2:-10}

The first argument specified the file to sort; $2 is the number of lines to print.

Now suppose we change the task just a bit so that the default is to print the entire file instead of 10 lines.
This means that we don't want to use head at all in the default case. We could do this in the following way:

if [-n "$2"]; then
 sort -nr $1 | head -$2
else
 sort -nr $1
fi

In other words, we decide which pipeline to run according to whether $2 is null. But here is a more compact
solution:

eval sort -nr \$1 ${2:+"| head -\$2"}

The last expression in this line evaluates to the string | head -\$2 if $2 exists (is not null); if $2 is null, then
the expression is null too. We backslash-escape dollar signs (\$) before variable names to prevent
unpredictable results if the variables' values contain special characters like > or |. The backslash effectively
puts off the variables' evaluation until the eval command itself runs. So the entire line is either:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

eval sort -nr \$1 | head -\$2

if $2 is given, or:

eval sort -nr \$1

if $2 is null. Once again, we can't just run this command without eval because the pipe is "uncovered" after
the shell tries to break the line up into commands. eval causes the shell to run the correct pipeline when $2
is given.

Next, we'll revisit Task 7-2 from earlier in this chapter, the start script that lets you start a command in the
background and save its standard output and standard error in a logfile. Recall that the one-line solution to
this task had the restriction that the command could not contain output redirectors or pipes. Although the
former doesn't make sense when you think about it, you certainly would want the ability to start a pipeline
in this way.

eval is the obvious way to solve this problem:

eval "$@" > logfile 2>&1 &

The only restriction that this imposes on the user is that pipes and other such special characters be quoted
(surrounded by quotes or preceded by backslashes).

Here's a way to apply eval in conjunction with various other interesting shell programming concepts.

Task 7-3
Implement the core of the make utility as a shell script.

make is known primarily as a programmer's tool, but it seems as though someone finds a new use for it
every day. Without going into too much extraneous detail, make basically keeps track of multiple files in a
particular project, some of which depend on others (e.g., a document depends on its word processor input
file(s)). It makes sure that when you change a file, all of the other files that depend on it are processed.

For example, assume you're using the troff word processor to write a book. You have files for the book's
chapters called ch1.t, ch2.t, and so on; the troff output for these files are ch1.out, ch2.out, etc. You run
commands like troff chN.t > chN.out to do the processing. While you're working on the book, you tend to
make changes to several files at a time.

In this situation, you can use make to keep track of which files need to be reprocessed, so that all you need
to do is type make, and it will figure out what needs to be done. You don't need to remember to reprocess
the files that have changed.

How does make do this? Simple: it compares the modification times of the input and output files (called
sources and targets in make terminology), and if the input file is newer, then make reprocesses it.

You tell make which files to check by building a file called makefile that has constructs like this:

target : source1 source2 ...
 commands to make target

This essentially says, "For target to be up to date, it must be newer than all of the sources. If it's not, run the
commands to bring it up to date." The commands are on one or more lines that must start with TABs: e.g.,
to make ch7.out:

ch7.out : ch7.t
 troff ch7.t > ch7.out

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 troff ch7.t > ch7.out

Now suppose that we write a shell function called makecmd that reads and executes a single construct of
this form. Assume that the makefile is read from standard input. The function would look like the following
code.

makecmd ()
{
 read target colon sources
 for src in $sources; do
 if [$src -nt $target]; then
 while read cmd && [$(grep \t* $cmd)]; do
 echo "$cmd"
 eval ${cmd#\t}
 done
 break
 fi
 done
}

This function reads the line with the target and sources; the variable colon is just a placeholder for the :.
Then it checks each source to see if it's newer than the target, using the -nt file attribute test operator that
we saw in Chapter 5. If the source is newer, it reads, prints, and executes the commands until it finds a line
that doesn't start with a TAB or it reaches end-of-file. (The real make does more than this; see the exercises
at the end of this chapter.) After running the commands (which are stripped of the initial TAB), it breaks out
of the for loop, so that it doesn't run the commands more than once.

As a final example of eval, we'll look again at procimage, the graphics utility that we developed in the last
three chapters. Recall that one of the problems with the script as it stands is that it performs the process of
scaling and bordering regardless of whether you want them. If no command-line options are present, a
default size, border width, and border color are used. Rather than invent some if then logic to get around
this, we'll look at how you can dynamically build a pipeline of commands in the script; those commands
that aren't needed simply disappear when the time comes to execute them. As an added bonus, we'll add
another capability to our script: image enhancement.

Looking at the procimage script you'll notice that the NetPBM commands form a nice pipeline; the output
of one operation becomes the input to the next, until we end up with the final image. If it weren't for having
to use a particular conversion utility, we could reduce the script to the following pipeline (ignoring options
for now):

cat $filename | convertimage | pnmscale | pnmmargin | ppmquant | \
 ppmtogif > $outfile

Or, better yet:

convertimage $filename | pnmscale | pnmmargin | ppmquant | ppmtogif \
 > $outfile

As we've already seen, this is equivalent to:

eval convertimage $filename | pnmscale | pnmmargin | ppmquant | \
 ppmtogif > $outfile

And knowing what we do about how eval operates, we can transform this into:

eval "convertimage" $filename " | pnmscale" " | pnmmargin" \
 " | ppmquant" " | ppmtogif" > $outfile

And thence to:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

convert='convertimage'
scale=' | pnmscale'
border=' | pnmmargin'
standardise=' | ppmquant | ppmtogif'

eval $convert $filename $scale $border $standardise > $outfile

Now consider what happens when we don't want to scale the image. We do this:

scale=""

while getopts ":s:w:c:" opt; do
 case $opt in
 s) scale=' | pnmscale' ;;

 ...

eval $convert $filename $scale $border $standardise > $outfile

In this code fragment, scale is set to a default of the empty string. If -s is not given on the command line,
then the final line evaluates with $scale as the empty string and the pipeline will "collapse" into:

$convert $filename $border $standardise > $outfile

Using this principle, we can modify the previous version of the procimage script and produce a pipeline
version. For each input file we need to construct and run a pipeline based upon the options given on the
command line. Here is the new version:

Set up the defaults
width=1
colour='-color grey'
usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."

Initialise the pipeline components
standardise=' | ppmquant -quiet 256 | ppmtogif -quiet'

while getopts ":s:w:c:" opt; do
 case $opt in
 s) size=$OPTARG
 scale=' | pnmscale -quiet -xysize $size $size' ;;
 w) width=$OPTARG
 border=' | pnmmargin $colour $width' ;;
 c) colour="-color $OPTARG"
 border=' | pnmmargin $colour $width' ;;
 \?) echo $usage
 exit 1 ;;
 esac
done

shift $(($OPTIND - 1))

if [-z "$@"]; then
 echo $usage
 exit 1
fi

Process the input files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Process the input files
for filename in "$@"; do
 case $filename in
 *.gif) convert=giftopnm ;;

 *.tga) convert=tgatoppm ;;

 *.xpm) convert=xpmtoppm ;;

 *.pcx) convert=pcxtoppm ;;

 *.tif) convert=tifftopnm ;;

 *.jpg) convert=djpeg ;;

 *) echo "$0: Unknown filetype '${filename##*.}'"
 exit 1;;
 esac

 outfile=${filename%.*}.new.gif

 eval $convert $filename $scale $border $standardise > $outfile

done

This version has been simplified somewhat from the previous one in that it no longer needs a temporary file
to hold the converted file. It is also a lot easier to read and understand. To show how easy it is to add further
processing to the script, we'll now add one more NetPBM utility.

You might have noticed that when you reduced an image in size it appeared to get a little less sharp.
NetPBM provides a utility to enhance an image and make it sharper: pnmnlfilt. This utility is an image filter
that samples the image and can enhance edges in the image (it can also smooth the image if given the
appropriate values). It takes two parameters that tell it how much to enhance the image. For the purposes of
our script, we'll just choose some optimal values and provide an option to switch enhancement on and off in
the script.

To put the new capability in place all we have to do is add the new option (-S) to the getopts case
statement, update the usage line, and add a new variable to the pipeline. Here is the new code:

Set up the defaults
width=1
colour='-color grey'
usage="Usage: $0 [-S] [-s N] [-w N] [-c S] imagefile..."

Initialise the pipeline components
standardise=' | ppmquant -quiet 256 | ppmtogif -quiet'

while getopts ":Ss:w:c:" opt; do
 case $opt in
 S) sharpness=' | pnmnlfilt -0.7 0.45' ;;
 s) size=$OPTARG
 scale=' | pnmscale -quiet -xysize $size $size' ;;
 w) width=$OPTARG
 border=' | pnmmargin $colour $width' ;;
 c) colour="-color $OPTARG"
 border=' | pnmmargin $colour $width' ;;
 \?) echo $usage
 exit 1 ;;
 esac

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 esac
done

shift $(($OPTIND - 1))

if [-z "$@"]; then
 echo $usage
 exit 1
fi

Process the input files
for filename in "$@"; do
 case $filename in
 *.gif) convert=giftopnm ;;

 *.tga) convert=tgatoppm ;;

 *.xpm) convert=xpmtoppm ;;

 *.pcx) convert=pcxtoppm ;;

 *.tif) convert=tifftopnm ;;

 *.jpg) convert=djpeg ;;

 *) echo "$0: Unknown filetype '${filename##*.}'"
 exit 1;;
 esac

 outfile=${filename%.*}.new.gif

 eval $convert $filename $scale $border $sharpness $standardise \
 > $outfile

done

We could go on forever with increasingly complex examples of eval, but we'll settle for concluding the
chapter with a few exercises. The questions in Exercise 3 are really more like items on the menu of food for
thought.

1. Here are a couple of ways to enhance procimage, the graphics utility:

a. Add an option, -q, that allows the user to turn on and off the printing of diagnostic
information from the NetPBM utilities. You'll need to map -q to the -quiet option of the
utilities. Also, add your own diagnostic output for those utilities that don't print anything,
e.g., the format conversions.

b. Add an option that allows the user to specify the order that the NetPBM processes take
place, i.e., whether enhancing the image comes before bordering, or bordering comes
before resizing. Rather than using an if construct to make the choice amongst hard-coded
orders, construct a string dynamically which will look similar to this:

c. "eval $convert $filename $scale $border $sharpness
 $standardise > $outfile"

You'll then need eval to evaluate this string.

2. The function makecmd in the solution to Task 7-3 represents an oversimplification of the real
make's functionality. make actually checks file dependencies recursively, meaning that a source on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

make's functionality. make actually checks file dependencies recursively, meaning that a source on
one line in a makefile can be a target on another line. For example, the book chapters in the
example could themselves depend on some figures in separate files that were made with a graphics
package.

a. Write a function called readtargets that goes through the makefile and stores all of the
targets in a variable or temporary file.

b. makecmd merely checks to see if any of the sources are newer than the given target. It
should really be a recursive routine that looks like this:

c. function makecmd ()
d. {
e. target=$1
f. get sources for $target
g. for each source src; do
h. if $src is also a target in this makefile then
i. makecmd $src
j. fi
k. if [$src -nt $target]; then
l. run commands to make target
m. return
n. fi
o. done

}

Implement this.

p. Write the "driver" script that turns the makecmd function into a full make program. This
should make the target given as argument, or if none is given, the first target listed in the
makefile.

q. The above makecmd still doesn't do one important thing that the real make does: allow for
"symbolic" targets that aren't files. These give make much of the power that makes it
applicable to such an incredible variety of situations. Symbolic targets always have a
modification time of 0, so that make always runs the commands to make them. Modify
makecmd so that it allows for symbolic targets. (Hint: the crux of this problem is to figure
out how to get a file's modification time. This is quite difficult.)

3. Here are some problems that really test your knowledge of eval and the shell's command-line
processing rules. Solve these and you're a true bash hacker!

a. Advanced shell programmers sometimes use a little trick that includes eval: using the
value of a variable as the name of another variable. In other words, you can give a shell
script control over the names of variables to which it assigns values. The latest version of
bash has this built in in the form of ${!varname}, where varname contains the name of
another variable that will be the target of the operation. This is known as indirect
expansion. How would you do this using only eval? (Hint: if $object equals "person", and
$person is "alice", then you might think that you could type echo $$object and get the
response alice. This doesn't actually work, but it's on the right track.)

b. You could use the above technique together with other eval tricks to implement new
control structures for the shell. For example, see if you can write a script that emulates the
behavior of a for loop in a conventional language like C or Pascal, i.e., a loop that iterates
a fixed number of times, with a loop variable that steps from 1 to the number of iterations
(or, for C fans, 0 to iterations-1). Call your script loop to avoid clashes with the keywords
for and do.

c. The pushd, popd, and dirs functions that we built up in previous chapters can't handle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c. The pushd, popd, and dirs functions that we built up in previous chapters can't handle
directories with spaces in their names (because DIR_STACK uses a space as a delimiter).
Use eval to overcome this limitation. (Hint: use eval to implement an array. Each array
element is called array1, array2, ... arrayn, and each array element contains a directory
name.)

d. (The following doesn't have that much to do with the material in this chapter per se, but it
is a classic programming exercise:) Write the function alg2rpn used in the section on
command blocks. Here's how to do this: Arithmetic expressions in algebraic notation have
the form expr op expr, where each expr is either a number or another expression (perhaps
in parentheses), and op is +, -, x, /, or % (remainder). In RPN, expressions have the form
expr expr op. For example: the algebraic expression 2+3 is 2 3 + in RPN; the RPN
equivalent of (2+3) x (9-5) is 2 3 + 9 5 - x. The main advantage of RPN is that it obviates
the need for parentheses and operator precedence rules (e.g., x is evaluated before +). The
dc program accepts standard RPN, but each expression should have "p" appended to it,
which tells dc to print its result; e.g., the first example above should be given to dc as 2 3 +
p.

e. You need to write a routine that converts algebraic notation to RPN. This should be (or
include) a function that calls itself (a recursive function) whenever it encounters a
subexpression. It is especially important that this function keep track of where it is in the
input string and how much of the string it "eats up" during its processing. (Hint: make use
of the pattern-matching operators discussed in Chapter 4, to ease the task of parsing input
strings.) To make your life easier, don't worry about operator precedence for now; just
convert to RPN from left to right: e.g., treat 3+4x5 as (3+4)x5 and 3x4+5 as (3x4)+5. This
makes it possible for you to convert the input string on the fly, i.e., without having to read
in the whole thing before doing any processing.

f. Enhance your solution to the previous exercise so that it supports operator precedence in
the "usual" order: x, /, % (remainder) +, -. For example, treat 3+4x5 as 3+(4x5) and 3x4+5
as (3x4)+5.

g. Here is something else to really test your skills; write a graphics utility script, index, that
takes a list of image files, reduces them in size and creates an "index" image. An index
image is comprised of thumbnail-sized versions of the original images, placed neatly in
columns and rows, and with a caption underneath (usually the name of the original file).
Besides the list of files, you'll need some options, including the number of columns to
create and the size of the thumbnail images. You might also like to include an option to
specify the gap between each image. The new NetPBM utilities you'll need are pbmtext
and pnmcat. You'll also need our old favorites pnmscale, ppmquant, and one or more of
the conversion utilities, depending upon whether you decide to take in various formats (as
we did for procimage) and what output format you decide on. pbmtext takes as an
argument some text and converts the text into a PNM bitmap. pnmcat is a little more
complex. Lke cat, it concatenates things; in this case, images. You can specify as many
PNM files as you like as arguments and pnmcat will put them together into one long
image. By using the -lr and -tb options, you can specify whether you want the images to
be placed one after the other going from left to right, or from top to bottom. The first
option to pnmcat is the background color. It can be either -black for a black background,
or -white for a white background. We suggest -white to match the pbmtext black text on a
white background. You'll need to take each file, run the filename through pbmtext, and use
pnmcat to place it underneath a scaled down version of the original image. Then you'll
need to continue doing this for each file and use pnmcat to connect them together. In
addition, you'll have to keep tabs on how many columns you have completed and when to
start a new row. Note that you'll need to build up the rows individually and use pnmcat to
connect them together. pnmcat won't do this for you automatically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Process Handling
The UNIX operating system built its reputation on a small number of concepts, all of which are simple yet
powerful. We've seen most of them by now: standard input/output, pipes, text-filtering utilities, the tree-
structured file system, and so on. UNIX also gained notoriety as the first small-computer operating system
to give each user control over more than one process. We call this capability user-controlled multitasking.

If UNIX is the only operating system that you're familiar with, you might be surprised to learn that several
other major operating systems have been sadly lacking in this area. For example, Microsoft's MS-DOS, for
IBM PC compatibles, has no multitasking at all, let alone user-controlled multitasking. IBM's own
VM/CMS system for large mainframes handles multiple users but gives them only one process each. DEC's
VAX/VMS has user-controlled multitasking, but it is limited and difficult to use. The latest generation of
small-computer operating systems, such as Apple's Macintosh OS System 7, IBM's OS/2 Version 2, and
Microsoft's Windows NT, finally include user-controlled multitasking at the operating-system level. [1]

[1] Programs like Apple's Multifinder and Microsoft Windows work on top of the operating system (Mac OS Version
6 and MS-DOS, respectively) to give the user limited multitasking.

But if you've gotten this far in this book, you probably don't think that multitasking is a big deal. You're
probably used to the idea of running a process in the background by putting an ampersand (&) at the end of
the command line. You have also seen the idea of a subshell in Chapter 4, when we showed how shell
scripts run.

In this chapter, we will cover most of bash's features that relate to multitasking and process handling in
general. We say "most" because some of these features are, like the file descriptors we saw in the previous
chapter, of interest only to low-level systems programmers.

We'll start out by looking at certain important primitives for identifying processes and for controlling them
during login sessions and within shell scripts. Then we will move out to a higher-level perspective, looking
at ways to get processes to communicate with each other. We'll look in more detail at concepts we've
already seen, like pipes and subshells.

Don't worry about getting bogged down in low-level technical details about UNIX. We will provide only
the technical information that is necessary to explain higher-level features, plus a few other tidbits designed
to pique your curiosity. If you are interested in finding out more about these areas, refer to your UNIX
Programmer's Manual or a book on UNIX internals that pertains to your version of UNIX. You might also
find UNIX Power Tools (published by O'Reilly & Associates) of value.

We strongly recommend that you try out the examples in this chapter. The behavior of code that involves
multiple processes is not as easy to understand on paper as most of the other examples in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Process IDs and Job Numbers
UNIX gives all processes numbers, called process IDs, when they are created. You will notice that when
you run a command in the background by appending & to it, the shell responds with a line that looks like
this:

$ alice &[1] 93
In this example, 93 is the process ID for the alice process. The [1] is a job number assigned by the shell (not
the operating system). What's the difference? Job numbers refer to background processes that are currently
running under your shell, while process IDs refer to all processes currently running on the entire system, for
all users. The term job basically refers to a command line that was invoked from your shell.

If you start up additional background jobs while the first one is still running, the shell will number them 2,
3, etc. For example:

$ duchess &[2] 102
$ hatter &[3] 104
Clearly, 1, 2, and 3 are easier to remember than 93, 102, and 104!

The shell includes job numbers in messages it prints when a background job completes, like this: [2]

[2] The messages are, by default, printed before the next prompt is displayed so as not to interrupt any output on
the display. You can make the notification messages display immediately by using set -b.

[1]+ Done alice

We'll explain what the plus sign means soon. If the job exits with non-zero status (see Chapter 5), the shell
will indicate the exit status: [3]

[3] In POSIX mode, the message is slightly different: "[1]+ Done(1) alice". The number in parentheses is the exit
status of the job. POSIX mode can be selected via the set command or by starting bash in POSIX mode. For
further information, see Appendix B, Table 2.1" and Table 2.5

[1]+ Exit 1 alice

The shell prints other types of messages when certain abnormal things happen to background jobs; we'll see
these later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Job Control
Why should you care about process IDs or job numbers? Actually, you could probably get along fine
through your UNIX life without ever referring to process IDs (unless you use a windowing workstation—as
we'll see soon). Job numbers are more important, however: you can use them with the shell commands for
job control. [4]

[4] If you have an older version of UNIX, it is possible that your system does not support job control. This is
particularly true for many systems derived from Xenix, System III, or early versions of System V. On such systems,
bash does not have the fg and bg commands, job number arguments to kill and wait, typing CTRL-Z to suspend
a job, or the TSTP signal.

You already know the most obvious way of controlling a job: create one in the background with &. Once a
job is running in the background, you can let it run to completion, bring it into the foreground, or send it a
message called a signal.

8.2.1 Foreground and Background

The built-in command fg brings a background job into the foreground. Normally this means that the job will
have control of your terminal or window and therefore will be able to accept your input. In other words, the
job will begin to act as if you typed its command without the &.

If you have only one background job running, you can use fg without arguments, and the shell will bring
that job into the foreground. But if you have several jobs running in the background, the shell will pick the
one that you put into the background most recently. If you want some other job put into the foreground, you
need to use the job's command name, preceded by a percent sign (%), or you can use its job number, also
preceded by %, or its process ID without a percent sign. If you don't remember which jobs are running, you
can use the command jobs to list them.

A few examples should make this clearer. Let's say you created three background jobs as above. Then if you
type jobs, you will see this:

[1] Running alice &
[2]- Running duchess &
[3]+ Running hatter &

jobs has a few interesting options. jobs -l also lists process IDs:

[1] 93 Running alice &
[2]- 102 Running duchess &
[3]+ 104 Running hatter &

The -p option tells jobs to list only process IDs:

93
102
104

(This could be useful with command substitution; see Task 8-1.) The -n option lists only those jobs whose
status has changed since the shell last reported it—whether with a jobs command or otherwise. -r restricts
the list to jobs that are running, while -s restricts the list to those jobs which are stopped, e.g., waiting for
input from the keyboard. [5] Finally, you can use the -x option to execute a command. Any job number
provided to the command will be substituted with the process ID of the job. For example, if alice is running
in the background, then executing jobs -x echo %1 will print the process ID of alice.

[5] Options -r and -s are not available in bash prior to version 2.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you type fg without an argument, the shell will put hatter in the foreground, because it was put in the
background most recently. But if you type fg %duchess (or fg %2), duchess will go in the foreground.

You can also refer to the job most recently put in the background by %+. Similarly, %- refers to the next-
most-recently backgrounded job (duchess in this case). That explains the plus and minus signs in the above:
the plus sign shows the most recent job whose status has changed; the minus sign shows the next-most-
recently invoked job. [6]

[6] This is analogous to ~+ and ~- as references to the current and previous directory; see the footnote in Chapter
7. Also: %% is a synonym for %+.

If more than one background job has the same command, then %command will distinguish between them
by choosing the most recently invoked job (as you'd expect). If this isn't what you want, you need to use the
job number instead of the command name. However, if the commands have different arguments, you can
use %?string instead of %command. %?string refers to the job whose command contains the string. For
example, assume you started these background jobs:

$ hatter mad &[1] 189
$ hatter teatime &[2] 190
$
Then you can use %?mad and %?teatime to refer to each of them, although actually %?ma and %?tea
are sufficient to uniquely identify them.

Table 8.1 lists all of the ways to refer to background jobs. Given how infrequently people use job control
commands, job numbers or command names are sufficient, and the other ways are superfluous.

Table 8.1. Ways to Refer to Background Jobs

Reference Background job
%N Job number N
%string Job whose command begins with string
%?string Job whose command contains string
%+ Most recently invoked background job
%% Same as above
%- Second most recently invoked background job

8.2.2 Suspending a Job

Just as you can put background jobs into the foreground with fg, you can also put a foreground job into the
background. This involves suspending a job, so that the shell regains control of your terminal.

To suspend a job, type CTRL-Z while it is running. [7] This is analogous to typing CTRL-C (or whatever
your interrupt key is), except that you can resume the job after you have stopped it. When you type CTRL-
Z, the shell responds with a message like this:

[7] This assumes that the CTRL-Z key is set up as your suspend key; just as with CTRL-C and interrupts, this is
conventional but by no means required.

[1]+ Stopped command

Then it gives you your prompt back. To resume a suspended job so that it continues to run in the
foreground, just type fg. If, for some reason, you put other jobs in the background after you typed CTRL-Z,
use fg with a job name or number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example:

 alice is running...CTRL-Z [1]+ Stopped alice
$ hatter & [2] 145
$ fg %alice alice resumes in the foreground...
The ability to suspend jobs and resume them in the foreground comes in very handy when you have a
conventional terminal (as opposed to a windowing workstation) and you are using a text editor like vi on a
file that needs to be processed. For example, if you are editing a file for the troff text processor, you can do
the following:

$ vi myfile edit the file... CTRL-Z Stopped [1] vi
$ troff myfile troff reports an error$ fg vi comes back up in the same place in your file
Programmers often use the same technique when debugging source code.

You will probably also find it useful to suspend a job and resume it in the background instead of the
foreground. You may start a command in the foreground (i.e., normally) and find that it takes much longer
than you expected—for example, a grep, sort, or database query. You need the command to finish, but you
would also like control of your terminal back so that you can do other work. If you type CTRL-Z followed
by bg, you will move the job to the background. [8]

[8] Be warned, however, that not all commands are "well-behaved" when you do this. Be especially careful with
commands that run over a network on a remote machine; you may end up confusing the remote program.

You can also suspend a job with CTRL-Y. This is slightly different from CTRL-Z in that the process is only
stopped when it attempts to read input from the terminal.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Signals
We mentioned earlier that typing CTRL-Z to suspend a job is similar to typing CTRL-C to stop a job,
except that you can resume the job later. They are actually similar in a deeper way: both are particular cases
of the act of sending a signal to a process.

A signal is a message that one process sends to another when some abnormal event takes place or when it
wants the other process to do something. Most of the time, a process sends a signal to a subprocess it
created. You're undoubtedly already comfortable with the idea that one process can communicate with
another through an I/O pipeline; think of a signal as another way for processes to communicate with each
other. (In fact, any textbook on operating systems will tell you that both are examples of the general concept
of interprocess communication, or IPC.) [9]

[9] Pipes and signals were the only IPC mechanisms in early versions of UNIX. More modern versions like System
V and 4.x BSD have additional mechanisms, such as sockets, named pipes, and shared memory. Named pipes
are accessible to shell programmers through the mknod(1) command, which is beyond the scope of this book.

Depending on the version of UNIX, there are two or three dozen types of signals, including a few that can
be used for whatever purpose a programmer wishes. Signals have numbers (from 1 to the number of signals
the system supports) and names; we'll use the latter. You can get a list of all the signals on your system, by
name and number, by typing kill -l. Bear in mind, when you write shell code involving signals, that signal
names are more portable to other versions of UNIX than signal numbers.

8.3.1 Control-Key Signals

When you type CTRL-C, you tell the shell to send the INT (for "interrupt") signal to the current job; CTRL-
Z sends TSTP (on most systems, for "terminal stop"). You can also send the current job a QUIT signal by
typing CTRL-\ (control-backslash); this is sort of like a "stronger" version of CTRL-C. [10]You would
normally use CTRL-\ when (and only when) CTRL-C doesn't work.

[10] CTRL-\ can also cause the shell to leave a file called core in your current directory. This file contains an image
of the process to which you sent the signal; a programmer could use it to help debug the program that was
running. The file's name is a (very) old-fashioned term for a computer's memory. Other signals leave these "core
dumps" as well; unless you require them, or someone else does, just delete them.

As we'll see soon, there is also a "panic" signal called KILL that you can send to a process when even
CTRL-\ doesn't work. But it isn't attached to any control key, which means that you can't use it to stop the
currently running process. INT, TSTP, and QUIT are the only signals you can use with control keys. [11]

[11] Some BSD-derived systems have additional control-key signals.

You can customize the control keys used to send signals with options of the stty command. These vary from
system to system—consult your manpage for the command—but the usual syntax is stty signame char.
signame is a name for the signal that, unfortunately, is often not the same as the names we use here. Table
1.7 in Chapter 1, lists stty names for signals found on all versions of UNIX. char is the control character,
which you can give using the convention that ^(circumflex) represents "control." For example, to set your
INT key to CTRL-X on most systems, use:

stty intr ^X

Now that we've told you how to do this, we should add that we don't recommend it. Changing your signal
keys could lead to trouble if someone else has to stop a runaway process on your machine.

Most of the other signals are used by the operating system to advise processes of error conditions, like a bad
machine code instruction, bad memory address, or division by zero, or "interesting" events such as a timer
("alarm") going off. The remaining signals are used for esoteric error conditions of interest only to low-level
systems programmers; newer versions of UNIX have even more signal types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.2 kill

You can use the built-in shell command kill to send a signal to any process you created—not just the
currently running job. kill takes as an argument the process ID, job number, or command name of the
process to which you want to send the signal. By default, kill sends the TERM ("terminate") signal, which
usually has the same effect as the INT signal you send with CTRL-C. But you can specify a different signal
by using the signal name (or number) as an option, preceded by a dash.

kill is so named because of the nature of the default TERM signal, but there is another reason, which has to
do with the way UNIX handles signals in general. The full details are too complex to go into here, but the
following explanation should suffice.

Most signals cause a process that receives them to die; therefore, if you send any one of these signals, you
"kill" the process that receives it. However, programs can be set up to "trap" specific signals and take some
other action. For example, a text editor would do well to save the file being edited before terminating when
it receives a signal such as INT, TERM, or QUIT. Determining what to do when various signals come in is
part of the fun of UNIX systems programming.

Here is an example of kill. Say you have an alice process in the background, with process ID 150 and job
number 1, that needs to be stopped. You would start with this command:

$ kill %1
If you were successful, you would see a message like this:

[1]+ Terminated alice

If you don't see this, then the TERM signal failed to terminate the job. The next step would be to try QUIT:

$ kill -QUIT %1
If that worked, you would see this message:

[1]+ Exit 131 alice

The 131 is the exit status returned by alice. [12]But if even QUIT doesn't work, the "last-ditch" method
would be to use KILL:

[12] When a shell script is sent a signal, it exits with status 128+N, where N is the number of the signal it received.
In this case, alice is a shell script, and QUIT happens to be signal number 3.

$ kill -KILL %1
This produces the message:

[1]+ Killed alice

It is impossible for a process to "trap" a KILL signal—the operating system should terminate the process
immediately and unconditionally. If it doesn't, then either your process is in one of the "funny states" we'll
see later in this chapter, or (far less likely) there's a bug in your version of UNIX.

Here's another example.

Task 8-1
Write a script called killalljobs that kills all background jobs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The solution to this task is simple, relying on jobs -p:

kill "$@" $(jobs -p)

You may be tempted to use the KILL signal immediately, instead of trying TERM (the default) and QUIT
first. Don't do this. TERM and QUIT are designed to give a process the chance to "clean up" before exiting,
whereas KILL will stop the process, wherever it may be in its computation. Use KILL only as a last resort!

You can use the kill command with any process you create, not just jobs in the background of your current
shell. For example, if you use a windowing system, then you may have several terminal windows, each of
which runs its own shell. If one shell is running a process that you want to stop, you can kill it from another
window—but you can't refer to it with a job number because it's running under a different shell. You must
instead use its process ID.

8.3.3 ps

This is probably the only situation in which a casual user would need to know the ID of a process. The
command ps gives you this information; however, it can give you lots of extra information as well.

ps is a complex command. It takes several options, some of which differ from one version of UNIX to
another. To add to the confusion, you may need different options on different UNIX versions to get the
same information! We will use options available on the two major types of UNIX systems, those derived
from System V (such as most of the versions for Intel 386/486 PCs, as well as IBM's AIX and Hewlett-
Packard's HP/UX) and BSD (DEC's Ultrix, SunOS, BSD/OS). If you aren't sure which kind of UNIX
version you have, try the System V options first.

You can invoke ps in its simplest form without any options. In this case, it will print a line of information
about the current login shell and any processes running under it (i.e., background jobs). For example, if you
were to invoke three background jobs, as we saw earlier in the chapter, the ps command on System V- de
rived versions of UNIX would produce output that looks something like this:

PID TTY TIME COMD
 146 pts/10 0:03 -bash
 2349 pts/10 0:03 alice
 2367 pts/10 0:17 hatter
 2389 pts/10 0:09 duchess
 2390 pts/10 0:00 ps

The output on BSD-derived systems looks like this:

PID TT STAT TIME COMMAND
 146 10 S 0:03 /bin/bash
 2349 10 R 0:03 alice
 2367 10 D 0:17 hatter teatime
 2389 10 R 0:09 duchess
 2390 10 R 0:00 ps

(You can ignore the STAT column.) This is a bit like the jobs command. PID is the process ID; TTY (or
TT) is the terminal (or pseudo-terminal, if you are using a windowing system) the process was invoked
from; TIME is the amount of processor time (not real or "wall clock" time) the process has used so far;
COMD (or COMMAND) is the command. Notice that the BSD version includes the command's arguments,
if any; also notice that the first line reports on the parent shell process, and in the last line, ps reports on
itself.

ps without arguments lists all processes started from the current terminal or pseudo-terminal. But since ps is
not a shell command, it doesn't correlate process IDs with the shell's job numbers. It also doesn't help you
find the ID of the runaway process in another shell window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To get this information, use ps -a (for "all"); this lists information on a different set of processes, depending
on your UNIX version.

8.3.3.1 System V

Instead of listing all that were started under a specific terminal, ps -a on System V-derived systems lists all
processes associated with any terminal that aren't group leaders. For our purposes, a "group leader" is the
parent shell of a terminal or window. Therefore, if you are using a windowing system, ps -a lists all jobs
started in all windows (by all users), but not their parent shells.

Assume that, in the previous example, you have only one terminal or window. Then ps -a will print the
same output as plain ps except for the first line, since that's the parent shell. This doesn't seem to be very
useful.

But consider what happens when you have multiple windows open. Let's say you have three windows, all
running terminal emulators like xterm for the X Window System. You start background jobs alice, duchess,
and hatter in windows with pseudo-terminal numbers 1, 2, and 3, respectively. This situation is shown in
Figure 8.1.

Figure 8.1. Background jobs in multiple windows

Assume you are in the uppermost window. If you type ps, you will see something like this:

PID TTY TIME COMD
 146 pts/1 0:03 bash
 2349 pts/1 0:03 alice
 2390 pts/1 0:00 ps

But if you type ps -a, you will see this:

PID TTY TIME COMD
 146 pts/1 0:03 bash
 2349 pts/1 0:03 alice
 2367 pts/2 0:17 duchess
 2389 pts/3 0:09 hatter
 2390 pts/1 0:00 ps

Now you should see how ps -a can help you track down a runaway process. If it's hatter, you can type kill
2389. If that doesn't work, try kill -QUIT 2389, or in the worst case, kill -KILL 2389.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3.3.2 BSD

On BSD-derived systems, ps -a lists all jobs that were started on any terminal; in other words, it's a bit like
concatenating the the results of plain ps for every user on the system. Given the above scenario, ps -a will
show you all processes that the System V version shows, plus the group leaders (parent shells).

Unfortunately, ps -a (on any version of UNIX) will not report processes that are in certain conditions where
they "forget" things like what shell invoked them and what terminal they belong to. Such processes are
known as "zombies" or "orphans." If you have a serious runaway process problem, it's possible that the
process has entered one of these states.

Let's not worry about why or how a process gets this way. All you need to understand is that the process
doesn't show up when you type ps -a. You need another option to ps to see it: on System V, it's ps -e
("everything"), whereas on BSD, it's ps -ax.

These options tell ps to list processes that either weren't started from terminals or "forgot" what terminal
they were started from. The former category includes lots of processes that you probably didn't even know
existed: these include basic processes that run the system and so-called daemons (pronounced "demons")
that handle system services like mail, printing, network file systems, etc.

In fact, the output of ps -e or ps -ax is an excellent source of education about UNIX system internals, if
you're curious about them. Run the command on your system and, for each line of the listing that looks
interesting, invoke man on the process name or look it up in the UNIX Programmer's Manual for your
system.

User shells and processes are listed at the very bottom of ps -e or ps -ax output; this is where you should
look for runaway processes. Notice that many processes in the listing have ? instead of a terminal. Either
these aren't supposed to have one (such as the basic daemons) or they're runaways. Therefore it's likely that
if ps -a doesn't find a process you're trying to kill, ps -e (or ps -ax) will list it with ? in the TTY (or TT)
column. You can determine which process you want by looking at the COMD (or COMMAND) column.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 trap
We've been discussing how signals affect the casual user; now let's talk a bit about how shell programmers
can use them. We won't go into too much depth about this, because it's really the domain of systems pro
grammers.

We mentioned above that programs in general can be set up to "trap" specific signals and process them in
their own way. The trap built-in command lets you do this from within a shell script. trap is most
important for "bullet-proofing" large shell programs so that they react appropriately to abnormal events—
just as programs in any language should guard against invalid input. It's also important for certain systems
programming tasks, as we'll see in the next chapter.

The syntax of trap is:

trap cmd sig1 sig2 ...
That is, when any of sig1, sig2, etc., are received, run cmd, then resume execution. After cmd finishes, the
script resumes execution just after the command that was interrupted. [13]

[13] This is what usually happens. Sometimes the command currently running will abort (sleep acts like this, as
we'll see soon); at other times it will finish running. Further details are beyond the scope of this book.

Of course, cmd can be a script or function. The sigs can be specified by name or by number. You can also
invoke trap without arguments, in which case the shell will print a list of any traps that have been set, using
symbolic names for the signals.

Here's a simple example that shows how trap works. Suppose we have a shell script called loop with this
code:

while true; do
 sleep 60
done

This will just pause for 60 seconds (the sleep command) and repeat indefinitely. true is a "do-nothing"
command whose exit status is always 0. [14]Try typing in this script. Invoke it, let it run for a little while,
then type CTRL-C (assuming that is your interrupt key). It should stop, and you should get your shell
prompt back.

[14] This command is the same as the built-in shell no-op command ":".

Now insert this line at the beginning of the script:

trap "echo 'You hit control-C!'" INT

Invoke the script again. Now hit CTRL-C. The odds are overwhelming that you are interrupting the sleep
command (as opposed to true). You should see the message "You hit control-C!", and the script will not
stop running; instead, the sleep command will abort, and it will loop around and start another sleep. Hit
CTRL-Z to get it to stop and then type kill %1.

Next, run the script in the background by typing loop &. Type kill %loop (i.e., send it the TERM signal);
the script will terminate. Add TERM to the trap command, so that it looks like this:

trap "echo 'You hit control-C!'" INT TERM

Now repeat the process: run it in the background and type kill %loop. As before, you will see the message
and the process will keep on running. Type kill -KILL %loop to stop it.

Notice that the message isn't really appropriate when you use kill. We'll change the script so it prints a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice that the message isn't really appropriate when you use kill. We'll change the script so it prints a
better message in the kill case:

trap "echo 'You hit control-C!'" INT
trap "echo 'You tried to kill me!'" TERM

while true; do
 sleep 60
done

Now try it both ways: in the foreground with CTRL-C and in the background with kill. You'll see different
messages.

8.4.1 Traps and Functions

The relationship between traps and shell functions is straightforward, but it has certain nuances that are
worth discussing. The most important thing to understand is that functions are considered part of the shell
that invokes them. This means that traps defined in the invoking shell will be recognized inside the function,
and more importantly, any traps defined in the function will be recognized by the invoking shell once the
function has been called. Consider this code:

settrap () {
 trap "echo 'You hit control-C!'" INT
}

settrap
while true; do
 sleep 60
done

If you invoke this script and hit your interrupt key, it will print "You hit control-C!" In this case the trap
defined in settrap still exists when the function exits.

Now consider:

loop () {
 trap "echo 'How dare you!'" INT
 while true; do
 sleep 60
 done
}

trap "echo 'You hit control-C!'" INT
loop

When you run this script and hit your interrupt key, it will print "How dare you!" In this case the trap is
defined in the calling script, but when the function is called the trap is redefined. The first definition is lost.
A similar thing happens with:

loop () {
 trap "echo 'How dare you!'" INT
}

trap "echo 'You hit control-C!'" INT
loop
while true; do
 sleep 60
done

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

done

Once again, the trap is redefined in the function; this is the definition used once the loop is entered.

We'll now show a more practical example of traps.

Task 8-2
As part of an electronic mail system, write the shell code that lets a user compose a message.

The basic idea is to use cat to create the message in a temporary file and then hand the file's name off to a
program that actually sends the message to its destination. The code to create the file is very simple:

msgfile=/tmp/msg$$
cat > $msgfile

Since cat without an argument reads from the standard input, this will just wait for the user to type a
message and end it with the end-of-text character CTRL-D.

8.4.2 Process ID Variables and Temporary Files

The only thing new about this script is $$ in the filename expression. This is a special shell variable whose
value is the process ID of the current shell.

To see how $$ works, type ps and note the process ID of your shell process (bash). Then type echo "$$";
the shell will respond with that same number. Now type bash to start a subshell, and when you get a
prompt, repeat the process. You should see a different number, probably slightly higher than the last one.

A related built-in shell variable is ! (i.e., its value is $!), which contains the process ID of the most recently
invoked background job. To see how this works, invoke any job in the background and note the process ID
printed by the shell next to [1]. Then type echo "$!"; you should see the same number.

To return to our mail example: since all processes on the system must have unique process IDs, $$ is
excellent for constructing names of temporary files.

The directory /tmp is conventionally used for temporary files. Many systems also have another directory,
/usr/tmp, for the same purpose.

Nevertheless, a program should clean up such files before it exits, to avoid taking up unnecessary disk
space. We could do this in our code very easily by adding the line rm $msgfile after the code that actually
sends the message. But what if the program receives a signal during execution? For example, what if a user
changes his or her mind about sending the message and hits CTRL-C to stop the process? We would need to
clean up before exiting. We'll emulate the actual UNIX mail system by saving the message being written in
a file called dead.letter in the current directory. We can do this by using trap with a command string that
includes an exit command:

trap 'mv $msgfile dead.letter; exit' INT TERM
msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

When the script receives an INT or TERM signal, it will remove the temp file and then exit. Note that the
command string isn't evaluated until it needs to be run, so $msgfile will contain the correct value; that's why
we surround the string in single quotes.

But what if the script receives a signal before msgfile is created—unlikely though that may be? Then mv
will try to rename a file that doesn't exist. To fix this, we need to test for the existence of the file $msgfile

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will try to rename a file that doesn't exist. To fix this, we need to test for the existence of the file $msgfile
before trying to delete it. The code for this is a bit unwieldy to put in a single command string, so we'll use a
function instead:

function cleanup {
 if [-e $msgfile]; then
 mv $msgfile dead.letter
 fi
 exit
}

trap cleanup INT TERM

msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

8.4.3 Ignoring Signals

Sometimes a signal comes in that you don't want to do anything about. If you give the null string ("" or '')
as the command argument to trap, then the shell will effectively ignore that signal. The classic example of a
signal you may want to ignore is HUP (hangup). This can occur on some UNIX systems when a hangup
(disconnection while using a modem—literally "hanging up") or some other network outage takes place.

HUP has the usual default behavior: it will kill the process that receives it. But there are bound to be times
when you don't want a background job to terminate when it receives a hangup signal.

To do this, you could write a simple function that looks like this:

function ignorehup {
 trap "" HUP
 eval "$@"
}

We write this as a function instead of a script for reasons that will become clearer when we look in detail at
subshells at the end of this chapter.

Actually, there is a UNIX command called nohup that does precisely this. The start script from the last
chapter could include nohup:

eval nohup "$@" > logfile 2>&1 &

This prevents HUP from terminating your command and saves its standard and error output in a file.
Actually, the following is just as good:

nohup "$@" > logfile 2>&1 &

If you understand why eval is essentially redundant when you use nohup in this case, then you have a firm
grasp on the material in the previous chapter. Note that if you don't specify a redirection for any output from
the command, nohup places it in a file called nohup.out.

8.4.4 disown

Another way to ignore the HUP signal is with the disown built-in. [15]disown takes as an argument a job
specification, such as the process ID or job ID, and removes the process from the list of jobs. The process is
effectively "disowned" by the shell from that point on, i.e., you can only refer to it by its process ID since it
is no longer in the job table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[15] disown is not available in versions of bash prior to 2.0.

disown's -h option performs the same function as nohup; it specifies that the shell should stop the hangup
signal from reaching the process under certain circumstances. Unlike nohup, it is up to you to specify where
the output from the process is to go.

8.4.5 Resetting Traps

Another "special case" of the trap command occurs when you give a dash (-) as the command argument.
This resets the action taken when the signal is received to the default, which usually is termination of the
process.

As an example of this, let's return to Task 8-2, our mail program. After the user has finished sending the
message, the temporary file is erased. At that point, since there is no longer any need to clean up, we can
reset the signal trap to its default state. The code for this, apart from function definitions, is:

trap abortmsg INT
trap cleanup TERM

msgfile=/tmp/msg$$
cat > $msgfile
send the contents of $msgfile to the specified mail address...
rm $msgfile

trap - INT TERM

The last line of this code resets the handlers for the INT and TERM signals.

At this point you may be thinking that one could get seriously carried away with signal handling in a shell
script. It is true that "industrial strength" programs devote considerable amounts of code to dealing with
signals. But these programs are almost always large enough so that the signal-handling code is a tiny
fraction of the whole thing. For example, you can bet that the real UNIX mail system is pretty darn bullet-
proof.

However, you will probably never write a shell script that is complex enough, and that needs to be robust
enough, to merit lots of signal handling. You may write a prototype for a program as large as mail in shell
code, but prototypes by definition do not need to be bullet-proofed.

Therefore, you shouldn't worry about putting signal-handling code in every 20-line shell script you write.
Our advice is to determine if there are any situations in which a signal could cause your program to do
something seriously bad and add code to deal with those contingencies. What is "seriously bad"? Well, with
respect to the above examples, we'd say that the case where HUP causes your job to terminate is seriously
bad, while the temporary file situation in our mail program is not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Coroutines
We've spent the last several pages on almost microscopic details of process behavior. Rather than continue
our descent into the murky depths, we'll revert to a higher-level view of processes.

Earlier in this chapter, we covered ways of controlling multiple simultaneous jobs within an interactive
login session; now we'll consider multiple process control within shell programs. When two (or more)
processes are explicitly programmed to run simultaneously and possibly communicate with each other, we
call them coroutines.

This is actually nothing new: a pipeline is an example of coroutines. The shell's pipeline construct
encapsulates a fairly sophisticated set of rules about how processes interact with each other. If we take a
closer look at these rules, we'll be better able to understand other ways of handling coroutines—most of
which turn out to be simpler than pipelines.

When you invoke a simple pipeline—say, ls | more—the shell invokes a series of UNIX primitive
operations, or system calls. In effect, the shell tells UNIX to do the following things; in case you're
interested, we include in parentheses the actual system call used at each step:

1. Create two subprocesses, which we'll call P1 and P2 (the fork system call).

2. Set up I/O between the processes so that P1's standard output feeds into P2's standard input (pipe).

3. Start /bin/ls in process P1 (exec).

4. Start /bin/more in process P2 (exec).

5. Wait for both processes to finish (wait).

You can probably imagine how the above steps change when the pipeline involves more than two processes.

Now let's make things simpler. We'll see how to get multiple processes to run at the same time if the
processes do not need to communicate. For example, we want the processes alice and hatter to run as
coroutines, without communication, in a shell script. Our initial solution would be this:

alice &
hatter

Assume for the moment that hatter is the last command in the script. The above will work—but only if
alice finishes first. If alice is still running when the script finishes, then it becomes an orphan, i.e., it enters
one of the "funny states" we mentioned earlier in this chapter. Never mind the details of orphanhood; just
believe that you don't want this to happen, and if it does, you may need to use the "runaway process"
method of stopping it, discussed earlier in this chapter.

8.5.1 wait

There is a way of making sure the script doesn't finish before alice does: the built-in command wait.
Without arguments, wait simply waits until all background jobs have finished. So to make sure the above
code behaves properly, we would add wait, like this:

alice &
hatter
wait

Here, if hatter finishes first, the parent shell will wait for alice to finish before finishing itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If your script has more than one background job and you need to wait for specific ones to finish, you can
give wait the process ID of the job.

However, you will probably find that wait without arguments suffices for all coroutines you will ever
program. Situations in which you would need to wait for specific background jobs are quite complex and
beyond the scope of this book.

8.5.2 Advantages and Disadvantages of Coroutines

In fact, you may be wondering why you would ever need to program coroutines that don't communicate
with each other. For example, why not just run hatter after alice in the usual way? What advantage is there
in running the two jobs simultaneously?

Even if you are running on a computer with only one processor (CPU), then there may be a performance
advantage.

Roughly speaking, you can characterize a process in terms of how it uses system resources in three ways:
whether it is CPU-intensive (e.g., does lots of number crunching), I/O-intensive (does a lot of reading or
writing to the disk), or interactive (requires user intervention).

We already know from Chapter 1 that it makes no sense to run an interactive job in the background. But
apart from that, the more two or more processes differ with respect to these three criteria, the more
advantage there is in running them simultaneously. For example, a number-crunching statistical calculation
would do well when running at the same time as a long, I/O-intensive database query.

On the other hand, if two processes use resources in similar ways, it may even be less efficient to run them
at the same time as it would be to run them sequentially. Why? Basically, because under such
circumstances, the operating system often has to "time-slice" the resource(s) in contention.

For example, if both processes are "disk hogs," the operating system may enter a mode where it constantly
switches control of the disk back and forth between the two competing processes; the system ends up
spending at least as much time doing the switching as it does on the processes themselves. This
phenomenon is known as thrashing; at its most severe, it can cause a system to come to a virtual standstill.
Thrashing is a common problem; system administrators and operating system designers both spend lots of
time trying to minimize it.

8.5.3 Parallelization

But if you have a computer with multiple CPUs (such as a Pyramid, Sequent, or Sun MP), you should be
less concerned about thrashing. Furthermore, coroutines can provide dramatic increases in speed on this
type of machine, which is often called a parallel computer; analogously, breaking up a process into
coroutines is sometimes called parallelizing the job.

Normally, when you start a background job on a multiple-CPU machine, the computer will assign it to the
next available processor. This means that the two jobs are actually—not just metaphorically—running at the
same time.

In this case, the running time of the coroutines is essentially equal to that of the longest-running job plus a
bit of overhead, instead of the sum of the run times of all processes (although if the CPUs all share a
common disk drive, the possibility of I/O-related thrashing still exists). In the best case—all jobs having the
same run time and no I/O contention—you get a speedup factor equal to the number of CPUs.

Parallelizing a program is often not easy; there are several subtle issues involved and there's plenty of room
for error. Nevertheless, it's worthwhile to know how to parallelize a shell script whether or not you have a
parallel machine, especially since such machines are becoming more and more common.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We'll show how to do this—and give you an idea of some problems involved—by means of a simple task
whose solution is amenable to parallelization.

Task 8-3
Write a utility that allows you to make multiple copies of a file at the same time.

We'll call this script mcp. The command mcp filename dest1 dest2 ... should copy filename to all of the
destinations given. The code for this should be fairly obvious:

file=$1
shift
for dest in "$@"; do
 cp $file $dest
done

Now let's say we have a parallel computer and we want this command to run as fast as possible. To
parallelize this script, it's a simple matter of firing off the cp commands in the background and adding a
wait at the end:

file=$1
shift
for dest in "$@"; do
 cp $file $dest &
done
wait

Simple, right? Well, there is one little problem: what happens if the user specifies duplicate destinations? If
you're lucky, the file just gets copied to the same place twice. Otherwise, the identical cp commands will
interfere with each other, possibly resulting in a file that contains two interspersed copies of the original
file. In contrast, if you give the regular cp command two arguments that point to the same file, it will print
an error message and do nothing.

To fix this problem, we would have to write code that checks the argument list for duplicates. Although this
isn't too hard to do (see the exercises at the end of this chapter), the time it takes that code to run might
offset any gain in speed from parallelization; furthermore, the code that does the checking detracts from the
simple elegance of the script.

As you can see, even a seemingly trivial parallelization task has problems resulting from multiple processes
having concurrent access to a given system resource (a file in this case). Such problems, known as
concurrency control issues, become much more difficult as the complexity of the application increases.
Complex concurrent programs often have much more code for handling the special cases than for the actual
job the program is supposed to do!

Therefore, it shouldn't surprise you that much research has been and is being done on parallelization, the
ultimate goal being to devise a tool that parallelizes code automatically. (Such tools do exist; they usually
work in the confines of some narrow subset of the problem.) Even if you don't have access to a multiple-
CPU machine, parallelizing a shell script is an interesting exercise that should acquaint you with some of
the issues that surround coroutines.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6 Subshells
To conclude this chapter, we will look at a simple type of interprocess relationship: that of a subshell with
its parent shell. We saw in Chapter 3, that whenever you run a shell script, you actually invoke another copy
of the shell that is a subprocess of the main, or parent, shell process. Now let's look at subshells in more
detail.

8.6.1 Subshell Inheritance

The most important things you need to know about subshells are what characteristics they get, or inherit,
from their parents. These are as follows:

· The current directory

· Environment variables

· Standard input, output, and error, plus any other open file descriptors

· Signals that are ignored

Just as important are the things that a subshell does not inherit from its parent:

· Shell variables, except environment variables and those defined in the environment file (usually
.bashrc)

· Handling of signals that are not ignored

We covered some of this in Chapter 3, but these points are common sources of confusion, so they bear
repeating.

8.6.2 Nested Subshells

Subshells need not be in separate scripts; you can also start a subshell within the same script (or function) as
the parent. You do this in a manner very similar to the command blocks we saw in the last chapter. Just
surround some shell code with parentheses (instead of curly brackets), and that code will run in a subshell.
We'll call this a nested subshell.

For example, here is the calculator program from the last chapter, with a subshell instead of a command
block:

(while read line; do
 echo "$(alg2rpn $line)"
 done
) | dc

The code inside the parentheses will run as a separate process. This is usually less efficient than a command
block. The differences in functionality between subshells and command blocks are very few; they primarily
pertain to issues of scope, i.e., the domains in which definitions of things like shell variables and signal
traps are known. First, code inside a nested subshell obeys the above rules of subshell inheritance, except
that it knows about variables defined in the surrounding shell; in contrast, think of blocks as code units that
inherit everything from the outer shell. Second, variables and traps defined inside a command block are
known to the shell code after the block, whereas those defined in a subshell are not.

For example, consider this code:

{

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{
 hatter=mad
 trap "echo 'You hit CTRL-C!'" INT
}
while true; do
 echo "\$hatter is $hatter"
 sleep 60
done

If you run this code, you will see the message $hatter is mad every 60 seconds, and if you hit CTRL-C,
you will see the message, You hit CTRL-C!. You will need to hit CTRL-Z to stop it (don't forget to kill it
with kill %+). Now let's change it to a nested subshell:

(
 hatter=mad
 trap "echo 'You hit CTRL-C!'" INT
)
while true; do
 echo "\$hatter is $hatter"
 sleep 60
done

If you run this, you will see the message $hatter is; the outer shell doesn't know about the subshell's
definition of hatter and therefore thinks it's null. Furthermore, the outer shell doesn't know about the
subshell's trap of the INT signal, so if you hit CTRL-C, the script will terminate.

If a language supports code nesting, then it's considered desirable that definitions inside a nested unit have a
scope limited to that nested unit. In other words, nested subshells give you better control than command
blocks over the scope of variables and signal traps. Therefore, we feel that you should use subshells instead
of command blocks if they are to contain variable definitions or signal traps—unless efficiency is a concern.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.7 Process Substitution
A unique but rarely used feature of bash is process substitution. Let's say that you had two versions of a
program that produced large quantities of output. You want to see the differences between the output from
each version. You could run the two programs, redirecting their output to files, and then use the cmp utility
to see what the differences were.

Another way would be to use process substitution. There are two forms of this substitution. One is for input
to a process: >(list); the other is for output from a process: <(list). list is a process that has its input or output
connected to something via a named pipe. A named pipe is simply a temporary file that acts like a pipe with
a name.

In our case, we could connect the outputs of the two programs to the input of cmp via named pipes:

cmp <(prog1) <(prog2)

prog1 and prog2 are run concurrently and connect their outputs to named pipes. cmp reads from each of the
pipes and compares the information, printing any differences as it does so.

This chapter has covered a lot of territory. Here are some exercises that should help you make sure you have
a firm grasp on the material. Don't worry if you have trouble with the last one; it's especially difficult.

1. Write a shell script called pinfo that combines the jobs and ps commands by printing a list of jobs
with their job numbers, corresponding process IDs, running times, and full commands.

2. Take a non-trivial shell script and "bullet-proof" it with signal traps.

3. Take a non-trivial shell script and parallelize it as much as possible.

4. Write the code that checks for duplicate arguments to the mcp script. Bear in mind that different
pathnames can point to the same file. (Hint: if $i is "1", then eval 'echo \${$i}' prints the first
command-line argument. Make sure you understand why.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Debugging Shell Programs
We hope that we have convinced you that bash can be used as a serious UNIX programming environment.
It certainly has enough features, control structures, etc. But another essential part of a programming
environment is a set of powerful, integrated support tools. For example, there is a wide assortment of screen
editors, compilers, debuggers, profilers, cross-referencers, etc., for languages like C and C++. If you
program in one of these languages, you probably take such tools for granted, and you would undoubtedly
cringe at the thought of having to develop code with, say, the ed editor and the adb machine-language
debugger.

But what about programming support tools for bash? Of course, you can use any editor you like, including
vi and emacs. And because the shell is an interpreted language, you don't need a compiler. [1]But there are
no other tools available.

[1] Actually, if you are really concerned about efficiency, there are shell code compilers on the market; they convert
shell scripts to C code that often runs quite a bit faster.

This chapter looks at some useful features that you can use to debug shell programs. We'll look at how you
can utilize them in the first part of this chapter. We'll then look at some powerful new features of bash, not
present in most Bourne shell workalikes, that will help in building a shell script debugging tool. At the end
of the chapter, we'll show step by step how to build a debugger for bash. The debugger, called bashdb, is a
basic yet functional program that will not only serve as an extended example of various shell programming
techniques, but will also provide you with a useful tool for examining the workings of your own shell
scripts.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 Basic Debugging Aids
What sort of functionality do you need to debug a program? At the most empirical level, you need a way of
determining what is causing your program to behave badly, and where the problem is in the code. You
usually start with an obvious what (such as an error message, inappropriate output, infinite loop, etc.), try to
work backwards until you find a what that is closer to the actual problem (e.g., a variable with a bad value,
a bad option to a command), and eventually arrive at the exact where in your program. Then you can worry
about how to fix it.

Notice that these steps represent a process of starting with obvious information and ending up with often
obscure facts gleaned through deduction and intuition. Debugging aids make it easier to deduce and intuit
by providing relevant information easily or even automatically, preferably without modifying your code.

The simplest debugging aid (for any language) is the output statement, echo, in the shell's case. Indeed, old-
time programmers debugged their FORTRAN code by inserting WRITE cards into their decks. You can
debug by putting lots of echo statements in your code (and removing them later), but you will have to spend
lots of time narrowing down not only what exact information you want but also where you need to see it.
You will also probably have to wade through lots and lots of output to find the information you really want.

9.1.1 Set Options

Luckily, the shell has a few basic features that give you debugging functionality beyond that of echo. The
most basic of these are options to the set -o command (as covered in Chapter 3). These options can also be
used on the command line when running a script, as Table 9.1 shows.

Table 9.1. Debugging Options

set -o
Option

Command-Line
Option Action

noexec -n Don't run commands; check for
syntax errors only

verbose -v Echo commands before running
them

xtrace -x Echo commands after command-
line processing

The verbose option simply echoes (to standard error) whatever input the shell gets. It is useful for finding
the exact point at which a script is bombing. For example, assume your script looks like this:

alice
hatter
march
teatime
treacle
well

None of these commands is a standard UNIX program, and each does its work silently. Say the script
crashes with a cryptic message like "segmentation violation." This tells you nothing about which command
caused the error. If you type bash -v scriptname, you might see this:

alice
hatter
march
segmentation violation
teatime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

teatime
treacle
well

Now you know that march is the probable culprit—though it is also possible that march bombed because
of something it expected alice or hatter to do (e.g., create an input file) that they did incorrectly.

The xtrace option is more powerful: it echoes command lines after they have been through parameter
substitution, command substitution, and the other steps of command-line processing (as listed in Chapter 7).
For example:

.ps 8
$ set -o xtrace$ alice=girl+ alice=girl
$ echo "$alice"+ echo girl
girl
$ ls -l $(type -path vi)++ type -path vi
+ ls -F -l /usr/bin/vi
lrwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*
$
As you can see, xtrace starts each line it prints with + (each + representing a level of expansion). This is
actually customizable: it's the value of the built-in shell variable PS4. So if you set PS4 to "xtrace—>"
(e.g., in your .bash_profile or .bashrc), then you'll get xtrace listings that look like this:

.ps 8
$ ls -l $(type -path vi)xxtrace--> type -path vi
xtrace—> ls -l /usr/bin/vi
lrwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*
$
Notice that for multiple levels of expansion, only the first character of PS4 is printed. This makes the output
more readable.

An even better way of customizing PS4 is to use a built-in variable we haven't seen yet: LINENO, which
holds the number of the currently running line in a shell script. [2]Put this line in your .bash_profile or
environment file:

[2] In versions of bash prior to 2.0, LINENO won't give you the current line in a function. LINENO, instead, gives an
approximation of the number of simple commands executed so far in the current function.

PS4='line $LINENO: '

We use the same technique as we did with PS1 in Chapter 3: using single quotes to postpone the evaluation
of the string until each time the shell prints the prompt. This will print messages of the form line N: in your
trace output. You could even include the name of the shell script you're debugging in this prompt by using
the positional parameter $0:

PS4='$0 line $LINENO: '

As another example, say you are trying to track down a bug in a script called alice that contains this code:

dbfmq=$1.fmq
...
fndrs=$(cut -f3 -d' ' $dfbmq)

You type alice teatime to run it in the normal way, and it hangs. Then you type bash -x alice teatime, and
you see this:

+ dbfmq=teatime.fmq
...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...
+ + cut -f3 -d

It hangs again at this point. You notice that cut doesn't have a filename argument, which means that there
must be something wrong with the variable dbfmq. But it has executed the assignment statement
dbfmq=teatime.fmq properly...ah-hah! You made a typo in the variable name inside the command
substitution construct. [3]You fix it, and the script works properly.

[3] We should admit that if you had turned on the nounset option at the top of this script, the shell would have
flagged this error.

The last option is noexec, which reads in the shell script, checks for syntax errors, but doesn't execute
anything. It's worth using if your script is syntactically complex (lots of loops, command blocks, string
operators, etc.) and the bug has side effects (like creating a large file or hanging up the system).

You can turn on these options with set -o option in your shell scripts, and, as explained in Chapter 3, turn
them off with set +o option. For example, if you're debugging a chunk of code, you can precede it with set -
o xtrace to print out the executed commands, and end the chunk with set +o xtrace.

Note, however, that once you have turned noexec on, you won't be able to turn it off; a set +o noexec will
never be executed.

9.1.2 Fake Signals

A more sophisticated set of debugging aids is the shell's "fake signals," which can be used in trap
statements to get the shell to act under certain conditions. Recall from the previous chapter that trap allows
you to install some code that runs when a particular signal is sent to your script.

Fake signals work in the same way, but they are generated by the shell itself, as opposed to the other signals
which are generated externally. They represent runtime events that are likely to be of interest to debuggers
—both human ones and software tools—and can be treated just like real signals within shell scripts. Table
9.2 lists the two fake signals available in bash.

Table 9.2. Fake Signals

Fake Signal Sent When
EXIT The shell exits from script
DEBUG The shell has executed a statementa

[4]

[4] The DEBUG signal is not available in bash versions prior to 2.0.

9.1.2.1 EXIT

The EXIT trap, when set, will run its code whenever the script within which it was set exits. [5]

[5] You can trap only the exiting of a script. Functions don't generate the EXIT signal, as they are part of the
current shell invocation.

Here's a simple example:

trap 'echo exiting from the script' EXIT
echo 'start of the script'

If you run this script, you will see this output:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

start of the script
exiting from the script

In other words, the script starts by setting the trap for its own exit, then prints a message. The script then
exits, which causes the shell to generate the signal EXIT, which in turn runs the code echo exiting from the
script.

An EXIT trap occurs no matter how the script exits—whether normally (by finishing the last statement), by
an explicit exit or return statement, or by receiving a "real" signal such as INT or TERM. Consider this
inane number-guessing program:

trap 'echo Thank you for playing!' EXIT

magicnum=$(($RANDOM%10+1))
echo 'Guess a number between 1 and 10:'
while read -p 'Guess: ' guess ; do
 sleep 4
 if ["$guess" = $magicnum]; then
 echo 'Right!'
 exit
 fi
 echo 'Wrong!'
done

This program picks a number between 1 and 10 by getting a random number (the built-in variable
RANDOM), extracting the last digit (the remainder when divided by 10), and adding 1. Then it prompts
you for a guess, and after 4 seconds, it will tell you if you guessed right.

If you did, the program will exit with the message, "Thank you for playing!", i.e., it will run the EXIT trap
code. If you were wrong, it will prompt you again and repeat the process until you get it right. If you get
bored with this little game and hit CTRL-C or CTRL-D while waiting for it to tell you whether you were
right, you will also see the message.

The EXIT trap is especially useful when you want to print out the values of variables at the point that your
script exits. For example, by printing the value of loop counter variables, you can find the most appropriate
places in a complicated script, with many nested for loops, to enable xtrace or place debug output.

9.1.2.2 DEBUG

The other fake signal, DEBUG, causes the trap code to be executed after every statement in a function or
script. This has two main uses. First is the use for humans, as a sort of "brute force" method of tracking a
certain element of a program's state that you notice has gone awry.

For example, you notice the value of a particular variable is running amok. The naive approach is to put in a
lot of echo statements to check the variable's value at several points. The DEBUG trap makes this easier by
letting you do this:

function dbgtrap
{
 echo "badvar is badvar"
}

trap dbgtrap DEBUG
...section of code in which the problem occurs...
trap - DEBUG # turn off the DEBUG trap
This code will print the value of the wayward variable after every statement between the two traps.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One important point to remember when using DEBUG is that it is not inherited by functions called from the
shell in which it is set. In other words, if your shell sets a DEBUG trap and then calls a function, the
statements within the function will not execute the trap. You have to set a trap for DEBUG explicitly within
the function if you want to use it.

The second and far more important use of the DEBUG signal is as a primitive for implementing a bash
debugger. In fact, it would be fair to say that DEBUG reduces the task of implementing a useful shell
debugger from a large-scale software development project to a manageable exercise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 A bash Debugger

In this section we'll develop a basic debugger for bash. [6]Most debuggers have numerous sophisticated
features that help a programmer in dissecting a program, but just about all of them include the ability to step
through a running program, stop it at selected places, and examine the values of variables. These simple
features are what we will concentrate on providing in our debugger. Specifically, we'll provide the ability
to:

[6] Unfortunately, the debugger will not work with versions of bash prior to 2.0, because they do not implement the
DEBUG signal.

· Specify places in the program at which to stop execution. These are called breakpoints.

· Execute a specified number of statements in the program. This is called stepping.

· Examine and change the state of the program during its execution. This includes being able to print
out the values of variables and change them when the program is stopped at a breakpoint or after
stepping.

· Print out the source code we are debugging along with indications of where breakpoints are and
what line in the program we are currently executing.

· Provide the debugging capability without having to change the original source code of the program
we wish to debug in any way.

As you will see, the capability to do all of these things (and more) is easily provided by the constructs and
methods we have seen in previous chapters.

9.2.1 Structure of the Debugger

The bashdb debugger works by taking a shell script and turning it into a debugger for itself. It does this by
concatenating debugger functionality and the target script, which we'll call the guinea pig script, and storing
it in another file which then gets executed. The process is transparent to the user—they will be unaware that
the code that is executing is actually a modified copy of their script.

The bash debugger has three main sections: the driver, the preamble, and the debugger functions.

9.2.1.1 The driver script

The driver script is responsible for setting everything up. It is a script called bashdb and looks like this:

bashdb - a bash debugger
Driver Script: concatenates the preamble and the target script
and then executes the new script.

echo 'bash Debugger version 1.0'

_dbname=${0##*/}

if (($# < 1)) ; then
 echo "$_dbname: Usage: $_dbname filename" >&2
 exit 1
fi

_guineapig=$1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if [! -r $1]; then
 echo "$_dbname: Cannot read file '$_guineapig'." >&2
 exit 1
fi

shift

_tmpdir=/tmp
_libdir=.
_debugfile=$_tmpdir/bashdb.$$ # temporary file for script that is
 being debugged
cat $_libdir/bashdb.pre $_guineapig > $_debugfile
exec bash $_debugfile $_guineapig $_tmpdir $_libdir "$@"

bashdb takes as the first argument the name of guinea pig file. Any subsequent arguments are passed on to
the guinea pig as its positional parameters.

If no arguments are given, bashdb prints out a usage line and exits with an error status. Otherwise, it checks
to see if the file exists. If it doesn't, exist then bashdb prints a message and exits with an error status. If all is
in order, bashdb constructs a temporary file in the way we saw in the last chapter. If you don't have (or don't
have access to) /tmp on your system, then you can substitute a different directory for _tmpdir. [7]The
variable _libdir is the name of the directory that contains files needed by bashdb (bashdb.pre and
bashdb.fns). If you are installing bashdb on your system for everyone to use, you might want to place them
in /usr/lib.

[7] All function names and variables (except those local to functions) in bashdb have names beginning with an
underscore (_), to minimize the possibility of clashes with names in the guinea pig script.

The cat statement builds the modified copy of the guinea pig file: it contains the script found in bashdb.pre
(which we'll look at shortly) followed by a copy of the guinea pig.

9.2.1.2 exec

The last line runs the newly created script with exec, a statement we haven't discussed yet. We've chosen to
wait until now to introduce it because—as we think you'll agree—it can be dangerous. exec takes its
arguments as a command line and runs the command in place of the current program, in the same process.
In other words, a shell that runs exec will terminate immediately and be replaced by exec's arguments. [8]

[8] exec can also be used with an I/O redirector only; this makes the redirector take effect for the remainder of the
script or login session. For example, the line exec 2>errlog at the top of a script directs standard error to the file
errlog for the rest of the script.

In our script, exec just runs the newly constructed shell script, i.e., the guinea pig with its debugger, in
another shell. It passes the new script three arguments—the name of the original guinea pig file
($_guineapig), the name of the temporary directory ($_tmpdir), and the name of the library directory
($_libdir)—followed by the user's positional parameters, if any.

9.2.2 The Preamble

Now we'll look at the code that gets prepended to the guinea pig script; we call this the preamble. It's kept in
the file bashdb.pre and looks like this:

bashdb preamble
This file gets prepended to the shell script being debugged.
Arguments:
$1 = the name of the original guinea pig script
$2 = the directory where temporary files are stored

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$2 = the directory where temporary files are stored
$3 = the directory where bashdb.pre and bashdb.fns are stored

_debugfile=$0
_guineapig=$1

_tmpdir=$2
_libdir=$3

shift 3

source $_libdir/bashdb.fns
_linebp=
let _trace=0
let _i=1

while read; do
 _lines[$_i]=$REPLY
 let _i=$_i+1
done < $_guineapig

trap _cleanup EXIT
let _steps=1
LINENO=-2
trap '_steptrap $LINENO' DEBUG
:

The first few lines save the three fixed arguments in variables and shift them out of the way, so that the
positional parameters (if any) are those that the user supplied on the command line as arguments to the
guinea pig. Then, the preamble reads in another file, bashdb.fns, that contains all of the functions necessary
for the operation of the debugger itself. We put this code in a separate file to minimize the size of the
temporary file. We'll examine bashdb.fns shortly.

Next, bashdb.pre initializes a breakpoint array to empty and execution tracing to off (see the following
discussion), then reads the original guinea pig script into an array of lines. We need the source lines from
the original script for two reasons: to allow the debugger to print out the script showing where the
breakpoints are, and to print out the lines of code as they execute if tracing is turned on. You'll notice that
we assign the script lines to _lines from the environment variable $REPLY rather than reading them into
the array directly. This is because $REPLY preserves any leading white space in the lines, i.e., it preserves
the indentation and layout of the original script.

The last five lines of code set up the conditions necessary for the debugger to begin working. The first trap
command sets up a clean-up routine that runs when the fake signal EXIT occurs. The clean-up routine,
normally called when the debugger and guinea pig script finish, just erases the temporary file. The next line
sets the variable _steps to 1 so that when the debugger is first entered, it will stop after the first line.

The built-in variable LINENO, which we saw earlier in the chapter, is used to provide line numbers in the
debugger. However, if we just used LINENO as is, we'd get line numbers above thirty because LINENO
would be including the lines in the preamble. To get around this, we can set LINENO to a new value and it
will happily start counting line numbers from that value. In this case we set it to the value -2 so that the first
line of the guinea pig will be line 1. [9]

[9] If you are typing or scanning in the preamble code from this book, make sure that the last line in the file is the
colon (:), i.e., no blank lines should appear after the colon.

The next line sets up the routine _steptrap to run when the fake signal DEBUG occurs. _steptrap is passed
$LINENO as an argument when it is called.

The last line is a "do-nothing" statement (:). The shell executes this statement and enters _steptrap for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last line is a "do-nothing" statement (:). The shell executes this statement and enters _steptrap for the
first time. As we have set _steps to 1, the debugger will stop and wait for a command from the user. We'll
see how this works in the next section.

9.2.3 Debugger Functions

The function _steptrap is the entry point into the debugger; it is defined in the file bashdb.fns. Here is
_steptrap:

After each line of the test script is executed the shell traps to
this function.

function _steptrap
{
 _curline=$1 # the number of the line that just ran

 (($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"

 if (($_steps >= 0)); then
 let _steps="$_steps - 1"
 fi

 # First check to see if a line number breakpoint was reached.
 # If it was, then enter the debugger.
 if _at_linenumbp ; then
 _msg "Reached breakpoint at line $_curline"
 _cmdloop

 # It wasn't, so check whether a break condition exists and is true.
 # If it is, then enter the debugger.
 elif [-n "$_brcond"] && eval $_brcond; then
 _msg "Break condition $_brcond true at line $_curline"
 _cmdloop

 # It wasn't, so check if we are in step mode and the number of steps
 # is up. If it is then enter the debugger.
 elif (($_steps == 0)); then
 _msg "Stopped at line $_curline"
 _cmdloop
 fi
}

_steptrap starts by setting _curline to the number of the guinea pig line that just ran. If execution tracing is
on, it prints the PS4 execution trace prompt (like the shell's xtrace mode), line number, and line of code
itself. It then decrements the number of steps if the number of steps still left is greater than or equal to zero.

Then it does one of two things: it enters the debugger via _cmdloop, or it returns so the shell can execute
the next statement. It chooses the former if a breakpoint or break condition has been reached, or if the user
stepped into this statement.

9.2.3.1 Commands

We'll explain shortly how _steptrap determines these things; now we'll look at _cmdloop. It's a simple
combination of the case statements we saw in Chapter 5, and the calculator loop we saw in the previous
chapter.

The Debugger Command Loop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Debugger Command Loop

function _cmdloop {
 local cmd args

 while read -e -p "bashdb> " cmd args; do
 case $cmd in
 \? | h) _menu ;; # print command menu
 bc) _setbc $args ;; # set a break condition
 bp) _setbp $args ;; # set a breakpoint at the given
 # line
 cb) _clearbp $args ;; # clear one or all breakpoints
 ds) _displayscript ;; # list the script and show the
 # breakpoints
 g) return ;; # "go": start/resume execution of
 # the script
 q) exit ;; # quit

 s) let _steps=${args:-1} # single step N times
 # (default = 1)
 return ;;
 x) _xtrace ;; # toggle execution trace
 !*) eval ${cmd#!} $args ;; # pass to the shell
 *) _msg "Invalid command: '$cmd'" ;;
 esac
 done
}

At each iteration, _cmdloop prints a prompt, reads a command, and processes it. We use read -e so that the
user can take advantage of the readline command-line editing. The commands are all one- or two-letter
abbreviations; quick for typing, but terse in the UNIX style. [10]

[10] There is nothing to stop you from changing the commands to something you find easier to remember. There is
no "official" bash debugger, so feel free to change the debugger to suit your needs.

Table 9.3 summarizes the debugger commands.

Table 9.3. bashdb Commands

Command Action
bp N Set breakpoint at line N
bp List breakpoints and break condition
bc string Set break condition to string
bc Clear break condition
cb N Clear breakpoint at line N
cb Clear all breakpoints
ds Display the test script and breakpoints
g Start/resume execution
s [N] Execute N statements (default 1)
x Toggle execution trace on/off
h, ? Print the help menu
! string Pass string to a shell
q Quit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before looking at the individual commands, it is important that you understand how control passes through
_steptrap, the command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as a result of the trap on DEBUG in the preamble. If
a breakpoint has been reached or the user previously typed in a step command (s), _steptrap calls the
command loop. In doing so, it effectively "interrupts" the shell that is running the guinea pig to hand control
over to the user.

The user can invoke debugger commands as well as shell commands that run in the same shell as the guinea
pig. This means that you can use shell commands to check values of variables, signal traps, and any other
information local to the script being debugged. The command loop continues to run, and the user stays in
control, until they type g, q, or s. We'll now look in detail at what happens in each of these cases.

Typing g has the effect of running the guinea pig uninterrupted until it finishes or hits a breakpoint. It
simply exits the command loop and returns to _steptrap, which exits as well. The shell then regains control
and runs the next statement in the guinea pig script. Another DEBUG signal occurs and the shell traps to
_steptrap again. If there are no breakpoints then _steptrap will just exit. This process will repeat until a
breakpoint is reached or the guinea pig finishes.

The q command calls the function _cleanup, which erases the temporary file and exits the program.

9.2.3.2 Stepping

When the user types s, the command loop code sets the variable _steps to the number of steps the user
wants to execute, i.e., to the argument given. Assume at first that the user omits the argument, meaning that
_steps is set to 1. Then the command loop exits and returns control to _steptrap, which (as above) exits and
hands control back to the shell. The shell runs the next statement and returns to _steptrap, which then
decrements _steps to 0. Then the second elif conditional becomes true because _steps is 0 and prints a
"stopped" message and then calls the command loop.

Now assume that the user supplies an argument to s, say 3. _steps is set to 3. Then the following happens:

1. After the next statement runs, _steptrap is called again. It enters the first if clause, since _steps is
greater than 0. _steptrap decrements _steps to 2 and exits, returning control to the shell.

2. This process repeats, another step in the guinea pig is run, and _steps becomes 1.

3. A third statement is run and we're back in _steptrap. _steps is decremented to 0, the second elif
clause is run, and _steptrap breaks out to the command loop again.

The overall effect is that the three steps run and then the debugger takes over again.

All of the other debugger commands cause the shell to stay in the command loop, meaning that the user
prolongs the "interruption" of the shell.

9.2.3.3 Breakpoints

Now we'll examine the breakpoint-related commands and the breakpoint mechanism in general. The bp
command calls the function _setbp, which can do two things, depending on whether an argument is
supplied or not. Here is the code for _setbp:

Set a breakpoint at the given line number or list breakpoints
function _setbp
{
 local i

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if [-z "$1"]; then
 _listbp
 elif [$(echo $1 | grep '^[0-9]*')]; then
 if [-n "${_lines[$1]}"]; then
 _linebp=($(echo $((for i in ${_linebp[*]} $1; do
 echo $i; done) | sort -n)))
 _msg "Breakpoint set at line $1"
 else
 _msg "Breakpoints can only be set on non-blank lines"
 fi
 else
 _msg "Please specify a numeric line number"
 fi
}

If no argument is supplied, _setbp calls _listbp, which prints the line numbers that have breakpoints set. If
anything other than a number is supplied as an argument, an error message is printed and control returns to
the command loop. Providing a number as the argument allows us to set a breakpoint; however, we have to
do another test before doing so.

What happens if the user decides to set a breakpoint at a nonsensical point: a blank line, or at line 1000 of a
ten-line program? If the breakpoint is set well beyond the end of the program, it will never be reached and
will cause no problem. If, however, a breakpoint is set at a blank line, it will cause problems. The reason is
that the DEBUG trap only occurs after each executed simple command in a script, not each line. Blank lines
never generate the DEBUG signal. The user could set a breakpoint on a blank line, in which case continuing
execution with the g command would never break back out to the debugger.

We can fix both of these problems by making sure that breakpoints are set only on lines with text. [11] After
making the tests, we can add the breakpoint to the breakpoint array, _linebp. This is a little more complex
than it sounds. In order to make the code in other sections of the debugger simpler, we should maintain a
sorted array of breakpoints. To do this, we echo all of the line numbers currently in the array, along with the
new number, in a subshell and pipe them into the UNIX sort command. sort -n sorts a list into numerically
ascending order. The result of this is a list of ordered numbers which we then assign back to the _linebp
array with a compound assignment.

[11] This isn't a complete solution. Certain other lines (e.g., comments) will also be ignored by the DEBUG trap.
See the list of limitations and the exercises at the end of this chapter.

To complement the user's ability to add breakpoints, we also allow the user to delete them. The cb
command allows the user to clear single breakpoints or all breakpoints, depending on whether a line number
argument is supplied or not. For example, cb 12 clears a breakpoint at line 12 (if a breakpoint was set at that
line). cb on its own would clear all of the breakpoints that have been set. It is useful to look briefly at how
this works; here is the code for the function that is called with the cb command, _clearbp:

function _clearbp
{
 local i

 if [-z "$1"]; then
 unset _linebp[*]
 _msg "All breakpoints have been cleared"
 elif [$(echo $1 | grep '^[0-9]*')]; then
 _linebp=($(echo $(for i in ${_linebp[*]}; do
 if (($1 != $i)); then echo $i; fi; done)))
 _msg "Breakpoint cleared at line $1"
 else
 _msg "Please specify a numeric line number"
 fi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fi
}

The structure of the code is similar to that used for setting the breakpoints. If no argument was supplied to
the command, the breakpoint array is unset, effectively deleting all the breakpoints. If an argument was
supplied and is not a number, we print out an error message and exit.

A numeric argument to the cb command means the code has to search the list of breakpoints and delete the
specified one. We can easily make the deletion by following a procedure similar to the one we used when
we added a breakpoint in _setbp. We execute a loop in a subshell, printing out the line numbers in the
breakpoints list and ignoring any that match the provided argument. The echoed values once again form a
compound statement which can then be assigned to an array variable. [12]

[12] bash versions 2.01 and earlier have a bug in assigning arrays to themselves which prevents the code for
setbp and clearbp from working. In each case, you can get around this bug by assigning _linebp to a local
variable first, unsetting it, and then assigning the local variable back to it. Better yet, update to a more recent
version of bash.

The function _at_linenumbp is called by _steptrap after every statement; it checks whether the shell has
arrived at a line number breakpoint. The code for the function is:

See if this line number has a breakpoint
function _at_linenumbp
{
 local i=0

 if ["$_linebp"]; then
 while (($i < ${#_linebp[@]})); do
 if ((${_linebp[$i]} == $_curline)); then
 return 0
 fi
 let i=$i+1
 done
 fi
 return 1
}

The function simply loops through the breakpoint array and checks the current line number against each
one. If a match is found, it returns true (i.e., returns 0). Otherwise, it continues looping, looking for a match
until the end of the array is reached. It then returns false.

It is possible to find out exactly what line the debugger is up to and where the breakpoints have been set in
the guinea pig by using the ds command. We'll see an example of the output later, when we run a sample
bashdb debugging session. The code for this function is fairly straightforward:

Print out the shell script and mark the location of breakpoints
and the current line
function _displayscript
{
 local i=1 j=0 bp cl

 (while (($i < ${#_lines[@]})); do
 if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then
 bp='*'
 let j=$j+1
 else
 bp=' '
 fi

 if (($_curline == $i)); then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (($_curline == $i)); then
 cl=">"
 else
 cl=" "
 fi

 echo "$i:$bp $cl ${_lines[$i]}"
 let i=$i+1
 done
) | more
}

This function contains a subshell, the output of which is piped to the UNIX more command. We have done
this for user-friendly reasons; a long script would scroll up the screen quickly and the users may not have
displays that allows them to scroll back to previous pages of screen output. more displays one screenful of
output at a time.

The core of the subshell code loops through the lines of the guinea pig script. It first tests to see if the line it
is about to display is in the array of breakpoints. If it is, a breakpoint character (*) is set and the local
variable j is incremented. j was initialized to 0 at the beginning of the function; it contains the current
breakpoint that we are up to. It should now be apparent why we went to the trouble of sorting the
breakpoints in _setbp: both the line numbers and the breakpoint numbers increment sequentially, and once
we pass a line number that has a breakpoint and find it in the breakpoint array, we know that future
breakpoints in the script must be further on in the array. If the breakpoint array contained line numbers in a
random order, we'd have to search the entire array to find out if a line number was in the array or not.

The core of the subshell code then checks to see if the current line and the line it is about to display are the
same. If they are, a "current line" character (>) is set. The current displayed line number (stored in i),
breakpoint character, current line character, and script line are then printed out.

We think you'll agree that the added complexity in the handling of breakpoints is well worth it. Being able
to display the script and the location of breakpoints is an important feature in any debugger.

9.2.3.4 Break conditions

bashdb provides another method of breaking out of the guinea pig script: the break condition. This is a
string that the user can specify that is evaluated as a command; if it is true (i.e., returns exit status 0), the
debugger enters the command loop.

Since the break condition can be any line of shell code, there's a lot of flexibility in what can be tested. For
example, you can break when a variable reaches a certain value—e.g., (($x < 0))—or when a particular
piece of text has been written to a file (grep string file). You will probably think of all kinds of uses for this
feature. [13] To set a break condition, type bc string. To remove it, type bc without arguments—this installs
the null string, which is ignored.

[13] Bear in mind that if your break condition sends anything to standard output or standard error, you will see it
after every statement executed. Also, make sure your break condition doesn't take a long time to run; otherwise
your script will run very, very slowly.

_steptrap evaluates the break condition $_brcond only if it's not null. If the break condition evaluates to 0,
then the if clause is true and, once again, _steptrap calls the command loop.

9.2.3.5 Execution tracing

The final feature of the debugger is execution tracing, available with the x command.

The function _xtrace "toggles" execution tracing simply by assigning to the variable _trace the logical
"not" of its current value, so that it alternates between 0 (off) and 1 (on). The preamble initializes it to 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2.3.6 Debugger limitations

We have kept bashdb reasonably simple so that you can see the fundamentals of building a shell script
debugger. Although it contains some useful features and is designed to be a real tool, not just a scripting
example, it has some important limitations. The ones that we know of are described in the list that follows.

1. Debuggers tend to run programs slower than if they were executed on their own. bashdb is no
exception. Depending upon the script you use it on, you'll find the debugger runs everything
anywhere from eight to thirty times more slowly. This isn't so much of a problem if you are
stepping through a script in small increments, but bear it in mind if you have, say, initialization
code with large looping constructs.

2. One problem with setting breakpoints is that when they are set on lines with no simple commands
(actual UNIX commands, shell built-ins, function calls, and aliases), the DEBUG signal is never
generated and the trap code never executes. This includes reserved words like while, if, for, and so
on, unless a simple command is on the same line.

3. The debugger will not "step down" into shell scripts that are called from the guinea pig. To do this,
you'd have to edit your guinea pig script and change a call to scriptname to bashdb scriptname.

4. Similarly, nested subshells are treated as one gigantic statement; you cannot step down into them at
all.

5. The guinea pig should not trap on the fake signals DEBUG and EXIT; otherwise the debugger
won't work.

6. Command error handling could be significantly improved.

7. The shell should really have the ability to trap before each statement, not after. This is the way
most commercial source code debuggers work. At the very least, the shell should provide a variable
that contains the number of the line about to run instead of (or in addition to) the number of the line
that just ran.

Many of these are not insurmountable; see the exercises at the end of this chapter.

9.2.4 A Sample bashdb Session

Now we'll show a transcript of an actual session with bashdb, in which the guinea pig is the solution to Task
6-1, the script ndu. Here is the transcript of the debugging session:

[bash]$ bashdb ndu
bash Debugger version 1.0
Stopped at line 0
bashdb> ds
1: for dir in ${*:-.}; do
2: if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4: let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11: echo " ($((total/1024)) Kb)"
12: fi

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12: fi
13: fi
14: done
bashdb> s
Stopped at line 2
bashdb> bp 4
Breakpoint set at line 4
bashdb> bp 8
Breakpoint set at line 8
bashdb> bp 11
Breakpoint set at line 11
bashdb> ds
1: for dir in ${*:-.}; do
2: > if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4:* let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8:* if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11:* echo " ($((total/1024)) Kb)"
12: fi
13: fi
14: done
bashdb> g
Reached breakpoint at line 4
bashdb> !echo $total
6840032
bashdb> cb 8
Breakpoint cleared at line 8
bashdb> ds
1: for dir in ${*:-.}; do
2: if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4:* > let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11:* echo " ($((total/1024)) Kb)"
12: fi
13: fi
14: done
bashdb> bp
Breakpoints at lines: 4 11
Break on condition:

bashdb> !total=5600
bashdb> g
Total for . = 5600 bytes (5 Kb)
Reached breakpoint at line 11
bashdb> cb
All breakpoints have been cleared
bashdb> ds

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bashdb> ds
1: for dir in ${*:-.}; do
2: if [-e $dir]; then
3: result=$(du -s $dir | cut -f 1)
4: let total=$result*1024
5:
6: echo -n "Total for $dir = $total bytes"
7:
8: if [$total -ge 1048576]; then
9: echo " ($((total/1048576)) Mb)"
10: elif [$total -ge 1024]; then
11: > echo " ($((total/1024)) Kb)"
12: fi
13: fi
14: done
bashdb> g
[bash]$

First, we display the script with ds and then perform a step, taking execution to line 2 of ndu. We then set
breakpoints at lines 4, 8, and 11 and display the script again. This time the breakpoints are clearly marked
by asterisks (*). The right angle bracket (>) indicates that line 2 was the most recent line executed.

Next, we continue execution of the script that breaks at line 4. We print out the value of total now and
decide to clear the breakpoint at line 8. Displaying the script confirms that the breakpoint at line 8 is indeed
gone. We can also use the bp command, and it too shows that the only breakpoints set are at lines 4 and 11.

At this stage we might decide that we want to check the logic of the if branch at line 11. This requires that
$total be greater than or equal to 1024, but less than 1048576. As we saw previously, $total is very large,
so we set its value to 5600 so that it will execute the second part of the if and continue execution. The script
enters that section of the if correctly, prints out the value, and stops at the breakpoint.

To finish off, we clear the breakpoints, display the script again, and then continue execution, which exits the
script.

9.2.5 Exercises

The bashdb debugger is available via anonymous FTP, as discussed in Appendix E; if you don't have access
to the Internet, you can type or scan the code in. Either way, you can use bashdb to debug your own shell
scripts, and you should feel free to enhance it. We'll conclude this chapter with some suggested
enhancements and a complete listing of the debugger command source code.

1. Improve command error handling in these ways:

a. Check that the arguments to s are valid numbers and print an appropriate error message if
they aren't.

b. Check that a breakpoint actually exists before clearing it and warn the user if the line
doesn't have a breakpoint.

c. Any other error handling that you can think of.

2. Add code to remove duplicate breakpoints (more than one breakpoint on one line).

3. Enhance the cb command so that the user can specify more than one breakpoint to be cleared at a
time.

4. Implement an option that causes a break into the debugger whenever a command exits with non-
zero status:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a. Implement it as the command-line option -e.

b. Implement it as the debugger command e to toggle it on and off. (Hint: when you enter
_steptrap, $? is still the exit status of the last command that ran.)

5. Implement a command that prints out the status of the debugger: whether execution trace is on/off,
error exit is on/off, and the number of the last line to be executed. In addition, move the
functionality for displaying the breakpoints from bp to the new option.

6. Add support for multiple break conditions, so that bashdb stops execution whenever one of them
becomes true and prints a message indicating which one became true. Do this by storing the break
conditions in an array. Try to make this as efficient as possible, since the checking will take place
after every statement.

7. Add the ability to watch variables.

a. Add a command aw that takes a variable name as an argument and adds it to a list of
variables to watch. Any watched variables are printed out when execution trace is toggled
on.

b. Add another command cw that, without an argument, removes all of the variables from the
watch list. With an argument, it removes the specified variable.

8. As we saw earlier, unless breakpoints are set on lines with simple commands, they are ignored and
never cause the program to break out into the debugger. Add code that solves this problem. (Hint: if
the user sets a breakpoint on such a line, move it forward on to a line that contains a simple
command. Alternatively, you might consider ways to insert the "do-nothing" command (:) when
creating the temporary file from the guinea pig and preamble scripts.)

9. Although placing an underscore at the start of the debugger identifiers will avoid name clashes in
most cases, think of ways to automatically detect name clashes with the guinea pig script and how
to get around this problem. (Hint: you could rename the clashing names in the guinea pig script at
the point where it gets combined with the preamble and placed in the temporary file.)

10. Add any other features you can think of.

Finally, here is a complete source listing of the debugger function file bashdb.fns:

After each line of the test script is executed the shell traps to
this function.

function _steptrap
{
 _curline=$1 # the number of the line that just ran

 (($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"

 if (($_steps >= 0)); then
 let _steps="$_steps - 1"
 fi

 # First check to see if a line number breakpoint was reached.
 # If it was, then enter the debugger.
 if _at_linenumbp ; then
 _msg "Reached breakpoint at line $_curline"
 _cmdloop

 # It wasn't, so check whether a break condition exists and is true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # It wasn't, so check whether a break condition exists and is true.
 # If it is, then enter the debugger
 elif [-n "$_brcond"] && eval $_brcond; then
 _msg "Break condition $_brcond true at line $_curline"
 _cmdloop

 # It wasn't, so check if we are in step mode and the number of
 # steps is up. If it is, then enter the debugger.
 elif (($_steps == 0)); then
 _msg "Stopped at line $_curline"
 _cmdloop

 fi
}

The Debugger Command Loop

function _cmdloop {
 local cmd args

 while read -e -p "bashdb> " cmd args; do
 case $cmd in
 \? | h) _menu ;; # print command menu
 bc) _setbc $args ;; # set a break condition
 bp) _setbp $args ;; # set a breakpoint at the given line
 cb) _clearbp $args ;; # clear one or all breakpoints
 ds) _displayscript ;; # list the script and show the
 # breakpoints
 g) return ;; # "go": start/resume execution of
 # the script
 q) exit ;; # quit
 s) let _steps=${args:-1} # single step N times (default = 1)
 return ;;
 x) _xtrace ;; # toggle execution trace
 *) eval ${cmd#!} $args ;; # pass to the shell
 *) _msg "Invalid command: '$cmd'" ;;
 esac
 done
}

See if this line number has a breakpoint
function _at_linenumbp
{
 local i=0

 # Loop through the breakpoints array and check to see if any of
 # them match the current line number. If they do return true (0)
 # otherwise return false.

 if ["$_linebp"]; then
 while (($i < ${#_linebp[@]})); do
 if ((${_linebp[$i]} == $_curline)); then
 return 0
 fi
 let i=$i+1
 done
 fi
 return 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return 1
}

Set a breakpoint at the given line number or list breakpoints
function _setbp
{
 local i

 # If there are no arguments call the breakpoint list function.
 # Otherwise check to see if the argument was a positive number.
 # If it wasn't then print an error message. If it was then check
 # to see if the line number contains text. If it doesn't then
 # print an error message. If it does then echo the current
 # breakpoints and the new addition and pipe them to "sort" and
 # assign the result back to the list of breakpoints. This results
 # in keeping the breakpoints in numerical sorted order.

 # Note that we can remove duplicate breakpoints here by using
 # the -u option to sort which uniquifies the list.

 if [-z "$1"]; then
 _listbp
 elif [$(echo $1 | grep '^[0-9]*')]; then
 if [-n "${_lines[$1]}"]; then
 _linebp=($(echo $((for i in ${_linebp[*]} $1; do
 echo $i; done) | sort -n)))
 _msg "Breakpoint set at line $1"
 else
 _msg "Breakpoints can only be set on non-blank lines"
 fi
 else
 _msg "Please specify a numeric line number"
 fi
}

List breakpoints and break conditions
function _listbp
{
 if [-n "$_linebp"]; then
 _msg "Breakpoints at lines: ${_linebp[*]}"
 else
 _msg "No breakpoints have been set"
 fi

 _msg "Break on condition:"
 _msg "$_brcond"
}

Clear individual or all breakpoints
function _clearbp
{
 local i bps

 # If there are no arguments, then delete all the breakpoints.
 # Otherwise, check to see if the argument was a positive number.
 # If it wasn't, then print an error message. If it was, then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 # If it wasn't, then print an error message. If it was, then
 # echo all of the current breakpoints except the passed one
 # and assign them to a local variable. (We need to do this because
 # assigning them back to _linebp would keep the array at the same
 # size and just move the values "back" one place, resulting in a
 # duplicate value). Then destroy the old array and assign the
 # elements of the local array, so we effectively recreate it,
 # minus the passed breakpoint.

 if [-z "$1"]; then
 unset _linebp[*]
 _msg "All breakpoints have been cleared"
 elif [$(echo $1 | grep '^[0-9]*')]; then
 bps=($(echo $(for i in ${_linebp[*]}; do
 if (($1 != $i)); then echo $i; fi; done)))
 unset _linebp[*]
 _linebp=(${bps[*]})
 _msg "Breakpoint cleared at line $1"
 else
 _msg "Please specify a numeric line number"
 fi
}

Set or clear a break condition
function _setbc
{
 if [-n "$*"]; then
 _brcond=$args
 _msg "Break when true: $_brcond"
 else
 _brcond=
 _msg "Break condition cleared"
 fi
}

Print out the shell script and mark the location of breakpoints
and the current line

function _displayscript
{
 local i=1 j=0 bp cl

 (while (($i < ${#_lines[@]})); do
 if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then
 bp='*'
 let j=$j+1
 else
 bp=' '
 fi
 if (($_curline == $i)); then
 cl=">"
 else
 cl=" "
 fi
 echo "$i:$bp $cl ${_lines[$i]}"
 let i=$i+1
 done

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 done
) | more
}

Toggle execution trace on/off
function _xtrace
{
 let _trace="! $_trace"
 _msg "Execution trace "
 if (($_trace)); then
 _msg "on"
 else
 _msg "off"
 fi
}

Print the passed arguments to Standard Error
function _msg
{
 echo -e "$@" >&2
}

Print command menu
function _menu {
 _msg 'bashdb commands:
 bp N set breakpoint at line N
 bp list breakpoints and break condition
 bc string set break condition to string
 bc clear break condition
 cb N clear breakpoint at line N
 cb clear all breakpoints
 ds displays the test script and breakpoints
 g start/resume execution
 s [N] execute N statements (default 1)
 x toggle execution trace on/off
 h, ? print this menu
 ! string passes string to a shell
 q quit'
}

Erase the temporary file before exiting
function _cleanup
{
 rm $_debugfile 2>/dev/null
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. bash Administration
There are two areas in which system administrators use the shell as part of their job: setting up a generic
environment for users and system security. In this chapter, we'll discuss bash's features that relate to these
tasks. We assume that you already know the basics of UNIX system administration. [1]

[1] A good source of information on system administration is Essential System Administration by Æleen Frisch
(O'Reilly & Associates).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 Installing bash as the Standard Shell
As a prelude to system-wide customization, we want to emphasize that bash can be installed as if it were the
standard Bourne shell, /bin/sh. Indeed, some systems, such as Linux, come with bash installed instead of the
Bourne shell.

If you want to do this with your system, you can just save the original Bourne shell to another filename (in
case someone needs to use it) and either install bash as sh in the /bin directory, or better yet install bash in
the /bin directory and create a symbolic link from /bin/sh to /bin/bash using the command ln -s /bin/bash
/bin/sh. The reason we think that the second option is better is because bash changes its behavior slightly if
started as sh, as we will see shortly.

As detailed in Appendix A, bash is backward-compatible with the Bourne shell, except that it doesn't
support ^ as a synonym for the pipe character |. Unless you have an ancient UNIX system, or you have
some very, very old shell scripts, you needn't worry about this.

But if you want to be absolutely sure, simply search through all shell scripts in all directories in your
PATH. An easy way to perform the search is to use the file command, which we saw in Chapter 5, and
Chapter 9. file prints "executable shell script" when given the name of one. [2]Here is a script that looks for
^ in shell scripts in every directory in your PATH:

[2] The exact message varies from system to system; make sure that yours prints this message when given the
name of a shell script. If not, just substitute the message your file command prints for "shell script" in the following
code.

IFS=:
for d in $PATH; do
 echo checking $d:
 cd $d
 scripts=$(file * | grep 'shell script' | cut -d: -f1)
 for f in $scripts; do
 grep '\^' $f /dev/null
 done
done

The first line of this script makes it possible to use $PATH as an item list in the for loop. For each
directory, it cds there and finds all shell scripts by piping the file command into grep and then, to extract the
filename only, into cut. Then for each shell script, it searches for the ^ character. [3]

[3] The inclusion of /dev/null in the grep command is a kludge that forces grep to print the names of files that
contain a match, even if there is only one such file in a given directory.

If you run this script, you will probably find several occurrences of ^—but these carets should be used
within regular expressions in grep, sed, or awk commands, not as pipe characters. As long as carets are
never used as pipes, it is safe for you to install bash as /bin/sh.

As we mentioned earlier, if bash is started as sh (because the executable file has been renamed sh or there is
a link from sh to bash) its startup behavior will change slightly to mimic the Bourne shell as closely as
possible. For login shells it only attempts to read /etc/profile and ~/.profile, ignoring any other startup files
like ~/.bash_profile. For interactive shells it won't read the initialization file ~/.bashrc. [4]

[4] bash also enters POSIX mode when started as sh. Versions of bash prior to 2.0 don't—POSIX mode has to be
explicitly set with the --posix command-line option.

10.1.1 POSIX Mode

Besides its native operating mode, bash can also be switched into POSIX mode. The POSIX (Portable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Besides its native operating mode, bash can also be switched into POSIX mode. The POSIX (Portable
Operating System Interface) standard, described in detail in Appendix A, defines guidelines for
standardizing UNIX. One part of the POSIX standard covers shells.

bash is nearly 100% POSIX-compliant in its native mode. If you want strict POSIX adherence, you can
either start bash with the -posix option, or set it from within the shell with set -o posix.

Only in very rare circumstances would you ever have to use POSIX mode. The differences, outlined in
Appendix A, are small and are mostly concerned with the command lookup order and how functions are
handled. Most bash users should be able to get through life without ever having to use this option.

10.1.2 Command-Line Options

bash has several command-line options that change the behavior and pass information to the shell. The
options fall into two sets; single character options, like we've seen in previous chapters of this book, and
multicharacter options, which are a relatively recent improvement to UNIX utilities. [5]Table 10.1 lists all
of the options. [6]

[5] Multicharacter options are far more readable and easier to remember than the old, and usually cryptic, single
character options. All of the GNU utilities have multicharacter options, but many applications and utilities (certainly
those on old UNIX systems) allow only single-character options.

[6] See Appendix A for a list of options for versions of bash prior to 2.0.

Table 10.1. bash Command-Line Options

Option Meaning

-c string Commands are read from string, if present. Any arguments after string are interpreted as
positional parameters, starting with $0.

-D
A list of all double-quoted strings preceded by $ is printed on the standard ouput. These are the
strings that are subject to language translation when the current locale is not C or POSIX. This
also turns on the -n option.

-i Interactive shell. Ignore signals TERM, INT, and QUIT. With job control in effect, TTIN,
TTOU, and TSTP are also ignored.

-o option Takes the same arguments as set -o.

-s
Read commands from the standard input. If an argument is given to bash, this flag takes
precedence (i.e., the argument won't be treated as a script name and standard input will be
read).

-r Restricted shell. Described later in this chapter.

- Signals the end of options and disables further option processing. Any options after this are
treated as filenames and arguments. -- is synonymous with -.

--dump-
strings Does the same as -D.

--help Displays a usage message and exits.
--login Makes bash act as if invoked as a login shell.
--
noediting Does not use the GNU readline library to read command lines if interactive.

--
noprofile Does not read the startup file /etc/profile or any of the personal initialization files.

--norc Does not read the initialization file ~/.bashrc if the shell is interactive. This is on by default if
the shell is invoked as sh.

--posix Changes the behavior of bash to follow the POSIX guidelines more closely where the default
operation of bash is different.

--quiet Shows no information on shell startup. This is the default.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

--rcfile
file

Executes commands read from file instead of the initialization file ~/.bashrc, if the shell is
interactive.

--version Shows the version number of this instance of bash and then exits.

The multicharacter options have to appear on the command line before the single-character options. In
addition to these, any set option can be used on the command line. Like shell built-ins, using a + instead of -
turns an option off.

Of these options, the most useful are -i (interactive), -r (restricted), -s (read from standard input), -p
(privileged), and -m (enable job control). Login shells are usually run with the -i, -s, and -m flags. We'll
look at restricted and privileged modes later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 Environment Customization
Like the Bourne shell, bash uses the file /etc/profile for system-wide customization. When a user logs in,
the shell reads and runs /etc/profile before running the user's .bash_profile.

We won't cover all the possible commands you might want to put in /etc/profile. But bash has a few unique
features that are particularly relevant to system-wide customization; we'll discuss them here.

We'll start with two built-in commands that you can use in /etc/profile to tailor your users' environments and
constrain their use of system resources. Users can also use these commands in their .bash_profile, or at any
other time, to override the default settings.

10.2.1 umask

umask, like the same command in most other shells, lets you specify the default permissions that files have
when users create them. It takes the same types of arguments that the chmod command does, i.e., absolute
(octal numbers) or symbolic permission values.

The umask contains the permissions that are turned off by default whenever a process creates a file,
regardless of what permission the process specifies. [7]

[7] If you are comfortable with Boolean logic, think of the umask as a number that the operating system logically
ANDs with the permission given by the creating process.

We'll use octal notation to show how this works. As you probably know, the digits in a permission number
stand (left to right) for the permissions of the owner, owner's group, and all other users, respectively. Each
digit, in turn, consists of three bits, which specify read, write, and execute permissions from left to right. (If
a file is a directory, the "execute" permission becomes "search" permission, i.e., permission to cd to it, list
its files, etc.)

For example, the octal number 640 equals the binary number 110 100 000. If a file has this permission, then
its owner can read and write it; users in the owner's group can only read it; everyone else has no permission
on it. A file with permission 755 gives its owner the right to read, write, and execute it and everyone else
the right to read and execute (but not write).

022 is a common umask value. This implies that when a file is created, the "most" permission it could
possibly have is 755—which is the usual permission of an executable that a compiler might create. A text
editor, on the other hand, might create a file with 666 permission (read and write for everyone), but the
umask forces it to be 644 instead.

10.2.2 ulimit

The ulimit command was originally used to specify the limit on file creation size. But bash's version has
options that let you put limits on several different system resources. Table 10.2 lists the options.

Table 10.2. ulimit Resource Options

Option Resource Limited
-a All limits (for printing values only)
-c Core file size (1 Kb blocks)
-d Process data segment (Kb)
-f File size (1 Kb blocks)
-l Maximum size of a process that can be locked in memory (Kb)a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-m Maximum resident set size
-n File descriptors
-p Pipe size (512 byte blocks)
-s Process stack segment (Kb)
-t Process CPU time (seconds)
-u Maximum number of processes available to a user
-v Virtual memory (Kb)

[8]

[8] Not available in versions of bash prior to 2.0.

Each takes a numerical argument that specifies the limit in units shown in the table. You can also give the
argument "unlimited" (which may actually mean some physical limit), or you can omit the argument, in
which case it will print the current limit. ulimit -a prints limits (or "unlimited") of all types. You can specify
only one type of resource at a time. If you don't specify any option, -f is assumed.

Some of these options depend on operating system capabilities that don't exist in older UNIX versions. In
particular, some older versions have a fixed limit of 20 file descriptors per process (making -n irrelevant),
and some don't support virtual memory (making -v irrelevant).

The -d and -s options have to do with dynamic memory allocation, i.e., memory for which a process asks
the operating system at runtime. It's not necessary for casual users to limit these, though software
developers may want to do so to prevent buggy programs from trying to allocate endless amounts of
memory due to infinite loops.

The -v and -m options are similar; -v puts a limit on all uses of memory, and -m limits the amount of
physical memory that a process is allowed to use. You don't need these unless your system has severe
memory constraints or you want to limit process size to avoid thrashing.

The -u option is another option which is useful if you have system memory constraints or you wish just
wish to stop individual users from hogging the system resources.

You may want to specify limits on file size (-f and -c) if you have constraints on disk space. Sometimes
users actually mean to create huge files, but more often than not, a huge file is the result of a buggy program
that goes into an infinite loop. Software developers who use debuggers like sdb, dbx, and gdb should not
limit core file size, because core dumps are necessary for debugging.

The -t option is another possible guard against infinite loops. However, a program that is in an infinite loop
but isn't allocating memory or writing files is not particularly dangerous; it's better to leave this unlimited
and just let the user kill the offending program.

In addition to the types of resources you can limit, ulimit lets you specify hard or soft limits. Hard limits
can be lowered by any user but only raised by the super user (root); users can lower soft limits and raise
them—but only as high as the hard limit for that resource.

If you give -H along with one (or more) of the options above, ulimit will set hard limits; -S sets soft limits.
Without either of these, ulimit sets the hard and soft limit. For example, the following commands set the
soft limit on file descriptors to 64 and the hard limit to unlimited:

ulimit -Sn 64
ulimit -Hn unlimited

When ulimit prints current limits, it prints soft limits unless you specify -H.

10.2.3 Types of Global Customization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The best possible approach to globally available customization would be a system-wide environment file
that is separate from each user's environment file—just like /etc/profile is separate from each user's
.bash_profile. Unfortunately, bash doesn't have this feature.

Nevertheless, the shell gives you a few ways to set up customizations that are available to all users at all
times. Environment variables are the most obvious; your /etc/profile file will undoubtedly contain
definitions for several of them, including PATH and TERM.

The variable TMOUT is useful when your system supports dialup lines. Set it to a number N, and if a user
doesn't enter a command within N seconds after the shell last issued a prompt, the shell will terminate. This
feature is helpful in preventing people from "hogging" the dialup lines.

You may want to include some more complex customizations involving environment variables, such as the
prompt string PS1 containing the current directory (as seen in Chapter 4).

You can also turn on options, such as emacs or vi editing modes, or noclobber to protect against inadvertent
file overwriting. Any shell scripts you have written for general use also contribute to customization.

Unfortunately, it's not possible to create a global alias. You can define aliases in /etc/profile, but there is no
way to make them part of the environment so that their definitions will propagate to subshells. (In contrast,
users can define global aliases by putting their definitions in ~/.bashrc.)

However, you can set up global functions. These are an excellent way to customize your system's
environment, because functions are part of the shell, not separate processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 System Security Features
UNIX security is a problem of legendary notoriety. Just about every aspect of a UNIX system has some
security issue associated with it, and it's usually the system administrator's job to worry about this issue.

bash has two features that help solve this problem: the restricted shell, which is intentionally "brain
damaged," and privileged mode, which is used with shell scripts that run as if the user were root.

10.3.1 Restricted Shell

The restricted shell is designed to put the user into an environment where his or her ability to move around
and write files is severely limited. It's usually used for "guest" accounts. [9]You can make a user's login shell
restricted by putting rbash in the user's /etc/passwd entry. [10]

[9] This feature is not documented in the manual pages for old versions of bash.

[10] If this option has been included when the shell was compiled. See Chapter 11, for details on configuring bash.

The specific constraints imposed by the restricted shell disallow the user from doing the following:

· Changing working directories: cd is inoperative. If you try to use it, you will get the error message
bash: cd: restricted.

· Redirecting output to a file: the redirectors >, >|, <>, and >> are not allowed.

· Assigning a new value to the environment variables SHELL or PATH.

· Specifying any pathnames with slashes (/) in them. The shell will treat files outside of the current
directory as "not found."

· Using the exec built-in.

· Specifying a filename containing a / as an argument to the . built-in command.

· Importing function definitions from the shell environment at startup.

· Adding or deleting built-in commands with the -f and -d options to the enable built-in command.

· Specifying the -p option to the builtin command.

· Turning off restricted mode with set +r.

These restrictions go into effect after the user's .bash_profile and environment files are run. In addition, it is
wise to change the owner of the users' .bash_profile and .bashrc to root, and make these files read-only. The
users' home directory should also be made read-only.

This means that the restricted shell user's entire environment is set up in /etc/profile and .bash_profile. Since
the user can't access /etc/profile and can't overwrite .bash_profile, this lets the system administrator
configure the environment as he or she sees fit.

Two common ways of setting up such environments are to set up a directory of "safe" commands and have
that directory be the only one in PATH, and to set up a command menu from which the user can't escape
without exiting the shell.

10.3.2 A System Break-In Scenario

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Before we explain the other security features, here is some background information on system security that
should help you understand why they are necessary.

Many problems with UNIX security hinge on a UNIX file attribute called the suid (set user ID) bit. This is
like a permission bit (see umask earlier in this chapter): when an executable file has it turned on, the file
runs with an effective user ID equal to the owner of the file, which is usually root. The effective user ID is
distinct from the real user ID of the process.

This feature lets administrators write scripts that do certain things that require root privilege (e.g., configure
printers) in a controlled way. To set a file's suid bit, the superuser can type chmod 4755 filename; the 4 is
the suid bit.

Modern system administration wisdom says that creating suid shell scripts is a very, very bad idea. [11]This
has been especially true under the C shell, because its .cshrc environment file introduces numerous
opportunities for break-ins. bash's environment file feature creates similar security holes, although the
security feature we'll see shortly make this problem less severe.

[11] In fact, some versions of UNIX intentionally disable the suid feature for shell scripts.

We'll show why it's dangerous to set a script's suid bit. Recall that in Chapter 3, we mentioned that it's not a
good idea to put your personal bin directory at the front of your PATH. Here is a scenario that shows how
this placement combines with suid shell scripts to form a security hole: a variation of the infamous "Trojan
horse" scheme. First, the computer cracker has to find a user on the system with an suid shell script. In
addition, the user must have a PATH with his or her personal bin directory listed before the public bin
directories, and the cracker must have write permission on the user's personal bin directory.

Once the cracker finds a user with these requirements, he or she does the following steps.

· Looks at the suid script and finds a common utility that it calls. Let's say it's grep.

· Creates the Trojan horse, which is this case is a shell script called grep in the user's personal bin
directory. The script looks like this:

· cp /bin/bash filenamechown root filenamechmod 4755 filename/bin/grep "$@"
rm ~/bin/grep
filename should be some unremarkable filename in a directory with public read and execute
permission, such as /bin or /usr/bin. The file, when created, will be that most heinous of security
holes: an suid interactive shell.

· Sits back and waits for the user to run the suid shell script—which calls the Trojan horse, which in
turn creates the suid shell and then self-destructs.

· Runs the suid shell and creates havoc.

10.3.3 Privileged Mode

The one way to protect against Trojan horses is privileged mode. This is a set -o option (set -o privileged or
set -p), but the shell enters it automatically whenever it executes a script whose suid bit is set.

In privileged mode, when an suid bash shell script is invoked, the shell does not run the user's environment
file—i.e., it doesn't expand the user's BASH_ENV environment variable.

Since privileged mode is an option, it is possible to turn it off with the command set +o privileged (or set
+p). But this doesn't help the potential system cracker: the shell automatically changes its effective user ID
to be the same as the real user ID—i.e., if you turn off privileged mode, you also turn off suid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Privileged mode is an excellent security feature; it solves a problem that originated when the environment
file idea first appeared in the C shell.

Nevertheless, we still strongly recommend against creating suid shell scripts. We have shown how bash
protects against break-ins in one particular situation, but that certainly does not imply that bash is "safe" in
any absolute sense. If you really must have suid scripts, you should carefully consider all relevant security
issues.

Finally, if you would like to learn more about UNIX security, we recommend Practical UNIX and Internet
Security, by Gene Spafford and Simson Garfinkel (O'Reilly & Associates).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. bash for Your System
The first ten chapters of this book have looked at nearly all aspects of bash, from navigating the file system
and command-line editing to writing shell scripts and functions using lesser-known features of the shell.
This is all very well and good, but what if you have an old version of bash and want the new features shown
in this book (or worse yet, you don't have bash at all)?

In this chapter we'll show you how to get the latest version of bash and how to install it on your system, and
we'll discuss potential problems you might encounter along the way. We'll also look briefly at the examples
that come with bash and how you can report bugs to the bash maintainer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Obtaining bash
If you have a direct connection to the Internet, you should have no trouble obtaining bash; otherwise, you'll
have to do a little more work.

bash is available from a number of anonymous FTP sites. The following list (giving host name, IP address,
and directory name) is a good starting point:

prep.ai.mit.edu (18.159.0.42) /pub/gnu
sunsite.unc.edu (152.2.254.81) /pub/gnu
plaza.aarnet.edu.au (139.130.23.2) /gnu
ftp.isy.liu.se (130.236.20.12) /pub/gnu
unix.hensa.ac.uk (129.12.200.129) /mirrors/gnu

prep.ai.mit.edu is the official GNU site and will always have the most up-to-date copy of bash. The other
sites listed mirror the official site, so barring any major changes, they should also have the most recent
version. To reduce load on the GNU site, it's best to get bash from one of the other sources.

If you've never used anonymous ftp we'll provide a quick example. The following sample session shows
what you type in boldface and comments in italics:

$ ftp unix.hensa.ac.uk
Connected to sesame.hensa.ac.uk.
220 sesame FTP server (Version wu-2.4(20) Fri Jul 28 15:46 GMT 1995) ready.
Name (unix.hensa.ac.uk:cam): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password: alice@wonderland.oreilly.com (use your login name and host here)
230- ***
230-
230- Welcome to HENSA
230-
230- the Higher Education National Software Archive
230- at the University of Kent at Canterbury
230- funded by JISC
230-
230- HENSA Unix maintains copies of electronic archives from all
230- over the world. Over 40 archives are currently available,
230- providing access to a wide range of material, including
230- software, documentation, bibliographic and multimedia collections.
230- To access the mirrors, change directory to mirrors.
.
.
.
230-Please read the file README
230- it was last modified on Mon Apr 7 14:25:03 1997 - 121 days ago
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd /mirrors/gnu
250-Please read the file README
250- it was last modified on Mon Jul 8 23:00:00 1996 - 393 days ago
250-Please read the file README-about-.diff-files
250- it was last modified on Thu Mar 20 14:08:00 1997 - 139 days ago
250-Please read the file README-about-.gz-files
250- it was last modified on Tue Jul 9 16:18:00 1996 - 392 days ago
250 CWD command successful.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

250 CWD command successful.
ftp> binary (you must specify binary transfer for compressed files)
200 Type set to I.
ftp> get bash-2.01.tar.gz
local: bash-2.01.tar.gz remote: bash-2.01.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for bash-2.01.tar.gz (1342563 bytes).
226 Transfer complete.
1342563 bytes received in 556 secs (2.4 Kbytes/sec)
.
. (repeat this step for each file that you want)
.
ftp> quit
221 Goodbye.
$

You can also retrieve the files by FTPMAIL , BITFTP , and UUCP . To find out how to use these methods,
please refer to Appendix E.

Failing these methods, you can always get bash on tape or CD-ROM by ordering it directly from the Free
Software Foundation:

The Free Software Foundation (FSF)
675 Massachusetts Avenue
Cambridge MA, 02139
email: gnu@prep.ai.mit.edu
phone: (617) 876-3296

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 Unpacking the Archive
Having obtained the archive file by one of the above methods, you need to unpack it and install it on your
system. Unpacking can be done anywhere—we'll assume you're unpacking it in your home directory.
Installing it on the system requires you to have root privileges. If you aren't a system administrator with root
access, you can still compile and use bash; you just can't install it as a system-wide utility. The first thing to
do is uncompress the archive file by typing gunzip bash-2.01.tar.gz. [1] Then you need to "untar" the
archive by typing tar -xf bash-2.01.tar. The -xf means "extract the archived material from the specified
file." This will create a directory called bash-2.01 in your home directory.

[1] gunzip is the GNU decompression utility. gunzip is popular but relatively new and some systems don't have it. If
your system doesn't, you can obtain it by the same methods as you obtained bash. gunzip is available from the
FSF. gzip -d does the same thing as gunzip.

The archive contains all of the source code needed to compile bash and a large amount of documentation
and examples. We'll look at these things and how you go about making a bash executable in the rest of this
chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 What's in the Archive
The bash archive contains a main directory (bash-2.01 for the current version) and a set of files and
subdirectories. Among the first files you should examine are:

· MANIFEST, a list of all the files and directories in the archive

· COPYING, the GNU Copyleft for bash

· NEWS, a list of bug fixes and new features since the last version

· README, a short introduction and instructions for compiling bash

You should also be aware of two directories:

· doc, information related to bash in various formats

· examples, examples of startup files, scripts, and functions

The other files and directories in the archive are mostly things that are needed during the build. Unless you
are going to go hacking into the internal workings of the shell, they shouldn't concern you.

11.3.1 Documentation

The doc directory contains a few articles that are worth reading. Indeed, it would be well worth printing out
the manual entry for bash so you can use it in conjunction with this book. The README file gives a short
summary of what the files are.

The document you'll most often use is the manual page entry (bash.1). The file is in troff format—that used
by the manual pages. You can read it by processing it with the text-formatter nroff and piping the output to
a pager utility: nroff -man bash.1 | more should do the trick. You can also print it off by piping it to the
lineprinter (lp). This summarizes all of the facilities your version of bash has and is the most up-to-date
reference you can get. This document is also available through the man facility once you've installed the
package, but sometimes it's nice to have a hard copy so you can write notes all over it.

Of the other documents, FAQ is a Frequently Asked Questions document with answers, readline.3 is the
manual entry for the readline facility, and article.ms is an article about the shell that appeared in Linux
Journal, by the current bash maintainer, Chet Ramey.

11.3.2 Configuring and Building bash

To compile bash "straight out of the box" is easy; [2]you just type configure and then make! The bash
configure script attempts to work out if you have various utilities and C library functions, and where abouts
they reside on your system. It then stores the relevant information in the file config.h. It also creates a file
called config.status that is a script you can run to recreate the current configuration information. While the
configure is running, it prints out information on what it is searching for and where it finds it.

[2] This configuration information pertains to bash version 2.0 and later. The configuration and installation for
earlier versions is fairly easy, although it differs in certain details. For further information, refer to the INSTALL
instructions that came with your version of bash.

The configure script also sets the location that bash will be installed, the default being the /usr/local area
(/usr/local/bin for the executable, /usr/local/man for the manual entries etc.). If you don't have root
privilages and want it in your own home directory, or you wish to install bash in some other location, you'll
need to specify a path to configure. You can do this with the --exec-prefix option. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

$ configure —exec-prefix /usr
specifies that the bash files will be placed under the /usr directory.

After the configuration finishes and you type make, the bash executable is built. A script called bashbug is
also generated which allows you to report bugs in the format the bash maintainers want. We'll look at how
you use it later in this chapter.

Once the build finishes, you can see if the bash executable works by typing ./bash. If it doesn't, turn to
Section 11.3.4 later in this chapter.

To install bash, type make install. This will create all of the necessary directories (bin, info, man and its
subdirectories) and copy the files to them.

If you've installed bash in your home directory, be sure to add your own bin path to your PATH and your
own man path to MANPATH.

bash comes preconfigured with nearly all of its features enabled, but it is possible to customize your version
by specifying what you want with the --enable-feature and --disable-feature command-line options to
configure.

Table 11.1 is a list of the configurable features and a short description of what those features do.

Table 11.1. Configurable Features

Feature Description
alias Support for aliases
array-variables Support for one dimensional arrays
bang-history C-shell-like history expansion and editing
brace-expansion Brace expansion
command-timing Support for the time command
directory-stack Support for the pushd, popd, and dirs directory manipulation commands

disabled-builtins Whether a built-in can be run with the builtin command, even if it has been
disabled with enable -n

dparen-arithmetic Support for ((...))
help-builtin Support for the help built-in
history History via the fc and history commands
job-control Job control via fg, bg, and jobs if supported by the operating system
process-
substitution Whether process substitution occurs, if supported by the operating system

prompt-string-
decoding Whether backslash escaped characters in PS1, PS2, PS3, and PS4 are allowed

readline readline editing and history capabilities
restricted Support for the restricted shell, the -r option to the shell, and rbash
select The select construct
usg-echo-default Whether echo -e is the default for echo

The options disabled-builtins and usg-echo-default are disabled by default. The others are enabled.

Many other shell features can be turned on or off by modifying the file config.h.top. For further details on
this file and configuring bash in general, see INSTALL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, to clean up the source directory and remove all of the object files and executables, type make
clean. Make sure you run make install first, otherwise you'll have to rerun the installation from scratch.

11.3.3 Testing bash

There are a series of tests that can be run on your newly built version of bash to see if it is running
correctly. The tests are scripts that are derived from problems reported in earlier versions of the shell.
Running these tests on the latest version of bash shouldn't cause any errors.

To run the tests just type make tests in the main bash directory. The name of each test is displayed, along
with some warning messages, and then it is run. Successful tests produce no output (unless otherwise noted
in the warning messages).

If any of the tests fail, you'll see a list of things that represent differences between what is expected and
what happened. If this occurs you should file a bug report with the bash maintainer. See Section 11.4.2 later
in this chapter for information on how to do this.

11.3.4 Potential Problems

Although bash has been installed on a large number of different machines and operating systems, there are
occasional problems. Usually the problems aren't serious and a bit of investigation can result in a quick
solution.

If bash didn't compile, the first thing to do is check that configure guessed your machine and operating
system correctly. Then check the file NOTES, which contains some information on specific UNIX systems.
Also look in INSTALL for additional information on how to give configure specific compilation
instructions.

11.3.5 Installing bash as a Login Shell

Having installed bash and made sure it is working correctly, the next thing to do is to make it your login
shell. This can be accomplished in two ways.

Individual users can use the chsh (change shell) command after they log in to their accounts. chsh asks for
their password and displays a list of shells to choose from. Once a shell is chosen, chsh changes the
appropriate entry in /etc/passwd. For security reasons, chsh will only allow you to change to a shell if it
exists in the file /etc/shells (if /etc/shells doesn't exist, chsh asks for the pathname of the shell).

Another way to change the login shell is to edit the password file directly. On most systems, /etc/passwd
will have lines of the form:

cam:pK1Z9BCJbzCrBNrkjRUdUiTtFOh/:501:100:Cameron Newham:/home/cam:/bin/bash
cc:kfDKDjfkeDJKJySFgJFWErrElpe/:502:100:Cheshire Cat:/home/cc:/bin/bash

As root you can just edit the last field of the lines in the password file to the pathname of whatever shell
you choose.

If you don't have root access and chsh doesn't work, you can still make bash your login shell. The trick is to
replace your current shell with bash by using exec from within one of the startup files for your current shell.

If your current shell is similar to sh (e.g., ksh), you have to add the line:

[-f /pathname/bash] && exec /pathname/bash —login

to your .profile, where pathname is the path to your bash executable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You will also have to create an empty file called .bash_profile. The existence of this file prevents bash from
reading your .profile and re-executing the exec—thus entering an infinite loop. Any initialization code that
you need for bash can just be placed in .bash_profile.

If your current shell is similar to csh (e.g., tcsh) things are slightly easier. You just have to add the line:

if (-f /pathname/bash) exec /pathname/bash —login

to your .login, where pathname is the path to your bash executable.

11.3.6 Examples

The bash archive also includes an examples directory. This directory contains some subdirectories for
scripts, functions, and examples of startup files.

The startup files in the startup-files directory provide many examples of what you can put in your own
startup files. In particular, bash_aliases gives many useful aliases. Bear in mind that if you copy these files
wholesale, you'll have to edit them for your system because many of the paths will be different. Refer to
Chapter 3, for further information on changing these files to suit your needs.

The functions directory contains about twenty files with function definitions that you might find useful.
Among them are:

· basename, the basename utility, missing from some systems

· dirfuncs, directory manipulation facilities

· dirname, the dirname utility, missing from some systems

· whatis, an implementation of the 10th Edition Bourne shell whatis builtin

· whence, an almost exact clone of the Korn shell whence builtin

Especially helpful, if you come from a Korn shell background, is kshenv. This contains function definitions
for some common Korn facilities such as whence, print, and the two-parameter cd builtins.

The scripts directory contains four examples of bash scripts. The two largest scripts are examples of the
complex things you can do with shell scripts. The first is a (rather amusing) adventure game interpreter and
the second is a C shell interpreter. The other scripts include examples of precedence rules, a scrolling text
display, a "spinning wheel" progress display, and how to prompt the user for a particular type of answer.

Not only are the script and function examples useful for including in your environment, they also provide
many alternative examples that you can learn from when reading this book. We encourage you to
experiment with them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4 Who Do I Turn to?
No matter how good something is or how much documentation comes with it, you'll eventually come across
something that you don't understand or that doesn't work. In such cases it can't be stressed enough to
carefully read the documentation (in computer parlance: RTFM). [3]In many cases this will answer your
question or point out what you're doing wrong.

[3] RTFM stands for "Read The F(laming) Manual."

Sometimes you'll find this only adds to your confusion or confirms that there is something wrong with the
software. The next thing to do is to talk to a local bash guru to sort out the problem. If that fails, or there is
no guru, you'll have to turn to other means (currently only via the Internet).

11.4.1 Asking Questions

If you have any questions about bash, there are currently two ways to go about getting them answered. You
can email questions to bug-bash@prep.ai.mit.edu or you can post your question to the USENET newsgroup
gnu.bash.bug.

In both cases either the bash maintainer or some knowledgeable person on USENET will give you advice.
When asking a question, try to give a meaningful summary of your question in the subject line.

11.4.2 Reporting Bugs

Bug reports should be sent to bash-maintainers@prep.ai.mit.edu and should include the version of bash and
the operating system it is running on, the compiler used to compile bash, a description of the problem, a
description of how the problem was produced and, if possible, a fix for the problem. The best way to do this
is by using the bashbug script which is installed when you install bash.

Before you run bashbug, make sure you've set your EDITOR environment variable to your favorite editor
and have exported it (bashbug defaults to emacs, which may not be installed on your system). When you
execute bashbug it will enter the editor with a partially blank report form. Some of the information (bash
version, operating system version, etc.) will have been filled in automatically. We'll take a brief look at the
form, but most of it is self-explanatory.

The From: field should be filled out with your email address. For example:

From: confused@wonderland.oreilly.com

Next comes the Subject: field; make an effort to fill it out, as this makes it easier for the maintainers when
they need to look up your submission. Just replace the line surrounded by square brackets with a meaningful
summary of the problem.

The next few lines are a description of the system and should not be touched. Next comes the Description:
field. You should provide a detailed description of the problem and how it differs from what is expected.
Try to be as specific and concise as possible when describing the problem.

The Repeat-By: field is where you describe how you generated the problem; if necessary, list the exact
keystrokes you used. Sometimes you won't be able to reproduce the problem yourself, but you should still
fill out this field with the events leading up to the problem. Attempt to reduce the problem to the smallest
possible form. For example, if it was a large shell script, try to isolate the section that produced the problem
and include only that in your report.

Lastly, the Fix: field is where you can provide the necessary patch to fix the problem if you've investigated
it and found out what was going wrong. If you have no idea what caused the problem, just leave the field
blank.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you've finished filling in the form, save it and exit your editor. The form will automatically be sent to
the maintainers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A. Related Shells
The fragmentation of the UNIX marketplace has had its advantages and disadvantages. The advantages
came mostly in the early days: lack of standardization and proliferation among technically knowledgeable
academics and professionals contributed to a healthy "free market" for UNIX software, in which several
programs of the same type (e.g., shells, text editors, system administration tools) would often compete for
popularity. The best programs would usually become the most widespread, while inferior software tended to
fade away.

But often there was no single "best" program in a given category, so several would prevail. This led to the
current situation, where multiplicity of similar software has led to confusion, lack of compatibility, and—
most unfortunate of all—the inability of UNIX to capture as big a share of the market as other operating
platforms (MS-DOS, Microsoft Windows, Novell NetWare, etc.).

The "shell" category has probably suffered in this way more than any other type of software. As we said in
the the preface and in Chapter 1, several shells are currently available; the differences between them are
often not all that great.

Therefore we felt it necessary to include information on shells similar to bash. This appendix summarizes
the differences between the latter and the following:

· The standard Version 7 Bourne shell, as a kind of "baseline"

· The IEEE POSIX 1003.2 shell Standard, to which bash and other shells will adhere in the future

· The Korn shell (ksh), a popular commercial shell provided with many UNIX systems

· pdksh, a widely used public domain Korn shell

· Shell workalikes on desktop PC platforms, including the MKS Toolkit shell

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.1 The Bourne Shell
bash is almost completely backward-compatible with the Bourne shell. The only significant feature of the
latter that bash doesn't support is ^ (caret) as a synonym for the pipe (|) character. This is an archaic feature
that the Bourne shell includes for its own backward compatibility with earlier shells. No modern UNIX
version has any shell code that uses ^ as a pipe.

To describe the differences between the Bourne shell and bash, we'll go through each chapter of this book
and enumerate the features discussed in the chapter that the Bourne shell does not support. Although some
versions of the Bourne shell exist that include a few bash features, [A]we refer to the standard, Version 7
Bourne shell that has been around for many years.

[A] For example, the Bourne shell distributed with System V supports functions and a few other shell features
common to bash and the Korn shell.

Chapter 1

The cd - form of the cd command; tilde (~) expansion; the jobs command; the help built-in.

Chapter 2

All. (That is, the Bourne shell doesn't support any of the readline, history, and editing features
discussed in this chapter.)

Chapter 3

Aliases; prompt string customization; set options. The Bourne shell supports only the following: -e,
-k, -n, -t, -u, -v, -x, and -. It doesn't support option names (-o). The shopt built-in. Environment
files aren't supported. The following built-in variables aren't supported:

BASH BASH_VERSION
BASH_ENV BASH_VERSINFO
CDPATH DIRSTACK
FCEDIT GROUPS
HISTCMD HISTCONTROL
HISTFILE HISTIGNORE
HISTSIZE HISTFILESIZE
HOSTFILE HOSTNAME
HOSTTYPE IGNOREEOF
INPUTRC LANG
LC_ALL LC_COLLATE
LC_MESSAGES LINENO
MAILCHECK OLDPWD
OPTARG OPTERR
OPTIND OSTYPE
PROMPT_COMMAND PIPESTATUS
PS3 PS4
PWD RANDOM
REPLY SECONDS
SHELLOPTS SHLVL
TIMEFORMAT TMOUT
auto_resume histchars

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4

Functions; the type command; the local command; the ${#parameter} operator; pattern-matching
variable operators (%, %%, #, ##). Command-substitution syntax is different: use the older
`command` instead of $(command). The built-in pushd and popd commands.

Chapter 5

The ! keyword; the select construct isn't supported. The Bourne shell return doesn't exit a script
when it is sourced with . (dot).

Chapter 6

Use the external command getopt instead of getopts, but note that it doesn't really do the same
thing. Integer arithmetic isn't supported: use the external command expr instead of the
$((arithmetic-exp)) syntax. The arithmetic conditional ((arithmetic-exp)) isn't supported; use the
old condition test syntax and the relational operators -lt, -eq, etc. Array variables are not supported.
declare and let aren't supported.

Chapter 7

The command, builtin, and enable built-ins. The -e and -E options to echo are not supported. The
I/O redirectors >| and <> are not supported. None of the options to read is supported.

Chapter 8

Job control—specifically, the jobs, fg, and bg commands. Job number notation with %, i.e., the
kill and wait commands only accept process IDs. The - option to trap (reset trap to the default for
that signal). trap only accepts signal numbers, not logical names. The disown built-in.

Chapter 9

The DEBUG fake signal is not supported. The EXIT fake signal is supported as signal 0.

Chapter 10

The ulimit command and privileged mode aren't supported. The -S option to umask is not
supported. The Bourne shell's restrictive counterpart, rsh, only inhibits assignment to PATH.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.2 The IEEE 1003.2 POSIX Shell Standard
There have been many attempts to standardize UNIX. Hardware companies' monolithic attempts at market
domination, fragile industry coalitions, marketing failures, and other such efforts are the stuff of history—
and the stuff of frustration.

Only one standardization effort has not been tied to commercial interests: the Portable Operating System
Interface, known as POSIX. This effort started in 1981 with the /usr/group (now UniForum) Standards
Committee, which produced the /usr/group Standard three years later. The list of contributors grew to
include the Institute of Electrical and Electronic Engineers (IEEE) and the International Organization for
Standardization (ISO).

The first POSIX standard was published in 1988. This one, called IEEE P1003.1, covers low-level issues at
the system-call level. IEEE P1003.2, covering the shell, utility programs, and user interface issues, was
ratified in September 1992 after a six-year effort.

The POSIX standards were never meant to be rigid and absolute. The committee members certainly weren't
about to put guns to the heads of operating system implementors and force them to adhere. Instead, the
standards are designed to be flexible enough to allow for both coexistence of similar available software, so
that existing code isn't in danger of obsolescence, and the addition of new features, so that vendors have the
incentive to innovate. In other words, they are supposed to be the kind of third-party standards that vendors
might actually be interested in following.

As a result, most UNIX vendors currently comply with POSIX 1003.1. Now that POSIX 1003.2 is
available, the most important shells will undoubtedly adhere to it in the future. bash is no exception; it is
nearly 100% POSIX-compliant already and will continue to move towards full compliance in future
releases.

POSIX 1003.2 itself consists of two parts. The first, 1003.2, addresses shell script portability; it defines the
shell and the standard utilities. The second, 1003.2a, called the User Portability Extensions (UPE), defines
standards of interactive shell use and interactive utilities like the vi editor. The combined document—on the
order of 2000 pages—is available through the IEEE; for information, call (800) 678-IEEE.

The committee members had two motivating factors to weigh when they designed the 1003.2 shell standard.
On the one hand, the design had to accommodate, as much as possible, existing shell code written under
various Bourne-derived shells (the Version 7, System V, BSD, and Korn shells). These shells are different
in several extremely subtle ways, most of which have to do with the ways certain syntactic elements interact
with each other.

It must have been quite difficult and tedious to spell out these differences, let alone to reach compromises
among them. Throw in biases of some committee members towards particular shells, and you might
understand why it took six years to ratify 1003.2.

On the other hand, the shell design had to serve as a standard on which to base future shell implementations.
This implied goals of simplicity, clarity, and precision—objectives that seem especially elusive in the
context of the above problems.

The designers found one way of ameliorating this dilemma: they decided that the standard should include
not only the features included in the shell, but also those explicitly omitted and those included but with
unspecified functionality. The latter category allows some of the existing shells' innovations to "sneak
through" without becoming part of the standard, while listing omitted features helps programmers determine
which features in existing shell scripts won't be portable to future shells.

The POSIX standard is primarily based on the System V Bourne shell, which is a superset of the Version 7
shell discussed earlier in this appendix. Therefore you should assume that bash features that aren't present in
the Bourne shell also aren't included in the POSIX standard.

The following bash features are left "unspecified" in the standard, meaning that their syntax is acceptable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following bash features are left "unspecified" in the standard, meaning that their syntax is acceptable
but their functionality is not standardized:

· The other syntax for functions shown in Chapter 4 is supported; see the following discussion.

· The select control structure.

· Code blocks ({...}) are supported, but for maximum portability, the curly brackets should be quoted
(for reasons too complicated to go into here).

· Signal numbers are only allowed if the numbers for certain key signals (INT, TERM, and a few
others) are the same as on the most important historical versions of UNIX. In general, shell scripts
should use symbolic names for signals.

The POSIX standard supports functions, but the semantics are weaker: it is not possible to define local
variables, and functions can't be exported.

The command lookup order has been changed to allow certain built-in commands to be overridden by
functions—since aliases aren't included in the standard. Built-in commands are divided into two sets by
their positions in the command lookup order: some are processed before functions, some after. Specifically,
the built-in commands break, : (do nothing), continue, .(source), eval, exec, exit, export, readonly,
return, set, shift, trap, and unset take priority over functions.

Finally, because the POSIX standard is meant to promote shell script portability, it explicitly avoids
mention of features that only apply to interactive shell use— including aliases, editing modes, control keys,
and so on. The UPE covers these. It also avoids mentioning certain fundamental implementation issues: in
particular, there is no requirement that multitasking be used for background jobs, subshells, etc. This was
done to allow portability to non-multitasking systems like MS-DOS, so that, for example, the MKS Toolkit
(see the following discussion) can be POSIX-compliant.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.3 The Korn Shell
One of the first major alternatives to the "traditional" shells, Bourne and C, was the Korn shell, publicly
released in 1986 as part of AT&T's "Experimental Toolchest." The Korn shell was written by David Korn at
AT&T. The first version was unsupported, but eventually UNIX System Laboratories (USL) decided to
give it support when they released it with their version of UNIX (System V Release 4) in 1989. The
November 1988 Korn shell is the most widely used version of this shell.

The 1988 release is not fully POSIX-compliant—less so than bash. The latest release (1993) has brought
the Korn shell into better compliance as well as providing more features and streamlining existing features.

Unlike bash, the Korn shell is a commercial product; the source code is not available and you have to
purchase the executable (which is usually bundled with the other utilities on most commercial versions of
UNIX).

The 1988 Korn shell and bash share many features, but there are some important differences in the Korn
shell:

· Functions are more like separate entities than part of the invoking shell (traps and options are not
shared with the invoking shell).

· Coroutines are supported. Two processes can communicate with one another by using the print
and read commands.

· The command print replaces echo. print can have a file descriptor specified and can be used to
communicate with coroutines.

· Function autoloading is supported. Functions are read into memory only when they are called.

· String conditional tests have a new syntax of the form [[...]].

· There is an additional "fake" signal, ERR. This signal is sent when a script or function exits with a
non-zero status.

· One-dimensional arrays are supported, although they are limited to a maximum size of 1024
elements.

· Filename generation capabilities are substantially increased by expanding on pattern matching and
including regular expression operators.

· The history list is kept in a file rather than in memory. This allows concurrent instantiations of the
shell to access the same history list, a possible advantage in certain circumstances.

· There is no default startup file. If the environment variable ENV is not defined, nothing is read.

· The type command is replaced with the more restrictive whence.

· The primary prompt string (PS1) doesn't allow escaped commands.

· There are no built-in equivalents to builtin, command, and enable.

· There is no provision for key bindings and no direct equivalent to readline.

· There are no built-in equivalents to pushd, popd, and dirs. They have to be defined as functions if
you want them.

· The history substitution mechanism is not supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

· Brace expansion is not supported in the default configuration, but is a compile-time option.

· ! is not a keyword.

· Prompt strings don't allow backslash-escaped special characters.

· There is no provision for online help.

· Many of the bash environment variables don't exist, notably:

BASH BASH_VERSION
BASH_VERSINFO DIRSTACK
EUID FIGNORE
GLOBIGNORE HISTCMD
HISTFILESIZE HISTIGNORE
HISTCONTROL HOSTFILE
HOSTNAME HOSTTYPE
IGNOREEOF INPUTRC
MACHTYPE OPTERR
OSTYPE PROMPT_COMMAND
PIPESTATUS SHELLOPTS
SHLVL TIMEFORMAT
UID auto_resume
histchars

In addition, the startup and environment files for Korn are different, consisting of .profile and the file
specified by the ENV variable. The default environment file can be overridden by using the variable ENV.
There is no logout file.

For a more detailed list of the differences between bash and the 1988 Korn shell, plus differences with the
1993 Korn shell, see the FAQ file in the doc directory of the bash archive.

The Korn shell is a good alternative to bash. Its only major drawbacks are that it isn't freely available and is
upgraded only every few years.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.4 pdksh
A free alternative to bash is a version of the Korn shell known as pdksh (standing for Public Domain Korn
shell). pdksh is available as source code in various places on the Internet, including the USENET
newsgroup comp.sources.unix, and the pdksh World Wide Web home page
(http://www.cs.mun.ca/~michael/pdksh/) of the current maintainer, Michael Rendell.

pdksh was originally written by Eric Gisin, who based it on Charles Forsyth's public domain Version 7
Bourne shell. It has all Bourne shell features plus some of the POSIX extensions and a few features of its
own.

pdksh's additional features include user-definable tilde notation, in which you can set up ~ as an
abbreviation for anything, not just usernames.

Otherwise, pdksh lacks a few features of the official Korn version and bash. In particular, it lacks the
following bash features:

· The built-in variable PS4

· The advanced I/O redirectors >| and <>

· The options errexit, noclobber, and privileged

One important advantage that pdksh has over bash is that the executable is only about a third the size and it
runs considerably faster. Weighed against this is that it is less POSIX-compliant, has had numerous people
add code to it (so it hasn't been as strongly controlled as bash), and isn't as polished a product as bash (for
example, the documentation isn't anywhere near as detailed or complete).

However, pdksh is a worthwhile alternative for those who want something other than bash and can't obtain
the Korn shell.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A.5 Workalikes on PC Platforms
The proliferation of shells has not stopped at the boundaries of UNIX-dom. Many programmers who got
their initial experience on UNIX systems and subsequently crossed over into the PC world wished for a nice
UNIX-like environment (especially when faced with the horrors of the MS-DOS command line!), so it's not
surprising that several UNIX shell-style interfaces to small-computer operating systems have appeared,
Bourne shell emulations among them.

A Korn shell workalike is provided in the MKS Toolkit, available from Mortice Kern Systems, Inc. The
Toolkit is actually a complete UNIX-like environment for MS-DOS (version 2.0 and later) and OS/2
(version 1.2 and later). In addition to its shell, it comes with a vi editor and many UNIX-style utilities,
including major ones like awk, uucp, and make.

The MKS shell itself is very much compatible with the 1988 UNIX Korn shell, and it has a well-written
manual.

Most of the differences between the MKS shell and the Korn shell and bash are due to limitations in the
underlying operating systems rather than the shell itself. Most importantly, MS-DOS does not support
multitasking or file permissions, so the MS-DOS version supports none of the relevant features. The OS/2
version doesn't support file permissions either.

If you want to know more details about the differences between the 1988 Korn shell and the MKS shell, see
Appendix A, Related Shells, of the O'Reilly & Associates Nutshell Handbook, Learning the Korn Shell, by
Bill Rosenblatt.

Many UNIX users who have moved to DOS PCs swear by the MKS Toolkit; it's inexpensive, and it makes
MS-DOS into a reasonable environment for advanced users and software developers.

The Toolkit is available through most dealers that sell software tools, or through MKS itself. For more
information, contact:

MKS
185 Columbia Street West
Waterloo, Ontario, Canada N2L 5Z5

Or electronically as follows:

Telephone (800) 265-2797 (US & Canada)
Fax (519) 884 8861
Internet info@mks.com
CompuServe 73260,1043
BIX mks
WWW http://www.mks.com/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B. Reference Lists
Section B.1. Invocation

Section B.2. Built-In Commands and Reserved Words

Section B.3. Environment Variables

Section B.4. Test Operators

Section B.5. set Options

Section B.6. shopt Options

Section B.7. I/O Redirection

Section B.8. emacs Mode Commands

Section B.9. vi Control Mode Commands

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.1 Invocation

Table 2.1 and Table 2.2 list the options you can use when invoking bash 2.x and 1.x, respectively. [B]The
multicharacter options must appear on the command line before the single-character options. In addition to
these, any set option can be used on the command line; see Table 2.6. Login shells are usually invoked with
the options -i (interactive), -s (read from standard input), and -m (enable job control).

[B] At the time of writing, the old 1.x versions of bash are still widely used. We strongly recommend that you
upgrade to the latest version. We have included a table of old options (Table 2.2) just in case you encounter an
old version of the shell.

Table B.1. Command-Line Options

Option Meaning

-c string Commands are read from string, if present. Any arguments after string are interpreted as
positional parameters, starting with $0.

-D
A list of all double-quoted strings preceded by $ is printed on the standard ouput. These are the
strings that are subject to language translation when the current locale is not C or POSIX. This
also turns on the -n option.

-i Interactive shell. Ignore signals TERM, INT, and QUIT. With job control in effect, TTIN,
TTOU, and TSTP are also ignored.

-o option Takes the same arguments as set -o.

-s
Read commands from the standard input. If an argument is given to bash, this flag takes
precedence (i.e., the argument won't be treated as a script name and standard input will be
read).

-r Restricted shell. See Chapter 10.

- Signals the end of options and disables further option processing. Any options after this are
treated as filenames and arguments. -- is synonymous with -.

--dump-
strings Does the same as -D.

--help Displays a usage message and exits.
--login Makes bash act as if invoked as a login shell.
--
noediting Does not use the GNU readline library to read command lines if interactive.

--
noprofile Does not read the startup file /etc/profile or any of the personal initialization files.

--norc Does not read the initialization file ~/.bashrc if the shell is interactive. This is on by default if
the shell is invoked as sh.

--posix Changes the behavior of bash to follow the POSIX guidelines more closely where the default
operation of bash is different.

--quiet Shows no information on shell startup. This is the default.
--rcfile
file

Executes commands read from file instead of the initialization file ~/.bashrc, if the shell is
interactive.

--version Shows the version number of this instance of bash and then exits.
Table B.2. Old Command-Line Options

Option Meaning

-c string Commands are read from string, if present. Any arguments after string are
interpreted as positional parameters, starting with $0.

-i Interactive shell. Ignore signals TERM, INT, and QUIT. With job control in effect,
TTIN, TTOU, and TSTP are also ignored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TTIN, TTOU, and TSTP are also ignored.

-s
Read commands from the standard input. If an argument is given to bash, this flag
takes precedence (i.e., the argument won't be treated as a script name and standard
input will be read).

-r Restricted shell. See Chapter 10.

- Signals the end of options and disables further option processing. Any options after
this are treated as filenames and arguments. -- is synonymous with -.

-norc Does not read the initialization file ~/.bashrc if the shell is interactive. This is on by
default if the shell is invoked as sh.

-noprofile Does not read the startup file /etc/profile or any of the personal initialization files.

-rcfile file Executes commands read from file instead of the initialization file ~/.bashrc, if the
shell is interactive.

-version Shows the version number of this instance of bash when starting.
-quiet Shows no information on shell startup. This is the default.
-login Makes bash act as if invoked as a login shell.
-
nobraceexpansion Does not perform curly brace expansion.

-nolineediting Does not use the GNU readline library to read command lines if interactive.

-posix Changes the behavior of bash to follow the POSIX guidelines more closely where
the default operation of bash is different.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.2 Built-In Commands and Reserved Words
Table 2.3 shows a summary of all built-in commands and reserved words.

Table B.3. Commands and Reserved Words

Command Chapter Summary
! 5 Reserved word. Logical NOT of a command exit status.
: 7 Do nothing (just do expansions of any arguments).
. 4 Read file and execute its contents in current shell.
alias 3 Set up shorthand for command or command line.
bg 8 Put job in background.
bind 2 Bind a key sequence to a readline function or macro.
break 5 Exit from surrounding for, select, while, or until loop.
builtin 5 Execute the specified shell built-in.
case 5 Reserved word. Multi-way conditional construct.
cd 1 Change working directory.
command 7 Run a command bypassing shell function lookup.
continue Skip to next iteration of for, select, while, or until loop.
declare 6 Declare variables and give them attributes.
dirs 6 Display the list of currently remembered directories.
disown 8 Remove a job from the job table.
do 5 Reserved word. Part of a for, select, while, or until looping construct.
done 5 Reserved word. Part of a for, select, while, or until looping construct.
echo 4 Expand and print any arguments.
elif 5 Reserved word. Part of an if construct.
else 5 Reserved word. Part of an if construct.
enable 7 Enable and disable built-in shell commands.
esac 5 Reserved word. Part of a case construct.
eval 7 Run the given arguments through command-line processing.
exec 9 Replace the shell with the given program.
exit 5 Exit from the shell.
export 3 Create environment variables.
fc 2 Fix command (edit history file).
fg 8 Put background job in foreground.
fi 5 Reserved word. Part of an if construct.
for 5 Reserved word. Looping construct.
function 4 Define a function.
getopts 6 Process command-line options.
hash 3 Full pathnames are determined and remembered.
help 1 Display helpful information on built-in commands.
history 1 Display command history.
if 5 Reserved word. Conditional construct.
in 5 Reserved word. Part of a case construct.
jobs 1 List any background jobs.
kill 8 Send a signal to a process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

let 6 Arithmetic variable assignment.
local 4 Create a local variable.
logout 1 Exits a login shell.
popd 4 Removes a directory from the directory stack.
pushd 4 Adds a directory to the directory stack.
pwd 1 Print the working directory.
read 7 Read a line from standard input.
readonly 6 Make variables read-only (unassignable).
return 5 Return from the surrounding function or script.
select 5 Reserved word. Menu-generation construct.
set 3 Set options.
shift 6 Shift command-line arguments.
suspend Suspend execution of a shell.
test 5 Evaluates a conditional expression.
then 5 Reserved word. Part of an if construct.

time Reserved word. Run command pipeline and print execution times. The format of
the output can be controlled with TIMEFORMAT.

times Print the accumulated user and system times for processes run from the shell.
trap 8 Set up a signal-catching routine.
type 3 Identify the source of a command.
typeset 6 Declare variables and give them attributes. Same as declare.
ulimit 10 Set/show process resource limits.
umask 10 Set/show file permission mask.
unalias 3 Remove alias definitions.
unset 3 Remove definitions of variables or functions.
until 5 Reserved word. Looping construct.
wait 8 Wait for background job(s) to finish.
while 5 Reserved word. Looping construct.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.3 Environment Variables
Table 2.4 shows a complete list of environment variables available in bash 2.0. The letters in the Type
column of the table have the following meanings: A = Array, L = colon separated list, R = read-only, U =
unsetting it causes it to lose its special meaning.

Note that the variables BASH_VERSINFO, DIRSTACK, GLOBIGNORE, GROUPS, HISTIGNORE,
HOSTNAME, LANG, LC_ALL, LC_COLLATE, LC_MESSAGE, MACHTYPE, PIPESTATUS,
SHELLOPTS, and TIMEFORMAT are not available in versions prior to 2.0. BASH_ENV replaces ENV
found in earlier versions.

Table B.4. Environment Variables

Variable Chapter Type Description
* 4 R The positional parameters given to the current script or function.
@ 4 R The positional parameters given to the current script or function.
4 R The number of arguments given to the current script or function.
- R Options given to the shell on invocation.
? 5 R Exit status of the previous command.
 R Last argument to the previous command.
$ 8 R Process ID of the shell process.
! 8 R Process ID of the last background command.
0 4 R Name of the shell or shell script.
BASH 3 The full pathname used to invoke this instance of bash.

BASH_ENV 3 The name of a file to run as the environment file when the shell
is invoked.

BASH_VERSION 3 The version number of this instance of bash.

BASH_VERSINFO 3,6 AR Version information for this instance of bash. Each element of
the array holds parts of the version number.

CDPATH 3 L A list of directories for the cd command to search.
DIRSTACK 4,6 ARU The current contents of the directory stack.
EUID R The effective user ID of the current user.
FCEDIT 2 The default editor for fc command.
FIGNORE L A list of names to ignore when doing filename completion.

GLOBIGNORE L A list of patterns defining filenames to ignore during pathname
expansion.

GROUPS AR An array containing a list of groups of which the current user is
a member.

IFS 7 The Internal Field Separator: a list of characters that act as word
separators. Normally set to SPACE, TAB, and NEWLINE.

HISTCMD 3 U The history number of the current command.
HISTCONTROL 3 Controls what is entered in the command history.
HISTFILE 2 The name of the command history file.

HISTIGNORE 3 A list of patterns to decide what should be retained in the
history list.

HISTSIZE 2 The number of lines kept in the command history.
HISTFILESIZE 3 The maximum number of lines kept in the history file.
HOME 3 The home (login) directory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HOSTFILE 3 The file to be used for hostname completion.
HOSTNAME The name of the current host.
HOSTTYPE 3 The type of machine bash is running on.

IGNOREEOF 3 The number of EOF characters received before exiting an
interactive shell.

INPUTRC 2 The readline startup file.

LANG Used to determine the locale category for any category not
specifically selected with a variable starting with LC_.

LC_ALL Overrides the value of LANG and any other LC_ variable
specifying a locale category.

LC_COLLATE Determines the collation order used when sorting the results of
pathname expansion.

LC_MESSAGES This variable determines the locale used to translate double-
quoted strings preceded by a $.

LINENO 9 U The number of the line that just ran in a script or function.
MACHTYPE A string describing the system on which bash is executing.
MAIL 3 The name of the file to check for new mail.
MAILCHECK 3 How often (in seconds) to check for new mail.
MAILPATH 3 L A list of file names to check for new mail, if MAIL is not set.
OLDPWD 3 The previous working directory.
OPTARG 6 The value of the last option argument processed by getopts.
OPTERR 6 If set to 1, display error messages from getopts.
OPTIND 6 The number of the first argument after options.
OSTYPE The operating system on which bash is executing.
PATH 3 L The search path for commands.

PIPESTATUS 6 A An array variable containing a list of exit status values from the
processes in the most recently executed foreground pipeline.

PROMPT_COMMAND The value is executed as a command before the primary prompt
is issued.

PS1 3 The primary command prompt string.
PS2 3 The prompt string for line continuations.
PS3 5 The prompt string for the select command.
PS4 9 The prompt string for the xtrace option.
PPID 8 R The process ID of the parent process.
PWD 3 The current working directory.
RANDOM 9 U A random number between 0 and 32767 (215-1).

REPLY 5, 7 The user's response to the select command; result of the read
command if no variable names are given.

SECONDS 3 U The number of seconds since the shell was invoked.
SHELL 3 The full pathname of the shell.
SHELLOPTS LR A list of enabled shell options.
SHLVL Incremented by one each time an instance of bash is invoked.

TIMEFORMAT Specifies the format for the output from using the time reserved
word on a command pipeline.

TMOUT 10 If set to a positive integer, the number of seconds after which
the shell automatically terminates if no input is received.

UID R The user ID of the current user.
auto_resume Controls how job control works.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

histchars Specifies what to use as the history control characters. Normally
set to the string `!#'.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.4 Test Operators
Table 2.5 lists the operators that are used with test and the [...] construct. They can be logically combined
with -a ("and") and -o ("or") and grouped with escaped parenthesis (\(... \)). The string comparisons < and
> are not available in versions of bash prior to 2.0.

Table B.5. Test Operators

Operator True If...
-b file file exists and is a block device file
-c file file exists and is a character device file
-d file file exists and is a directory
-e file file exists
-f file file exists and is a regular file
-g file file exists and has its setgid bit set
-G file file exists and is owned by the effective group ID
-k file file exists and has its sticky bit set
-L file file exists and is a symbolic link
-n string string is non-null
-O file file exists and is owned by the effective user ID
-p file file exists and is a pipe or named pipe (FIFO file)
-r file file exists and is readable
-s file file exists and is not empty
-S file file exists and is a socket
-t N File descriptor N points to a terminal
-u file file exists and has its setuid bit set
-w file file exists and is writeable
-x file file exists and is executable, or file is a directory that can be searched
-z string string has a length of zero
fileA -nt fileB fileA is newer than fileB
fileA -ot fileB fileA is older than fileB
fileA -ef fileB fileA and fileB point to the same file
stringA = stringB stringA equals stringB
stringA != stringB stringA does not match stringB
stringA < stringB stringA sorts before stringB lexicographically
stringA > stringB stringA sorts after stringB lexicographically
exprA -eq exprB Arithmetic expressions exprA and exprB are equal
exprA -ne exprB Arithmetic expressions exprA and exprB are not equal
exprA -lt exprB exprA is less than exprB
exprA -gt exprB exprA is greater than exprB
exprA -le exprB exprA is less than or equal to exprB
exprA -ge exprB exprA is greater than or equal to exprB
exprA -a exprB exprA is true and exprB is true
exprA -o exprB exprA is true or exprB is true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.5 set Options
Table 2.6 lists the options that can be turned on with the set -arg command. All are initially off except
where noted. Full Names, where listed, are arguments to set that can be used with set -o. The Full Names
braceexpand, histexpand, history, keyword, and onecmd are not available in versions of bash prior to
2.0. Also, in those versions, hashing is switched with -d.

Table B.6. Options to set

Option Full Name Meaning
-a allexport Export all subsequently defined or modified variables.
-B braceexpand The shell performs brace expansion. This is on by default.
-b notify Report the status of terminating background jobs immediately.
-C noclobber Don't allow redirection to overwrite existing files.

-e errexit
Exit the shell when a simple command exits with non-zero status. A simple
command is a command not part of a while, until, or if; or part of a && or || list;
or a command whose return value is inverted by !.

 emacs Use emacs-style command-line editing.
-f noglob Disable pathname expansion.
-H histexpand Enable ! style history substitution. On by default in an interactive shell.
 history Enable command history. On by default in interactive shells.
-h hashall Disable the hashing of commands.
 ignoreeof Disallow CTRL-D to exit the shell.
-k keyword Place keyword arguments in the environment for a command.
-m monitor Enable job control (on by default in interactive shells).

-n noexec Read commands and check syntax but do not execute them. Ignored for
interactive shells.

-P physical Do not follow symbolic links on commands that change the current directory. Use
the physical directory.

-p privileged Script is running in suid mode.

 posix Change the default behavior to that of POSIX 1003.2 where it differs from the
standard.

-t onecmd Exit after reading and executing one command.
-u nounset Treat undefined variables as errors, not as null.
-v verbose Print shell input lines before running them.
 vi Use vi-style command-line editing.
-x xtrace Print commands (after expansions) before running them.

-
Signals the end of options. All remaining arguments are assigned to the positional
parameters. -x and -v are turned off. If there are no remaining arguments to set,
the positional arguments remain unchanged.

--
With no arguments following, unset the positional parameters. Otherwise, the
positional parameters are set to the following arguments (even if they begin with
-).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.6 shopt Options
The shopt options are set with shopt -sarg and unset with shopt -uarg. See Table 2.7 for options to shopt.
Versions of bash prior to 2.0 had environment variables to perform some of these settings. Setting them
equated to shopt -s.

The variables (and corresponding shopt options) were: allow_null_glob_expansion (nullglob),
cdable_vars (cdable_vars), command_oriented_history (cmdhist), glob_dot_filenames (dotglob),
no_exit_on_failed_exec (execfail). These variables no longer exist.

Table B.7. Options to shopt

Option Meaning if Set

cdable_vars An argument to cd that is not a directory is assumed to be the name of a
variable whose value is the directory to change to.

cdspell
Minor errors in the spelling of a directory supplied to the cd command will be
corrected if there is a suitable match. This correction includes missing letters,
incorrect letters, and letter transposition. It works for interactive shells only.

checkhash Commands found in the hash table are checked for existence before being
executed and non-existence forces a PATH search.

checkwinsize Checks the window size after each command and, if it has changed, updates the
variables LINES and COLUMNS accordingly.

cmdhist Attempt to save all lines of a multiline command in a single history entry.
dotglob Filenames beginning with a . are included in pathname expansion.

execfail A non-interactive shell will not exit if it cannot execute the argument to an
exec. Interactive shells do not exit if exec fails.

expand_aliases Aliases are expanded.

histappend The history list is appended to the file named by the value of the variable
HISTFILE when the shell exits, rather than overwriting the file.

histreedit If readline is being used, the opportunity is given for re-editing a failed history
substitution.

histverify
If readline is being used, the results of history substitution are not immediately
passed to the shell parser. Instead, the resulting line is loaded into the readline
editing buffer, allowing further modification.

hostcomplete If readline is being used, an attempt will be made to perform hostname
completion when a word beginning with @ is being completed.

interactive_comments Allows a word beginning with # and all subsequent characters on the line to be
ignored in an interactive shell.

lithist If the cmdhist option is enabled, multiline commands are saved to the history
with embedded newlines rather than using semicolon separators where possible.

mailwarn If the file being checked for mail has been accessed since the last time it was
checked, the message "The mail in mailfile has been read" is displayed.

nullglob Allows patterns which match no files to expand to null strings rather than
themselves.

promptvars Prompt strings undergo variable and parameter expansion after being expanded.

shift_verbose The shift built-in prints an error if it has shifted past the last positional
parameter.

sourcepath The source built-in uses the value of PATH to find the directory containing the
file supplied as an argument.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.7 I/O Redirection
Table 2.8 shows a complete list of I/O redirectors. (This table is also included earlier as Table 7.1.) Note
that there are two formats for specifying standard output and error redirection: &>file and >&file. The
second of these, and the one used throughout this book, is the preferred way.

Table B.8. I/O Redirectors

Redirector Function
cmd1 | cmd2 Pipe; take standard output of cmd1 as standard input to cmd2
> file Direct standard output to file
< file Take standard input from file
>> file Direct standard output to file; append to file if it already exists
>| file Force standard output to file even if noclobber is set
n>| file Force output to file from file descriptor n
 even if noclobber set
<> file Use file as both standard input and standard output
n<> file Use file as both input and output for file descriptor n
<< label Here-document
n> file Direct file descriptor n to file
n< file Take file descriptor n from file
>> file Direct file descriptor n to file; append to file if it already exists
n>& Duplicate standard output to file descriptor n
n<& Duplicate standard input from file descriptor n
n>&m File descriptor n is made to be a copy of the output file descriptor
n<&m File descriptor n is made to be a copy of the input file descriptor
&>file Directs standard output and standard error to file
<&- Close the standard input
>&- Close the standard output
n>&- Close the output from file descriptor n
n<&- Close the input from file descriptor n

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.8 emacs Mode Commands
Table 2.9 shows a complete list of emacs editing mode commands.

Table B.9. emacs Mode Commands

Command Meaning
CTRL-A Move to beginning of line
CTRL-B Move backward one character
CTRL-D Delete one character forward
CTRL-E Move to end of line
CTRL-F Move forward one character
CTRL-G Abort the current editing command and ring the terminal bell
CTRL-J Same as RETURN
CTRL-K Delete (kill) forward to end of line
CTRL-L Clear screen and redisplay the line
CTRL-M Same as RETURN
CTRL-N Next line in command history
CTRL-O Same as RETURN, then display next line in history file
CTRL-P Previous line in command history
CTRL-R Search backward
CTRL-S Search forward
CTRL-T Transpose two characters
CTRL-U Kill backward from point to the beginning of line
CTRL-V Make the next character typed verbatim
CTRL-V TAB Insert a TAB
CTRL-W Kill the word behind the cursor, using whitespace as the boundary
CTRL-X / List the possible filename completions of the current word
CTRL-X ~ List the possible username completions of the current word
CTRL-X $ List the possible shell variable completions of the current word
CTRL-X @ List the possible hostname completions of the current word
CTRL-X ! List the possible command name completions of the current word
CTRL-X (Begin saving characters into the current keyboard macro
CTRL-X) Stop saving characters into the current keyboard macro
CTRL-X e Re-execute the last keyboard macro defined
CTRL-X CTRL-R Read in the contents of the readline initialization file
CTRL-X CTRL-V Display version information on this instance of bash
CTRL-Y Retrieve (yank) last item killed
DEL Delete one character backward
CTRL-[Same as ESC (most keyboards)
ESC-B Move one word backward
ESC-C Change word after point to all capital letters
ESC-D Delete one word forward
ESC-F Move one word forward
ESC-L Change word after point to all lowercase letters
ESC-N Non-incremental forward search
ESC-P Non-incremental reverse search

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ESC-R Undo all the changes made to this line
ESC-T Transpose two words
ESC-U Change word after point to all uppercase letters
ESC-CTRL-E Perform shell alias, history, and word expansion on the line
ESC-CTRL-H Delete one word backward
ESC-CTRL-Y Insert the first argument to the previous command (usually the second word) at point
ESC-DEL Delete one word backward
ESC-^ Perform history expansion on the line
ESC-< Move to first line of history file
ESC-> Move to last line of history file
ESC-. Insert last word in previous command line after point
ESC-_ Same as above
TAB Attempt filename completion on current word
ESC-? List the possible completions of the text before point
ESC-/ Attempt filename completion on current word
ESC-~ Attempt username completion on current word
ESC-$ Attempt variable completion on current word
ESC-@ Attempt hostname completion on current word
ESC-! Attempt command name completion on current word
ESC-TAB Attempt completion from text in the command history
ESC-~ Attempt tilde expansion on the current word
ESC-\ Delete all the spaces and TABs around point
ESC-* Insert all of the completions that would be generated by ESC-= before point
ESC-= List the possible completions before point
ESC-{ Attempt filename completion and return the list to the shell enclosed within braces

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

B.9 vi Control Mode Commands
Table 2.10 shows a complete list of all vi control mode commands.

Table B.10. vi Control Mode Commands

Command Meaning
h Move left one character
l Move right one character
w Move right one word
b Move left one word
W Move to beginning of next non-blank word
B Move to beginning of preceding non-blank word
e Move to end of current word
E Move to end of current non-blank word
0 Move to beginning of line
^ Move to first non-blank character in line
$ Move to end of line
i Insert text before current character
a Insert text after current character
I Insert text at beginning of line
A Insert text at end of line
R Overwrite existing text
dh Delete one character backward
dl Delete one character forward
db Delete one word backward
dw Delete one word forward
dB Delete one non-blank word backward
dW Delete one non-blank word forward
d$ Delete to end of line
d0 Delete to beginning of line
D Equivalent to d$ (delete to end of line)
dd Equivalent to 0d$ (delete entire line)
C Equivalent to c$ (delete to end of line, enter input mode)
cc Equivalent to 0c$ (delete entire line, enter input mode)
x Equivalent to dl (delete character forwards)
X Equivalent to dh (delete character backwards)
k or - Move backward one line
j or + Move forward one line
G Move to line given by repeat count
/string Search forward for string
?string Search backward for string
n Repeat search forward
N Repeat search backward
fx Move right to next occurrence of x
Fx Move left to previous occurrence of x

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tx Move right to next occurrence of x, then back one space
Tx Move left to previous occurrence of x, then forward one space
; Redo last character finding command
, Redo last character finding command in opposite direction
\ Do filename completion
* Do wildcard expansion (onto command line)
\= Do wildcard expansion (as printed list)
~ Invert (twiddle) case of current character(s)
_ Append last word of previous command, enter input mode
CTRL-L Start a new line and redraw the current line on it
Prepend # (comment character) to the line and send it to history

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix C. Loadable Built-Ins
bash 2.0 introduces a new feature that increases the flexibility of the shell: dynamically loadable built-ins.
On systems that support dynamic loading, you can write your own built-ins in C, compile them into shared
objects, and load them at any time from within the shell with the enable built-in (see Chapter 7, for details
on all of the enable options).

This appendix will discuss briefly how to go about writing a built-in and loading it in bash. The discussion
assumes that you have experience with writing C programs, compiling, and linking them.

The bash archive contains a number of pre-written built-ins in the directory examples/loadables/. You can
build them by uncommenting the lines in the file Makefile that are relevent to your system, and typing
make. We'll take one of these built-ins, tty, and use it as a "case study" for built-ins in general.

tty will mimic the standard UNIX command tty. It will print the name of the terminal that is connected to
standard input. The built-in will, like the command, return true if the device is a TTY and false if it isn't. In
addition, it will take an option, -s, which specifies that it should work silently, i.e., print nothing and just
return a result.

The C code for a built-in can be divided into three distinct sections: the code that implements the
functionality of the built-in, a help text message definition, and a structure describing the built-in so that
bash can access it.

The description structure is quite straightforward and takes the form:

struct builtin structname = {
 "builtin_name",
 function_name,
 BUILTIN_ENABLED,
 help_array,
 "usage",
 0
};

builtin_name is the name of the built-in as it appears in bash. The next field, function-name, is the name of
the C function that implements the built-in. We'll look at this in a moment. BUILTIN_ENABLED is the
initial state of the built-in; whether it is enabled or not. This field should always be set to
BUILTIN_ENABLED. help_array is an array of strings which are printed when help is used on the built-
in. usage is the shorter form of help; the command and its options. The last field in the structure should be
set to 0.

In our example we'll call the built-in tty, the C function tty_builtin, and the help array tty_doc. The usage
string will be tty [-s]. The resulting structure looks like this:

struct builtin tty_struct = {
 "tty",
 tty_builtin,
 BUILTIN_ENABLED,
 tty_doc,
 "tty [-s]",
 0
};

The next section is the code that does the work. It looks like this:

tty_builtin (list)
 WORD_LIST *list;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WORD_LIST *list;
{
 int opt, sflag;
 char *t;

 reset_internal_getopt ();
 sflag = 0;
 while ((opt = internal_getopt (list, "s")) != -1)
 {
 switch (opt)
 {
 case 's':
 sflag = 1;
 break;
 default:
 builtin_usage ();
 return (EX_USAGE);
 }
 }
 list = loptend;

 t = ttyname (0);
 if (sflag == 0)
 puts (t ? t : "not a tty");
 return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);
}

Built-in functions are always given a pointer to a list of type WORD_LIST. If the built-in doesn't actually
take any options, you must call no_options(list) and check its return value before any further processing. If
the return value is non-zero, your function should immediately return with the value EX_USAGE.

You must always use internal_getopt rather than the standard C library getopt to process the built-in
options. Also, you must reset the option processing first by calling reset_internal_getopt.

Option processing is performed in the standard way, except if the options are incorrect, in which case you
should return EX_USAGE. Any arguments left after option processing are pointed to by loptend. Once the
function is finished, it should return the value EXECUTION_SUCCESS or EXECUTION_FAILURE.

In the case of our tty built-in, we then just call the standard C library routine ttyname, and if the -s option
wasn't given, print out the name of the tty (or "not a tty" if the device wasn't). The function then returns
success or failure, depending upon the result from the call to ttyname.

The last major section is the help definition. This is simply an array of strings, the last element of the array
being NULL. Each string is printed to standard output when help is run on the built-in. You should,
therefore, keep the strings to 76 characters or less (An 80-character standard display minus a 4-character
margin). In the case of tty, our help text looks like this:

char *tty_doc[] = {
 "tty writes the name of the terminal that is opened for standard",
 "input to standard output. If the `-s' option is supplied, nothing",
 "is written; the exit status determines whether or not the standard",
 "input is connected to a tty.",
 (char *)NULL
};

The last things to add to our code are the necessary C header files. These are stdio.h and the bash header
files config.h, builtins.h, shell.h, and bashgetopt.h.

Here is the C program in its entirety:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "config.h"
#include <stdio.h>
#include "builtins.h"
#include "shell.h"
#include "bashgetopt.h"

extern char *ttyname ();

tty_builtin (list)
 WORD_LIST *list;
{
 int opt, sflag;
 char *t;

 reset_internal_getopt ();
 sflag = 0;
 while ((opt = internal_getopt (list, "s")) != -1)
 {
 switch (opt)
 {
 case 's':
 sflag = 1;
 break;
 default:
 builtin_usage ();
 return (EX_USAGE);
 }
 }
 list = loptend;

 t = ttyname (0);
 if (sflag == 0)
 puts (t ? t : "not a tty");
 return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);
}

char *tty_doc[] = {
 "tty writes the name of the terminal that is opened for standard",
 "input to standard output. If the `-s' option is supplied, nothing",
 "is written; the exit status determines whether or not the standard",
 "input is connected to a tty.",
 (char *)NULL
};

struct builtin tty_struct = {
 "tty",
 tty_builtin,
 BUILTIN_ENABLED,
 tty_doc,
 "tty [-s]",
 0
};

We now need to compile and link this as a dynamic shared object. Unfortunately, different systems have
different ways to specify how to compile dynamic shared objects. Table 3.1 lists some common systems and
the commands needed to compile and link tty.c. Replace archive with the path of the top level of the bash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the commands needed to compile and link tty.c. Replace archive with the path of the top level of the bash
archive.

Table C.1. Shared Object Compilation

System Commands
SunOS 4 cc -pic -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
 ld -assert pure-text -o tty tty.o
SunOS 5 cc -K pic -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
 cc -dy -z text -G -i -h tty -o tty tty.o
SVR4, SVR4.2, Irix cc -K PIC -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
 ld -dy -z text -G -h tty -o tty tty.o
AIX cc -K -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
 ld -bdynamic -bnoentry -bexpall -G -o tty tty.o
Linux cc -fPIC -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
 ld -shared -o tty tty.o
NetBSD, FreeBSD cc -fpic -Iarchive -Iarchive/builtins -Iarchive/lib -c tty.c
 ld -x -Bshareable -o tty tty.o

Further examples are given in the file examples/loadables/Makefile in the archive.

After you have compiled and linked the program, you should have a shared object called tty. To load this
into bash, just type enable -f path/tty tty, where path is the full pathname of the shared object. You can
remove a loaded built-in at any time with the -d option, e.g., enable -d tty.

You can put as many built-ins as you like into one shared object; all you need are the three main sections
that we saw above for each built-in in the same C file. It is best, however, to keep the number of built-ins
per shared object small. You will also probably find it best to keep similar built-ins, or built-ins that work
together (e.g., pushd, popd, dirs), in the same shared object.

bash loads a shared object as a whole, so if you ask it to load one built-in from a shared object that has
twenty built-ins, it will load all twenty (but only one will be enabled). For this reason, keep the number of
built-ins small to save loading memory with unnecessary things, and group similar built-ins so that if the
user enables one of them, all of them will be loaded and ready in memory for enabling.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix D. Syntax

Section D.1. Reserved Words

Section D.2. BNF for bash

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.1 Reserved Words
The following words are reserved words and have a special meaning to the shell when they are unquoted:

if then else elif fi case
esac for while until do done
function in select ! { }
time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

D.2 BNF for bash
The following is the syntax of bash 2.0 in Backus-Naur Form (BNF):

<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
 A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

<digit> ::= 0|1|2|3|4|5|6|7|8|9

<number> ::= <digit>
 | <number> <digit>

<word> ::= <letter>
 | <word> <letter>
 | <word> '_'

<word_list> ::= <word>
 | <word_list> <word>

<assignment_word> ::= <word> '=' <word>

<redirection> ::= '>' <word>
 | '<' <word>
 | <number> '>' <word>
 | <number> '<' <word>
 | '>>' <word>
 | <number> '>>' <word>
 | '<<' <word>
 | <number> '<<' <word>
 | '<&' <number>
 | <number> '<&' <number>
 | '>&' <number>
 | <number> '>&' <number>
 | '<&' <word>
 | <number> '<&' <word>
 | '>&' <word>
 | <number> '>&' <word>
 | '<<-' <word>
 | <number> '<<-' <word>
 | '>&' '-'
 | <number> '>&' '-'
 | '<&' '-'
 | <number> '<&' '-'
 | '&>' <word>
 | <number> '<>' <word>
 | '<>' <word>
 | '>|' <word>
 | <number> '>|' <word>

<simple_command_element> ::= <word>
 | <assignment_word>
 | <redirection>

<redirection_list> ::= <redirection>
 | <redirection_list> <redirection>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<simple_command> ::= <simple_command_element>
 | <simple_command> <simple_command_element>

<command> ::= <simple_command>
 | <shell_command>
 | <shell_command> <redirection_list>

<shell_command> ::= <for_command>
 | <case_command>
 | while <compound_list> do <compound_list> done
 | until <compound_list> do <compound_list> done
 | <select_command>
 | <if_command>
 | <subshell>
 | <group_command>
 | <function_def>

<for_command> ::= for <word> <newline_list> do <compound_list> done
 | for <word> <newline_list> '{' <compound_list> '}'
 | for <word> ';' <newline_list> do <compound_list> done
 | for <word> ';' <newline_list> '{' <compound_list> '}'
 | for <word> <newline_list> in <word_list> <list_terminator>
 <newline_list> do <compound_list> done
 | for <word> <newline_list> in <word_list> <list_terminator>
 <newline_list> '{' <compound_list> '}'

<select_command> ::= select <word> <newline_list> do <list> done
 | select <word> <newline_list> '{' <list> '}'
 | select <word> ';' <newline_list> do <list> done
 | select <word> ';' <newline_list> '{' list '}'
 | select <word> <newline_list> in <word_list>
 <list_terminator> <newline_list> do <list> done
 | select <word> <newline_list> in <word_list>
 <list_terminator> <newline_list> '{' <list> '}'

<case_command> ::= case <word> <newline_list> in <newline_list> esac
 | case <word> <newline_list> in <case_clause_sequence>
 <newline_list> esac
 | case <word> <newline_list> in <case_clause> esac

<function_def> ::= <word> '(' ')' <newline_list> <group_command>
 | function <word> '(' ')' <newline_list> <group_command>
 | function <word> <newline_list> <group_command>

<subshell> ::= '(' <compound_list> ')'

<if_command> ::= if <compound_list> then <compound_list> fi
 | if <compound_list> then <compound_list> else <compound_list> fi
 | if <compound_list> then <compound_list> <elif_clause> fi

<group_command> ::= '{' <list> '}'

<elif_clause> ::= elif <compound_list> then <compound_list>
 | elif <compound_list> then <compound_list> else <compound_list>
 | elif <compound_list> then <compound_list> <elif_clause>

<case_clause> ::= <pattern_list>
 | <case_clause_sequence> <pattern_list>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 | <case_clause_sequence> <pattern_list>

<pattern_list> ::= <newline_list> <pattern> ')' <compound_list>
 | <newline_list> <pattern> ')' <newline_list>
 | <newline_list> '(' <pattern> ')' <compound_list>
 | <newline_list> '(' <pattern> ')' <newline_list>

<case_clause_sequence> ::= <pattern_list> ';;'
 | <case_clause_sequence> <pattern_list> ';;'

<pattern> ::= <word>
 | <pattern> '|' <word>

<list> ::= <newline_list> <list0>

<compound_list> ::= <list>
 | <newline_list> <list1>

<list0> ::= <list1> '\n' <newline_list>
 | <list1> '&' <newline_list>
 | <list1> ';' <newline_list>

<list1> ::= <list1> '&&' <newline_list> <list1>
 | <list1> '||' <newline_list> <list1>
 | <list1> '&' <newline_list> <list1>
 | <list1> ';' <newline_list> <list1>
 | <list1> '\n' <newline_list> <list1>
 | <pipeline_command>

<list_terminator> ::= '\n'
 | ';'

<newline_list> ::=
 | <newline_list> '\n'

<simple_list> ::= <simple_list1>
 | <simple_list1> '&'
 | <simple_list1> ';'

<simple_list1> ::= <simple_list1> '&&' <newline_list> <simple_list1>
 | <simple_list1> '||' <newline_list> <simple_list1>
 | <simple_list1> '&' <simple_list1>
 | <simple_list1> ';' <simple_list1>
 | <pipeline_command>

<pipeline_command> ::= <pipeline>
 | '!' <pipeline>
 | <timespec> <pipeline>
 | <timespec> '!' <pipeline>
 | '!' <timespec> <pipeline>

<pipeline> ::=
 <pipeline> '|' <newline_list> <pipeline>
 | <command>

<time_opt> ::= '-p'

<timespec> ::= time

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<timespec> ::= time
 | time <time_opt>

.XE "BNF (Backus-Naur Form)"
.XE "bash" "syntax, BNF form of"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix E. Obtaining Sample Programs
Some of the examples in this book are available electronically by both FTP and FTPMAIL. Use FTP if you
are directly on the Internet. Use FTPMAIL if you are not on the Internet but can send and receive electronic
mail to Internet sites.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.1 FTP
If you have an Internet connection (permanent or dialup), the easiest way to use FTP is via your web
browser or an FTP client. To get the examples, point your browser to
ftp://ftp.oreilly.com/published/oreilly/nutshell/bash/examples.tar.gz. If you don't have a web browser, you
can use the command-line FTP client included with Windows NT or Windows 95.

A sample session is shown below, with what you should type in boldface.

.ps 8
% ftp ftp.oreilly.com
Connected to ftp.oreilly.com.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.oreilly.com:username): anonymous
331 Guest login OK, send email address as password.
Password: username@hostname (Use your username and host here)
230 Guest login OK, access restrictions apply.
ftp> cd /published/oreilly/nutshell/bash
250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.
200 Type set to I.
ftp> get examples.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for examples.tar.gz (xxxx bytes).
226 Transfer complete. local: exercise remote: exercises
xxxx bytes received in xxx seconds (xxx Kbytes/s)
ftp> quit
221 Goodbye.
%

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

E.2 FTPMAIL
FTPMAIL is a mail server available to anyone who can send electronic mail to, and receive electronic mail
from, Internet sites. Any company or service provider that allows email connections to the Internet can
access FTPMAIL.

You send mail to ftpmail@online.oreilly.com. In the message body, give the name of the anonymous FTP
host and the FTP commands you want to run. The server will run anonymous FTP for you, and mail the
files back to you. To get a complete help file, send a message with no subject and the single word "help" in
the body. The following is an example mail session that gets you the examples. This command sends you a
listing of the files in the selected directory, and the requested examples file. The listing is useful if you are
interested in a later version of the examples.

Subject:
reply-to username@hostname (Where you want files mailed)
open
cd /published/oreilly/nutshell/bash
dir
mode binary
uuencode
get examples.tar.gz
quit
.

A signature at the end of the message is acceptable as long as it appears after "quit."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality
and life into potentially dry subjects.

The fish featured on the cover of Learning the bash Shell, Second Edition, is a silver bass, one of the 400-
500 species of sea bass. The silver bass, also known as the white perch, is found in freshwater bays and
river mouths along the Atlantic coast of North America from Nova Scotia to South Carolina, and is most
abundant in the Chesapeake region. Silver bass live in large schools and feed on small fishes and
crustaceans. Although many bass never stray far from one place their whole lives, silver bass swim
upstream to spawn, often becoming landlocked in the process. Like most bass, the silver bass is attracted to
bright, shiny objects, and they can be drawn quite close to swimmers and divers in this way.

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover Pictorial
Archive. The cover layout was produced with QuarkXPress 3.3 using the ITC Garamond font.

The inside layout was designed by Edie Freedman and modified by Nancy Priest. It was implemented in
gtroff by Lenny Muellner. The text and heading fonts are ITC Garamond Light and Garamond Book. The
illustrations that appear in the book were created by Chris Reilley and updated in Macromedia Freehand 5.0
for the second edition by Robert Romano. This colophon was written by Clairemarie Fisher O'Leary.

Whenever possible, our books use RepKover™, a durable and flexible lay-flat binding. If the page count
exceeds RepKover's limit, perfect binding is used.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch,
and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained
by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index
• Reviews
• Examples

• Reader
Reviews

• Errata

Learning the bash Shell, Second Edition

By Cameron Newham, Bill Rosenblatt

Publisher: O'Reilly
Pub Date: January 1998

ISBN: 1-56592-347-2
Pages: 334

 Ripped by Caudex 2003

This second edition covers all of the features of bash Version 2.0, while still applying
to bash Version 1.x. It includes one-dimensional arrays, parameter expansion, more
pattern-matching operations, new commands, security improvements, additions to
ReadLine, improved configuration and installation, and an additional programming
aid, the bash shell debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

